KVM: nVMX: Don't emulate instructions in guest mode
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68         X86_FEATURE_MATCH(X86_FEATURE_VMX),
69         {}
70 };
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
72
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
75
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
78
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
81
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
84
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87                         enable_unrestricted_guest, bool, S_IRUGO);
88
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
91
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
94
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
97
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
100
101 /*
102  * If nested=1, nested virtualization is supported, i.e., guests may use
103  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104  * use VMX instructions.
105  */
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
108
109 static u64 __read_mostly host_xss;
110
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116
117 #define MSR_BITMAP_MODE_X2APIC          1
118 #define MSR_BITMAP_MODE_X2APIC_APICV    2
119
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON                            \
132         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
133          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS                                      \
135         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147         RTIT_STATUS_BYTECNT))
148
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191
192 static const struct {
193         const char *option;
194         bool for_parse;
195 } vmentry_l1d_param[] = {
196         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
197         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
198         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
199         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
200         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209         struct page *page;
210         unsigned int i;
211
212         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
214                 return 0;
215         }
216
217         if (!enable_ept) {
218                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
219                 return 0;
220         }
221
222         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
223                 u64 msr;
224
225                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
228                         return 0;
229                 }
230         }
231
232         /* If set to auto use the default l1tf mitigation method */
233         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234                 switch (l1tf_mitigation) {
235                 case L1TF_MITIGATION_OFF:
236                         l1tf = VMENTER_L1D_FLUSH_NEVER;
237                         break;
238                 case L1TF_MITIGATION_FLUSH_NOWARN:
239                 case L1TF_MITIGATION_FLUSH:
240                 case L1TF_MITIGATION_FLUSH_NOSMT:
241                         l1tf = VMENTER_L1D_FLUSH_COND;
242                         break;
243                 case L1TF_MITIGATION_FULL:
244                 case L1TF_MITIGATION_FULL_FORCE:
245                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
246                         break;
247                 }
248         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
250         }
251
252         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
254                 /*
255                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
256                  * lifetime and so should not be charged to a memcg.
257                  */
258                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
259                 if (!page)
260                         return -ENOMEM;
261                 vmx_l1d_flush_pages = page_address(page);
262
263                 /*
264                  * Initialize each page with a different pattern in
265                  * order to protect against KSM in the nested
266                  * virtualization case.
267                  */
268                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
270                                PAGE_SIZE);
271                 }
272         }
273
274         l1tf_vmx_mitigation = l1tf;
275
276         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277                 static_branch_enable(&vmx_l1d_should_flush);
278         else
279                 static_branch_disable(&vmx_l1d_should_flush);
280
281         if (l1tf == VMENTER_L1D_FLUSH_COND)
282                 static_branch_enable(&vmx_l1d_flush_cond);
283         else
284                 static_branch_disable(&vmx_l1d_flush_cond);
285         return 0;
286 }
287
288 static int vmentry_l1d_flush_parse(const char *s)
289 {
290         unsigned int i;
291
292         if (s) {
293                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294                         if (vmentry_l1d_param[i].for_parse &&
295                             sysfs_streq(s, vmentry_l1d_param[i].option))
296                                 return i;
297                 }
298         }
299         return -EINVAL;
300 }
301
302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
303 {
304         int l1tf, ret;
305
306         l1tf = vmentry_l1d_flush_parse(s);
307         if (l1tf < 0)
308                 return l1tf;
309
310         if (!boot_cpu_has(X86_BUG_L1TF))
311                 return 0;
312
313         /*
314          * Has vmx_init() run already? If not then this is the pre init
315          * parameter parsing. In that case just store the value and let
316          * vmx_init() do the proper setup after enable_ept has been
317          * established.
318          */
319         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320                 vmentry_l1d_flush_param = l1tf;
321                 return 0;
322         }
323
324         mutex_lock(&vmx_l1d_flush_mutex);
325         ret = vmx_setup_l1d_flush(l1tf);
326         mutex_unlock(&vmx_l1d_flush_mutex);
327         return ret;
328 }
329
330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
331 {
332         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333                 return sprintf(s, "???\n");
334
335         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
336 }
337
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339         .set = vmentry_l1d_flush_set,
340         .get = vmentry_l1d_flush_get,
341 };
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
343
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
347                                                           u32 msr, int type);
348
349 void vmx_vmexit(void);
350
351 #define vmx_insn_failed(fmt...)         \
352 do {                                    \
353         WARN_ONCE(1, fmt);              \
354         pr_warn_ratelimited(fmt);       \
355 } while (0)
356
357 asmlinkage void vmread_error(unsigned long field, bool fault)
358 {
359         if (fault)
360                 kvm_spurious_fault();
361         else
362                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
363 }
364
365 noinline void vmwrite_error(unsigned long field, unsigned long value)
366 {
367         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
369 }
370
371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
372 {
373         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
374 }
375
376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
377 {
378         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
379 }
380
381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
382 {
383         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
384                         ext, vpid, gva);
385 }
386
387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
388 {
389         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
390                         ext, eptp, gpa);
391 }
392
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
395 /*
396  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
398  */
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
400
401 /*
402  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403  * can find which vCPU should be waken up.
404  */
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
407
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
410
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
413
414 #define VMX_SEGMENT_FIELD(seg)                                  \
415         [VCPU_SREG_##seg] = {                                   \
416                 .selector = GUEST_##seg##_SELECTOR,             \
417                 .base = GUEST_##seg##_BASE,                     \
418                 .limit = GUEST_##seg##_LIMIT,                   \
419                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
420         }
421
422 static const struct kvm_vmx_segment_field {
423         unsigned selector;
424         unsigned base;
425         unsigned limit;
426         unsigned ar_bytes;
427 } kvm_vmx_segment_fields[] = {
428         VMX_SEGMENT_FIELD(CS),
429         VMX_SEGMENT_FIELD(DS),
430         VMX_SEGMENT_FIELD(ES),
431         VMX_SEGMENT_FIELD(FS),
432         VMX_SEGMENT_FIELD(GS),
433         VMX_SEGMENT_FIELD(SS),
434         VMX_SEGMENT_FIELD(TR),
435         VMX_SEGMENT_FIELD(LDTR),
436 };
437
438 u64 host_efer;
439 static unsigned long host_idt_base;
440
441 /*
442  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
443  * will emulate SYSCALL in legacy mode if the vendor string in guest
444  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
445  * support this emulation, IA32_STAR must always be included in
446  * vmx_msr_index[], even in i386 builds.
447  */
448 const u32 vmx_msr_index[] = {
449 #ifdef CONFIG_X86_64
450         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
451 #endif
452         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
453 };
454
455 #if IS_ENABLED(CONFIG_HYPERV)
456 static bool __read_mostly enlightened_vmcs = true;
457 module_param(enlightened_vmcs, bool, 0444);
458
459 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
460 static void check_ept_pointer_match(struct kvm *kvm)
461 {
462         struct kvm_vcpu *vcpu;
463         u64 tmp_eptp = INVALID_PAGE;
464         int i;
465
466         kvm_for_each_vcpu(i, vcpu, kvm) {
467                 if (!VALID_PAGE(tmp_eptp)) {
468                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
469                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
470                         to_kvm_vmx(kvm)->ept_pointers_match
471                                 = EPT_POINTERS_MISMATCH;
472                         return;
473                 }
474         }
475
476         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
477 }
478
479 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
480                 void *data)
481 {
482         struct kvm_tlb_range *range = data;
483
484         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
485                         range->pages);
486 }
487
488 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
489                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
490 {
491         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
492
493         /*
494          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
495          * of the base of EPT PML4 table, strip off EPT configuration
496          * information.
497          */
498         if (range)
499                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
500                                 kvm_fill_hv_flush_list_func, (void *)range);
501         else
502                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
503 }
504
505 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
506                 struct kvm_tlb_range *range)
507 {
508         struct kvm_vcpu *vcpu;
509         int ret = 0, i;
510
511         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
512
513         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
514                 check_ept_pointer_match(kvm);
515
516         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
517                 kvm_for_each_vcpu(i, vcpu, kvm) {
518                         /* If ept_pointer is invalid pointer, bypass flush request. */
519                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
520                                 ret |= __hv_remote_flush_tlb_with_range(
521                                         kvm, vcpu, range);
522                 }
523         } else {
524                 ret = __hv_remote_flush_tlb_with_range(kvm,
525                                 kvm_get_vcpu(kvm, 0), range);
526         }
527
528         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
529         return ret;
530 }
531 static int hv_remote_flush_tlb(struct kvm *kvm)
532 {
533         return hv_remote_flush_tlb_with_range(kvm, NULL);
534 }
535
536 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
537 {
538         struct hv_enlightened_vmcs *evmcs;
539         struct hv_partition_assist_pg **p_hv_pa_pg =
540                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
541         /*
542          * Synthetic VM-Exit is not enabled in current code and so All
543          * evmcs in singe VM shares same assist page.
544          */
545         if (!*p_hv_pa_pg)
546                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
547
548         if (!*p_hv_pa_pg)
549                 return -ENOMEM;
550
551         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
552
553         evmcs->partition_assist_page =
554                 __pa(*p_hv_pa_pg);
555         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
556         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
557
558         return 0;
559 }
560
561 #endif /* IS_ENABLED(CONFIG_HYPERV) */
562
563 /*
564  * Comment's format: document - errata name - stepping - processor name.
565  * Refer from
566  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
567  */
568 static u32 vmx_preemption_cpu_tfms[] = {
569 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
570 0x000206E6,
571 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
572 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
573 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
574 0x00020652,
575 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
576 0x00020655,
577 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
578 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
579 /*
580  * 320767.pdf - AAP86  - B1 -
581  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
582  */
583 0x000106E5,
584 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
585 0x000106A0,
586 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
587 0x000106A1,
588 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
589 0x000106A4,
590  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
591  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
592  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
593 0x000106A5,
594  /* Xeon E3-1220 V2 */
595 0x000306A8,
596 };
597
598 static inline bool cpu_has_broken_vmx_preemption_timer(void)
599 {
600         u32 eax = cpuid_eax(0x00000001), i;
601
602         /* Clear the reserved bits */
603         eax &= ~(0x3U << 14 | 0xfU << 28);
604         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
605                 if (eax == vmx_preemption_cpu_tfms[i])
606                         return true;
607
608         return false;
609 }
610
611 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
612 {
613         return flexpriority_enabled && lapic_in_kernel(vcpu);
614 }
615
616 static inline bool report_flexpriority(void)
617 {
618         return flexpriority_enabled;
619 }
620
621 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
622 {
623         int i;
624
625         for (i = 0; i < vmx->nmsrs; ++i)
626                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
627                         return i;
628         return -1;
629 }
630
631 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
632 {
633         int i;
634
635         i = __find_msr_index(vmx, msr);
636         if (i >= 0)
637                 return &vmx->guest_msrs[i];
638         return NULL;
639 }
640
641 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
642 {
643         vmcs_clear(loaded_vmcs->vmcs);
644         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
645                 vmcs_clear(loaded_vmcs->shadow_vmcs);
646         loaded_vmcs->cpu = -1;
647         loaded_vmcs->launched = 0;
648 }
649
650 #ifdef CONFIG_KEXEC_CORE
651 /*
652  * This bitmap is used to indicate whether the vmclear
653  * operation is enabled on all cpus. All disabled by
654  * default.
655  */
656 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
657
658 static inline void crash_enable_local_vmclear(int cpu)
659 {
660         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
661 }
662
663 static inline void crash_disable_local_vmclear(int cpu)
664 {
665         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
666 }
667
668 static inline int crash_local_vmclear_enabled(int cpu)
669 {
670         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
671 }
672
673 static void crash_vmclear_local_loaded_vmcss(void)
674 {
675         int cpu = raw_smp_processor_id();
676         struct loaded_vmcs *v;
677
678         if (!crash_local_vmclear_enabled(cpu))
679                 return;
680
681         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
682                             loaded_vmcss_on_cpu_link)
683                 vmcs_clear(v->vmcs);
684 }
685 #else
686 static inline void crash_enable_local_vmclear(int cpu) { }
687 static inline void crash_disable_local_vmclear(int cpu) { }
688 #endif /* CONFIG_KEXEC_CORE */
689
690 static void __loaded_vmcs_clear(void *arg)
691 {
692         struct loaded_vmcs *loaded_vmcs = arg;
693         int cpu = raw_smp_processor_id();
694
695         if (loaded_vmcs->cpu != cpu)
696                 return; /* vcpu migration can race with cpu offline */
697         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698                 per_cpu(current_vmcs, cpu) = NULL;
699         crash_disable_local_vmclear(cpu);
700         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
701
702         /*
703          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
704          * is before setting loaded_vmcs->vcpu to -1 which is done in
705          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
706          * then adds the vmcs into percpu list before it is deleted.
707          */
708         smp_wmb();
709
710         loaded_vmcs_init(loaded_vmcs);
711         crash_enable_local_vmclear(cpu);
712 }
713
714 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
715 {
716         int cpu = loaded_vmcs->cpu;
717
718         if (cpu != -1)
719                 smp_call_function_single(cpu,
720                          __loaded_vmcs_clear, loaded_vmcs, 1);
721 }
722
723 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
724                                        unsigned field)
725 {
726         bool ret;
727         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
728
729         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
730                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
731                 vmx->segment_cache.bitmask = 0;
732         }
733         ret = vmx->segment_cache.bitmask & mask;
734         vmx->segment_cache.bitmask |= mask;
735         return ret;
736 }
737
738 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
739 {
740         u16 *p = &vmx->segment_cache.seg[seg].selector;
741
742         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
743                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
744         return *p;
745 }
746
747 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
748 {
749         ulong *p = &vmx->segment_cache.seg[seg].base;
750
751         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
752                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
753         return *p;
754 }
755
756 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
757 {
758         u32 *p = &vmx->segment_cache.seg[seg].limit;
759
760         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
761                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
762         return *p;
763 }
764
765 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
766 {
767         u32 *p = &vmx->segment_cache.seg[seg].ar;
768
769         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
770                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
771         return *p;
772 }
773
774 void update_exception_bitmap(struct kvm_vcpu *vcpu)
775 {
776         u32 eb;
777
778         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
779              (1u << DB_VECTOR) | (1u << AC_VECTOR);
780         /*
781          * Guest access to VMware backdoor ports could legitimately
782          * trigger #GP because of TSS I/O permission bitmap.
783          * We intercept those #GP and allow access to them anyway
784          * as VMware does.
785          */
786         if (enable_vmware_backdoor)
787                 eb |= (1u << GP_VECTOR);
788         if ((vcpu->guest_debug &
789              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
790             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
791                 eb |= 1u << BP_VECTOR;
792         if (to_vmx(vcpu)->rmode.vm86_active)
793                 eb = ~0;
794         if (enable_ept)
795                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
796
797         /* When we are running a nested L2 guest and L1 specified for it a
798          * certain exception bitmap, we must trap the same exceptions and pass
799          * them to L1. When running L2, we will only handle the exceptions
800          * specified above if L1 did not want them.
801          */
802         if (is_guest_mode(vcpu))
803                 eb |= get_vmcs12(vcpu)->exception_bitmap;
804
805         vmcs_write32(EXCEPTION_BITMAP, eb);
806 }
807
808 /*
809  * Check if MSR is intercepted for currently loaded MSR bitmap.
810  */
811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
812 {
813         unsigned long *msr_bitmap;
814         int f = sizeof(unsigned long);
815
816         if (!cpu_has_vmx_msr_bitmap())
817                 return true;
818
819         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
820
821         if (msr <= 0x1fff) {
822                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
823         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
824                 msr &= 0x1fff;
825                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
826         }
827
828         return true;
829 }
830
831 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
832                 unsigned long entry, unsigned long exit)
833 {
834         vm_entry_controls_clearbit(vmx, entry);
835         vm_exit_controls_clearbit(vmx, exit);
836 }
837
838 static int find_msr(struct vmx_msrs *m, unsigned int msr)
839 {
840         unsigned int i;
841
842         for (i = 0; i < m->nr; ++i) {
843                 if (m->val[i].index == msr)
844                         return i;
845         }
846         return -ENOENT;
847 }
848
849 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
850 {
851         int i;
852         struct msr_autoload *m = &vmx->msr_autoload;
853
854         switch (msr) {
855         case MSR_EFER:
856                 if (cpu_has_load_ia32_efer()) {
857                         clear_atomic_switch_msr_special(vmx,
858                                         VM_ENTRY_LOAD_IA32_EFER,
859                                         VM_EXIT_LOAD_IA32_EFER);
860                         return;
861                 }
862                 break;
863         case MSR_CORE_PERF_GLOBAL_CTRL:
864                 if (cpu_has_load_perf_global_ctrl()) {
865                         clear_atomic_switch_msr_special(vmx,
866                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
867                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
868                         return;
869                 }
870                 break;
871         }
872         i = find_msr(&m->guest, msr);
873         if (i < 0)
874                 goto skip_guest;
875         --m->guest.nr;
876         m->guest.val[i] = m->guest.val[m->guest.nr];
877         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
878
879 skip_guest:
880         i = find_msr(&m->host, msr);
881         if (i < 0)
882                 return;
883
884         --m->host.nr;
885         m->host.val[i] = m->host.val[m->host.nr];
886         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
887 }
888
889 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
890                 unsigned long entry, unsigned long exit,
891                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
892                 u64 guest_val, u64 host_val)
893 {
894         vmcs_write64(guest_val_vmcs, guest_val);
895         if (host_val_vmcs != HOST_IA32_EFER)
896                 vmcs_write64(host_val_vmcs, host_val);
897         vm_entry_controls_setbit(vmx, entry);
898         vm_exit_controls_setbit(vmx, exit);
899 }
900
901 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
902                                   u64 guest_val, u64 host_val, bool entry_only)
903 {
904         int i, j = 0;
905         struct msr_autoload *m = &vmx->msr_autoload;
906
907         switch (msr) {
908         case MSR_EFER:
909                 if (cpu_has_load_ia32_efer()) {
910                         add_atomic_switch_msr_special(vmx,
911                                         VM_ENTRY_LOAD_IA32_EFER,
912                                         VM_EXIT_LOAD_IA32_EFER,
913                                         GUEST_IA32_EFER,
914                                         HOST_IA32_EFER,
915                                         guest_val, host_val);
916                         return;
917                 }
918                 break;
919         case MSR_CORE_PERF_GLOBAL_CTRL:
920                 if (cpu_has_load_perf_global_ctrl()) {
921                         add_atomic_switch_msr_special(vmx,
922                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
923                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
924                                         GUEST_IA32_PERF_GLOBAL_CTRL,
925                                         HOST_IA32_PERF_GLOBAL_CTRL,
926                                         guest_val, host_val);
927                         return;
928                 }
929                 break;
930         case MSR_IA32_PEBS_ENABLE:
931                 /* PEBS needs a quiescent period after being disabled (to write
932                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
933                  * provide that period, so a CPU could write host's record into
934                  * guest's memory.
935                  */
936                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
937         }
938
939         i = find_msr(&m->guest, msr);
940         if (!entry_only)
941                 j = find_msr(&m->host, msr);
942
943         if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
944                 (j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
945                 printk_once(KERN_WARNING "Not enough msr switch entries. "
946                                 "Can't add msr %x\n", msr);
947                 return;
948         }
949         if (i < 0) {
950                 i = m->guest.nr++;
951                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
952         }
953         m->guest.val[i].index = msr;
954         m->guest.val[i].value = guest_val;
955
956         if (entry_only)
957                 return;
958
959         if (j < 0) {
960                 j = m->host.nr++;
961                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
962         }
963         m->host.val[j].index = msr;
964         m->host.val[j].value = host_val;
965 }
966
967 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
968 {
969         u64 guest_efer = vmx->vcpu.arch.efer;
970         u64 ignore_bits = 0;
971
972         /* Shadow paging assumes NX to be available.  */
973         if (!enable_ept)
974                 guest_efer |= EFER_NX;
975
976         /*
977          * LMA and LME handled by hardware; SCE meaningless outside long mode.
978          */
979         ignore_bits |= EFER_SCE;
980 #ifdef CONFIG_X86_64
981         ignore_bits |= EFER_LMA | EFER_LME;
982         /* SCE is meaningful only in long mode on Intel */
983         if (guest_efer & EFER_LMA)
984                 ignore_bits &= ~(u64)EFER_SCE;
985 #endif
986
987         /*
988          * On EPT, we can't emulate NX, so we must switch EFER atomically.
989          * On CPUs that support "load IA32_EFER", always switch EFER
990          * atomically, since it's faster than switching it manually.
991          */
992         if (cpu_has_load_ia32_efer() ||
993             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
994                 if (!(guest_efer & EFER_LMA))
995                         guest_efer &= ~EFER_LME;
996                 if (guest_efer != host_efer)
997                         add_atomic_switch_msr(vmx, MSR_EFER,
998                                               guest_efer, host_efer, false);
999                 else
1000                         clear_atomic_switch_msr(vmx, MSR_EFER);
1001                 return false;
1002         } else {
1003                 clear_atomic_switch_msr(vmx, MSR_EFER);
1004
1005                 guest_efer &= ~ignore_bits;
1006                 guest_efer |= host_efer & ignore_bits;
1007
1008                 vmx->guest_msrs[efer_offset].data = guest_efer;
1009                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1010
1011                 return true;
1012         }
1013 }
1014
1015 #ifdef CONFIG_X86_32
1016 /*
1017  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1018  * VMCS rather than the segment table.  KVM uses this helper to figure
1019  * out the current bases to poke them into the VMCS before entry.
1020  */
1021 static unsigned long segment_base(u16 selector)
1022 {
1023         struct desc_struct *table;
1024         unsigned long v;
1025
1026         if (!(selector & ~SEGMENT_RPL_MASK))
1027                 return 0;
1028
1029         table = get_current_gdt_ro();
1030
1031         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1032                 u16 ldt_selector = kvm_read_ldt();
1033
1034                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1035                         return 0;
1036
1037                 table = (struct desc_struct *)segment_base(ldt_selector);
1038         }
1039         v = get_desc_base(&table[selector >> 3]);
1040         return v;
1041 }
1042 #endif
1043
1044 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1045 {
1046         u32 i;
1047
1048         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1049         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1050         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1051         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1052         for (i = 0; i < addr_range; i++) {
1053                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1054                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1055         }
1056 }
1057
1058 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1059 {
1060         u32 i;
1061
1062         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1063         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1064         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1065         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1066         for (i = 0; i < addr_range; i++) {
1067                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1068                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1069         }
1070 }
1071
1072 static void pt_guest_enter(struct vcpu_vmx *vmx)
1073 {
1074         if (pt_mode == PT_MODE_SYSTEM)
1075                 return;
1076
1077         /*
1078          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1079          * Save host state before VM entry.
1080          */
1081         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1082         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1083                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1084                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1085                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1086         }
1087 }
1088
1089 static void pt_guest_exit(struct vcpu_vmx *vmx)
1090 {
1091         if (pt_mode == PT_MODE_SYSTEM)
1092                 return;
1093
1094         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1095                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1096                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1097         }
1098
1099         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1100         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1101 }
1102
1103 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1104                         unsigned long fs_base, unsigned long gs_base)
1105 {
1106         if (unlikely(fs_sel != host->fs_sel)) {
1107                 if (!(fs_sel & 7))
1108                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1109                 else
1110                         vmcs_write16(HOST_FS_SELECTOR, 0);
1111                 host->fs_sel = fs_sel;
1112         }
1113         if (unlikely(gs_sel != host->gs_sel)) {
1114                 if (!(gs_sel & 7))
1115                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1116                 else
1117                         vmcs_write16(HOST_GS_SELECTOR, 0);
1118                 host->gs_sel = gs_sel;
1119         }
1120         if (unlikely(fs_base != host->fs_base)) {
1121                 vmcs_writel(HOST_FS_BASE, fs_base);
1122                 host->fs_base = fs_base;
1123         }
1124         if (unlikely(gs_base != host->gs_base)) {
1125                 vmcs_writel(HOST_GS_BASE, gs_base);
1126                 host->gs_base = gs_base;
1127         }
1128 }
1129
1130 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1131 {
1132         struct vcpu_vmx *vmx = to_vmx(vcpu);
1133         struct vmcs_host_state *host_state;
1134 #ifdef CONFIG_X86_64
1135         int cpu = raw_smp_processor_id();
1136 #endif
1137         unsigned long fs_base, gs_base;
1138         u16 fs_sel, gs_sel;
1139         int i;
1140
1141         vmx->req_immediate_exit = false;
1142
1143         /*
1144          * Note that guest MSRs to be saved/restored can also be changed
1145          * when guest state is loaded. This happens when guest transitions
1146          * to/from long-mode by setting MSR_EFER.LMA.
1147          */
1148         if (!vmx->guest_msrs_ready) {
1149                 vmx->guest_msrs_ready = true;
1150                 for (i = 0; i < vmx->save_nmsrs; ++i)
1151                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1152                                            vmx->guest_msrs[i].data,
1153                                            vmx->guest_msrs[i].mask);
1154
1155         }
1156         if (vmx->guest_state_loaded)
1157                 return;
1158
1159         host_state = &vmx->loaded_vmcs->host_state;
1160
1161         /*
1162          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1163          * allow segment selectors with cpl > 0 or ti == 1.
1164          */
1165         host_state->ldt_sel = kvm_read_ldt();
1166
1167 #ifdef CONFIG_X86_64
1168         savesegment(ds, host_state->ds_sel);
1169         savesegment(es, host_state->es_sel);
1170
1171         gs_base = cpu_kernelmode_gs_base(cpu);
1172         if (likely(is_64bit_mm(current->mm))) {
1173                 save_fsgs_for_kvm();
1174                 fs_sel = current->thread.fsindex;
1175                 gs_sel = current->thread.gsindex;
1176                 fs_base = current->thread.fsbase;
1177                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1178         } else {
1179                 savesegment(fs, fs_sel);
1180                 savesegment(gs, gs_sel);
1181                 fs_base = read_msr(MSR_FS_BASE);
1182                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1183         }
1184
1185         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1186 #else
1187         savesegment(fs, fs_sel);
1188         savesegment(gs, gs_sel);
1189         fs_base = segment_base(fs_sel);
1190         gs_base = segment_base(gs_sel);
1191 #endif
1192
1193         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1194         vmx->guest_state_loaded = true;
1195 }
1196
1197 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1198 {
1199         struct vmcs_host_state *host_state;
1200
1201         if (!vmx->guest_state_loaded)
1202                 return;
1203
1204         host_state = &vmx->loaded_vmcs->host_state;
1205
1206         ++vmx->vcpu.stat.host_state_reload;
1207
1208 #ifdef CONFIG_X86_64
1209         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1210 #endif
1211         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1212                 kvm_load_ldt(host_state->ldt_sel);
1213 #ifdef CONFIG_X86_64
1214                 load_gs_index(host_state->gs_sel);
1215 #else
1216                 loadsegment(gs, host_state->gs_sel);
1217 #endif
1218         }
1219         if (host_state->fs_sel & 7)
1220                 loadsegment(fs, host_state->fs_sel);
1221 #ifdef CONFIG_X86_64
1222         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1223                 loadsegment(ds, host_state->ds_sel);
1224                 loadsegment(es, host_state->es_sel);
1225         }
1226 #endif
1227         invalidate_tss_limit();
1228 #ifdef CONFIG_X86_64
1229         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1230 #endif
1231         load_fixmap_gdt(raw_smp_processor_id());
1232         vmx->guest_state_loaded = false;
1233         vmx->guest_msrs_ready = false;
1234 }
1235
1236 #ifdef CONFIG_X86_64
1237 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1238 {
1239         preempt_disable();
1240         if (vmx->guest_state_loaded)
1241                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1242         preempt_enable();
1243         return vmx->msr_guest_kernel_gs_base;
1244 }
1245
1246 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1247 {
1248         preempt_disable();
1249         if (vmx->guest_state_loaded)
1250                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1251         preempt_enable();
1252         vmx->msr_guest_kernel_gs_base = data;
1253 }
1254 #endif
1255
1256 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1257 {
1258         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1259         struct pi_desc old, new;
1260         unsigned int dest;
1261
1262         /*
1263          * In case of hot-plug or hot-unplug, we may have to undo
1264          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1265          * always keep PI.NDST up to date for simplicity: it makes the
1266          * code easier, and CPU migration is not a fast path.
1267          */
1268         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1269                 return;
1270
1271         /*
1272          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1273          * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1274          * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1275          * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1276          * correctly.
1277          */
1278         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1279                 pi_clear_sn(pi_desc);
1280                 goto after_clear_sn;
1281         }
1282
1283         /* The full case.  */
1284         do {
1285                 old.control = new.control = pi_desc->control;
1286
1287                 dest = cpu_physical_id(cpu);
1288
1289                 if (x2apic_enabled())
1290                         new.ndst = dest;
1291                 else
1292                         new.ndst = (dest << 8) & 0xFF00;
1293
1294                 new.sn = 0;
1295         } while (cmpxchg64(&pi_desc->control, old.control,
1296                            new.control) != old.control);
1297
1298 after_clear_sn:
1299
1300         /*
1301          * Clear SN before reading the bitmap.  The VT-d firmware
1302          * writes the bitmap and reads SN atomically (5.2.3 in the
1303          * spec), so it doesn't really have a memory barrier that
1304          * pairs with this, but we cannot do that and we need one.
1305          */
1306         smp_mb__after_atomic();
1307
1308         if (!pi_is_pir_empty(pi_desc))
1309                 pi_set_on(pi_desc);
1310 }
1311
1312 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1313 {
1314         struct vcpu_vmx *vmx = to_vmx(vcpu);
1315         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1316
1317         if (!already_loaded) {
1318                 loaded_vmcs_clear(vmx->loaded_vmcs);
1319                 local_irq_disable();
1320                 crash_disable_local_vmclear(cpu);
1321
1322                 /*
1323                  * Read loaded_vmcs->cpu should be before fetching
1324                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1325                  * See the comments in __loaded_vmcs_clear().
1326                  */
1327                 smp_rmb();
1328
1329                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1330                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1331                 crash_enable_local_vmclear(cpu);
1332                 local_irq_enable();
1333         }
1334
1335         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1336                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1337                 vmcs_load(vmx->loaded_vmcs->vmcs);
1338                 indirect_branch_prediction_barrier();
1339         }
1340
1341         if (!already_loaded) {
1342                 void *gdt = get_current_gdt_ro();
1343                 unsigned long sysenter_esp;
1344
1345                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1346
1347                 /*
1348                  * Linux uses per-cpu TSS and GDT, so set these when switching
1349                  * processors.  See 22.2.4.
1350                  */
1351                 vmcs_writel(HOST_TR_BASE,
1352                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1353                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1354
1355                 /*
1356                  * VM exits change the host TR limit to 0x67 after a VM
1357                  * exit.  This is okay, since 0x67 covers everything except
1358                  * the IO bitmap and have have code to handle the IO bitmap
1359                  * being lost after a VM exit.
1360                  */
1361                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1362
1363                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1364                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1365
1366                 vmx->loaded_vmcs->cpu = cpu;
1367         }
1368
1369         /* Setup TSC multiplier */
1370         if (kvm_has_tsc_control &&
1371             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1372                 decache_tsc_multiplier(vmx);
1373 }
1374
1375 /*
1376  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1377  * vcpu mutex is already taken.
1378  */
1379 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1380 {
1381         struct vcpu_vmx *vmx = to_vmx(vcpu);
1382
1383         vmx_vcpu_load_vmcs(vcpu, cpu);
1384
1385         vmx_vcpu_pi_load(vcpu, cpu);
1386
1387         vmx->host_pkru = read_pkru();
1388         vmx->host_debugctlmsr = get_debugctlmsr();
1389 }
1390
1391 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1392 {
1393         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1394
1395         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1396                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1397                 !kvm_vcpu_apicv_active(vcpu))
1398                 return;
1399
1400         /* Set SN when the vCPU is preempted */
1401         if (vcpu->preempted)
1402                 pi_set_sn(pi_desc);
1403 }
1404
1405 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1406 {
1407         vmx_vcpu_pi_put(vcpu);
1408
1409         vmx_prepare_switch_to_host(to_vmx(vcpu));
1410 }
1411
1412 static bool emulation_required(struct kvm_vcpu *vcpu)
1413 {
1414         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1415 }
1416
1417 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1418
1419 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1420 {
1421         unsigned long rflags, save_rflags;
1422
1423         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1424                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1425                 rflags = vmcs_readl(GUEST_RFLAGS);
1426                 if (to_vmx(vcpu)->rmode.vm86_active) {
1427                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1428                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1429                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1430                 }
1431                 to_vmx(vcpu)->rflags = rflags;
1432         }
1433         return to_vmx(vcpu)->rflags;
1434 }
1435
1436 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1437 {
1438         unsigned long old_rflags = vmx_get_rflags(vcpu);
1439
1440         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1441         to_vmx(vcpu)->rflags = rflags;
1442         if (to_vmx(vcpu)->rmode.vm86_active) {
1443                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1444                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1445         }
1446         vmcs_writel(GUEST_RFLAGS, rflags);
1447
1448         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1449                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1450 }
1451
1452 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1453 {
1454         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1455         int ret = 0;
1456
1457         if (interruptibility & GUEST_INTR_STATE_STI)
1458                 ret |= KVM_X86_SHADOW_INT_STI;
1459         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1460                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1461
1462         return ret;
1463 }
1464
1465 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1466 {
1467         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1468         u32 interruptibility = interruptibility_old;
1469
1470         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1471
1472         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1473                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1474         else if (mask & KVM_X86_SHADOW_INT_STI)
1475                 interruptibility |= GUEST_INTR_STATE_STI;
1476
1477         if ((interruptibility != interruptibility_old))
1478                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1479 }
1480
1481 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1482 {
1483         struct vcpu_vmx *vmx = to_vmx(vcpu);
1484         unsigned long value;
1485
1486         /*
1487          * Any MSR write that attempts to change bits marked reserved will
1488          * case a #GP fault.
1489          */
1490         if (data & vmx->pt_desc.ctl_bitmask)
1491                 return 1;
1492
1493         /*
1494          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1495          * result in a #GP unless the same write also clears TraceEn.
1496          */
1497         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1498                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1499                 return 1;
1500
1501         /*
1502          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1503          * and FabricEn would cause #GP, if
1504          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1505          */
1506         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1507                 !(data & RTIT_CTL_FABRIC_EN) &&
1508                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1509                                         PT_CAP_single_range_output))
1510                 return 1;
1511
1512         /*
1513          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1514          * utilize encodings marked reserved will casue a #GP fault.
1515          */
1516         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1517         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1518                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1519                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1520                 return 1;
1521         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1522                                                 PT_CAP_cycle_thresholds);
1523         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1524                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1525                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1526                 return 1;
1527         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1528         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1529                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1530                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1531                 return 1;
1532
1533         /*
1534          * If ADDRx_CFG is reserved or the encodings is >2 will
1535          * cause a #GP fault.
1536          */
1537         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1538         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1539                 return 1;
1540         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1541         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1542                 return 1;
1543         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1544         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1545                 return 1;
1546         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1547         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1548                 return 1;
1549
1550         return 0;
1551 }
1552
1553 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1554 {
1555         unsigned long rip;
1556
1557         /*
1558          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1559          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1560          * set when EPT misconfig occurs.  In practice, real hardware updates
1561          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1562          * (namely Hyper-V) don't set it due to it being undefined behavior,
1563          * i.e. we end up advancing IP with some random value.
1564          */
1565         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1566             to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1567                 rip = kvm_rip_read(vcpu);
1568                 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1569                 kvm_rip_write(vcpu, rip);
1570         } else {
1571                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1572                         return 0;
1573         }
1574
1575         /* skipping an emulated instruction also counts */
1576         vmx_set_interrupt_shadow(vcpu, 0);
1577
1578         return 1;
1579 }
1580
1581 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1582 {
1583         /*
1584          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1585          * explicitly skip the instruction because if the HLT state is set,
1586          * then the instruction is already executing and RIP has already been
1587          * advanced.
1588          */
1589         if (kvm_hlt_in_guest(vcpu->kvm) &&
1590                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1591                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1592 }
1593
1594 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1595 {
1596         struct vcpu_vmx *vmx = to_vmx(vcpu);
1597         unsigned nr = vcpu->arch.exception.nr;
1598         bool has_error_code = vcpu->arch.exception.has_error_code;
1599         u32 error_code = vcpu->arch.exception.error_code;
1600         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1601
1602         kvm_deliver_exception_payload(vcpu);
1603
1604         if (has_error_code) {
1605                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1606                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1607         }
1608
1609         if (vmx->rmode.vm86_active) {
1610                 int inc_eip = 0;
1611                 if (kvm_exception_is_soft(nr))
1612                         inc_eip = vcpu->arch.event_exit_inst_len;
1613                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1614                 return;
1615         }
1616
1617         WARN_ON_ONCE(vmx->emulation_required);
1618
1619         if (kvm_exception_is_soft(nr)) {
1620                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1621                              vmx->vcpu.arch.event_exit_inst_len);
1622                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1623         } else
1624                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1625
1626         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1627
1628         vmx_clear_hlt(vcpu);
1629 }
1630
1631 static bool vmx_rdtscp_supported(void)
1632 {
1633         return cpu_has_vmx_rdtscp();
1634 }
1635
1636 static bool vmx_invpcid_supported(void)
1637 {
1638         return cpu_has_vmx_invpcid();
1639 }
1640
1641 /*
1642  * Swap MSR entry in host/guest MSR entry array.
1643  */
1644 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1645 {
1646         struct shared_msr_entry tmp;
1647
1648         tmp = vmx->guest_msrs[to];
1649         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1650         vmx->guest_msrs[from] = tmp;
1651 }
1652
1653 /*
1654  * Set up the vmcs to automatically save and restore system
1655  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1656  * mode, as fiddling with msrs is very expensive.
1657  */
1658 static void setup_msrs(struct vcpu_vmx *vmx)
1659 {
1660         int save_nmsrs, index;
1661
1662         save_nmsrs = 0;
1663 #ifdef CONFIG_X86_64
1664         /*
1665          * The SYSCALL MSRs are only needed on long mode guests, and only
1666          * when EFER.SCE is set.
1667          */
1668         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1669                 index = __find_msr_index(vmx, MSR_STAR);
1670                 if (index >= 0)
1671                         move_msr_up(vmx, index, save_nmsrs++);
1672                 index = __find_msr_index(vmx, MSR_LSTAR);
1673                 if (index >= 0)
1674                         move_msr_up(vmx, index, save_nmsrs++);
1675                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1676                 if (index >= 0)
1677                         move_msr_up(vmx, index, save_nmsrs++);
1678         }
1679 #endif
1680         index = __find_msr_index(vmx, MSR_EFER);
1681         if (index >= 0 && update_transition_efer(vmx, index))
1682                 move_msr_up(vmx, index, save_nmsrs++);
1683         index = __find_msr_index(vmx, MSR_TSC_AUX);
1684         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1685                 move_msr_up(vmx, index, save_nmsrs++);
1686
1687         vmx->save_nmsrs = save_nmsrs;
1688         vmx->guest_msrs_ready = false;
1689
1690         if (cpu_has_vmx_msr_bitmap())
1691                 vmx_update_msr_bitmap(&vmx->vcpu);
1692 }
1693
1694 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1695 {
1696         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1697
1698         if (is_guest_mode(vcpu) &&
1699             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1700                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1701
1702         return vcpu->arch.tsc_offset;
1703 }
1704
1705 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1706 {
1707         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1708         u64 g_tsc_offset = 0;
1709
1710         /*
1711          * We're here if L1 chose not to trap WRMSR to TSC. According
1712          * to the spec, this should set L1's TSC; The offset that L1
1713          * set for L2 remains unchanged, and still needs to be added
1714          * to the newly set TSC to get L2's TSC.
1715          */
1716         if (is_guest_mode(vcpu) &&
1717             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1718                 g_tsc_offset = vmcs12->tsc_offset;
1719
1720         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1721                                    vcpu->arch.tsc_offset - g_tsc_offset,
1722                                    offset);
1723         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1724         return offset + g_tsc_offset;
1725 }
1726
1727 /*
1728  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1729  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1730  * all guests if the "nested" module option is off, and can also be disabled
1731  * for a single guest by disabling its VMX cpuid bit.
1732  */
1733 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1734 {
1735         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1736 }
1737
1738 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1739                                                  uint64_t val)
1740 {
1741         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1742
1743         return !(val & ~valid_bits);
1744 }
1745
1746 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1747 {
1748         switch (msr->index) {
1749         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1750                 if (!nested)
1751                         return 1;
1752                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1753         default:
1754                 return 1;
1755         }
1756
1757         return 0;
1758 }
1759
1760 /*
1761  * Reads an msr value (of 'msr_index') into 'pdata'.
1762  * Returns 0 on success, non-0 otherwise.
1763  * Assumes vcpu_load() was already called.
1764  */
1765 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1766 {
1767         struct vcpu_vmx *vmx = to_vmx(vcpu);
1768         struct shared_msr_entry *msr;
1769         u32 index;
1770
1771         switch (msr_info->index) {
1772 #ifdef CONFIG_X86_64
1773         case MSR_FS_BASE:
1774                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1775                 break;
1776         case MSR_GS_BASE:
1777                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1778                 break;
1779         case MSR_KERNEL_GS_BASE:
1780                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1781                 break;
1782 #endif
1783         case MSR_EFER:
1784                 return kvm_get_msr_common(vcpu, msr_info);
1785         case MSR_IA32_UMWAIT_CONTROL:
1786                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1787                         return 1;
1788
1789                 msr_info->data = vmx->msr_ia32_umwait_control;
1790                 break;
1791         case MSR_IA32_SPEC_CTRL:
1792                 if (!msr_info->host_initiated &&
1793                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1794                         return 1;
1795
1796                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1797                 break;
1798         case MSR_IA32_SYSENTER_CS:
1799                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1800                 break;
1801         case MSR_IA32_SYSENTER_EIP:
1802                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1803                 break;
1804         case MSR_IA32_SYSENTER_ESP:
1805                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1806                 break;
1807         case MSR_IA32_BNDCFGS:
1808                 if (!kvm_mpx_supported() ||
1809                     (!msr_info->host_initiated &&
1810                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1811                         return 1;
1812                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1813                 break;
1814         case MSR_IA32_MCG_EXT_CTL:
1815                 if (!msr_info->host_initiated &&
1816                     !(vmx->msr_ia32_feature_control &
1817                       FEATURE_CONTROL_LMCE))
1818                         return 1;
1819                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1820                 break;
1821         case MSR_IA32_FEATURE_CONTROL:
1822                 msr_info->data = vmx->msr_ia32_feature_control;
1823                 break;
1824         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1825                 if (!nested_vmx_allowed(vcpu))
1826                         return 1;
1827                 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1828                                        &msr_info->data);
1829         case MSR_IA32_XSS:
1830                 if (!vmx_xsaves_supported() ||
1831                     (!msr_info->host_initiated &&
1832                      !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1833                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1834                         return 1;
1835                 msr_info->data = vcpu->arch.ia32_xss;
1836                 break;
1837         case MSR_IA32_RTIT_CTL:
1838                 if (pt_mode != PT_MODE_HOST_GUEST)
1839                         return 1;
1840                 msr_info->data = vmx->pt_desc.guest.ctl;
1841                 break;
1842         case MSR_IA32_RTIT_STATUS:
1843                 if (pt_mode != PT_MODE_HOST_GUEST)
1844                         return 1;
1845                 msr_info->data = vmx->pt_desc.guest.status;
1846                 break;
1847         case MSR_IA32_RTIT_CR3_MATCH:
1848                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1849                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1850                                                 PT_CAP_cr3_filtering))
1851                         return 1;
1852                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1853                 break;
1854         case MSR_IA32_RTIT_OUTPUT_BASE:
1855                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1856                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1857                                         PT_CAP_topa_output) &&
1858                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1859                                         PT_CAP_single_range_output)))
1860                         return 1;
1861                 msr_info->data = vmx->pt_desc.guest.output_base;
1862                 break;
1863         case MSR_IA32_RTIT_OUTPUT_MASK:
1864                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1865                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1866                                         PT_CAP_topa_output) &&
1867                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1868                                         PT_CAP_single_range_output)))
1869                         return 1;
1870                 msr_info->data = vmx->pt_desc.guest.output_mask;
1871                 break;
1872         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1873                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1874                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1875                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1876                                         PT_CAP_num_address_ranges)))
1877                         return 1;
1878                 if (index % 2)
1879                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1880                 else
1881                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1882                 break;
1883         case MSR_TSC_AUX:
1884                 if (!msr_info->host_initiated &&
1885                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1886                         return 1;
1887                 /* Else, falls through */
1888         default:
1889                 msr = find_msr_entry(vmx, msr_info->index);
1890                 if (msr) {
1891                         msr_info->data = msr->data;
1892                         break;
1893                 }
1894                 return kvm_get_msr_common(vcpu, msr_info);
1895         }
1896
1897         return 0;
1898 }
1899
1900 /*
1901  * Writes msr value into into the appropriate "register".
1902  * Returns 0 on success, non-0 otherwise.
1903  * Assumes vcpu_load() was already called.
1904  */
1905 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1906 {
1907         struct vcpu_vmx *vmx = to_vmx(vcpu);
1908         struct shared_msr_entry *msr;
1909         int ret = 0;
1910         u32 msr_index = msr_info->index;
1911         u64 data = msr_info->data;
1912         u32 index;
1913
1914         switch (msr_index) {
1915         case MSR_EFER:
1916                 ret = kvm_set_msr_common(vcpu, msr_info);
1917                 break;
1918 #ifdef CONFIG_X86_64
1919         case MSR_FS_BASE:
1920                 vmx_segment_cache_clear(vmx);
1921                 vmcs_writel(GUEST_FS_BASE, data);
1922                 break;
1923         case MSR_GS_BASE:
1924                 vmx_segment_cache_clear(vmx);
1925                 vmcs_writel(GUEST_GS_BASE, data);
1926                 break;
1927         case MSR_KERNEL_GS_BASE:
1928                 vmx_write_guest_kernel_gs_base(vmx, data);
1929                 break;
1930 #endif
1931         case MSR_IA32_SYSENTER_CS:
1932                 if (is_guest_mode(vcpu))
1933                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1934                 vmcs_write32(GUEST_SYSENTER_CS, data);
1935                 break;
1936         case MSR_IA32_SYSENTER_EIP:
1937                 if (is_guest_mode(vcpu))
1938                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1939                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1940                 break;
1941         case MSR_IA32_SYSENTER_ESP:
1942                 if (is_guest_mode(vcpu))
1943                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1944                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1945                 break;
1946         case MSR_IA32_DEBUGCTLMSR:
1947                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1948                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
1949                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1950
1951                 ret = kvm_set_msr_common(vcpu, msr_info);
1952                 break;
1953
1954         case MSR_IA32_BNDCFGS:
1955                 if (!kvm_mpx_supported() ||
1956                     (!msr_info->host_initiated &&
1957                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1958                         return 1;
1959                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1960                     (data & MSR_IA32_BNDCFGS_RSVD))
1961                         return 1;
1962                 vmcs_write64(GUEST_BNDCFGS, data);
1963                 break;
1964         case MSR_IA32_UMWAIT_CONTROL:
1965                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1966                         return 1;
1967
1968                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
1969                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1970                         return 1;
1971
1972                 vmx->msr_ia32_umwait_control = data;
1973                 break;
1974         case MSR_IA32_SPEC_CTRL:
1975                 if (!msr_info->host_initiated &&
1976                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1977                         return 1;
1978
1979                 /* The STIBP bit doesn't fault even if it's not advertised */
1980                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1981                         return 1;
1982
1983                 vmx->spec_ctrl = data;
1984
1985                 if (!data)
1986                         break;
1987
1988                 /*
1989                  * For non-nested:
1990                  * When it's written (to non-zero) for the first time, pass
1991                  * it through.
1992                  *
1993                  * For nested:
1994                  * The handling of the MSR bitmap for L2 guests is done in
1995                  * nested_vmx_merge_msr_bitmap. We should not touch the
1996                  * vmcs02.msr_bitmap here since it gets completely overwritten
1997                  * in the merging. We update the vmcs01 here for L1 as well
1998                  * since it will end up touching the MSR anyway now.
1999                  */
2000                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2001                                               MSR_IA32_SPEC_CTRL,
2002                                               MSR_TYPE_RW);
2003                 break;
2004         case MSR_IA32_PRED_CMD:
2005                 if (!msr_info->host_initiated &&
2006                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2007                         return 1;
2008
2009                 if (data & ~PRED_CMD_IBPB)
2010                         return 1;
2011
2012                 if (!data)
2013                         break;
2014
2015                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2016
2017                 /*
2018                  * For non-nested:
2019                  * When it's written (to non-zero) for the first time, pass
2020                  * it through.
2021                  *
2022                  * For nested:
2023                  * The handling of the MSR bitmap for L2 guests is done in
2024                  * nested_vmx_merge_msr_bitmap. We should not touch the
2025                  * vmcs02.msr_bitmap here since it gets completely overwritten
2026                  * in the merging.
2027                  */
2028                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2029                                               MSR_TYPE_W);
2030                 break;
2031         case MSR_IA32_CR_PAT:
2032                 if (!kvm_pat_valid(data))
2033                         return 1;
2034
2035                 if (is_guest_mode(vcpu) &&
2036                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2037                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2038
2039                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2040                         vmcs_write64(GUEST_IA32_PAT, data);
2041                         vcpu->arch.pat = data;
2042                         break;
2043                 }
2044                 ret = kvm_set_msr_common(vcpu, msr_info);
2045                 break;
2046         case MSR_IA32_TSC_ADJUST:
2047                 ret = kvm_set_msr_common(vcpu, msr_info);
2048                 break;
2049         case MSR_IA32_MCG_EXT_CTL:
2050                 if ((!msr_info->host_initiated &&
2051                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2052                        FEATURE_CONTROL_LMCE)) ||
2053                     (data & ~MCG_EXT_CTL_LMCE_EN))
2054                         return 1;
2055                 vcpu->arch.mcg_ext_ctl = data;
2056                 break;
2057         case MSR_IA32_FEATURE_CONTROL:
2058                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2059                     (to_vmx(vcpu)->msr_ia32_feature_control &
2060                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2061                         return 1;
2062                 vmx->msr_ia32_feature_control = data;
2063                 if (msr_info->host_initiated && data == 0)
2064                         vmx_leave_nested(vcpu);
2065                 break;
2066         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2067                 if (!msr_info->host_initiated)
2068                         return 1; /* they are read-only */
2069                 if (!nested_vmx_allowed(vcpu))
2070                         return 1;
2071                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2072         case MSR_IA32_XSS:
2073                 if (!vmx_xsaves_supported() ||
2074                     (!msr_info->host_initiated &&
2075                      !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
2076                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
2077                         return 1;
2078                 /*
2079                  * The only supported bit as of Skylake is bit 8, but
2080                  * it is not supported on KVM.
2081                  */
2082                 if (data != 0)
2083                         return 1;
2084                 vcpu->arch.ia32_xss = data;
2085                 if (vcpu->arch.ia32_xss != host_xss)
2086                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2087                                 vcpu->arch.ia32_xss, host_xss, false);
2088                 else
2089                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2090                 break;
2091         case MSR_IA32_RTIT_CTL:
2092                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2093                         vmx_rtit_ctl_check(vcpu, data) ||
2094                         vmx->nested.vmxon)
2095                         return 1;
2096                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2097                 vmx->pt_desc.guest.ctl = data;
2098                 pt_update_intercept_for_msr(vmx);
2099                 break;
2100         case MSR_IA32_RTIT_STATUS:
2101                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2102                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2103                         (data & MSR_IA32_RTIT_STATUS_MASK))
2104                         return 1;
2105                 vmx->pt_desc.guest.status = data;
2106                 break;
2107         case MSR_IA32_RTIT_CR3_MATCH:
2108                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2109                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2110                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2111                                                 PT_CAP_cr3_filtering))
2112                         return 1;
2113                 vmx->pt_desc.guest.cr3_match = data;
2114                 break;
2115         case MSR_IA32_RTIT_OUTPUT_BASE:
2116                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2117                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2118                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2119                                         PT_CAP_topa_output) &&
2120                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2121                                         PT_CAP_single_range_output)) ||
2122                         (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2123                         return 1;
2124                 vmx->pt_desc.guest.output_base = data;
2125                 break;
2126         case MSR_IA32_RTIT_OUTPUT_MASK:
2127                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2128                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2129                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2130                                         PT_CAP_topa_output) &&
2131                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2132                                         PT_CAP_single_range_output)))
2133                         return 1;
2134                 vmx->pt_desc.guest.output_mask = data;
2135                 break;
2136         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2137                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2138                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2139                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2140                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2141                                         PT_CAP_num_address_ranges)))
2142                         return 1;
2143                 if (is_noncanonical_address(data, vcpu))
2144                         return 1;
2145                 if (index % 2)
2146                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2147                 else
2148                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2149                 break;
2150         case MSR_TSC_AUX:
2151                 if (!msr_info->host_initiated &&
2152                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2153                         return 1;
2154                 /* Check reserved bit, higher 32 bits should be zero */
2155                 if ((data >> 32) != 0)
2156                         return 1;
2157                 /* Else, falls through */
2158         default:
2159                 msr = find_msr_entry(vmx, msr_index);
2160                 if (msr) {
2161                         u64 old_msr_data = msr->data;
2162                         msr->data = data;
2163                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2164                                 preempt_disable();
2165                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2166                                                          msr->mask);
2167                                 preempt_enable();
2168                                 if (ret)
2169                                         msr->data = old_msr_data;
2170                         }
2171                         break;
2172                 }
2173                 ret = kvm_set_msr_common(vcpu, msr_info);
2174         }
2175
2176         return ret;
2177 }
2178
2179 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2180 {
2181         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2182         switch (reg) {
2183         case VCPU_REGS_RSP:
2184                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2185                 break;
2186         case VCPU_REGS_RIP:
2187                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2188                 break;
2189         case VCPU_EXREG_PDPTR:
2190                 if (enable_ept)
2191                         ept_save_pdptrs(vcpu);
2192                 break;
2193         default:
2194                 break;
2195         }
2196 }
2197
2198 static __init int cpu_has_kvm_support(void)
2199 {
2200         return cpu_has_vmx();
2201 }
2202
2203 static __init int vmx_disabled_by_bios(void)
2204 {
2205         u64 msr;
2206
2207         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2208         if (msr & FEATURE_CONTROL_LOCKED) {
2209                 /* launched w/ TXT and VMX disabled */
2210                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2211                         && tboot_enabled())
2212                         return 1;
2213                 /* launched w/o TXT and VMX only enabled w/ TXT */
2214                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2215                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2216                         && !tboot_enabled()) {
2217                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2218                                 "activate TXT before enabling KVM\n");
2219                         return 1;
2220                 }
2221                 /* launched w/o TXT and VMX disabled */
2222                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2223                         && !tboot_enabled())
2224                         return 1;
2225         }
2226
2227         return 0;
2228 }
2229
2230 static void kvm_cpu_vmxon(u64 addr)
2231 {
2232         cr4_set_bits(X86_CR4_VMXE);
2233         intel_pt_handle_vmx(1);
2234
2235         asm volatile ("vmxon %0" : : "m"(addr));
2236 }
2237
2238 static int hardware_enable(void)
2239 {
2240         int cpu = raw_smp_processor_id();
2241         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2242         u64 old, test_bits;
2243
2244         if (cr4_read_shadow() & X86_CR4_VMXE)
2245                 return -EBUSY;
2246
2247         /*
2248          * This can happen if we hot-added a CPU but failed to allocate
2249          * VP assist page for it.
2250          */
2251         if (static_branch_unlikely(&enable_evmcs) &&
2252             !hv_get_vp_assist_page(cpu))
2253                 return -EFAULT;
2254
2255         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2256         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2257         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2258
2259         /*
2260          * Now we can enable the vmclear operation in kdump
2261          * since the loaded_vmcss_on_cpu list on this cpu
2262          * has been initialized.
2263          *
2264          * Though the cpu is not in VMX operation now, there
2265          * is no problem to enable the vmclear operation
2266          * for the loaded_vmcss_on_cpu list is empty!
2267          */
2268         crash_enable_local_vmclear(cpu);
2269
2270         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2271
2272         test_bits = FEATURE_CONTROL_LOCKED;
2273         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2274         if (tboot_enabled())
2275                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2276
2277         if ((old & test_bits) != test_bits) {
2278                 /* enable and lock */
2279                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2280         }
2281         kvm_cpu_vmxon(phys_addr);
2282         if (enable_ept)
2283                 ept_sync_global();
2284
2285         return 0;
2286 }
2287
2288 static void vmclear_local_loaded_vmcss(void)
2289 {
2290         int cpu = raw_smp_processor_id();
2291         struct loaded_vmcs *v, *n;
2292
2293         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2294                                  loaded_vmcss_on_cpu_link)
2295                 __loaded_vmcs_clear(v);
2296 }
2297
2298
2299 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2300  * tricks.
2301  */
2302 static void kvm_cpu_vmxoff(void)
2303 {
2304         asm volatile (__ex("vmxoff"));
2305
2306         intel_pt_handle_vmx(0);
2307         cr4_clear_bits(X86_CR4_VMXE);
2308 }
2309
2310 static void hardware_disable(void)
2311 {
2312         vmclear_local_loaded_vmcss();
2313         kvm_cpu_vmxoff();
2314 }
2315
2316 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2317                                       u32 msr, u32 *result)
2318 {
2319         u32 vmx_msr_low, vmx_msr_high;
2320         u32 ctl = ctl_min | ctl_opt;
2321
2322         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2323
2324         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2325         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2326
2327         /* Ensure minimum (required) set of control bits are supported. */
2328         if (ctl_min & ~ctl)
2329                 return -EIO;
2330
2331         *result = ctl;
2332         return 0;
2333 }
2334
2335 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2336                                     struct vmx_capability *vmx_cap)
2337 {
2338         u32 vmx_msr_low, vmx_msr_high;
2339         u32 min, opt, min2, opt2;
2340         u32 _pin_based_exec_control = 0;
2341         u32 _cpu_based_exec_control = 0;
2342         u32 _cpu_based_2nd_exec_control = 0;
2343         u32 _vmexit_control = 0;
2344         u32 _vmentry_control = 0;
2345
2346         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2347         min = CPU_BASED_HLT_EXITING |
2348 #ifdef CONFIG_X86_64
2349               CPU_BASED_CR8_LOAD_EXITING |
2350               CPU_BASED_CR8_STORE_EXITING |
2351 #endif
2352               CPU_BASED_CR3_LOAD_EXITING |
2353               CPU_BASED_CR3_STORE_EXITING |
2354               CPU_BASED_UNCOND_IO_EXITING |
2355               CPU_BASED_MOV_DR_EXITING |
2356               CPU_BASED_USE_TSC_OFFSETING |
2357               CPU_BASED_MWAIT_EXITING |
2358               CPU_BASED_MONITOR_EXITING |
2359               CPU_BASED_INVLPG_EXITING |
2360               CPU_BASED_RDPMC_EXITING;
2361
2362         opt = CPU_BASED_TPR_SHADOW |
2363               CPU_BASED_USE_MSR_BITMAPS |
2364               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2365         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2366                                 &_cpu_based_exec_control) < 0)
2367                 return -EIO;
2368 #ifdef CONFIG_X86_64
2369         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2370                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2371                                            ~CPU_BASED_CR8_STORE_EXITING;
2372 #endif
2373         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2374                 min2 = 0;
2375                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2376                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2377                         SECONDARY_EXEC_WBINVD_EXITING |
2378                         SECONDARY_EXEC_ENABLE_VPID |
2379                         SECONDARY_EXEC_ENABLE_EPT |
2380                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2381                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2382                         SECONDARY_EXEC_DESC |
2383                         SECONDARY_EXEC_RDTSCP |
2384                         SECONDARY_EXEC_ENABLE_INVPCID |
2385                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2386                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2387                         SECONDARY_EXEC_SHADOW_VMCS |
2388                         SECONDARY_EXEC_XSAVES |
2389                         SECONDARY_EXEC_RDSEED_EXITING |
2390                         SECONDARY_EXEC_RDRAND_EXITING |
2391                         SECONDARY_EXEC_ENABLE_PML |
2392                         SECONDARY_EXEC_TSC_SCALING |
2393                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2394                         SECONDARY_EXEC_PT_USE_GPA |
2395                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2396                         SECONDARY_EXEC_ENABLE_VMFUNC |
2397                         SECONDARY_EXEC_ENCLS_EXITING;
2398                 if (adjust_vmx_controls(min2, opt2,
2399                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2400                                         &_cpu_based_2nd_exec_control) < 0)
2401                         return -EIO;
2402         }
2403 #ifndef CONFIG_X86_64
2404         if (!(_cpu_based_2nd_exec_control &
2405                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2406                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2407 #endif
2408
2409         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2410                 _cpu_based_2nd_exec_control &= ~(
2411                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2412                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2413                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2414
2415         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2416                 &vmx_cap->ept, &vmx_cap->vpid);
2417
2418         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2419                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2420                    enabled */
2421                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2422                                              CPU_BASED_CR3_STORE_EXITING |
2423                                              CPU_BASED_INVLPG_EXITING);
2424         } else if (vmx_cap->ept) {
2425                 vmx_cap->ept = 0;
2426                 pr_warn_once("EPT CAP should not exist if not support "
2427                                 "1-setting enable EPT VM-execution control\n");
2428         }
2429         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2430                 vmx_cap->vpid) {
2431                 vmx_cap->vpid = 0;
2432                 pr_warn_once("VPID CAP should not exist if not support "
2433                                 "1-setting enable VPID VM-execution control\n");
2434         }
2435
2436         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2437 #ifdef CONFIG_X86_64
2438         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2439 #endif
2440         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2441               VM_EXIT_LOAD_IA32_PAT |
2442               VM_EXIT_LOAD_IA32_EFER |
2443               VM_EXIT_CLEAR_BNDCFGS |
2444               VM_EXIT_PT_CONCEAL_PIP |
2445               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2446         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2447                                 &_vmexit_control) < 0)
2448                 return -EIO;
2449
2450         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2451         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2452                  PIN_BASED_VMX_PREEMPTION_TIMER;
2453         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2454                                 &_pin_based_exec_control) < 0)
2455                 return -EIO;
2456
2457         if (cpu_has_broken_vmx_preemption_timer())
2458                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2459         if (!(_cpu_based_2nd_exec_control &
2460                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2461                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2462
2463         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2464         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2465               VM_ENTRY_LOAD_IA32_PAT |
2466               VM_ENTRY_LOAD_IA32_EFER |
2467               VM_ENTRY_LOAD_BNDCFGS |
2468               VM_ENTRY_PT_CONCEAL_PIP |
2469               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2470         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2471                                 &_vmentry_control) < 0)
2472                 return -EIO;
2473
2474         /*
2475          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2476          * can't be used due to an errata where VM Exit may incorrectly clear
2477          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2478          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2479          */
2480         if (boot_cpu_data.x86 == 0x6) {
2481                 switch (boot_cpu_data.x86_model) {
2482                 case 26: /* AAK155 */
2483                 case 30: /* AAP115 */
2484                 case 37: /* AAT100 */
2485                 case 44: /* BC86,AAY89,BD102 */
2486                 case 46: /* BA97 */
2487                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2488                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2489                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2490                                         "does not work properly. Using workaround\n");
2491                         break;
2492                 default:
2493                         break;
2494                 }
2495         }
2496
2497
2498         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2499
2500         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2501         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2502                 return -EIO;
2503
2504 #ifdef CONFIG_X86_64
2505         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2506         if (vmx_msr_high & (1u<<16))
2507                 return -EIO;
2508 #endif
2509
2510         /* Require Write-Back (WB) memory type for VMCS accesses. */
2511         if (((vmx_msr_high >> 18) & 15) != 6)
2512                 return -EIO;
2513
2514         vmcs_conf->size = vmx_msr_high & 0x1fff;
2515         vmcs_conf->order = get_order(vmcs_conf->size);
2516         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2517
2518         vmcs_conf->revision_id = vmx_msr_low;
2519
2520         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2521         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2522         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2523         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2524         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2525
2526         if (static_branch_unlikely(&enable_evmcs))
2527                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2528
2529         return 0;
2530 }
2531
2532 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2533 {
2534         int node = cpu_to_node(cpu);
2535         struct page *pages;
2536         struct vmcs *vmcs;
2537
2538         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2539         if (!pages)
2540                 return NULL;
2541         vmcs = page_address(pages);
2542         memset(vmcs, 0, vmcs_config.size);
2543
2544         /* KVM supports Enlightened VMCS v1 only */
2545         if (static_branch_unlikely(&enable_evmcs))
2546                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2547         else
2548                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2549
2550         if (shadow)
2551                 vmcs->hdr.shadow_vmcs = 1;
2552         return vmcs;
2553 }
2554
2555 void free_vmcs(struct vmcs *vmcs)
2556 {
2557         free_pages((unsigned long)vmcs, vmcs_config.order);
2558 }
2559
2560 /*
2561  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2562  */
2563 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2564 {
2565         if (!loaded_vmcs->vmcs)
2566                 return;
2567         loaded_vmcs_clear(loaded_vmcs);
2568         free_vmcs(loaded_vmcs->vmcs);
2569         loaded_vmcs->vmcs = NULL;
2570         if (loaded_vmcs->msr_bitmap)
2571                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2572         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2573 }
2574
2575 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2576 {
2577         loaded_vmcs->vmcs = alloc_vmcs(false);
2578         if (!loaded_vmcs->vmcs)
2579                 return -ENOMEM;
2580
2581         loaded_vmcs->shadow_vmcs = NULL;
2582         loaded_vmcs->hv_timer_soft_disabled = false;
2583         loaded_vmcs_init(loaded_vmcs);
2584
2585         if (cpu_has_vmx_msr_bitmap()) {
2586                 loaded_vmcs->msr_bitmap = (unsigned long *)
2587                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2588                 if (!loaded_vmcs->msr_bitmap)
2589                         goto out_vmcs;
2590                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2591
2592                 if (IS_ENABLED(CONFIG_HYPERV) &&
2593                     static_branch_unlikely(&enable_evmcs) &&
2594                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2595                         struct hv_enlightened_vmcs *evmcs =
2596                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2597
2598                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2599                 }
2600         }
2601
2602         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2603         memset(&loaded_vmcs->controls_shadow, 0,
2604                 sizeof(struct vmcs_controls_shadow));
2605
2606         return 0;
2607
2608 out_vmcs:
2609         free_loaded_vmcs(loaded_vmcs);
2610         return -ENOMEM;
2611 }
2612
2613 static void free_kvm_area(void)
2614 {
2615         int cpu;
2616
2617         for_each_possible_cpu(cpu) {
2618                 free_vmcs(per_cpu(vmxarea, cpu));
2619                 per_cpu(vmxarea, cpu) = NULL;
2620         }
2621 }
2622
2623 static __init int alloc_kvm_area(void)
2624 {
2625         int cpu;
2626
2627         for_each_possible_cpu(cpu) {
2628                 struct vmcs *vmcs;
2629
2630                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2631                 if (!vmcs) {
2632                         free_kvm_area();
2633                         return -ENOMEM;
2634                 }
2635
2636                 /*
2637                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2638                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2639                  * revision_id reported by MSR_IA32_VMX_BASIC.
2640                  *
2641                  * However, even though not explicitly documented by
2642                  * TLFS, VMXArea passed as VMXON argument should
2643                  * still be marked with revision_id reported by
2644                  * physical CPU.
2645                  */
2646                 if (static_branch_unlikely(&enable_evmcs))
2647                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2648
2649                 per_cpu(vmxarea, cpu) = vmcs;
2650         }
2651         return 0;
2652 }
2653
2654 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2655                 struct kvm_segment *save)
2656 {
2657         if (!emulate_invalid_guest_state) {
2658                 /*
2659                  * CS and SS RPL should be equal during guest entry according
2660                  * to VMX spec, but in reality it is not always so. Since vcpu
2661                  * is in the middle of the transition from real mode to
2662                  * protected mode it is safe to assume that RPL 0 is a good
2663                  * default value.
2664                  */
2665                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2666                         save->selector &= ~SEGMENT_RPL_MASK;
2667                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2668                 save->s = 1;
2669         }
2670         vmx_set_segment(vcpu, save, seg);
2671 }
2672
2673 static void enter_pmode(struct kvm_vcpu *vcpu)
2674 {
2675         unsigned long flags;
2676         struct vcpu_vmx *vmx = to_vmx(vcpu);
2677
2678         /*
2679          * Update real mode segment cache. It may be not up-to-date if sement
2680          * register was written while vcpu was in a guest mode.
2681          */
2682         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2683         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2684         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2685         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2686         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2687         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2688
2689         vmx->rmode.vm86_active = 0;
2690
2691         vmx_segment_cache_clear(vmx);
2692
2693         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2694
2695         flags = vmcs_readl(GUEST_RFLAGS);
2696         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2697         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2698         vmcs_writel(GUEST_RFLAGS, flags);
2699
2700         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2701                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2702
2703         update_exception_bitmap(vcpu);
2704
2705         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2706         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2707         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2708         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2709         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2710         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2711 }
2712
2713 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2714 {
2715         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2716         struct kvm_segment var = *save;
2717
2718         var.dpl = 0x3;
2719         if (seg == VCPU_SREG_CS)
2720                 var.type = 0x3;
2721
2722         if (!emulate_invalid_guest_state) {
2723                 var.selector = var.base >> 4;
2724                 var.base = var.base & 0xffff0;
2725                 var.limit = 0xffff;
2726                 var.g = 0;
2727                 var.db = 0;
2728                 var.present = 1;
2729                 var.s = 1;
2730                 var.l = 0;
2731                 var.unusable = 0;
2732                 var.type = 0x3;
2733                 var.avl = 0;
2734                 if (save->base & 0xf)
2735                         printk_once(KERN_WARNING "kvm: segment base is not "
2736                                         "paragraph aligned when entering "
2737                                         "protected mode (seg=%d)", seg);
2738         }
2739
2740         vmcs_write16(sf->selector, var.selector);
2741         vmcs_writel(sf->base, var.base);
2742         vmcs_write32(sf->limit, var.limit);
2743         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2744 }
2745
2746 static void enter_rmode(struct kvm_vcpu *vcpu)
2747 {
2748         unsigned long flags;
2749         struct vcpu_vmx *vmx = to_vmx(vcpu);
2750         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2751
2752         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2753         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2754         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2755         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2756         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2757         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2758         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2759
2760         vmx->rmode.vm86_active = 1;
2761
2762         /*
2763          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2764          * vcpu. Warn the user that an update is overdue.
2765          */
2766         if (!kvm_vmx->tss_addr)
2767                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2768                              "called before entering vcpu\n");
2769
2770         vmx_segment_cache_clear(vmx);
2771
2772         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2773         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2774         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2775
2776         flags = vmcs_readl(GUEST_RFLAGS);
2777         vmx->rmode.save_rflags = flags;
2778
2779         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2780
2781         vmcs_writel(GUEST_RFLAGS, flags);
2782         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2783         update_exception_bitmap(vcpu);
2784
2785         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2786         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2787         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2788         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2789         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2790         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2791
2792         kvm_mmu_reset_context(vcpu);
2793 }
2794
2795 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2796 {
2797         struct vcpu_vmx *vmx = to_vmx(vcpu);
2798         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2799
2800         if (!msr)
2801                 return;
2802
2803         vcpu->arch.efer = efer;
2804         if (efer & EFER_LMA) {
2805                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2806                 msr->data = efer;
2807         } else {
2808                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2809
2810                 msr->data = efer & ~EFER_LME;
2811         }
2812         setup_msrs(vmx);
2813 }
2814
2815 #ifdef CONFIG_X86_64
2816
2817 static void enter_lmode(struct kvm_vcpu *vcpu)
2818 {
2819         u32 guest_tr_ar;
2820
2821         vmx_segment_cache_clear(to_vmx(vcpu));
2822
2823         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2824         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2825                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2826                                      __func__);
2827                 vmcs_write32(GUEST_TR_AR_BYTES,
2828                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2829                              | VMX_AR_TYPE_BUSY_64_TSS);
2830         }
2831         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2832 }
2833
2834 static void exit_lmode(struct kvm_vcpu *vcpu)
2835 {
2836         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2837         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2838 }
2839
2840 #endif
2841
2842 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2843 {
2844         int vpid = to_vmx(vcpu)->vpid;
2845
2846         if (!vpid_sync_vcpu_addr(vpid, addr))
2847                 vpid_sync_context(vpid);
2848
2849         /*
2850          * If VPIDs are not supported or enabled, then the above is a no-op.
2851          * But we don't really need a TLB flush in that case anyway, because
2852          * each VM entry/exit includes an implicit flush when VPID is 0.
2853          */
2854 }
2855
2856 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2857 {
2858         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2859
2860         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2861         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2862 }
2863
2864 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2865 {
2866         if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2867                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2868         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2869 }
2870
2871 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2872 {
2873         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2874
2875         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2876         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2877 }
2878
2879 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2880 {
2881         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2882
2883         if (!test_bit(VCPU_EXREG_PDPTR,
2884                       (unsigned long *)&vcpu->arch.regs_dirty))
2885                 return;
2886
2887         if (is_pae_paging(vcpu)) {
2888                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2889                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2890                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2891                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2892         }
2893 }
2894
2895 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2896 {
2897         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2898
2899         if (is_pae_paging(vcpu)) {
2900                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2901                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2902                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2903                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2904         }
2905
2906         __set_bit(VCPU_EXREG_PDPTR,
2907                   (unsigned long *)&vcpu->arch.regs_avail);
2908         __set_bit(VCPU_EXREG_PDPTR,
2909                   (unsigned long *)&vcpu->arch.regs_dirty);
2910 }
2911
2912 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2913                                         unsigned long cr0,
2914                                         struct kvm_vcpu *vcpu)
2915 {
2916         struct vcpu_vmx *vmx = to_vmx(vcpu);
2917
2918         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2919                 vmx_decache_cr3(vcpu);
2920         if (!(cr0 & X86_CR0_PG)) {
2921                 /* From paging/starting to nonpaging */
2922                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2923                                           CPU_BASED_CR3_STORE_EXITING);
2924                 vcpu->arch.cr0 = cr0;
2925                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2926         } else if (!is_paging(vcpu)) {
2927                 /* From nonpaging to paging */
2928                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2929                                             CPU_BASED_CR3_STORE_EXITING);
2930                 vcpu->arch.cr0 = cr0;
2931                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2932         }
2933
2934         if (!(cr0 & X86_CR0_WP))
2935                 *hw_cr0 &= ~X86_CR0_WP;
2936 }
2937
2938 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2939 {
2940         struct vcpu_vmx *vmx = to_vmx(vcpu);
2941         unsigned long hw_cr0;
2942
2943         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2944         if (enable_unrestricted_guest)
2945                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2946         else {
2947                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2948
2949                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2950                         enter_pmode(vcpu);
2951
2952                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2953                         enter_rmode(vcpu);
2954         }
2955
2956 #ifdef CONFIG_X86_64
2957         if (vcpu->arch.efer & EFER_LME) {
2958                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2959                         enter_lmode(vcpu);
2960                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2961                         exit_lmode(vcpu);
2962         }
2963 #endif
2964
2965         if (enable_ept && !enable_unrestricted_guest)
2966                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2967
2968         vmcs_writel(CR0_READ_SHADOW, cr0);
2969         vmcs_writel(GUEST_CR0, hw_cr0);
2970         vcpu->arch.cr0 = cr0;
2971
2972         /* depends on vcpu->arch.cr0 to be set to a new value */
2973         vmx->emulation_required = emulation_required(vcpu);
2974 }
2975
2976 static int get_ept_level(struct kvm_vcpu *vcpu)
2977 {
2978         /* Nested EPT currently only supports 4-level walks. */
2979         if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
2980                 return 4;
2981         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2982                 return 5;
2983         return 4;
2984 }
2985
2986 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2987 {
2988         u64 eptp = VMX_EPTP_MT_WB;
2989
2990         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2991
2992         if (enable_ept_ad_bits &&
2993             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2994                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2995         eptp |= (root_hpa & PAGE_MASK);
2996
2997         return eptp;
2998 }
2999
3000 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3001 {
3002         struct kvm *kvm = vcpu->kvm;
3003         bool update_guest_cr3 = true;
3004         unsigned long guest_cr3;
3005         u64 eptp;
3006
3007         guest_cr3 = cr3;
3008         if (enable_ept) {
3009                 eptp = construct_eptp(vcpu, cr3);
3010                 vmcs_write64(EPT_POINTER, eptp);
3011
3012                 if (kvm_x86_ops->tlb_remote_flush) {
3013                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3014                         to_vmx(vcpu)->ept_pointer = eptp;
3015                         to_kvm_vmx(kvm)->ept_pointers_match
3016                                 = EPT_POINTERS_CHECK;
3017                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3018                 }
3019
3020                 /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3021                 if (is_guest_mode(vcpu))
3022                         update_guest_cr3 = false;
3023                 else if (enable_unrestricted_guest || is_paging(vcpu))
3024                         guest_cr3 = kvm_read_cr3(vcpu);
3025                 else
3026                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3027                 ept_load_pdptrs(vcpu);
3028         }
3029
3030         if (update_guest_cr3)
3031                 vmcs_writel(GUEST_CR3, guest_cr3);
3032 }
3033
3034 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3035 {
3036         struct vcpu_vmx *vmx = to_vmx(vcpu);
3037         /*
3038          * Pass through host's Machine Check Enable value to hw_cr4, which
3039          * is in force while we are in guest mode.  Do not let guests control
3040          * this bit, even if host CR4.MCE == 0.
3041          */
3042         unsigned long hw_cr4;
3043
3044         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3045         if (enable_unrestricted_guest)
3046                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3047         else if (vmx->rmode.vm86_active)
3048                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3049         else
3050                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3051
3052         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3053                 if (cr4 & X86_CR4_UMIP) {
3054                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3055                         hw_cr4 &= ~X86_CR4_UMIP;
3056                 } else if (!is_guest_mode(vcpu) ||
3057                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3058                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3059                 }
3060         }
3061
3062         if (cr4 & X86_CR4_VMXE) {
3063                 /*
3064                  * To use VMXON (and later other VMX instructions), a guest
3065                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3066                  * So basically the check on whether to allow nested VMX
3067                  * is here.  We operate under the default treatment of SMM,
3068                  * so VMX cannot be enabled under SMM.
3069                  */
3070                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3071                         return 1;
3072         }
3073
3074         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3075                 return 1;
3076
3077         vcpu->arch.cr4 = cr4;
3078
3079         if (!enable_unrestricted_guest) {
3080                 if (enable_ept) {
3081                         if (!is_paging(vcpu)) {
3082                                 hw_cr4 &= ~X86_CR4_PAE;
3083                                 hw_cr4 |= X86_CR4_PSE;
3084                         } else if (!(cr4 & X86_CR4_PAE)) {
3085                                 hw_cr4 &= ~X86_CR4_PAE;
3086                         }
3087                 }
3088
3089                 /*
3090                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3091                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3092                  * to be manually disabled when guest switches to non-paging
3093                  * mode.
3094                  *
3095                  * If !enable_unrestricted_guest, the CPU is always running
3096                  * with CR0.PG=1 and CR4 needs to be modified.
3097                  * If enable_unrestricted_guest, the CPU automatically
3098                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3099                  */
3100                 if (!is_paging(vcpu))
3101                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3102         }
3103
3104         vmcs_writel(CR4_READ_SHADOW, cr4);
3105         vmcs_writel(GUEST_CR4, hw_cr4);
3106         return 0;
3107 }
3108
3109 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3110 {
3111         struct vcpu_vmx *vmx = to_vmx(vcpu);
3112         u32 ar;
3113
3114         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3115                 *var = vmx->rmode.segs[seg];
3116                 if (seg == VCPU_SREG_TR
3117                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3118                         return;
3119                 var->base = vmx_read_guest_seg_base(vmx, seg);
3120                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3121                 return;
3122         }
3123         var->base = vmx_read_guest_seg_base(vmx, seg);
3124         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3125         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3126         ar = vmx_read_guest_seg_ar(vmx, seg);
3127         var->unusable = (ar >> 16) & 1;
3128         var->type = ar & 15;
3129         var->s = (ar >> 4) & 1;
3130         var->dpl = (ar >> 5) & 3;
3131         /*
3132          * Some userspaces do not preserve unusable property. Since usable
3133          * segment has to be present according to VMX spec we can use present
3134          * property to amend userspace bug by making unusable segment always
3135          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3136          * segment as unusable.
3137          */
3138         var->present = !var->unusable;
3139         var->avl = (ar >> 12) & 1;
3140         var->l = (ar >> 13) & 1;
3141         var->db = (ar >> 14) & 1;
3142         var->g = (ar >> 15) & 1;
3143 }
3144
3145 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3146 {
3147         struct kvm_segment s;
3148
3149         if (to_vmx(vcpu)->rmode.vm86_active) {
3150                 vmx_get_segment(vcpu, &s, seg);
3151                 return s.base;
3152         }
3153         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3154 }
3155
3156 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3157 {
3158         struct vcpu_vmx *vmx = to_vmx(vcpu);
3159
3160         if (unlikely(vmx->rmode.vm86_active))
3161                 return 0;
3162         else {
3163                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3164                 return VMX_AR_DPL(ar);
3165         }
3166 }
3167
3168 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3169 {
3170         u32 ar;
3171
3172         if (var->unusable || !var->present)
3173                 ar = 1 << 16;
3174         else {
3175                 ar = var->type & 15;
3176                 ar |= (var->s & 1) << 4;
3177                 ar |= (var->dpl & 3) << 5;
3178                 ar |= (var->present & 1) << 7;
3179                 ar |= (var->avl & 1) << 12;
3180                 ar |= (var->l & 1) << 13;
3181                 ar |= (var->db & 1) << 14;
3182                 ar |= (var->g & 1) << 15;
3183         }
3184
3185         return ar;
3186 }
3187
3188 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3189 {
3190         struct vcpu_vmx *vmx = to_vmx(vcpu);
3191         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3192
3193         vmx_segment_cache_clear(vmx);
3194
3195         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3196                 vmx->rmode.segs[seg] = *var;
3197                 if (seg == VCPU_SREG_TR)
3198                         vmcs_write16(sf->selector, var->selector);
3199                 else if (var->s)
3200                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3201                 goto out;
3202         }
3203
3204         vmcs_writel(sf->base, var->base);
3205         vmcs_write32(sf->limit, var->limit);
3206         vmcs_write16(sf->selector, var->selector);
3207
3208         /*
3209          *   Fix the "Accessed" bit in AR field of segment registers for older
3210          * qemu binaries.
3211          *   IA32 arch specifies that at the time of processor reset the
3212          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3213          * is setting it to 0 in the userland code. This causes invalid guest
3214          * state vmexit when "unrestricted guest" mode is turned on.
3215          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3216          * tree. Newer qemu binaries with that qemu fix would not need this
3217          * kvm hack.
3218          */
3219         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3220                 var->type |= 0x1; /* Accessed */
3221
3222         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3223
3224 out:
3225         vmx->emulation_required = emulation_required(vcpu);
3226 }
3227
3228 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3229 {
3230         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3231
3232         *db = (ar >> 14) & 1;
3233         *l = (ar >> 13) & 1;
3234 }
3235
3236 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3237 {
3238         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3239         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3240 }
3241
3242 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3243 {
3244         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3245         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3246 }
3247
3248 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3249 {
3250         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3251         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3252 }
3253
3254 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3255 {
3256         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3257         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3258 }
3259
3260 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3261 {
3262         struct kvm_segment var;
3263         u32 ar;
3264
3265         vmx_get_segment(vcpu, &var, seg);
3266         var.dpl = 0x3;
3267         if (seg == VCPU_SREG_CS)
3268                 var.type = 0x3;
3269         ar = vmx_segment_access_rights(&var);
3270
3271         if (var.base != (var.selector << 4))
3272                 return false;
3273         if (var.limit != 0xffff)
3274                 return false;
3275         if (ar != 0xf3)
3276                 return false;
3277
3278         return true;
3279 }
3280
3281 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3282 {
3283         struct kvm_segment cs;
3284         unsigned int cs_rpl;
3285
3286         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3287         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3288
3289         if (cs.unusable)
3290                 return false;
3291         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3292                 return false;
3293         if (!cs.s)
3294                 return false;
3295         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3296                 if (cs.dpl > cs_rpl)
3297                         return false;
3298         } else {
3299                 if (cs.dpl != cs_rpl)
3300                         return false;
3301         }
3302         if (!cs.present)
3303                 return false;
3304
3305         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3306         return true;
3307 }
3308
3309 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3310 {
3311         struct kvm_segment ss;
3312         unsigned int ss_rpl;
3313
3314         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3315         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3316
3317         if (ss.unusable)
3318                 return true;
3319         if (ss.type != 3 && ss.type != 7)
3320                 return false;
3321         if (!ss.s)
3322                 return false;
3323         if (ss.dpl != ss_rpl) /* DPL != RPL */
3324                 return false;
3325         if (!ss.present)
3326                 return false;
3327
3328         return true;
3329 }
3330
3331 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3332 {
3333         struct kvm_segment var;
3334         unsigned int rpl;
3335
3336         vmx_get_segment(vcpu, &var, seg);
3337         rpl = var.selector & SEGMENT_RPL_MASK;
3338
3339         if (var.unusable)
3340                 return true;
3341         if (!var.s)
3342                 return false;
3343         if (!var.present)
3344                 return false;
3345         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3346                 if (var.dpl < rpl) /* DPL < RPL */
3347                         return false;
3348         }
3349
3350         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3351          * rights flags
3352          */
3353         return true;
3354 }
3355
3356 static bool tr_valid(struct kvm_vcpu *vcpu)
3357 {
3358         struct kvm_segment tr;
3359
3360         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3361
3362         if (tr.unusable)
3363                 return false;
3364         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3365                 return false;
3366         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3367                 return false;
3368         if (!tr.present)
3369                 return false;
3370
3371         return true;
3372 }
3373
3374 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3375 {
3376         struct kvm_segment ldtr;
3377
3378         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3379
3380         if (ldtr.unusable)
3381                 return true;
3382         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3383                 return false;
3384         if (ldtr.type != 2)
3385                 return false;
3386         if (!ldtr.present)
3387                 return false;
3388
3389         return true;
3390 }
3391
3392 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3393 {
3394         struct kvm_segment cs, ss;
3395
3396         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3397         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3398
3399         return ((cs.selector & SEGMENT_RPL_MASK) ==
3400                  (ss.selector & SEGMENT_RPL_MASK));
3401 }
3402
3403 /*
3404  * Check if guest state is valid. Returns true if valid, false if
3405  * not.
3406  * We assume that registers are always usable
3407  */
3408 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3409 {
3410         if (enable_unrestricted_guest)
3411                 return true;
3412
3413         /* real mode guest state checks */
3414         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3415                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3416                         return false;
3417                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3418                         return false;
3419                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3420                         return false;
3421                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3422                         return false;
3423                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3424                         return false;
3425                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3426                         return false;
3427         } else {
3428         /* protected mode guest state checks */
3429                 if (!cs_ss_rpl_check(vcpu))
3430                         return false;
3431                 if (!code_segment_valid(vcpu))
3432                         return false;
3433                 if (!stack_segment_valid(vcpu))
3434                         return false;
3435                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3436                         return false;
3437                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3438                         return false;
3439                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3440                         return false;
3441                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3442                         return false;
3443                 if (!tr_valid(vcpu))
3444                         return false;
3445                 if (!ldtr_valid(vcpu))
3446                         return false;
3447         }
3448         /* TODO:
3449          * - Add checks on RIP
3450          * - Add checks on RFLAGS
3451          */
3452
3453         return true;
3454 }
3455
3456 static int init_rmode_tss(struct kvm *kvm)
3457 {
3458         gfn_t fn;
3459         u16 data = 0;
3460         int idx, r;
3461
3462         idx = srcu_read_lock(&kvm->srcu);
3463         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3464         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3465         if (r < 0)
3466                 goto out;
3467         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3468         r = kvm_write_guest_page(kvm, fn++, &data,
3469                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3470         if (r < 0)
3471                 goto out;
3472         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3473         if (r < 0)
3474                 goto out;
3475         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3476         if (r < 0)
3477                 goto out;
3478         data = ~0;
3479         r = kvm_write_guest_page(kvm, fn, &data,
3480                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3481                                  sizeof(u8));
3482 out:
3483         srcu_read_unlock(&kvm->srcu, idx);
3484         return r;
3485 }
3486
3487 static int init_rmode_identity_map(struct kvm *kvm)
3488 {
3489         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3490         int i, idx, r = 0;
3491         kvm_pfn_t identity_map_pfn;
3492         u32 tmp;
3493
3494         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3495         mutex_lock(&kvm->slots_lock);
3496
3497         if (likely(kvm_vmx->ept_identity_pagetable_done))
3498                 goto out2;
3499
3500         if (!kvm_vmx->ept_identity_map_addr)
3501                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3502         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3503
3504         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3505                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3506         if (r < 0)
3507                 goto out2;
3508
3509         idx = srcu_read_lock(&kvm->srcu);
3510         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3511         if (r < 0)
3512                 goto out;
3513         /* Set up identity-mapping pagetable for EPT in real mode */
3514         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3515                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3516                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3517                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3518                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3519                 if (r < 0)
3520                         goto out;
3521         }
3522         kvm_vmx->ept_identity_pagetable_done = true;
3523
3524 out:
3525         srcu_read_unlock(&kvm->srcu, idx);
3526
3527 out2:
3528         mutex_unlock(&kvm->slots_lock);
3529         return r;
3530 }
3531
3532 static void seg_setup(int seg)
3533 {
3534         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3535         unsigned int ar;
3536
3537         vmcs_write16(sf->selector, 0);
3538         vmcs_writel(sf->base, 0);
3539         vmcs_write32(sf->limit, 0xffff);
3540         ar = 0x93;
3541         if (seg == VCPU_SREG_CS)
3542                 ar |= 0x08; /* code segment */
3543
3544         vmcs_write32(sf->ar_bytes, ar);
3545 }
3546
3547 static int alloc_apic_access_page(struct kvm *kvm)
3548 {
3549         struct page *page;
3550         int r = 0;
3551
3552         mutex_lock(&kvm->slots_lock);
3553         if (kvm->arch.apic_access_page_done)
3554                 goto out;
3555         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3556                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3557         if (r)
3558                 goto out;
3559
3560         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3561         if (is_error_page(page)) {
3562                 r = -EFAULT;
3563                 goto out;
3564         }
3565
3566         /*
3567          * Do not pin the page in memory, so that memory hot-unplug
3568          * is able to migrate it.
3569          */
3570         put_page(page);
3571         kvm->arch.apic_access_page_done = true;
3572 out:
3573         mutex_unlock(&kvm->slots_lock);
3574         return r;
3575 }
3576
3577 int allocate_vpid(void)
3578 {
3579         int vpid;
3580
3581         if (!enable_vpid)
3582                 return 0;
3583         spin_lock(&vmx_vpid_lock);
3584         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3585         if (vpid < VMX_NR_VPIDS)
3586                 __set_bit(vpid, vmx_vpid_bitmap);
3587         else
3588                 vpid = 0;
3589         spin_unlock(&vmx_vpid_lock);
3590         return vpid;
3591 }
3592
3593 void free_vpid(int vpid)
3594 {
3595         if (!enable_vpid || vpid == 0)
3596                 return;
3597         spin_lock(&vmx_vpid_lock);
3598         __clear_bit(vpid, vmx_vpid_bitmap);
3599         spin_unlock(&vmx_vpid_lock);
3600 }
3601
3602 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3603                                                           u32 msr, int type)
3604 {
3605         int f = sizeof(unsigned long);
3606
3607         if (!cpu_has_vmx_msr_bitmap())
3608                 return;
3609
3610         if (static_branch_unlikely(&enable_evmcs))
3611                 evmcs_touch_msr_bitmap();
3612
3613         /*
3614          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3615          * have the write-low and read-high bitmap offsets the wrong way round.
3616          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3617          */
3618         if (msr <= 0x1fff) {
3619                 if (type & MSR_TYPE_R)
3620                         /* read-low */
3621                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3622
3623                 if (type & MSR_TYPE_W)
3624                         /* write-low */
3625                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3626
3627         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3628                 msr &= 0x1fff;
3629                 if (type & MSR_TYPE_R)
3630                         /* read-high */
3631                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3632
3633                 if (type & MSR_TYPE_W)
3634                         /* write-high */
3635                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3636
3637         }
3638 }
3639
3640 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3641                                                          u32 msr, int type)
3642 {
3643         int f = sizeof(unsigned long);
3644
3645         if (!cpu_has_vmx_msr_bitmap())
3646                 return;
3647
3648         if (static_branch_unlikely(&enable_evmcs))
3649                 evmcs_touch_msr_bitmap();
3650
3651         /*
3652          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3653          * have the write-low and read-high bitmap offsets the wrong way round.
3654          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3655          */
3656         if (msr <= 0x1fff) {
3657                 if (type & MSR_TYPE_R)
3658                         /* read-low */
3659                         __set_bit(msr, msr_bitmap + 0x000 / f);
3660
3661                 if (type & MSR_TYPE_W)
3662                         /* write-low */
3663                         __set_bit(msr, msr_bitmap + 0x800 / f);
3664
3665         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3666                 msr &= 0x1fff;
3667                 if (type & MSR_TYPE_R)
3668                         /* read-high */
3669                         __set_bit(msr, msr_bitmap + 0x400 / f);
3670
3671                 if (type & MSR_TYPE_W)
3672                         /* write-high */
3673                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3674
3675         }
3676 }
3677
3678 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3679                                                       u32 msr, int type, bool value)
3680 {
3681         if (value)
3682                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3683         else
3684                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3685 }
3686
3687 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3688 {
3689         u8 mode = 0;
3690
3691         if (cpu_has_secondary_exec_ctrls() &&
3692             (secondary_exec_controls_get(to_vmx(vcpu)) &
3693              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3694                 mode |= MSR_BITMAP_MODE_X2APIC;
3695                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3696                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3697         }
3698
3699         return mode;
3700 }
3701
3702 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3703                                          u8 mode)
3704 {
3705         int msr;
3706
3707         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3708                 unsigned word = msr / BITS_PER_LONG;
3709                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3710                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3711         }
3712
3713         if (mode & MSR_BITMAP_MODE_X2APIC) {
3714                 /*
3715                  * TPR reads and writes can be virtualized even if virtual interrupt
3716                  * delivery is not in use.
3717                  */
3718                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3719                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3720                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3721                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3722                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3723                 }
3724         }
3725 }
3726
3727 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3728 {
3729         struct vcpu_vmx *vmx = to_vmx(vcpu);
3730         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3731         u8 mode = vmx_msr_bitmap_mode(vcpu);
3732         u8 changed = mode ^ vmx->msr_bitmap_mode;
3733
3734         if (!changed)
3735                 return;
3736
3737         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3738                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3739
3740         vmx->msr_bitmap_mode = mode;
3741 }
3742
3743 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3744 {
3745         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3746         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3747         u32 i;
3748
3749         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3750                                                         MSR_TYPE_RW, flag);
3751         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3752                                                         MSR_TYPE_RW, flag);
3753         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3754                                                         MSR_TYPE_RW, flag);
3755         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3756                                                         MSR_TYPE_RW, flag);
3757         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3758                 vmx_set_intercept_for_msr(msr_bitmap,
3759                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3760                 vmx_set_intercept_for_msr(msr_bitmap,
3761                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3762         }
3763 }
3764
3765 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3766 {
3767         return enable_apicv;
3768 }
3769
3770 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3771 {
3772         struct vcpu_vmx *vmx = to_vmx(vcpu);
3773         void *vapic_page;
3774         u32 vppr;
3775         int rvi;
3776
3777         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3778                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3779                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3780                 return false;
3781
3782         rvi = vmx_get_rvi();
3783
3784         vapic_page = vmx->nested.virtual_apic_map.hva;
3785         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3786
3787         return ((rvi & 0xf0) > (vppr & 0xf0));
3788 }
3789
3790 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3791                                                      bool nested)
3792 {
3793 #ifdef CONFIG_SMP
3794         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3795
3796         if (vcpu->mode == IN_GUEST_MODE) {
3797                 /*
3798                  * The vector of interrupt to be delivered to vcpu had
3799                  * been set in PIR before this function.
3800                  *
3801                  * Following cases will be reached in this block, and
3802                  * we always send a notification event in all cases as
3803                  * explained below.
3804                  *
3805                  * Case 1: vcpu keeps in non-root mode. Sending a
3806                  * notification event posts the interrupt to vcpu.
3807                  *
3808                  * Case 2: vcpu exits to root mode and is still
3809                  * runnable. PIR will be synced to vIRR before the
3810                  * next vcpu entry. Sending a notification event in
3811                  * this case has no effect, as vcpu is not in root
3812                  * mode.
3813                  *
3814                  * Case 3: vcpu exits to root mode and is blocked.
3815                  * vcpu_block() has already synced PIR to vIRR and
3816                  * never blocks vcpu if vIRR is not cleared. Therefore,
3817                  * a blocked vcpu here does not wait for any requested
3818                  * interrupts in PIR, and sending a notification event
3819                  * which has no effect is safe here.
3820                  */
3821
3822                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3823                 return true;
3824         }
3825 #endif
3826         return false;
3827 }
3828
3829 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3830                                                 int vector)
3831 {
3832         struct vcpu_vmx *vmx = to_vmx(vcpu);
3833
3834         if (is_guest_mode(vcpu) &&
3835             vector == vmx->nested.posted_intr_nv) {
3836                 /*
3837                  * If a posted intr is not recognized by hardware,
3838                  * we will accomplish it in the next vmentry.
3839                  */
3840                 vmx->nested.pi_pending = true;
3841                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842                 /* the PIR and ON have been set by L1. */
3843                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3844                         kvm_vcpu_kick(vcpu);
3845                 return 0;
3846         }
3847         return -1;
3848 }
3849 /*
3850  * Send interrupt to vcpu via posted interrupt way.
3851  * 1. If target vcpu is running(non-root mode), send posted interrupt
3852  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3853  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3854  * interrupt from PIR in next vmentry.
3855  */
3856 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3857 {
3858         struct vcpu_vmx *vmx = to_vmx(vcpu);
3859         int r;
3860
3861         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3862         if (!r)
3863                 return;
3864
3865         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3866                 return;
3867
3868         /* If a previous notification has sent the IPI, nothing to do.  */
3869         if (pi_test_and_set_on(&vmx->pi_desc))
3870                 return;
3871
3872         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3873                 kvm_vcpu_kick(vcpu);
3874 }
3875
3876 /*
3877  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3878  * will not change in the lifetime of the guest.
3879  * Note that host-state that does change is set elsewhere. E.g., host-state
3880  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3881  */
3882 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3883 {
3884         u32 low32, high32;
3885         unsigned long tmpl;
3886         unsigned long cr0, cr3, cr4;
3887
3888         cr0 = read_cr0();
3889         WARN_ON(cr0 & X86_CR0_TS);
3890         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3891
3892         /*
3893          * Save the most likely value for this task's CR3 in the VMCS.
3894          * We can't use __get_current_cr3_fast() because we're not atomic.
3895          */
3896         cr3 = __read_cr3();
3897         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3898         vmx->loaded_vmcs->host_state.cr3 = cr3;
3899
3900         /* Save the most likely value for this task's CR4 in the VMCS. */
3901         cr4 = cr4_read_shadow();
3902         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3903         vmx->loaded_vmcs->host_state.cr4 = cr4;
3904
3905         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3906 #ifdef CONFIG_X86_64
3907         /*
3908          * Load null selectors, so we can avoid reloading them in
3909          * vmx_prepare_switch_to_host(), in case userspace uses
3910          * the null selectors too (the expected case).
3911          */
3912         vmcs_write16(HOST_DS_SELECTOR, 0);
3913         vmcs_write16(HOST_ES_SELECTOR, 0);
3914 #else
3915         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3916         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3917 #endif
3918         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3919         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3920
3921         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3922
3923         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3924
3925         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3926         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3927         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3928         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3929
3930         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3931                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3932                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3933         }
3934
3935         if (cpu_has_load_ia32_efer())
3936                 vmcs_write64(HOST_IA32_EFER, host_efer);
3937 }
3938
3939 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3940 {
3941         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3942         if (enable_ept)
3943                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3944         if (is_guest_mode(&vmx->vcpu))
3945                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3946                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3947         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3948 }
3949
3950 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3951 {
3952         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3953
3954         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3955                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3956
3957         if (!enable_vnmi)
3958                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3959
3960         if (!enable_preemption_timer)
3961                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3962
3963         return pin_based_exec_ctrl;
3964 }
3965
3966 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3967 {
3968         struct vcpu_vmx *vmx = to_vmx(vcpu);
3969
3970         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3971         if (cpu_has_secondary_exec_ctrls()) {
3972                 if (kvm_vcpu_apicv_active(vcpu))
3973                         secondary_exec_controls_setbit(vmx,
3974                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3975                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3976                 else
3977                         secondary_exec_controls_clearbit(vmx,
3978                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3979                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3980         }
3981
3982         if (cpu_has_vmx_msr_bitmap())
3983                 vmx_update_msr_bitmap(vcpu);
3984 }
3985
3986 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3987 {
3988         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3989
3990         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3991                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3992
3993         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3994                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3995 #ifdef CONFIG_X86_64
3996                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3997                                 CPU_BASED_CR8_LOAD_EXITING;
3998 #endif
3999         }
4000         if (!enable_ept)
4001                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4002                                 CPU_BASED_CR3_LOAD_EXITING  |
4003                                 CPU_BASED_INVLPG_EXITING;
4004         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4005                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4006                                 CPU_BASED_MONITOR_EXITING);
4007         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4008                 exec_control &= ~CPU_BASED_HLT_EXITING;
4009         return exec_control;
4010 }
4011
4012
4013 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4014 {
4015         struct kvm_vcpu *vcpu = &vmx->vcpu;
4016
4017         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4018
4019         if (pt_mode == PT_MODE_SYSTEM)
4020                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4021         if (!cpu_need_virtualize_apic_accesses(vcpu))
4022                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4023         if (vmx->vpid == 0)
4024                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4025         if (!enable_ept) {
4026                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4027                 enable_unrestricted_guest = 0;
4028         }
4029         if (!enable_unrestricted_guest)
4030                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4031         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4032                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4033         if (!kvm_vcpu_apicv_active(vcpu))
4034                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4035                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4036         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4037
4038         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4039          * in vmx_set_cr4.  */
4040         exec_control &= ~SECONDARY_EXEC_DESC;
4041
4042         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4043            (handle_vmptrld).
4044            We can NOT enable shadow_vmcs here because we don't have yet
4045            a current VMCS12
4046         */
4047         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4048
4049         if (!enable_pml)
4050                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4051
4052         if (vmx_xsaves_supported()) {
4053                 /* Exposing XSAVES only when XSAVE is exposed */
4054                 bool xsaves_enabled =
4055                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4056                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4057
4058                 if (!xsaves_enabled)
4059                         exec_control &= ~SECONDARY_EXEC_XSAVES;
4060
4061                 if (nested) {
4062                         if (xsaves_enabled)
4063                                 vmx->nested.msrs.secondary_ctls_high |=
4064                                         SECONDARY_EXEC_XSAVES;
4065                         else
4066                                 vmx->nested.msrs.secondary_ctls_high &=
4067                                         ~SECONDARY_EXEC_XSAVES;
4068                 }
4069         }
4070
4071         if (vmx_rdtscp_supported()) {
4072                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4073                 if (!rdtscp_enabled)
4074                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
4075
4076                 if (nested) {
4077                         if (rdtscp_enabled)
4078                                 vmx->nested.msrs.secondary_ctls_high |=
4079                                         SECONDARY_EXEC_RDTSCP;
4080                         else
4081                                 vmx->nested.msrs.secondary_ctls_high &=
4082                                         ~SECONDARY_EXEC_RDTSCP;
4083                 }
4084         }
4085
4086         if (vmx_invpcid_supported()) {
4087                 /* Exposing INVPCID only when PCID is exposed */
4088                 bool invpcid_enabled =
4089                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4090                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4091
4092                 if (!invpcid_enabled) {
4093                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4094                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4095                 }
4096
4097                 if (nested) {
4098                         if (invpcid_enabled)
4099                                 vmx->nested.msrs.secondary_ctls_high |=
4100                                         SECONDARY_EXEC_ENABLE_INVPCID;
4101                         else
4102                                 vmx->nested.msrs.secondary_ctls_high &=
4103                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
4104                 }
4105         }
4106
4107         if (vmx_rdrand_supported()) {
4108                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4109                 if (rdrand_enabled)
4110                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4111
4112                 if (nested) {
4113                         if (rdrand_enabled)
4114                                 vmx->nested.msrs.secondary_ctls_high |=
4115                                         SECONDARY_EXEC_RDRAND_EXITING;
4116                         else
4117                                 vmx->nested.msrs.secondary_ctls_high &=
4118                                         ~SECONDARY_EXEC_RDRAND_EXITING;
4119                 }
4120         }
4121
4122         if (vmx_rdseed_supported()) {
4123                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4124                 if (rdseed_enabled)
4125                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4126
4127                 if (nested) {
4128                         if (rdseed_enabled)
4129                                 vmx->nested.msrs.secondary_ctls_high |=
4130                                         SECONDARY_EXEC_RDSEED_EXITING;
4131                         else
4132                                 vmx->nested.msrs.secondary_ctls_high &=
4133                                         ~SECONDARY_EXEC_RDSEED_EXITING;
4134                 }
4135         }
4136
4137         if (vmx_waitpkg_supported()) {
4138                 bool waitpkg_enabled =
4139                         guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4140
4141                 if (!waitpkg_enabled)
4142                         exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4143
4144                 if (nested) {
4145                         if (waitpkg_enabled)
4146                                 vmx->nested.msrs.secondary_ctls_high |=
4147                                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4148                         else
4149                                 vmx->nested.msrs.secondary_ctls_high &=
4150                                         ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4151                 }
4152         }
4153
4154         vmx->secondary_exec_control = exec_control;
4155 }
4156
4157 static void ept_set_mmio_spte_mask(void)
4158 {
4159         /*
4160          * EPT Misconfigurations can be generated if the value of bits 2:0
4161          * of an EPT paging-structure entry is 110b (write/execute).
4162          */
4163         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4164                                    VMX_EPT_MISCONFIG_WX_VALUE, 0);
4165 }
4166
4167 #define VMX_XSS_EXIT_BITMAP 0
4168
4169 /*
4170  * Sets up the vmcs for emulated real mode.
4171  */
4172 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4173 {
4174         int i;
4175
4176         if (nested)
4177                 nested_vmx_vcpu_setup();
4178
4179         if (cpu_has_vmx_msr_bitmap())
4180                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4181
4182         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4183
4184         /* Control */
4185         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4186         vmx->hv_deadline_tsc = -1;
4187
4188         exec_controls_set(vmx, vmx_exec_control(vmx));
4189
4190         if (cpu_has_secondary_exec_ctrls()) {
4191                 vmx_compute_secondary_exec_control(vmx);
4192                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4193         }
4194
4195         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4196                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4197                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4198                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4199                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4200
4201                 vmcs_write16(GUEST_INTR_STATUS, 0);
4202
4203                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4204                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4205         }
4206
4207         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4208                 vmcs_write32(PLE_GAP, ple_gap);
4209                 vmx->ple_window = ple_window;
4210                 vmx->ple_window_dirty = true;
4211         }
4212
4213         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4214         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4215         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4216
4217         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4218         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4219         vmx_set_constant_host_state(vmx);
4220         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4221         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4222
4223         if (cpu_has_vmx_vmfunc())
4224                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4225
4226         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4227         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4228         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4229         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4230         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4231
4232         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4233                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4234
4235         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4236                 u32 index = vmx_msr_index[i];
4237                 u32 data_low, data_high;
4238                 int j = vmx->nmsrs;
4239
4240                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4241                         continue;
4242                 if (wrmsr_safe(index, data_low, data_high) < 0)
4243                         continue;
4244                 vmx->guest_msrs[j].index = i;
4245                 vmx->guest_msrs[j].data = 0;
4246                 vmx->guest_msrs[j].mask = -1ull;
4247                 ++vmx->nmsrs;
4248         }
4249
4250         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4251
4252         /* 22.2.1, 20.8.1 */
4253         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4254
4255         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4256         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4257
4258         set_cr4_guest_host_mask(vmx);
4259
4260         if (vmx_xsaves_supported())
4261                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4262
4263         if (enable_pml) {
4264                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4265                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4266         }
4267
4268         if (cpu_has_vmx_encls_vmexit())
4269                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4270
4271         if (pt_mode == PT_MODE_HOST_GUEST) {
4272                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4273                 /* Bit[6~0] are forced to 1, writes are ignored. */
4274                 vmx->pt_desc.guest.output_mask = 0x7F;
4275                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4276         }
4277 }
4278
4279 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4280 {
4281         struct vcpu_vmx *vmx = to_vmx(vcpu);
4282         struct msr_data apic_base_msr;
4283         u64 cr0;
4284
4285         vmx->rmode.vm86_active = 0;
4286         vmx->spec_ctrl = 0;
4287
4288         vmx->msr_ia32_umwait_control = 0;
4289
4290         vcpu->arch.microcode_version = 0x100000000ULL;
4291         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4292         vmx->hv_deadline_tsc = -1;
4293         kvm_set_cr8(vcpu, 0);
4294
4295         if (!init_event) {
4296                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4297                                      MSR_IA32_APICBASE_ENABLE;
4298                 if (kvm_vcpu_is_reset_bsp(vcpu))
4299                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4300                 apic_base_msr.host_initiated = true;
4301                 kvm_set_apic_base(vcpu, &apic_base_msr);
4302         }
4303
4304         vmx_segment_cache_clear(vmx);
4305
4306         seg_setup(VCPU_SREG_CS);
4307         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4308         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4309
4310         seg_setup(VCPU_SREG_DS);
4311         seg_setup(VCPU_SREG_ES);
4312         seg_setup(VCPU_SREG_FS);
4313         seg_setup(VCPU_SREG_GS);
4314         seg_setup(VCPU_SREG_SS);
4315
4316         vmcs_write16(GUEST_TR_SELECTOR, 0);
4317         vmcs_writel(GUEST_TR_BASE, 0);
4318         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4319         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4320
4321         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4322         vmcs_writel(GUEST_LDTR_BASE, 0);
4323         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4324         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4325
4326         if (!init_event) {
4327                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4328                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4329                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4330                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4331         }
4332
4333         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4334         kvm_rip_write(vcpu, 0xfff0);
4335
4336         vmcs_writel(GUEST_GDTR_BASE, 0);
4337         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4338
4339         vmcs_writel(GUEST_IDTR_BASE, 0);
4340         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4341
4342         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4343         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4344         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4345         if (kvm_mpx_supported())
4346                 vmcs_write64(GUEST_BNDCFGS, 0);
4347
4348         setup_msrs(vmx);
4349
4350         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4351
4352         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4353                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4354                 if (cpu_need_tpr_shadow(vcpu))
4355                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4356                                      __pa(vcpu->arch.apic->regs));
4357                 vmcs_write32(TPR_THRESHOLD, 0);
4358         }
4359
4360         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4361
4362         if (vmx->vpid != 0)
4363                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4364
4365         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4366         vmx->vcpu.arch.cr0 = cr0;
4367         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4368         vmx_set_cr4(vcpu, 0);
4369         vmx_set_efer(vcpu, 0);
4370
4371         update_exception_bitmap(vcpu);
4372
4373         vpid_sync_context(vmx->vpid);
4374         if (init_event)
4375                 vmx_clear_hlt(vcpu);
4376 }
4377
4378 static void enable_irq_window(struct kvm_vcpu *vcpu)
4379 {
4380         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4381 }
4382
4383 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4384 {
4385         if (!enable_vnmi ||
4386             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4387                 enable_irq_window(vcpu);
4388                 return;
4389         }
4390
4391         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4392 }
4393
4394 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4395 {
4396         struct vcpu_vmx *vmx = to_vmx(vcpu);
4397         uint32_t intr;
4398         int irq = vcpu->arch.interrupt.nr;
4399
4400         trace_kvm_inj_virq(irq);
4401
4402         ++vcpu->stat.irq_injections;
4403         if (vmx->rmode.vm86_active) {
4404                 int inc_eip = 0;
4405                 if (vcpu->arch.interrupt.soft)
4406                         inc_eip = vcpu->arch.event_exit_inst_len;
4407                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4408                 return;
4409         }
4410         intr = irq | INTR_INFO_VALID_MASK;
4411         if (vcpu->arch.interrupt.soft) {
4412                 intr |= INTR_TYPE_SOFT_INTR;
4413                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4414                              vmx->vcpu.arch.event_exit_inst_len);
4415         } else
4416                 intr |= INTR_TYPE_EXT_INTR;
4417         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4418
4419         vmx_clear_hlt(vcpu);
4420 }
4421
4422 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4423 {
4424         struct vcpu_vmx *vmx = to_vmx(vcpu);
4425
4426         if (!enable_vnmi) {
4427                 /*
4428                  * Tracking the NMI-blocked state in software is built upon
4429                  * finding the next open IRQ window. This, in turn, depends on
4430                  * well-behaving guests: They have to keep IRQs disabled at
4431                  * least as long as the NMI handler runs. Otherwise we may
4432                  * cause NMI nesting, maybe breaking the guest. But as this is
4433                  * highly unlikely, we can live with the residual risk.
4434                  */
4435                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4436                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4437         }
4438
4439         ++vcpu->stat.nmi_injections;
4440         vmx->loaded_vmcs->nmi_known_unmasked = false;
4441
4442         if (vmx->rmode.vm86_active) {
4443                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4444                 return;
4445         }
4446
4447         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4448                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4449
4450         vmx_clear_hlt(vcpu);
4451 }
4452
4453 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4454 {
4455         struct vcpu_vmx *vmx = to_vmx(vcpu);
4456         bool masked;
4457
4458         if (!enable_vnmi)
4459                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4460         if (vmx->loaded_vmcs->nmi_known_unmasked)
4461                 return false;
4462         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4463         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4464         return masked;
4465 }
4466
4467 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4468 {
4469         struct vcpu_vmx *vmx = to_vmx(vcpu);
4470
4471         if (!enable_vnmi) {
4472                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4473                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4474                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4475                 }
4476         } else {
4477                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4478                 if (masked)
4479                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4480                                       GUEST_INTR_STATE_NMI);
4481                 else
4482                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4483                                         GUEST_INTR_STATE_NMI);
4484         }
4485 }
4486
4487 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4488 {
4489         if (to_vmx(vcpu)->nested.nested_run_pending)
4490                 return 0;
4491
4492         if (!enable_vnmi &&
4493             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4494                 return 0;
4495
4496         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4497                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4498                    | GUEST_INTR_STATE_NMI));
4499 }
4500
4501 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4502 {
4503         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4504                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4505                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4506                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4507 }
4508
4509 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4510 {
4511         int ret;
4512
4513         if (enable_unrestricted_guest)
4514                 return 0;
4515
4516         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4517                                     PAGE_SIZE * 3);
4518         if (ret)
4519                 return ret;
4520         to_kvm_vmx(kvm)->tss_addr = addr;
4521         return init_rmode_tss(kvm);
4522 }
4523
4524 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4525 {
4526         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4527         return 0;
4528 }
4529
4530 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4531 {
4532         switch (vec) {
4533         case BP_VECTOR:
4534                 /*
4535                  * Update instruction length as we may reinject the exception
4536                  * from user space while in guest debugging mode.
4537                  */
4538                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4539                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4540                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4541                         return false;
4542                 /* fall through */
4543         case DB_VECTOR:
4544                 if (vcpu->guest_debug &
4545                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4546                         return false;
4547                 /* fall through */
4548         case DE_VECTOR:
4549         case OF_VECTOR:
4550         case BR_VECTOR:
4551         case UD_VECTOR:
4552         case DF_VECTOR:
4553         case SS_VECTOR:
4554         case GP_VECTOR:
4555         case MF_VECTOR:
4556                 return true;
4557         break;
4558         }
4559         return false;
4560 }
4561
4562 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4563                                   int vec, u32 err_code)
4564 {
4565         /*
4566          * Instruction with address size override prefix opcode 0x67
4567          * Cause the #SS fault with 0 error code in VM86 mode.
4568          */
4569         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4570                 if (kvm_emulate_instruction(vcpu, 0)) {
4571                         if (vcpu->arch.halt_request) {
4572                                 vcpu->arch.halt_request = 0;
4573                                 return kvm_vcpu_halt(vcpu);
4574                         }
4575                         return 1;
4576                 }
4577                 return 0;
4578         }
4579
4580         /*
4581          * Forward all other exceptions that are valid in real mode.
4582          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4583          *        the required debugging infrastructure rework.
4584          */
4585         kvm_queue_exception(vcpu, vec);
4586         return 1;
4587 }
4588
4589 /*
4590  * Trigger machine check on the host. We assume all the MSRs are already set up
4591  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4592  * We pass a fake environment to the machine check handler because we want
4593  * the guest to be always treated like user space, no matter what context
4594  * it used internally.
4595  */
4596 static void kvm_machine_check(void)
4597 {
4598 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4599         struct pt_regs regs = {
4600                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4601                 .flags = X86_EFLAGS_IF,
4602         };
4603
4604         do_machine_check(&regs, 0);
4605 #endif
4606 }
4607
4608 static int handle_machine_check(struct kvm_vcpu *vcpu)
4609 {
4610         /* handled by vmx_vcpu_run() */
4611         return 1;
4612 }
4613
4614 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4615 {
4616         struct vcpu_vmx *vmx = to_vmx(vcpu);
4617         struct kvm_run *kvm_run = vcpu->run;
4618         u32 intr_info, ex_no, error_code;
4619         unsigned long cr2, rip, dr6;
4620         u32 vect_info;
4621
4622         vect_info = vmx->idt_vectoring_info;
4623         intr_info = vmx->exit_intr_info;
4624
4625         if (is_machine_check(intr_info) || is_nmi(intr_info))
4626                 return 1; /* handled by handle_exception_nmi_irqoff() */
4627
4628         if (is_invalid_opcode(intr_info))
4629                 return handle_ud(vcpu);
4630
4631         error_code = 0;
4632         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4633                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4634
4635         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4636                 WARN_ON_ONCE(!enable_vmware_backdoor);
4637
4638                 /*
4639                  * VMware backdoor emulation on #GP interception only handles
4640                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4641                  * error code on #GP.
4642                  */
4643                 if (error_code) {
4644                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4645                         return 1;
4646                 }
4647                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4648         }
4649
4650         /*
4651          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4652          * MMIO, it is better to report an internal error.
4653          * See the comments in vmx_handle_exit.
4654          */
4655         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4656             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4657                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4658                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4659                 vcpu->run->internal.ndata = 3;
4660                 vcpu->run->internal.data[0] = vect_info;
4661                 vcpu->run->internal.data[1] = intr_info;
4662                 vcpu->run->internal.data[2] = error_code;
4663                 return 0;
4664         }
4665
4666         if (is_page_fault(intr_info)) {
4667                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4668                 /* EPT won't cause page fault directly */
4669                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4670                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4671         }
4672
4673         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4674
4675         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4676                 return handle_rmode_exception(vcpu, ex_no, error_code);
4677
4678         switch (ex_no) {
4679         case AC_VECTOR:
4680                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4681                 return 1;
4682         case DB_VECTOR:
4683                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4684                 if (!(vcpu->guest_debug &
4685                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4686                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4687                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4688                         if (is_icebp(intr_info))
4689                                 WARN_ON(!skip_emulated_instruction(vcpu));
4690
4691                         kvm_queue_exception(vcpu, DB_VECTOR);
4692                         return 1;
4693                 }
4694                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4695                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4696                 /* fall through */
4697         case BP_VECTOR:
4698                 /*
4699                  * Update instruction length as we may reinject #BP from
4700                  * user space while in guest debugging mode. Reading it for
4701                  * #DB as well causes no harm, it is not used in that case.
4702                  */
4703                 vmx->vcpu.arch.event_exit_inst_len =
4704                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4705                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4706                 rip = kvm_rip_read(vcpu);
4707                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4708                 kvm_run->debug.arch.exception = ex_no;
4709                 break;
4710         default:
4711                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4712                 kvm_run->ex.exception = ex_no;
4713                 kvm_run->ex.error_code = error_code;
4714                 break;
4715         }
4716         return 0;
4717 }
4718
4719 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4720 {
4721         ++vcpu->stat.irq_exits;
4722         return 1;
4723 }
4724
4725 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4726 {
4727         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4728         vcpu->mmio_needed = 0;
4729         return 0;
4730 }
4731
4732 static int handle_io(struct kvm_vcpu *vcpu)
4733 {
4734         unsigned long exit_qualification;
4735         int size, in, string;
4736         unsigned port;
4737
4738         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4739         string = (exit_qualification & 16) != 0;
4740
4741         ++vcpu->stat.io_exits;
4742
4743         if (string)
4744                 return kvm_emulate_instruction(vcpu, 0);
4745
4746         port = exit_qualification >> 16;
4747         size = (exit_qualification & 7) + 1;
4748         in = (exit_qualification & 8) != 0;
4749
4750         return kvm_fast_pio(vcpu, size, port, in);
4751 }
4752
4753 static void
4754 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4755 {
4756         /*
4757          * Patch in the VMCALL instruction:
4758          */
4759         hypercall[0] = 0x0f;
4760         hypercall[1] = 0x01;
4761         hypercall[2] = 0xc1;
4762 }
4763
4764 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4765 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4766 {
4767         if (is_guest_mode(vcpu)) {
4768                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4769                 unsigned long orig_val = val;
4770
4771                 /*
4772                  * We get here when L2 changed cr0 in a way that did not change
4773                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4774                  * but did change L0 shadowed bits. So we first calculate the
4775                  * effective cr0 value that L1 would like to write into the
4776                  * hardware. It consists of the L2-owned bits from the new
4777                  * value combined with the L1-owned bits from L1's guest_cr0.
4778                  */
4779                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4780                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4781
4782                 if (!nested_guest_cr0_valid(vcpu, val))
4783                         return 1;
4784
4785                 if (kvm_set_cr0(vcpu, val))
4786                         return 1;
4787                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4788                 return 0;
4789         } else {
4790                 if (to_vmx(vcpu)->nested.vmxon &&
4791                     !nested_host_cr0_valid(vcpu, val))
4792                         return 1;
4793
4794                 return kvm_set_cr0(vcpu, val);
4795         }
4796 }
4797
4798 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4799 {
4800         if (is_guest_mode(vcpu)) {
4801                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4802                 unsigned long orig_val = val;
4803
4804                 /* analogously to handle_set_cr0 */
4805                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4806                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4807                 if (kvm_set_cr4(vcpu, val))
4808                         return 1;
4809                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4810                 return 0;
4811         } else
4812                 return kvm_set_cr4(vcpu, val);
4813 }
4814
4815 static int handle_desc(struct kvm_vcpu *vcpu)
4816 {
4817         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4818         return kvm_emulate_instruction(vcpu, 0);
4819 }
4820
4821 static int handle_cr(struct kvm_vcpu *vcpu)
4822 {
4823         unsigned long exit_qualification, val;
4824         int cr;
4825         int reg;
4826         int err;
4827         int ret;
4828
4829         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4830         cr = exit_qualification & 15;
4831         reg = (exit_qualification >> 8) & 15;
4832         switch ((exit_qualification >> 4) & 3) {
4833         case 0: /* mov to cr */
4834                 val = kvm_register_readl(vcpu, reg);
4835                 trace_kvm_cr_write(cr, val);
4836                 switch (cr) {
4837                 case 0:
4838                         err = handle_set_cr0(vcpu, val);
4839                         return kvm_complete_insn_gp(vcpu, err);
4840                 case 3:
4841                         WARN_ON_ONCE(enable_unrestricted_guest);
4842                         err = kvm_set_cr3(vcpu, val);
4843                         return kvm_complete_insn_gp(vcpu, err);
4844                 case 4:
4845                         err = handle_set_cr4(vcpu, val);
4846                         return kvm_complete_insn_gp(vcpu, err);
4847                 case 8: {
4848                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4849                                 u8 cr8 = (u8)val;
4850                                 err = kvm_set_cr8(vcpu, cr8);
4851                                 ret = kvm_complete_insn_gp(vcpu, err);
4852                                 if (lapic_in_kernel(vcpu))
4853                                         return ret;
4854                                 if (cr8_prev <= cr8)
4855                                         return ret;
4856                                 /*
4857                                  * TODO: we might be squashing a
4858                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4859                                  * KVM_EXIT_DEBUG here.
4860                                  */
4861                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4862                                 return 0;
4863                         }
4864                 }
4865                 break;
4866         case 2: /* clts */
4867                 WARN_ONCE(1, "Guest should always own CR0.TS");
4868                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4869                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4870                 return kvm_skip_emulated_instruction(vcpu);
4871         case 1: /*mov from cr*/
4872                 switch (cr) {
4873                 case 3:
4874                         WARN_ON_ONCE(enable_unrestricted_guest);
4875                         val = kvm_read_cr3(vcpu);
4876                         kvm_register_write(vcpu, reg, val);
4877                         trace_kvm_cr_read(cr, val);
4878                         return kvm_skip_emulated_instruction(vcpu);
4879                 case 8:
4880                         val = kvm_get_cr8(vcpu);
4881                         kvm_register_write(vcpu, reg, val);
4882                         trace_kvm_cr_read(cr, val);
4883                         return kvm_skip_emulated_instruction(vcpu);
4884                 }
4885                 break;
4886         case 3: /* lmsw */
4887                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4888                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4889                 kvm_lmsw(vcpu, val);
4890
4891                 return kvm_skip_emulated_instruction(vcpu);
4892         default:
4893                 break;
4894         }
4895         vcpu->run->exit_reason = 0;
4896         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4897                (int)(exit_qualification >> 4) & 3, cr);
4898         return 0;
4899 }
4900
4901 static int handle_dr(struct kvm_vcpu *vcpu)
4902 {
4903         unsigned long exit_qualification;
4904         int dr, dr7, reg;
4905
4906         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4907         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4908
4909         /* First, if DR does not exist, trigger UD */
4910         if (!kvm_require_dr(vcpu, dr))
4911                 return 1;
4912
4913         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4914         if (!kvm_require_cpl(vcpu, 0))
4915                 return 1;
4916         dr7 = vmcs_readl(GUEST_DR7);
4917         if (dr7 & DR7_GD) {
4918                 /*
4919                  * As the vm-exit takes precedence over the debug trap, we
4920                  * need to emulate the latter, either for the host or the
4921                  * guest debugging itself.
4922                  */
4923                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4924                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4925                         vcpu->run->debug.arch.dr7 = dr7;
4926                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4927                         vcpu->run->debug.arch.exception = DB_VECTOR;
4928                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4929                         return 0;
4930                 } else {
4931                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4932                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4933                         kvm_queue_exception(vcpu, DB_VECTOR);
4934                         return 1;
4935                 }
4936         }
4937
4938         if (vcpu->guest_debug == 0) {
4939                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4940
4941                 /*
4942                  * No more DR vmexits; force a reload of the debug registers
4943                  * and reenter on this instruction.  The next vmexit will
4944                  * retrieve the full state of the debug registers.
4945                  */
4946                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4947                 return 1;
4948         }
4949
4950         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4951         if (exit_qualification & TYPE_MOV_FROM_DR) {
4952                 unsigned long val;
4953
4954                 if (kvm_get_dr(vcpu, dr, &val))
4955                         return 1;
4956                 kvm_register_write(vcpu, reg, val);
4957         } else
4958                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4959                         return 1;
4960
4961         return kvm_skip_emulated_instruction(vcpu);
4962 }
4963
4964 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4965 {
4966         return vcpu->arch.dr6;
4967 }
4968
4969 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4970 {
4971 }
4972
4973 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4974 {
4975         get_debugreg(vcpu->arch.db[0], 0);
4976         get_debugreg(vcpu->arch.db[1], 1);
4977         get_debugreg(vcpu->arch.db[2], 2);
4978         get_debugreg(vcpu->arch.db[3], 3);
4979         get_debugreg(vcpu->arch.dr6, 6);
4980         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4981
4982         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4983         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4984 }
4985
4986 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4987 {
4988         vmcs_writel(GUEST_DR7, val);
4989 }
4990
4991 static int handle_cpuid(struct kvm_vcpu *vcpu)
4992 {
4993         return kvm_emulate_cpuid(vcpu);
4994 }
4995
4996 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4997 {
4998         return kvm_emulate_rdmsr(vcpu);
4999 }
5000
5001 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5002 {
5003         return kvm_emulate_wrmsr(vcpu);
5004 }
5005
5006 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5007 {
5008         kvm_apic_update_ppr(vcpu);
5009         return 1;
5010 }
5011
5012 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5013 {
5014         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
5015
5016         kvm_make_request(KVM_REQ_EVENT, vcpu);
5017
5018         ++vcpu->stat.irq_window_exits;
5019         return 1;
5020 }
5021
5022 static int handle_halt(struct kvm_vcpu *vcpu)
5023 {
5024         return kvm_emulate_halt(vcpu);
5025 }
5026
5027 static int handle_vmcall(struct kvm_vcpu *vcpu)
5028 {
5029         return kvm_emulate_hypercall(vcpu);
5030 }
5031
5032 static int handle_invd(struct kvm_vcpu *vcpu)
5033 {
5034         return kvm_emulate_instruction(vcpu, 0);
5035 }
5036
5037 static int handle_invlpg(struct kvm_vcpu *vcpu)
5038 {
5039         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5040
5041         kvm_mmu_invlpg(vcpu, exit_qualification);
5042         return kvm_skip_emulated_instruction(vcpu);
5043 }
5044
5045 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5046 {
5047         int err;
5048
5049         err = kvm_rdpmc(vcpu);
5050         return kvm_complete_insn_gp(vcpu, err);
5051 }
5052
5053 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5054 {
5055         return kvm_emulate_wbinvd(vcpu);
5056 }
5057
5058 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5059 {
5060         u64 new_bv = kvm_read_edx_eax(vcpu);
5061         u32 index = kvm_rcx_read(vcpu);
5062
5063         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5064                 return kvm_skip_emulated_instruction(vcpu);
5065         return 1;
5066 }
5067
5068 static int handle_apic_access(struct kvm_vcpu *vcpu)
5069 {
5070         if (likely(fasteoi)) {
5071                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5072                 int access_type, offset;
5073
5074                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5075                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5076                 /*
5077                  * Sane guest uses MOV to write EOI, with written value
5078                  * not cared. So make a short-circuit here by avoiding
5079                  * heavy instruction emulation.
5080                  */
5081                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5082                     (offset == APIC_EOI)) {
5083                         kvm_lapic_set_eoi(vcpu);
5084                         return kvm_skip_emulated_instruction(vcpu);
5085                 }
5086         }
5087         return kvm_emulate_instruction(vcpu, 0);
5088 }
5089
5090 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5091 {
5092         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5093         int vector = exit_qualification & 0xff;
5094
5095         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5096         kvm_apic_set_eoi_accelerated(vcpu, vector);
5097         return 1;
5098 }
5099
5100 static int handle_apic_write(struct kvm_vcpu *vcpu)
5101 {
5102         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5103         u32 offset = exit_qualification & 0xfff;
5104
5105         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5106         kvm_apic_write_nodecode(vcpu, offset);
5107         return 1;
5108 }
5109
5110 static int handle_task_switch(struct kvm_vcpu *vcpu)
5111 {
5112         struct vcpu_vmx *vmx = to_vmx(vcpu);
5113         unsigned long exit_qualification;
5114         bool has_error_code = false;
5115         u32 error_code = 0;
5116         u16 tss_selector;
5117         int reason, type, idt_v, idt_index;
5118
5119         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5120         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5121         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5122
5123         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5124
5125         reason = (u32)exit_qualification >> 30;
5126         if (reason == TASK_SWITCH_GATE && idt_v) {
5127                 switch (type) {
5128                 case INTR_TYPE_NMI_INTR:
5129                         vcpu->arch.nmi_injected = false;
5130                         vmx_set_nmi_mask(vcpu, true);
5131                         break;
5132                 case INTR_TYPE_EXT_INTR:
5133                 case INTR_TYPE_SOFT_INTR:
5134                         kvm_clear_interrupt_queue(vcpu);
5135                         break;
5136                 case INTR_TYPE_HARD_EXCEPTION:
5137                         if (vmx->idt_vectoring_info &
5138                             VECTORING_INFO_DELIVER_CODE_MASK) {
5139                                 has_error_code = true;
5140                                 error_code =
5141                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5142                         }
5143                         /* fall through */
5144                 case INTR_TYPE_SOFT_EXCEPTION:
5145                         kvm_clear_exception_queue(vcpu);
5146                         break;
5147                 default:
5148                         break;
5149                 }
5150         }
5151         tss_selector = exit_qualification;
5152
5153         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5154                        type != INTR_TYPE_EXT_INTR &&
5155                        type != INTR_TYPE_NMI_INTR))
5156                 WARN_ON(!skip_emulated_instruction(vcpu));
5157
5158         /*
5159          * TODO: What about debug traps on tss switch?
5160          *       Are we supposed to inject them and update dr6?
5161          */
5162         return kvm_task_switch(vcpu, tss_selector,
5163                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5164                                reason, has_error_code, error_code);
5165 }
5166
5167 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5168 {
5169         unsigned long exit_qualification;
5170         gpa_t gpa;
5171         u64 error_code;
5172
5173         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5174
5175         /*
5176          * EPT violation happened while executing iret from NMI,
5177          * "blocked by NMI" bit has to be set before next VM entry.
5178          * There are errata that may cause this bit to not be set:
5179          * AAK134, BY25.
5180          */
5181         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5182                         enable_vnmi &&
5183                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5184                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5185
5186         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5187         trace_kvm_page_fault(gpa, exit_qualification);
5188
5189         /* Is it a read fault? */
5190         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5191                      ? PFERR_USER_MASK : 0;
5192         /* Is it a write fault? */
5193         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5194                       ? PFERR_WRITE_MASK : 0;
5195         /* Is it a fetch fault? */
5196         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5197                       ? PFERR_FETCH_MASK : 0;
5198         /* ept page table entry is present? */
5199         error_code |= (exit_qualification &
5200                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5201                         EPT_VIOLATION_EXECUTABLE))
5202                       ? PFERR_PRESENT_MASK : 0;
5203
5204         error_code |= (exit_qualification & 0x100) != 0 ?
5205                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5206
5207         vcpu->arch.exit_qualification = exit_qualification;
5208         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5209 }
5210
5211 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5212 {
5213         gpa_t gpa;
5214
5215         /*
5216          * A nested guest cannot optimize MMIO vmexits, because we have an
5217          * nGPA here instead of the required GPA.
5218          */
5219         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5220         if (!is_guest_mode(vcpu) &&
5221             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5222                 trace_kvm_fast_mmio(gpa);
5223                 return kvm_skip_emulated_instruction(vcpu);
5224         }
5225
5226         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5227 }
5228
5229 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5230 {
5231         WARN_ON_ONCE(!enable_vnmi);
5232         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5233         ++vcpu->stat.nmi_window_exits;
5234         kvm_make_request(KVM_REQ_EVENT, vcpu);
5235
5236         return 1;
5237 }
5238
5239 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5240 {
5241         struct vcpu_vmx *vmx = to_vmx(vcpu);
5242         bool intr_window_requested;
5243         unsigned count = 130;
5244
5245         /*
5246          * We should never reach the point where we are emulating L2
5247          * due to invalid guest state as that means we incorrectly
5248          * allowed a nested VMEntry with an invalid vmcs12.
5249          */
5250         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5251
5252         intr_window_requested = exec_controls_get(vmx) &
5253                                 CPU_BASED_VIRTUAL_INTR_PENDING;
5254
5255         while (vmx->emulation_required && count-- != 0) {
5256                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5257                         return handle_interrupt_window(&vmx->vcpu);
5258
5259                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5260                         return 1;
5261
5262                 if (!kvm_emulate_instruction(vcpu, 0))
5263                         return 0;
5264
5265                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5266                     vcpu->arch.exception.pending) {
5267                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5268                         vcpu->run->internal.suberror =
5269                                                 KVM_INTERNAL_ERROR_EMULATION;
5270                         vcpu->run->internal.ndata = 0;
5271                         return 0;
5272                 }
5273
5274                 if (vcpu->arch.halt_request) {
5275                         vcpu->arch.halt_request = 0;
5276                         return kvm_vcpu_halt(vcpu);
5277                 }
5278
5279                 /*
5280                  * Note, return 1 and not 0, vcpu_run() is responsible for
5281                  * morphing the pending signal into the proper return code.
5282                  */
5283                 if (signal_pending(current))
5284                         return 1;
5285
5286                 if (need_resched())
5287                         schedule();
5288         }
5289
5290         return 1;
5291 }
5292
5293 static void grow_ple_window(struct kvm_vcpu *vcpu)
5294 {
5295         struct vcpu_vmx *vmx = to_vmx(vcpu);
5296         unsigned int old = vmx->ple_window;
5297
5298         vmx->ple_window = __grow_ple_window(old, ple_window,
5299                                             ple_window_grow,
5300                                             ple_window_max);
5301
5302         if (vmx->ple_window != old) {
5303                 vmx->ple_window_dirty = true;
5304                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5305                                             vmx->ple_window, old);
5306         }
5307 }
5308
5309 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5310 {
5311         struct vcpu_vmx *vmx = to_vmx(vcpu);
5312         unsigned int old = vmx->ple_window;
5313
5314         vmx->ple_window = __shrink_ple_window(old, ple_window,
5315                                               ple_window_shrink,
5316                                               ple_window);
5317
5318         if (vmx->ple_window != old) {
5319                 vmx->ple_window_dirty = true;
5320                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5321                                             vmx->ple_window, old);
5322         }
5323 }
5324
5325 /*
5326  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5327  */
5328 static void wakeup_handler(void)
5329 {
5330         struct kvm_vcpu *vcpu;
5331         int cpu = smp_processor_id();
5332
5333         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5334         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5335                         blocked_vcpu_list) {
5336                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5337
5338                 if (pi_test_on(pi_desc) == 1)
5339                         kvm_vcpu_kick(vcpu);
5340         }
5341         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5342 }
5343
5344 static void vmx_enable_tdp(void)
5345 {
5346         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5347                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5348                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5349                 0ull, VMX_EPT_EXECUTABLE_MASK,
5350                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5351                 VMX_EPT_RWX_MASK, 0ull);
5352
5353         ept_set_mmio_spte_mask();
5354         kvm_enable_tdp();
5355 }
5356
5357 /*
5358  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5359  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5360  */
5361 static int handle_pause(struct kvm_vcpu *vcpu)
5362 {
5363         if (!kvm_pause_in_guest(vcpu->kvm))
5364                 grow_ple_window(vcpu);
5365
5366         /*
5367          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5368          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5369          * never set PAUSE_EXITING and just set PLE if supported,
5370          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5371          */
5372         kvm_vcpu_on_spin(vcpu, true);
5373         return kvm_skip_emulated_instruction(vcpu);
5374 }
5375
5376 static int handle_nop(struct kvm_vcpu *vcpu)
5377 {
5378         return kvm_skip_emulated_instruction(vcpu);
5379 }
5380
5381 static int handle_mwait(struct kvm_vcpu *vcpu)
5382 {
5383         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5384         return handle_nop(vcpu);
5385 }
5386
5387 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5388 {
5389         kvm_queue_exception(vcpu, UD_VECTOR);
5390         return 1;
5391 }
5392
5393 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5394 {
5395         return 1;
5396 }
5397
5398 static int handle_monitor(struct kvm_vcpu *vcpu)
5399 {
5400         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5401         return handle_nop(vcpu);
5402 }
5403
5404 static int handle_invpcid(struct kvm_vcpu *vcpu)
5405 {
5406         u32 vmx_instruction_info;
5407         unsigned long type;
5408         bool pcid_enabled;
5409         gva_t gva;
5410         struct x86_exception e;
5411         unsigned i;
5412         unsigned long roots_to_free = 0;
5413         struct {
5414                 u64 pcid;
5415                 u64 gla;
5416         } operand;
5417
5418         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5419                 kvm_queue_exception(vcpu, UD_VECTOR);
5420                 return 1;
5421         }
5422
5423         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5424         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5425
5426         if (type > 3) {
5427                 kvm_inject_gp(vcpu, 0);
5428                 return 1;
5429         }
5430
5431         /* According to the Intel instruction reference, the memory operand
5432          * is read even if it isn't needed (e.g., for type==all)
5433          */
5434         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5435                                 vmx_instruction_info, false,
5436                                 sizeof(operand), &gva))
5437                 return 1;
5438
5439         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5440                 kvm_inject_page_fault(vcpu, &e);
5441                 return 1;
5442         }
5443
5444         if (operand.pcid >> 12 != 0) {
5445                 kvm_inject_gp(vcpu, 0);
5446                 return 1;
5447         }
5448
5449         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5450
5451         switch (type) {
5452         case INVPCID_TYPE_INDIV_ADDR:
5453                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5454                     is_noncanonical_address(operand.gla, vcpu)) {
5455                         kvm_inject_gp(vcpu, 0);
5456                         return 1;
5457                 }
5458                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5459                 return kvm_skip_emulated_instruction(vcpu);
5460
5461         case INVPCID_TYPE_SINGLE_CTXT:
5462                 if (!pcid_enabled && (operand.pcid != 0)) {
5463                         kvm_inject_gp(vcpu, 0);
5464                         return 1;
5465                 }
5466
5467                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5468                         kvm_mmu_sync_roots(vcpu);
5469                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5470                 }
5471
5472                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5473                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5474                             == operand.pcid)
5475                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5476
5477                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5478                 /*
5479                  * If neither the current cr3 nor any of the prev_roots use the
5480                  * given PCID, then nothing needs to be done here because a
5481                  * resync will happen anyway before switching to any other CR3.
5482                  */
5483
5484                 return kvm_skip_emulated_instruction(vcpu);
5485
5486         case INVPCID_TYPE_ALL_NON_GLOBAL:
5487                 /*
5488                  * Currently, KVM doesn't mark global entries in the shadow
5489                  * page tables, so a non-global flush just degenerates to a
5490                  * global flush. If needed, we could optimize this later by
5491                  * keeping track of global entries in shadow page tables.
5492                  */
5493
5494                 /* fall-through */
5495         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5496                 kvm_mmu_unload(vcpu);
5497                 return kvm_skip_emulated_instruction(vcpu);
5498
5499         default:
5500                 BUG(); /* We have already checked above that type <= 3 */
5501         }
5502 }
5503
5504 static int handle_pml_full(struct kvm_vcpu *vcpu)
5505 {
5506         unsigned long exit_qualification;
5507
5508         trace_kvm_pml_full(vcpu->vcpu_id);
5509
5510         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5511
5512         /*
5513          * PML buffer FULL happened while executing iret from NMI,
5514          * "blocked by NMI" bit has to be set before next VM entry.
5515          */
5516         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5517                         enable_vnmi &&
5518                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5519                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5520                                 GUEST_INTR_STATE_NMI);
5521
5522         /*
5523          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5524          * here.., and there's no userspace involvement needed for PML.
5525          */
5526         return 1;
5527 }
5528
5529 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5530 {
5531         struct vcpu_vmx *vmx = to_vmx(vcpu);
5532
5533         if (!vmx->req_immediate_exit &&
5534             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5535                 kvm_lapic_expired_hv_timer(vcpu);
5536
5537         return 1;
5538 }
5539
5540 /*
5541  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5542  * are overwritten by nested_vmx_setup() when nested=1.
5543  */
5544 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5545 {
5546         kvm_queue_exception(vcpu, UD_VECTOR);
5547         return 1;
5548 }
5549
5550 static int handle_encls(struct kvm_vcpu *vcpu)
5551 {
5552         /*
5553          * SGX virtualization is not yet supported.  There is no software
5554          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5555          * to prevent the guest from executing ENCLS.
5556          */
5557         kvm_queue_exception(vcpu, UD_VECTOR);
5558         return 1;
5559 }
5560
5561 /*
5562  * The exit handlers return 1 if the exit was handled fully and guest execution
5563  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5564  * to be done to userspace and return 0.
5565  */
5566 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5567         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5568         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5569         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5570         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5571         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5572         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5573         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5574         [EXIT_REASON_CPUID]                   = handle_cpuid,
5575         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5576         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5577         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5578         [EXIT_REASON_HLT]                     = handle_halt,
5579         [EXIT_REASON_INVD]                    = handle_invd,
5580         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5581         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5582         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5583         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5584         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5585         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5586         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5587         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5588         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5589         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5590         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5591         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5592         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5593         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5594         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5595         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5596         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5597         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5598         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5599         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5600         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5601         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5602         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5603         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5604         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5605         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5606         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5607         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5608         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5609         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5610         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5611         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5612         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5613         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5614         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5615         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5616         [EXIT_REASON_ENCLS]                   = handle_encls,
5617 };
5618
5619 static const int kvm_vmx_max_exit_handlers =
5620         ARRAY_SIZE(kvm_vmx_exit_handlers);
5621
5622 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5623 {
5624         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5625         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5626 }
5627
5628 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5629 {
5630         if (vmx->pml_pg) {
5631                 __free_page(vmx->pml_pg);
5632                 vmx->pml_pg = NULL;
5633         }
5634 }
5635
5636 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5637 {
5638         struct vcpu_vmx *vmx = to_vmx(vcpu);
5639         u64 *pml_buf;
5640         u16 pml_idx;
5641
5642         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5643
5644         /* Do nothing if PML buffer is empty */
5645         if (pml_idx == (PML_ENTITY_NUM - 1))
5646                 return;
5647
5648         /* PML index always points to next available PML buffer entity */
5649         if (pml_idx >= PML_ENTITY_NUM)
5650                 pml_idx = 0;
5651         else
5652                 pml_idx++;
5653
5654         pml_buf = page_address(vmx->pml_pg);
5655         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5656                 u64 gpa;
5657
5658                 gpa = pml_buf[pml_idx];
5659                 WARN_ON(gpa & (PAGE_SIZE - 1));
5660                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5661         }
5662
5663         /* reset PML index */
5664         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5665 }
5666
5667 /*
5668  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5669  * Called before reporting dirty_bitmap to userspace.
5670  */
5671 static void kvm_flush_pml_buffers(struct kvm *kvm)
5672 {
5673         int i;
5674         struct kvm_vcpu *vcpu;
5675         /*
5676          * We only need to kick vcpu out of guest mode here, as PML buffer
5677          * is flushed at beginning of all VMEXITs, and it's obvious that only
5678          * vcpus running in guest are possible to have unflushed GPAs in PML
5679          * buffer.
5680          */
5681         kvm_for_each_vcpu(i, vcpu, kvm)
5682                 kvm_vcpu_kick(vcpu);
5683 }
5684
5685 static void vmx_dump_sel(char *name, uint32_t sel)
5686 {
5687         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5688                name, vmcs_read16(sel),
5689                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5690                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5691                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5692 }
5693
5694 static void vmx_dump_dtsel(char *name, uint32_t limit)
5695 {
5696         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5697                name, vmcs_read32(limit),
5698                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5699 }
5700
5701 void dump_vmcs(void)
5702 {
5703         u32 vmentry_ctl, vmexit_ctl;
5704         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5705         unsigned long cr4;
5706         u64 efer;
5707         int i, n;
5708
5709         if (!dump_invalid_vmcs) {
5710                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5711                 return;
5712         }
5713
5714         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5715         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5716         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5717         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5718         cr4 = vmcs_readl(GUEST_CR4);
5719         efer = vmcs_read64(GUEST_IA32_EFER);
5720         secondary_exec_control = 0;
5721         if (cpu_has_secondary_exec_ctrls())
5722                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5723
5724         pr_err("*** Guest State ***\n");
5725         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5726                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5727                vmcs_readl(CR0_GUEST_HOST_MASK));
5728         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5729                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5730         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5731         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5732             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5733         {
5734                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5735                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5736                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5737                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5738         }
5739         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5740                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5741         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5742                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5743         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5744                vmcs_readl(GUEST_SYSENTER_ESP),
5745                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5746         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5747         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5748         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5749         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5750         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5751         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5752         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5753         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5754         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5755         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5756         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5757             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5758                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5759                        efer, vmcs_read64(GUEST_IA32_PAT));
5760         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5761                vmcs_read64(GUEST_IA32_DEBUGCTL),
5762                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5763         if (cpu_has_load_perf_global_ctrl() &&
5764             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5765                 pr_err("PerfGlobCtl = 0x%016llx\n",
5766                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5767         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5768                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5769         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5770                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5771                vmcs_read32(GUEST_ACTIVITY_STATE));
5772         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5773                 pr_err("InterruptStatus = %04x\n",
5774                        vmcs_read16(GUEST_INTR_STATUS));
5775
5776         pr_err("*** Host State ***\n");
5777         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5778                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5779         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5780                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5781                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5782                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5783                vmcs_read16(HOST_TR_SELECTOR));
5784         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5785                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5786                vmcs_readl(HOST_TR_BASE));
5787         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5788                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5789         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5790                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5791                vmcs_readl(HOST_CR4));
5792         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5793                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5794                vmcs_read32(HOST_IA32_SYSENTER_CS),
5795                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5796         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5797                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5798                        vmcs_read64(HOST_IA32_EFER),
5799                        vmcs_read64(HOST_IA32_PAT));
5800         if (cpu_has_load_perf_global_ctrl() &&
5801             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5802                 pr_err("PerfGlobCtl = 0x%016llx\n",
5803                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5804
5805         pr_err("*** Control State ***\n");
5806         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5807                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5808         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5809         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5810                vmcs_read32(EXCEPTION_BITMAP),
5811                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5812                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5813         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5814                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5815                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5816                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5817         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5818                vmcs_read32(VM_EXIT_INTR_INFO),
5819                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5820                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5821         pr_err("        reason=%08x qualification=%016lx\n",
5822                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5823         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5824                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5825                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5826         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5827         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5828                 pr_err("TSC Multiplier = 0x%016llx\n",
5829                        vmcs_read64(TSC_MULTIPLIER));
5830         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5831                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5832                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5833                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5834                 }
5835                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5836                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5837                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5838                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5839         }
5840         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5841                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5842         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5843                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5844         n = vmcs_read32(CR3_TARGET_COUNT);
5845         for (i = 0; i + 1 < n; i += 4)
5846                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5847                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5848                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5849         if (i < n)
5850                 pr_err("CR3 target%u=%016lx\n",
5851                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5852         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5853                 pr_err("PLE Gap=%08x Window=%08x\n",
5854                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5855         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5856                 pr_err("Virtual processor ID = 0x%04x\n",
5857                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5858 }
5859
5860 /*
5861  * The guest has exited.  See if we can fix it or if we need userspace
5862  * assistance.
5863  */
5864 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5865 {
5866         struct vcpu_vmx *vmx = to_vmx(vcpu);
5867         u32 exit_reason = vmx->exit_reason;
5868         u32 vectoring_info = vmx->idt_vectoring_info;
5869
5870         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5871
5872         /*
5873          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5874          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5875          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5876          * mode as if vcpus is in root mode, the PML buffer must has been
5877          * flushed already.
5878          */
5879         if (enable_pml)
5880                 vmx_flush_pml_buffer(vcpu);
5881
5882         /* If guest state is invalid, start emulating */
5883         if (vmx->emulation_required)
5884                 return handle_invalid_guest_state(vcpu);
5885
5886         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5887                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5888
5889         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5890                 dump_vmcs();
5891                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5892                 vcpu->run->fail_entry.hardware_entry_failure_reason
5893                         = exit_reason;
5894                 return 0;
5895         }
5896
5897         if (unlikely(vmx->fail)) {
5898                 dump_vmcs();
5899                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5900                 vcpu->run->fail_entry.hardware_entry_failure_reason
5901                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5902                 return 0;
5903         }
5904
5905         /*
5906          * Note:
5907          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5908          * delivery event since it indicates guest is accessing MMIO.
5909          * The vm-exit can be triggered again after return to guest that
5910          * will cause infinite loop.
5911          */
5912         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5913                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5914                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5915                         exit_reason != EXIT_REASON_PML_FULL &&
5916                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5917                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5918                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5919                 vcpu->run->internal.ndata = 3;
5920                 vcpu->run->internal.data[0] = vectoring_info;
5921                 vcpu->run->internal.data[1] = exit_reason;
5922                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5923                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5924                         vcpu->run->internal.ndata++;
5925                         vcpu->run->internal.data[3] =
5926                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5927                 }
5928                 return 0;
5929         }
5930
5931         if (unlikely(!enable_vnmi &&
5932                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5933                 if (vmx_interrupt_allowed(vcpu)) {
5934                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5935                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5936                            vcpu->arch.nmi_pending) {
5937                         /*
5938                          * This CPU don't support us in finding the end of an
5939                          * NMI-blocked window if the guest runs with IRQs
5940                          * disabled. So we pull the trigger after 1 s of
5941                          * futile waiting, but inform the user about this.
5942                          */
5943                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5944                                "state on VCPU %d after 1 s timeout\n",
5945                                __func__, vcpu->vcpu_id);
5946                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5947                 }
5948         }
5949
5950         if (exit_reason < kvm_vmx_max_exit_handlers
5951             && kvm_vmx_exit_handlers[exit_reason])
5952                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5953         else {
5954                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5955                                 exit_reason);
5956                 dump_vmcs();
5957                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5958                 vcpu->run->internal.suberror =
5959                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5960                 vcpu->run->internal.ndata = 1;
5961                 vcpu->run->internal.data[0] = exit_reason;
5962                 return 0;
5963         }
5964 }
5965
5966 /*
5967  * Software based L1D cache flush which is used when microcode providing
5968  * the cache control MSR is not loaded.
5969  *
5970  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5971  * flush it is required to read in 64 KiB because the replacement algorithm
5972  * is not exactly LRU. This could be sized at runtime via topology
5973  * information but as all relevant affected CPUs have 32KiB L1D cache size
5974  * there is no point in doing so.
5975  */
5976 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5977 {
5978         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5979
5980         /*
5981          * This code is only executed when the the flush mode is 'cond' or
5982          * 'always'
5983          */
5984         if (static_branch_likely(&vmx_l1d_flush_cond)) {
5985                 bool flush_l1d;
5986
5987                 /*
5988                  * Clear the per-vcpu flush bit, it gets set again
5989                  * either from vcpu_run() or from one of the unsafe
5990                  * VMEXIT handlers.
5991                  */
5992                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5993                 vcpu->arch.l1tf_flush_l1d = false;
5994
5995                 /*
5996                  * Clear the per-cpu flush bit, it gets set again from
5997                  * the interrupt handlers.
5998                  */
5999                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6000                 kvm_clear_cpu_l1tf_flush_l1d();
6001
6002                 if (!flush_l1d)
6003                         return;
6004         }
6005
6006         vcpu->stat.l1d_flush++;
6007
6008         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6009                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6010                 return;
6011         }
6012
6013         asm volatile(
6014                 /* First ensure the pages are in the TLB */
6015                 "xorl   %%eax, %%eax\n"
6016                 ".Lpopulate_tlb:\n\t"
6017                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6018                 "addl   $4096, %%eax\n\t"
6019                 "cmpl   %%eax, %[size]\n\t"
6020                 "jne    .Lpopulate_tlb\n\t"
6021                 "xorl   %%eax, %%eax\n\t"
6022                 "cpuid\n\t"
6023                 /* Now fill the cache */
6024                 "xorl   %%eax, %%eax\n"
6025                 ".Lfill_cache:\n"
6026                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6027                 "addl   $64, %%eax\n\t"
6028                 "cmpl   %%eax, %[size]\n\t"
6029                 "jne    .Lfill_cache\n\t"
6030                 "lfence\n"
6031                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6032                     [size] "r" (size)
6033                 : "eax", "ebx", "ecx", "edx");
6034 }
6035
6036 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6037 {
6038         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6039
6040         if (is_guest_mode(vcpu) &&
6041                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6042                 return;
6043
6044         if (irr == -1 || tpr < irr) {
6045                 vmcs_write32(TPR_THRESHOLD, 0);
6046                 return;
6047         }
6048
6049         vmcs_write32(TPR_THRESHOLD, irr);
6050 }
6051
6052 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6053 {
6054         struct vcpu_vmx *vmx = to_vmx(vcpu);
6055         u32 sec_exec_control;
6056
6057         if (!lapic_in_kernel(vcpu))
6058                 return;
6059
6060         if (!flexpriority_enabled &&
6061             !cpu_has_vmx_virtualize_x2apic_mode())
6062                 return;
6063
6064         /* Postpone execution until vmcs01 is the current VMCS. */
6065         if (is_guest_mode(vcpu)) {
6066                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6067                 return;
6068         }
6069
6070         sec_exec_control = secondary_exec_controls_get(vmx);
6071         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6072                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6073
6074         switch (kvm_get_apic_mode(vcpu)) {
6075         case LAPIC_MODE_INVALID:
6076                 WARN_ONCE(true, "Invalid local APIC state");
6077         case LAPIC_MODE_DISABLED:
6078                 break;
6079         case LAPIC_MODE_XAPIC:
6080                 if (flexpriority_enabled) {
6081                         sec_exec_control |=
6082                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6083                         vmx_flush_tlb(vcpu, true);
6084                 }
6085                 break;
6086         case LAPIC_MODE_X2APIC:
6087                 if (cpu_has_vmx_virtualize_x2apic_mode())
6088                         sec_exec_control |=
6089                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6090                 break;
6091         }
6092         secondary_exec_controls_set(vmx, sec_exec_control);
6093
6094         vmx_update_msr_bitmap(vcpu);
6095 }
6096
6097 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6098 {
6099         if (!is_guest_mode(vcpu)) {
6100                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6101                 vmx_flush_tlb(vcpu, true);
6102         }
6103 }
6104
6105 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6106 {
6107         u16 status;
6108         u8 old;
6109
6110         if (max_isr == -1)
6111                 max_isr = 0;
6112
6113         status = vmcs_read16(GUEST_INTR_STATUS);
6114         old = status >> 8;
6115         if (max_isr != old) {
6116                 status &= 0xff;
6117                 status |= max_isr << 8;
6118                 vmcs_write16(GUEST_INTR_STATUS, status);
6119         }
6120 }
6121
6122 static void vmx_set_rvi(int vector)
6123 {
6124         u16 status;
6125         u8 old;
6126
6127         if (vector == -1)
6128                 vector = 0;
6129
6130         status = vmcs_read16(GUEST_INTR_STATUS);
6131         old = (u8)status & 0xff;
6132         if ((u8)vector != old) {
6133                 status &= ~0xff;
6134                 status |= (u8)vector;
6135                 vmcs_write16(GUEST_INTR_STATUS, status);
6136         }
6137 }
6138
6139 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6140 {
6141         /*
6142          * When running L2, updating RVI is only relevant when
6143          * vmcs12 virtual-interrupt-delivery enabled.
6144          * However, it can be enabled only when L1 also
6145          * intercepts external-interrupts and in that case
6146          * we should not update vmcs02 RVI but instead intercept
6147          * interrupt. Therefore, do nothing when running L2.
6148          */
6149         if (!is_guest_mode(vcpu))
6150                 vmx_set_rvi(max_irr);
6151 }
6152
6153 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6154 {
6155         struct vcpu_vmx *vmx = to_vmx(vcpu);
6156         int max_irr;
6157         bool max_irr_updated;
6158
6159         WARN_ON(!vcpu->arch.apicv_active);
6160         if (pi_test_on(&vmx->pi_desc)) {
6161                 pi_clear_on(&vmx->pi_desc);
6162                 /*
6163                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6164                  * But on x86 this is just a compiler barrier anyway.
6165                  */
6166                 smp_mb__after_atomic();
6167                 max_irr_updated =
6168                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6169
6170                 /*
6171                  * If we are running L2 and L1 has a new pending interrupt
6172                  * which can be injected, we should re-evaluate
6173                  * what should be done with this new L1 interrupt.
6174                  * If L1 intercepts external-interrupts, we should
6175                  * exit from L2 to L1. Otherwise, interrupt should be
6176                  * delivered directly to L2.
6177                  */
6178                 if (is_guest_mode(vcpu) && max_irr_updated) {
6179                         if (nested_exit_on_intr(vcpu))
6180                                 kvm_vcpu_exiting_guest_mode(vcpu);
6181                         else
6182                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6183                 }
6184         } else {
6185                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6186         }
6187         vmx_hwapic_irr_update(vcpu, max_irr);
6188         return max_irr;
6189 }
6190
6191 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6192 {
6193         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6194
6195         return pi_test_on(pi_desc) ||
6196                 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6197 }
6198
6199 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6200 {
6201         if (!kvm_vcpu_apicv_active(vcpu))
6202                 return;
6203
6204         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6205         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6206         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6207         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6208 }
6209
6210 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6211 {
6212         struct vcpu_vmx *vmx = to_vmx(vcpu);
6213
6214         pi_clear_on(&vmx->pi_desc);
6215         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6216 }
6217
6218 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6219 {
6220         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6221
6222         /* if exit due to PF check for async PF */
6223         if (is_page_fault(vmx->exit_intr_info))
6224                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6225
6226         /* Handle machine checks before interrupts are enabled */
6227         if (is_machine_check(vmx->exit_intr_info))
6228                 kvm_machine_check();
6229
6230         /* We need to handle NMIs before interrupts are enabled */
6231         if (is_nmi(vmx->exit_intr_info)) {
6232                 kvm_before_interrupt(&vmx->vcpu);
6233                 asm("int $2");
6234                 kvm_after_interrupt(&vmx->vcpu);
6235         }
6236 }
6237
6238 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6239 {
6240         unsigned int vector;
6241         unsigned long entry;
6242 #ifdef CONFIG_X86_64
6243         unsigned long tmp;
6244 #endif
6245         gate_desc *desc;
6246         u32 intr_info;
6247
6248         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6249         if (WARN_ONCE(!is_external_intr(intr_info),
6250             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6251                 return;
6252
6253         vector = intr_info & INTR_INFO_VECTOR_MASK;
6254         desc = (gate_desc *)host_idt_base + vector;
6255         entry = gate_offset(desc);
6256
6257         kvm_before_interrupt(vcpu);
6258
6259         asm volatile(
6260 #ifdef CONFIG_X86_64
6261                 "mov %%" _ASM_SP ", %[sp]\n\t"
6262                 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6263                 "push $%c[ss]\n\t"
6264                 "push %[sp]\n\t"
6265 #endif
6266                 "pushf\n\t"
6267                 __ASM_SIZE(push) " $%c[cs]\n\t"
6268                 CALL_NOSPEC
6269                 :
6270 #ifdef CONFIG_X86_64
6271                 [sp]"=&r"(tmp),
6272 #endif
6273                 ASM_CALL_CONSTRAINT
6274                 :
6275                 THUNK_TARGET(entry),
6276                 [ss]"i"(__KERNEL_DS),
6277                 [cs]"i"(__KERNEL_CS)
6278         );
6279
6280         kvm_after_interrupt(vcpu);
6281 }
6282 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6283
6284 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6285 {
6286         struct vcpu_vmx *vmx = to_vmx(vcpu);
6287
6288         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6289                 handle_external_interrupt_irqoff(vcpu);
6290         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6291                 handle_exception_nmi_irqoff(vmx);
6292 }
6293
6294 static bool vmx_has_emulated_msr(int index)
6295 {
6296         switch (index) {
6297         case MSR_IA32_SMBASE:
6298                 /*
6299                  * We cannot do SMM unless we can run the guest in big
6300                  * real mode.
6301                  */
6302                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6303         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6304                 return nested;
6305         case MSR_AMD64_VIRT_SPEC_CTRL:
6306                 /* This is AMD only.  */
6307                 return false;
6308         default:
6309                 return true;
6310         }
6311 }
6312
6313 static bool vmx_pt_supported(void)
6314 {
6315         return pt_mode == PT_MODE_HOST_GUEST;
6316 }
6317
6318 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6319 {
6320         u32 exit_intr_info;
6321         bool unblock_nmi;
6322         u8 vector;
6323         bool idtv_info_valid;
6324
6325         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6326
6327         if (enable_vnmi) {
6328                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6329                         return;
6330                 /*
6331                  * Can't use vmx->exit_intr_info since we're not sure what
6332                  * the exit reason is.
6333                  */
6334                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6335                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6336                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6337                 /*
6338                  * SDM 3: 27.7.1.2 (September 2008)
6339                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6340                  * a guest IRET fault.
6341                  * SDM 3: 23.2.2 (September 2008)
6342                  * Bit 12 is undefined in any of the following cases:
6343                  *  If the VM exit sets the valid bit in the IDT-vectoring
6344                  *   information field.
6345                  *  If the VM exit is due to a double fault.
6346                  */
6347                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6348                     vector != DF_VECTOR && !idtv_info_valid)
6349                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6350                                       GUEST_INTR_STATE_NMI);
6351                 else
6352                         vmx->loaded_vmcs->nmi_known_unmasked =
6353                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6354                                   & GUEST_INTR_STATE_NMI);
6355         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6356                 vmx->loaded_vmcs->vnmi_blocked_time +=
6357                         ktime_to_ns(ktime_sub(ktime_get(),
6358                                               vmx->loaded_vmcs->entry_time));
6359 }
6360
6361 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6362                                       u32 idt_vectoring_info,
6363                                       int instr_len_field,
6364                                       int error_code_field)
6365 {
6366         u8 vector;
6367         int type;
6368         bool idtv_info_valid;
6369
6370         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6371
6372         vcpu->arch.nmi_injected = false;
6373         kvm_clear_exception_queue(vcpu);
6374         kvm_clear_interrupt_queue(vcpu);
6375
6376         if (!idtv_info_valid)
6377                 return;
6378
6379         kvm_make_request(KVM_REQ_EVENT, vcpu);
6380
6381         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6382         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6383
6384         switch (type) {
6385         case INTR_TYPE_NMI_INTR:
6386                 vcpu->arch.nmi_injected = true;
6387                 /*
6388                  * SDM 3: 27.7.1.2 (September 2008)
6389                  * Clear bit "block by NMI" before VM entry if a NMI
6390                  * delivery faulted.
6391                  */
6392                 vmx_set_nmi_mask(vcpu, false);
6393                 break;
6394         case INTR_TYPE_SOFT_EXCEPTION:
6395                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6396                 /* fall through */
6397         case INTR_TYPE_HARD_EXCEPTION:
6398                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6399                         u32 err = vmcs_read32(error_code_field);
6400                         kvm_requeue_exception_e(vcpu, vector, err);
6401                 } else
6402                         kvm_requeue_exception(vcpu, vector);
6403                 break;
6404         case INTR_TYPE_SOFT_INTR:
6405                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6406                 /* fall through */
6407         case INTR_TYPE_EXT_INTR:
6408                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6409                 break;
6410         default:
6411                 break;
6412         }
6413 }
6414
6415 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6416 {
6417         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6418                                   VM_EXIT_INSTRUCTION_LEN,
6419                                   IDT_VECTORING_ERROR_CODE);
6420 }
6421
6422 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6423 {
6424         __vmx_complete_interrupts(vcpu,
6425                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6426                                   VM_ENTRY_INSTRUCTION_LEN,
6427                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6428
6429         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6430 }
6431
6432 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6433 {
6434         int i, nr_msrs;
6435         struct perf_guest_switch_msr *msrs;
6436
6437         msrs = perf_guest_get_msrs(&nr_msrs);
6438
6439         if (!msrs)
6440                 return;
6441
6442         for (i = 0; i < nr_msrs; i++)
6443                 if (msrs[i].host == msrs[i].guest)
6444                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6445                 else
6446                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6447                                         msrs[i].host, false);
6448 }
6449
6450 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6451 {
6452         u32 host_umwait_control;
6453
6454         if (!vmx_has_waitpkg(vmx))
6455                 return;
6456
6457         host_umwait_control = get_umwait_control_msr();
6458
6459         if (vmx->msr_ia32_umwait_control != host_umwait_control)
6460                 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6461                         vmx->msr_ia32_umwait_control,
6462                         host_umwait_control, false);
6463         else
6464                 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6465 }
6466
6467 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6468 {
6469         struct vcpu_vmx *vmx = to_vmx(vcpu);
6470         u64 tscl;
6471         u32 delta_tsc;
6472
6473         if (vmx->req_immediate_exit) {
6474                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6475                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6476         } else if (vmx->hv_deadline_tsc != -1) {
6477                 tscl = rdtsc();
6478                 if (vmx->hv_deadline_tsc > tscl)
6479                         /* set_hv_timer ensures the delta fits in 32-bits */
6480                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6481                                 cpu_preemption_timer_multi);
6482                 else
6483                         delta_tsc = 0;
6484
6485                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6486                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6487         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6488                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6489                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6490         }
6491 }
6492
6493 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6494 {
6495         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6496                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6497                 vmcs_writel(HOST_RSP, host_rsp);
6498         }
6499 }
6500
6501 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6502
6503 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6504 {
6505         struct vcpu_vmx *vmx = to_vmx(vcpu);
6506         unsigned long cr3, cr4;
6507
6508         /* Record the guest's net vcpu time for enforced NMI injections. */
6509         if (unlikely(!enable_vnmi &&
6510                      vmx->loaded_vmcs->soft_vnmi_blocked))
6511                 vmx->loaded_vmcs->entry_time = ktime_get();
6512
6513         /* Don't enter VMX if guest state is invalid, let the exit handler
6514            start emulation until we arrive back to a valid state */
6515         if (vmx->emulation_required)
6516                 return;
6517
6518         if (vmx->ple_window_dirty) {
6519                 vmx->ple_window_dirty = false;
6520                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6521         }
6522
6523         if (vmx->nested.need_vmcs12_to_shadow_sync)
6524                 nested_sync_vmcs12_to_shadow(vcpu);
6525
6526         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6527                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6528         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6529                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6530
6531         cr3 = __get_current_cr3_fast();
6532         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6533                 vmcs_writel(HOST_CR3, cr3);
6534                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6535         }
6536
6537         cr4 = cr4_read_shadow();
6538         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6539                 vmcs_writel(HOST_CR4, cr4);
6540                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6541         }
6542
6543         /* When single-stepping over STI and MOV SS, we must clear the
6544          * corresponding interruptibility bits in the guest state. Otherwise
6545          * vmentry fails as it then expects bit 14 (BS) in pending debug
6546          * exceptions being set, but that's not correct for the guest debugging
6547          * case. */
6548         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6549                 vmx_set_interrupt_shadow(vcpu, 0);
6550
6551         kvm_load_guest_xcr0(vcpu);
6552
6553         if (static_cpu_has(X86_FEATURE_PKU) &&
6554             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6555             vcpu->arch.pkru != vmx->host_pkru)
6556                 __write_pkru(vcpu->arch.pkru);
6557
6558         pt_guest_enter(vmx);
6559
6560         atomic_switch_perf_msrs(vmx);
6561         atomic_switch_umwait_control_msr(vmx);
6562
6563         if (enable_preemption_timer)
6564                 vmx_update_hv_timer(vcpu);
6565
6566         if (lapic_in_kernel(vcpu) &&
6567                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6568                 kvm_wait_lapic_expire(vcpu);
6569
6570         /*
6571          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6572          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6573          * is no need to worry about the conditional branch over the wrmsr
6574          * being speculatively taken.
6575          */
6576         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6577
6578         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6579         if (static_branch_unlikely(&vmx_l1d_should_flush))
6580                 vmx_l1d_flush(vcpu);
6581         else if (static_branch_unlikely(&mds_user_clear))
6582                 mds_clear_cpu_buffers();
6583
6584         if (vcpu->arch.cr2 != read_cr2())
6585                 write_cr2(vcpu->arch.cr2);
6586
6587         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6588                                    vmx->loaded_vmcs->launched);
6589
6590         vcpu->arch.cr2 = read_cr2();
6591
6592         /*
6593          * We do not use IBRS in the kernel. If this vCPU has used the
6594          * SPEC_CTRL MSR it may have left it on; save the value and
6595          * turn it off. This is much more efficient than blindly adding
6596          * it to the atomic save/restore list. Especially as the former
6597          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6598          *
6599          * For non-nested case:
6600          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6601          * save it.
6602          *
6603          * For nested case:
6604          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6605          * save it.
6606          */
6607         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6608                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6609
6610         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6611
6612         /* All fields are clean at this point */
6613         if (static_branch_unlikely(&enable_evmcs))
6614                 current_evmcs->hv_clean_fields |=
6615                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6616
6617         if (static_branch_unlikely(&enable_evmcs))
6618                 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6619
6620         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6621         if (vmx->host_debugctlmsr)
6622                 update_debugctlmsr(vmx->host_debugctlmsr);
6623
6624 #ifndef CONFIG_X86_64
6625         /*
6626          * The sysexit path does not restore ds/es, so we must set them to
6627          * a reasonable value ourselves.
6628          *
6629          * We can't defer this to vmx_prepare_switch_to_host() since that
6630          * function may be executed in interrupt context, which saves and
6631          * restore segments around it, nullifying its effect.
6632          */
6633         loadsegment(ds, __USER_DS);
6634         loadsegment(es, __USER_DS);
6635 #endif
6636
6637         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6638                                   | (1 << VCPU_EXREG_RFLAGS)
6639                                   | (1 << VCPU_EXREG_PDPTR)
6640                                   | (1 << VCPU_EXREG_SEGMENTS)
6641                                   | (1 << VCPU_EXREG_CR3));
6642         vcpu->arch.regs_dirty = 0;
6643
6644         pt_guest_exit(vmx);
6645
6646         /*
6647          * eager fpu is enabled if PKEY is supported and CR4 is switched
6648          * back on host, so it is safe to read guest PKRU from current
6649          * XSAVE.
6650          */
6651         if (static_cpu_has(X86_FEATURE_PKU) &&
6652             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6653                 vcpu->arch.pkru = rdpkru();
6654                 if (vcpu->arch.pkru != vmx->host_pkru)
6655                         __write_pkru(vmx->host_pkru);
6656         }
6657
6658         kvm_put_guest_xcr0(vcpu);
6659
6660         vmx->nested.nested_run_pending = 0;
6661         vmx->idt_vectoring_info = 0;
6662
6663         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6664         if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6665                 kvm_machine_check();
6666
6667         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6668                 return;
6669
6670         vmx->loaded_vmcs->launched = 1;
6671         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6672
6673         vmx_recover_nmi_blocking(vmx);
6674         vmx_complete_interrupts(vmx);
6675 }
6676
6677 static struct kvm *vmx_vm_alloc(void)
6678 {
6679         struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6680                                             GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6681                                             PAGE_KERNEL);
6682         return &kvm_vmx->kvm;
6683 }
6684
6685 static void vmx_vm_free(struct kvm *kvm)
6686 {
6687         kfree(kvm->arch.hyperv.hv_pa_pg);
6688         vfree(to_kvm_vmx(kvm));
6689 }
6690
6691 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6692 {
6693         struct vcpu_vmx *vmx = to_vmx(vcpu);
6694
6695         if (enable_pml)
6696                 vmx_destroy_pml_buffer(vmx);
6697         free_vpid(vmx->vpid);
6698         nested_vmx_free_vcpu(vcpu);
6699         free_loaded_vmcs(vmx->loaded_vmcs);
6700         kfree(vmx->guest_msrs);
6701         kvm_vcpu_uninit(vcpu);
6702         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6703         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6704         kmem_cache_free(kvm_vcpu_cache, vmx);
6705 }
6706
6707 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6708 {
6709         int err;
6710         struct vcpu_vmx *vmx;
6711         unsigned long *msr_bitmap;
6712         int cpu;
6713
6714         BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6715                 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
6716
6717         vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6718         if (!vmx)
6719                 return ERR_PTR(-ENOMEM);
6720
6721         vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6722                         GFP_KERNEL_ACCOUNT);
6723         if (!vmx->vcpu.arch.user_fpu) {
6724                 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6725                 err = -ENOMEM;
6726                 goto free_partial_vcpu;
6727         }
6728
6729         vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6730                         GFP_KERNEL_ACCOUNT);
6731         if (!vmx->vcpu.arch.guest_fpu) {
6732                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6733                 err = -ENOMEM;
6734                 goto free_user_fpu;
6735         }
6736
6737         vmx->vpid = allocate_vpid();
6738
6739         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6740         if (err)
6741                 goto free_vcpu;
6742
6743         err = -ENOMEM;
6744
6745         /*
6746          * If PML is turned on, failure on enabling PML just results in failure
6747          * of creating the vcpu, therefore we can simplify PML logic (by
6748          * avoiding dealing with cases, such as enabling PML partially on vcpus
6749          * for the guest, etc.
6750          */
6751         if (enable_pml) {
6752                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6753                 if (!vmx->pml_pg)
6754                         goto uninit_vcpu;
6755         }
6756
6757         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6758         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6759                      > PAGE_SIZE);
6760
6761         if (!vmx->guest_msrs)
6762                 goto free_pml;
6763
6764         err = alloc_loaded_vmcs(&vmx->vmcs01);
6765         if (err < 0)
6766                 goto free_msrs;
6767
6768         msr_bitmap = vmx->vmcs01.msr_bitmap;
6769         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6770         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6771         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6772         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6773         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6774         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6775         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6776         if (kvm_cstate_in_guest(kvm)) {
6777                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6778                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6779                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6780                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6781         }
6782         vmx->msr_bitmap_mode = 0;
6783
6784         vmx->loaded_vmcs = &vmx->vmcs01;
6785         cpu = get_cpu();
6786         vmx_vcpu_load(&vmx->vcpu, cpu);
6787         vmx->vcpu.cpu = cpu;
6788         vmx_vcpu_setup(vmx);
6789         vmx_vcpu_put(&vmx->vcpu);
6790         put_cpu();
6791         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6792                 err = alloc_apic_access_page(kvm);
6793                 if (err)
6794                         goto free_vmcs;
6795         }
6796
6797         if (enable_ept && !enable_unrestricted_guest) {
6798                 err = init_rmode_identity_map(kvm);
6799                 if (err)
6800                         goto free_vmcs;
6801         }
6802
6803         if (nested)
6804                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6805                                            vmx_capability.ept,
6806                                            kvm_vcpu_apicv_active(&vmx->vcpu));
6807         else
6808                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6809
6810         vmx->nested.posted_intr_nv = -1;
6811         vmx->nested.current_vmptr = -1ull;
6812
6813         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6814
6815         /*
6816          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6817          * or POSTED_INTR_WAKEUP_VECTOR.
6818          */
6819         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6820         vmx->pi_desc.sn = 1;
6821
6822         vmx->ept_pointer = INVALID_PAGE;
6823
6824         return &vmx->vcpu;
6825
6826 free_vmcs:
6827         free_loaded_vmcs(vmx->loaded_vmcs);
6828 free_msrs:
6829         kfree(vmx->guest_msrs);
6830 free_pml:
6831         vmx_destroy_pml_buffer(vmx);
6832 uninit_vcpu:
6833         kvm_vcpu_uninit(&vmx->vcpu);
6834 free_vcpu:
6835         free_vpid(vmx->vpid);
6836         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6837 free_user_fpu:
6838         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6839 free_partial_vcpu:
6840         kmem_cache_free(kvm_vcpu_cache, vmx);
6841         return ERR_PTR(err);
6842 }
6843
6844 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6845 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6846
6847 static int vmx_vm_init(struct kvm *kvm)
6848 {
6849         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6850
6851         if (!ple_gap)
6852                 kvm->arch.pause_in_guest = true;
6853
6854         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6855                 switch (l1tf_mitigation) {
6856                 case L1TF_MITIGATION_OFF:
6857                 case L1TF_MITIGATION_FLUSH_NOWARN:
6858                         /* 'I explicitly don't care' is set */
6859                         break;
6860                 case L1TF_MITIGATION_FLUSH:
6861                 case L1TF_MITIGATION_FLUSH_NOSMT:
6862                 case L1TF_MITIGATION_FULL:
6863                         /*
6864                          * Warn upon starting the first VM in a potentially
6865                          * insecure environment.
6866                          */
6867                         if (sched_smt_active())
6868                                 pr_warn_once(L1TF_MSG_SMT);
6869                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6870                                 pr_warn_once(L1TF_MSG_L1D);
6871                         break;
6872                 case L1TF_MITIGATION_FULL_FORCE:
6873                         /* Flush is enforced */
6874                         break;
6875                 }
6876         }
6877         return 0;
6878 }
6879
6880 static int __init vmx_check_processor_compat(void)
6881 {
6882         struct vmcs_config vmcs_conf;
6883         struct vmx_capability vmx_cap;
6884
6885         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6886                 return -EIO;
6887         if (nested)
6888                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6889                                            enable_apicv);
6890         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6891                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6892                                 smp_processor_id());
6893                 return -EIO;
6894         }
6895         return 0;
6896 }
6897
6898 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6899 {
6900         u8 cache;
6901         u64 ipat = 0;
6902
6903         /* For VT-d and EPT combination
6904          * 1. MMIO: always map as UC
6905          * 2. EPT with VT-d:
6906          *   a. VT-d without snooping control feature: can't guarantee the
6907          *      result, try to trust guest.
6908          *   b. VT-d with snooping control feature: snooping control feature of
6909          *      VT-d engine can guarantee the cache correctness. Just set it
6910          *      to WB to keep consistent with host. So the same as item 3.
6911          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6912          *    consistent with host MTRR
6913          */
6914         if (is_mmio) {
6915                 cache = MTRR_TYPE_UNCACHABLE;
6916                 goto exit;
6917         }
6918
6919         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6920                 ipat = VMX_EPT_IPAT_BIT;
6921                 cache = MTRR_TYPE_WRBACK;
6922                 goto exit;
6923         }
6924
6925         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6926                 ipat = VMX_EPT_IPAT_BIT;
6927                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6928                         cache = MTRR_TYPE_WRBACK;
6929                 else
6930                         cache = MTRR_TYPE_UNCACHABLE;
6931                 goto exit;
6932         }
6933
6934         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6935
6936 exit:
6937         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6938 }
6939
6940 static int vmx_get_lpage_level(void)
6941 {
6942         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6943                 return PT_DIRECTORY_LEVEL;
6944         else
6945                 /* For shadow and EPT supported 1GB page */
6946                 return PT_PDPE_LEVEL;
6947 }
6948
6949 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6950 {
6951         /*
6952          * These bits in the secondary execution controls field
6953          * are dynamic, the others are mostly based on the hypervisor
6954          * architecture and the guest's CPUID.  Do not touch the
6955          * dynamic bits.
6956          */
6957         u32 mask =
6958                 SECONDARY_EXEC_SHADOW_VMCS |
6959                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6960                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6961                 SECONDARY_EXEC_DESC;
6962
6963         u32 new_ctl = vmx->secondary_exec_control;
6964         u32 cur_ctl = secondary_exec_controls_get(vmx);
6965
6966         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6967 }
6968
6969 /*
6970  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6971  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6972  */
6973 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6974 {
6975         struct vcpu_vmx *vmx = to_vmx(vcpu);
6976         struct kvm_cpuid_entry2 *entry;
6977
6978         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6979         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6980
6981 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6982         if (entry && (entry->_reg & (_cpuid_mask)))                     \
6983                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6984 } while (0)
6985
6986         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6987         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6988         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6989         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6990         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6991         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6992         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6993         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6994         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6995         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6996         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6997         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6998         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6999         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
7000         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
7001
7002         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7003         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
7004         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
7005         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
7006         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
7007         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
7008
7009 #undef cr4_fixed1_update
7010 }
7011
7012 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7013 {
7014         struct vcpu_vmx *vmx = to_vmx(vcpu);
7015
7016         if (kvm_mpx_supported()) {
7017                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7018
7019                 if (mpx_enabled) {
7020                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7021                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7022                 } else {
7023                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7024                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7025                 }
7026         }
7027 }
7028
7029 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7030 {
7031         struct vcpu_vmx *vmx = to_vmx(vcpu);
7032         struct kvm_cpuid_entry2 *best = NULL;
7033         int i;
7034
7035         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7036                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7037                 if (!best)
7038                         return;
7039                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7040                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7041                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7042                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7043         }
7044
7045         /* Get the number of configurable Address Ranges for filtering */
7046         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7047                                                 PT_CAP_num_address_ranges);
7048
7049         /* Initialize and clear the no dependency bits */
7050         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7051                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7052
7053         /*
7054          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7055          * will inject an #GP
7056          */
7057         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7058                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7059
7060         /*
7061          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7062          * PSBFreq can be set
7063          */
7064         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7065                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7066                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7067
7068         /*
7069          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7070          * MTCFreq can be set
7071          */
7072         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7073                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7074                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7075
7076         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7077         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7078                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7079                                                         RTIT_CTL_PTW_EN);
7080
7081         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7082         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7083                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7084
7085         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7086         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7087                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7088
7089         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7090         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7091                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7092
7093         /* unmask address range configure area */
7094         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7095                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7096 }
7097
7098 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7099 {
7100         struct vcpu_vmx *vmx = to_vmx(vcpu);
7101
7102         if (cpu_has_secondary_exec_ctrls()) {
7103                 vmx_compute_secondary_exec_control(vmx);
7104                 vmcs_set_secondary_exec_control(vmx);
7105         }
7106
7107         if (nested_vmx_allowed(vcpu))
7108                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7109                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7110         else
7111                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7112                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7113
7114         if (nested_vmx_allowed(vcpu)) {
7115                 nested_vmx_cr_fixed1_bits_update(vcpu);
7116                 nested_vmx_entry_exit_ctls_update(vcpu);
7117         }
7118
7119         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7120                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7121                 update_intel_pt_cfg(vcpu);
7122 }
7123
7124 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7125 {
7126         if (func == 1 && nested)
7127                 entry->ecx |= bit(X86_FEATURE_VMX);
7128 }
7129
7130 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7131 {
7132         to_vmx(vcpu)->req_immediate_exit = true;
7133 }
7134
7135 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7136                                struct x86_instruction_info *info,
7137                                enum x86_intercept_stage stage)
7138 {
7139         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7140         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7141
7142         /*
7143          * RDPID causes #UD if disabled through secondary execution controls.
7144          * Because it is marked as EmulateOnUD, we need to intercept it here.
7145          */
7146         if (info->intercept == x86_intercept_rdtscp &&
7147             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7148                 ctxt->exception.vector = UD_VECTOR;
7149                 ctxt->exception.error_code_valid = false;
7150                 return X86EMUL_PROPAGATE_FAULT;
7151         }
7152
7153         /* TODO: check more intercepts... */
7154         return X86EMUL_UNHANDLEABLE;
7155 }
7156
7157 #ifdef CONFIG_X86_64
7158 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7159 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7160                                   u64 divisor, u64 *result)
7161 {
7162         u64 low = a << shift, high = a >> (64 - shift);
7163
7164         /* To avoid the overflow on divq */
7165         if (high >= divisor)
7166                 return 1;
7167
7168         /* Low hold the result, high hold rem which is discarded */
7169         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7170             "rm" (divisor), "0" (low), "1" (high));
7171         *result = low;
7172
7173         return 0;
7174 }
7175
7176 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7177                             bool *expired)
7178 {
7179         struct vcpu_vmx *vmx;
7180         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7181         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7182
7183         if (kvm_mwait_in_guest(vcpu->kvm) ||
7184                 kvm_can_post_timer_interrupt(vcpu))
7185                 return -EOPNOTSUPP;
7186
7187         vmx = to_vmx(vcpu);
7188         tscl = rdtsc();
7189         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7190         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7191         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7192                                                     ktimer->timer_advance_ns);
7193
7194         if (delta_tsc > lapic_timer_advance_cycles)
7195                 delta_tsc -= lapic_timer_advance_cycles;
7196         else
7197                 delta_tsc = 0;
7198
7199         /* Convert to host delta tsc if tsc scaling is enabled */
7200         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7201             delta_tsc && u64_shl_div_u64(delta_tsc,
7202                                 kvm_tsc_scaling_ratio_frac_bits,
7203                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7204                 return -ERANGE;
7205
7206         /*
7207          * If the delta tsc can't fit in the 32 bit after the multi shift,
7208          * we can't use the preemption timer.
7209          * It's possible that it fits on later vmentries, but checking
7210          * on every vmentry is costly so we just use an hrtimer.
7211          */
7212         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7213                 return -ERANGE;
7214
7215         vmx->hv_deadline_tsc = tscl + delta_tsc;
7216         *expired = !delta_tsc;
7217         return 0;
7218 }
7219
7220 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7221 {
7222         to_vmx(vcpu)->hv_deadline_tsc = -1;
7223 }
7224 #endif
7225
7226 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7227 {
7228         if (!kvm_pause_in_guest(vcpu->kvm))
7229                 shrink_ple_window(vcpu);
7230 }
7231
7232 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7233                                      struct kvm_memory_slot *slot)
7234 {
7235         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7236         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7237 }
7238
7239 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7240                                        struct kvm_memory_slot *slot)
7241 {
7242         kvm_mmu_slot_set_dirty(kvm, slot);
7243 }
7244
7245 static void vmx_flush_log_dirty(struct kvm *kvm)
7246 {
7247         kvm_flush_pml_buffers(kvm);
7248 }
7249
7250 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7251 {
7252         struct vmcs12 *vmcs12;
7253         struct vcpu_vmx *vmx = to_vmx(vcpu);
7254         gpa_t gpa, dst;
7255
7256         if (is_guest_mode(vcpu)) {
7257                 WARN_ON_ONCE(vmx->nested.pml_full);
7258
7259                 /*
7260                  * Check if PML is enabled for the nested guest.
7261                  * Whether eptp bit 6 is set is already checked
7262                  * as part of A/D emulation.
7263                  */
7264                 vmcs12 = get_vmcs12(vcpu);
7265                 if (!nested_cpu_has_pml(vmcs12))
7266                         return 0;
7267
7268                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7269                         vmx->nested.pml_full = true;
7270                         return 1;
7271                 }
7272
7273                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7274                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7275
7276                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7277                                          offset_in_page(dst), sizeof(gpa)))
7278                         return 0;
7279
7280                 vmcs12->guest_pml_index--;
7281         }
7282
7283         return 0;
7284 }
7285
7286 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7287                                            struct kvm_memory_slot *memslot,
7288                                            gfn_t offset, unsigned long mask)
7289 {
7290         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7291 }
7292
7293 static void __pi_post_block(struct kvm_vcpu *vcpu)
7294 {
7295         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7296         struct pi_desc old, new;
7297         unsigned int dest;
7298
7299         do {
7300                 old.control = new.control = pi_desc->control;
7301                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7302                      "Wakeup handler not enabled while the VCPU is blocked\n");
7303
7304                 dest = cpu_physical_id(vcpu->cpu);
7305
7306                 if (x2apic_enabled())
7307                         new.ndst = dest;
7308                 else
7309                         new.ndst = (dest << 8) & 0xFF00;
7310
7311                 /* set 'NV' to 'notification vector' */
7312                 new.nv = POSTED_INTR_VECTOR;
7313         } while (cmpxchg64(&pi_desc->control, old.control,
7314                            new.control) != old.control);
7315
7316         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7317                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7318                 list_del(&vcpu->blocked_vcpu_list);
7319                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7320                 vcpu->pre_pcpu = -1;
7321         }
7322 }
7323
7324 /*
7325  * This routine does the following things for vCPU which is going
7326  * to be blocked if VT-d PI is enabled.
7327  * - Store the vCPU to the wakeup list, so when interrupts happen
7328  *   we can find the right vCPU to wake up.
7329  * - Change the Posted-interrupt descriptor as below:
7330  *      'NDST' <-- vcpu->pre_pcpu
7331  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7332  * - If 'ON' is set during this process, which means at least one
7333  *   interrupt is posted for this vCPU, we cannot block it, in
7334  *   this case, return 1, otherwise, return 0.
7335  *
7336  */
7337 static int pi_pre_block(struct kvm_vcpu *vcpu)
7338 {
7339         unsigned int dest;
7340         struct pi_desc old, new;
7341         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7342
7343         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7344                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7345                 !kvm_vcpu_apicv_active(vcpu))
7346                 return 0;
7347
7348         WARN_ON(irqs_disabled());
7349         local_irq_disable();
7350         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7351                 vcpu->pre_pcpu = vcpu->cpu;
7352                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7353                 list_add_tail(&vcpu->blocked_vcpu_list,
7354                               &per_cpu(blocked_vcpu_on_cpu,
7355                                        vcpu->pre_pcpu));
7356                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7357         }
7358
7359         do {
7360                 old.control = new.control = pi_desc->control;
7361
7362                 WARN((pi_desc->sn == 1),
7363                      "Warning: SN field of posted-interrupts "
7364                      "is set before blocking\n");
7365
7366                 /*
7367                  * Since vCPU can be preempted during this process,
7368                  * vcpu->cpu could be different with pre_pcpu, we
7369                  * need to set pre_pcpu as the destination of wakeup
7370                  * notification event, then we can find the right vCPU
7371                  * to wakeup in wakeup handler if interrupts happen
7372                  * when the vCPU is in blocked state.
7373                  */
7374                 dest = cpu_physical_id(vcpu->pre_pcpu);
7375
7376                 if (x2apic_enabled())
7377                         new.ndst = dest;
7378                 else
7379                         new.ndst = (dest << 8) & 0xFF00;
7380
7381                 /* set 'NV' to 'wakeup vector' */
7382                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7383         } while (cmpxchg64(&pi_desc->control, old.control,
7384                            new.control) != old.control);
7385
7386         /* We should not block the vCPU if an interrupt is posted for it.  */
7387         if (pi_test_on(pi_desc) == 1)
7388                 __pi_post_block(vcpu);
7389
7390         local_irq_enable();
7391         return (vcpu->pre_pcpu == -1);
7392 }
7393
7394 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7395 {
7396         if (pi_pre_block(vcpu))
7397                 return 1;
7398
7399         if (kvm_lapic_hv_timer_in_use(vcpu))
7400                 kvm_lapic_switch_to_sw_timer(vcpu);
7401
7402         return 0;
7403 }
7404
7405 static void pi_post_block(struct kvm_vcpu *vcpu)
7406 {
7407         if (vcpu->pre_pcpu == -1)
7408                 return;
7409
7410         WARN_ON(irqs_disabled());
7411         local_irq_disable();
7412         __pi_post_block(vcpu);
7413         local_irq_enable();
7414 }
7415
7416 static void vmx_post_block(struct kvm_vcpu *vcpu)
7417 {
7418         if (kvm_x86_ops->set_hv_timer)
7419                 kvm_lapic_switch_to_hv_timer(vcpu);
7420
7421         pi_post_block(vcpu);
7422 }
7423
7424 /*
7425  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7426  *
7427  * @kvm: kvm
7428  * @host_irq: host irq of the interrupt
7429  * @guest_irq: gsi of the interrupt
7430  * @set: set or unset PI
7431  * returns 0 on success, < 0 on failure
7432  */
7433 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7434                               uint32_t guest_irq, bool set)
7435 {
7436         struct kvm_kernel_irq_routing_entry *e;
7437         struct kvm_irq_routing_table *irq_rt;
7438         struct kvm_lapic_irq irq;
7439         struct kvm_vcpu *vcpu;
7440         struct vcpu_data vcpu_info;
7441         int idx, ret = 0;
7442
7443         if (!kvm_arch_has_assigned_device(kvm) ||
7444                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7445                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7446                 return 0;
7447
7448         idx = srcu_read_lock(&kvm->irq_srcu);
7449         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7450         if (guest_irq >= irq_rt->nr_rt_entries ||
7451             hlist_empty(&irq_rt->map[guest_irq])) {
7452                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7453                              guest_irq, irq_rt->nr_rt_entries);
7454                 goto out;
7455         }
7456
7457         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7458                 if (e->type != KVM_IRQ_ROUTING_MSI)
7459                         continue;
7460                 /*
7461                  * VT-d PI cannot support posting multicast/broadcast
7462                  * interrupts to a vCPU, we still use interrupt remapping
7463                  * for these kind of interrupts.
7464                  *
7465                  * For lowest-priority interrupts, we only support
7466                  * those with single CPU as the destination, e.g. user
7467                  * configures the interrupts via /proc/irq or uses
7468                  * irqbalance to make the interrupts single-CPU.
7469                  *
7470                  * We will support full lowest-priority interrupt later.
7471                  *
7472                  * In addition, we can only inject generic interrupts using
7473                  * the PI mechanism, refuse to route others through it.
7474                  */
7475
7476                 kvm_set_msi_irq(kvm, e, &irq);
7477                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7478                     !kvm_irq_is_postable(&irq)) {
7479                         /*
7480                          * Make sure the IRTE is in remapped mode if
7481                          * we don't handle it in posted mode.
7482                          */
7483                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7484                         if (ret < 0) {
7485                                 printk(KERN_INFO
7486                                    "failed to back to remapped mode, irq: %u\n",
7487                                    host_irq);
7488                                 goto out;
7489                         }
7490
7491                         continue;
7492                 }
7493
7494                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7495                 vcpu_info.vector = irq.vector;
7496
7497                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7498                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7499
7500                 if (set)
7501                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7502                 else
7503                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7504
7505                 if (ret < 0) {
7506                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7507                                         __func__);
7508                         goto out;
7509                 }
7510         }
7511
7512         ret = 0;
7513 out:
7514         srcu_read_unlock(&kvm->irq_srcu, idx);
7515         return ret;
7516 }
7517
7518 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7519 {
7520         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7521                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7522                         FEATURE_CONTROL_LMCE;
7523         else
7524                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7525                         ~FEATURE_CONTROL_LMCE;
7526 }
7527
7528 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7529 {
7530         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7531         if (to_vmx(vcpu)->nested.nested_run_pending)
7532                 return 0;
7533         return 1;
7534 }
7535
7536 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7537 {
7538         struct vcpu_vmx *vmx = to_vmx(vcpu);
7539
7540         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7541         if (vmx->nested.smm.guest_mode)
7542                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7543
7544         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7545         vmx->nested.vmxon = false;
7546         vmx_clear_hlt(vcpu);
7547         return 0;
7548 }
7549
7550 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7551 {
7552         struct vcpu_vmx *vmx = to_vmx(vcpu);
7553         int ret;
7554
7555         if (vmx->nested.smm.vmxon) {
7556                 vmx->nested.vmxon = true;
7557                 vmx->nested.smm.vmxon = false;
7558         }
7559
7560         if (vmx->nested.smm.guest_mode) {
7561                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7562                 if (ret)
7563                         return ret;
7564
7565                 vmx->nested.smm.guest_mode = false;
7566         }
7567         return 0;
7568 }
7569
7570 static int enable_smi_window(struct kvm_vcpu *vcpu)
7571 {
7572         return 0;
7573 }
7574
7575 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7576 {
7577         return false;
7578 }
7579
7580 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7581 {
7582         return to_vmx(vcpu)->nested.vmxon;
7583 }
7584
7585 static __init int hardware_setup(void)
7586 {
7587         unsigned long host_bndcfgs;
7588         struct desc_ptr dt;
7589         int r, i;
7590
7591         rdmsrl_safe(MSR_EFER, &host_efer);
7592
7593         store_idt(&dt);
7594         host_idt_base = dt.address;
7595
7596         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7597                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7598
7599         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7600                 return -EIO;
7601
7602         if (boot_cpu_has(X86_FEATURE_NX))
7603                 kvm_enable_efer_bits(EFER_NX);
7604
7605         if (boot_cpu_has(X86_FEATURE_MPX)) {
7606                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7607                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7608         }
7609
7610         if (boot_cpu_has(X86_FEATURE_XSAVES))
7611                 rdmsrl(MSR_IA32_XSS, host_xss);
7612
7613         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7614             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7615                 enable_vpid = 0;
7616
7617         if (!cpu_has_vmx_ept() ||
7618             !cpu_has_vmx_ept_4levels() ||
7619             !cpu_has_vmx_ept_mt_wb() ||
7620             !cpu_has_vmx_invept_global())
7621                 enable_ept = 0;
7622
7623         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7624                 enable_ept_ad_bits = 0;
7625
7626         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7627                 enable_unrestricted_guest = 0;
7628
7629         if (!cpu_has_vmx_flexpriority())
7630                 flexpriority_enabled = 0;
7631
7632         if (!cpu_has_virtual_nmis())
7633                 enable_vnmi = 0;
7634
7635         /*
7636          * set_apic_access_page_addr() is used to reload apic access
7637          * page upon invalidation.  No need to do anything if not
7638          * using the APIC_ACCESS_ADDR VMCS field.
7639          */
7640         if (!flexpriority_enabled)
7641                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7642
7643         if (!cpu_has_vmx_tpr_shadow())
7644                 kvm_x86_ops->update_cr8_intercept = NULL;
7645
7646         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7647                 kvm_disable_largepages();
7648
7649 #if IS_ENABLED(CONFIG_HYPERV)
7650         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7651             && enable_ept) {
7652                 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7653                 kvm_x86_ops->tlb_remote_flush_with_range =
7654                                 hv_remote_flush_tlb_with_range;
7655         }
7656 #endif
7657
7658         if (!cpu_has_vmx_ple()) {
7659                 ple_gap = 0;
7660                 ple_window = 0;
7661                 ple_window_grow = 0;
7662                 ple_window_max = 0;
7663                 ple_window_shrink = 0;
7664         }
7665
7666         if (!cpu_has_vmx_apicv()) {
7667                 enable_apicv = 0;
7668                 kvm_x86_ops->sync_pir_to_irr = NULL;
7669         }
7670
7671         if (cpu_has_vmx_tsc_scaling()) {
7672                 kvm_has_tsc_control = true;
7673                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7674                 kvm_tsc_scaling_ratio_frac_bits = 48;
7675         }
7676
7677         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7678
7679         if (enable_ept)
7680                 vmx_enable_tdp();
7681         else
7682                 kvm_disable_tdp();
7683
7684         /*
7685          * Only enable PML when hardware supports PML feature, and both EPT
7686          * and EPT A/D bit features are enabled -- PML depends on them to work.
7687          */
7688         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7689                 enable_pml = 0;
7690
7691         if (!enable_pml) {
7692                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7693                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7694                 kvm_x86_ops->flush_log_dirty = NULL;
7695                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7696         }
7697
7698         if (!cpu_has_vmx_preemption_timer())
7699                 enable_preemption_timer = false;
7700
7701         if (enable_preemption_timer) {
7702                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7703                 u64 vmx_msr;
7704
7705                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7706                 cpu_preemption_timer_multi =
7707                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7708
7709                 if (tsc_khz)
7710                         use_timer_freq = (u64)tsc_khz * 1000;
7711                 use_timer_freq >>= cpu_preemption_timer_multi;
7712
7713                 /*
7714                  * KVM "disables" the preemption timer by setting it to its max
7715                  * value.  Don't use the timer if it might cause spurious exits
7716                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7717                  */
7718                 if (use_timer_freq > 0xffffffffu / 10)
7719                         enable_preemption_timer = false;
7720         }
7721
7722         if (!enable_preemption_timer) {
7723                 kvm_x86_ops->set_hv_timer = NULL;
7724                 kvm_x86_ops->cancel_hv_timer = NULL;
7725                 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7726         }
7727
7728         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7729
7730         kvm_mce_cap_supported |= MCG_LMCE_P;
7731
7732         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7733                 return -EINVAL;
7734         if (!enable_ept || !cpu_has_vmx_intel_pt())
7735                 pt_mode = PT_MODE_SYSTEM;
7736
7737         if (nested) {
7738                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7739                                            vmx_capability.ept, enable_apicv);
7740
7741                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7742                 if (r)
7743                         return r;
7744         }
7745
7746         r = alloc_kvm_area();
7747         if (r)
7748                 nested_vmx_hardware_unsetup();
7749         return r;
7750 }
7751
7752 static __exit void hardware_unsetup(void)
7753 {
7754         if (nested)
7755                 nested_vmx_hardware_unsetup();
7756
7757         free_kvm_area();
7758 }
7759
7760 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7761         .cpu_has_kvm_support = cpu_has_kvm_support,
7762         .disabled_by_bios = vmx_disabled_by_bios,
7763         .hardware_setup = hardware_setup,
7764         .hardware_unsetup = hardware_unsetup,
7765         .check_processor_compatibility = vmx_check_processor_compat,
7766         .hardware_enable = hardware_enable,
7767         .hardware_disable = hardware_disable,
7768         .cpu_has_accelerated_tpr = report_flexpriority,
7769         .has_emulated_msr = vmx_has_emulated_msr,
7770
7771         .vm_init = vmx_vm_init,
7772         .vm_alloc = vmx_vm_alloc,
7773         .vm_free = vmx_vm_free,
7774
7775         .vcpu_create = vmx_create_vcpu,
7776         .vcpu_free = vmx_free_vcpu,
7777         .vcpu_reset = vmx_vcpu_reset,
7778
7779         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7780         .vcpu_load = vmx_vcpu_load,
7781         .vcpu_put = vmx_vcpu_put,
7782
7783         .update_bp_intercept = update_exception_bitmap,
7784         .get_msr_feature = vmx_get_msr_feature,
7785         .get_msr = vmx_get_msr,
7786         .set_msr = vmx_set_msr,
7787         .get_segment_base = vmx_get_segment_base,
7788         .get_segment = vmx_get_segment,
7789         .set_segment = vmx_set_segment,
7790         .get_cpl = vmx_get_cpl,
7791         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7792         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7793         .decache_cr3 = vmx_decache_cr3,
7794         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7795         .set_cr0 = vmx_set_cr0,
7796         .set_cr3 = vmx_set_cr3,
7797         .set_cr4 = vmx_set_cr4,
7798         .set_efer = vmx_set_efer,
7799         .get_idt = vmx_get_idt,
7800         .set_idt = vmx_set_idt,
7801         .get_gdt = vmx_get_gdt,
7802         .set_gdt = vmx_set_gdt,
7803         .get_dr6 = vmx_get_dr6,
7804         .set_dr6 = vmx_set_dr6,
7805         .set_dr7 = vmx_set_dr7,
7806         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7807         .cache_reg = vmx_cache_reg,
7808         .get_rflags = vmx_get_rflags,
7809         .set_rflags = vmx_set_rflags,
7810
7811         .tlb_flush = vmx_flush_tlb,
7812         .tlb_flush_gva = vmx_flush_tlb_gva,
7813
7814         .run = vmx_vcpu_run,
7815         .handle_exit = vmx_handle_exit,
7816         .skip_emulated_instruction = skip_emulated_instruction,
7817         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7818         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7819         .patch_hypercall = vmx_patch_hypercall,
7820         .set_irq = vmx_inject_irq,
7821         .set_nmi = vmx_inject_nmi,
7822         .queue_exception = vmx_queue_exception,
7823         .cancel_injection = vmx_cancel_injection,
7824         .interrupt_allowed = vmx_interrupt_allowed,
7825         .nmi_allowed = vmx_nmi_allowed,
7826         .get_nmi_mask = vmx_get_nmi_mask,
7827         .set_nmi_mask = vmx_set_nmi_mask,
7828         .enable_nmi_window = enable_nmi_window,
7829         .enable_irq_window = enable_irq_window,
7830         .update_cr8_intercept = update_cr8_intercept,
7831         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7832         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7833         .get_enable_apicv = vmx_get_enable_apicv,
7834         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7835         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7836         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7837         .hwapic_irr_update = vmx_hwapic_irr_update,
7838         .hwapic_isr_update = vmx_hwapic_isr_update,
7839         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7840         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7841         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7842         .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7843
7844         .set_tss_addr = vmx_set_tss_addr,
7845         .set_identity_map_addr = vmx_set_identity_map_addr,
7846         .get_tdp_level = get_ept_level,
7847         .get_mt_mask = vmx_get_mt_mask,
7848
7849         .get_exit_info = vmx_get_exit_info,
7850
7851         .get_lpage_level = vmx_get_lpage_level,
7852
7853         .cpuid_update = vmx_cpuid_update,
7854
7855         .rdtscp_supported = vmx_rdtscp_supported,
7856         .invpcid_supported = vmx_invpcid_supported,
7857
7858         .set_supported_cpuid = vmx_set_supported_cpuid,
7859
7860         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7861
7862         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7863         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7864
7865         .set_tdp_cr3 = vmx_set_cr3,
7866
7867         .check_intercept = vmx_check_intercept,
7868         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7869         .mpx_supported = vmx_mpx_supported,
7870         .xsaves_supported = vmx_xsaves_supported,
7871         .umip_emulated = vmx_umip_emulated,
7872         .pt_supported = vmx_pt_supported,
7873         .pku_supported = vmx_pku_supported,
7874
7875         .request_immediate_exit = vmx_request_immediate_exit,
7876
7877         .sched_in = vmx_sched_in,
7878
7879         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7880         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7881         .flush_log_dirty = vmx_flush_log_dirty,
7882         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7883         .write_log_dirty = vmx_write_pml_buffer,
7884
7885         .pre_block = vmx_pre_block,
7886         .post_block = vmx_post_block,
7887
7888         .pmu_ops = &intel_pmu_ops,
7889
7890         .update_pi_irte = vmx_update_pi_irte,
7891
7892 #ifdef CONFIG_X86_64
7893         .set_hv_timer = vmx_set_hv_timer,
7894         .cancel_hv_timer = vmx_cancel_hv_timer,
7895 #endif
7896
7897         .setup_mce = vmx_setup_mce,
7898
7899         .smi_allowed = vmx_smi_allowed,
7900         .pre_enter_smm = vmx_pre_enter_smm,
7901         .pre_leave_smm = vmx_pre_leave_smm,
7902         .enable_smi_window = enable_smi_window,
7903
7904         .check_nested_events = NULL,
7905         .get_nested_state = NULL,
7906         .set_nested_state = NULL,
7907         .get_vmcs12_pages = NULL,
7908         .nested_enable_evmcs = NULL,
7909         .nested_get_evmcs_version = NULL,
7910         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7911         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7912 };
7913
7914 static void vmx_cleanup_l1d_flush(void)
7915 {
7916         if (vmx_l1d_flush_pages) {
7917                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7918                 vmx_l1d_flush_pages = NULL;
7919         }
7920         /* Restore state so sysfs ignores VMX */
7921         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7922 }
7923
7924 static void vmx_exit(void)
7925 {
7926 #ifdef CONFIG_KEXEC_CORE
7927         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7928         synchronize_rcu();
7929 #endif
7930
7931         kvm_exit();
7932
7933 #if IS_ENABLED(CONFIG_HYPERV)
7934         if (static_branch_unlikely(&enable_evmcs)) {
7935                 int cpu;
7936                 struct hv_vp_assist_page *vp_ap;
7937                 /*
7938                  * Reset everything to support using non-enlightened VMCS
7939                  * access later (e.g. when we reload the module with
7940                  * enlightened_vmcs=0)
7941                  */
7942                 for_each_online_cpu(cpu) {
7943                         vp_ap = hv_get_vp_assist_page(cpu);
7944
7945                         if (!vp_ap)
7946                                 continue;
7947
7948                         vp_ap->nested_control.features.directhypercall = 0;
7949                         vp_ap->current_nested_vmcs = 0;
7950                         vp_ap->enlighten_vmentry = 0;
7951                 }
7952
7953                 static_branch_disable(&enable_evmcs);
7954         }
7955 #endif
7956         vmx_cleanup_l1d_flush();
7957 }
7958 module_exit(vmx_exit);
7959
7960 static int __init vmx_init(void)
7961 {
7962         int r;
7963
7964 #if IS_ENABLED(CONFIG_HYPERV)
7965         /*
7966          * Enlightened VMCS usage should be recommended and the host needs
7967          * to support eVMCS v1 or above. We can also disable eVMCS support
7968          * with module parameter.
7969          */
7970         if (enlightened_vmcs &&
7971             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7972             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7973             KVM_EVMCS_VERSION) {
7974                 int cpu;
7975
7976                 /* Check that we have assist pages on all online CPUs */
7977                 for_each_online_cpu(cpu) {
7978                         if (!hv_get_vp_assist_page(cpu)) {
7979                                 enlightened_vmcs = false;
7980                                 break;
7981                         }
7982                 }
7983
7984                 if (enlightened_vmcs) {
7985                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7986                         static_branch_enable(&enable_evmcs);
7987                 }
7988
7989                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7990                         vmx_x86_ops.enable_direct_tlbflush
7991                                 = hv_enable_direct_tlbflush;
7992
7993         } else {
7994                 enlightened_vmcs = false;
7995         }
7996 #endif
7997
7998         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7999                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8000         if (r)
8001                 return r;
8002
8003         /*
8004          * Must be called after kvm_init() so enable_ept is properly set
8005          * up. Hand the parameter mitigation value in which was stored in
8006          * the pre module init parser. If no parameter was given, it will
8007          * contain 'auto' which will be turned into the default 'cond'
8008          * mitigation mode.
8009          */
8010         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8011         if (r) {
8012                 vmx_exit();
8013                 return r;
8014         }
8015
8016 #ifdef CONFIG_KEXEC_CORE
8017         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8018                            crash_vmclear_local_loaded_vmcss);
8019 #endif
8020         vmx_check_vmcs12_offsets();
8021
8022         return 0;
8023 }
8024 module_init(vmx_init);