b4e7d645275a2153c42fa252cce8a8cbb930b59e
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / vmx / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <linux/frame.h>
20 #include <linux/highmem.h>
21 #include <linux/hrtimer.h>
22 #include <linux/kernel.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/mm.h>
28 #include <linux/sched.h>
29 #include <linux/sched/smt.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include <linux/trace_events.h>
33
34 #include <asm/apic.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/internal.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "ops.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71         X86_FEATURE_MATCH(X86_FEATURE_VMX),
72         {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75
76 bool __read_mostly enable_vpid = 1;
77 module_param_named(vpid, enable_vpid, bool, 0444);
78
79 static bool __read_mostly enable_vnmi = 1;
80 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
81
82 bool __read_mostly flexpriority_enabled = 1;
83 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
84
85 bool __read_mostly enable_ept = 1;
86 module_param_named(ept, enable_ept, bool, S_IRUGO);
87
88 bool __read_mostly enable_unrestricted_guest = 1;
89 module_param_named(unrestricted_guest,
90                         enable_unrestricted_guest, bool, S_IRUGO);
91
92 bool __read_mostly enable_ept_ad_bits = 1;
93 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
94
95 static bool __read_mostly emulate_invalid_guest_state = true;
96 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
97
98 static bool __read_mostly fasteoi = 1;
99 module_param(fasteoi, bool, S_IRUGO);
100
101 static bool __read_mostly enable_apicv = 1;
102 module_param(enable_apicv, bool, S_IRUGO);
103
104 /*
105  * If nested=1, nested virtualization is supported, i.e., guests may use
106  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
107  * use VMX instructions.
108  */
109 static bool __read_mostly nested = 1;
110 module_param(nested, bool, S_IRUGO);
111
112 static u64 __read_mostly host_xss;
113
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116
117 #define MSR_BITMAP_MODE_X2APIC          1
118 #define MSR_BITMAP_MODE_X2APIC_APICV    2
119
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON                            \
132         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
133          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS                                      \
135         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147         RTIT_STATUS_BYTECNT))
148
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191
192 static const struct {
193         const char *option;
194         bool for_parse;
195 } vmentry_l1d_param[] = {
196         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
197         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
198         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
199         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
200         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209         struct page *page;
210         unsigned int i;
211
212         if (!enable_ept) {
213                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
214                 return 0;
215         }
216
217         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
218                 u64 msr;
219
220                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
221                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
222                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
223                         return 0;
224                 }
225         }
226
227         /* If set to auto use the default l1tf mitigation method */
228         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
229                 switch (l1tf_mitigation) {
230                 case L1TF_MITIGATION_OFF:
231                         l1tf = VMENTER_L1D_FLUSH_NEVER;
232                         break;
233                 case L1TF_MITIGATION_FLUSH_NOWARN:
234                 case L1TF_MITIGATION_FLUSH:
235                 case L1TF_MITIGATION_FLUSH_NOSMT:
236                         l1tf = VMENTER_L1D_FLUSH_COND;
237                         break;
238                 case L1TF_MITIGATION_FULL:
239                 case L1TF_MITIGATION_FULL_FORCE:
240                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
241                         break;
242                 }
243         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
244                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
245         }
246
247         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
248             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
249                 /*
250                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
251                  * lifetime and so should not be charged to a memcg.
252                  */
253                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
254                 if (!page)
255                         return -ENOMEM;
256                 vmx_l1d_flush_pages = page_address(page);
257
258                 /*
259                  * Initialize each page with a different pattern in
260                  * order to protect against KSM in the nested
261                  * virtualization case.
262                  */
263                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
264                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
265                                PAGE_SIZE);
266                 }
267         }
268
269         l1tf_vmx_mitigation = l1tf;
270
271         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
272                 static_branch_enable(&vmx_l1d_should_flush);
273         else
274                 static_branch_disable(&vmx_l1d_should_flush);
275
276         if (l1tf == VMENTER_L1D_FLUSH_COND)
277                 static_branch_enable(&vmx_l1d_flush_cond);
278         else
279                 static_branch_disable(&vmx_l1d_flush_cond);
280         return 0;
281 }
282
283 static int vmentry_l1d_flush_parse(const char *s)
284 {
285         unsigned int i;
286
287         if (s) {
288                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
289                         if (vmentry_l1d_param[i].for_parse &&
290                             sysfs_streq(s, vmentry_l1d_param[i].option))
291                                 return i;
292                 }
293         }
294         return -EINVAL;
295 }
296
297 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
298 {
299         int l1tf, ret;
300
301         l1tf = vmentry_l1d_flush_parse(s);
302         if (l1tf < 0)
303                 return l1tf;
304
305         if (!boot_cpu_has(X86_BUG_L1TF))
306                 return 0;
307
308         /*
309          * Has vmx_init() run already? If not then this is the pre init
310          * parameter parsing. In that case just store the value and let
311          * vmx_init() do the proper setup after enable_ept has been
312          * established.
313          */
314         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
315                 vmentry_l1d_flush_param = l1tf;
316                 return 0;
317         }
318
319         mutex_lock(&vmx_l1d_flush_mutex);
320         ret = vmx_setup_l1d_flush(l1tf);
321         mutex_unlock(&vmx_l1d_flush_mutex);
322         return ret;
323 }
324
325 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
326 {
327         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
328                 return sprintf(s, "???\n");
329
330         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
331 }
332
333 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
334         .set = vmentry_l1d_flush_set,
335         .get = vmentry_l1d_flush_get,
336 };
337 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
338
339 static bool guest_state_valid(struct kvm_vcpu *vcpu);
340 static u32 vmx_segment_access_rights(struct kvm_segment *var);
341 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
342                                                           u32 msr, int type);
343
344 void vmx_vmexit(void);
345
346 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
347 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
348 /*
349  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
350  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
351  */
352 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
353
354 /*
355  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
356  * can find which vCPU should be waken up.
357  */
358 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
359 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
360
361 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
362 static DEFINE_SPINLOCK(vmx_vpid_lock);
363
364 struct vmcs_config vmcs_config;
365 struct vmx_capability vmx_capability;
366
367 #define VMX_SEGMENT_FIELD(seg)                                  \
368         [VCPU_SREG_##seg] = {                                   \
369                 .selector = GUEST_##seg##_SELECTOR,             \
370                 .base = GUEST_##seg##_BASE,                     \
371                 .limit = GUEST_##seg##_LIMIT,                   \
372                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
373         }
374
375 static const struct kvm_vmx_segment_field {
376         unsigned selector;
377         unsigned base;
378         unsigned limit;
379         unsigned ar_bytes;
380 } kvm_vmx_segment_fields[] = {
381         VMX_SEGMENT_FIELD(CS),
382         VMX_SEGMENT_FIELD(DS),
383         VMX_SEGMENT_FIELD(ES),
384         VMX_SEGMENT_FIELD(FS),
385         VMX_SEGMENT_FIELD(GS),
386         VMX_SEGMENT_FIELD(SS),
387         VMX_SEGMENT_FIELD(TR),
388         VMX_SEGMENT_FIELD(LDTR),
389 };
390
391 u64 host_efer;
392
393 /*
394  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
395  * will emulate SYSCALL in legacy mode if the vendor string in guest
396  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
397  * support this emulation, IA32_STAR must always be included in
398  * vmx_msr_index[], even in i386 builds.
399  */
400 const u32 vmx_msr_index[] = {
401 #ifdef CONFIG_X86_64
402         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
403 #endif
404         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
405 };
406
407 #if IS_ENABLED(CONFIG_HYPERV)
408 static bool __read_mostly enlightened_vmcs = true;
409 module_param(enlightened_vmcs, bool, 0444);
410
411 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
412 static void check_ept_pointer_match(struct kvm *kvm)
413 {
414         struct kvm_vcpu *vcpu;
415         u64 tmp_eptp = INVALID_PAGE;
416         int i;
417
418         kvm_for_each_vcpu(i, vcpu, kvm) {
419                 if (!VALID_PAGE(tmp_eptp)) {
420                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
421                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
422                         to_kvm_vmx(kvm)->ept_pointers_match
423                                 = EPT_POINTERS_MISMATCH;
424                         return;
425                 }
426         }
427
428         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
429 }
430
431 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
432                 void *data)
433 {
434         struct kvm_tlb_range *range = data;
435
436         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
437                         range->pages);
438 }
439
440 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
441                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
442 {
443         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
444
445         /*
446          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
447          * of the base of EPT PML4 table, strip off EPT configuration
448          * information.
449          */
450         if (range)
451                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
452                                 kvm_fill_hv_flush_list_func, (void *)range);
453         else
454                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
455 }
456
457 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
458                 struct kvm_tlb_range *range)
459 {
460         struct kvm_vcpu *vcpu;
461         int ret = 0, i;
462
463         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
464
465         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
466                 check_ept_pointer_match(kvm);
467
468         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
469                 kvm_for_each_vcpu(i, vcpu, kvm) {
470                         /* If ept_pointer is invalid pointer, bypass flush request. */
471                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
472                                 ret |= __hv_remote_flush_tlb_with_range(
473                                         kvm, vcpu, range);
474                 }
475         } else {
476                 ret = __hv_remote_flush_tlb_with_range(kvm,
477                                 kvm_get_vcpu(kvm, 0), range);
478         }
479
480         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
481         return ret;
482 }
483 static int hv_remote_flush_tlb(struct kvm *kvm)
484 {
485         return hv_remote_flush_tlb_with_range(kvm, NULL);
486 }
487
488 #endif /* IS_ENABLED(CONFIG_HYPERV) */
489
490 /*
491  * Comment's format: document - errata name - stepping - processor name.
492  * Refer from
493  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
494  */
495 static u32 vmx_preemption_cpu_tfms[] = {
496 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
497 0x000206E6,
498 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
499 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
500 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020652,
502 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
503 0x00020655,
504 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
505 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
506 /*
507  * 320767.pdf - AAP86  - B1 -
508  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
509  */
510 0x000106E5,
511 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
512 0x000106A0,
513 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
514 0x000106A1,
515 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
516 0x000106A4,
517  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
518  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
519  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
520 0x000106A5,
521  /* Xeon E3-1220 V2 */
522 0x000306A8,
523 };
524
525 static inline bool cpu_has_broken_vmx_preemption_timer(void)
526 {
527         u32 eax = cpuid_eax(0x00000001), i;
528
529         /* Clear the reserved bits */
530         eax &= ~(0x3U << 14 | 0xfU << 28);
531         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
532                 if (eax == vmx_preemption_cpu_tfms[i])
533                         return true;
534
535         return false;
536 }
537
538 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
539 {
540         return flexpriority_enabled && lapic_in_kernel(vcpu);
541 }
542
543 static inline bool report_flexpriority(void)
544 {
545         return flexpriority_enabled;
546 }
547
548 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
549 {
550         int i;
551
552         for (i = 0; i < vmx->nmsrs; ++i)
553                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
554                         return i;
555         return -1;
556 }
557
558 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
559 {
560         int i;
561
562         i = __find_msr_index(vmx, msr);
563         if (i >= 0)
564                 return &vmx->guest_msrs[i];
565         return NULL;
566 }
567
568 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
569 {
570         vmcs_clear(loaded_vmcs->vmcs);
571         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
572                 vmcs_clear(loaded_vmcs->shadow_vmcs);
573         loaded_vmcs->cpu = -1;
574         loaded_vmcs->launched = 0;
575 }
576
577 #ifdef CONFIG_KEXEC_CORE
578 /*
579  * This bitmap is used to indicate whether the vmclear
580  * operation is enabled on all cpus. All disabled by
581  * default.
582  */
583 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
584
585 static inline void crash_enable_local_vmclear(int cpu)
586 {
587         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
588 }
589
590 static inline void crash_disable_local_vmclear(int cpu)
591 {
592         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
593 }
594
595 static inline int crash_local_vmclear_enabled(int cpu)
596 {
597         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
598 }
599
600 static void crash_vmclear_local_loaded_vmcss(void)
601 {
602         int cpu = raw_smp_processor_id();
603         struct loaded_vmcs *v;
604
605         if (!crash_local_vmclear_enabled(cpu))
606                 return;
607
608         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
609                             loaded_vmcss_on_cpu_link)
610                 vmcs_clear(v->vmcs);
611 }
612 #else
613 static inline void crash_enable_local_vmclear(int cpu) { }
614 static inline void crash_disable_local_vmclear(int cpu) { }
615 #endif /* CONFIG_KEXEC_CORE */
616
617 static void __loaded_vmcs_clear(void *arg)
618 {
619         struct loaded_vmcs *loaded_vmcs = arg;
620         int cpu = raw_smp_processor_id();
621
622         if (loaded_vmcs->cpu != cpu)
623                 return; /* vcpu migration can race with cpu offline */
624         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
625                 per_cpu(current_vmcs, cpu) = NULL;
626         crash_disable_local_vmclear(cpu);
627         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
628
629         /*
630          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
631          * is before setting loaded_vmcs->vcpu to -1 which is done in
632          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
633          * then adds the vmcs into percpu list before it is deleted.
634          */
635         smp_wmb();
636
637         loaded_vmcs_init(loaded_vmcs);
638         crash_enable_local_vmclear(cpu);
639 }
640
641 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
642 {
643         int cpu = loaded_vmcs->cpu;
644
645         if (cpu != -1)
646                 smp_call_function_single(cpu,
647                          __loaded_vmcs_clear, loaded_vmcs, 1);
648 }
649
650 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
651                                        unsigned field)
652 {
653         bool ret;
654         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
655
656         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
657                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
658                 vmx->segment_cache.bitmask = 0;
659         }
660         ret = vmx->segment_cache.bitmask & mask;
661         vmx->segment_cache.bitmask |= mask;
662         return ret;
663 }
664
665 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
666 {
667         u16 *p = &vmx->segment_cache.seg[seg].selector;
668
669         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
670                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
671         return *p;
672 }
673
674 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
675 {
676         ulong *p = &vmx->segment_cache.seg[seg].base;
677
678         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
679                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
680         return *p;
681 }
682
683 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
684 {
685         u32 *p = &vmx->segment_cache.seg[seg].limit;
686
687         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
688                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
689         return *p;
690 }
691
692 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
693 {
694         u32 *p = &vmx->segment_cache.seg[seg].ar;
695
696         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
697                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
698         return *p;
699 }
700
701 void update_exception_bitmap(struct kvm_vcpu *vcpu)
702 {
703         u32 eb;
704
705         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
706              (1u << DB_VECTOR) | (1u << AC_VECTOR);
707         /*
708          * Guest access to VMware backdoor ports could legitimately
709          * trigger #GP because of TSS I/O permission bitmap.
710          * We intercept those #GP and allow access to them anyway
711          * as VMware does.
712          */
713         if (enable_vmware_backdoor)
714                 eb |= (1u << GP_VECTOR);
715         if ((vcpu->guest_debug &
716              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
717             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
718                 eb |= 1u << BP_VECTOR;
719         if (to_vmx(vcpu)->rmode.vm86_active)
720                 eb = ~0;
721         if (enable_ept)
722                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
723
724         /* When we are running a nested L2 guest and L1 specified for it a
725          * certain exception bitmap, we must trap the same exceptions and pass
726          * them to L1. When running L2, we will only handle the exceptions
727          * specified above if L1 did not want them.
728          */
729         if (is_guest_mode(vcpu))
730                 eb |= get_vmcs12(vcpu)->exception_bitmap;
731
732         vmcs_write32(EXCEPTION_BITMAP, eb);
733 }
734
735 /*
736  * Check if MSR is intercepted for currently loaded MSR bitmap.
737  */
738 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
739 {
740         unsigned long *msr_bitmap;
741         int f = sizeof(unsigned long);
742
743         if (!cpu_has_vmx_msr_bitmap())
744                 return true;
745
746         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
747
748         if (msr <= 0x1fff) {
749                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
750         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
751                 msr &= 0x1fff;
752                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
753         }
754
755         return true;
756 }
757
758 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
759                 unsigned long entry, unsigned long exit)
760 {
761         vm_entry_controls_clearbit(vmx, entry);
762         vm_exit_controls_clearbit(vmx, exit);
763 }
764
765 static int find_msr(struct vmx_msrs *m, unsigned int msr)
766 {
767         unsigned int i;
768
769         for (i = 0; i < m->nr; ++i) {
770                 if (m->val[i].index == msr)
771                         return i;
772         }
773         return -ENOENT;
774 }
775
776 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
777 {
778         int i;
779         struct msr_autoload *m = &vmx->msr_autoload;
780
781         switch (msr) {
782         case MSR_EFER:
783                 if (cpu_has_load_ia32_efer()) {
784                         clear_atomic_switch_msr_special(vmx,
785                                         VM_ENTRY_LOAD_IA32_EFER,
786                                         VM_EXIT_LOAD_IA32_EFER);
787                         return;
788                 }
789                 break;
790         case MSR_CORE_PERF_GLOBAL_CTRL:
791                 if (cpu_has_load_perf_global_ctrl()) {
792                         clear_atomic_switch_msr_special(vmx,
793                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
794                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
795                         return;
796                 }
797                 break;
798         }
799         i = find_msr(&m->guest, msr);
800         if (i < 0)
801                 goto skip_guest;
802         --m->guest.nr;
803         m->guest.val[i] = m->guest.val[m->guest.nr];
804         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
805
806 skip_guest:
807         i = find_msr(&m->host, msr);
808         if (i < 0)
809                 return;
810
811         --m->host.nr;
812         m->host.val[i] = m->host.val[m->host.nr];
813         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
814 }
815
816 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
817                 unsigned long entry, unsigned long exit,
818                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
819                 u64 guest_val, u64 host_val)
820 {
821         vmcs_write64(guest_val_vmcs, guest_val);
822         if (host_val_vmcs != HOST_IA32_EFER)
823                 vmcs_write64(host_val_vmcs, host_val);
824         vm_entry_controls_setbit(vmx, entry);
825         vm_exit_controls_setbit(vmx, exit);
826 }
827
828 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
829                                   u64 guest_val, u64 host_val, bool entry_only)
830 {
831         int i, j = 0;
832         struct msr_autoload *m = &vmx->msr_autoload;
833
834         switch (msr) {
835         case MSR_EFER:
836                 if (cpu_has_load_ia32_efer()) {
837                         add_atomic_switch_msr_special(vmx,
838                                         VM_ENTRY_LOAD_IA32_EFER,
839                                         VM_EXIT_LOAD_IA32_EFER,
840                                         GUEST_IA32_EFER,
841                                         HOST_IA32_EFER,
842                                         guest_val, host_val);
843                         return;
844                 }
845                 break;
846         case MSR_CORE_PERF_GLOBAL_CTRL:
847                 if (cpu_has_load_perf_global_ctrl()) {
848                         add_atomic_switch_msr_special(vmx,
849                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
850                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
851                                         GUEST_IA32_PERF_GLOBAL_CTRL,
852                                         HOST_IA32_PERF_GLOBAL_CTRL,
853                                         guest_val, host_val);
854                         return;
855                 }
856                 break;
857         case MSR_IA32_PEBS_ENABLE:
858                 /* PEBS needs a quiescent period after being disabled (to write
859                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
860                  * provide that period, so a CPU could write host's record into
861                  * guest's memory.
862                  */
863                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
864         }
865
866         i = find_msr(&m->guest, msr);
867         if (!entry_only)
868                 j = find_msr(&m->host, msr);
869
870         if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
871                 (j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
872                 printk_once(KERN_WARNING "Not enough msr switch entries. "
873                                 "Can't add msr %x\n", msr);
874                 return;
875         }
876         if (i < 0) {
877                 i = m->guest.nr++;
878                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
879         }
880         m->guest.val[i].index = msr;
881         m->guest.val[i].value = guest_val;
882
883         if (entry_only)
884                 return;
885
886         if (j < 0) {
887                 j = m->host.nr++;
888                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
889         }
890         m->host.val[j].index = msr;
891         m->host.val[j].value = host_val;
892 }
893
894 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
895 {
896         u64 guest_efer = vmx->vcpu.arch.efer;
897         u64 ignore_bits = 0;
898
899         if (!enable_ept) {
900                 /*
901                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
902                  * host CPUID is more efficient than testing guest CPUID
903                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
904                  */
905                 if (boot_cpu_has(X86_FEATURE_SMEP))
906                         guest_efer |= EFER_NX;
907                 else if (!(guest_efer & EFER_NX))
908                         ignore_bits |= EFER_NX;
909         }
910
911         /*
912          * LMA and LME handled by hardware; SCE meaningless outside long mode.
913          */
914         ignore_bits |= EFER_SCE;
915 #ifdef CONFIG_X86_64
916         ignore_bits |= EFER_LMA | EFER_LME;
917         /* SCE is meaningful only in long mode on Intel */
918         if (guest_efer & EFER_LMA)
919                 ignore_bits &= ~(u64)EFER_SCE;
920 #endif
921
922         /*
923          * On EPT, we can't emulate NX, so we must switch EFER atomically.
924          * On CPUs that support "load IA32_EFER", always switch EFER
925          * atomically, since it's faster than switching it manually.
926          */
927         if (cpu_has_load_ia32_efer() ||
928             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
929                 if (!(guest_efer & EFER_LMA))
930                         guest_efer &= ~EFER_LME;
931                 if (guest_efer != host_efer)
932                         add_atomic_switch_msr(vmx, MSR_EFER,
933                                               guest_efer, host_efer, false);
934                 else
935                         clear_atomic_switch_msr(vmx, MSR_EFER);
936                 return false;
937         } else {
938                 clear_atomic_switch_msr(vmx, MSR_EFER);
939
940                 guest_efer &= ~ignore_bits;
941                 guest_efer |= host_efer & ignore_bits;
942
943                 vmx->guest_msrs[efer_offset].data = guest_efer;
944                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
945
946                 return true;
947         }
948 }
949
950 #ifdef CONFIG_X86_32
951 /*
952  * On 32-bit kernels, VM exits still load the FS and GS bases from the
953  * VMCS rather than the segment table.  KVM uses this helper to figure
954  * out the current bases to poke them into the VMCS before entry.
955  */
956 static unsigned long segment_base(u16 selector)
957 {
958         struct desc_struct *table;
959         unsigned long v;
960
961         if (!(selector & ~SEGMENT_RPL_MASK))
962                 return 0;
963
964         table = get_current_gdt_ro();
965
966         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
967                 u16 ldt_selector = kvm_read_ldt();
968
969                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
970                         return 0;
971
972                 table = (struct desc_struct *)segment_base(ldt_selector);
973         }
974         v = get_desc_base(&table[selector >> 3]);
975         return v;
976 }
977 #endif
978
979 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
980 {
981         u32 i;
982
983         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
984         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
985         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
986         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
987         for (i = 0; i < addr_range; i++) {
988                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
989                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
990         }
991 }
992
993 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
994 {
995         u32 i;
996
997         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
998         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
999         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1000         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1001         for (i = 0; i < addr_range; i++) {
1002                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1003                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1004         }
1005 }
1006
1007 static void pt_guest_enter(struct vcpu_vmx *vmx)
1008 {
1009         if (pt_mode == PT_MODE_SYSTEM)
1010                 return;
1011
1012         /*
1013          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1014          * Save host state before VM entry.
1015          */
1016         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1017         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1018                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1019                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1020                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1021         }
1022 }
1023
1024 static void pt_guest_exit(struct vcpu_vmx *vmx)
1025 {
1026         if (pt_mode == PT_MODE_SYSTEM)
1027                 return;
1028
1029         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1030                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1031                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1032         }
1033
1034         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1035         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1036 }
1037
1038 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1039 {
1040         struct vcpu_vmx *vmx = to_vmx(vcpu);
1041         struct vmcs_host_state *host_state;
1042 #ifdef CONFIG_X86_64
1043         int cpu = raw_smp_processor_id();
1044 #endif
1045         unsigned long fs_base, gs_base;
1046         u16 fs_sel, gs_sel;
1047         int i;
1048
1049         vmx->req_immediate_exit = false;
1050
1051         /*
1052          * Note that guest MSRs to be saved/restored can also be changed
1053          * when guest state is loaded. This happens when guest transitions
1054          * to/from long-mode by setting MSR_EFER.LMA.
1055          */
1056         if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
1057                 vmx->guest_msrs_dirty = false;
1058                 for (i = 0; i < vmx->save_nmsrs; ++i)
1059                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1060                                            vmx->guest_msrs[i].data,
1061                                            vmx->guest_msrs[i].mask);
1062
1063         }
1064
1065         if (vmx->loaded_cpu_state)
1066                 return;
1067
1068         vmx->loaded_cpu_state = vmx->loaded_vmcs;
1069         host_state = &vmx->loaded_cpu_state->host_state;
1070
1071         /*
1072          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1073          * allow segment selectors with cpl > 0 or ti == 1.
1074          */
1075         host_state->ldt_sel = kvm_read_ldt();
1076
1077 #ifdef CONFIG_X86_64
1078         savesegment(ds, host_state->ds_sel);
1079         savesegment(es, host_state->es_sel);
1080
1081         gs_base = cpu_kernelmode_gs_base(cpu);
1082         if (likely(is_64bit_mm(current->mm))) {
1083                 save_fsgs_for_kvm();
1084                 fs_sel = current->thread.fsindex;
1085                 gs_sel = current->thread.gsindex;
1086                 fs_base = current->thread.fsbase;
1087                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1088         } else {
1089                 savesegment(fs, fs_sel);
1090                 savesegment(gs, gs_sel);
1091                 fs_base = read_msr(MSR_FS_BASE);
1092                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1093         }
1094
1095         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1096 #else
1097         savesegment(fs, fs_sel);
1098         savesegment(gs, gs_sel);
1099         fs_base = segment_base(fs_sel);
1100         gs_base = segment_base(gs_sel);
1101 #endif
1102
1103         if (unlikely(fs_sel != host_state->fs_sel)) {
1104                 if (!(fs_sel & 7))
1105                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1106                 else
1107                         vmcs_write16(HOST_FS_SELECTOR, 0);
1108                 host_state->fs_sel = fs_sel;
1109         }
1110         if (unlikely(gs_sel != host_state->gs_sel)) {
1111                 if (!(gs_sel & 7))
1112                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1113                 else
1114                         vmcs_write16(HOST_GS_SELECTOR, 0);
1115                 host_state->gs_sel = gs_sel;
1116         }
1117         if (unlikely(fs_base != host_state->fs_base)) {
1118                 vmcs_writel(HOST_FS_BASE, fs_base);
1119                 host_state->fs_base = fs_base;
1120         }
1121         if (unlikely(gs_base != host_state->gs_base)) {
1122                 vmcs_writel(HOST_GS_BASE, gs_base);
1123                 host_state->gs_base = gs_base;
1124         }
1125 }
1126
1127 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1128 {
1129         struct vmcs_host_state *host_state;
1130
1131         if (!vmx->loaded_cpu_state)
1132                 return;
1133
1134         WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
1135         host_state = &vmx->loaded_cpu_state->host_state;
1136
1137         ++vmx->vcpu.stat.host_state_reload;
1138         vmx->loaded_cpu_state = NULL;
1139
1140 #ifdef CONFIG_X86_64
1141         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1142 #endif
1143         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1144                 kvm_load_ldt(host_state->ldt_sel);
1145 #ifdef CONFIG_X86_64
1146                 load_gs_index(host_state->gs_sel);
1147 #else
1148                 loadsegment(gs, host_state->gs_sel);
1149 #endif
1150         }
1151         if (host_state->fs_sel & 7)
1152                 loadsegment(fs, host_state->fs_sel);
1153 #ifdef CONFIG_X86_64
1154         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1155                 loadsegment(ds, host_state->ds_sel);
1156                 loadsegment(es, host_state->es_sel);
1157         }
1158 #endif
1159         invalidate_tss_limit();
1160 #ifdef CONFIG_X86_64
1161         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1162 #endif
1163         load_fixmap_gdt(raw_smp_processor_id());
1164 }
1165
1166 #ifdef CONFIG_X86_64
1167 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1168 {
1169         preempt_disable();
1170         if (vmx->loaded_cpu_state)
1171                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1172         preempt_enable();
1173         return vmx->msr_guest_kernel_gs_base;
1174 }
1175
1176 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1177 {
1178         preempt_disable();
1179         if (vmx->loaded_cpu_state)
1180                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1181         preempt_enable();
1182         vmx->msr_guest_kernel_gs_base = data;
1183 }
1184 #endif
1185
1186 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1187 {
1188         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1189         struct pi_desc old, new;
1190         unsigned int dest;
1191
1192         /*
1193          * In case of hot-plug or hot-unplug, we may have to undo
1194          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1195          * always keep PI.NDST up to date for simplicity: it makes the
1196          * code easier, and CPU migration is not a fast path.
1197          */
1198         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1199                 return;
1200
1201         /* The full case.  */
1202         do {
1203                 old.control = new.control = pi_desc->control;
1204
1205                 dest = cpu_physical_id(cpu);
1206
1207                 if (x2apic_enabled())
1208                         new.ndst = dest;
1209                 else
1210                         new.ndst = (dest << 8) & 0xFF00;
1211
1212                 new.sn = 0;
1213         } while (cmpxchg64(&pi_desc->control, old.control,
1214                            new.control) != old.control);
1215
1216         /*
1217          * Clear SN before reading the bitmap.  The VT-d firmware
1218          * writes the bitmap and reads SN atomically (5.2.3 in the
1219          * spec), so it doesn't really have a memory barrier that
1220          * pairs with this, but we cannot do that and we need one.
1221          */
1222         smp_mb__after_atomic();
1223
1224         if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1225                 pi_set_on(pi_desc);
1226 }
1227
1228 /*
1229  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1230  * vcpu mutex is already taken.
1231  */
1232 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1233 {
1234         struct vcpu_vmx *vmx = to_vmx(vcpu);
1235         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1236
1237         if (!already_loaded) {
1238                 loaded_vmcs_clear(vmx->loaded_vmcs);
1239                 local_irq_disable();
1240                 crash_disable_local_vmclear(cpu);
1241
1242                 /*
1243                  * Read loaded_vmcs->cpu should be before fetching
1244                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1245                  * See the comments in __loaded_vmcs_clear().
1246                  */
1247                 smp_rmb();
1248
1249                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1250                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1251                 crash_enable_local_vmclear(cpu);
1252                 local_irq_enable();
1253         }
1254
1255         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1256                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1257                 vmcs_load(vmx->loaded_vmcs->vmcs);
1258                 indirect_branch_prediction_barrier();
1259         }
1260
1261         if (!already_loaded) {
1262                 void *gdt = get_current_gdt_ro();
1263                 unsigned long sysenter_esp;
1264
1265                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1266
1267                 /*
1268                  * Linux uses per-cpu TSS and GDT, so set these when switching
1269                  * processors.  See 22.2.4.
1270                  */
1271                 vmcs_writel(HOST_TR_BASE,
1272                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1273                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1274
1275                 /*
1276                  * VM exits change the host TR limit to 0x67 after a VM
1277                  * exit.  This is okay, since 0x67 covers everything except
1278                  * the IO bitmap and have have code to handle the IO bitmap
1279                  * being lost after a VM exit.
1280                  */
1281                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1282
1283                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1284                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1285
1286                 vmx->loaded_vmcs->cpu = cpu;
1287         }
1288
1289         /* Setup TSC multiplier */
1290         if (kvm_has_tsc_control &&
1291             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1292                 decache_tsc_multiplier(vmx);
1293
1294         vmx_vcpu_pi_load(vcpu, cpu);
1295         vmx->host_pkru = read_pkru();
1296         vmx->host_debugctlmsr = get_debugctlmsr();
1297 }
1298
1299 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1300 {
1301         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1302
1303         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1304                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1305                 !kvm_vcpu_apicv_active(vcpu))
1306                 return;
1307
1308         /* Set SN when the vCPU is preempted */
1309         if (vcpu->preempted)
1310                 pi_set_sn(pi_desc);
1311 }
1312
1313 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1314 {
1315         vmx_vcpu_pi_put(vcpu);
1316
1317         vmx_prepare_switch_to_host(to_vmx(vcpu));
1318 }
1319
1320 static bool emulation_required(struct kvm_vcpu *vcpu)
1321 {
1322         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1323 }
1324
1325 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1326
1327 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1328 {
1329         unsigned long rflags, save_rflags;
1330
1331         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1332                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1333                 rflags = vmcs_readl(GUEST_RFLAGS);
1334                 if (to_vmx(vcpu)->rmode.vm86_active) {
1335                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1336                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1337                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1338                 }
1339                 to_vmx(vcpu)->rflags = rflags;
1340         }
1341         return to_vmx(vcpu)->rflags;
1342 }
1343
1344 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1345 {
1346         unsigned long old_rflags = vmx_get_rflags(vcpu);
1347
1348         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1349         to_vmx(vcpu)->rflags = rflags;
1350         if (to_vmx(vcpu)->rmode.vm86_active) {
1351                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1352                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1353         }
1354         vmcs_writel(GUEST_RFLAGS, rflags);
1355
1356         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1357                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1358 }
1359
1360 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1361 {
1362         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1363         int ret = 0;
1364
1365         if (interruptibility & GUEST_INTR_STATE_STI)
1366                 ret |= KVM_X86_SHADOW_INT_STI;
1367         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1368                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1369
1370         return ret;
1371 }
1372
1373 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1374 {
1375         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1376         u32 interruptibility = interruptibility_old;
1377
1378         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1379
1380         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1381                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1382         else if (mask & KVM_X86_SHADOW_INT_STI)
1383                 interruptibility |= GUEST_INTR_STATE_STI;
1384
1385         if ((interruptibility != interruptibility_old))
1386                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1387 }
1388
1389 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1390 {
1391         struct vcpu_vmx *vmx = to_vmx(vcpu);
1392         unsigned long value;
1393
1394         /*
1395          * Any MSR write that attempts to change bits marked reserved will
1396          * case a #GP fault.
1397          */
1398         if (data & vmx->pt_desc.ctl_bitmask)
1399                 return 1;
1400
1401         /*
1402          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1403          * result in a #GP unless the same write also clears TraceEn.
1404          */
1405         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1406                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1407                 return 1;
1408
1409         /*
1410          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1411          * and FabricEn would cause #GP, if
1412          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1413          */
1414         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1415                 !(data & RTIT_CTL_FABRIC_EN) &&
1416                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1417                                         PT_CAP_single_range_output))
1418                 return 1;
1419
1420         /*
1421          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1422          * utilize encodings marked reserved will casue a #GP fault.
1423          */
1424         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1425         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1426                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1427                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1428                 return 1;
1429         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1430                                                 PT_CAP_cycle_thresholds);
1431         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1432                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1433                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1434                 return 1;
1435         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1436         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1437                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1438                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1439                 return 1;
1440
1441         /*
1442          * If ADDRx_CFG is reserved or the encodings is >2 will
1443          * cause a #GP fault.
1444          */
1445         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1446         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1447                 return 1;
1448         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1449         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1450                 return 1;
1451         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1452         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1453                 return 1;
1454         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1455         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1456                 return 1;
1457
1458         return 0;
1459 }
1460
1461
1462 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1463 {
1464         unsigned long rip;
1465
1466         rip = kvm_rip_read(vcpu);
1467         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1468         kvm_rip_write(vcpu, rip);
1469
1470         /* skipping an emulated instruction also counts */
1471         vmx_set_interrupt_shadow(vcpu, 0);
1472 }
1473
1474 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1475 {
1476         /*
1477          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1478          * explicitly skip the instruction because if the HLT state is set,
1479          * then the instruction is already executing and RIP has already been
1480          * advanced.
1481          */
1482         if (kvm_hlt_in_guest(vcpu->kvm) &&
1483                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1484                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1485 }
1486
1487 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1488 {
1489         struct vcpu_vmx *vmx = to_vmx(vcpu);
1490         unsigned nr = vcpu->arch.exception.nr;
1491         bool has_error_code = vcpu->arch.exception.has_error_code;
1492         u32 error_code = vcpu->arch.exception.error_code;
1493         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1494
1495         kvm_deliver_exception_payload(vcpu);
1496
1497         if (has_error_code) {
1498                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1499                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1500         }
1501
1502         if (vmx->rmode.vm86_active) {
1503                 int inc_eip = 0;
1504                 if (kvm_exception_is_soft(nr))
1505                         inc_eip = vcpu->arch.event_exit_inst_len;
1506                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1507                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1508                 return;
1509         }
1510
1511         WARN_ON_ONCE(vmx->emulation_required);
1512
1513         if (kvm_exception_is_soft(nr)) {
1514                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1515                              vmx->vcpu.arch.event_exit_inst_len);
1516                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1517         } else
1518                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1519
1520         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1521
1522         vmx_clear_hlt(vcpu);
1523 }
1524
1525 static bool vmx_rdtscp_supported(void)
1526 {
1527         return cpu_has_vmx_rdtscp();
1528 }
1529
1530 static bool vmx_invpcid_supported(void)
1531 {
1532         return cpu_has_vmx_invpcid();
1533 }
1534
1535 /*
1536  * Swap MSR entry in host/guest MSR entry array.
1537  */
1538 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1539 {
1540         struct shared_msr_entry tmp;
1541
1542         tmp = vmx->guest_msrs[to];
1543         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1544         vmx->guest_msrs[from] = tmp;
1545 }
1546
1547 /*
1548  * Set up the vmcs to automatically save and restore system
1549  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1550  * mode, as fiddling with msrs is very expensive.
1551  */
1552 static void setup_msrs(struct vcpu_vmx *vmx)
1553 {
1554         int save_nmsrs, index;
1555
1556         save_nmsrs = 0;
1557 #ifdef CONFIG_X86_64
1558         /*
1559          * The SYSCALL MSRs are only needed on long mode guests, and only
1560          * when EFER.SCE is set.
1561          */
1562         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1563                 index = __find_msr_index(vmx, MSR_STAR);
1564                 if (index >= 0)
1565                         move_msr_up(vmx, index, save_nmsrs++);
1566                 index = __find_msr_index(vmx, MSR_LSTAR);
1567                 if (index >= 0)
1568                         move_msr_up(vmx, index, save_nmsrs++);
1569                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1570                 if (index >= 0)
1571                         move_msr_up(vmx, index, save_nmsrs++);
1572         }
1573 #endif
1574         index = __find_msr_index(vmx, MSR_EFER);
1575         if (index >= 0 && update_transition_efer(vmx, index))
1576                 move_msr_up(vmx, index, save_nmsrs++);
1577         index = __find_msr_index(vmx, MSR_TSC_AUX);
1578         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1579                 move_msr_up(vmx, index, save_nmsrs++);
1580
1581         vmx->save_nmsrs = save_nmsrs;
1582         vmx->guest_msrs_dirty = true;
1583
1584         if (cpu_has_vmx_msr_bitmap())
1585                 vmx_update_msr_bitmap(&vmx->vcpu);
1586 }
1587
1588 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1589 {
1590         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1591
1592         if (is_guest_mode(vcpu) &&
1593             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1594                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1595
1596         return vcpu->arch.tsc_offset;
1597 }
1598
1599 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1600 {
1601         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1602         u64 g_tsc_offset = 0;
1603
1604         /*
1605          * We're here if L1 chose not to trap WRMSR to TSC. According
1606          * to the spec, this should set L1's TSC; The offset that L1
1607          * set for L2 remains unchanged, and still needs to be added
1608          * to the newly set TSC to get L2's TSC.
1609          */
1610         if (is_guest_mode(vcpu) &&
1611             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1612                 g_tsc_offset = vmcs12->tsc_offset;
1613
1614         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1615                                    vcpu->arch.tsc_offset - g_tsc_offset,
1616                                    offset);
1617         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1618         return offset + g_tsc_offset;
1619 }
1620
1621 /*
1622  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1623  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1624  * all guests if the "nested" module option is off, and can also be disabled
1625  * for a single guest by disabling its VMX cpuid bit.
1626  */
1627 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1628 {
1629         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1630 }
1631
1632 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1633                                                  uint64_t val)
1634 {
1635         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1636
1637         return !(val & ~valid_bits);
1638 }
1639
1640 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1641 {
1642         switch (msr->index) {
1643         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1644                 if (!nested)
1645                         return 1;
1646                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1647         default:
1648                 return 1;
1649         }
1650
1651         return 0;
1652 }
1653
1654 /*
1655  * Reads an msr value (of 'msr_index') into 'pdata'.
1656  * Returns 0 on success, non-0 otherwise.
1657  * Assumes vcpu_load() was already called.
1658  */
1659 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1660 {
1661         struct vcpu_vmx *vmx = to_vmx(vcpu);
1662         struct shared_msr_entry *msr;
1663         u32 index;
1664
1665         switch (msr_info->index) {
1666 #ifdef CONFIG_X86_64
1667         case MSR_FS_BASE:
1668                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1669                 break;
1670         case MSR_GS_BASE:
1671                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1672                 break;
1673         case MSR_KERNEL_GS_BASE:
1674                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1675                 break;
1676 #endif
1677         case MSR_EFER:
1678                 return kvm_get_msr_common(vcpu, msr_info);
1679         case MSR_IA32_SPEC_CTRL:
1680                 if (!msr_info->host_initiated &&
1681                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1682                         return 1;
1683
1684                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1685                 break;
1686         case MSR_IA32_SYSENTER_CS:
1687                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1688                 break;
1689         case MSR_IA32_SYSENTER_EIP:
1690                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1691                 break;
1692         case MSR_IA32_SYSENTER_ESP:
1693                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1694                 break;
1695         case MSR_IA32_BNDCFGS:
1696                 if (!kvm_mpx_supported() ||
1697                     (!msr_info->host_initiated &&
1698                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1699                         return 1;
1700                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1701                 break;
1702         case MSR_IA32_MCG_EXT_CTL:
1703                 if (!msr_info->host_initiated &&
1704                     !(vmx->msr_ia32_feature_control &
1705                       FEATURE_CONTROL_LMCE))
1706                         return 1;
1707                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1708                 break;
1709         case MSR_IA32_FEATURE_CONTROL:
1710                 msr_info->data = vmx->msr_ia32_feature_control;
1711                 break;
1712         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1713                 if (!nested_vmx_allowed(vcpu))
1714                         return 1;
1715                 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1716                                        &msr_info->data);
1717         case MSR_IA32_XSS:
1718                 if (!vmx_xsaves_supported())
1719                         return 1;
1720                 msr_info->data = vcpu->arch.ia32_xss;
1721                 break;
1722         case MSR_IA32_RTIT_CTL:
1723                 if (pt_mode != PT_MODE_HOST_GUEST)
1724                         return 1;
1725                 msr_info->data = vmx->pt_desc.guest.ctl;
1726                 break;
1727         case MSR_IA32_RTIT_STATUS:
1728                 if (pt_mode != PT_MODE_HOST_GUEST)
1729                         return 1;
1730                 msr_info->data = vmx->pt_desc.guest.status;
1731                 break;
1732         case MSR_IA32_RTIT_CR3_MATCH:
1733                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1734                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1735                                                 PT_CAP_cr3_filtering))
1736                         return 1;
1737                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1738                 break;
1739         case MSR_IA32_RTIT_OUTPUT_BASE:
1740                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1741                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1742                                         PT_CAP_topa_output) &&
1743                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1744                                         PT_CAP_single_range_output)))
1745                         return 1;
1746                 msr_info->data = vmx->pt_desc.guest.output_base;
1747                 break;
1748         case MSR_IA32_RTIT_OUTPUT_MASK:
1749                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1750                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1751                                         PT_CAP_topa_output) &&
1752                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1753                                         PT_CAP_single_range_output)))
1754                         return 1;
1755                 msr_info->data = vmx->pt_desc.guest.output_mask;
1756                 break;
1757         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1758                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1759                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1760                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1761                                         PT_CAP_num_address_ranges)))
1762                         return 1;
1763                 if (index % 2)
1764                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1765                 else
1766                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1767                 break;
1768         case MSR_TSC_AUX:
1769                 if (!msr_info->host_initiated &&
1770                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1771                         return 1;
1772                 /* Else, falls through */
1773         default:
1774                 msr = find_msr_entry(vmx, msr_info->index);
1775                 if (msr) {
1776                         msr_info->data = msr->data;
1777                         break;
1778                 }
1779                 return kvm_get_msr_common(vcpu, msr_info);
1780         }
1781
1782         return 0;
1783 }
1784
1785 /*
1786  * Writes msr value into into the appropriate "register".
1787  * Returns 0 on success, non-0 otherwise.
1788  * Assumes vcpu_load() was already called.
1789  */
1790 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1791 {
1792         struct vcpu_vmx *vmx = to_vmx(vcpu);
1793         struct shared_msr_entry *msr;
1794         int ret = 0;
1795         u32 msr_index = msr_info->index;
1796         u64 data = msr_info->data;
1797         u32 index;
1798
1799         switch (msr_index) {
1800         case MSR_EFER:
1801                 ret = kvm_set_msr_common(vcpu, msr_info);
1802                 break;
1803 #ifdef CONFIG_X86_64
1804         case MSR_FS_BASE:
1805                 vmx_segment_cache_clear(vmx);
1806                 vmcs_writel(GUEST_FS_BASE, data);
1807                 break;
1808         case MSR_GS_BASE:
1809                 vmx_segment_cache_clear(vmx);
1810                 vmcs_writel(GUEST_GS_BASE, data);
1811                 break;
1812         case MSR_KERNEL_GS_BASE:
1813                 vmx_write_guest_kernel_gs_base(vmx, data);
1814                 break;
1815 #endif
1816         case MSR_IA32_SYSENTER_CS:
1817                 vmcs_write32(GUEST_SYSENTER_CS, data);
1818                 break;
1819         case MSR_IA32_SYSENTER_EIP:
1820                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1821                 break;
1822         case MSR_IA32_SYSENTER_ESP:
1823                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1824                 break;
1825         case MSR_IA32_BNDCFGS:
1826                 if (!kvm_mpx_supported() ||
1827                     (!msr_info->host_initiated &&
1828                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1829                         return 1;
1830                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1831                     (data & MSR_IA32_BNDCFGS_RSVD))
1832                         return 1;
1833                 vmcs_write64(GUEST_BNDCFGS, data);
1834                 break;
1835         case MSR_IA32_SPEC_CTRL:
1836                 if (!msr_info->host_initiated &&
1837                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1838                         return 1;
1839
1840                 /* The STIBP bit doesn't fault even if it's not advertised */
1841                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1842                         return 1;
1843
1844                 vmx->spec_ctrl = data;
1845
1846                 if (!data)
1847                         break;
1848
1849                 /*
1850                  * For non-nested:
1851                  * When it's written (to non-zero) for the first time, pass
1852                  * it through.
1853                  *
1854                  * For nested:
1855                  * The handling of the MSR bitmap for L2 guests is done in
1856                  * nested_vmx_merge_msr_bitmap. We should not touch the
1857                  * vmcs02.msr_bitmap here since it gets completely overwritten
1858                  * in the merging. We update the vmcs01 here for L1 as well
1859                  * since it will end up touching the MSR anyway now.
1860                  */
1861                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1862                                               MSR_IA32_SPEC_CTRL,
1863                                               MSR_TYPE_RW);
1864                 break;
1865         case MSR_IA32_PRED_CMD:
1866                 if (!msr_info->host_initiated &&
1867                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1868                         return 1;
1869
1870                 if (data & ~PRED_CMD_IBPB)
1871                         return 1;
1872
1873                 if (!data)
1874                         break;
1875
1876                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1877
1878                 /*
1879                  * For non-nested:
1880                  * When it's written (to non-zero) for the first time, pass
1881                  * it through.
1882                  *
1883                  * For nested:
1884                  * The handling of the MSR bitmap for L2 guests is done in
1885                  * nested_vmx_merge_msr_bitmap. We should not touch the
1886                  * vmcs02.msr_bitmap here since it gets completely overwritten
1887                  * in the merging.
1888                  */
1889                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1890                                               MSR_TYPE_W);
1891                 break;
1892         case MSR_IA32_CR_PAT:
1893                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1894                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
1895                                 return 1;
1896                         vmcs_write64(GUEST_IA32_PAT, data);
1897                         vcpu->arch.pat = data;
1898                         break;
1899                 }
1900                 ret = kvm_set_msr_common(vcpu, msr_info);
1901                 break;
1902         case MSR_IA32_TSC_ADJUST:
1903                 ret = kvm_set_msr_common(vcpu, msr_info);
1904                 break;
1905         case MSR_IA32_MCG_EXT_CTL:
1906                 if ((!msr_info->host_initiated &&
1907                      !(to_vmx(vcpu)->msr_ia32_feature_control &
1908                        FEATURE_CONTROL_LMCE)) ||
1909                     (data & ~MCG_EXT_CTL_LMCE_EN))
1910                         return 1;
1911                 vcpu->arch.mcg_ext_ctl = data;
1912                 break;
1913         case MSR_IA32_FEATURE_CONTROL:
1914                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
1915                     (to_vmx(vcpu)->msr_ia32_feature_control &
1916                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1917                         return 1;
1918                 vmx->msr_ia32_feature_control = data;
1919                 if (msr_info->host_initiated && data == 0)
1920                         vmx_leave_nested(vcpu);
1921                 break;
1922         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1923                 if (!msr_info->host_initiated)
1924                         return 1; /* they are read-only */
1925                 if (!nested_vmx_allowed(vcpu))
1926                         return 1;
1927                 return vmx_set_vmx_msr(vcpu, msr_index, data);
1928         case MSR_IA32_XSS:
1929                 if (!vmx_xsaves_supported())
1930                         return 1;
1931                 /*
1932                  * The only supported bit as of Skylake is bit 8, but
1933                  * it is not supported on KVM.
1934                  */
1935                 if (data != 0)
1936                         return 1;
1937                 vcpu->arch.ia32_xss = data;
1938                 if (vcpu->arch.ia32_xss != host_xss)
1939                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
1940                                 vcpu->arch.ia32_xss, host_xss, false);
1941                 else
1942                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
1943                 break;
1944         case MSR_IA32_RTIT_CTL:
1945                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1946                         vmx_rtit_ctl_check(vcpu, data) ||
1947                         vmx->nested.vmxon)
1948                         return 1;
1949                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
1950                 vmx->pt_desc.guest.ctl = data;
1951                 pt_update_intercept_for_msr(vmx);
1952                 break;
1953         case MSR_IA32_RTIT_STATUS:
1954                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1955                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1956                         (data & MSR_IA32_RTIT_STATUS_MASK))
1957                         return 1;
1958                 vmx->pt_desc.guest.status = data;
1959                 break;
1960         case MSR_IA32_RTIT_CR3_MATCH:
1961                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1962                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1963                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1964                                                 PT_CAP_cr3_filtering))
1965                         return 1;
1966                 vmx->pt_desc.guest.cr3_match = data;
1967                 break;
1968         case MSR_IA32_RTIT_OUTPUT_BASE:
1969                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1970                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1971                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1972                                         PT_CAP_topa_output) &&
1973                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1974                                         PT_CAP_single_range_output)) ||
1975                         (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
1976                         return 1;
1977                 vmx->pt_desc.guest.output_base = data;
1978                 break;
1979         case MSR_IA32_RTIT_OUTPUT_MASK:
1980                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1981                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1982                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1983                                         PT_CAP_topa_output) &&
1984                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1985                                         PT_CAP_single_range_output)))
1986                         return 1;
1987                 vmx->pt_desc.guest.output_mask = data;
1988                 break;
1989         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1990                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1991                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1992                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1993                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1994                                         PT_CAP_num_address_ranges)))
1995                         return 1;
1996                 if (index % 2)
1997                         vmx->pt_desc.guest.addr_b[index / 2] = data;
1998                 else
1999                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2000                 break;
2001         case MSR_TSC_AUX:
2002                 if (!msr_info->host_initiated &&
2003                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2004                         return 1;
2005                 /* Check reserved bit, higher 32 bits should be zero */
2006                 if ((data >> 32) != 0)
2007                         return 1;
2008                 /* Else, falls through */
2009         default:
2010                 msr = find_msr_entry(vmx, msr_index);
2011                 if (msr) {
2012                         u64 old_msr_data = msr->data;
2013                         msr->data = data;
2014                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2015                                 preempt_disable();
2016                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2017                                                          msr->mask);
2018                                 preempt_enable();
2019                                 if (ret)
2020                                         msr->data = old_msr_data;
2021                         }
2022                         break;
2023                 }
2024                 ret = kvm_set_msr_common(vcpu, msr_info);
2025         }
2026
2027         return ret;
2028 }
2029
2030 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2031 {
2032         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2033         switch (reg) {
2034         case VCPU_REGS_RSP:
2035                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2036                 break;
2037         case VCPU_REGS_RIP:
2038                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2039                 break;
2040         case VCPU_EXREG_PDPTR:
2041                 if (enable_ept)
2042                         ept_save_pdptrs(vcpu);
2043                 break;
2044         default:
2045                 break;
2046         }
2047 }
2048
2049 static __init int cpu_has_kvm_support(void)
2050 {
2051         return cpu_has_vmx();
2052 }
2053
2054 static __init int vmx_disabled_by_bios(void)
2055 {
2056         u64 msr;
2057
2058         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2059         if (msr & FEATURE_CONTROL_LOCKED) {
2060                 /* launched w/ TXT and VMX disabled */
2061                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2062                         && tboot_enabled())
2063                         return 1;
2064                 /* launched w/o TXT and VMX only enabled w/ TXT */
2065                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2066                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2067                         && !tboot_enabled()) {
2068                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2069                                 "activate TXT before enabling KVM\n");
2070                         return 1;
2071                 }
2072                 /* launched w/o TXT and VMX disabled */
2073                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2074                         && !tboot_enabled())
2075                         return 1;
2076         }
2077
2078         return 0;
2079 }
2080
2081 static void kvm_cpu_vmxon(u64 addr)
2082 {
2083         cr4_set_bits(X86_CR4_VMXE);
2084         intel_pt_handle_vmx(1);
2085
2086         asm volatile ("vmxon %0" : : "m"(addr));
2087 }
2088
2089 static int hardware_enable(void)
2090 {
2091         int cpu = raw_smp_processor_id();
2092         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2093         u64 old, test_bits;
2094
2095         if (cr4_read_shadow() & X86_CR4_VMXE)
2096                 return -EBUSY;
2097
2098         /*
2099          * This can happen if we hot-added a CPU but failed to allocate
2100          * VP assist page for it.
2101          */
2102         if (static_branch_unlikely(&enable_evmcs) &&
2103             !hv_get_vp_assist_page(cpu))
2104                 return -EFAULT;
2105
2106         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2107         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2108         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2109
2110         /*
2111          * Now we can enable the vmclear operation in kdump
2112          * since the loaded_vmcss_on_cpu list on this cpu
2113          * has been initialized.
2114          *
2115          * Though the cpu is not in VMX operation now, there
2116          * is no problem to enable the vmclear operation
2117          * for the loaded_vmcss_on_cpu list is empty!
2118          */
2119         crash_enable_local_vmclear(cpu);
2120
2121         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2122
2123         test_bits = FEATURE_CONTROL_LOCKED;
2124         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2125         if (tboot_enabled())
2126                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2127
2128         if ((old & test_bits) != test_bits) {
2129                 /* enable and lock */
2130                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2131         }
2132         kvm_cpu_vmxon(phys_addr);
2133         if (enable_ept)
2134                 ept_sync_global();
2135
2136         return 0;
2137 }
2138
2139 static void vmclear_local_loaded_vmcss(void)
2140 {
2141         int cpu = raw_smp_processor_id();
2142         struct loaded_vmcs *v, *n;
2143
2144         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2145                                  loaded_vmcss_on_cpu_link)
2146                 __loaded_vmcs_clear(v);
2147 }
2148
2149
2150 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2151  * tricks.
2152  */
2153 static void kvm_cpu_vmxoff(void)
2154 {
2155         asm volatile (__ex("vmxoff"));
2156
2157         intel_pt_handle_vmx(0);
2158         cr4_clear_bits(X86_CR4_VMXE);
2159 }
2160
2161 static void hardware_disable(void)
2162 {
2163         vmclear_local_loaded_vmcss();
2164         kvm_cpu_vmxoff();
2165 }
2166
2167 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2168                                       u32 msr, u32 *result)
2169 {
2170         u32 vmx_msr_low, vmx_msr_high;
2171         u32 ctl = ctl_min | ctl_opt;
2172
2173         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2174
2175         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2176         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2177
2178         /* Ensure minimum (required) set of control bits are supported. */
2179         if (ctl_min & ~ctl)
2180                 return -EIO;
2181
2182         *result = ctl;
2183         return 0;
2184 }
2185
2186 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2187                                     struct vmx_capability *vmx_cap)
2188 {
2189         u32 vmx_msr_low, vmx_msr_high;
2190         u32 min, opt, min2, opt2;
2191         u32 _pin_based_exec_control = 0;
2192         u32 _cpu_based_exec_control = 0;
2193         u32 _cpu_based_2nd_exec_control = 0;
2194         u32 _vmexit_control = 0;
2195         u32 _vmentry_control = 0;
2196
2197         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2198         min = CPU_BASED_HLT_EXITING |
2199 #ifdef CONFIG_X86_64
2200               CPU_BASED_CR8_LOAD_EXITING |
2201               CPU_BASED_CR8_STORE_EXITING |
2202 #endif
2203               CPU_BASED_CR3_LOAD_EXITING |
2204               CPU_BASED_CR3_STORE_EXITING |
2205               CPU_BASED_UNCOND_IO_EXITING |
2206               CPU_BASED_MOV_DR_EXITING |
2207               CPU_BASED_USE_TSC_OFFSETING |
2208               CPU_BASED_MWAIT_EXITING |
2209               CPU_BASED_MONITOR_EXITING |
2210               CPU_BASED_INVLPG_EXITING |
2211               CPU_BASED_RDPMC_EXITING;
2212
2213         opt = CPU_BASED_TPR_SHADOW |
2214               CPU_BASED_USE_MSR_BITMAPS |
2215               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2216         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2217                                 &_cpu_based_exec_control) < 0)
2218                 return -EIO;
2219 #ifdef CONFIG_X86_64
2220         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2221                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2222                                            ~CPU_BASED_CR8_STORE_EXITING;
2223 #endif
2224         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2225                 min2 = 0;
2226                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2227                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2228                         SECONDARY_EXEC_WBINVD_EXITING |
2229                         SECONDARY_EXEC_ENABLE_VPID |
2230                         SECONDARY_EXEC_ENABLE_EPT |
2231                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2232                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2233                         SECONDARY_EXEC_DESC |
2234                         SECONDARY_EXEC_RDTSCP |
2235                         SECONDARY_EXEC_ENABLE_INVPCID |
2236                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2237                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2238                         SECONDARY_EXEC_SHADOW_VMCS |
2239                         SECONDARY_EXEC_XSAVES |
2240                         SECONDARY_EXEC_RDSEED_EXITING |
2241                         SECONDARY_EXEC_RDRAND_EXITING |
2242                         SECONDARY_EXEC_ENABLE_PML |
2243                         SECONDARY_EXEC_TSC_SCALING |
2244                         SECONDARY_EXEC_PT_USE_GPA |
2245                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2246                         SECONDARY_EXEC_ENABLE_VMFUNC |
2247                         SECONDARY_EXEC_ENCLS_EXITING;
2248                 if (adjust_vmx_controls(min2, opt2,
2249                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2250                                         &_cpu_based_2nd_exec_control) < 0)
2251                         return -EIO;
2252         }
2253 #ifndef CONFIG_X86_64
2254         if (!(_cpu_based_2nd_exec_control &
2255                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2256                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2257 #endif
2258
2259         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2260                 _cpu_based_2nd_exec_control &= ~(
2261                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2262                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2263                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2264
2265         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2266                 &vmx_cap->ept, &vmx_cap->vpid);
2267
2268         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2269                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2270                    enabled */
2271                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2272                                              CPU_BASED_CR3_STORE_EXITING |
2273                                              CPU_BASED_INVLPG_EXITING);
2274         } else if (vmx_cap->ept) {
2275                 vmx_cap->ept = 0;
2276                 pr_warn_once("EPT CAP should not exist if not support "
2277                                 "1-setting enable EPT VM-execution control\n");
2278         }
2279         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2280                 vmx_cap->vpid) {
2281                 vmx_cap->vpid = 0;
2282                 pr_warn_once("VPID CAP should not exist if not support "
2283                                 "1-setting enable VPID VM-execution control\n");
2284         }
2285
2286         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2287 #ifdef CONFIG_X86_64
2288         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2289 #endif
2290         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2291               VM_EXIT_SAVE_IA32_PAT |
2292               VM_EXIT_LOAD_IA32_PAT |
2293               VM_EXIT_LOAD_IA32_EFER |
2294               VM_EXIT_CLEAR_BNDCFGS |
2295               VM_EXIT_PT_CONCEAL_PIP |
2296               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2297         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2298                                 &_vmexit_control) < 0)
2299                 return -EIO;
2300
2301         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2302         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2303                  PIN_BASED_VMX_PREEMPTION_TIMER;
2304         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2305                                 &_pin_based_exec_control) < 0)
2306                 return -EIO;
2307
2308         if (cpu_has_broken_vmx_preemption_timer())
2309                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2310         if (!(_cpu_based_2nd_exec_control &
2311                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2312                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2313
2314         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2315         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2316               VM_ENTRY_LOAD_IA32_PAT |
2317               VM_ENTRY_LOAD_IA32_EFER |
2318               VM_ENTRY_LOAD_BNDCFGS |
2319               VM_ENTRY_PT_CONCEAL_PIP |
2320               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2321         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2322                                 &_vmentry_control) < 0)
2323                 return -EIO;
2324
2325         /*
2326          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2327          * can't be used due to an errata where VM Exit may incorrectly clear
2328          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2329          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2330          */
2331         if (boot_cpu_data.x86 == 0x6) {
2332                 switch (boot_cpu_data.x86_model) {
2333                 case 26: /* AAK155 */
2334                 case 30: /* AAP115 */
2335                 case 37: /* AAT100 */
2336                 case 44: /* BC86,AAY89,BD102 */
2337                 case 46: /* BA97 */
2338                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2339                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2340                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2341                                         "does not work properly. Using workaround\n");
2342                         break;
2343                 default:
2344                         break;
2345                 }
2346         }
2347
2348
2349         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2350
2351         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2352         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2353                 return -EIO;
2354
2355 #ifdef CONFIG_X86_64
2356         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2357         if (vmx_msr_high & (1u<<16))
2358                 return -EIO;
2359 #endif
2360
2361         /* Require Write-Back (WB) memory type for VMCS accesses. */
2362         if (((vmx_msr_high >> 18) & 15) != 6)
2363                 return -EIO;
2364
2365         vmcs_conf->size = vmx_msr_high & 0x1fff;
2366         vmcs_conf->order = get_order(vmcs_conf->size);
2367         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2368
2369         vmcs_conf->revision_id = vmx_msr_low;
2370
2371         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2372         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2373         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2374         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2375         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2376
2377         if (static_branch_unlikely(&enable_evmcs))
2378                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2379
2380         return 0;
2381 }
2382
2383 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2384 {
2385         int node = cpu_to_node(cpu);
2386         struct page *pages;
2387         struct vmcs *vmcs;
2388
2389         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2390         if (!pages)
2391                 return NULL;
2392         vmcs = page_address(pages);
2393         memset(vmcs, 0, vmcs_config.size);
2394
2395         /* KVM supports Enlightened VMCS v1 only */
2396         if (static_branch_unlikely(&enable_evmcs))
2397                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2398         else
2399                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2400
2401         if (shadow)
2402                 vmcs->hdr.shadow_vmcs = 1;
2403         return vmcs;
2404 }
2405
2406 void free_vmcs(struct vmcs *vmcs)
2407 {
2408         free_pages((unsigned long)vmcs, vmcs_config.order);
2409 }
2410
2411 /*
2412  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2413  */
2414 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2415 {
2416         if (!loaded_vmcs->vmcs)
2417                 return;
2418         loaded_vmcs_clear(loaded_vmcs);
2419         free_vmcs(loaded_vmcs->vmcs);
2420         loaded_vmcs->vmcs = NULL;
2421         if (loaded_vmcs->msr_bitmap)
2422                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2423         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2424 }
2425
2426 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2427 {
2428         loaded_vmcs->vmcs = alloc_vmcs(false);
2429         if (!loaded_vmcs->vmcs)
2430                 return -ENOMEM;
2431
2432         loaded_vmcs->shadow_vmcs = NULL;
2433         loaded_vmcs_init(loaded_vmcs);
2434
2435         if (cpu_has_vmx_msr_bitmap()) {
2436                 loaded_vmcs->msr_bitmap = (unsigned long *)
2437                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2438                 if (!loaded_vmcs->msr_bitmap)
2439                         goto out_vmcs;
2440                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2441
2442                 if (IS_ENABLED(CONFIG_HYPERV) &&
2443                     static_branch_unlikely(&enable_evmcs) &&
2444                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2445                         struct hv_enlightened_vmcs *evmcs =
2446                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2447
2448                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2449                 }
2450         }
2451
2452         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2453
2454         return 0;
2455
2456 out_vmcs:
2457         free_loaded_vmcs(loaded_vmcs);
2458         return -ENOMEM;
2459 }
2460
2461 static void free_kvm_area(void)
2462 {
2463         int cpu;
2464
2465         for_each_possible_cpu(cpu) {
2466                 free_vmcs(per_cpu(vmxarea, cpu));
2467                 per_cpu(vmxarea, cpu) = NULL;
2468         }
2469 }
2470
2471 static __init int alloc_kvm_area(void)
2472 {
2473         int cpu;
2474
2475         for_each_possible_cpu(cpu) {
2476                 struct vmcs *vmcs;
2477
2478                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2479                 if (!vmcs) {
2480                         free_kvm_area();
2481                         return -ENOMEM;
2482                 }
2483
2484                 /*
2485                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2486                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2487                  * revision_id reported by MSR_IA32_VMX_BASIC.
2488                  *
2489                  * However, even though not explicitly documented by
2490                  * TLFS, VMXArea passed as VMXON argument should
2491                  * still be marked with revision_id reported by
2492                  * physical CPU.
2493                  */
2494                 if (static_branch_unlikely(&enable_evmcs))
2495                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2496
2497                 per_cpu(vmxarea, cpu) = vmcs;
2498         }
2499         return 0;
2500 }
2501
2502 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2503                 struct kvm_segment *save)
2504 {
2505         if (!emulate_invalid_guest_state) {
2506                 /*
2507                  * CS and SS RPL should be equal during guest entry according
2508                  * to VMX spec, but in reality it is not always so. Since vcpu
2509                  * is in the middle of the transition from real mode to
2510                  * protected mode it is safe to assume that RPL 0 is a good
2511                  * default value.
2512                  */
2513                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2514                         save->selector &= ~SEGMENT_RPL_MASK;
2515                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2516                 save->s = 1;
2517         }
2518         vmx_set_segment(vcpu, save, seg);
2519 }
2520
2521 static void enter_pmode(struct kvm_vcpu *vcpu)
2522 {
2523         unsigned long flags;
2524         struct vcpu_vmx *vmx = to_vmx(vcpu);
2525
2526         /*
2527          * Update real mode segment cache. It may be not up-to-date if sement
2528          * register was written while vcpu was in a guest mode.
2529          */
2530         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2531         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2532         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2533         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2534         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2535         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2536
2537         vmx->rmode.vm86_active = 0;
2538
2539         vmx_segment_cache_clear(vmx);
2540
2541         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2542
2543         flags = vmcs_readl(GUEST_RFLAGS);
2544         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2545         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2546         vmcs_writel(GUEST_RFLAGS, flags);
2547
2548         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2549                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2550
2551         update_exception_bitmap(vcpu);
2552
2553         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2554         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2555         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2556         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2557         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2558         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2559 }
2560
2561 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2562 {
2563         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2564         struct kvm_segment var = *save;
2565
2566         var.dpl = 0x3;
2567         if (seg == VCPU_SREG_CS)
2568                 var.type = 0x3;
2569
2570         if (!emulate_invalid_guest_state) {
2571                 var.selector = var.base >> 4;
2572                 var.base = var.base & 0xffff0;
2573                 var.limit = 0xffff;
2574                 var.g = 0;
2575                 var.db = 0;
2576                 var.present = 1;
2577                 var.s = 1;
2578                 var.l = 0;
2579                 var.unusable = 0;
2580                 var.type = 0x3;
2581                 var.avl = 0;
2582                 if (save->base & 0xf)
2583                         printk_once(KERN_WARNING "kvm: segment base is not "
2584                                         "paragraph aligned when entering "
2585                                         "protected mode (seg=%d)", seg);
2586         }
2587
2588         vmcs_write16(sf->selector, var.selector);
2589         vmcs_writel(sf->base, var.base);
2590         vmcs_write32(sf->limit, var.limit);
2591         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2592 }
2593
2594 static void enter_rmode(struct kvm_vcpu *vcpu)
2595 {
2596         unsigned long flags;
2597         struct vcpu_vmx *vmx = to_vmx(vcpu);
2598         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2599
2600         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2601         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2602         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2603         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2604         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2605         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2606         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2607
2608         vmx->rmode.vm86_active = 1;
2609
2610         /*
2611          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2612          * vcpu. Warn the user that an update is overdue.
2613          */
2614         if (!kvm_vmx->tss_addr)
2615                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2616                              "called before entering vcpu\n");
2617
2618         vmx_segment_cache_clear(vmx);
2619
2620         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2621         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2622         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2623
2624         flags = vmcs_readl(GUEST_RFLAGS);
2625         vmx->rmode.save_rflags = flags;
2626
2627         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2628
2629         vmcs_writel(GUEST_RFLAGS, flags);
2630         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2631         update_exception_bitmap(vcpu);
2632
2633         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2634         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2635         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2636         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2637         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2638         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2639
2640         kvm_mmu_reset_context(vcpu);
2641 }
2642
2643 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2644 {
2645         struct vcpu_vmx *vmx = to_vmx(vcpu);
2646         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2647
2648         if (!msr)
2649                 return;
2650
2651         vcpu->arch.efer = efer;
2652         if (efer & EFER_LMA) {
2653                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2654                 msr->data = efer;
2655         } else {
2656                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2657
2658                 msr->data = efer & ~EFER_LME;
2659         }
2660         setup_msrs(vmx);
2661 }
2662
2663 #ifdef CONFIG_X86_64
2664
2665 static void enter_lmode(struct kvm_vcpu *vcpu)
2666 {
2667         u32 guest_tr_ar;
2668
2669         vmx_segment_cache_clear(to_vmx(vcpu));
2670
2671         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2672         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2673                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2674                                      __func__);
2675                 vmcs_write32(GUEST_TR_AR_BYTES,
2676                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2677                              | VMX_AR_TYPE_BUSY_64_TSS);
2678         }
2679         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2680 }
2681
2682 static void exit_lmode(struct kvm_vcpu *vcpu)
2683 {
2684         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2685         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2686 }
2687
2688 #endif
2689
2690 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2691 {
2692         int vpid = to_vmx(vcpu)->vpid;
2693
2694         if (!vpid_sync_vcpu_addr(vpid, addr))
2695                 vpid_sync_context(vpid);
2696
2697         /*
2698          * If VPIDs are not supported or enabled, then the above is a no-op.
2699          * But we don't really need a TLB flush in that case anyway, because
2700          * each VM entry/exit includes an implicit flush when VPID is 0.
2701          */
2702 }
2703
2704 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2705 {
2706         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2707
2708         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2709         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2710 }
2711
2712 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2713 {
2714         if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2715                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2716         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2717 }
2718
2719 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2720 {
2721         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2722
2723         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2724         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2725 }
2726
2727 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2728 {
2729         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2730
2731         if (!test_bit(VCPU_EXREG_PDPTR,
2732                       (unsigned long *)&vcpu->arch.regs_dirty))
2733                 return;
2734
2735         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2736                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2737                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2738                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2739                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2740         }
2741 }
2742
2743 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2744 {
2745         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2746
2747         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2748                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2749                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2750                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2751                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2752         }
2753
2754         __set_bit(VCPU_EXREG_PDPTR,
2755                   (unsigned long *)&vcpu->arch.regs_avail);
2756         __set_bit(VCPU_EXREG_PDPTR,
2757                   (unsigned long *)&vcpu->arch.regs_dirty);
2758 }
2759
2760 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2761                                         unsigned long cr0,
2762                                         struct kvm_vcpu *vcpu)
2763 {
2764         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2765                 vmx_decache_cr3(vcpu);
2766         if (!(cr0 & X86_CR0_PG)) {
2767                 /* From paging/starting to nonpaging */
2768                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2769                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2770                              (CPU_BASED_CR3_LOAD_EXITING |
2771                               CPU_BASED_CR3_STORE_EXITING));
2772                 vcpu->arch.cr0 = cr0;
2773                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2774         } else if (!is_paging(vcpu)) {
2775                 /* From nonpaging to paging */
2776                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2777                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2778                              ~(CPU_BASED_CR3_LOAD_EXITING |
2779                                CPU_BASED_CR3_STORE_EXITING));
2780                 vcpu->arch.cr0 = cr0;
2781                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2782         }
2783
2784         if (!(cr0 & X86_CR0_WP))
2785                 *hw_cr0 &= ~X86_CR0_WP;
2786 }
2787
2788 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2789 {
2790         struct vcpu_vmx *vmx = to_vmx(vcpu);
2791         unsigned long hw_cr0;
2792
2793         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2794         if (enable_unrestricted_guest)
2795                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2796         else {
2797                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2798
2799                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2800                         enter_pmode(vcpu);
2801
2802                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2803                         enter_rmode(vcpu);
2804         }
2805
2806 #ifdef CONFIG_X86_64
2807         if (vcpu->arch.efer & EFER_LME) {
2808                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2809                         enter_lmode(vcpu);
2810                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2811                         exit_lmode(vcpu);
2812         }
2813 #endif
2814
2815         if (enable_ept && !enable_unrestricted_guest)
2816                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2817
2818         vmcs_writel(CR0_READ_SHADOW, cr0);
2819         vmcs_writel(GUEST_CR0, hw_cr0);
2820         vcpu->arch.cr0 = cr0;
2821
2822         /* depends on vcpu->arch.cr0 to be set to a new value */
2823         vmx->emulation_required = emulation_required(vcpu);
2824 }
2825
2826 static int get_ept_level(struct kvm_vcpu *vcpu)
2827 {
2828         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2829                 return 5;
2830         return 4;
2831 }
2832
2833 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2834 {
2835         u64 eptp = VMX_EPTP_MT_WB;
2836
2837         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2838
2839         if (enable_ept_ad_bits &&
2840             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2841                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2842         eptp |= (root_hpa & PAGE_MASK);
2843
2844         return eptp;
2845 }
2846
2847 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2848 {
2849         struct kvm *kvm = vcpu->kvm;
2850         unsigned long guest_cr3;
2851         u64 eptp;
2852
2853         guest_cr3 = cr3;
2854         if (enable_ept) {
2855                 eptp = construct_eptp(vcpu, cr3);
2856                 vmcs_write64(EPT_POINTER, eptp);
2857
2858                 if (kvm_x86_ops->tlb_remote_flush) {
2859                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2860                         to_vmx(vcpu)->ept_pointer = eptp;
2861                         to_kvm_vmx(kvm)->ept_pointers_match
2862                                 = EPT_POINTERS_CHECK;
2863                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2864                 }
2865
2866                 if (enable_unrestricted_guest || is_paging(vcpu) ||
2867                     is_guest_mode(vcpu))
2868                         guest_cr3 = kvm_read_cr3(vcpu);
2869                 else
2870                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2871                 ept_load_pdptrs(vcpu);
2872         }
2873
2874         vmcs_writel(GUEST_CR3, guest_cr3);
2875 }
2876
2877 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2878 {
2879         /*
2880          * Pass through host's Machine Check Enable value to hw_cr4, which
2881          * is in force while we are in guest mode.  Do not let guests control
2882          * this bit, even if host CR4.MCE == 0.
2883          */
2884         unsigned long hw_cr4;
2885
2886         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2887         if (enable_unrestricted_guest)
2888                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2889         else if (to_vmx(vcpu)->rmode.vm86_active)
2890                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2891         else
2892                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2893
2894         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2895                 if (cr4 & X86_CR4_UMIP) {
2896                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
2897                                 SECONDARY_EXEC_DESC);
2898                         hw_cr4 &= ~X86_CR4_UMIP;
2899                 } else if (!is_guest_mode(vcpu) ||
2900                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
2901                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2902                                         SECONDARY_EXEC_DESC);
2903         }
2904
2905         if (cr4 & X86_CR4_VMXE) {
2906                 /*
2907                  * To use VMXON (and later other VMX instructions), a guest
2908                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
2909                  * So basically the check on whether to allow nested VMX
2910                  * is here.  We operate under the default treatment of SMM,
2911                  * so VMX cannot be enabled under SMM.
2912                  */
2913                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2914                         return 1;
2915         }
2916
2917         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2918                 return 1;
2919
2920         vcpu->arch.cr4 = cr4;
2921
2922         if (!enable_unrestricted_guest) {
2923                 if (enable_ept) {
2924                         if (!is_paging(vcpu)) {
2925                                 hw_cr4 &= ~X86_CR4_PAE;
2926                                 hw_cr4 |= X86_CR4_PSE;
2927                         } else if (!(cr4 & X86_CR4_PAE)) {
2928                                 hw_cr4 &= ~X86_CR4_PAE;
2929                         }
2930                 }
2931
2932                 /*
2933                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
2934                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
2935                  * to be manually disabled when guest switches to non-paging
2936                  * mode.
2937                  *
2938                  * If !enable_unrestricted_guest, the CPU is always running
2939                  * with CR0.PG=1 and CR4 needs to be modified.
2940                  * If enable_unrestricted_guest, the CPU automatically
2941                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
2942                  */
2943                 if (!is_paging(vcpu))
2944                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
2945         }
2946
2947         vmcs_writel(CR4_READ_SHADOW, cr4);
2948         vmcs_writel(GUEST_CR4, hw_cr4);
2949         return 0;
2950 }
2951
2952 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
2953 {
2954         struct vcpu_vmx *vmx = to_vmx(vcpu);
2955         u32 ar;
2956
2957         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
2958                 *var = vmx->rmode.segs[seg];
2959                 if (seg == VCPU_SREG_TR
2960                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2961                         return;
2962                 var->base = vmx_read_guest_seg_base(vmx, seg);
2963                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2964                 return;
2965         }
2966         var->base = vmx_read_guest_seg_base(vmx, seg);
2967         var->limit = vmx_read_guest_seg_limit(vmx, seg);
2968         var->selector = vmx_read_guest_seg_selector(vmx, seg);
2969         ar = vmx_read_guest_seg_ar(vmx, seg);
2970         var->unusable = (ar >> 16) & 1;
2971         var->type = ar & 15;
2972         var->s = (ar >> 4) & 1;
2973         var->dpl = (ar >> 5) & 3;
2974         /*
2975          * Some userspaces do not preserve unusable property. Since usable
2976          * segment has to be present according to VMX spec we can use present
2977          * property to amend userspace bug by making unusable segment always
2978          * nonpresent. vmx_segment_access_rights() already marks nonpresent
2979          * segment as unusable.
2980          */
2981         var->present = !var->unusable;
2982         var->avl = (ar >> 12) & 1;
2983         var->l = (ar >> 13) & 1;
2984         var->db = (ar >> 14) & 1;
2985         var->g = (ar >> 15) & 1;
2986 }
2987
2988 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2989 {
2990         struct kvm_segment s;
2991
2992         if (to_vmx(vcpu)->rmode.vm86_active) {
2993                 vmx_get_segment(vcpu, &s, seg);
2994                 return s.base;
2995         }
2996         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
2997 }
2998
2999 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3000 {
3001         struct vcpu_vmx *vmx = to_vmx(vcpu);
3002
3003         if (unlikely(vmx->rmode.vm86_active))
3004                 return 0;
3005         else {
3006                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3007                 return VMX_AR_DPL(ar);
3008         }
3009 }
3010
3011 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3012 {
3013         u32 ar;
3014
3015         if (var->unusable || !var->present)
3016                 ar = 1 << 16;
3017         else {
3018                 ar = var->type & 15;
3019                 ar |= (var->s & 1) << 4;
3020                 ar |= (var->dpl & 3) << 5;
3021                 ar |= (var->present & 1) << 7;
3022                 ar |= (var->avl & 1) << 12;
3023                 ar |= (var->l & 1) << 13;
3024                 ar |= (var->db & 1) << 14;
3025                 ar |= (var->g & 1) << 15;
3026         }
3027
3028         return ar;
3029 }
3030
3031 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3032 {
3033         struct vcpu_vmx *vmx = to_vmx(vcpu);
3034         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3035
3036         vmx_segment_cache_clear(vmx);
3037
3038         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3039                 vmx->rmode.segs[seg] = *var;
3040                 if (seg == VCPU_SREG_TR)
3041                         vmcs_write16(sf->selector, var->selector);
3042                 else if (var->s)
3043                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3044                 goto out;
3045         }
3046
3047         vmcs_writel(sf->base, var->base);
3048         vmcs_write32(sf->limit, var->limit);
3049         vmcs_write16(sf->selector, var->selector);
3050
3051         /*
3052          *   Fix the "Accessed" bit in AR field of segment registers for older
3053          * qemu binaries.
3054          *   IA32 arch specifies that at the time of processor reset the
3055          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3056          * is setting it to 0 in the userland code. This causes invalid guest
3057          * state vmexit when "unrestricted guest" mode is turned on.
3058          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3059          * tree. Newer qemu binaries with that qemu fix would not need this
3060          * kvm hack.
3061          */
3062         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3063                 var->type |= 0x1; /* Accessed */
3064
3065         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3066
3067 out:
3068         vmx->emulation_required = emulation_required(vcpu);
3069 }
3070
3071 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3072 {
3073         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3074
3075         *db = (ar >> 14) & 1;
3076         *l = (ar >> 13) & 1;
3077 }
3078
3079 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3080 {
3081         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3082         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3083 }
3084
3085 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3086 {
3087         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3088         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3089 }
3090
3091 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3092 {
3093         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3094         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3095 }
3096
3097 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3098 {
3099         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3100         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3101 }
3102
3103 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3104 {
3105         struct kvm_segment var;
3106         u32 ar;
3107
3108         vmx_get_segment(vcpu, &var, seg);
3109         var.dpl = 0x3;
3110         if (seg == VCPU_SREG_CS)
3111                 var.type = 0x3;
3112         ar = vmx_segment_access_rights(&var);
3113
3114         if (var.base != (var.selector << 4))
3115                 return false;
3116         if (var.limit != 0xffff)
3117                 return false;
3118         if (ar != 0xf3)
3119                 return false;
3120
3121         return true;
3122 }
3123
3124 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3125 {
3126         struct kvm_segment cs;
3127         unsigned int cs_rpl;
3128
3129         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3130         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3131
3132         if (cs.unusable)
3133                 return false;
3134         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3135                 return false;
3136         if (!cs.s)
3137                 return false;
3138         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3139                 if (cs.dpl > cs_rpl)
3140                         return false;
3141         } else {
3142                 if (cs.dpl != cs_rpl)
3143                         return false;
3144         }
3145         if (!cs.present)
3146                 return false;
3147
3148         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3149         return true;
3150 }
3151
3152 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3153 {
3154         struct kvm_segment ss;
3155         unsigned int ss_rpl;
3156
3157         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3158         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3159
3160         if (ss.unusable)
3161                 return true;
3162         if (ss.type != 3 && ss.type != 7)
3163                 return false;
3164         if (!ss.s)
3165                 return false;
3166         if (ss.dpl != ss_rpl) /* DPL != RPL */
3167                 return false;
3168         if (!ss.present)
3169                 return false;
3170
3171         return true;
3172 }
3173
3174 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3175 {
3176         struct kvm_segment var;
3177         unsigned int rpl;
3178
3179         vmx_get_segment(vcpu, &var, seg);
3180         rpl = var.selector & SEGMENT_RPL_MASK;
3181
3182         if (var.unusable)
3183                 return true;
3184         if (!var.s)
3185                 return false;
3186         if (!var.present)
3187                 return false;
3188         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3189                 if (var.dpl < rpl) /* DPL < RPL */
3190                         return false;
3191         }
3192
3193         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3194          * rights flags
3195          */
3196         return true;
3197 }
3198
3199 static bool tr_valid(struct kvm_vcpu *vcpu)
3200 {
3201         struct kvm_segment tr;
3202
3203         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3204
3205         if (tr.unusable)
3206                 return false;
3207         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3208                 return false;
3209         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3210                 return false;
3211         if (!tr.present)
3212                 return false;
3213
3214         return true;
3215 }
3216
3217 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3218 {
3219         struct kvm_segment ldtr;
3220
3221         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3222
3223         if (ldtr.unusable)
3224                 return true;
3225         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3226                 return false;
3227         if (ldtr.type != 2)
3228                 return false;
3229         if (!ldtr.present)
3230                 return false;
3231
3232         return true;
3233 }
3234
3235 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3236 {
3237         struct kvm_segment cs, ss;
3238
3239         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3240         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3241
3242         return ((cs.selector & SEGMENT_RPL_MASK) ==
3243                  (ss.selector & SEGMENT_RPL_MASK));
3244 }
3245
3246 /*
3247  * Check if guest state is valid. Returns true if valid, false if
3248  * not.
3249  * We assume that registers are always usable
3250  */
3251 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3252 {
3253         if (enable_unrestricted_guest)
3254                 return true;
3255
3256         /* real mode guest state checks */
3257         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3258                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3259                         return false;
3260                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3261                         return false;
3262                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3263                         return false;
3264                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3265                         return false;
3266                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3267                         return false;
3268                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3269                         return false;
3270         } else {
3271         /* protected mode guest state checks */
3272                 if (!cs_ss_rpl_check(vcpu))
3273                         return false;
3274                 if (!code_segment_valid(vcpu))
3275                         return false;
3276                 if (!stack_segment_valid(vcpu))
3277                         return false;
3278                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3279                         return false;
3280                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3281                         return false;
3282                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3283                         return false;
3284                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3285                         return false;
3286                 if (!tr_valid(vcpu))
3287                         return false;
3288                 if (!ldtr_valid(vcpu))
3289                         return false;
3290         }
3291         /* TODO:
3292          * - Add checks on RIP
3293          * - Add checks on RFLAGS
3294          */
3295
3296         return true;
3297 }
3298
3299 static int init_rmode_tss(struct kvm *kvm)
3300 {
3301         gfn_t fn;
3302         u16 data = 0;
3303         int idx, r;
3304
3305         idx = srcu_read_lock(&kvm->srcu);
3306         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3307         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3308         if (r < 0)
3309                 goto out;
3310         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3311         r = kvm_write_guest_page(kvm, fn++, &data,
3312                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3313         if (r < 0)
3314                 goto out;
3315         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3316         if (r < 0)
3317                 goto out;
3318         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3319         if (r < 0)
3320                 goto out;
3321         data = ~0;
3322         r = kvm_write_guest_page(kvm, fn, &data,
3323                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3324                                  sizeof(u8));
3325 out:
3326         srcu_read_unlock(&kvm->srcu, idx);
3327         return r;
3328 }
3329
3330 static int init_rmode_identity_map(struct kvm *kvm)
3331 {
3332         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3333         int i, idx, r = 0;
3334         kvm_pfn_t identity_map_pfn;
3335         u32 tmp;
3336
3337         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3338         mutex_lock(&kvm->slots_lock);
3339
3340         if (likely(kvm_vmx->ept_identity_pagetable_done))
3341                 goto out2;
3342
3343         if (!kvm_vmx->ept_identity_map_addr)
3344                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3345         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3346
3347         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3348                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3349         if (r < 0)
3350                 goto out2;
3351
3352         idx = srcu_read_lock(&kvm->srcu);
3353         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3354         if (r < 0)
3355                 goto out;
3356         /* Set up identity-mapping pagetable for EPT in real mode */
3357         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3358                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3359                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3360                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3361                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3362                 if (r < 0)
3363                         goto out;
3364         }
3365         kvm_vmx->ept_identity_pagetable_done = true;
3366
3367 out:
3368         srcu_read_unlock(&kvm->srcu, idx);
3369
3370 out2:
3371         mutex_unlock(&kvm->slots_lock);
3372         return r;
3373 }
3374
3375 static void seg_setup(int seg)
3376 {
3377         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3378         unsigned int ar;
3379
3380         vmcs_write16(sf->selector, 0);
3381         vmcs_writel(sf->base, 0);
3382         vmcs_write32(sf->limit, 0xffff);
3383         ar = 0x93;
3384         if (seg == VCPU_SREG_CS)
3385                 ar |= 0x08; /* code segment */
3386
3387         vmcs_write32(sf->ar_bytes, ar);
3388 }
3389
3390 static int alloc_apic_access_page(struct kvm *kvm)
3391 {
3392         struct page *page;
3393         int r = 0;
3394
3395         mutex_lock(&kvm->slots_lock);
3396         if (kvm->arch.apic_access_page_done)
3397                 goto out;
3398         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3399                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3400         if (r)
3401                 goto out;
3402
3403         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3404         if (is_error_page(page)) {
3405                 r = -EFAULT;
3406                 goto out;
3407         }
3408
3409         /*
3410          * Do not pin the page in memory, so that memory hot-unplug
3411          * is able to migrate it.
3412          */
3413         put_page(page);
3414         kvm->arch.apic_access_page_done = true;
3415 out:
3416         mutex_unlock(&kvm->slots_lock);
3417         return r;
3418 }
3419
3420 int allocate_vpid(void)
3421 {
3422         int vpid;
3423
3424         if (!enable_vpid)
3425                 return 0;
3426         spin_lock(&vmx_vpid_lock);
3427         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3428         if (vpid < VMX_NR_VPIDS)
3429                 __set_bit(vpid, vmx_vpid_bitmap);
3430         else
3431                 vpid = 0;
3432         spin_unlock(&vmx_vpid_lock);
3433         return vpid;
3434 }
3435
3436 void free_vpid(int vpid)
3437 {
3438         if (!enable_vpid || vpid == 0)
3439                 return;
3440         spin_lock(&vmx_vpid_lock);
3441         __clear_bit(vpid, vmx_vpid_bitmap);
3442         spin_unlock(&vmx_vpid_lock);
3443 }
3444
3445 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3446                                                           u32 msr, int type)
3447 {
3448         int f = sizeof(unsigned long);
3449
3450         if (!cpu_has_vmx_msr_bitmap())
3451                 return;
3452
3453         if (static_branch_unlikely(&enable_evmcs))
3454                 evmcs_touch_msr_bitmap();
3455
3456         /*
3457          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3458          * have the write-low and read-high bitmap offsets the wrong way round.
3459          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3460          */
3461         if (msr <= 0x1fff) {
3462                 if (type & MSR_TYPE_R)
3463                         /* read-low */
3464                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3465
3466                 if (type & MSR_TYPE_W)
3467                         /* write-low */
3468                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3469
3470         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3471                 msr &= 0x1fff;
3472                 if (type & MSR_TYPE_R)
3473                         /* read-high */
3474                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3475
3476                 if (type & MSR_TYPE_W)
3477                         /* write-high */
3478                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3479
3480         }
3481 }
3482
3483 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3484                                                          u32 msr, int type)
3485 {
3486         int f = sizeof(unsigned long);
3487
3488         if (!cpu_has_vmx_msr_bitmap())
3489                 return;
3490
3491         if (static_branch_unlikely(&enable_evmcs))
3492                 evmcs_touch_msr_bitmap();
3493
3494         /*
3495          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3496          * have the write-low and read-high bitmap offsets the wrong way round.
3497          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3498          */
3499         if (msr <= 0x1fff) {
3500                 if (type & MSR_TYPE_R)
3501                         /* read-low */
3502                         __set_bit(msr, msr_bitmap + 0x000 / f);
3503
3504                 if (type & MSR_TYPE_W)
3505                         /* write-low */
3506                         __set_bit(msr, msr_bitmap + 0x800 / f);
3507
3508         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3509                 msr &= 0x1fff;
3510                 if (type & MSR_TYPE_R)
3511                         /* read-high */
3512                         __set_bit(msr, msr_bitmap + 0x400 / f);
3513
3514                 if (type & MSR_TYPE_W)
3515                         /* write-high */
3516                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3517
3518         }
3519 }
3520
3521 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3522                                                       u32 msr, int type, bool value)
3523 {
3524         if (value)
3525                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3526         else
3527                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3528 }
3529
3530 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3531 {
3532         u8 mode = 0;
3533
3534         if (cpu_has_secondary_exec_ctrls() &&
3535             (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
3536              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3537                 mode |= MSR_BITMAP_MODE_X2APIC;
3538                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3539                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3540         }
3541
3542         return mode;
3543 }
3544
3545 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3546                                          u8 mode)
3547 {
3548         int msr;
3549
3550         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3551                 unsigned word = msr / BITS_PER_LONG;
3552                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3553                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3554         }
3555
3556         if (mode & MSR_BITMAP_MODE_X2APIC) {
3557                 /*
3558                  * TPR reads and writes can be virtualized even if virtual interrupt
3559                  * delivery is not in use.
3560                  */
3561                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3562                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3563                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3564                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3565                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3566                 }
3567         }
3568 }
3569
3570 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3571 {
3572         struct vcpu_vmx *vmx = to_vmx(vcpu);
3573         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3574         u8 mode = vmx_msr_bitmap_mode(vcpu);
3575         u8 changed = mode ^ vmx->msr_bitmap_mode;
3576
3577         if (!changed)
3578                 return;
3579
3580         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3581                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3582
3583         vmx->msr_bitmap_mode = mode;
3584 }
3585
3586 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3587 {
3588         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3589         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3590         u32 i;
3591
3592         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3593                                                         MSR_TYPE_RW, flag);
3594         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3595                                                         MSR_TYPE_RW, flag);
3596         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3597                                                         MSR_TYPE_RW, flag);
3598         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3599                                                         MSR_TYPE_RW, flag);
3600         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3601                 vmx_set_intercept_for_msr(msr_bitmap,
3602                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3603                 vmx_set_intercept_for_msr(msr_bitmap,
3604                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3605         }
3606 }
3607
3608 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3609 {
3610         return enable_apicv;
3611 }
3612
3613 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3614 {
3615         struct vcpu_vmx *vmx = to_vmx(vcpu);
3616         void *vapic_page;
3617         u32 vppr;
3618         int rvi;
3619
3620         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3621                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3622                 WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
3623                 return false;
3624
3625         rvi = vmx_get_rvi();
3626
3627         vapic_page = kmap(vmx->nested.virtual_apic_page);
3628         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3629         kunmap(vmx->nested.virtual_apic_page);
3630
3631         return ((rvi & 0xf0) > (vppr & 0xf0));
3632 }
3633
3634 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3635                                                      bool nested)
3636 {
3637 #ifdef CONFIG_SMP
3638         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3639
3640         if (vcpu->mode == IN_GUEST_MODE) {
3641                 /*
3642                  * The vector of interrupt to be delivered to vcpu had
3643                  * been set in PIR before this function.
3644                  *
3645                  * Following cases will be reached in this block, and
3646                  * we always send a notification event in all cases as
3647                  * explained below.
3648                  *
3649                  * Case 1: vcpu keeps in non-root mode. Sending a
3650                  * notification event posts the interrupt to vcpu.
3651                  *
3652                  * Case 2: vcpu exits to root mode and is still
3653                  * runnable. PIR will be synced to vIRR before the
3654                  * next vcpu entry. Sending a notification event in
3655                  * this case has no effect, as vcpu is not in root
3656                  * mode.
3657                  *
3658                  * Case 3: vcpu exits to root mode and is blocked.
3659                  * vcpu_block() has already synced PIR to vIRR and
3660                  * never blocks vcpu if vIRR is not cleared. Therefore,
3661                  * a blocked vcpu here does not wait for any requested
3662                  * interrupts in PIR, and sending a notification event
3663                  * which has no effect is safe here.
3664                  */
3665
3666                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3667                 return true;
3668         }
3669 #endif
3670         return false;
3671 }
3672
3673 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3674                                                 int vector)
3675 {
3676         struct vcpu_vmx *vmx = to_vmx(vcpu);
3677
3678         if (is_guest_mode(vcpu) &&
3679             vector == vmx->nested.posted_intr_nv) {
3680                 /*
3681                  * If a posted intr is not recognized by hardware,
3682                  * we will accomplish it in the next vmentry.
3683                  */
3684                 vmx->nested.pi_pending = true;
3685                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3686                 /* the PIR and ON have been set by L1. */
3687                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3688                         kvm_vcpu_kick(vcpu);
3689                 return 0;
3690         }
3691         return -1;
3692 }
3693 /*
3694  * Send interrupt to vcpu via posted interrupt way.
3695  * 1. If target vcpu is running(non-root mode), send posted interrupt
3696  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3697  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3698  * interrupt from PIR in next vmentry.
3699  */
3700 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3701 {
3702         struct vcpu_vmx *vmx = to_vmx(vcpu);
3703         int r;
3704
3705         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3706         if (!r)
3707                 return;
3708
3709         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3710                 return;
3711
3712         /* If a previous notification has sent the IPI, nothing to do.  */
3713         if (pi_test_and_set_on(&vmx->pi_desc))
3714                 return;
3715
3716         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3717                 kvm_vcpu_kick(vcpu);
3718 }
3719
3720 /*
3721  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3722  * will not change in the lifetime of the guest.
3723  * Note that host-state that does change is set elsewhere. E.g., host-state
3724  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3725  */
3726 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3727 {
3728         u32 low32, high32;
3729         unsigned long tmpl;
3730         struct desc_ptr dt;
3731         unsigned long cr0, cr3, cr4;
3732
3733         cr0 = read_cr0();
3734         WARN_ON(cr0 & X86_CR0_TS);
3735         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3736
3737         /*
3738          * Save the most likely value for this task's CR3 in the VMCS.
3739          * We can't use __get_current_cr3_fast() because we're not atomic.
3740          */
3741         cr3 = __read_cr3();
3742         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3743         vmx->loaded_vmcs->host_state.cr3 = cr3;
3744
3745         /* Save the most likely value for this task's CR4 in the VMCS. */
3746         cr4 = cr4_read_shadow();
3747         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3748         vmx->loaded_vmcs->host_state.cr4 = cr4;
3749
3750         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3751 #ifdef CONFIG_X86_64
3752         /*
3753          * Load null selectors, so we can avoid reloading them in
3754          * vmx_prepare_switch_to_host(), in case userspace uses
3755          * the null selectors too (the expected case).
3756          */
3757         vmcs_write16(HOST_DS_SELECTOR, 0);
3758         vmcs_write16(HOST_ES_SELECTOR, 0);
3759 #else
3760         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3761         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3762 #endif
3763         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3764         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3765
3766         store_idt(&dt);
3767         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3768         vmx->host_idt_base = dt.address;
3769
3770         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3771
3772         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3773         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3774         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3775         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3776
3777         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3778                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3779                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3780         }
3781
3782         if (cpu_has_load_ia32_efer())
3783                 vmcs_write64(HOST_IA32_EFER, host_efer);
3784 }
3785
3786 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3787 {
3788         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3789         if (enable_ept)
3790                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3791         if (is_guest_mode(&vmx->vcpu))
3792                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3793                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3794         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3795 }
3796
3797 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3798 {
3799         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3800
3801         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3802                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3803
3804         if (!enable_vnmi)
3805                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3806
3807         /* Enable the preemption timer dynamically */
3808         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3809         return pin_based_exec_ctrl;
3810 }
3811
3812 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3813 {
3814         struct vcpu_vmx *vmx = to_vmx(vcpu);
3815
3816         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3817         if (cpu_has_secondary_exec_ctrls()) {
3818                 if (kvm_vcpu_apicv_active(vcpu))
3819                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
3820                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3821                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3822                 else
3823                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
3824                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3825                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3826         }
3827
3828         if (cpu_has_vmx_msr_bitmap())
3829                 vmx_update_msr_bitmap(vcpu);
3830 }
3831
3832 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3833 {
3834         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3835
3836         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3837                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3838
3839         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3840                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3841 #ifdef CONFIG_X86_64
3842                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3843                                 CPU_BASED_CR8_LOAD_EXITING;
3844 #endif
3845         }
3846         if (!enable_ept)
3847                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3848                                 CPU_BASED_CR3_LOAD_EXITING  |
3849                                 CPU_BASED_INVLPG_EXITING;
3850         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3851                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3852                                 CPU_BASED_MONITOR_EXITING);
3853         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3854                 exec_control &= ~CPU_BASED_HLT_EXITING;
3855         return exec_control;
3856 }
3857
3858
3859 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3860 {
3861         struct kvm_vcpu *vcpu = &vmx->vcpu;
3862
3863         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3864
3865         if (pt_mode == PT_MODE_SYSTEM)
3866                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3867         if (!cpu_need_virtualize_apic_accesses(vcpu))
3868                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3869         if (vmx->vpid == 0)
3870                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3871         if (!enable_ept) {
3872                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3873                 enable_unrestricted_guest = 0;
3874         }
3875         if (!enable_unrestricted_guest)
3876                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3877         if (kvm_pause_in_guest(vmx->vcpu.kvm))
3878                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3879         if (!kvm_vcpu_apicv_active(vcpu))
3880                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3881                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3882         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3883
3884         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3885          * in vmx_set_cr4.  */
3886         exec_control &= ~SECONDARY_EXEC_DESC;
3887
3888         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3889            (handle_vmptrld).
3890            We can NOT enable shadow_vmcs here because we don't have yet
3891            a current VMCS12
3892         */
3893         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3894
3895         if (!enable_pml)
3896                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3897
3898         if (vmx_xsaves_supported()) {
3899                 /* Exposing XSAVES only when XSAVE is exposed */
3900                 bool xsaves_enabled =
3901                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3902                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3903
3904                 if (!xsaves_enabled)
3905                         exec_control &= ~SECONDARY_EXEC_XSAVES;
3906
3907                 if (nested) {
3908                         if (xsaves_enabled)
3909                                 vmx->nested.msrs.secondary_ctls_high |=
3910                                         SECONDARY_EXEC_XSAVES;
3911                         else
3912                                 vmx->nested.msrs.secondary_ctls_high &=
3913                                         ~SECONDARY_EXEC_XSAVES;
3914                 }
3915         }
3916
3917         if (vmx_rdtscp_supported()) {
3918                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3919                 if (!rdtscp_enabled)
3920                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
3921
3922                 if (nested) {
3923                         if (rdtscp_enabled)
3924                                 vmx->nested.msrs.secondary_ctls_high |=
3925                                         SECONDARY_EXEC_RDTSCP;
3926                         else
3927                                 vmx->nested.msrs.secondary_ctls_high &=
3928                                         ~SECONDARY_EXEC_RDTSCP;
3929                 }
3930         }
3931
3932         if (vmx_invpcid_supported()) {
3933                 /* Exposing INVPCID only when PCID is exposed */
3934                 bool invpcid_enabled =
3935                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
3936                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
3937
3938                 if (!invpcid_enabled) {
3939                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3940                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
3941                 }
3942
3943                 if (nested) {
3944                         if (invpcid_enabled)
3945                                 vmx->nested.msrs.secondary_ctls_high |=
3946                                         SECONDARY_EXEC_ENABLE_INVPCID;
3947                         else
3948                                 vmx->nested.msrs.secondary_ctls_high &=
3949                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
3950                 }
3951         }
3952
3953         if (vmx_rdrand_supported()) {
3954                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
3955                 if (rdrand_enabled)
3956                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
3957
3958                 if (nested) {
3959                         if (rdrand_enabled)
3960                                 vmx->nested.msrs.secondary_ctls_high |=
3961                                         SECONDARY_EXEC_RDRAND_EXITING;
3962                         else
3963                                 vmx->nested.msrs.secondary_ctls_high &=
3964                                         ~SECONDARY_EXEC_RDRAND_EXITING;
3965                 }
3966         }
3967
3968         if (vmx_rdseed_supported()) {
3969                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
3970                 if (rdseed_enabled)
3971                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
3972
3973                 if (nested) {
3974                         if (rdseed_enabled)
3975                                 vmx->nested.msrs.secondary_ctls_high |=
3976                                         SECONDARY_EXEC_RDSEED_EXITING;
3977                         else
3978                                 vmx->nested.msrs.secondary_ctls_high &=
3979                                         ~SECONDARY_EXEC_RDSEED_EXITING;
3980                 }
3981         }
3982
3983         vmx->secondary_exec_control = exec_control;
3984 }
3985
3986 static void ept_set_mmio_spte_mask(void)
3987 {
3988         /*
3989          * EPT Misconfigurations can be generated if the value of bits 2:0
3990          * of an EPT paging-structure entry is 110b (write/execute).
3991          */
3992         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
3993                                    VMX_EPT_MISCONFIG_WX_VALUE);
3994 }
3995
3996 #define VMX_XSS_EXIT_BITMAP 0
3997
3998 /*
3999  * Sets up the vmcs for emulated real mode.
4000  */
4001 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4002 {
4003         int i;
4004
4005         if (nested)
4006                 nested_vmx_vcpu_setup();
4007
4008         if (cpu_has_vmx_msr_bitmap())
4009                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4010
4011         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4012
4013         /* Control */
4014         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4015         vmx->hv_deadline_tsc = -1;
4016
4017         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4018
4019         if (cpu_has_secondary_exec_ctrls()) {
4020                 vmx_compute_secondary_exec_control(vmx);
4021                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4022                              vmx->secondary_exec_control);
4023         }
4024
4025         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4026                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4027                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4028                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4029                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4030
4031                 vmcs_write16(GUEST_INTR_STATUS, 0);
4032
4033                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4034                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4035         }
4036
4037         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4038                 vmcs_write32(PLE_GAP, ple_gap);
4039                 vmx->ple_window = ple_window;
4040                 vmx->ple_window_dirty = true;
4041         }
4042
4043         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4044         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4045         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4046
4047         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4048         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4049         vmx_set_constant_host_state(vmx);
4050         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4051         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4052
4053         if (cpu_has_vmx_vmfunc())
4054                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4055
4056         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4057         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4058         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4059         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4060         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4061
4062         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4063                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4064
4065         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4066                 u32 index = vmx_msr_index[i];
4067                 u32 data_low, data_high;
4068                 int j = vmx->nmsrs;
4069
4070                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4071                         continue;
4072                 if (wrmsr_safe(index, data_low, data_high) < 0)
4073                         continue;
4074                 vmx->guest_msrs[j].index = i;
4075                 vmx->guest_msrs[j].data = 0;
4076                 vmx->guest_msrs[j].mask = -1ull;
4077                 ++vmx->nmsrs;
4078         }
4079
4080         vm_exit_controls_init(vmx, vmx_vmexit_ctrl());
4081
4082         /* 22.2.1, 20.8.1 */
4083         vm_entry_controls_init(vmx, vmx_vmentry_ctrl());
4084
4085         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4086         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4087
4088         set_cr4_guest_host_mask(vmx);
4089
4090         if (vmx_xsaves_supported())
4091                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4092
4093         if (enable_pml) {
4094                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4095                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4096         }
4097
4098         if (cpu_has_vmx_encls_vmexit())
4099                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4100
4101         if (pt_mode == PT_MODE_HOST_GUEST) {
4102                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4103                 /* Bit[6~0] are forced to 1, writes are ignored. */
4104                 vmx->pt_desc.guest.output_mask = 0x7F;
4105                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4106         }
4107 }
4108
4109 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4110 {
4111         struct vcpu_vmx *vmx = to_vmx(vcpu);
4112         struct msr_data apic_base_msr;
4113         u64 cr0;
4114
4115         vmx->rmode.vm86_active = 0;
4116         vmx->spec_ctrl = 0;
4117
4118         vcpu->arch.microcode_version = 0x100000000ULL;
4119         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4120         kvm_set_cr8(vcpu, 0);
4121
4122         if (!init_event) {
4123                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4124                                      MSR_IA32_APICBASE_ENABLE;
4125                 if (kvm_vcpu_is_reset_bsp(vcpu))
4126                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4127                 apic_base_msr.host_initiated = true;
4128                 kvm_set_apic_base(vcpu, &apic_base_msr);
4129         }
4130
4131         vmx_segment_cache_clear(vmx);
4132
4133         seg_setup(VCPU_SREG_CS);
4134         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4135         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4136
4137         seg_setup(VCPU_SREG_DS);
4138         seg_setup(VCPU_SREG_ES);
4139         seg_setup(VCPU_SREG_FS);
4140         seg_setup(VCPU_SREG_GS);
4141         seg_setup(VCPU_SREG_SS);
4142
4143         vmcs_write16(GUEST_TR_SELECTOR, 0);
4144         vmcs_writel(GUEST_TR_BASE, 0);
4145         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4146         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4147
4148         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4149         vmcs_writel(GUEST_LDTR_BASE, 0);
4150         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4151         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4152
4153         if (!init_event) {
4154                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4155                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4156                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4157                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4158         }
4159
4160         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4161         kvm_rip_write(vcpu, 0xfff0);
4162
4163         vmcs_writel(GUEST_GDTR_BASE, 0);
4164         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4165
4166         vmcs_writel(GUEST_IDTR_BASE, 0);
4167         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4168
4169         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4170         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4171         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4172         if (kvm_mpx_supported())
4173                 vmcs_write64(GUEST_BNDCFGS, 0);
4174
4175         setup_msrs(vmx);
4176
4177         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4178
4179         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4180                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4181                 if (cpu_need_tpr_shadow(vcpu))
4182                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4183                                      __pa(vcpu->arch.apic->regs));
4184                 vmcs_write32(TPR_THRESHOLD, 0);
4185         }
4186
4187         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4188
4189         if (vmx->vpid != 0)
4190                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4191
4192         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4193         vmx->vcpu.arch.cr0 = cr0;
4194         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4195         vmx_set_cr4(vcpu, 0);
4196         vmx_set_efer(vcpu, 0);
4197
4198         update_exception_bitmap(vcpu);
4199
4200         vpid_sync_context(vmx->vpid);
4201         if (init_event)
4202                 vmx_clear_hlt(vcpu);
4203 }
4204
4205 static void enable_irq_window(struct kvm_vcpu *vcpu)
4206 {
4207         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4208                       CPU_BASED_VIRTUAL_INTR_PENDING);
4209 }
4210
4211 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4212 {
4213         if (!enable_vnmi ||
4214             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4215                 enable_irq_window(vcpu);
4216                 return;
4217         }
4218
4219         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4220                       CPU_BASED_VIRTUAL_NMI_PENDING);
4221 }
4222
4223 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4224 {
4225         struct vcpu_vmx *vmx = to_vmx(vcpu);
4226         uint32_t intr;
4227         int irq = vcpu->arch.interrupt.nr;
4228
4229         trace_kvm_inj_virq(irq);
4230
4231         ++vcpu->stat.irq_injections;
4232         if (vmx->rmode.vm86_active) {
4233                 int inc_eip = 0;
4234                 if (vcpu->arch.interrupt.soft)
4235                         inc_eip = vcpu->arch.event_exit_inst_len;
4236                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4237                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4238                 return;
4239         }
4240         intr = irq | INTR_INFO_VALID_MASK;
4241         if (vcpu->arch.interrupt.soft) {
4242                 intr |= INTR_TYPE_SOFT_INTR;
4243                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4244                              vmx->vcpu.arch.event_exit_inst_len);
4245         } else
4246                 intr |= INTR_TYPE_EXT_INTR;
4247         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4248
4249         vmx_clear_hlt(vcpu);
4250 }
4251
4252 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4253 {
4254         struct vcpu_vmx *vmx = to_vmx(vcpu);
4255
4256         if (!enable_vnmi) {
4257                 /*
4258                  * Tracking the NMI-blocked state in software is built upon
4259                  * finding the next open IRQ window. This, in turn, depends on
4260                  * well-behaving guests: They have to keep IRQs disabled at
4261                  * least as long as the NMI handler runs. Otherwise we may
4262                  * cause NMI nesting, maybe breaking the guest. But as this is
4263                  * highly unlikely, we can live with the residual risk.
4264                  */
4265                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4266                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4267         }
4268
4269         ++vcpu->stat.nmi_injections;
4270         vmx->loaded_vmcs->nmi_known_unmasked = false;
4271
4272         if (vmx->rmode.vm86_active) {
4273                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4274                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4275                 return;
4276         }
4277
4278         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4279                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4280
4281         vmx_clear_hlt(vcpu);
4282 }
4283
4284 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4285 {
4286         struct vcpu_vmx *vmx = to_vmx(vcpu);
4287         bool masked;
4288
4289         if (!enable_vnmi)
4290                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4291         if (vmx->loaded_vmcs->nmi_known_unmasked)
4292                 return false;
4293         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4294         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4295         return masked;
4296 }
4297
4298 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4299 {
4300         struct vcpu_vmx *vmx = to_vmx(vcpu);
4301
4302         if (!enable_vnmi) {
4303                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4304                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4305                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4306                 }
4307         } else {
4308                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4309                 if (masked)
4310                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4311                                       GUEST_INTR_STATE_NMI);
4312                 else
4313                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4314                                         GUEST_INTR_STATE_NMI);
4315         }
4316 }
4317
4318 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4319 {
4320         if (to_vmx(vcpu)->nested.nested_run_pending)
4321                 return 0;
4322
4323         if (!enable_vnmi &&
4324             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4325                 return 0;
4326
4327         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4328                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4329                    | GUEST_INTR_STATE_NMI));
4330 }
4331
4332 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4333 {
4334         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4335                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4336                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4337                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4338 }
4339
4340 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4341 {
4342         int ret;
4343
4344         if (enable_unrestricted_guest)
4345                 return 0;
4346
4347         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4348                                     PAGE_SIZE * 3);
4349         if (ret)
4350                 return ret;
4351         to_kvm_vmx(kvm)->tss_addr = addr;
4352         return init_rmode_tss(kvm);
4353 }
4354
4355 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4356 {
4357         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4358         return 0;
4359 }
4360
4361 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4362 {
4363         switch (vec) {
4364         case BP_VECTOR:
4365                 /*
4366                  * Update instruction length as we may reinject the exception
4367                  * from user space while in guest debugging mode.
4368                  */
4369                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4370                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4371                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4372                         return false;
4373                 /* fall through */
4374         case DB_VECTOR:
4375                 if (vcpu->guest_debug &
4376                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4377                         return false;
4378                 /* fall through */
4379         case DE_VECTOR:
4380         case OF_VECTOR:
4381         case BR_VECTOR:
4382         case UD_VECTOR:
4383         case DF_VECTOR:
4384         case SS_VECTOR:
4385         case GP_VECTOR:
4386         case MF_VECTOR:
4387                 return true;
4388         break;
4389         }
4390         return false;
4391 }
4392
4393 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4394                                   int vec, u32 err_code)
4395 {
4396         /*
4397          * Instruction with address size override prefix opcode 0x67
4398          * Cause the #SS fault with 0 error code in VM86 mode.
4399          */
4400         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4401                 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4402                         if (vcpu->arch.halt_request) {
4403                                 vcpu->arch.halt_request = 0;
4404                                 return kvm_vcpu_halt(vcpu);
4405                         }
4406                         return 1;
4407                 }
4408                 return 0;
4409         }
4410
4411         /*
4412          * Forward all other exceptions that are valid in real mode.
4413          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4414          *        the required debugging infrastructure rework.
4415          */
4416         kvm_queue_exception(vcpu, vec);
4417         return 1;
4418 }
4419
4420 /*
4421  * Trigger machine check on the host. We assume all the MSRs are already set up
4422  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4423  * We pass a fake environment to the machine check handler because we want
4424  * the guest to be always treated like user space, no matter what context
4425  * it used internally.
4426  */
4427 static void kvm_machine_check(void)
4428 {
4429 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4430         struct pt_regs regs = {
4431                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4432                 .flags = X86_EFLAGS_IF,
4433         };
4434
4435         do_machine_check(&regs, 0);
4436 #endif
4437 }
4438
4439 static int handle_machine_check(struct kvm_vcpu *vcpu)
4440 {
4441         /* already handled by vcpu_run */
4442         return 1;
4443 }
4444
4445 static int handle_exception(struct kvm_vcpu *vcpu)
4446 {
4447         struct vcpu_vmx *vmx = to_vmx(vcpu);
4448         struct kvm_run *kvm_run = vcpu->run;
4449         u32 intr_info, ex_no, error_code;
4450         unsigned long cr2, rip, dr6;
4451         u32 vect_info;
4452         enum emulation_result er;
4453
4454         vect_info = vmx->idt_vectoring_info;
4455         intr_info = vmx->exit_intr_info;
4456
4457         if (is_machine_check(intr_info))
4458                 return handle_machine_check(vcpu);
4459
4460         if (is_nmi(intr_info))
4461                 return 1;  /* already handled by vmx_vcpu_run() */
4462
4463         if (is_invalid_opcode(intr_info))
4464                 return handle_ud(vcpu);
4465
4466         error_code = 0;
4467         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4468                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4469
4470         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4471                 WARN_ON_ONCE(!enable_vmware_backdoor);
4472                 er = kvm_emulate_instruction(vcpu,
4473                         EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
4474                 if (er == EMULATE_USER_EXIT)
4475                         return 0;
4476                 else if (er != EMULATE_DONE)
4477                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4478                 return 1;
4479         }
4480
4481         /*
4482          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4483          * MMIO, it is better to report an internal error.
4484          * See the comments in vmx_handle_exit.
4485          */
4486         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4487             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4488                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4489                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4490                 vcpu->run->internal.ndata = 3;
4491                 vcpu->run->internal.data[0] = vect_info;
4492                 vcpu->run->internal.data[1] = intr_info;
4493                 vcpu->run->internal.data[2] = error_code;
4494                 return 0;
4495         }
4496
4497         if (is_page_fault(intr_info)) {
4498                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4499                 /* EPT won't cause page fault directly */
4500                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4501                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4502         }
4503
4504         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4505
4506         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4507                 return handle_rmode_exception(vcpu, ex_no, error_code);
4508
4509         switch (ex_no) {
4510         case AC_VECTOR:
4511                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4512                 return 1;
4513         case DB_VECTOR:
4514                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4515                 if (!(vcpu->guest_debug &
4516                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4517                         vcpu->arch.dr6 &= ~15;
4518                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4519                         if (is_icebp(intr_info))
4520                                 skip_emulated_instruction(vcpu);
4521
4522                         kvm_queue_exception(vcpu, DB_VECTOR);
4523                         return 1;
4524                 }
4525                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4526                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4527                 /* fall through */
4528         case BP_VECTOR:
4529                 /*
4530                  * Update instruction length as we may reinject #BP from
4531                  * user space while in guest debugging mode. Reading it for
4532                  * #DB as well causes no harm, it is not used in that case.
4533                  */
4534                 vmx->vcpu.arch.event_exit_inst_len =
4535                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4536                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4537                 rip = kvm_rip_read(vcpu);
4538                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4539                 kvm_run->debug.arch.exception = ex_no;
4540                 break;
4541         default:
4542                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4543                 kvm_run->ex.exception = ex_no;
4544                 kvm_run->ex.error_code = error_code;
4545                 break;
4546         }
4547         return 0;
4548 }
4549
4550 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4551 {
4552         ++vcpu->stat.irq_exits;
4553         return 1;
4554 }
4555
4556 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4557 {
4558         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4559         vcpu->mmio_needed = 0;
4560         return 0;
4561 }
4562
4563 static int handle_io(struct kvm_vcpu *vcpu)
4564 {
4565         unsigned long exit_qualification;
4566         int size, in, string;
4567         unsigned port;
4568
4569         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4570         string = (exit_qualification & 16) != 0;
4571
4572         ++vcpu->stat.io_exits;
4573
4574         if (string)
4575                 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4576
4577         port = exit_qualification >> 16;
4578         size = (exit_qualification & 7) + 1;
4579         in = (exit_qualification & 8) != 0;
4580
4581         return kvm_fast_pio(vcpu, size, port, in);
4582 }
4583
4584 static void
4585 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4586 {
4587         /*
4588          * Patch in the VMCALL instruction:
4589          */
4590         hypercall[0] = 0x0f;
4591         hypercall[1] = 0x01;
4592         hypercall[2] = 0xc1;
4593 }
4594
4595 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4596 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4597 {
4598         if (is_guest_mode(vcpu)) {
4599                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4600                 unsigned long orig_val = val;
4601
4602                 /*
4603                  * We get here when L2 changed cr0 in a way that did not change
4604                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4605                  * but did change L0 shadowed bits. So we first calculate the
4606                  * effective cr0 value that L1 would like to write into the
4607                  * hardware. It consists of the L2-owned bits from the new
4608                  * value combined with the L1-owned bits from L1's guest_cr0.
4609                  */
4610                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4611                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4612
4613                 if (!nested_guest_cr0_valid(vcpu, val))
4614                         return 1;
4615
4616                 if (kvm_set_cr0(vcpu, val))
4617                         return 1;
4618                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4619                 return 0;
4620         } else {
4621                 if (to_vmx(vcpu)->nested.vmxon &&
4622                     !nested_host_cr0_valid(vcpu, val))
4623                         return 1;
4624
4625                 return kvm_set_cr0(vcpu, val);
4626         }
4627 }
4628
4629 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4630 {
4631         if (is_guest_mode(vcpu)) {
4632                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4633                 unsigned long orig_val = val;
4634
4635                 /* analogously to handle_set_cr0 */
4636                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4637                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4638                 if (kvm_set_cr4(vcpu, val))
4639                         return 1;
4640                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4641                 return 0;
4642         } else
4643                 return kvm_set_cr4(vcpu, val);
4644 }
4645
4646 static int handle_desc(struct kvm_vcpu *vcpu)
4647 {
4648         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4649         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4650 }
4651
4652 static int handle_cr(struct kvm_vcpu *vcpu)
4653 {
4654         unsigned long exit_qualification, val;
4655         int cr;
4656         int reg;
4657         int err;
4658         int ret;
4659
4660         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4661         cr = exit_qualification & 15;
4662         reg = (exit_qualification >> 8) & 15;
4663         switch ((exit_qualification >> 4) & 3) {
4664         case 0: /* mov to cr */
4665                 val = kvm_register_readl(vcpu, reg);
4666                 trace_kvm_cr_write(cr, val);
4667                 switch (cr) {
4668                 case 0:
4669                         err = handle_set_cr0(vcpu, val);
4670                         return kvm_complete_insn_gp(vcpu, err);
4671                 case 3:
4672                         WARN_ON_ONCE(enable_unrestricted_guest);
4673                         err = kvm_set_cr3(vcpu, val);
4674                         return kvm_complete_insn_gp(vcpu, err);
4675                 case 4:
4676                         err = handle_set_cr4(vcpu, val);
4677                         return kvm_complete_insn_gp(vcpu, err);
4678                 case 8: {
4679                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4680                                 u8 cr8 = (u8)val;
4681                                 err = kvm_set_cr8(vcpu, cr8);
4682                                 ret = kvm_complete_insn_gp(vcpu, err);
4683                                 if (lapic_in_kernel(vcpu))
4684                                         return ret;
4685                                 if (cr8_prev <= cr8)
4686                                         return ret;
4687                                 /*
4688                                  * TODO: we might be squashing a
4689                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4690                                  * KVM_EXIT_DEBUG here.
4691                                  */
4692                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4693                                 return 0;
4694                         }
4695                 }
4696                 break;
4697         case 2: /* clts */
4698                 WARN_ONCE(1, "Guest should always own CR0.TS");
4699                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4700                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4701                 return kvm_skip_emulated_instruction(vcpu);
4702         case 1: /*mov from cr*/
4703                 switch (cr) {
4704                 case 3:
4705                         WARN_ON_ONCE(enable_unrestricted_guest);
4706                         val = kvm_read_cr3(vcpu);
4707                         kvm_register_write(vcpu, reg, val);
4708                         trace_kvm_cr_read(cr, val);
4709                         return kvm_skip_emulated_instruction(vcpu);
4710                 case 8:
4711                         val = kvm_get_cr8(vcpu);
4712                         kvm_register_write(vcpu, reg, val);
4713                         trace_kvm_cr_read(cr, val);
4714                         return kvm_skip_emulated_instruction(vcpu);
4715                 }
4716                 break;
4717         case 3: /* lmsw */
4718                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4719                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4720                 kvm_lmsw(vcpu, val);
4721
4722                 return kvm_skip_emulated_instruction(vcpu);
4723         default:
4724                 break;
4725         }
4726         vcpu->run->exit_reason = 0;
4727         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4728                (int)(exit_qualification >> 4) & 3, cr);
4729         return 0;
4730 }
4731
4732 static int handle_dr(struct kvm_vcpu *vcpu)
4733 {
4734         unsigned long exit_qualification;
4735         int dr, dr7, reg;
4736
4737         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4738         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4739
4740         /* First, if DR does not exist, trigger UD */
4741         if (!kvm_require_dr(vcpu, dr))
4742                 return 1;
4743
4744         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4745         if (!kvm_require_cpl(vcpu, 0))
4746                 return 1;
4747         dr7 = vmcs_readl(GUEST_DR7);
4748         if (dr7 & DR7_GD) {
4749                 /*
4750                  * As the vm-exit takes precedence over the debug trap, we
4751                  * need to emulate the latter, either for the host or the
4752                  * guest debugging itself.
4753                  */
4754                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4755                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4756                         vcpu->run->debug.arch.dr7 = dr7;
4757                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4758                         vcpu->run->debug.arch.exception = DB_VECTOR;
4759                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4760                         return 0;
4761                 } else {
4762                         vcpu->arch.dr6 &= ~15;
4763                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4764                         kvm_queue_exception(vcpu, DB_VECTOR);
4765                         return 1;
4766                 }
4767         }
4768
4769         if (vcpu->guest_debug == 0) {
4770                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4771                                 CPU_BASED_MOV_DR_EXITING);
4772
4773                 /*
4774                  * No more DR vmexits; force a reload of the debug registers
4775                  * and reenter on this instruction.  The next vmexit will
4776                  * retrieve the full state of the debug registers.
4777                  */
4778                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4779                 return 1;
4780         }
4781
4782         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4783         if (exit_qualification & TYPE_MOV_FROM_DR) {
4784                 unsigned long val;
4785
4786                 if (kvm_get_dr(vcpu, dr, &val))
4787                         return 1;
4788                 kvm_register_write(vcpu, reg, val);
4789         } else
4790                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4791                         return 1;
4792
4793         return kvm_skip_emulated_instruction(vcpu);
4794 }
4795
4796 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4797 {
4798         return vcpu->arch.dr6;
4799 }
4800
4801 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4802 {
4803 }
4804
4805 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4806 {
4807         get_debugreg(vcpu->arch.db[0], 0);
4808         get_debugreg(vcpu->arch.db[1], 1);
4809         get_debugreg(vcpu->arch.db[2], 2);
4810         get_debugreg(vcpu->arch.db[3], 3);
4811         get_debugreg(vcpu->arch.dr6, 6);
4812         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4813
4814         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4815         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
4816 }
4817
4818 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4819 {
4820         vmcs_writel(GUEST_DR7, val);
4821 }
4822
4823 static int handle_cpuid(struct kvm_vcpu *vcpu)
4824 {
4825         return kvm_emulate_cpuid(vcpu);
4826 }
4827
4828 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4829 {
4830         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4831         struct msr_data msr_info;
4832
4833         msr_info.index = ecx;
4834         msr_info.host_initiated = false;
4835         if (vmx_get_msr(vcpu, &msr_info)) {
4836                 trace_kvm_msr_read_ex(ecx);
4837                 kvm_inject_gp(vcpu, 0);
4838                 return 1;
4839         }
4840
4841         trace_kvm_msr_read(ecx, msr_info.data);
4842
4843         /* FIXME: handling of bits 32:63 of rax, rdx */
4844         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
4845         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
4846         return kvm_skip_emulated_instruction(vcpu);
4847 }
4848
4849 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4850 {
4851         struct msr_data msr;
4852         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4853         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4854                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4855
4856         msr.data = data;
4857         msr.index = ecx;
4858         msr.host_initiated = false;
4859         if (kvm_set_msr(vcpu, &msr) != 0) {
4860                 trace_kvm_msr_write_ex(ecx, data);
4861                 kvm_inject_gp(vcpu, 0);
4862                 return 1;
4863         }
4864
4865         trace_kvm_msr_write(ecx, data);
4866         return kvm_skip_emulated_instruction(vcpu);
4867 }
4868
4869 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4870 {
4871         kvm_apic_update_ppr(vcpu);
4872         return 1;
4873 }
4874
4875 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4876 {
4877         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4878                         CPU_BASED_VIRTUAL_INTR_PENDING);
4879
4880         kvm_make_request(KVM_REQ_EVENT, vcpu);
4881
4882         ++vcpu->stat.irq_window_exits;
4883         return 1;
4884 }
4885
4886 static int handle_halt(struct kvm_vcpu *vcpu)
4887 {
4888         return kvm_emulate_halt(vcpu);
4889 }
4890
4891 static int handle_vmcall(struct kvm_vcpu *vcpu)
4892 {
4893         return kvm_emulate_hypercall(vcpu);
4894 }
4895
4896 static int handle_invd(struct kvm_vcpu *vcpu)
4897 {
4898         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4899 }
4900
4901 static int handle_invlpg(struct kvm_vcpu *vcpu)
4902 {
4903         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4904
4905         kvm_mmu_invlpg(vcpu, exit_qualification);
4906         return kvm_skip_emulated_instruction(vcpu);
4907 }
4908
4909 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4910 {
4911         int err;
4912
4913         err = kvm_rdpmc(vcpu);
4914         return kvm_complete_insn_gp(vcpu, err);
4915 }
4916
4917 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4918 {
4919         return kvm_emulate_wbinvd(vcpu);
4920 }
4921
4922 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4923 {
4924         u64 new_bv = kvm_read_edx_eax(vcpu);
4925         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4926
4927         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4928                 return kvm_skip_emulated_instruction(vcpu);
4929         return 1;
4930 }
4931
4932 static int handle_xsaves(struct kvm_vcpu *vcpu)
4933 {
4934         kvm_skip_emulated_instruction(vcpu);
4935         WARN(1, "this should never happen\n");
4936         return 1;
4937 }
4938
4939 static int handle_xrstors(struct kvm_vcpu *vcpu)
4940 {
4941         kvm_skip_emulated_instruction(vcpu);
4942         WARN(1, "this should never happen\n");
4943         return 1;
4944 }
4945
4946 static int handle_apic_access(struct kvm_vcpu *vcpu)
4947 {
4948         if (likely(fasteoi)) {
4949                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4950                 int access_type, offset;
4951
4952                 access_type = exit_qualification & APIC_ACCESS_TYPE;
4953                 offset = exit_qualification & APIC_ACCESS_OFFSET;
4954                 /*
4955                  * Sane guest uses MOV to write EOI, with written value
4956                  * not cared. So make a short-circuit here by avoiding
4957                  * heavy instruction emulation.
4958                  */
4959                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4960                     (offset == APIC_EOI)) {
4961                         kvm_lapic_set_eoi(vcpu);
4962                         return kvm_skip_emulated_instruction(vcpu);
4963                 }
4964         }
4965         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4966 }
4967
4968 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4969 {
4970         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4971         int vector = exit_qualification & 0xff;
4972
4973         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4974         kvm_apic_set_eoi_accelerated(vcpu, vector);
4975         return 1;
4976 }
4977
4978 static int handle_apic_write(struct kvm_vcpu *vcpu)
4979 {
4980         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4981         u32 offset = exit_qualification & 0xfff;
4982
4983         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
4984         kvm_apic_write_nodecode(vcpu, offset);
4985         return 1;
4986 }
4987
4988 static int handle_task_switch(struct kvm_vcpu *vcpu)
4989 {
4990         struct vcpu_vmx *vmx = to_vmx(vcpu);
4991         unsigned long exit_qualification;
4992         bool has_error_code = false;
4993         u32 error_code = 0;
4994         u16 tss_selector;
4995         int reason, type, idt_v, idt_index;
4996
4997         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4998         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4999         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5000
5001         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5002
5003         reason = (u32)exit_qualification >> 30;
5004         if (reason == TASK_SWITCH_GATE && idt_v) {
5005                 switch (type) {
5006                 case INTR_TYPE_NMI_INTR:
5007                         vcpu->arch.nmi_injected = false;
5008                         vmx_set_nmi_mask(vcpu, true);
5009                         break;
5010                 case INTR_TYPE_EXT_INTR:
5011                 case INTR_TYPE_SOFT_INTR:
5012                         kvm_clear_interrupt_queue(vcpu);
5013                         break;
5014                 case INTR_TYPE_HARD_EXCEPTION:
5015                         if (vmx->idt_vectoring_info &
5016                             VECTORING_INFO_DELIVER_CODE_MASK) {
5017                                 has_error_code = true;
5018                                 error_code =
5019                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5020                         }
5021                         /* fall through */
5022                 case INTR_TYPE_SOFT_EXCEPTION:
5023                         kvm_clear_exception_queue(vcpu);
5024                         break;
5025                 default:
5026                         break;
5027                 }
5028         }
5029         tss_selector = exit_qualification;
5030
5031         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5032                        type != INTR_TYPE_EXT_INTR &&
5033                        type != INTR_TYPE_NMI_INTR))
5034                 skip_emulated_instruction(vcpu);
5035
5036         if (kvm_task_switch(vcpu, tss_selector,
5037                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5038                             has_error_code, error_code) == EMULATE_FAIL) {
5039                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5040                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5041                 vcpu->run->internal.ndata = 0;
5042                 return 0;
5043         }
5044
5045         /*
5046          * TODO: What about debug traps on tss switch?
5047          *       Are we supposed to inject them and update dr6?
5048          */
5049
5050         return 1;
5051 }
5052
5053 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5054 {
5055         unsigned long exit_qualification;
5056         gpa_t gpa;
5057         u64 error_code;
5058
5059         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5060
5061         /*
5062          * EPT violation happened while executing iret from NMI,
5063          * "blocked by NMI" bit has to be set before next VM entry.
5064          * There are errata that may cause this bit to not be set:
5065          * AAK134, BY25.
5066          */
5067         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5068                         enable_vnmi &&
5069                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5070                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5071
5072         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5073         trace_kvm_page_fault(gpa, exit_qualification);
5074
5075         /* Is it a read fault? */
5076         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5077                      ? PFERR_USER_MASK : 0;
5078         /* Is it a write fault? */
5079         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5080                       ? PFERR_WRITE_MASK : 0;
5081         /* Is it a fetch fault? */
5082         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5083                       ? PFERR_FETCH_MASK : 0;
5084         /* ept page table entry is present? */
5085         error_code |= (exit_qualification &
5086                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5087                         EPT_VIOLATION_EXECUTABLE))
5088                       ? PFERR_PRESENT_MASK : 0;
5089
5090         error_code |= (exit_qualification & 0x100) != 0 ?
5091                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5092
5093         vcpu->arch.exit_qualification = exit_qualification;
5094         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5095 }
5096
5097 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5098 {
5099         gpa_t gpa;
5100
5101         /*
5102          * A nested guest cannot optimize MMIO vmexits, because we have an
5103          * nGPA here instead of the required GPA.
5104          */
5105         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5106         if (!is_guest_mode(vcpu) &&
5107             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5108                 trace_kvm_fast_mmio(gpa);
5109                 /*
5110                  * Doing kvm_skip_emulated_instruction() depends on undefined
5111                  * behavior: Intel's manual doesn't mandate
5112                  * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5113                  * occurs and while on real hardware it was observed to be set,
5114                  * other hypervisors (namely Hyper-V) don't set it, we end up
5115                  * advancing IP with some random value. Disable fast mmio when
5116                  * running nested and keep it for real hardware in hope that
5117                  * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5118                  */
5119                 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5120                         return kvm_skip_emulated_instruction(vcpu);
5121                 else
5122                         return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5123                                                                 EMULATE_DONE;
5124         }
5125
5126         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5127 }
5128
5129 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5130 {
5131         WARN_ON_ONCE(!enable_vnmi);
5132         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5133                         CPU_BASED_VIRTUAL_NMI_PENDING);
5134         ++vcpu->stat.nmi_window_exits;
5135         kvm_make_request(KVM_REQ_EVENT, vcpu);
5136
5137         return 1;
5138 }
5139
5140 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5141 {
5142         struct vcpu_vmx *vmx = to_vmx(vcpu);
5143         enum emulation_result err = EMULATE_DONE;
5144         int ret = 1;
5145         u32 cpu_exec_ctrl;
5146         bool intr_window_requested;
5147         unsigned count = 130;
5148
5149         /*
5150          * We should never reach the point where we are emulating L2
5151          * due to invalid guest state as that means we incorrectly
5152          * allowed a nested VMEntry with an invalid vmcs12.
5153          */
5154         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5155
5156         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5157         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5158
5159         while (vmx->emulation_required && count-- != 0) {
5160                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5161                         return handle_interrupt_window(&vmx->vcpu);
5162
5163                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5164                         return 1;
5165
5166                 err = kvm_emulate_instruction(vcpu, 0);
5167
5168                 if (err == EMULATE_USER_EXIT) {
5169                         ++vcpu->stat.mmio_exits;
5170                         ret = 0;
5171                         goto out;
5172                 }
5173
5174                 if (err != EMULATE_DONE)
5175                         goto emulation_error;
5176
5177                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5178                     vcpu->arch.exception.pending)
5179                         goto emulation_error;
5180
5181                 if (vcpu->arch.halt_request) {
5182                         vcpu->arch.halt_request = 0;
5183                         ret = kvm_vcpu_halt(vcpu);
5184                         goto out;
5185                 }
5186
5187                 if (signal_pending(current))
5188                         goto out;
5189                 if (need_resched())
5190                         schedule();
5191         }
5192
5193 out:
5194         return ret;
5195
5196 emulation_error:
5197         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5198         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5199         vcpu->run->internal.ndata = 0;
5200         return 0;
5201 }
5202
5203 static void grow_ple_window(struct kvm_vcpu *vcpu)
5204 {
5205         struct vcpu_vmx *vmx = to_vmx(vcpu);
5206         int old = vmx->ple_window;
5207
5208         vmx->ple_window = __grow_ple_window(old, ple_window,
5209                                             ple_window_grow,
5210                                             ple_window_max);
5211
5212         if (vmx->ple_window != old)
5213                 vmx->ple_window_dirty = true;
5214
5215         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5216 }
5217
5218 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5219 {
5220         struct vcpu_vmx *vmx = to_vmx(vcpu);
5221         int old = vmx->ple_window;
5222
5223         vmx->ple_window = __shrink_ple_window(old, ple_window,
5224                                               ple_window_shrink,
5225                                               ple_window);
5226
5227         if (vmx->ple_window != old)
5228                 vmx->ple_window_dirty = true;
5229
5230         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5231 }
5232
5233 /*
5234  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5235  */
5236 static void wakeup_handler(void)
5237 {
5238         struct kvm_vcpu *vcpu;
5239         int cpu = smp_processor_id();
5240
5241         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5242         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5243                         blocked_vcpu_list) {
5244                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5245
5246                 if (pi_test_on(pi_desc) == 1)
5247                         kvm_vcpu_kick(vcpu);
5248         }
5249         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5250 }
5251
5252 static void vmx_enable_tdp(void)
5253 {
5254         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5255                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5256                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5257                 0ull, VMX_EPT_EXECUTABLE_MASK,
5258                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5259                 VMX_EPT_RWX_MASK, 0ull);
5260
5261         ept_set_mmio_spte_mask();
5262         kvm_enable_tdp();
5263 }
5264
5265 /*
5266  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5267  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5268  */
5269 static int handle_pause(struct kvm_vcpu *vcpu)
5270 {
5271         if (!kvm_pause_in_guest(vcpu->kvm))
5272                 grow_ple_window(vcpu);
5273
5274         /*
5275          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5276          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5277          * never set PAUSE_EXITING and just set PLE if supported,
5278          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5279          */
5280         kvm_vcpu_on_spin(vcpu, true);
5281         return kvm_skip_emulated_instruction(vcpu);
5282 }
5283
5284 static int handle_nop(struct kvm_vcpu *vcpu)
5285 {
5286         return kvm_skip_emulated_instruction(vcpu);
5287 }
5288
5289 static int handle_mwait(struct kvm_vcpu *vcpu)
5290 {
5291         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5292         return handle_nop(vcpu);
5293 }
5294
5295 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5296 {
5297         kvm_queue_exception(vcpu, UD_VECTOR);
5298         return 1;
5299 }
5300
5301 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5302 {
5303         return 1;
5304 }
5305
5306 static int handle_monitor(struct kvm_vcpu *vcpu)
5307 {
5308         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5309         return handle_nop(vcpu);
5310 }
5311
5312 static int handle_invpcid(struct kvm_vcpu *vcpu)
5313 {
5314         u32 vmx_instruction_info;
5315         unsigned long type;
5316         bool pcid_enabled;
5317         gva_t gva;
5318         struct x86_exception e;
5319         unsigned i;
5320         unsigned long roots_to_free = 0;
5321         struct {
5322                 u64 pcid;
5323                 u64 gla;
5324         } operand;
5325
5326         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5327                 kvm_queue_exception(vcpu, UD_VECTOR);
5328                 return 1;
5329         }
5330
5331         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5332         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5333
5334         if (type > 3) {
5335                 kvm_inject_gp(vcpu, 0);
5336                 return 1;
5337         }
5338
5339         /* According to the Intel instruction reference, the memory operand
5340          * is read even if it isn't needed (e.g., for type==all)
5341          */
5342         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5343                                 vmx_instruction_info, false, &gva))
5344                 return 1;
5345
5346         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5347                 kvm_inject_page_fault(vcpu, &e);
5348                 return 1;
5349         }
5350
5351         if (operand.pcid >> 12 != 0) {
5352                 kvm_inject_gp(vcpu, 0);
5353                 return 1;
5354         }
5355
5356         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5357
5358         switch (type) {
5359         case INVPCID_TYPE_INDIV_ADDR:
5360                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5361                     is_noncanonical_address(operand.gla, vcpu)) {
5362                         kvm_inject_gp(vcpu, 0);
5363                         return 1;
5364                 }
5365                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5366                 return kvm_skip_emulated_instruction(vcpu);
5367
5368         case INVPCID_TYPE_SINGLE_CTXT:
5369                 if (!pcid_enabled && (operand.pcid != 0)) {
5370                         kvm_inject_gp(vcpu, 0);
5371                         return 1;
5372                 }
5373
5374                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5375                         kvm_mmu_sync_roots(vcpu);
5376                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5377                 }
5378
5379                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5380                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5381                             == operand.pcid)
5382                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5383
5384                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5385                 /*
5386                  * If neither the current cr3 nor any of the prev_roots use the
5387                  * given PCID, then nothing needs to be done here because a
5388                  * resync will happen anyway before switching to any other CR3.
5389                  */
5390
5391                 return kvm_skip_emulated_instruction(vcpu);
5392
5393         case INVPCID_TYPE_ALL_NON_GLOBAL:
5394                 /*
5395                  * Currently, KVM doesn't mark global entries in the shadow
5396                  * page tables, so a non-global flush just degenerates to a
5397                  * global flush. If needed, we could optimize this later by
5398                  * keeping track of global entries in shadow page tables.
5399                  */
5400
5401                 /* fall-through */
5402         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5403                 kvm_mmu_unload(vcpu);
5404                 return kvm_skip_emulated_instruction(vcpu);
5405
5406         default:
5407                 BUG(); /* We have already checked above that type <= 3 */
5408         }
5409 }
5410
5411 static int handle_pml_full(struct kvm_vcpu *vcpu)
5412 {
5413         unsigned long exit_qualification;
5414
5415         trace_kvm_pml_full(vcpu->vcpu_id);
5416
5417         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5418
5419         /*
5420          * PML buffer FULL happened while executing iret from NMI,
5421          * "blocked by NMI" bit has to be set before next VM entry.
5422          */
5423         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5424                         enable_vnmi &&
5425                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5426                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5427                                 GUEST_INTR_STATE_NMI);
5428
5429         /*
5430          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5431          * here.., and there's no userspace involvement needed for PML.
5432          */
5433         return 1;
5434 }
5435
5436 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5437 {
5438         if (!to_vmx(vcpu)->req_immediate_exit)
5439                 kvm_lapic_expired_hv_timer(vcpu);
5440         return 1;
5441 }
5442
5443 /*
5444  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5445  * are overwritten by nested_vmx_setup() when nested=1.
5446  */
5447 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5448 {
5449         kvm_queue_exception(vcpu, UD_VECTOR);
5450         return 1;
5451 }
5452
5453 static int handle_encls(struct kvm_vcpu *vcpu)
5454 {
5455         /*
5456          * SGX virtualization is not yet supported.  There is no software
5457          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5458          * to prevent the guest from executing ENCLS.
5459          */
5460         kvm_queue_exception(vcpu, UD_VECTOR);
5461         return 1;
5462 }
5463
5464 /*
5465  * The exit handlers return 1 if the exit was handled fully and guest execution
5466  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5467  * to be done to userspace and return 0.
5468  */
5469 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5470         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5471         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5472         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5473         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5474         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5475         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5476         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5477         [EXIT_REASON_CPUID]                   = handle_cpuid,
5478         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5479         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5480         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5481         [EXIT_REASON_HLT]                     = handle_halt,
5482         [EXIT_REASON_INVD]                    = handle_invd,
5483         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5484         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5485         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5486         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5487         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5488         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5489         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5490         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5491         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5492         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5493         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5494         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5495         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5496         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5497         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5498         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5499         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5500         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5501         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5502         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5503         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5504         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5505         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5506         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5507         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5508         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5509         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5510         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5511         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5512         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5513         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5514         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5515         [EXIT_REASON_XSAVES]                  = handle_xsaves,
5516         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
5517         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5518         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5519         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5520         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5521         [EXIT_REASON_ENCLS]                   = handle_encls,
5522 };
5523
5524 static const int kvm_vmx_max_exit_handlers =
5525         ARRAY_SIZE(kvm_vmx_exit_handlers);
5526
5527 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5528 {
5529         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5530         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5531 }
5532
5533 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5534 {
5535         if (vmx->pml_pg) {
5536                 __free_page(vmx->pml_pg);
5537                 vmx->pml_pg = NULL;
5538         }
5539 }
5540
5541 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5542 {
5543         struct vcpu_vmx *vmx = to_vmx(vcpu);
5544         u64 *pml_buf;
5545         u16 pml_idx;
5546
5547         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5548
5549         /* Do nothing if PML buffer is empty */
5550         if (pml_idx == (PML_ENTITY_NUM - 1))
5551                 return;
5552
5553         /* PML index always points to next available PML buffer entity */
5554         if (pml_idx >= PML_ENTITY_NUM)
5555                 pml_idx = 0;
5556         else
5557                 pml_idx++;
5558
5559         pml_buf = page_address(vmx->pml_pg);
5560         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5561                 u64 gpa;
5562
5563                 gpa = pml_buf[pml_idx];
5564                 WARN_ON(gpa & (PAGE_SIZE - 1));
5565                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5566         }
5567
5568         /* reset PML index */
5569         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5570 }
5571
5572 /*
5573  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5574  * Called before reporting dirty_bitmap to userspace.
5575  */
5576 static void kvm_flush_pml_buffers(struct kvm *kvm)
5577 {
5578         int i;
5579         struct kvm_vcpu *vcpu;
5580         /*
5581          * We only need to kick vcpu out of guest mode here, as PML buffer
5582          * is flushed at beginning of all VMEXITs, and it's obvious that only
5583          * vcpus running in guest are possible to have unflushed GPAs in PML
5584          * buffer.
5585          */
5586         kvm_for_each_vcpu(i, vcpu, kvm)
5587                 kvm_vcpu_kick(vcpu);
5588 }
5589
5590 static void vmx_dump_sel(char *name, uint32_t sel)
5591 {
5592         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5593                name, vmcs_read16(sel),
5594                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5595                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5596                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5597 }
5598
5599 static void vmx_dump_dtsel(char *name, uint32_t limit)
5600 {
5601         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5602                name, vmcs_read32(limit),
5603                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5604 }
5605
5606 void dump_vmcs(void)
5607 {
5608         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5609         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5610         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5611         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5612         u32 secondary_exec_control = 0;
5613         unsigned long cr4 = vmcs_readl(GUEST_CR4);
5614         u64 efer = vmcs_read64(GUEST_IA32_EFER);
5615         int i, n;
5616
5617         if (cpu_has_secondary_exec_ctrls())
5618                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5619
5620         pr_err("*** Guest State ***\n");
5621         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5622                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5623                vmcs_readl(CR0_GUEST_HOST_MASK));
5624         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5625                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5626         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5627         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5628             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5629         {
5630                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5631                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5632                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5633                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5634         }
5635         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5636                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5637         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5638                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5639         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5640                vmcs_readl(GUEST_SYSENTER_ESP),
5641                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5642         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5643         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5644         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5645         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5646         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5647         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5648         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5649         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5650         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5651         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5652         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5653             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5654                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5655                        efer, vmcs_read64(GUEST_IA32_PAT));
5656         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5657                vmcs_read64(GUEST_IA32_DEBUGCTL),
5658                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5659         if (cpu_has_load_perf_global_ctrl() &&
5660             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5661                 pr_err("PerfGlobCtl = 0x%016llx\n",
5662                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5663         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5664                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5665         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5666                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5667                vmcs_read32(GUEST_ACTIVITY_STATE));
5668         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5669                 pr_err("InterruptStatus = %04x\n",
5670                        vmcs_read16(GUEST_INTR_STATUS));
5671
5672         pr_err("*** Host State ***\n");
5673         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5674                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5675         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5676                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5677                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5678                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5679                vmcs_read16(HOST_TR_SELECTOR));
5680         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5681                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5682                vmcs_readl(HOST_TR_BASE));
5683         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5684                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5685         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5686                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5687                vmcs_readl(HOST_CR4));
5688         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5689                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5690                vmcs_read32(HOST_IA32_SYSENTER_CS),
5691                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5692         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5693                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5694                        vmcs_read64(HOST_IA32_EFER),
5695                        vmcs_read64(HOST_IA32_PAT));
5696         if (cpu_has_load_perf_global_ctrl() &&
5697             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5698                 pr_err("PerfGlobCtl = 0x%016llx\n",
5699                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5700
5701         pr_err("*** Control State ***\n");
5702         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5703                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5704         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5705         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5706                vmcs_read32(EXCEPTION_BITMAP),
5707                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5708                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5709         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5710                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5711                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5712                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5713         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5714                vmcs_read32(VM_EXIT_INTR_INFO),
5715                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5716                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5717         pr_err("        reason=%08x qualification=%016lx\n",
5718                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5719         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5720                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5721                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5722         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5723         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5724                 pr_err("TSC Multiplier = 0x%016llx\n",
5725                        vmcs_read64(TSC_MULTIPLIER));
5726         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
5727                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5728         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5729                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5730         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5731                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5732         n = vmcs_read32(CR3_TARGET_COUNT);
5733         for (i = 0; i + 1 < n; i += 4)
5734                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5735                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5736                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5737         if (i < n)
5738                 pr_err("CR3 target%u=%016lx\n",
5739                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5740         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5741                 pr_err("PLE Gap=%08x Window=%08x\n",
5742                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5743         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5744                 pr_err("Virtual processor ID = 0x%04x\n",
5745                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5746 }
5747
5748 /*
5749  * The guest has exited.  See if we can fix it or if we need userspace
5750  * assistance.
5751  */
5752 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5753 {
5754         struct vcpu_vmx *vmx = to_vmx(vcpu);
5755         u32 exit_reason = vmx->exit_reason;
5756         u32 vectoring_info = vmx->idt_vectoring_info;
5757
5758         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5759
5760         /*
5761          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5762          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5763          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5764          * mode as if vcpus is in root mode, the PML buffer must has been
5765          * flushed already.
5766          */
5767         if (enable_pml)
5768                 vmx_flush_pml_buffer(vcpu);
5769
5770         /* If guest state is invalid, start emulating */
5771         if (vmx->emulation_required)
5772                 return handle_invalid_guest_state(vcpu);
5773
5774         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5775                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5776
5777         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5778                 dump_vmcs();
5779                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5780                 vcpu->run->fail_entry.hardware_entry_failure_reason
5781                         = exit_reason;
5782                 return 0;
5783         }
5784
5785         if (unlikely(vmx->fail)) {
5786                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5787                 vcpu->run->fail_entry.hardware_entry_failure_reason
5788                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5789                 return 0;
5790         }
5791
5792         /*
5793          * Note:
5794          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5795          * delivery event since it indicates guest is accessing MMIO.
5796          * The vm-exit can be triggered again after return to guest that
5797          * will cause infinite loop.
5798          */
5799         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5800                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5801                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5802                         exit_reason != EXIT_REASON_PML_FULL &&
5803                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5804                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5805                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5806                 vcpu->run->internal.ndata = 3;
5807                 vcpu->run->internal.data[0] = vectoring_info;
5808                 vcpu->run->internal.data[1] = exit_reason;
5809                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5810                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5811                         vcpu->run->internal.ndata++;
5812                         vcpu->run->internal.data[3] =
5813                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5814                 }
5815                 return 0;
5816         }
5817
5818         if (unlikely(!enable_vnmi &&
5819                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5820                 if (vmx_interrupt_allowed(vcpu)) {
5821                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5822                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5823                            vcpu->arch.nmi_pending) {
5824                         /*
5825                          * This CPU don't support us in finding the end of an
5826                          * NMI-blocked window if the guest runs with IRQs
5827                          * disabled. So we pull the trigger after 1 s of
5828                          * futile waiting, but inform the user about this.
5829                          */
5830                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5831                                "state on VCPU %d after 1 s timeout\n",
5832                                __func__, vcpu->vcpu_id);
5833                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5834                 }
5835         }
5836
5837         if (exit_reason < kvm_vmx_max_exit_handlers
5838             && kvm_vmx_exit_handlers[exit_reason])
5839                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5840         else {
5841                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5842                                 exit_reason);
5843                 kvm_queue_exception(vcpu, UD_VECTOR);
5844                 return 1;
5845         }
5846 }
5847
5848 /*
5849  * Software based L1D cache flush which is used when microcode providing
5850  * the cache control MSR is not loaded.
5851  *
5852  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5853  * flush it is required to read in 64 KiB because the replacement algorithm
5854  * is not exactly LRU. This could be sized at runtime via topology
5855  * information but as all relevant affected CPUs have 32KiB L1D cache size
5856  * there is no point in doing so.
5857  */
5858 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5859 {
5860         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5861
5862         /*
5863          * This code is only executed when the the flush mode is 'cond' or
5864          * 'always'
5865          */
5866         if (static_branch_likely(&vmx_l1d_flush_cond)) {
5867                 bool flush_l1d;
5868
5869                 /*
5870                  * Clear the per-vcpu flush bit, it gets set again
5871                  * either from vcpu_run() or from one of the unsafe
5872                  * VMEXIT handlers.
5873                  */
5874                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5875                 vcpu->arch.l1tf_flush_l1d = false;
5876
5877                 /*
5878                  * Clear the per-cpu flush bit, it gets set again from
5879                  * the interrupt handlers.
5880                  */
5881                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5882                 kvm_clear_cpu_l1tf_flush_l1d();
5883
5884                 if (!flush_l1d)
5885                         return;
5886         }
5887
5888         vcpu->stat.l1d_flush++;
5889
5890         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5891                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5892                 return;
5893         }
5894
5895         asm volatile(
5896                 /* First ensure the pages are in the TLB */
5897                 "xorl   %%eax, %%eax\n"
5898                 ".Lpopulate_tlb:\n\t"
5899                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5900                 "addl   $4096, %%eax\n\t"
5901                 "cmpl   %%eax, %[size]\n\t"
5902                 "jne    .Lpopulate_tlb\n\t"
5903                 "xorl   %%eax, %%eax\n\t"
5904                 "cpuid\n\t"
5905                 /* Now fill the cache */
5906                 "xorl   %%eax, %%eax\n"
5907                 ".Lfill_cache:\n"
5908                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5909                 "addl   $64, %%eax\n\t"
5910                 "cmpl   %%eax, %[size]\n\t"
5911                 "jne    .Lfill_cache\n\t"
5912                 "lfence\n"
5913                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
5914                     [size] "r" (size)
5915                 : "eax", "ebx", "ecx", "edx");
5916 }
5917
5918 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5919 {
5920         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5921
5922         if (is_guest_mode(vcpu) &&
5923                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5924                 return;
5925
5926         if (irr == -1 || tpr < irr) {
5927                 vmcs_write32(TPR_THRESHOLD, 0);
5928                 return;
5929         }
5930
5931         vmcs_write32(TPR_THRESHOLD, irr);
5932 }
5933
5934 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5935 {
5936         u32 sec_exec_control;
5937
5938         if (!lapic_in_kernel(vcpu))
5939                 return;
5940
5941         if (!flexpriority_enabled &&
5942             !cpu_has_vmx_virtualize_x2apic_mode())
5943                 return;
5944
5945         /* Postpone execution until vmcs01 is the current VMCS. */
5946         if (is_guest_mode(vcpu)) {
5947                 to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
5948                 return;
5949         }
5950
5951         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5952         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
5953                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
5954
5955         switch (kvm_get_apic_mode(vcpu)) {
5956         case LAPIC_MODE_INVALID:
5957                 WARN_ONCE(true, "Invalid local APIC state");
5958         case LAPIC_MODE_DISABLED:
5959                 break;
5960         case LAPIC_MODE_XAPIC:
5961                 if (flexpriority_enabled) {
5962                         sec_exec_control |=
5963                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5964                         vmx_flush_tlb(vcpu, true);
5965                 }
5966                 break;
5967         case LAPIC_MODE_X2APIC:
5968                 if (cpu_has_vmx_virtualize_x2apic_mode())
5969                         sec_exec_control |=
5970                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5971                 break;
5972         }
5973         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
5974
5975         vmx_update_msr_bitmap(vcpu);
5976 }
5977
5978 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
5979 {
5980         if (!is_guest_mode(vcpu)) {
5981                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
5982                 vmx_flush_tlb(vcpu, true);
5983         }
5984 }
5985
5986 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5987 {
5988         u16 status;
5989         u8 old;
5990
5991         if (max_isr == -1)
5992                 max_isr = 0;
5993
5994         status = vmcs_read16(GUEST_INTR_STATUS);
5995         old = status >> 8;
5996         if (max_isr != old) {
5997                 status &= 0xff;
5998                 status |= max_isr << 8;
5999                 vmcs_write16(GUEST_INTR_STATUS, status);
6000         }
6001 }
6002
6003 static void vmx_set_rvi(int vector)
6004 {
6005         u16 status;
6006         u8 old;
6007
6008         if (vector == -1)
6009                 vector = 0;
6010
6011         status = vmcs_read16(GUEST_INTR_STATUS);
6012         old = (u8)status & 0xff;
6013         if ((u8)vector != old) {
6014                 status &= ~0xff;
6015                 status |= (u8)vector;
6016                 vmcs_write16(GUEST_INTR_STATUS, status);
6017         }
6018 }
6019
6020 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6021 {
6022         /*
6023          * When running L2, updating RVI is only relevant when
6024          * vmcs12 virtual-interrupt-delivery enabled.
6025          * However, it can be enabled only when L1 also
6026          * intercepts external-interrupts and in that case
6027          * we should not update vmcs02 RVI but instead intercept
6028          * interrupt. Therefore, do nothing when running L2.
6029          */
6030         if (!is_guest_mode(vcpu))
6031                 vmx_set_rvi(max_irr);
6032 }
6033
6034 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6035 {
6036         struct vcpu_vmx *vmx = to_vmx(vcpu);
6037         int max_irr;
6038         bool max_irr_updated;
6039
6040         WARN_ON(!vcpu->arch.apicv_active);
6041         if (pi_test_on(&vmx->pi_desc)) {
6042                 pi_clear_on(&vmx->pi_desc);
6043                 /*
6044                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6045                  * But on x86 this is just a compiler barrier anyway.
6046                  */
6047                 smp_mb__after_atomic();
6048                 max_irr_updated =
6049                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6050
6051                 /*
6052                  * If we are running L2 and L1 has a new pending interrupt
6053                  * which can be injected, we should re-evaluate
6054                  * what should be done with this new L1 interrupt.
6055                  * If L1 intercepts external-interrupts, we should
6056                  * exit from L2 to L1. Otherwise, interrupt should be
6057                  * delivered directly to L2.
6058                  */
6059                 if (is_guest_mode(vcpu) && max_irr_updated) {
6060                         if (nested_exit_on_intr(vcpu))
6061                                 kvm_vcpu_exiting_guest_mode(vcpu);
6062                         else
6063                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6064                 }
6065         } else {
6066                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6067         }
6068         vmx_hwapic_irr_update(vcpu, max_irr);
6069         return max_irr;
6070 }
6071
6072 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6073 {
6074         if (!kvm_vcpu_apicv_active(vcpu))
6075                 return;
6076
6077         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6078         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6079         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6080         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6081 }
6082
6083 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6084 {
6085         struct vcpu_vmx *vmx = to_vmx(vcpu);
6086
6087         pi_clear_on(&vmx->pi_desc);
6088         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6089 }
6090
6091 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6092 {
6093         u32 exit_intr_info = 0;
6094         u16 basic_exit_reason = (u16)vmx->exit_reason;
6095
6096         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6097               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
6098                 return;
6099
6100         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6101                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6102         vmx->exit_intr_info = exit_intr_info;
6103
6104         /* if exit due to PF check for async PF */
6105         if (is_page_fault(exit_intr_info))
6106                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6107
6108         /* Handle machine checks before interrupts are enabled */
6109         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
6110             is_machine_check(exit_intr_info))
6111                 kvm_machine_check();
6112
6113         /* We need to handle NMIs before interrupts are enabled */
6114         if (is_nmi(exit_intr_info)) {
6115                 kvm_before_interrupt(&vmx->vcpu);
6116                 asm("int $2");
6117                 kvm_after_interrupt(&vmx->vcpu);
6118         }
6119 }
6120
6121 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6122 {
6123         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6124
6125         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6126                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6127                 unsigned int vector;
6128                 unsigned long entry;
6129                 gate_desc *desc;
6130                 struct vcpu_vmx *vmx = to_vmx(vcpu);
6131 #ifdef CONFIG_X86_64
6132                 unsigned long tmp;
6133 #endif
6134
6135                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6136                 desc = (gate_desc *)vmx->host_idt_base + vector;
6137                 entry = gate_offset(desc);
6138                 asm volatile(
6139 #ifdef CONFIG_X86_64
6140                         "mov %%" _ASM_SP ", %[sp]\n\t"
6141                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6142                         "push $%c[ss]\n\t"
6143                         "push %[sp]\n\t"
6144 #endif
6145                         "pushf\n\t"
6146                         __ASM_SIZE(push) " $%c[cs]\n\t"
6147                         CALL_NOSPEC
6148                         :
6149 #ifdef CONFIG_X86_64
6150                         [sp]"=&r"(tmp),
6151 #endif
6152                         ASM_CALL_CONSTRAINT
6153                         :
6154                         THUNK_TARGET(entry),
6155                         [ss]"i"(__KERNEL_DS),
6156                         [cs]"i"(__KERNEL_CS)
6157                         );
6158         }
6159 }
6160 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
6161
6162 static bool vmx_has_emulated_msr(int index)
6163 {
6164         switch (index) {
6165         case MSR_IA32_SMBASE:
6166                 /*
6167                  * We cannot do SMM unless we can run the guest in big
6168                  * real mode.
6169                  */
6170                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6171         case MSR_AMD64_VIRT_SPEC_CTRL:
6172                 /* This is AMD only.  */
6173                 return false;
6174         default:
6175                 return true;
6176         }
6177 }
6178
6179 static bool vmx_pt_supported(void)
6180 {
6181         return pt_mode == PT_MODE_HOST_GUEST;
6182 }
6183
6184 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6185 {
6186         u32 exit_intr_info;
6187         bool unblock_nmi;
6188         u8 vector;
6189         bool idtv_info_valid;
6190
6191         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6192
6193         if (enable_vnmi) {
6194                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6195                         return;
6196                 /*
6197                  * Can't use vmx->exit_intr_info since we're not sure what
6198                  * the exit reason is.
6199                  */
6200                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6201                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6202                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6203                 /*
6204                  * SDM 3: 27.7.1.2 (September 2008)
6205                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6206                  * a guest IRET fault.
6207                  * SDM 3: 23.2.2 (September 2008)
6208                  * Bit 12 is undefined in any of the following cases:
6209                  *  If the VM exit sets the valid bit in the IDT-vectoring
6210                  *   information field.
6211                  *  If the VM exit is due to a double fault.
6212                  */
6213                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6214                     vector != DF_VECTOR && !idtv_info_valid)
6215                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6216                                       GUEST_INTR_STATE_NMI);
6217                 else
6218                         vmx->loaded_vmcs->nmi_known_unmasked =
6219                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6220                                   & GUEST_INTR_STATE_NMI);
6221         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6222                 vmx->loaded_vmcs->vnmi_blocked_time +=
6223                         ktime_to_ns(ktime_sub(ktime_get(),
6224                                               vmx->loaded_vmcs->entry_time));
6225 }
6226
6227 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6228                                       u32 idt_vectoring_info,
6229                                       int instr_len_field,
6230                                       int error_code_field)
6231 {
6232         u8 vector;
6233         int type;
6234         bool idtv_info_valid;
6235
6236         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6237
6238         vcpu->arch.nmi_injected = false;
6239         kvm_clear_exception_queue(vcpu);
6240         kvm_clear_interrupt_queue(vcpu);
6241
6242         if (!idtv_info_valid)
6243                 return;
6244
6245         kvm_make_request(KVM_REQ_EVENT, vcpu);
6246
6247         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6248         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6249
6250         switch (type) {
6251         case INTR_TYPE_NMI_INTR:
6252                 vcpu->arch.nmi_injected = true;
6253                 /*
6254                  * SDM 3: 27.7.1.2 (September 2008)
6255                  * Clear bit "block by NMI" before VM entry if a NMI
6256                  * delivery faulted.
6257                  */
6258                 vmx_set_nmi_mask(vcpu, false);
6259                 break;
6260         case INTR_TYPE_SOFT_EXCEPTION:
6261                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6262                 /* fall through */
6263         case INTR_TYPE_HARD_EXCEPTION:
6264                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6265                         u32 err = vmcs_read32(error_code_field);
6266                         kvm_requeue_exception_e(vcpu, vector, err);
6267                 } else
6268                         kvm_requeue_exception(vcpu, vector);
6269                 break;
6270         case INTR_TYPE_SOFT_INTR:
6271                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6272                 /* fall through */
6273         case INTR_TYPE_EXT_INTR:
6274                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6275                 break;
6276         default:
6277                 break;
6278         }
6279 }
6280
6281 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6282 {
6283         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6284                                   VM_EXIT_INSTRUCTION_LEN,
6285                                   IDT_VECTORING_ERROR_CODE);
6286 }
6287
6288 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6289 {
6290         __vmx_complete_interrupts(vcpu,
6291                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6292                                   VM_ENTRY_INSTRUCTION_LEN,
6293                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6294
6295         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6296 }
6297
6298 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6299 {
6300         int i, nr_msrs;
6301         struct perf_guest_switch_msr *msrs;
6302
6303         msrs = perf_guest_get_msrs(&nr_msrs);
6304
6305         if (!msrs)
6306                 return;
6307
6308         for (i = 0; i < nr_msrs; i++)
6309                 if (msrs[i].host == msrs[i].guest)
6310                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6311                 else
6312                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6313                                         msrs[i].host, false);
6314 }
6315
6316 static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
6317 {
6318         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
6319         if (!vmx->loaded_vmcs->hv_timer_armed)
6320                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
6321                               PIN_BASED_VMX_PREEMPTION_TIMER);
6322         vmx->loaded_vmcs->hv_timer_armed = true;
6323 }
6324
6325 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6326 {
6327         struct vcpu_vmx *vmx = to_vmx(vcpu);
6328         u64 tscl;
6329         u32 delta_tsc;
6330
6331         if (vmx->req_immediate_exit) {
6332                 vmx_arm_hv_timer(vmx, 0);
6333                 return;
6334         }
6335
6336         if (vmx->hv_deadline_tsc != -1) {
6337                 tscl = rdtsc();
6338                 if (vmx->hv_deadline_tsc > tscl)
6339                         /* set_hv_timer ensures the delta fits in 32-bits */
6340                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6341                                 cpu_preemption_timer_multi);
6342                 else
6343                         delta_tsc = 0;
6344
6345                 vmx_arm_hv_timer(vmx, delta_tsc);
6346                 return;
6347         }
6348
6349         if (vmx->loaded_vmcs->hv_timer_armed)
6350                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
6351                                 PIN_BASED_VMX_PREEMPTION_TIMER);
6352         vmx->loaded_vmcs->hv_timer_armed = false;
6353 }
6354
6355 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6356 {
6357         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6358                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6359                 vmcs_writel(HOST_RSP, host_rsp);
6360         }
6361 }
6362
6363 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6364
6365 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6366 {
6367         struct vcpu_vmx *vmx = to_vmx(vcpu);
6368         unsigned long cr3, cr4;
6369
6370         /* Record the guest's net vcpu time for enforced NMI injections. */
6371         if (unlikely(!enable_vnmi &&
6372                      vmx->loaded_vmcs->soft_vnmi_blocked))
6373                 vmx->loaded_vmcs->entry_time = ktime_get();
6374
6375         /* Don't enter VMX if guest state is invalid, let the exit handler
6376            start emulation until we arrive back to a valid state */
6377         if (vmx->emulation_required)
6378                 return;
6379
6380         if (vmx->ple_window_dirty) {
6381                 vmx->ple_window_dirty = false;
6382                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6383         }
6384
6385         if (vmx->nested.need_vmcs12_sync)
6386                 nested_sync_from_vmcs12(vcpu);
6387
6388         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6389                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6390         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6391                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6392
6393         cr3 = __get_current_cr3_fast();
6394         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6395                 vmcs_writel(HOST_CR3, cr3);
6396                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6397         }
6398
6399         cr4 = cr4_read_shadow();
6400         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6401                 vmcs_writel(HOST_CR4, cr4);
6402                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6403         }
6404
6405         /* When single-stepping over STI and MOV SS, we must clear the
6406          * corresponding interruptibility bits in the guest state. Otherwise
6407          * vmentry fails as it then expects bit 14 (BS) in pending debug
6408          * exceptions being set, but that's not correct for the guest debugging
6409          * case. */
6410         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6411                 vmx_set_interrupt_shadow(vcpu, 0);
6412
6413         kvm_load_guest_xcr0(vcpu);
6414
6415         if (static_cpu_has(X86_FEATURE_PKU) &&
6416             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6417             vcpu->arch.pkru != vmx->host_pkru)
6418                 __write_pkru(vcpu->arch.pkru);
6419
6420         pt_guest_enter(vmx);
6421
6422         atomic_switch_perf_msrs(vmx);
6423
6424         vmx_update_hv_timer(vcpu);
6425
6426         /*
6427          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6428          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6429          * is no need to worry about the conditional branch over the wrmsr
6430          * being speculatively taken.
6431          */
6432         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6433
6434         if (static_branch_unlikely(&vmx_l1d_should_flush))
6435                 vmx_l1d_flush(vcpu);
6436
6437         if (vcpu->arch.cr2 != read_cr2())
6438                 write_cr2(vcpu->arch.cr2);
6439
6440         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6441                                    vmx->loaded_vmcs->launched);
6442
6443         vcpu->arch.cr2 = read_cr2();
6444
6445         /*
6446          * We do not use IBRS in the kernel. If this vCPU has used the
6447          * SPEC_CTRL MSR it may have left it on; save the value and
6448          * turn it off. This is much more efficient than blindly adding
6449          * it to the atomic save/restore list. Especially as the former
6450          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6451          *
6452          * For non-nested case:
6453          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6454          * save it.
6455          *
6456          * For nested case:
6457          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6458          * save it.
6459          */
6460         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6461                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6462
6463         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6464
6465         /* Eliminate branch target predictions from guest mode */
6466         vmexit_fill_RSB();
6467
6468         /* All fields are clean at this point */
6469         if (static_branch_unlikely(&enable_evmcs))
6470                 current_evmcs->hv_clean_fields |=
6471                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6472
6473         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6474         if (vmx->host_debugctlmsr)
6475                 update_debugctlmsr(vmx->host_debugctlmsr);
6476
6477 #ifndef CONFIG_X86_64
6478         /*
6479          * The sysexit path does not restore ds/es, so we must set them to
6480          * a reasonable value ourselves.
6481          *
6482          * We can't defer this to vmx_prepare_switch_to_host() since that
6483          * function may be executed in interrupt context, which saves and
6484          * restore segments around it, nullifying its effect.
6485          */
6486         loadsegment(ds, __USER_DS);
6487         loadsegment(es, __USER_DS);
6488 #endif
6489
6490         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6491                                   | (1 << VCPU_EXREG_RFLAGS)
6492                                   | (1 << VCPU_EXREG_PDPTR)
6493                                   | (1 << VCPU_EXREG_SEGMENTS)
6494                                   | (1 << VCPU_EXREG_CR3));
6495         vcpu->arch.regs_dirty = 0;
6496
6497         pt_guest_exit(vmx);
6498
6499         /*
6500          * eager fpu is enabled if PKEY is supported and CR4 is switched
6501          * back on host, so it is safe to read guest PKRU from current
6502          * XSAVE.
6503          */
6504         if (static_cpu_has(X86_FEATURE_PKU) &&
6505             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6506                 vcpu->arch.pkru = __read_pkru();
6507                 if (vcpu->arch.pkru != vmx->host_pkru)
6508                         __write_pkru(vmx->host_pkru);
6509         }
6510
6511         kvm_put_guest_xcr0(vcpu);
6512
6513         vmx->nested.nested_run_pending = 0;
6514         vmx->idt_vectoring_info = 0;
6515
6516         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6517         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6518                 return;
6519
6520         vmx->loaded_vmcs->launched = 1;
6521         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6522
6523         vmx_complete_atomic_exit(vmx);
6524         vmx_recover_nmi_blocking(vmx);
6525         vmx_complete_interrupts(vmx);
6526 }
6527
6528 static struct kvm *vmx_vm_alloc(void)
6529 {
6530         struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6531                                             GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6532                                             PAGE_KERNEL);
6533         return &kvm_vmx->kvm;
6534 }
6535
6536 static void vmx_vm_free(struct kvm *kvm)
6537 {
6538         vfree(to_kvm_vmx(kvm));
6539 }
6540
6541 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6542 {
6543         struct vcpu_vmx *vmx = to_vmx(vcpu);
6544
6545         if (enable_pml)
6546                 vmx_destroy_pml_buffer(vmx);
6547         free_vpid(vmx->vpid);
6548         nested_vmx_free_vcpu(vcpu);
6549         free_loaded_vmcs(vmx->loaded_vmcs);
6550         kfree(vmx->guest_msrs);
6551         kvm_vcpu_uninit(vcpu);
6552         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6553         kmem_cache_free(kvm_vcpu_cache, vmx);
6554 }
6555
6556 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6557 {
6558         int err;
6559         struct vcpu_vmx *vmx;
6560         unsigned long *msr_bitmap;
6561         int cpu;
6562
6563         vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6564         if (!vmx)
6565                 return ERR_PTR(-ENOMEM);
6566
6567         vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6568                         GFP_KERNEL_ACCOUNT);
6569         if (!vmx->vcpu.arch.guest_fpu) {
6570                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6571                 err = -ENOMEM;
6572                 goto free_partial_vcpu;
6573         }
6574
6575         vmx->vpid = allocate_vpid();
6576
6577         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6578         if (err)
6579                 goto free_vcpu;
6580
6581         err = -ENOMEM;
6582
6583         /*
6584          * If PML is turned on, failure on enabling PML just results in failure
6585          * of creating the vcpu, therefore we can simplify PML logic (by
6586          * avoiding dealing with cases, such as enabling PML partially on vcpus
6587          * for the guest, etc.
6588          */
6589         if (enable_pml) {
6590                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6591                 if (!vmx->pml_pg)
6592                         goto uninit_vcpu;
6593         }
6594
6595         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6596         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6597                      > PAGE_SIZE);
6598
6599         if (!vmx->guest_msrs)
6600                 goto free_pml;
6601
6602         err = alloc_loaded_vmcs(&vmx->vmcs01);
6603         if (err < 0)
6604                 goto free_msrs;
6605
6606         msr_bitmap = vmx->vmcs01.msr_bitmap;
6607         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6608         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6609         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6610         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6611         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6612         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6613         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6614         vmx->msr_bitmap_mode = 0;
6615
6616         vmx->loaded_vmcs = &vmx->vmcs01;
6617         cpu = get_cpu();
6618         vmx_vcpu_load(&vmx->vcpu, cpu);
6619         vmx->vcpu.cpu = cpu;
6620         vmx_vcpu_setup(vmx);
6621         vmx_vcpu_put(&vmx->vcpu);
6622         put_cpu();
6623         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6624                 err = alloc_apic_access_page(kvm);
6625                 if (err)
6626                         goto free_vmcs;
6627         }
6628
6629         if (enable_ept && !enable_unrestricted_guest) {
6630                 err = init_rmode_identity_map(kvm);
6631                 if (err)
6632                         goto free_vmcs;
6633         }
6634
6635         if (nested)
6636                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6637                                            vmx_capability.ept,
6638                                            kvm_vcpu_apicv_active(&vmx->vcpu));
6639         else
6640                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6641
6642         vmx->nested.posted_intr_nv = -1;
6643         vmx->nested.current_vmptr = -1ull;
6644
6645         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6646
6647         /*
6648          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6649          * or POSTED_INTR_WAKEUP_VECTOR.
6650          */
6651         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6652         vmx->pi_desc.sn = 1;
6653
6654         vmx->ept_pointer = INVALID_PAGE;
6655
6656         return &vmx->vcpu;
6657
6658 free_vmcs:
6659         free_loaded_vmcs(vmx->loaded_vmcs);
6660 free_msrs:
6661         kfree(vmx->guest_msrs);
6662 free_pml:
6663         vmx_destroy_pml_buffer(vmx);
6664 uninit_vcpu:
6665         kvm_vcpu_uninit(&vmx->vcpu);
6666 free_vcpu:
6667         free_vpid(vmx->vpid);
6668         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6669 free_partial_vcpu:
6670         kmem_cache_free(kvm_vcpu_cache, vmx);
6671         return ERR_PTR(err);
6672 }
6673
6674 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
6675 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
6676
6677 static int vmx_vm_init(struct kvm *kvm)
6678 {
6679         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6680
6681         if (!ple_gap)
6682                 kvm->arch.pause_in_guest = true;
6683
6684         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6685                 switch (l1tf_mitigation) {
6686                 case L1TF_MITIGATION_OFF:
6687                 case L1TF_MITIGATION_FLUSH_NOWARN:
6688                         /* 'I explicitly don't care' is set */
6689                         break;
6690                 case L1TF_MITIGATION_FLUSH:
6691                 case L1TF_MITIGATION_FLUSH_NOSMT:
6692                 case L1TF_MITIGATION_FULL:
6693                         /*
6694                          * Warn upon starting the first VM in a potentially
6695                          * insecure environment.
6696                          */
6697                         if (sched_smt_active())
6698                                 pr_warn_once(L1TF_MSG_SMT);
6699                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6700                                 pr_warn_once(L1TF_MSG_L1D);
6701                         break;
6702                 case L1TF_MITIGATION_FULL_FORCE:
6703                         /* Flush is enforced */
6704                         break;
6705                 }
6706         }
6707         return 0;
6708 }
6709
6710 static void __init vmx_check_processor_compat(void *rtn)
6711 {
6712         struct vmcs_config vmcs_conf;
6713         struct vmx_capability vmx_cap;
6714
6715         *(int *)rtn = 0;
6716         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6717                 *(int *)rtn = -EIO;
6718         if (nested)
6719                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6720                                            enable_apicv);
6721         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6722                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6723                                 smp_processor_id());
6724                 *(int *)rtn = -EIO;
6725         }
6726 }
6727
6728 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6729 {
6730         u8 cache;
6731         u64 ipat = 0;
6732
6733         /* For VT-d and EPT combination
6734          * 1. MMIO: always map as UC
6735          * 2. EPT with VT-d:
6736          *   a. VT-d without snooping control feature: can't guarantee the
6737          *      result, try to trust guest.
6738          *   b. VT-d with snooping control feature: snooping control feature of
6739          *      VT-d engine can guarantee the cache correctness. Just set it
6740          *      to WB to keep consistent with host. So the same as item 3.
6741          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6742          *    consistent with host MTRR
6743          */
6744         if (is_mmio) {
6745                 cache = MTRR_TYPE_UNCACHABLE;
6746                 goto exit;
6747         }
6748
6749         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6750                 ipat = VMX_EPT_IPAT_BIT;
6751                 cache = MTRR_TYPE_WRBACK;
6752                 goto exit;
6753         }
6754
6755         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6756                 ipat = VMX_EPT_IPAT_BIT;
6757                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6758                         cache = MTRR_TYPE_WRBACK;
6759                 else
6760                         cache = MTRR_TYPE_UNCACHABLE;
6761                 goto exit;
6762         }
6763
6764         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6765
6766 exit:
6767         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6768 }
6769
6770 static int vmx_get_lpage_level(void)
6771 {
6772         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6773                 return PT_DIRECTORY_LEVEL;
6774         else
6775                 /* For shadow and EPT supported 1GB page */
6776                 return PT_PDPE_LEVEL;
6777 }
6778
6779 static void vmcs_set_secondary_exec_control(u32 new_ctl)
6780 {
6781         /*
6782          * These bits in the secondary execution controls field
6783          * are dynamic, the others are mostly based on the hypervisor
6784          * architecture and the guest's CPUID.  Do not touch the
6785          * dynamic bits.
6786          */
6787         u32 mask =
6788                 SECONDARY_EXEC_SHADOW_VMCS |
6789                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6790                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6791                 SECONDARY_EXEC_DESC;
6792
6793         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6794
6795         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6796                      (new_ctl & ~mask) | (cur_ctl & mask));
6797 }
6798
6799 /*
6800  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6801  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6802  */
6803 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6804 {
6805         struct vcpu_vmx *vmx = to_vmx(vcpu);
6806         struct kvm_cpuid_entry2 *entry;
6807
6808         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6809         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6810
6811 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6812         if (entry && (entry->_reg & (_cpuid_mask)))                     \
6813                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6814 } while (0)
6815
6816         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6817         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6818         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6819         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6820         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6821         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6822         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6823         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6824         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6825         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6826         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6827         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6828         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6829         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6830         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6831
6832         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6833         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6834         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6835         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6836         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6837         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6838
6839 #undef cr4_fixed1_update
6840 }
6841
6842 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6843 {
6844         struct vcpu_vmx *vmx = to_vmx(vcpu);
6845
6846         if (kvm_mpx_supported()) {
6847                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6848
6849                 if (mpx_enabled) {
6850                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6851                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6852                 } else {
6853                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6854                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6855                 }
6856         }
6857 }
6858
6859 static bool guest_cpuid_has_pmu(struct kvm_vcpu *vcpu)
6860 {
6861         struct kvm_cpuid_entry2 *entry;
6862         union cpuid10_eax eax;
6863
6864         entry = kvm_find_cpuid_entry(vcpu, 0xa, 0);
6865         if (!entry)
6866                 return false;
6867
6868         eax.full = entry->eax;
6869         return (eax.split.version_id > 0);
6870 }
6871
6872 static void nested_vmx_procbased_ctls_update(struct kvm_vcpu *vcpu)
6873 {
6874         struct vcpu_vmx *vmx = to_vmx(vcpu);
6875         bool pmu_enabled = guest_cpuid_has_pmu(vcpu);
6876
6877         if (pmu_enabled)
6878                 vmx->nested.msrs.procbased_ctls_high |= CPU_BASED_RDPMC_EXITING;
6879         else
6880                 vmx->nested.msrs.procbased_ctls_high &= ~CPU_BASED_RDPMC_EXITING;
6881 }
6882
6883 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6884 {
6885         struct vcpu_vmx *vmx = to_vmx(vcpu);
6886         struct kvm_cpuid_entry2 *best = NULL;
6887         int i;
6888
6889         for (i = 0; i < PT_CPUID_LEAVES; i++) {
6890                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6891                 if (!best)
6892                         return;
6893                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6894                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6895                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6896                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
6897         }
6898
6899         /* Get the number of configurable Address Ranges for filtering */
6900         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
6901                                                 PT_CAP_num_address_ranges);
6902
6903         /* Initialize and clear the no dependency bits */
6904         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
6905                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
6906
6907         /*
6908          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
6909          * will inject an #GP
6910          */
6911         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
6912                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
6913
6914         /*
6915          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
6916          * PSBFreq can be set
6917          */
6918         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
6919                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
6920                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
6921
6922         /*
6923          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
6924          * MTCFreq can be set
6925          */
6926         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
6927                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
6928                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
6929
6930         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
6931         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
6932                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
6933                                                         RTIT_CTL_PTW_EN);
6934
6935         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
6936         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
6937                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
6938
6939         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
6940         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
6941                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
6942
6943         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
6944         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
6945                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
6946
6947         /* unmask address range configure area */
6948         for (i = 0; i < vmx->pt_desc.addr_range; i++)
6949                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
6950 }
6951
6952 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6953 {
6954         struct vcpu_vmx *vmx = to_vmx(vcpu);
6955
6956         if (cpu_has_secondary_exec_ctrls()) {
6957                 vmx_compute_secondary_exec_control(vmx);
6958                 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
6959         }
6960
6961         if (nested_vmx_allowed(vcpu))
6962                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
6963                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6964         else
6965                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
6966                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6967
6968         if (nested_vmx_allowed(vcpu)) {
6969                 nested_vmx_cr_fixed1_bits_update(vcpu);
6970                 nested_vmx_entry_exit_ctls_update(vcpu);
6971                 nested_vmx_procbased_ctls_update(vcpu);
6972         }
6973
6974         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
6975                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
6976                 update_intel_pt_cfg(vcpu);
6977 }
6978
6979 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6980 {
6981         if (func == 1 && nested)
6982                 entry->ecx |= bit(X86_FEATURE_VMX);
6983 }
6984
6985 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
6986 {
6987         to_vmx(vcpu)->req_immediate_exit = true;
6988 }
6989
6990 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
6991                                struct x86_instruction_info *info,
6992                                enum x86_intercept_stage stage)
6993 {
6994         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6995         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6996
6997         /*
6998          * RDPID causes #UD if disabled through secondary execution controls.
6999          * Because it is marked as EmulateOnUD, we need to intercept it here.
7000          */
7001         if (info->intercept == x86_intercept_rdtscp &&
7002             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7003                 ctxt->exception.vector = UD_VECTOR;
7004                 ctxt->exception.error_code_valid = false;
7005                 return X86EMUL_PROPAGATE_FAULT;
7006         }
7007
7008         /* TODO: check more intercepts... */
7009         return X86EMUL_CONTINUE;
7010 }
7011
7012 #ifdef CONFIG_X86_64
7013 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7014 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7015                                   u64 divisor, u64 *result)
7016 {
7017         u64 low = a << shift, high = a >> (64 - shift);
7018
7019         /* To avoid the overflow on divq */
7020         if (high >= divisor)
7021                 return 1;
7022
7023         /* Low hold the result, high hold rem which is discarded */
7024         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7025             "rm" (divisor), "0" (low), "1" (high));
7026         *result = low;
7027
7028         return 0;
7029 }
7030
7031 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
7032 {
7033         struct vcpu_vmx *vmx;
7034         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7035
7036         if (kvm_mwait_in_guest(vcpu->kvm))
7037                 return -EOPNOTSUPP;
7038
7039         vmx = to_vmx(vcpu);
7040         tscl = rdtsc();
7041         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7042         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7043         lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
7044
7045         if (delta_tsc > lapic_timer_advance_cycles)
7046                 delta_tsc -= lapic_timer_advance_cycles;
7047         else
7048                 delta_tsc = 0;
7049
7050         /* Convert to host delta tsc if tsc scaling is enabled */
7051         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7052                         u64_shl_div_u64(delta_tsc,
7053                                 kvm_tsc_scaling_ratio_frac_bits,
7054                                 vcpu->arch.tsc_scaling_ratio,
7055                                 &delta_tsc))
7056                 return -ERANGE;
7057
7058         /*
7059          * If the delta tsc can't fit in the 32 bit after the multi shift,
7060          * we can't use the preemption timer.
7061          * It's possible that it fits on later vmentries, but checking
7062          * on every vmentry is costly so we just use an hrtimer.
7063          */
7064         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7065                 return -ERANGE;
7066
7067         vmx->hv_deadline_tsc = tscl + delta_tsc;
7068         return delta_tsc == 0;
7069 }
7070
7071 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7072 {
7073         to_vmx(vcpu)->hv_deadline_tsc = -1;
7074 }
7075 #endif
7076
7077 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7078 {
7079         if (!kvm_pause_in_guest(vcpu->kvm))
7080                 shrink_ple_window(vcpu);
7081 }
7082
7083 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7084                                      struct kvm_memory_slot *slot)
7085 {
7086         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7087         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7088 }
7089
7090 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7091                                        struct kvm_memory_slot *slot)
7092 {
7093         kvm_mmu_slot_set_dirty(kvm, slot);
7094 }
7095
7096 static void vmx_flush_log_dirty(struct kvm *kvm)
7097 {
7098         kvm_flush_pml_buffers(kvm);
7099 }
7100
7101 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7102 {
7103         struct vmcs12 *vmcs12;
7104         struct vcpu_vmx *vmx = to_vmx(vcpu);
7105         gpa_t gpa;
7106         struct page *page = NULL;
7107         u64 *pml_address;
7108
7109         if (is_guest_mode(vcpu)) {
7110                 WARN_ON_ONCE(vmx->nested.pml_full);
7111
7112                 /*
7113                  * Check if PML is enabled for the nested guest.
7114                  * Whether eptp bit 6 is set is already checked
7115                  * as part of A/D emulation.
7116                  */
7117                 vmcs12 = get_vmcs12(vcpu);
7118                 if (!nested_cpu_has_pml(vmcs12))
7119                         return 0;
7120
7121                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7122                         vmx->nested.pml_full = true;
7123                         return 1;
7124                 }
7125
7126                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7127
7128                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
7129                 if (is_error_page(page))
7130                         return 0;
7131
7132                 pml_address = kmap(page);
7133                 pml_address[vmcs12->guest_pml_index--] = gpa;
7134                 kunmap(page);
7135                 kvm_release_page_clean(page);
7136         }
7137
7138         return 0;
7139 }
7140
7141 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7142                                            struct kvm_memory_slot *memslot,
7143                                            gfn_t offset, unsigned long mask)
7144 {
7145         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7146 }
7147
7148 static void __pi_post_block(struct kvm_vcpu *vcpu)
7149 {
7150         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7151         struct pi_desc old, new;
7152         unsigned int dest;
7153
7154         do {
7155                 old.control = new.control = pi_desc->control;
7156                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7157                      "Wakeup handler not enabled while the VCPU is blocked\n");
7158
7159                 dest = cpu_physical_id(vcpu->cpu);
7160
7161                 if (x2apic_enabled())
7162                         new.ndst = dest;
7163                 else
7164                         new.ndst = (dest << 8) & 0xFF00;
7165
7166                 /* set 'NV' to 'notification vector' */
7167                 new.nv = POSTED_INTR_VECTOR;
7168         } while (cmpxchg64(&pi_desc->control, old.control,
7169                            new.control) != old.control);
7170
7171         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7172                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7173                 list_del(&vcpu->blocked_vcpu_list);
7174                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7175                 vcpu->pre_pcpu = -1;
7176         }
7177 }
7178
7179 /*
7180  * This routine does the following things for vCPU which is going
7181  * to be blocked if VT-d PI is enabled.
7182  * - Store the vCPU to the wakeup list, so when interrupts happen
7183  *   we can find the right vCPU to wake up.
7184  * - Change the Posted-interrupt descriptor as below:
7185  *      'NDST' <-- vcpu->pre_pcpu
7186  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7187  * - If 'ON' is set during this process, which means at least one
7188  *   interrupt is posted for this vCPU, we cannot block it, in
7189  *   this case, return 1, otherwise, return 0.
7190  *
7191  */
7192 static int pi_pre_block(struct kvm_vcpu *vcpu)
7193 {
7194         unsigned int dest;
7195         struct pi_desc old, new;
7196         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7197
7198         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7199                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7200                 !kvm_vcpu_apicv_active(vcpu))
7201                 return 0;
7202
7203         WARN_ON(irqs_disabled());
7204         local_irq_disable();
7205         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7206                 vcpu->pre_pcpu = vcpu->cpu;
7207                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7208                 list_add_tail(&vcpu->blocked_vcpu_list,
7209                               &per_cpu(blocked_vcpu_on_cpu,
7210                                        vcpu->pre_pcpu));
7211                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7212         }
7213
7214         do {
7215                 old.control = new.control = pi_desc->control;
7216
7217                 WARN((pi_desc->sn == 1),
7218                      "Warning: SN field of posted-interrupts "
7219                      "is set before blocking\n");
7220
7221                 /*
7222                  * Since vCPU can be preempted during this process,
7223                  * vcpu->cpu could be different with pre_pcpu, we
7224                  * need to set pre_pcpu as the destination of wakeup
7225                  * notification event, then we can find the right vCPU
7226                  * to wakeup in wakeup handler if interrupts happen
7227                  * when the vCPU is in blocked state.
7228                  */
7229                 dest = cpu_physical_id(vcpu->pre_pcpu);
7230
7231                 if (x2apic_enabled())
7232                         new.ndst = dest;
7233                 else
7234                         new.ndst = (dest << 8) & 0xFF00;
7235
7236                 /* set 'NV' to 'wakeup vector' */
7237                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7238         } while (cmpxchg64(&pi_desc->control, old.control,
7239                            new.control) != old.control);
7240
7241         /* We should not block the vCPU if an interrupt is posted for it.  */
7242         if (pi_test_on(pi_desc) == 1)
7243                 __pi_post_block(vcpu);
7244
7245         local_irq_enable();
7246         return (vcpu->pre_pcpu == -1);
7247 }
7248
7249 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7250 {
7251         if (pi_pre_block(vcpu))
7252                 return 1;
7253
7254         if (kvm_lapic_hv_timer_in_use(vcpu))
7255                 kvm_lapic_switch_to_sw_timer(vcpu);
7256
7257         return 0;
7258 }
7259
7260 static void pi_post_block(struct kvm_vcpu *vcpu)
7261 {
7262         if (vcpu->pre_pcpu == -1)
7263                 return;
7264
7265         WARN_ON(irqs_disabled());
7266         local_irq_disable();
7267         __pi_post_block(vcpu);
7268         local_irq_enable();
7269 }
7270
7271 static void vmx_post_block(struct kvm_vcpu *vcpu)
7272 {
7273         if (kvm_x86_ops->set_hv_timer)
7274                 kvm_lapic_switch_to_hv_timer(vcpu);
7275
7276         pi_post_block(vcpu);
7277 }
7278
7279 /*
7280  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7281  *
7282  * @kvm: kvm
7283  * @host_irq: host irq of the interrupt
7284  * @guest_irq: gsi of the interrupt
7285  * @set: set or unset PI
7286  * returns 0 on success, < 0 on failure
7287  */
7288 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7289                               uint32_t guest_irq, bool set)
7290 {
7291         struct kvm_kernel_irq_routing_entry *e;
7292         struct kvm_irq_routing_table *irq_rt;
7293         struct kvm_lapic_irq irq;
7294         struct kvm_vcpu *vcpu;
7295         struct vcpu_data vcpu_info;
7296         int idx, ret = 0;
7297
7298         if (!kvm_arch_has_assigned_device(kvm) ||
7299                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7300                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7301                 return 0;
7302
7303         idx = srcu_read_lock(&kvm->irq_srcu);
7304         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7305         if (guest_irq >= irq_rt->nr_rt_entries ||
7306             hlist_empty(&irq_rt->map[guest_irq])) {
7307                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7308                              guest_irq, irq_rt->nr_rt_entries);
7309                 goto out;
7310         }
7311
7312         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7313                 if (e->type != KVM_IRQ_ROUTING_MSI)
7314                         continue;
7315                 /*
7316                  * VT-d PI cannot support posting multicast/broadcast
7317                  * interrupts to a vCPU, we still use interrupt remapping
7318                  * for these kind of interrupts.
7319                  *
7320                  * For lowest-priority interrupts, we only support
7321                  * those with single CPU as the destination, e.g. user
7322                  * configures the interrupts via /proc/irq or uses
7323                  * irqbalance to make the interrupts single-CPU.
7324                  *
7325                  * We will support full lowest-priority interrupt later.
7326                  */
7327
7328                 kvm_set_msi_irq(kvm, e, &irq);
7329                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
7330                         /*
7331                          * Make sure the IRTE is in remapped mode if
7332                          * we don't handle it in posted mode.
7333                          */
7334                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7335                         if (ret < 0) {
7336                                 printk(KERN_INFO
7337                                    "failed to back to remapped mode, irq: %u\n",
7338                                    host_irq);
7339                                 goto out;
7340                         }
7341
7342                         continue;
7343                 }
7344
7345                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7346                 vcpu_info.vector = irq.vector;
7347
7348                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7349                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7350
7351                 if (set)
7352                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7353                 else
7354                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7355
7356                 if (ret < 0) {
7357                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7358                                         __func__);
7359                         goto out;
7360                 }
7361         }
7362
7363         ret = 0;
7364 out:
7365         srcu_read_unlock(&kvm->irq_srcu, idx);
7366         return ret;
7367 }
7368
7369 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7370 {
7371         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7372                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7373                         FEATURE_CONTROL_LMCE;
7374         else
7375                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7376                         ~FEATURE_CONTROL_LMCE;
7377 }
7378
7379 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7380 {
7381         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7382         if (to_vmx(vcpu)->nested.nested_run_pending)
7383                 return 0;
7384         return 1;
7385 }
7386
7387 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7388 {
7389         struct vcpu_vmx *vmx = to_vmx(vcpu);
7390
7391         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7392         if (vmx->nested.smm.guest_mode)
7393                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7394
7395         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7396         vmx->nested.vmxon = false;
7397         vmx_clear_hlt(vcpu);
7398         return 0;
7399 }
7400
7401 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7402 {
7403         struct vcpu_vmx *vmx = to_vmx(vcpu);
7404         int ret;
7405
7406         if (vmx->nested.smm.vmxon) {
7407                 vmx->nested.vmxon = true;
7408                 vmx->nested.smm.vmxon = false;
7409         }
7410
7411         if (vmx->nested.smm.guest_mode) {
7412                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7413                 if (ret)
7414                         return ret;
7415
7416                 vmx->nested.smm.guest_mode = false;
7417         }
7418         return 0;
7419 }
7420
7421 static int enable_smi_window(struct kvm_vcpu *vcpu)
7422 {
7423         return 0;
7424 }
7425
7426 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7427 {
7428         return 0;
7429 }
7430
7431 static __init int hardware_setup(void)
7432 {
7433         unsigned long host_bndcfgs;
7434         int r, i;
7435
7436         rdmsrl_safe(MSR_EFER, &host_efer);
7437
7438         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7439                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7440
7441         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7442                 return -EIO;
7443
7444         if (boot_cpu_has(X86_FEATURE_NX))
7445                 kvm_enable_efer_bits(EFER_NX);
7446
7447         if (boot_cpu_has(X86_FEATURE_MPX)) {
7448                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7449                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7450         }
7451
7452         if (boot_cpu_has(X86_FEATURE_XSAVES))
7453                 rdmsrl(MSR_IA32_XSS, host_xss);
7454
7455         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7456             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7457                 enable_vpid = 0;
7458
7459         if (!cpu_has_vmx_ept() ||
7460             !cpu_has_vmx_ept_4levels() ||
7461             !cpu_has_vmx_ept_mt_wb() ||
7462             !cpu_has_vmx_invept_global())
7463                 enable_ept = 0;
7464
7465         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7466                 enable_ept_ad_bits = 0;
7467
7468         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7469                 enable_unrestricted_guest = 0;
7470
7471         if (!cpu_has_vmx_flexpriority())
7472                 flexpriority_enabled = 0;
7473
7474         if (!cpu_has_virtual_nmis())
7475                 enable_vnmi = 0;
7476
7477         /*
7478          * set_apic_access_page_addr() is used to reload apic access
7479          * page upon invalidation.  No need to do anything if not
7480          * using the APIC_ACCESS_ADDR VMCS field.
7481          */
7482         if (!flexpriority_enabled)
7483                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7484
7485         if (!cpu_has_vmx_tpr_shadow())
7486                 kvm_x86_ops->update_cr8_intercept = NULL;
7487
7488         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7489                 kvm_disable_largepages();
7490
7491 #if IS_ENABLED(CONFIG_HYPERV)
7492         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7493             && enable_ept) {
7494                 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7495                 kvm_x86_ops->tlb_remote_flush_with_range =
7496                                 hv_remote_flush_tlb_with_range;
7497         }
7498 #endif
7499
7500         if (!cpu_has_vmx_ple()) {
7501                 ple_gap = 0;
7502                 ple_window = 0;
7503                 ple_window_grow = 0;
7504                 ple_window_max = 0;
7505                 ple_window_shrink = 0;
7506         }
7507
7508         if (!cpu_has_vmx_apicv()) {
7509                 enable_apicv = 0;
7510                 kvm_x86_ops->sync_pir_to_irr = NULL;
7511         }
7512
7513         if (cpu_has_vmx_tsc_scaling()) {
7514                 kvm_has_tsc_control = true;
7515                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7516                 kvm_tsc_scaling_ratio_frac_bits = 48;
7517         }
7518
7519         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7520
7521         if (enable_ept)
7522                 vmx_enable_tdp();
7523         else
7524                 kvm_disable_tdp();
7525
7526         /*
7527          * Only enable PML when hardware supports PML feature, and both EPT
7528          * and EPT A/D bit features are enabled -- PML depends on them to work.
7529          */
7530         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7531                 enable_pml = 0;
7532
7533         if (!enable_pml) {
7534                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7535                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7536                 kvm_x86_ops->flush_log_dirty = NULL;
7537                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7538         }
7539
7540         if (!cpu_has_vmx_preemption_timer())
7541                 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7542
7543         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7544                 u64 vmx_msr;
7545
7546                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7547                 cpu_preemption_timer_multi =
7548                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7549         } else {
7550                 kvm_x86_ops->set_hv_timer = NULL;
7551                 kvm_x86_ops->cancel_hv_timer = NULL;
7552         }
7553
7554         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7555
7556         kvm_mce_cap_supported |= MCG_LMCE_P;
7557
7558         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7559                 return -EINVAL;
7560         if (!enable_ept || !cpu_has_vmx_intel_pt())
7561                 pt_mode = PT_MODE_SYSTEM;
7562
7563         if (nested) {
7564                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7565                                            vmx_capability.ept, enable_apicv);
7566
7567                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7568                 if (r)
7569                         return r;
7570         }
7571
7572         r = alloc_kvm_area();
7573         if (r)
7574                 nested_vmx_hardware_unsetup();
7575         return r;
7576 }
7577
7578 static __exit void hardware_unsetup(void)
7579 {
7580         if (nested)
7581                 nested_vmx_hardware_unsetup();
7582
7583         free_kvm_area();
7584 }
7585
7586 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7587         .cpu_has_kvm_support = cpu_has_kvm_support,
7588         .disabled_by_bios = vmx_disabled_by_bios,
7589         .hardware_setup = hardware_setup,
7590         .hardware_unsetup = hardware_unsetup,
7591         .check_processor_compatibility = vmx_check_processor_compat,
7592         .hardware_enable = hardware_enable,
7593         .hardware_disable = hardware_disable,
7594         .cpu_has_accelerated_tpr = report_flexpriority,
7595         .has_emulated_msr = vmx_has_emulated_msr,
7596
7597         .vm_init = vmx_vm_init,
7598         .vm_alloc = vmx_vm_alloc,
7599         .vm_free = vmx_vm_free,
7600
7601         .vcpu_create = vmx_create_vcpu,
7602         .vcpu_free = vmx_free_vcpu,
7603         .vcpu_reset = vmx_vcpu_reset,
7604
7605         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7606         .vcpu_load = vmx_vcpu_load,
7607         .vcpu_put = vmx_vcpu_put,
7608
7609         .update_bp_intercept = update_exception_bitmap,
7610         .get_msr_feature = vmx_get_msr_feature,
7611         .get_msr = vmx_get_msr,
7612         .set_msr = vmx_set_msr,
7613         .get_segment_base = vmx_get_segment_base,
7614         .get_segment = vmx_get_segment,
7615         .set_segment = vmx_set_segment,
7616         .get_cpl = vmx_get_cpl,
7617         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7618         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7619         .decache_cr3 = vmx_decache_cr3,
7620         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7621         .set_cr0 = vmx_set_cr0,
7622         .set_cr3 = vmx_set_cr3,
7623         .set_cr4 = vmx_set_cr4,
7624         .set_efer = vmx_set_efer,
7625         .get_idt = vmx_get_idt,
7626         .set_idt = vmx_set_idt,
7627         .get_gdt = vmx_get_gdt,
7628         .set_gdt = vmx_set_gdt,
7629         .get_dr6 = vmx_get_dr6,
7630         .set_dr6 = vmx_set_dr6,
7631         .set_dr7 = vmx_set_dr7,
7632         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7633         .cache_reg = vmx_cache_reg,
7634         .get_rflags = vmx_get_rflags,
7635         .set_rflags = vmx_set_rflags,
7636
7637         .tlb_flush = vmx_flush_tlb,
7638         .tlb_flush_gva = vmx_flush_tlb_gva,
7639
7640         .run = vmx_vcpu_run,
7641         .handle_exit = vmx_handle_exit,
7642         .skip_emulated_instruction = skip_emulated_instruction,
7643         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7644         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7645         .patch_hypercall = vmx_patch_hypercall,
7646         .set_irq = vmx_inject_irq,
7647         .set_nmi = vmx_inject_nmi,
7648         .queue_exception = vmx_queue_exception,
7649         .cancel_injection = vmx_cancel_injection,
7650         .interrupt_allowed = vmx_interrupt_allowed,
7651         .nmi_allowed = vmx_nmi_allowed,
7652         .get_nmi_mask = vmx_get_nmi_mask,
7653         .set_nmi_mask = vmx_set_nmi_mask,
7654         .enable_nmi_window = enable_nmi_window,
7655         .enable_irq_window = enable_irq_window,
7656         .update_cr8_intercept = update_cr8_intercept,
7657         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7658         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7659         .get_enable_apicv = vmx_get_enable_apicv,
7660         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7661         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7662         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7663         .hwapic_irr_update = vmx_hwapic_irr_update,
7664         .hwapic_isr_update = vmx_hwapic_isr_update,
7665         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7666         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7667         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7668
7669         .set_tss_addr = vmx_set_tss_addr,
7670         .set_identity_map_addr = vmx_set_identity_map_addr,
7671         .get_tdp_level = get_ept_level,
7672         .get_mt_mask = vmx_get_mt_mask,
7673
7674         .get_exit_info = vmx_get_exit_info,
7675
7676         .get_lpage_level = vmx_get_lpage_level,
7677
7678         .cpuid_update = vmx_cpuid_update,
7679
7680         .rdtscp_supported = vmx_rdtscp_supported,
7681         .invpcid_supported = vmx_invpcid_supported,
7682
7683         .set_supported_cpuid = vmx_set_supported_cpuid,
7684
7685         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7686
7687         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7688         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7689
7690         .set_tdp_cr3 = vmx_set_cr3,
7691
7692         .check_intercept = vmx_check_intercept,
7693         .handle_external_intr = vmx_handle_external_intr,
7694         .mpx_supported = vmx_mpx_supported,
7695         .xsaves_supported = vmx_xsaves_supported,
7696         .umip_emulated = vmx_umip_emulated,
7697         .pt_supported = vmx_pt_supported,
7698
7699         .request_immediate_exit = vmx_request_immediate_exit,
7700
7701         .sched_in = vmx_sched_in,
7702
7703         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7704         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7705         .flush_log_dirty = vmx_flush_log_dirty,
7706         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7707         .write_log_dirty = vmx_write_pml_buffer,
7708
7709         .pre_block = vmx_pre_block,
7710         .post_block = vmx_post_block,
7711
7712         .pmu_ops = &intel_pmu_ops,
7713
7714         .update_pi_irte = vmx_update_pi_irte,
7715
7716 #ifdef CONFIG_X86_64
7717         .set_hv_timer = vmx_set_hv_timer,
7718         .cancel_hv_timer = vmx_cancel_hv_timer,
7719 #endif
7720
7721         .setup_mce = vmx_setup_mce,
7722
7723         .smi_allowed = vmx_smi_allowed,
7724         .pre_enter_smm = vmx_pre_enter_smm,
7725         .pre_leave_smm = vmx_pre_leave_smm,
7726         .enable_smi_window = enable_smi_window,
7727
7728         .check_nested_events = NULL,
7729         .get_nested_state = NULL,
7730         .set_nested_state = NULL,
7731         .get_vmcs12_pages = NULL,
7732         .nested_enable_evmcs = NULL,
7733         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7734 };
7735
7736 static void vmx_cleanup_l1d_flush(void)
7737 {
7738         if (vmx_l1d_flush_pages) {
7739                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7740                 vmx_l1d_flush_pages = NULL;
7741         }
7742         /* Restore state so sysfs ignores VMX */
7743         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7744 }
7745
7746 static void vmx_exit(void)
7747 {
7748 #ifdef CONFIG_KEXEC_CORE
7749         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7750         synchronize_rcu();
7751 #endif
7752
7753         kvm_exit();
7754
7755 #if IS_ENABLED(CONFIG_HYPERV)
7756         if (static_branch_unlikely(&enable_evmcs)) {
7757                 int cpu;
7758                 struct hv_vp_assist_page *vp_ap;
7759                 /*
7760                  * Reset everything to support using non-enlightened VMCS
7761                  * access later (e.g. when we reload the module with
7762                  * enlightened_vmcs=0)
7763                  */
7764                 for_each_online_cpu(cpu) {
7765                         vp_ap = hv_get_vp_assist_page(cpu);
7766
7767                         if (!vp_ap)
7768                                 continue;
7769
7770                         vp_ap->current_nested_vmcs = 0;
7771                         vp_ap->enlighten_vmentry = 0;
7772                 }
7773
7774                 static_branch_disable(&enable_evmcs);
7775         }
7776 #endif
7777         vmx_cleanup_l1d_flush();
7778 }
7779 module_exit(vmx_exit);
7780
7781 static int __init vmx_init(void)
7782 {
7783         int r;
7784
7785 #if IS_ENABLED(CONFIG_HYPERV)
7786         /*
7787          * Enlightened VMCS usage should be recommended and the host needs
7788          * to support eVMCS v1 or above. We can also disable eVMCS support
7789          * with module parameter.
7790          */
7791         if (enlightened_vmcs &&
7792             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7793             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7794             KVM_EVMCS_VERSION) {
7795                 int cpu;
7796
7797                 /* Check that we have assist pages on all online CPUs */
7798                 for_each_online_cpu(cpu) {
7799                         if (!hv_get_vp_assist_page(cpu)) {
7800                                 enlightened_vmcs = false;
7801                                 break;
7802                         }
7803                 }
7804
7805                 if (enlightened_vmcs) {
7806                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7807                         static_branch_enable(&enable_evmcs);
7808                 }
7809         } else {
7810                 enlightened_vmcs = false;
7811         }
7812 #endif
7813
7814         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7815                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7816         if (r)
7817                 return r;
7818
7819         /*
7820          * Must be called after kvm_init() so enable_ept is properly set
7821          * up. Hand the parameter mitigation value in which was stored in
7822          * the pre module init parser. If no parameter was given, it will
7823          * contain 'auto' which will be turned into the default 'cond'
7824          * mitigation mode.
7825          */
7826         if (boot_cpu_has(X86_BUG_L1TF)) {
7827                 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7828                 if (r) {
7829                         vmx_exit();
7830                         return r;
7831                 }
7832         }
7833
7834 #ifdef CONFIG_KEXEC_CORE
7835         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7836                            crash_vmclear_local_loaded_vmcss);
7837 #endif
7838         vmx_check_vmcs12_offsets();
7839
7840         return 0;
7841 }
7842 module_init(vmx_init);