536b7d688851296002c7815d7631538ca7ce7e1b
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/kexec.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/virtext.h>
51 #include <asm/vmx.h>
52
53 #include "capabilities.h"
54 #include "cpuid.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69 #include "smm.h"
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 #ifdef MODULE
75 static const struct x86_cpu_id vmx_cpu_id[] = {
76         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
77         {}
78 };
79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
80 #endif
81
82 bool __read_mostly enable_vpid = 1;
83 module_param_named(vpid, enable_vpid, bool, 0444);
84
85 static bool __read_mostly enable_vnmi = 1;
86 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
87
88 bool __read_mostly flexpriority_enabled = 1;
89 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
90
91 bool __read_mostly enable_ept = 1;
92 module_param_named(ept, enable_ept, bool, S_IRUGO);
93
94 bool __read_mostly enable_unrestricted_guest = 1;
95 module_param_named(unrestricted_guest,
96                         enable_unrestricted_guest, bool, S_IRUGO);
97
98 bool __read_mostly enable_ept_ad_bits = 1;
99 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
100
101 static bool __read_mostly emulate_invalid_guest_state = true;
102 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
103
104 static bool __read_mostly fasteoi = 1;
105 module_param(fasteoi, bool, S_IRUGO);
106
107 module_param(enable_apicv, bool, S_IRUGO);
108
109 bool __read_mostly enable_ipiv = true;
110 module_param(enable_ipiv, bool, 0444);
111
112 /*
113  * If nested=1, nested virtualization is supported, i.e., guests may use
114  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
115  * use VMX instructions.
116  */
117 static bool __read_mostly nested = 1;
118 module_param(nested, bool, S_IRUGO);
119
120 bool __read_mostly enable_pml = 1;
121 module_param_named(pml, enable_pml, bool, S_IRUGO);
122
123 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
124 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
125
126 static bool __read_mostly dump_invalid_vmcs = 0;
127 module_param(dump_invalid_vmcs, bool, 0644);
128
129 #define MSR_BITMAP_MODE_X2APIC          1
130 #define MSR_BITMAP_MODE_X2APIC_APICV    2
131
132 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
133
134 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
135 static int __read_mostly cpu_preemption_timer_multi;
136 static bool __read_mostly enable_preemption_timer = 1;
137 #ifdef CONFIG_X86_64
138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
139 #endif
140
141 extern bool __read_mostly allow_smaller_maxphyaddr;
142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
143
144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
146 #define KVM_VM_CR0_ALWAYS_ON                            \
147         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
148
149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
152
153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
154
155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
156         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
157         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
158         RTIT_STATUS_BYTECNT))
159
160 /*
161  * List of MSRs that can be directly passed to the guest.
162  * In addition to these x2apic and PT MSRs are handled specially.
163  */
164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
165         MSR_IA32_SPEC_CTRL,
166         MSR_IA32_PRED_CMD,
167         MSR_IA32_FLUSH_CMD,
168         MSR_IA32_TSC,
169 #ifdef CONFIG_X86_64
170         MSR_FS_BASE,
171         MSR_GS_BASE,
172         MSR_KERNEL_GS_BASE,
173         MSR_IA32_XFD,
174         MSR_IA32_XFD_ERR,
175 #endif
176         MSR_IA32_SYSENTER_CS,
177         MSR_IA32_SYSENTER_ESP,
178         MSR_IA32_SYSENTER_EIP,
179         MSR_CORE_C1_RES,
180         MSR_CORE_C3_RESIDENCY,
181         MSR_CORE_C6_RESIDENCY,
182         MSR_CORE_C7_RESIDENCY,
183 };
184
185 /*
186  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
187  * ple_gap:    upper bound on the amount of time between two successive
188  *             executions of PAUSE in a loop. Also indicate if ple enabled.
189  *             According to test, this time is usually smaller than 128 cycles.
190  * ple_window: upper bound on the amount of time a guest is allowed to execute
191  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
192  *             less than 2^12 cycles
193  * Time is measured based on a counter that runs at the same rate as the TSC,
194  * refer SDM volume 3b section 21.6.13 & 22.1.3.
195  */
196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
197 module_param(ple_gap, uint, 0444);
198
199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
200 module_param(ple_window, uint, 0444);
201
202 /* Default doubles per-vcpu window every exit. */
203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
204 module_param(ple_window_grow, uint, 0444);
205
206 /* Default resets per-vcpu window every exit to ple_window. */
207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
208 module_param(ple_window_shrink, uint, 0444);
209
210 /* Default is to compute the maximum so we can never overflow. */
211 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
212 module_param(ple_window_max, uint, 0444);
213
214 /* Default is SYSTEM mode, 1 for host-guest mode */
215 int __read_mostly pt_mode = PT_MODE_SYSTEM;
216 module_param(pt_mode, int, S_IRUGO);
217
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
220 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
221
222 /* Storage for pre module init parameter parsing */
223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
224
225 static const struct {
226         const char *option;
227         bool for_parse;
228 } vmentry_l1d_param[] = {
229         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
230         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
231         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
232         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
233         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
234         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
235 };
236
237 #define L1D_CACHE_ORDER 4
238 static void *vmx_l1d_flush_pages;
239
240 /* Control for disabling CPU Fill buffer clear */
241 static bool __read_mostly vmx_fb_clear_ctrl_available;
242
243 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
244 {
245         struct page *page;
246         unsigned int i;
247
248         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
249                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250                 return 0;
251         }
252
253         if (!enable_ept) {
254                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
255                 return 0;
256         }
257
258         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
259                 u64 msr;
260
261                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
262                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
263                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
264                         return 0;
265                 }
266         }
267
268         /* If set to auto use the default l1tf mitigation method */
269         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
270                 switch (l1tf_mitigation) {
271                 case L1TF_MITIGATION_OFF:
272                         l1tf = VMENTER_L1D_FLUSH_NEVER;
273                         break;
274                 case L1TF_MITIGATION_FLUSH_NOWARN:
275                 case L1TF_MITIGATION_FLUSH:
276                 case L1TF_MITIGATION_FLUSH_NOSMT:
277                         l1tf = VMENTER_L1D_FLUSH_COND;
278                         break;
279                 case L1TF_MITIGATION_FULL:
280                 case L1TF_MITIGATION_FULL_FORCE:
281                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
282                         break;
283                 }
284         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
285                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
286         }
287
288         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
289             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
290                 /*
291                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
292                  * lifetime and so should not be charged to a memcg.
293                  */
294                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
295                 if (!page)
296                         return -ENOMEM;
297                 vmx_l1d_flush_pages = page_address(page);
298
299                 /*
300                  * Initialize each page with a different pattern in
301                  * order to protect against KSM in the nested
302                  * virtualization case.
303                  */
304                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
305                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
306                                PAGE_SIZE);
307                 }
308         }
309
310         l1tf_vmx_mitigation = l1tf;
311
312         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
313                 static_branch_enable(&vmx_l1d_should_flush);
314         else
315                 static_branch_disable(&vmx_l1d_should_flush);
316
317         if (l1tf == VMENTER_L1D_FLUSH_COND)
318                 static_branch_enable(&vmx_l1d_flush_cond);
319         else
320                 static_branch_disable(&vmx_l1d_flush_cond);
321         return 0;
322 }
323
324 static int vmentry_l1d_flush_parse(const char *s)
325 {
326         unsigned int i;
327
328         if (s) {
329                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
330                         if (vmentry_l1d_param[i].for_parse &&
331                             sysfs_streq(s, vmentry_l1d_param[i].option))
332                                 return i;
333                 }
334         }
335         return -EINVAL;
336 }
337
338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
339 {
340         int l1tf, ret;
341
342         l1tf = vmentry_l1d_flush_parse(s);
343         if (l1tf < 0)
344                 return l1tf;
345
346         if (!boot_cpu_has(X86_BUG_L1TF))
347                 return 0;
348
349         /*
350          * Has vmx_init() run already? If not then this is the pre init
351          * parameter parsing. In that case just store the value and let
352          * vmx_init() do the proper setup after enable_ept has been
353          * established.
354          */
355         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
356                 vmentry_l1d_flush_param = l1tf;
357                 return 0;
358         }
359
360         mutex_lock(&vmx_l1d_flush_mutex);
361         ret = vmx_setup_l1d_flush(l1tf);
362         mutex_unlock(&vmx_l1d_flush_mutex);
363         return ret;
364 }
365
366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
367 {
368         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
369                 return sprintf(s, "???\n");
370
371         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
372 }
373
374 static void vmx_setup_fb_clear_ctrl(void)
375 {
376         u64 msr;
377
378         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
379             !boot_cpu_has_bug(X86_BUG_MDS) &&
380             !boot_cpu_has_bug(X86_BUG_TAA)) {
381                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
382                 if (msr & ARCH_CAP_FB_CLEAR_CTRL)
383                         vmx_fb_clear_ctrl_available = true;
384         }
385 }
386
387 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
388 {
389         u64 msr;
390
391         if (!vmx->disable_fb_clear)
392                 return;
393
394         msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
395         msr |= FB_CLEAR_DIS;
396         native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
397         /* Cache the MSR value to avoid reading it later */
398         vmx->msr_ia32_mcu_opt_ctrl = msr;
399 }
400
401 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
402 {
403         if (!vmx->disable_fb_clear)
404                 return;
405
406         vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
407         native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
408 }
409
410 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
411 {
412         vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
413
414         /*
415          * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
416          * at VMEntry. Skip the MSR read/write when a guest has no use case to
417          * execute VERW.
418          */
419         if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
420            ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
421             (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
422             (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
423             (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
424             (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
425                 vmx->disable_fb_clear = false;
426 }
427
428 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
429         .set = vmentry_l1d_flush_set,
430         .get = vmentry_l1d_flush_get,
431 };
432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
433
434 static u32 vmx_segment_access_rights(struct kvm_segment *var);
435
436 void vmx_vmexit(void);
437
438 #define vmx_insn_failed(fmt...)         \
439 do {                                    \
440         WARN_ONCE(1, fmt);              \
441         pr_warn_ratelimited(fmt);       \
442 } while (0)
443
444 void vmread_error(unsigned long field, bool fault)
445 {
446         if (fault)
447                 kvm_spurious_fault();
448         else
449                 vmx_insn_failed("vmread failed: field=%lx\n", field);
450 }
451
452 noinline void vmwrite_error(unsigned long field, unsigned long value)
453 {
454         vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
455                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
456 }
457
458 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
459 {
460         vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
461                         vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
462 }
463
464 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
465 {
466         vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
467                         vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
468 }
469
470 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
471 {
472         vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
473                         ext, vpid, gva);
474 }
475
476 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
477 {
478         vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
479                         ext, eptp, gpa);
480 }
481
482 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
483 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
484 /*
485  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
486  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
487  */
488 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
489
490 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
491 static DEFINE_SPINLOCK(vmx_vpid_lock);
492
493 struct vmcs_config vmcs_config __ro_after_init;
494 struct vmx_capability vmx_capability __ro_after_init;
495
496 #define VMX_SEGMENT_FIELD(seg)                                  \
497         [VCPU_SREG_##seg] = {                                   \
498                 .selector = GUEST_##seg##_SELECTOR,             \
499                 .base = GUEST_##seg##_BASE,                     \
500                 .limit = GUEST_##seg##_LIMIT,                   \
501                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
502         }
503
504 static const struct kvm_vmx_segment_field {
505         unsigned selector;
506         unsigned base;
507         unsigned limit;
508         unsigned ar_bytes;
509 } kvm_vmx_segment_fields[] = {
510         VMX_SEGMENT_FIELD(CS),
511         VMX_SEGMENT_FIELD(DS),
512         VMX_SEGMENT_FIELD(ES),
513         VMX_SEGMENT_FIELD(FS),
514         VMX_SEGMENT_FIELD(GS),
515         VMX_SEGMENT_FIELD(SS),
516         VMX_SEGMENT_FIELD(TR),
517         VMX_SEGMENT_FIELD(LDTR),
518 };
519
520 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
521 {
522         vmx->segment_cache.bitmask = 0;
523 }
524
525 static unsigned long host_idt_base;
526
527 #if IS_ENABLED(CONFIG_HYPERV)
528 static struct kvm_x86_ops vmx_x86_ops __initdata;
529
530 static bool __read_mostly enlightened_vmcs = true;
531 module_param(enlightened_vmcs, bool, 0444);
532
533 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
534 {
535         struct hv_enlightened_vmcs *evmcs;
536         struct hv_partition_assist_pg **p_hv_pa_pg =
537                         &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
538         /*
539          * Synthetic VM-Exit is not enabled in current code and so All
540          * evmcs in singe VM shares same assist page.
541          */
542         if (!*p_hv_pa_pg)
543                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
544
545         if (!*p_hv_pa_pg)
546                 return -ENOMEM;
547
548         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
549
550         evmcs->partition_assist_page =
551                 __pa(*p_hv_pa_pg);
552         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
553         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
554
555         return 0;
556 }
557
558 static __init void hv_init_evmcs(void)
559 {
560         int cpu;
561
562         if (!enlightened_vmcs)
563                 return;
564
565         /*
566          * Enlightened VMCS usage should be recommended and the host needs
567          * to support eVMCS v1 or above.
568          */
569         if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
570             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
571              KVM_EVMCS_VERSION) {
572
573                 /* Check that we have assist pages on all online CPUs */
574                 for_each_online_cpu(cpu) {
575                         if (!hv_get_vp_assist_page(cpu)) {
576                                 enlightened_vmcs = false;
577                                 break;
578                         }
579                 }
580
581                 if (enlightened_vmcs) {
582                         pr_info("Using Hyper-V Enlightened VMCS\n");
583                         static_branch_enable(&__kvm_is_using_evmcs);
584                 }
585
586                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
587                         vmx_x86_ops.enable_l2_tlb_flush
588                                 = hv_enable_l2_tlb_flush;
589
590         } else {
591                 enlightened_vmcs = false;
592         }
593 }
594
595 static void hv_reset_evmcs(void)
596 {
597         struct hv_vp_assist_page *vp_ap;
598
599         if (!kvm_is_using_evmcs())
600                 return;
601
602         /*
603          * KVM should enable eVMCS if and only if all CPUs have a VP assist
604          * page, and should reject CPU onlining if eVMCS is enabled the CPU
605          * doesn't have a VP assist page allocated.
606          */
607         vp_ap = hv_get_vp_assist_page(smp_processor_id());
608         if (WARN_ON_ONCE(!vp_ap))
609                 return;
610
611         /*
612          * Reset everything to support using non-enlightened VMCS access later
613          * (e.g. when we reload the module with enlightened_vmcs=0)
614          */
615         vp_ap->nested_control.features.directhypercall = 0;
616         vp_ap->current_nested_vmcs = 0;
617         vp_ap->enlighten_vmentry = 0;
618 }
619
620 #else /* IS_ENABLED(CONFIG_HYPERV) */
621 static void hv_init_evmcs(void) {}
622 static void hv_reset_evmcs(void) {}
623 #endif /* IS_ENABLED(CONFIG_HYPERV) */
624
625 /*
626  * Comment's format: document - errata name - stepping - processor name.
627  * Refer from
628  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
629  */
630 static u32 vmx_preemption_cpu_tfms[] = {
631 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
632 0x000206E6,
633 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
634 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
635 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
636 0x00020652,
637 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
638 0x00020655,
639 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
640 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
641 /*
642  * 320767.pdf - AAP86  - B1 -
643  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
644  */
645 0x000106E5,
646 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
647 0x000106A0,
648 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
649 0x000106A1,
650 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
651 0x000106A4,
652  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
653  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
654  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
655 0x000106A5,
656  /* Xeon E3-1220 V2 */
657 0x000306A8,
658 };
659
660 static inline bool cpu_has_broken_vmx_preemption_timer(void)
661 {
662         u32 eax = cpuid_eax(0x00000001), i;
663
664         /* Clear the reserved bits */
665         eax &= ~(0x3U << 14 | 0xfU << 28);
666         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
667                 if (eax == vmx_preemption_cpu_tfms[i])
668                         return true;
669
670         return false;
671 }
672
673 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
674 {
675         return flexpriority_enabled && lapic_in_kernel(vcpu);
676 }
677
678 static int possible_passthrough_msr_slot(u32 msr)
679 {
680         u32 i;
681
682         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
683                 if (vmx_possible_passthrough_msrs[i] == msr)
684                         return i;
685
686         return -ENOENT;
687 }
688
689 static bool is_valid_passthrough_msr(u32 msr)
690 {
691         bool r;
692
693         switch (msr) {
694         case 0x800 ... 0x8ff:
695                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
696                 return true;
697         case MSR_IA32_RTIT_STATUS:
698         case MSR_IA32_RTIT_OUTPUT_BASE:
699         case MSR_IA32_RTIT_OUTPUT_MASK:
700         case MSR_IA32_RTIT_CR3_MATCH:
701         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
702                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
703         case MSR_LBR_SELECT:
704         case MSR_LBR_TOS:
705         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
706         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
707         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
708         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
709         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
710                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
711                 return true;
712         }
713
714         r = possible_passthrough_msr_slot(msr) != -ENOENT;
715
716         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
717
718         return r;
719 }
720
721 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
722 {
723         int i;
724
725         i = kvm_find_user_return_msr(msr);
726         if (i >= 0)
727                 return &vmx->guest_uret_msrs[i];
728         return NULL;
729 }
730
731 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
732                                   struct vmx_uret_msr *msr, u64 data)
733 {
734         unsigned int slot = msr - vmx->guest_uret_msrs;
735         int ret = 0;
736
737         if (msr->load_into_hardware) {
738                 preempt_disable();
739                 ret = kvm_set_user_return_msr(slot, data, msr->mask);
740                 preempt_enable();
741         }
742         if (!ret)
743                 msr->data = data;
744         return ret;
745 }
746
747 #ifdef CONFIG_KEXEC_CORE
748 static void crash_vmclear_local_loaded_vmcss(void)
749 {
750         int cpu = raw_smp_processor_id();
751         struct loaded_vmcs *v;
752
753         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
754                             loaded_vmcss_on_cpu_link)
755                 vmcs_clear(v->vmcs);
756 }
757 #endif /* CONFIG_KEXEC_CORE */
758
759 static void __loaded_vmcs_clear(void *arg)
760 {
761         struct loaded_vmcs *loaded_vmcs = arg;
762         int cpu = raw_smp_processor_id();
763
764         if (loaded_vmcs->cpu != cpu)
765                 return; /* vcpu migration can race with cpu offline */
766         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
767                 per_cpu(current_vmcs, cpu) = NULL;
768
769         vmcs_clear(loaded_vmcs->vmcs);
770         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
771                 vmcs_clear(loaded_vmcs->shadow_vmcs);
772
773         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
774
775         /*
776          * Ensure all writes to loaded_vmcs, including deleting it from its
777          * current percpu list, complete before setting loaded_vmcs->cpu to
778          * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
779          * and add loaded_vmcs to its percpu list before it's deleted from this
780          * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
781          */
782         smp_wmb();
783
784         loaded_vmcs->cpu = -1;
785         loaded_vmcs->launched = 0;
786 }
787
788 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
789 {
790         int cpu = loaded_vmcs->cpu;
791
792         if (cpu != -1)
793                 smp_call_function_single(cpu,
794                          __loaded_vmcs_clear, loaded_vmcs, 1);
795 }
796
797 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
798                                        unsigned field)
799 {
800         bool ret;
801         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
802
803         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
804                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
805                 vmx->segment_cache.bitmask = 0;
806         }
807         ret = vmx->segment_cache.bitmask & mask;
808         vmx->segment_cache.bitmask |= mask;
809         return ret;
810 }
811
812 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
813 {
814         u16 *p = &vmx->segment_cache.seg[seg].selector;
815
816         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
817                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
818         return *p;
819 }
820
821 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
822 {
823         ulong *p = &vmx->segment_cache.seg[seg].base;
824
825         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
826                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
827         return *p;
828 }
829
830 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
831 {
832         u32 *p = &vmx->segment_cache.seg[seg].limit;
833
834         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
835                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
836         return *p;
837 }
838
839 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
840 {
841         u32 *p = &vmx->segment_cache.seg[seg].ar;
842
843         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
844                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
845         return *p;
846 }
847
848 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
849 {
850         u32 eb;
851
852         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
853              (1u << DB_VECTOR) | (1u << AC_VECTOR);
854         /*
855          * Guest access to VMware backdoor ports could legitimately
856          * trigger #GP because of TSS I/O permission bitmap.
857          * We intercept those #GP and allow access to them anyway
858          * as VMware does.
859          */
860         if (enable_vmware_backdoor)
861                 eb |= (1u << GP_VECTOR);
862         if ((vcpu->guest_debug &
863              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
864             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
865                 eb |= 1u << BP_VECTOR;
866         if (to_vmx(vcpu)->rmode.vm86_active)
867                 eb = ~0;
868         if (!vmx_need_pf_intercept(vcpu))
869                 eb &= ~(1u << PF_VECTOR);
870
871         /* When we are running a nested L2 guest and L1 specified for it a
872          * certain exception bitmap, we must trap the same exceptions and pass
873          * them to L1. When running L2, we will only handle the exceptions
874          * specified above if L1 did not want them.
875          */
876         if (is_guest_mode(vcpu))
877                 eb |= get_vmcs12(vcpu)->exception_bitmap;
878         else {
879                 int mask = 0, match = 0;
880
881                 if (enable_ept && (eb & (1u << PF_VECTOR))) {
882                         /*
883                          * If EPT is enabled, #PF is currently only intercepted
884                          * if MAXPHYADDR is smaller on the guest than on the
885                          * host.  In that case we only care about present,
886                          * non-reserved faults.  For vmcs02, however, PFEC_MASK
887                          * and PFEC_MATCH are set in prepare_vmcs02_rare.
888                          */
889                         mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
890                         match = PFERR_PRESENT_MASK;
891                 }
892                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
893                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
894         }
895
896         /*
897          * Disabling xfd interception indicates that dynamic xfeatures
898          * might be used in the guest. Always trap #NM in this case
899          * to save guest xfd_err timely.
900          */
901         if (vcpu->arch.xfd_no_write_intercept)
902                 eb |= (1u << NM_VECTOR);
903
904         vmcs_write32(EXCEPTION_BITMAP, eb);
905 }
906
907 /*
908  * Check if MSR is intercepted for currently loaded MSR bitmap.
909  */
910 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
911 {
912         if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
913                 return true;
914
915         return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
916 }
917
918 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
919 {
920         unsigned int flags = 0;
921
922         if (vmx->loaded_vmcs->launched)
923                 flags |= VMX_RUN_VMRESUME;
924
925         /*
926          * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
927          * to change it directly without causing a vmexit.  In that case read
928          * it after vmexit and store it in vmx->spec_ctrl.
929          */
930         if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
931                 flags |= VMX_RUN_SAVE_SPEC_CTRL;
932
933         return flags;
934 }
935
936 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
937                 unsigned long entry, unsigned long exit)
938 {
939         vm_entry_controls_clearbit(vmx, entry);
940         vm_exit_controls_clearbit(vmx, exit);
941 }
942
943 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
944 {
945         unsigned int i;
946
947         for (i = 0; i < m->nr; ++i) {
948                 if (m->val[i].index == msr)
949                         return i;
950         }
951         return -ENOENT;
952 }
953
954 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
955 {
956         int i;
957         struct msr_autoload *m = &vmx->msr_autoload;
958
959         switch (msr) {
960         case MSR_EFER:
961                 if (cpu_has_load_ia32_efer()) {
962                         clear_atomic_switch_msr_special(vmx,
963                                         VM_ENTRY_LOAD_IA32_EFER,
964                                         VM_EXIT_LOAD_IA32_EFER);
965                         return;
966                 }
967                 break;
968         case MSR_CORE_PERF_GLOBAL_CTRL:
969                 if (cpu_has_load_perf_global_ctrl()) {
970                         clear_atomic_switch_msr_special(vmx,
971                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
972                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
973                         return;
974                 }
975                 break;
976         }
977         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
978         if (i < 0)
979                 goto skip_guest;
980         --m->guest.nr;
981         m->guest.val[i] = m->guest.val[m->guest.nr];
982         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
983
984 skip_guest:
985         i = vmx_find_loadstore_msr_slot(&m->host, msr);
986         if (i < 0)
987                 return;
988
989         --m->host.nr;
990         m->host.val[i] = m->host.val[m->host.nr];
991         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
992 }
993
994 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
995                 unsigned long entry, unsigned long exit,
996                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
997                 u64 guest_val, u64 host_val)
998 {
999         vmcs_write64(guest_val_vmcs, guest_val);
1000         if (host_val_vmcs != HOST_IA32_EFER)
1001                 vmcs_write64(host_val_vmcs, host_val);
1002         vm_entry_controls_setbit(vmx, entry);
1003         vm_exit_controls_setbit(vmx, exit);
1004 }
1005
1006 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1007                                   u64 guest_val, u64 host_val, bool entry_only)
1008 {
1009         int i, j = 0;
1010         struct msr_autoload *m = &vmx->msr_autoload;
1011
1012         switch (msr) {
1013         case MSR_EFER:
1014                 if (cpu_has_load_ia32_efer()) {
1015                         add_atomic_switch_msr_special(vmx,
1016                                         VM_ENTRY_LOAD_IA32_EFER,
1017                                         VM_EXIT_LOAD_IA32_EFER,
1018                                         GUEST_IA32_EFER,
1019                                         HOST_IA32_EFER,
1020                                         guest_val, host_val);
1021                         return;
1022                 }
1023                 break;
1024         case MSR_CORE_PERF_GLOBAL_CTRL:
1025                 if (cpu_has_load_perf_global_ctrl()) {
1026                         add_atomic_switch_msr_special(vmx,
1027                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1028                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1029                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1030                                         HOST_IA32_PERF_GLOBAL_CTRL,
1031                                         guest_val, host_val);
1032                         return;
1033                 }
1034                 break;
1035         case MSR_IA32_PEBS_ENABLE:
1036                 /* PEBS needs a quiescent period after being disabled (to write
1037                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1038                  * provide that period, so a CPU could write host's record into
1039                  * guest's memory.
1040                  */
1041                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1042         }
1043
1044         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1045         if (!entry_only)
1046                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1047
1048         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1049             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1050                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1051                                 "Can't add msr %x\n", msr);
1052                 return;
1053         }
1054         if (i < 0) {
1055                 i = m->guest.nr++;
1056                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1057         }
1058         m->guest.val[i].index = msr;
1059         m->guest.val[i].value = guest_val;
1060
1061         if (entry_only)
1062                 return;
1063
1064         if (j < 0) {
1065                 j = m->host.nr++;
1066                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1067         }
1068         m->host.val[j].index = msr;
1069         m->host.val[j].value = host_val;
1070 }
1071
1072 static bool update_transition_efer(struct vcpu_vmx *vmx)
1073 {
1074         u64 guest_efer = vmx->vcpu.arch.efer;
1075         u64 ignore_bits = 0;
1076         int i;
1077
1078         /* Shadow paging assumes NX to be available.  */
1079         if (!enable_ept)
1080                 guest_efer |= EFER_NX;
1081
1082         /*
1083          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1084          */
1085         ignore_bits |= EFER_SCE;
1086 #ifdef CONFIG_X86_64
1087         ignore_bits |= EFER_LMA | EFER_LME;
1088         /* SCE is meaningful only in long mode on Intel */
1089         if (guest_efer & EFER_LMA)
1090                 ignore_bits &= ~(u64)EFER_SCE;
1091 #endif
1092
1093         /*
1094          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1095          * On CPUs that support "load IA32_EFER", always switch EFER
1096          * atomically, since it's faster than switching it manually.
1097          */
1098         if (cpu_has_load_ia32_efer() ||
1099             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1100                 if (!(guest_efer & EFER_LMA))
1101                         guest_efer &= ~EFER_LME;
1102                 if (guest_efer != host_efer)
1103                         add_atomic_switch_msr(vmx, MSR_EFER,
1104                                               guest_efer, host_efer, false);
1105                 else
1106                         clear_atomic_switch_msr(vmx, MSR_EFER);
1107                 return false;
1108         }
1109
1110         i = kvm_find_user_return_msr(MSR_EFER);
1111         if (i < 0)
1112                 return false;
1113
1114         clear_atomic_switch_msr(vmx, MSR_EFER);
1115
1116         guest_efer &= ~ignore_bits;
1117         guest_efer |= host_efer & ignore_bits;
1118
1119         vmx->guest_uret_msrs[i].data = guest_efer;
1120         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1121
1122         return true;
1123 }
1124
1125 #ifdef CONFIG_X86_32
1126 /*
1127  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1128  * VMCS rather than the segment table.  KVM uses this helper to figure
1129  * out the current bases to poke them into the VMCS before entry.
1130  */
1131 static unsigned long segment_base(u16 selector)
1132 {
1133         struct desc_struct *table;
1134         unsigned long v;
1135
1136         if (!(selector & ~SEGMENT_RPL_MASK))
1137                 return 0;
1138
1139         table = get_current_gdt_ro();
1140
1141         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1142                 u16 ldt_selector = kvm_read_ldt();
1143
1144                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1145                         return 0;
1146
1147                 table = (struct desc_struct *)segment_base(ldt_selector);
1148         }
1149         v = get_desc_base(&table[selector >> 3]);
1150         return v;
1151 }
1152 #endif
1153
1154 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1155 {
1156         return vmx_pt_mode_is_host_guest() &&
1157                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1158 }
1159
1160 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1161 {
1162         /* The base must be 128-byte aligned and a legal physical address. */
1163         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1164 }
1165
1166 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1167 {
1168         u32 i;
1169
1170         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1171         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1172         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1173         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1174         for (i = 0; i < addr_range; i++) {
1175                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1176                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1177         }
1178 }
1179
1180 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1181 {
1182         u32 i;
1183
1184         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1185         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1186         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1187         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1188         for (i = 0; i < addr_range; i++) {
1189                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1190                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1191         }
1192 }
1193
1194 static void pt_guest_enter(struct vcpu_vmx *vmx)
1195 {
1196         if (vmx_pt_mode_is_system())
1197                 return;
1198
1199         /*
1200          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1201          * Save host state before VM entry.
1202          */
1203         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1204         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1205                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1206                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1207                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1208         }
1209 }
1210
1211 static void pt_guest_exit(struct vcpu_vmx *vmx)
1212 {
1213         if (vmx_pt_mode_is_system())
1214                 return;
1215
1216         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1217                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1218                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1219         }
1220
1221         /*
1222          * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1223          * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1224          */
1225         if (vmx->pt_desc.host.ctl)
1226                 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1227 }
1228
1229 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1230                         unsigned long fs_base, unsigned long gs_base)
1231 {
1232         if (unlikely(fs_sel != host->fs_sel)) {
1233                 if (!(fs_sel & 7))
1234                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1235                 else
1236                         vmcs_write16(HOST_FS_SELECTOR, 0);
1237                 host->fs_sel = fs_sel;
1238         }
1239         if (unlikely(gs_sel != host->gs_sel)) {
1240                 if (!(gs_sel & 7))
1241                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1242                 else
1243                         vmcs_write16(HOST_GS_SELECTOR, 0);
1244                 host->gs_sel = gs_sel;
1245         }
1246         if (unlikely(fs_base != host->fs_base)) {
1247                 vmcs_writel(HOST_FS_BASE, fs_base);
1248                 host->fs_base = fs_base;
1249         }
1250         if (unlikely(gs_base != host->gs_base)) {
1251                 vmcs_writel(HOST_GS_BASE, gs_base);
1252                 host->gs_base = gs_base;
1253         }
1254 }
1255
1256 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1257 {
1258         struct vcpu_vmx *vmx = to_vmx(vcpu);
1259         struct vmcs_host_state *host_state;
1260 #ifdef CONFIG_X86_64
1261         int cpu = raw_smp_processor_id();
1262 #endif
1263         unsigned long fs_base, gs_base;
1264         u16 fs_sel, gs_sel;
1265         int i;
1266
1267         vmx->req_immediate_exit = false;
1268
1269         /*
1270          * Note that guest MSRs to be saved/restored can also be changed
1271          * when guest state is loaded. This happens when guest transitions
1272          * to/from long-mode by setting MSR_EFER.LMA.
1273          */
1274         if (!vmx->guest_uret_msrs_loaded) {
1275                 vmx->guest_uret_msrs_loaded = true;
1276                 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1277                         if (!vmx->guest_uret_msrs[i].load_into_hardware)
1278                                 continue;
1279
1280                         kvm_set_user_return_msr(i,
1281                                                 vmx->guest_uret_msrs[i].data,
1282                                                 vmx->guest_uret_msrs[i].mask);
1283                 }
1284         }
1285
1286         if (vmx->nested.need_vmcs12_to_shadow_sync)
1287                 nested_sync_vmcs12_to_shadow(vcpu);
1288
1289         if (vmx->guest_state_loaded)
1290                 return;
1291
1292         host_state = &vmx->loaded_vmcs->host_state;
1293
1294         /*
1295          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1296          * allow segment selectors with cpl > 0 or ti == 1.
1297          */
1298         host_state->ldt_sel = kvm_read_ldt();
1299
1300 #ifdef CONFIG_X86_64
1301         savesegment(ds, host_state->ds_sel);
1302         savesegment(es, host_state->es_sel);
1303
1304         gs_base = cpu_kernelmode_gs_base(cpu);
1305         if (likely(is_64bit_mm(current->mm))) {
1306                 current_save_fsgs();
1307                 fs_sel = current->thread.fsindex;
1308                 gs_sel = current->thread.gsindex;
1309                 fs_base = current->thread.fsbase;
1310                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1311         } else {
1312                 savesegment(fs, fs_sel);
1313                 savesegment(gs, gs_sel);
1314                 fs_base = read_msr(MSR_FS_BASE);
1315                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1316         }
1317
1318         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1319 #else
1320         savesegment(fs, fs_sel);
1321         savesegment(gs, gs_sel);
1322         fs_base = segment_base(fs_sel);
1323         gs_base = segment_base(gs_sel);
1324 #endif
1325
1326         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1327         vmx->guest_state_loaded = true;
1328 }
1329
1330 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1331 {
1332         struct vmcs_host_state *host_state;
1333
1334         if (!vmx->guest_state_loaded)
1335                 return;
1336
1337         host_state = &vmx->loaded_vmcs->host_state;
1338
1339         ++vmx->vcpu.stat.host_state_reload;
1340
1341 #ifdef CONFIG_X86_64
1342         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1343 #endif
1344         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1345                 kvm_load_ldt(host_state->ldt_sel);
1346 #ifdef CONFIG_X86_64
1347                 load_gs_index(host_state->gs_sel);
1348 #else
1349                 loadsegment(gs, host_state->gs_sel);
1350 #endif
1351         }
1352         if (host_state->fs_sel & 7)
1353                 loadsegment(fs, host_state->fs_sel);
1354 #ifdef CONFIG_X86_64
1355         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1356                 loadsegment(ds, host_state->ds_sel);
1357                 loadsegment(es, host_state->es_sel);
1358         }
1359 #endif
1360         invalidate_tss_limit();
1361 #ifdef CONFIG_X86_64
1362         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1363 #endif
1364         load_fixmap_gdt(raw_smp_processor_id());
1365         vmx->guest_state_loaded = false;
1366         vmx->guest_uret_msrs_loaded = false;
1367 }
1368
1369 #ifdef CONFIG_X86_64
1370 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1371 {
1372         preempt_disable();
1373         if (vmx->guest_state_loaded)
1374                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1375         preempt_enable();
1376         return vmx->msr_guest_kernel_gs_base;
1377 }
1378
1379 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1380 {
1381         preempt_disable();
1382         if (vmx->guest_state_loaded)
1383                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1384         preempt_enable();
1385         vmx->msr_guest_kernel_gs_base = data;
1386 }
1387 #endif
1388
1389 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1390                         struct loaded_vmcs *buddy)
1391 {
1392         struct vcpu_vmx *vmx = to_vmx(vcpu);
1393         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1394         struct vmcs *prev;
1395
1396         if (!already_loaded) {
1397                 loaded_vmcs_clear(vmx->loaded_vmcs);
1398                 local_irq_disable();
1399
1400                 /*
1401                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1402                  * this cpu's percpu list, otherwise it may not yet be deleted
1403                  * from its previous cpu's percpu list.  Pairs with the
1404                  * smb_wmb() in __loaded_vmcs_clear().
1405                  */
1406                 smp_rmb();
1407
1408                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1409                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1410                 local_irq_enable();
1411         }
1412
1413         prev = per_cpu(current_vmcs, cpu);
1414         if (prev != vmx->loaded_vmcs->vmcs) {
1415                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1416                 vmcs_load(vmx->loaded_vmcs->vmcs);
1417
1418                 /*
1419                  * No indirect branch prediction barrier needed when switching
1420                  * the active VMCS within a vCPU, unless IBRS is advertised to
1421                  * the vCPU.  To minimize the number of IBPBs executed, KVM
1422                  * performs IBPB on nested VM-Exit (a single nested transition
1423                  * may switch the active VMCS multiple times).
1424                  */
1425                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1426                         indirect_branch_prediction_barrier();
1427         }
1428
1429         if (!already_loaded) {
1430                 void *gdt = get_current_gdt_ro();
1431
1432                 /*
1433                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1434                  * TLB entries from its previous association with the vCPU.
1435                  */
1436                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1437
1438                 /*
1439                  * Linux uses per-cpu TSS and GDT, so set these when switching
1440                  * processors.  See 22.2.4.
1441                  */
1442                 vmcs_writel(HOST_TR_BASE,
1443                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1444                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1445
1446                 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1447                         /* 22.2.3 */
1448                         vmcs_writel(HOST_IA32_SYSENTER_ESP,
1449                                     (unsigned long)(cpu_entry_stack(cpu) + 1));
1450                 }
1451
1452                 vmx->loaded_vmcs->cpu = cpu;
1453         }
1454 }
1455
1456 /*
1457  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1458  * vcpu mutex is already taken.
1459  */
1460 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1461 {
1462         struct vcpu_vmx *vmx = to_vmx(vcpu);
1463
1464         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1465
1466         vmx_vcpu_pi_load(vcpu, cpu);
1467
1468         vmx->host_debugctlmsr = get_debugctlmsr();
1469 }
1470
1471 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1472 {
1473         vmx_vcpu_pi_put(vcpu);
1474
1475         vmx_prepare_switch_to_host(to_vmx(vcpu));
1476 }
1477
1478 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1479 {
1480         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1481 }
1482
1483 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1484 {
1485         struct vcpu_vmx *vmx = to_vmx(vcpu);
1486         unsigned long rflags, save_rflags;
1487
1488         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1489                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1490                 rflags = vmcs_readl(GUEST_RFLAGS);
1491                 if (vmx->rmode.vm86_active) {
1492                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1493                         save_rflags = vmx->rmode.save_rflags;
1494                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1495                 }
1496                 vmx->rflags = rflags;
1497         }
1498         return vmx->rflags;
1499 }
1500
1501 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1502 {
1503         struct vcpu_vmx *vmx = to_vmx(vcpu);
1504         unsigned long old_rflags;
1505
1506         if (is_unrestricted_guest(vcpu)) {
1507                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1508                 vmx->rflags = rflags;
1509                 vmcs_writel(GUEST_RFLAGS, rflags);
1510                 return;
1511         }
1512
1513         old_rflags = vmx_get_rflags(vcpu);
1514         vmx->rflags = rflags;
1515         if (vmx->rmode.vm86_active) {
1516                 vmx->rmode.save_rflags = rflags;
1517                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1518         }
1519         vmcs_writel(GUEST_RFLAGS, rflags);
1520
1521         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1522                 vmx->emulation_required = vmx_emulation_required(vcpu);
1523 }
1524
1525 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1526 {
1527         return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1528 }
1529
1530 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1531 {
1532         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1533         int ret = 0;
1534
1535         if (interruptibility & GUEST_INTR_STATE_STI)
1536                 ret |= KVM_X86_SHADOW_INT_STI;
1537         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1538                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1539
1540         return ret;
1541 }
1542
1543 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1544 {
1545         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1546         u32 interruptibility = interruptibility_old;
1547
1548         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1549
1550         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1551                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1552         else if (mask & KVM_X86_SHADOW_INT_STI)
1553                 interruptibility |= GUEST_INTR_STATE_STI;
1554
1555         if ((interruptibility != interruptibility_old))
1556                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1557 }
1558
1559 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1560 {
1561         struct vcpu_vmx *vmx = to_vmx(vcpu);
1562         unsigned long value;
1563
1564         /*
1565          * Any MSR write that attempts to change bits marked reserved will
1566          * case a #GP fault.
1567          */
1568         if (data & vmx->pt_desc.ctl_bitmask)
1569                 return 1;
1570
1571         /*
1572          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1573          * result in a #GP unless the same write also clears TraceEn.
1574          */
1575         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1576                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1577                 return 1;
1578
1579         /*
1580          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1581          * and FabricEn would cause #GP, if
1582          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1583          */
1584         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1585                 !(data & RTIT_CTL_FABRIC_EN) &&
1586                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1587                                         PT_CAP_single_range_output))
1588                 return 1;
1589
1590         /*
1591          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1592          * utilize encodings marked reserved will cause a #GP fault.
1593          */
1594         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1595         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1596                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1597                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1598                 return 1;
1599         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1600                                                 PT_CAP_cycle_thresholds);
1601         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1602                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1603                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1604                 return 1;
1605         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1606         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1607                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1608                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1609                 return 1;
1610
1611         /*
1612          * If ADDRx_CFG is reserved or the encodings is >2 will
1613          * cause a #GP fault.
1614          */
1615         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1616         if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1617                 return 1;
1618         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1619         if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1620                 return 1;
1621         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1622         if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1623                 return 1;
1624         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1625         if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1626                 return 1;
1627
1628         return 0;
1629 }
1630
1631 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1632                                         void *insn, int insn_len)
1633 {
1634         /*
1635          * Emulation of instructions in SGX enclaves is impossible as RIP does
1636          * not point at the failing instruction, and even if it did, the code
1637          * stream is inaccessible.  Inject #UD instead of exiting to userspace
1638          * so that guest userspace can't DoS the guest simply by triggering
1639          * emulation (enclaves are CPL3 only).
1640          */
1641         if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1642                 kvm_queue_exception(vcpu, UD_VECTOR);
1643                 return false;
1644         }
1645         return true;
1646 }
1647
1648 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1649 {
1650         union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1651         unsigned long rip, orig_rip;
1652         u32 instr_len;
1653
1654         /*
1655          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1656          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1657          * set when EPT misconfig occurs.  In practice, real hardware updates
1658          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1659          * (namely Hyper-V) don't set it due to it being undefined behavior,
1660          * i.e. we end up advancing IP with some random value.
1661          */
1662         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1663             exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1664                 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1665
1666                 /*
1667                  * Emulating an enclave's instructions isn't supported as KVM
1668                  * cannot access the enclave's memory or its true RIP, e.g. the
1669                  * vmcs.GUEST_RIP points at the exit point of the enclave, not
1670                  * the RIP that actually triggered the VM-Exit.  But, because
1671                  * most instructions that cause VM-Exit will #UD in an enclave,
1672                  * most instruction-based VM-Exits simply do not occur.
1673                  *
1674                  * There are a few exceptions, notably the debug instructions
1675                  * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1676                  * and generate #DB/#BP as expected, which KVM might intercept.
1677                  * But again, the CPU does the dirty work and saves an instr
1678                  * length of zero so VMMs don't shoot themselves in the foot.
1679                  * WARN if KVM tries to skip a non-zero length instruction on
1680                  * a VM-Exit from an enclave.
1681                  */
1682                 if (!instr_len)
1683                         goto rip_updated;
1684
1685                 WARN_ONCE(exit_reason.enclave_mode,
1686                           "skipping instruction after SGX enclave VM-Exit");
1687
1688                 orig_rip = kvm_rip_read(vcpu);
1689                 rip = orig_rip + instr_len;
1690 #ifdef CONFIG_X86_64
1691                 /*
1692                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1693                  * mode, but just finding out that we are in 64-bit mode is
1694                  * quite expensive.  Only do it if there was a carry.
1695                  */
1696                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1697                         rip = (u32)rip;
1698 #endif
1699                 kvm_rip_write(vcpu, rip);
1700         } else {
1701                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1702                         return 0;
1703         }
1704
1705 rip_updated:
1706         /* skipping an emulated instruction also counts */
1707         vmx_set_interrupt_shadow(vcpu, 0);
1708
1709         return 1;
1710 }
1711
1712 /*
1713  * Recognizes a pending MTF VM-exit and records the nested state for later
1714  * delivery.
1715  */
1716 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1717 {
1718         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1719         struct vcpu_vmx *vmx = to_vmx(vcpu);
1720
1721         if (!is_guest_mode(vcpu))
1722                 return;
1723
1724         /*
1725          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1726          * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1727          * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1728          * intercepted #DB deliberately avoids single-step #DB and MTF updates
1729          * as ICEBP is higher priority than both.  As instruction emulation is
1730          * completed at this point (i.e. KVM is at the instruction boundary),
1731          * any #DB exception pending delivery must be a debug-trap of lower
1732          * priority than MTF.  Record the pending MTF state to be delivered in
1733          * vmx_check_nested_events().
1734          */
1735         if (nested_cpu_has_mtf(vmcs12) &&
1736             (!vcpu->arch.exception.pending ||
1737              vcpu->arch.exception.vector == DB_VECTOR) &&
1738             (!vcpu->arch.exception_vmexit.pending ||
1739              vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1740                 vmx->nested.mtf_pending = true;
1741                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1742         } else {
1743                 vmx->nested.mtf_pending = false;
1744         }
1745 }
1746
1747 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1748 {
1749         vmx_update_emulated_instruction(vcpu);
1750         return skip_emulated_instruction(vcpu);
1751 }
1752
1753 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1754 {
1755         /*
1756          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1757          * explicitly skip the instruction because if the HLT state is set,
1758          * then the instruction is already executing and RIP has already been
1759          * advanced.
1760          */
1761         if (kvm_hlt_in_guest(vcpu->kvm) &&
1762                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1763                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1764 }
1765
1766 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1767 {
1768         struct kvm_queued_exception *ex = &vcpu->arch.exception;
1769         u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1770         struct vcpu_vmx *vmx = to_vmx(vcpu);
1771
1772         kvm_deliver_exception_payload(vcpu, ex);
1773
1774         if (ex->has_error_code) {
1775                 /*
1776                  * Despite the error code being architecturally defined as 32
1777                  * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1778                  * VMX don't actually supporting setting bits 31:16.  Hardware
1779                  * will (should) never provide a bogus error code, but AMD CPUs
1780                  * do generate error codes with bits 31:16 set, and so KVM's
1781                  * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1782                  * the upper bits to avoid VM-Fail, losing information that
1783                  * does't really exist is preferable to killing the VM.
1784                  */
1785                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1786                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1787         }
1788
1789         if (vmx->rmode.vm86_active) {
1790                 int inc_eip = 0;
1791                 if (kvm_exception_is_soft(ex->vector))
1792                         inc_eip = vcpu->arch.event_exit_inst_len;
1793                 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1794                 return;
1795         }
1796
1797         WARN_ON_ONCE(vmx->emulation_required);
1798
1799         if (kvm_exception_is_soft(ex->vector)) {
1800                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1801                              vmx->vcpu.arch.event_exit_inst_len);
1802                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1803         } else
1804                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1805
1806         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1807
1808         vmx_clear_hlt(vcpu);
1809 }
1810
1811 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1812                                bool load_into_hardware)
1813 {
1814         struct vmx_uret_msr *uret_msr;
1815
1816         uret_msr = vmx_find_uret_msr(vmx, msr);
1817         if (!uret_msr)
1818                 return;
1819
1820         uret_msr->load_into_hardware = load_into_hardware;
1821 }
1822
1823 /*
1824  * Configuring user return MSRs to automatically save, load, and restore MSRs
1825  * that need to be shoved into hardware when running the guest.  Note, omitting
1826  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1827  * loaded into hardware when running the guest.
1828  */
1829 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1830 {
1831 #ifdef CONFIG_X86_64
1832         bool load_syscall_msrs;
1833
1834         /*
1835          * The SYSCALL MSRs are only needed on long mode guests, and only
1836          * when EFER.SCE is set.
1837          */
1838         load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1839                             (vmx->vcpu.arch.efer & EFER_SCE);
1840
1841         vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1842         vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1843         vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1844 #endif
1845         vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1846
1847         vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1848                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1849                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1850
1851         /*
1852          * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1853          * kernel and old userspace.  If those guests run on a tsx=off host, do
1854          * allow guests to use TSX_CTRL, but don't change the value in hardware
1855          * so that TSX remains always disabled.
1856          */
1857         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1858
1859         /*
1860          * The set of MSRs to load may have changed, reload MSRs before the
1861          * next VM-Enter.
1862          */
1863         vmx->guest_uret_msrs_loaded = false;
1864 }
1865
1866 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1867 {
1868         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1869
1870         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1871                 return vmcs12->tsc_offset;
1872
1873         return 0;
1874 }
1875
1876 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1877 {
1878         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1879
1880         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1881             nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1882                 return vmcs12->tsc_multiplier;
1883
1884         return kvm_caps.default_tsc_scaling_ratio;
1885 }
1886
1887 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1888 {
1889         vmcs_write64(TSC_OFFSET, offset);
1890 }
1891
1892 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1893 {
1894         vmcs_write64(TSC_MULTIPLIER, multiplier);
1895 }
1896
1897 /*
1898  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1899  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1900  * all guests if the "nested" module option is off, and can also be disabled
1901  * for a single guest by disabling its VMX cpuid bit.
1902  */
1903 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1904 {
1905         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1906 }
1907
1908 /*
1909  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1910  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1911  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1912  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1913  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1914  */
1915 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED                  | \
1916                                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX  | \
1917                                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1918                                         FEAT_CTL_SGX_LC_ENABLED          | \
1919                                         FEAT_CTL_SGX_ENABLED             | \
1920                                         FEAT_CTL_LMCE_ENABLED)
1921
1922 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1923                                                     struct msr_data *msr)
1924 {
1925         uint64_t valid_bits;
1926
1927         /*
1928          * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1929          * exposed to the guest.
1930          */
1931         WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1932                      ~KVM_SUPPORTED_FEATURE_CONTROL);
1933
1934         if (!msr->host_initiated &&
1935             (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1936                 return false;
1937
1938         if (msr->host_initiated)
1939                 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1940         else
1941                 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1942
1943         return !(msr->data & ~valid_bits);
1944 }
1945
1946 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1947 {
1948         switch (msr->index) {
1949         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1950                 if (!nested)
1951                         return 1;
1952                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1953         default:
1954                 return KVM_MSR_RET_INVALID;
1955         }
1956 }
1957
1958 /*
1959  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1960  * Returns 0 on success, non-0 otherwise.
1961  * Assumes vcpu_load() was already called.
1962  */
1963 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1964 {
1965         struct vcpu_vmx *vmx = to_vmx(vcpu);
1966         struct vmx_uret_msr *msr;
1967         u32 index;
1968
1969         switch (msr_info->index) {
1970 #ifdef CONFIG_X86_64
1971         case MSR_FS_BASE:
1972                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1973                 break;
1974         case MSR_GS_BASE:
1975                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1976                 break;
1977         case MSR_KERNEL_GS_BASE:
1978                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1979                 break;
1980 #endif
1981         case MSR_EFER:
1982                 return kvm_get_msr_common(vcpu, msr_info);
1983         case MSR_IA32_TSX_CTRL:
1984                 if (!msr_info->host_initiated &&
1985                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1986                         return 1;
1987                 goto find_uret_msr;
1988         case MSR_IA32_UMWAIT_CONTROL:
1989                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1990                         return 1;
1991
1992                 msr_info->data = vmx->msr_ia32_umwait_control;
1993                 break;
1994         case MSR_IA32_SPEC_CTRL:
1995                 if (!msr_info->host_initiated &&
1996                     !guest_has_spec_ctrl_msr(vcpu))
1997                         return 1;
1998
1999                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2000                 break;
2001         case MSR_IA32_SYSENTER_CS:
2002                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2003                 break;
2004         case MSR_IA32_SYSENTER_EIP:
2005                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2006                 break;
2007         case MSR_IA32_SYSENTER_ESP:
2008                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2009                 break;
2010         case MSR_IA32_BNDCFGS:
2011                 if (!kvm_mpx_supported() ||
2012                     (!msr_info->host_initiated &&
2013                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2014                         return 1;
2015                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2016                 break;
2017         case MSR_IA32_MCG_EXT_CTL:
2018                 if (!msr_info->host_initiated &&
2019                     !(vmx->msr_ia32_feature_control &
2020                       FEAT_CTL_LMCE_ENABLED))
2021                         return 1;
2022                 msr_info->data = vcpu->arch.mcg_ext_ctl;
2023                 break;
2024         case MSR_IA32_FEAT_CTL:
2025                 msr_info->data = vmx->msr_ia32_feature_control;
2026                 break;
2027         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2028                 if (!msr_info->host_initiated &&
2029                     !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2030                         return 1;
2031                 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2032                         [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2033                 break;
2034         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2035                 if (!nested_vmx_allowed(vcpu))
2036                         return 1;
2037                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2038                                     &msr_info->data))
2039                         return 1;
2040                 /*
2041                  * Enlightened VMCS v1 doesn't have certain VMCS fields but
2042                  * instead of just ignoring the features, different Hyper-V
2043                  * versions are either trying to use them and fail or do some
2044                  * sanity checking and refuse to boot. Filter all unsupported
2045                  * features out.
2046                  */
2047                 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2048                         nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2049                                                         &msr_info->data);
2050                 break;
2051         case MSR_IA32_RTIT_CTL:
2052                 if (!vmx_pt_mode_is_host_guest())
2053                         return 1;
2054                 msr_info->data = vmx->pt_desc.guest.ctl;
2055                 break;
2056         case MSR_IA32_RTIT_STATUS:
2057                 if (!vmx_pt_mode_is_host_guest())
2058                         return 1;
2059                 msr_info->data = vmx->pt_desc.guest.status;
2060                 break;
2061         case MSR_IA32_RTIT_CR3_MATCH:
2062                 if (!vmx_pt_mode_is_host_guest() ||
2063                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2064                                                 PT_CAP_cr3_filtering))
2065                         return 1;
2066                 msr_info->data = vmx->pt_desc.guest.cr3_match;
2067                 break;
2068         case MSR_IA32_RTIT_OUTPUT_BASE:
2069                 if (!vmx_pt_mode_is_host_guest() ||
2070                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2071                                         PT_CAP_topa_output) &&
2072                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2073                                         PT_CAP_single_range_output)))
2074                         return 1;
2075                 msr_info->data = vmx->pt_desc.guest.output_base;
2076                 break;
2077         case MSR_IA32_RTIT_OUTPUT_MASK:
2078                 if (!vmx_pt_mode_is_host_guest() ||
2079                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2080                                         PT_CAP_topa_output) &&
2081                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2082                                         PT_CAP_single_range_output)))
2083                         return 1;
2084                 msr_info->data = vmx->pt_desc.guest.output_mask;
2085                 break;
2086         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2087                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2088                 if (!vmx_pt_mode_is_host_guest() ||
2089                     (index >= 2 * vmx->pt_desc.num_address_ranges))
2090                         return 1;
2091                 if (index % 2)
2092                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2093                 else
2094                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2095                 break;
2096         case MSR_IA32_DEBUGCTLMSR:
2097                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2098                 break;
2099         default:
2100         find_uret_msr:
2101                 msr = vmx_find_uret_msr(vmx, msr_info->index);
2102                 if (msr) {
2103                         msr_info->data = msr->data;
2104                         break;
2105                 }
2106                 return kvm_get_msr_common(vcpu, msr_info);
2107         }
2108
2109         return 0;
2110 }
2111
2112 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2113                                                     u64 data)
2114 {
2115 #ifdef CONFIG_X86_64
2116         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2117                 return (u32)data;
2118 #endif
2119         return (unsigned long)data;
2120 }
2121
2122 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2123 {
2124         u64 debugctl = 0;
2125
2126         if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2127             (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2128                 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2129
2130         if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2131             (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2132                 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2133
2134         return debugctl;
2135 }
2136
2137 /*
2138  * Writes msr value into the appropriate "register".
2139  * Returns 0 on success, non-0 otherwise.
2140  * Assumes vcpu_load() was already called.
2141  */
2142 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2143 {
2144         struct vcpu_vmx *vmx = to_vmx(vcpu);
2145         struct vmx_uret_msr *msr;
2146         int ret = 0;
2147         u32 msr_index = msr_info->index;
2148         u64 data = msr_info->data;
2149         u32 index;
2150
2151         switch (msr_index) {
2152         case MSR_EFER:
2153                 ret = kvm_set_msr_common(vcpu, msr_info);
2154                 break;
2155 #ifdef CONFIG_X86_64
2156         case MSR_FS_BASE:
2157                 vmx_segment_cache_clear(vmx);
2158                 vmcs_writel(GUEST_FS_BASE, data);
2159                 break;
2160         case MSR_GS_BASE:
2161                 vmx_segment_cache_clear(vmx);
2162                 vmcs_writel(GUEST_GS_BASE, data);
2163                 break;
2164         case MSR_KERNEL_GS_BASE:
2165                 vmx_write_guest_kernel_gs_base(vmx, data);
2166                 break;
2167         case MSR_IA32_XFD:
2168                 ret = kvm_set_msr_common(vcpu, msr_info);
2169                 /*
2170                  * Always intercepting WRMSR could incur non-negligible
2171                  * overhead given xfd might be changed frequently in
2172                  * guest context switch. Disable write interception
2173                  * upon the first write with a non-zero value (indicating
2174                  * potential usage on dynamic xfeatures). Also update
2175                  * exception bitmap to trap #NM for proper virtualization
2176                  * of guest xfd_err.
2177                  */
2178                 if (!ret && data) {
2179                         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2180                                                       MSR_TYPE_RW);
2181                         vcpu->arch.xfd_no_write_intercept = true;
2182                         vmx_update_exception_bitmap(vcpu);
2183                 }
2184                 break;
2185 #endif
2186         case MSR_IA32_SYSENTER_CS:
2187                 if (is_guest_mode(vcpu))
2188                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
2189                 vmcs_write32(GUEST_SYSENTER_CS, data);
2190                 break;
2191         case MSR_IA32_SYSENTER_EIP:
2192                 if (is_guest_mode(vcpu)) {
2193                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2194                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
2195                 }
2196                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2197                 break;
2198         case MSR_IA32_SYSENTER_ESP:
2199                 if (is_guest_mode(vcpu)) {
2200                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2201                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2202                 }
2203                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2204                 break;
2205         case MSR_IA32_DEBUGCTLMSR: {
2206                 u64 invalid;
2207
2208                 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2209                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2210                         kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2211                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2212                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2213                 }
2214
2215                 if (invalid)
2216                         return 1;
2217
2218                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2219                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2220                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2221
2222                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2223                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2224                     (data & DEBUGCTLMSR_LBR))
2225                         intel_pmu_create_guest_lbr_event(vcpu);
2226                 return 0;
2227         }
2228         case MSR_IA32_BNDCFGS:
2229                 if (!kvm_mpx_supported() ||
2230                     (!msr_info->host_initiated &&
2231                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2232                         return 1;
2233                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2234                     (data & MSR_IA32_BNDCFGS_RSVD))
2235                         return 1;
2236
2237                 if (is_guest_mode(vcpu) &&
2238                     ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2239                      (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2240                         get_vmcs12(vcpu)->guest_bndcfgs = data;
2241
2242                 vmcs_write64(GUEST_BNDCFGS, data);
2243                 break;
2244         case MSR_IA32_UMWAIT_CONTROL:
2245                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2246                         return 1;
2247
2248                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2249                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2250                         return 1;
2251
2252                 vmx->msr_ia32_umwait_control = data;
2253                 break;
2254         case MSR_IA32_SPEC_CTRL:
2255                 if (!msr_info->host_initiated &&
2256                     !guest_has_spec_ctrl_msr(vcpu))
2257                         return 1;
2258
2259                 if (kvm_spec_ctrl_test_value(data))
2260                         return 1;
2261
2262                 vmx->spec_ctrl = data;
2263                 if (!data)
2264                         break;
2265
2266                 /*
2267                  * For non-nested:
2268                  * When it's written (to non-zero) for the first time, pass
2269                  * it through.
2270                  *
2271                  * For nested:
2272                  * The handling of the MSR bitmap for L2 guests is done in
2273                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2274                  * vmcs02.msr_bitmap here since it gets completely overwritten
2275                  * in the merging. We update the vmcs01 here for L1 as well
2276                  * since it will end up touching the MSR anyway now.
2277                  */
2278                 vmx_disable_intercept_for_msr(vcpu,
2279                                               MSR_IA32_SPEC_CTRL,
2280                                               MSR_TYPE_RW);
2281                 break;
2282         case MSR_IA32_TSX_CTRL:
2283                 if (!msr_info->host_initiated &&
2284                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2285                         return 1;
2286                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2287                         return 1;
2288                 goto find_uret_msr;
2289         case MSR_IA32_CR_PAT:
2290                 if (!kvm_pat_valid(data))
2291                         return 1;
2292
2293                 if (is_guest_mode(vcpu) &&
2294                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2295                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2296
2297                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2298                         vmcs_write64(GUEST_IA32_PAT, data);
2299                         vcpu->arch.pat = data;
2300                         break;
2301                 }
2302                 ret = kvm_set_msr_common(vcpu, msr_info);
2303                 break;
2304         case MSR_IA32_MCG_EXT_CTL:
2305                 if ((!msr_info->host_initiated &&
2306                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2307                        FEAT_CTL_LMCE_ENABLED)) ||
2308                     (data & ~MCG_EXT_CTL_LMCE_EN))
2309                         return 1;
2310                 vcpu->arch.mcg_ext_ctl = data;
2311                 break;
2312         case MSR_IA32_FEAT_CTL:
2313                 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2314                         return 1;
2315
2316                 vmx->msr_ia32_feature_control = data;
2317                 if (msr_info->host_initiated && data == 0)
2318                         vmx_leave_nested(vcpu);
2319
2320                 /* SGX may be enabled/disabled by guest's firmware */
2321                 vmx_write_encls_bitmap(vcpu, NULL);
2322                 break;
2323         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2324                 /*
2325                  * On real hardware, the LE hash MSRs are writable before
2326                  * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2327                  * at which point SGX related bits in IA32_FEATURE_CONTROL
2328                  * become writable.
2329                  *
2330                  * KVM does not emulate SGX activation for simplicity, so
2331                  * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2332                  * is unlocked.  This is technically not architectural
2333                  * behavior, but it's close enough.
2334                  */
2335                 if (!msr_info->host_initiated &&
2336                     (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2337                     ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2338                     !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2339                         return 1;
2340                 vmx->msr_ia32_sgxlepubkeyhash
2341                         [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2342                 break;
2343         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2344                 if (!msr_info->host_initiated)
2345                         return 1; /* they are read-only */
2346                 if (!nested_vmx_allowed(vcpu))
2347                         return 1;
2348                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2349         case MSR_IA32_RTIT_CTL:
2350                 if (!vmx_pt_mode_is_host_guest() ||
2351                         vmx_rtit_ctl_check(vcpu, data) ||
2352                         vmx->nested.vmxon)
2353                         return 1;
2354                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2355                 vmx->pt_desc.guest.ctl = data;
2356                 pt_update_intercept_for_msr(vcpu);
2357                 break;
2358         case MSR_IA32_RTIT_STATUS:
2359                 if (!pt_can_write_msr(vmx))
2360                         return 1;
2361                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2362                         return 1;
2363                 vmx->pt_desc.guest.status = data;
2364                 break;
2365         case MSR_IA32_RTIT_CR3_MATCH:
2366                 if (!pt_can_write_msr(vmx))
2367                         return 1;
2368                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2369                                            PT_CAP_cr3_filtering))
2370                         return 1;
2371                 vmx->pt_desc.guest.cr3_match = data;
2372                 break;
2373         case MSR_IA32_RTIT_OUTPUT_BASE:
2374                 if (!pt_can_write_msr(vmx))
2375                         return 1;
2376                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2377                                            PT_CAP_topa_output) &&
2378                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2379                                            PT_CAP_single_range_output))
2380                         return 1;
2381                 if (!pt_output_base_valid(vcpu, data))
2382                         return 1;
2383                 vmx->pt_desc.guest.output_base = data;
2384                 break;
2385         case MSR_IA32_RTIT_OUTPUT_MASK:
2386                 if (!pt_can_write_msr(vmx))
2387                         return 1;
2388                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2389                                            PT_CAP_topa_output) &&
2390                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2391                                            PT_CAP_single_range_output))
2392                         return 1;
2393                 vmx->pt_desc.guest.output_mask = data;
2394                 break;
2395         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2396                 if (!pt_can_write_msr(vmx))
2397                         return 1;
2398                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2399                 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2400                         return 1;
2401                 if (is_noncanonical_address(data, vcpu))
2402                         return 1;
2403                 if (index % 2)
2404                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2405                 else
2406                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2407                 break;
2408         case MSR_IA32_PERF_CAPABILITIES:
2409                 if (data && !vcpu_to_pmu(vcpu)->version)
2410                         return 1;
2411                 if (data & PMU_CAP_LBR_FMT) {
2412                         if ((data & PMU_CAP_LBR_FMT) !=
2413                             (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2414                                 return 1;
2415                         if (!cpuid_model_is_consistent(vcpu))
2416                                 return 1;
2417                 }
2418                 if (data & PERF_CAP_PEBS_FORMAT) {
2419                         if ((data & PERF_CAP_PEBS_MASK) !=
2420                             (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2421                                 return 1;
2422                         if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2423                                 return 1;
2424                         if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2425                                 return 1;
2426                         if (!cpuid_model_is_consistent(vcpu))
2427                                 return 1;
2428                 }
2429                 ret = kvm_set_msr_common(vcpu, msr_info);
2430                 break;
2431
2432         default:
2433         find_uret_msr:
2434                 msr = vmx_find_uret_msr(vmx, msr_index);
2435                 if (msr)
2436                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2437                 else
2438                         ret = kvm_set_msr_common(vcpu, msr_info);
2439         }
2440
2441         /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2442         if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2443                 vmx_update_fb_clear_dis(vcpu, vmx);
2444
2445         return ret;
2446 }
2447
2448 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2449 {
2450         unsigned long guest_owned_bits;
2451
2452         kvm_register_mark_available(vcpu, reg);
2453
2454         switch (reg) {
2455         case VCPU_REGS_RSP:
2456                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2457                 break;
2458         case VCPU_REGS_RIP:
2459                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2460                 break;
2461         case VCPU_EXREG_PDPTR:
2462                 if (enable_ept)
2463                         ept_save_pdptrs(vcpu);
2464                 break;
2465         case VCPU_EXREG_CR0:
2466                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2467
2468                 vcpu->arch.cr0 &= ~guest_owned_bits;
2469                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2470                 break;
2471         case VCPU_EXREG_CR3:
2472                 /*
2473                  * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2474                  * CR3 is loaded into hardware, not the guest's CR3.
2475                  */
2476                 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2477                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2478                 break;
2479         case VCPU_EXREG_CR4:
2480                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2481
2482                 vcpu->arch.cr4 &= ~guest_owned_bits;
2483                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2484                 break;
2485         default:
2486                 KVM_BUG_ON(1, vcpu->kvm);
2487                 break;
2488         }
2489 }
2490
2491 /*
2492  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2493  * directly instead of going through cpu_has(), to ensure KVM is trapping
2494  * ENCLS whenever it's supported in hardware.  It does not matter whether
2495  * the host OS supports or has enabled SGX.
2496  */
2497 static bool cpu_has_sgx(void)
2498 {
2499         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2500 }
2501
2502 /*
2503  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2504  * can't be used due to errata where VM Exit may incorrectly clear
2505  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2506  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2507  */
2508 static bool cpu_has_perf_global_ctrl_bug(void)
2509 {
2510         if (boot_cpu_data.x86 == 0x6) {
2511                 switch (boot_cpu_data.x86_model) {
2512                 case INTEL_FAM6_NEHALEM_EP:     /* AAK155 */
2513                 case INTEL_FAM6_NEHALEM:        /* AAP115 */
2514                 case INTEL_FAM6_WESTMERE:       /* AAT100 */
2515                 case INTEL_FAM6_WESTMERE_EP:    /* BC86,AAY89,BD102 */
2516                 case INTEL_FAM6_NEHALEM_EX:     /* BA97 */
2517                         return true;
2518                 default:
2519                         break;
2520                 }
2521         }
2522
2523         return false;
2524 }
2525
2526 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2527 {
2528         u32 vmx_msr_low, vmx_msr_high;
2529         u32 ctl = ctl_min | ctl_opt;
2530
2531         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2532
2533         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2534         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2535
2536         /* Ensure minimum (required) set of control bits are supported. */
2537         if (ctl_min & ~ctl)
2538                 return -EIO;
2539
2540         *result = ctl;
2541         return 0;
2542 }
2543
2544 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2545 {
2546         u64 allowed;
2547
2548         rdmsrl(msr, allowed);
2549
2550         return  ctl_opt & allowed;
2551 }
2552
2553 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2554                              struct vmx_capability *vmx_cap)
2555 {
2556         u32 vmx_msr_low, vmx_msr_high;
2557         u32 _pin_based_exec_control = 0;
2558         u32 _cpu_based_exec_control = 0;
2559         u32 _cpu_based_2nd_exec_control = 0;
2560         u64 _cpu_based_3rd_exec_control = 0;
2561         u32 _vmexit_control = 0;
2562         u32 _vmentry_control = 0;
2563         u64 misc_msr;
2564         int i;
2565
2566         /*
2567          * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2568          * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2569          * intercepts writes to PAT and EFER, i.e. never enables those controls.
2570          */
2571         struct {
2572                 u32 entry_control;
2573                 u32 exit_control;
2574         } const vmcs_entry_exit_pairs[] = {
2575                 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,  VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2576                 { VM_ENTRY_LOAD_IA32_PAT,               VM_EXIT_LOAD_IA32_PAT },
2577                 { VM_ENTRY_LOAD_IA32_EFER,              VM_EXIT_LOAD_IA32_EFER },
2578                 { VM_ENTRY_LOAD_BNDCFGS,                VM_EXIT_CLEAR_BNDCFGS },
2579                 { VM_ENTRY_LOAD_IA32_RTIT_CTL,          VM_EXIT_CLEAR_IA32_RTIT_CTL },
2580         };
2581
2582         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2583
2584         if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2585                                 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2586                                 MSR_IA32_VMX_PROCBASED_CTLS,
2587                                 &_cpu_based_exec_control))
2588                 return -EIO;
2589         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2590                 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2591                                         KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2592                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2593                                         &_cpu_based_2nd_exec_control))
2594                         return -EIO;
2595         }
2596 #ifndef CONFIG_X86_64
2597         if (!(_cpu_based_2nd_exec_control &
2598                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2599                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2600 #endif
2601
2602         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2603                 _cpu_based_2nd_exec_control &= ~(
2604                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2605                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2606                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2607
2608         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2609                 &vmx_cap->ept, &vmx_cap->vpid);
2610
2611         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2612             vmx_cap->ept) {
2613                 pr_warn_once("EPT CAP should not exist if not support "
2614                                 "1-setting enable EPT VM-execution control\n");
2615
2616                 if (error_on_inconsistent_vmcs_config)
2617                         return -EIO;
2618
2619                 vmx_cap->ept = 0;
2620         }
2621         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2622             vmx_cap->vpid) {
2623                 pr_warn_once("VPID CAP should not exist if not support "
2624                                 "1-setting enable VPID VM-execution control\n");
2625
2626                 if (error_on_inconsistent_vmcs_config)
2627                         return -EIO;
2628
2629                 vmx_cap->vpid = 0;
2630         }
2631
2632         if (!cpu_has_sgx())
2633                 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2634
2635         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2636                 _cpu_based_3rd_exec_control =
2637                         adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2638                                               MSR_IA32_VMX_PROCBASED_CTLS3);
2639
2640         if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2641                                 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2642                                 MSR_IA32_VMX_EXIT_CTLS,
2643                                 &_vmexit_control))
2644                 return -EIO;
2645
2646         if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2647                                 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2648                                 MSR_IA32_VMX_PINBASED_CTLS,
2649                                 &_pin_based_exec_control))
2650                 return -EIO;
2651
2652         if (cpu_has_broken_vmx_preemption_timer())
2653                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2654         if (!(_cpu_based_2nd_exec_control &
2655                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2656                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2657
2658         if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2659                                 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2660                                 MSR_IA32_VMX_ENTRY_CTLS,
2661                                 &_vmentry_control))
2662                 return -EIO;
2663
2664         for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2665                 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2666                 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2667
2668                 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2669                         continue;
2670
2671                 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2672                              _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2673
2674                 if (error_on_inconsistent_vmcs_config)
2675                         return -EIO;
2676
2677                 _vmentry_control &= ~n_ctrl;
2678                 _vmexit_control &= ~x_ctrl;
2679         }
2680
2681         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2682
2683         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2684         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2685                 return -EIO;
2686
2687 #ifdef CONFIG_X86_64
2688         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2689         if (vmx_msr_high & (1u<<16))
2690                 return -EIO;
2691 #endif
2692
2693         /* Require Write-Back (WB) memory type for VMCS accesses. */
2694         if (((vmx_msr_high >> 18) & 15) != 6)
2695                 return -EIO;
2696
2697         rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2698
2699         vmcs_conf->size = vmx_msr_high & 0x1fff;
2700         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2701
2702         vmcs_conf->revision_id = vmx_msr_low;
2703
2704         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2705         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2706         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2707         vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2708         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2709         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2710         vmcs_conf->misc = misc_msr;
2711
2712 #if IS_ENABLED(CONFIG_HYPERV)
2713         if (enlightened_vmcs)
2714                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2715 #endif
2716
2717         return 0;
2718 }
2719
2720 static bool kvm_is_vmx_supported(void)
2721 {
2722         int cpu = raw_smp_processor_id();
2723
2724         if (!cpu_has_vmx()) {
2725                 pr_err("VMX not supported by CPU %d\n", cpu);
2726                 return false;
2727         }
2728
2729         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2730             !this_cpu_has(X86_FEATURE_VMX)) {
2731                 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2732                 return false;
2733         }
2734
2735         return true;
2736 }
2737
2738 static int vmx_check_processor_compat(void)
2739 {
2740         int cpu = raw_smp_processor_id();
2741         struct vmcs_config vmcs_conf;
2742         struct vmx_capability vmx_cap;
2743
2744         if (!kvm_is_vmx_supported())
2745                 return -EIO;
2746
2747         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2748                 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2749                 return -EIO;
2750         }
2751         if (nested)
2752                 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2753         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2754                 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2755                 return -EIO;
2756         }
2757         return 0;
2758 }
2759
2760 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2761 {
2762         u64 msr;
2763
2764         cr4_set_bits(X86_CR4_VMXE);
2765
2766         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2767                           _ASM_EXTABLE(1b, %l[fault])
2768                           : : [vmxon_pointer] "m"(vmxon_pointer)
2769                           : : fault);
2770         return 0;
2771
2772 fault:
2773         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2774                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2775         cr4_clear_bits(X86_CR4_VMXE);
2776
2777         return -EFAULT;
2778 }
2779
2780 static int vmx_hardware_enable(void)
2781 {
2782         int cpu = raw_smp_processor_id();
2783         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2784         int r;
2785
2786         if (cr4_read_shadow() & X86_CR4_VMXE)
2787                 return -EBUSY;
2788
2789         /*
2790          * This can happen if we hot-added a CPU but failed to allocate
2791          * VP assist page for it.
2792          */
2793         if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2794                 return -EFAULT;
2795
2796         intel_pt_handle_vmx(1);
2797
2798         r = kvm_cpu_vmxon(phys_addr);
2799         if (r) {
2800                 intel_pt_handle_vmx(0);
2801                 return r;
2802         }
2803
2804         if (enable_ept)
2805                 ept_sync_global();
2806
2807         return 0;
2808 }
2809
2810 static void vmclear_local_loaded_vmcss(void)
2811 {
2812         int cpu = raw_smp_processor_id();
2813         struct loaded_vmcs *v, *n;
2814
2815         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2816                                  loaded_vmcss_on_cpu_link)
2817                 __loaded_vmcs_clear(v);
2818 }
2819
2820 static void vmx_hardware_disable(void)
2821 {
2822         vmclear_local_loaded_vmcss();
2823
2824         if (cpu_vmxoff())
2825                 kvm_spurious_fault();
2826
2827         hv_reset_evmcs();
2828
2829         intel_pt_handle_vmx(0);
2830 }
2831
2832 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2833 {
2834         int node = cpu_to_node(cpu);
2835         struct page *pages;
2836         struct vmcs *vmcs;
2837
2838         pages = __alloc_pages_node(node, flags, 0);
2839         if (!pages)
2840                 return NULL;
2841         vmcs = page_address(pages);
2842         memset(vmcs, 0, vmcs_config.size);
2843
2844         /* KVM supports Enlightened VMCS v1 only */
2845         if (kvm_is_using_evmcs())
2846                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2847         else
2848                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2849
2850         if (shadow)
2851                 vmcs->hdr.shadow_vmcs = 1;
2852         return vmcs;
2853 }
2854
2855 void free_vmcs(struct vmcs *vmcs)
2856 {
2857         free_page((unsigned long)vmcs);
2858 }
2859
2860 /*
2861  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2862  */
2863 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2864 {
2865         if (!loaded_vmcs->vmcs)
2866                 return;
2867         loaded_vmcs_clear(loaded_vmcs);
2868         free_vmcs(loaded_vmcs->vmcs);
2869         loaded_vmcs->vmcs = NULL;
2870         if (loaded_vmcs->msr_bitmap)
2871                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2872         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2873 }
2874
2875 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2876 {
2877         loaded_vmcs->vmcs = alloc_vmcs(false);
2878         if (!loaded_vmcs->vmcs)
2879                 return -ENOMEM;
2880
2881         vmcs_clear(loaded_vmcs->vmcs);
2882
2883         loaded_vmcs->shadow_vmcs = NULL;
2884         loaded_vmcs->hv_timer_soft_disabled = false;
2885         loaded_vmcs->cpu = -1;
2886         loaded_vmcs->launched = 0;
2887
2888         if (cpu_has_vmx_msr_bitmap()) {
2889                 loaded_vmcs->msr_bitmap = (unsigned long *)
2890                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2891                 if (!loaded_vmcs->msr_bitmap)
2892                         goto out_vmcs;
2893                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2894         }
2895
2896         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2897         memset(&loaded_vmcs->controls_shadow, 0,
2898                 sizeof(struct vmcs_controls_shadow));
2899
2900         return 0;
2901
2902 out_vmcs:
2903         free_loaded_vmcs(loaded_vmcs);
2904         return -ENOMEM;
2905 }
2906
2907 static void free_kvm_area(void)
2908 {
2909         int cpu;
2910
2911         for_each_possible_cpu(cpu) {
2912                 free_vmcs(per_cpu(vmxarea, cpu));
2913                 per_cpu(vmxarea, cpu) = NULL;
2914         }
2915 }
2916
2917 static __init int alloc_kvm_area(void)
2918 {
2919         int cpu;
2920
2921         for_each_possible_cpu(cpu) {
2922                 struct vmcs *vmcs;
2923
2924                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2925                 if (!vmcs) {
2926                         free_kvm_area();
2927                         return -ENOMEM;
2928                 }
2929
2930                 /*
2931                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2932                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2933                  * revision_id reported by MSR_IA32_VMX_BASIC.
2934                  *
2935                  * However, even though not explicitly documented by
2936                  * TLFS, VMXArea passed as VMXON argument should
2937                  * still be marked with revision_id reported by
2938                  * physical CPU.
2939                  */
2940                 if (kvm_is_using_evmcs())
2941                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2942
2943                 per_cpu(vmxarea, cpu) = vmcs;
2944         }
2945         return 0;
2946 }
2947
2948 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2949                 struct kvm_segment *save)
2950 {
2951         if (!emulate_invalid_guest_state) {
2952                 /*
2953                  * CS and SS RPL should be equal during guest entry according
2954                  * to VMX spec, but in reality it is not always so. Since vcpu
2955                  * is in the middle of the transition from real mode to
2956                  * protected mode it is safe to assume that RPL 0 is a good
2957                  * default value.
2958                  */
2959                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2960                         save->selector &= ~SEGMENT_RPL_MASK;
2961                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2962                 save->s = 1;
2963         }
2964         __vmx_set_segment(vcpu, save, seg);
2965 }
2966
2967 static void enter_pmode(struct kvm_vcpu *vcpu)
2968 {
2969         unsigned long flags;
2970         struct vcpu_vmx *vmx = to_vmx(vcpu);
2971
2972         /*
2973          * Update real mode segment cache. It may be not up-to-date if segment
2974          * register was written while vcpu was in a guest mode.
2975          */
2976         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2977         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2978         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2979         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2980         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2981         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2982
2983         vmx->rmode.vm86_active = 0;
2984
2985         __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2986
2987         flags = vmcs_readl(GUEST_RFLAGS);
2988         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2989         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2990         vmcs_writel(GUEST_RFLAGS, flags);
2991
2992         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2993                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2994
2995         vmx_update_exception_bitmap(vcpu);
2996
2997         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2998         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2999         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3000         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3001         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3002         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3003 }
3004
3005 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3006 {
3007         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3008         struct kvm_segment var = *save;
3009
3010         var.dpl = 0x3;
3011         if (seg == VCPU_SREG_CS)
3012                 var.type = 0x3;
3013
3014         if (!emulate_invalid_guest_state) {
3015                 var.selector = var.base >> 4;
3016                 var.base = var.base & 0xffff0;
3017                 var.limit = 0xffff;
3018                 var.g = 0;
3019                 var.db = 0;
3020                 var.present = 1;
3021                 var.s = 1;
3022                 var.l = 0;
3023                 var.unusable = 0;
3024                 var.type = 0x3;
3025                 var.avl = 0;
3026                 if (save->base & 0xf)
3027                         pr_warn_once("segment base is not paragraph aligned "
3028                                      "when entering protected mode (seg=%d)", seg);
3029         }
3030
3031         vmcs_write16(sf->selector, var.selector);
3032         vmcs_writel(sf->base, var.base);
3033         vmcs_write32(sf->limit, var.limit);
3034         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3035 }
3036
3037 static void enter_rmode(struct kvm_vcpu *vcpu)
3038 {
3039         unsigned long flags;
3040         struct vcpu_vmx *vmx = to_vmx(vcpu);
3041         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3042
3043         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3044         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3045         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3046         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3047         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3048         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3049         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3050
3051         vmx->rmode.vm86_active = 1;
3052
3053         /*
3054          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3055          * vcpu. Warn the user that an update is overdue.
3056          */
3057         if (!kvm_vmx->tss_addr)
3058                 pr_warn_once("KVM_SET_TSS_ADDR needs to be called before running vCPU\n");
3059
3060         vmx_segment_cache_clear(vmx);
3061
3062         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3063         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3064         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3065
3066         flags = vmcs_readl(GUEST_RFLAGS);
3067         vmx->rmode.save_rflags = flags;
3068
3069         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3070
3071         vmcs_writel(GUEST_RFLAGS, flags);
3072         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3073         vmx_update_exception_bitmap(vcpu);
3074
3075         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3076         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3077         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3078         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3079         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3080         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3081 }
3082
3083 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3084 {
3085         struct vcpu_vmx *vmx = to_vmx(vcpu);
3086
3087         /* Nothing to do if hardware doesn't support EFER. */
3088         if (!vmx_find_uret_msr(vmx, MSR_EFER))
3089                 return 0;
3090
3091         vcpu->arch.efer = efer;
3092 #ifdef CONFIG_X86_64
3093         if (efer & EFER_LMA)
3094                 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3095         else
3096                 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3097 #else
3098         if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3099                 return 1;
3100 #endif
3101
3102         vmx_setup_uret_msrs(vmx);
3103         return 0;
3104 }
3105
3106 #ifdef CONFIG_X86_64
3107
3108 static void enter_lmode(struct kvm_vcpu *vcpu)
3109 {
3110         u32 guest_tr_ar;
3111
3112         vmx_segment_cache_clear(to_vmx(vcpu));
3113
3114         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3115         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3116                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3117                                      __func__);
3118                 vmcs_write32(GUEST_TR_AR_BYTES,
3119                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3120                              | VMX_AR_TYPE_BUSY_64_TSS);
3121         }
3122         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3123 }
3124
3125 static void exit_lmode(struct kvm_vcpu *vcpu)
3126 {
3127         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3128 }
3129
3130 #endif
3131
3132 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3133 {
3134         struct vcpu_vmx *vmx = to_vmx(vcpu);
3135
3136         /*
3137          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3138          * the CPU is not required to invalidate guest-physical mappings on
3139          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3140          * associated with the root EPT structure and not any particular VPID
3141          * (INVVPID also isn't required to invalidate guest-physical mappings).
3142          */
3143         if (enable_ept) {
3144                 ept_sync_global();
3145         } else if (enable_vpid) {
3146                 if (cpu_has_vmx_invvpid_global()) {
3147                         vpid_sync_vcpu_global();
3148                 } else {
3149                         vpid_sync_vcpu_single(vmx->vpid);
3150                         vpid_sync_vcpu_single(vmx->nested.vpid02);
3151                 }
3152         }
3153 }
3154
3155 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3156 {
3157         if (is_guest_mode(vcpu))
3158                 return nested_get_vpid02(vcpu);
3159         return to_vmx(vcpu)->vpid;
3160 }
3161
3162 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3163 {
3164         struct kvm_mmu *mmu = vcpu->arch.mmu;
3165         u64 root_hpa = mmu->root.hpa;
3166
3167         /* No flush required if the current context is invalid. */
3168         if (!VALID_PAGE(root_hpa))
3169                 return;
3170
3171         if (enable_ept)
3172                 ept_sync_context(construct_eptp(vcpu, root_hpa,
3173                                                 mmu->root_role.level));
3174         else
3175                 vpid_sync_context(vmx_get_current_vpid(vcpu));
3176 }
3177
3178 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3179 {
3180         /*
3181          * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3182          * vmx_flush_tlb_guest() for an explanation of why this is ok.
3183          */
3184         vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3185 }
3186
3187 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3188 {
3189         /*
3190          * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3191          * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3192          * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3193          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3194          * i.e. no explicit INVVPID is necessary.
3195          */
3196         vpid_sync_context(vmx_get_current_vpid(vcpu));
3197 }
3198
3199 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3200 {
3201         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3202
3203         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3204                 return;
3205
3206         if (is_pae_paging(vcpu)) {
3207                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3208                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3209                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3210                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3211         }
3212 }
3213
3214 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3215 {
3216         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3217
3218         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3219                 return;
3220
3221         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3222         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3223         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3224         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3225
3226         kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3227 }
3228
3229 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3230                           CPU_BASED_CR3_STORE_EXITING)
3231
3232 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3233 {
3234         struct vcpu_vmx *vmx = to_vmx(vcpu);
3235         unsigned long hw_cr0, old_cr0_pg;
3236         u32 tmp;
3237
3238         old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3239
3240         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3241         if (is_unrestricted_guest(vcpu))
3242                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3243         else {
3244                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3245                 if (!enable_ept)
3246                         hw_cr0 |= X86_CR0_WP;
3247
3248                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3249                         enter_pmode(vcpu);
3250
3251                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3252                         enter_rmode(vcpu);
3253         }
3254
3255         vmcs_writel(CR0_READ_SHADOW, cr0);
3256         vmcs_writel(GUEST_CR0, hw_cr0);
3257         vcpu->arch.cr0 = cr0;
3258         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3259
3260 #ifdef CONFIG_X86_64
3261         if (vcpu->arch.efer & EFER_LME) {
3262                 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3263                         enter_lmode(vcpu);
3264                 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3265                         exit_lmode(vcpu);
3266         }
3267 #endif
3268
3269         if (enable_ept && !is_unrestricted_guest(vcpu)) {
3270                 /*
3271                  * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3272                  * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3273                  * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3274                  * KVM's CR3 is installed.
3275                  */
3276                 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3277                         vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3278
3279                 /*
3280                  * When running with EPT but not unrestricted guest, KVM must
3281                  * intercept CR3 accesses when paging is _disabled_.  This is
3282                  * necessary because restricted guests can't actually run with
3283                  * paging disabled, and so KVM stuffs its own CR3 in order to
3284                  * run the guest when identity mapped page tables.
3285                  *
3286                  * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3287                  * update, it may be stale with respect to CR3 interception,
3288                  * e.g. after nested VM-Enter.
3289                  *
3290                  * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3291                  * stores to forward them to L1, even if KVM does not need to
3292                  * intercept them to preserve its identity mapped page tables.
3293                  */
3294                 if (!(cr0 & X86_CR0_PG)) {
3295                         exec_controls_setbit(vmx, CR3_EXITING_BITS);
3296                 } else if (!is_guest_mode(vcpu)) {
3297                         exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3298                 } else {
3299                         tmp = exec_controls_get(vmx);
3300                         tmp &= ~CR3_EXITING_BITS;
3301                         tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3302                         exec_controls_set(vmx, tmp);
3303                 }
3304
3305                 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3306                 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3307                         vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3308
3309                 /*
3310                  * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3311                  * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3312                  */
3313                 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3314                         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3315         }
3316
3317         /* depends on vcpu->arch.cr0 to be set to a new value */
3318         vmx->emulation_required = vmx_emulation_required(vcpu);
3319 }
3320
3321 static int vmx_get_max_tdp_level(void)
3322 {
3323         if (cpu_has_vmx_ept_5levels())
3324                 return 5;
3325         return 4;
3326 }
3327
3328 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3329 {
3330         u64 eptp = VMX_EPTP_MT_WB;
3331
3332         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3333
3334         if (enable_ept_ad_bits &&
3335             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3336                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3337         eptp |= root_hpa;
3338
3339         return eptp;
3340 }
3341
3342 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3343                              int root_level)
3344 {
3345         struct kvm *kvm = vcpu->kvm;
3346         bool update_guest_cr3 = true;
3347         unsigned long guest_cr3;
3348         u64 eptp;
3349
3350         if (enable_ept) {
3351                 eptp = construct_eptp(vcpu, root_hpa, root_level);
3352                 vmcs_write64(EPT_POINTER, eptp);
3353
3354                 hv_track_root_tdp(vcpu, root_hpa);
3355
3356                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3357                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3358                 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3359                         guest_cr3 = vcpu->arch.cr3;
3360                 else /* vmcs.GUEST_CR3 is already up-to-date. */
3361                         update_guest_cr3 = false;
3362                 vmx_ept_load_pdptrs(vcpu);
3363         } else {
3364                 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3365         }
3366
3367         if (update_guest_cr3)
3368                 vmcs_writel(GUEST_CR3, guest_cr3);
3369 }
3370
3371
3372 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3373 {
3374         /*
3375          * We operate under the default treatment of SMM, so VMX cannot be
3376          * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3377          * i.e. is a reserved bit, is handled by common x86 code.
3378          */
3379         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3380                 return false;
3381
3382         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3383                 return false;
3384
3385         return true;
3386 }
3387
3388 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3389 {
3390         unsigned long old_cr4 = vcpu->arch.cr4;
3391         struct vcpu_vmx *vmx = to_vmx(vcpu);
3392         /*
3393          * Pass through host's Machine Check Enable value to hw_cr4, which
3394          * is in force while we are in guest mode.  Do not let guests control
3395          * this bit, even if host CR4.MCE == 0.
3396          */
3397         unsigned long hw_cr4;
3398
3399         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3400         if (is_unrestricted_guest(vcpu))
3401                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3402         else if (vmx->rmode.vm86_active)
3403                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3404         else
3405                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3406
3407         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3408                 if (cr4 & X86_CR4_UMIP) {
3409                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3410                         hw_cr4 &= ~X86_CR4_UMIP;
3411                 } else if (!is_guest_mode(vcpu) ||
3412                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3413                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3414                 }
3415         }
3416
3417         vcpu->arch.cr4 = cr4;
3418         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3419
3420         if (!is_unrestricted_guest(vcpu)) {
3421                 if (enable_ept) {
3422                         if (!is_paging(vcpu)) {
3423                                 hw_cr4 &= ~X86_CR4_PAE;
3424                                 hw_cr4 |= X86_CR4_PSE;
3425                         } else if (!(cr4 & X86_CR4_PAE)) {
3426                                 hw_cr4 &= ~X86_CR4_PAE;
3427                         }
3428                 }
3429
3430                 /*
3431                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3432                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3433                  * to be manually disabled when guest switches to non-paging
3434                  * mode.
3435                  *
3436                  * If !enable_unrestricted_guest, the CPU is always running
3437                  * with CR0.PG=1 and CR4 needs to be modified.
3438                  * If enable_unrestricted_guest, the CPU automatically
3439                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3440                  */
3441                 if (!is_paging(vcpu))
3442                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3443         }
3444
3445         vmcs_writel(CR4_READ_SHADOW, cr4);
3446         vmcs_writel(GUEST_CR4, hw_cr4);
3447
3448         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3449                 kvm_update_cpuid_runtime(vcpu);
3450 }
3451
3452 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3453 {
3454         struct vcpu_vmx *vmx = to_vmx(vcpu);
3455         u32 ar;
3456
3457         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3458                 *var = vmx->rmode.segs[seg];
3459                 if (seg == VCPU_SREG_TR
3460                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3461                         return;
3462                 var->base = vmx_read_guest_seg_base(vmx, seg);
3463                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3464                 return;
3465         }
3466         var->base = vmx_read_guest_seg_base(vmx, seg);
3467         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3468         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3469         ar = vmx_read_guest_seg_ar(vmx, seg);
3470         var->unusable = (ar >> 16) & 1;
3471         var->type = ar & 15;
3472         var->s = (ar >> 4) & 1;
3473         var->dpl = (ar >> 5) & 3;
3474         /*
3475          * Some userspaces do not preserve unusable property. Since usable
3476          * segment has to be present according to VMX spec we can use present
3477          * property to amend userspace bug by making unusable segment always
3478          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3479          * segment as unusable.
3480          */
3481         var->present = !var->unusable;
3482         var->avl = (ar >> 12) & 1;
3483         var->l = (ar >> 13) & 1;
3484         var->db = (ar >> 14) & 1;
3485         var->g = (ar >> 15) & 1;
3486 }
3487
3488 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3489 {
3490         struct kvm_segment s;
3491
3492         if (to_vmx(vcpu)->rmode.vm86_active) {
3493                 vmx_get_segment(vcpu, &s, seg);
3494                 return s.base;
3495         }
3496         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3497 }
3498
3499 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3500 {
3501         struct vcpu_vmx *vmx = to_vmx(vcpu);
3502
3503         if (unlikely(vmx->rmode.vm86_active))
3504                 return 0;
3505         else {
3506                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3507                 return VMX_AR_DPL(ar);
3508         }
3509 }
3510
3511 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3512 {
3513         u32 ar;
3514
3515         ar = var->type & 15;
3516         ar |= (var->s & 1) << 4;
3517         ar |= (var->dpl & 3) << 5;
3518         ar |= (var->present & 1) << 7;
3519         ar |= (var->avl & 1) << 12;
3520         ar |= (var->l & 1) << 13;
3521         ar |= (var->db & 1) << 14;
3522         ar |= (var->g & 1) << 15;
3523         ar |= (var->unusable || !var->present) << 16;
3524
3525         return ar;
3526 }
3527
3528 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3529 {
3530         struct vcpu_vmx *vmx = to_vmx(vcpu);
3531         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3532
3533         vmx_segment_cache_clear(vmx);
3534
3535         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3536                 vmx->rmode.segs[seg] = *var;
3537                 if (seg == VCPU_SREG_TR)
3538                         vmcs_write16(sf->selector, var->selector);
3539                 else if (var->s)
3540                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3541                 return;
3542         }
3543
3544         vmcs_writel(sf->base, var->base);
3545         vmcs_write32(sf->limit, var->limit);
3546         vmcs_write16(sf->selector, var->selector);
3547
3548         /*
3549          *   Fix the "Accessed" bit in AR field of segment registers for older
3550          * qemu binaries.
3551          *   IA32 arch specifies that at the time of processor reset the
3552          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3553          * is setting it to 0 in the userland code. This causes invalid guest
3554          * state vmexit when "unrestricted guest" mode is turned on.
3555          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3556          * tree. Newer qemu binaries with that qemu fix would not need this
3557          * kvm hack.
3558          */
3559         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3560                 var->type |= 0x1; /* Accessed */
3561
3562         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3563 }
3564
3565 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3566 {
3567         __vmx_set_segment(vcpu, var, seg);
3568
3569         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3570 }
3571
3572 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3573 {
3574         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3575
3576         *db = (ar >> 14) & 1;
3577         *l = (ar >> 13) & 1;
3578 }
3579
3580 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3581 {
3582         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3583         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3584 }
3585
3586 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3587 {
3588         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3589         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3590 }
3591
3592 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3593 {
3594         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3595         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3596 }
3597
3598 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3599 {
3600         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3601         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3602 }
3603
3604 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3605 {
3606         struct kvm_segment var;
3607         u32 ar;
3608
3609         vmx_get_segment(vcpu, &var, seg);
3610         var.dpl = 0x3;
3611         if (seg == VCPU_SREG_CS)
3612                 var.type = 0x3;
3613         ar = vmx_segment_access_rights(&var);
3614
3615         if (var.base != (var.selector << 4))
3616                 return false;
3617         if (var.limit != 0xffff)
3618                 return false;
3619         if (ar != 0xf3)
3620                 return false;
3621
3622         return true;
3623 }
3624
3625 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3626 {
3627         struct kvm_segment cs;
3628         unsigned int cs_rpl;
3629
3630         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3631         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3632
3633         if (cs.unusable)
3634                 return false;
3635         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3636                 return false;
3637         if (!cs.s)
3638                 return false;
3639         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3640                 if (cs.dpl > cs_rpl)
3641                         return false;
3642         } else {
3643                 if (cs.dpl != cs_rpl)
3644                         return false;
3645         }
3646         if (!cs.present)
3647                 return false;
3648
3649         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3650         return true;
3651 }
3652
3653 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3654 {
3655         struct kvm_segment ss;
3656         unsigned int ss_rpl;
3657
3658         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3659         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3660
3661         if (ss.unusable)
3662                 return true;
3663         if (ss.type != 3 && ss.type != 7)
3664                 return false;
3665         if (!ss.s)
3666                 return false;
3667         if (ss.dpl != ss_rpl) /* DPL != RPL */
3668                 return false;
3669         if (!ss.present)
3670                 return false;
3671
3672         return true;
3673 }
3674
3675 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3676 {
3677         struct kvm_segment var;
3678         unsigned int rpl;
3679
3680         vmx_get_segment(vcpu, &var, seg);
3681         rpl = var.selector & SEGMENT_RPL_MASK;
3682
3683         if (var.unusable)
3684                 return true;
3685         if (!var.s)
3686                 return false;
3687         if (!var.present)
3688                 return false;
3689         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3690                 if (var.dpl < rpl) /* DPL < RPL */
3691                         return false;
3692         }
3693
3694         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3695          * rights flags
3696          */
3697         return true;
3698 }
3699
3700 static bool tr_valid(struct kvm_vcpu *vcpu)
3701 {
3702         struct kvm_segment tr;
3703
3704         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3705
3706         if (tr.unusable)
3707                 return false;
3708         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3709                 return false;
3710         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3711                 return false;
3712         if (!tr.present)
3713                 return false;
3714
3715         return true;
3716 }
3717
3718 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3719 {
3720         struct kvm_segment ldtr;
3721
3722         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3723
3724         if (ldtr.unusable)
3725                 return true;
3726         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3727                 return false;
3728         if (ldtr.type != 2)
3729                 return false;
3730         if (!ldtr.present)
3731                 return false;
3732
3733         return true;
3734 }
3735
3736 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3737 {
3738         struct kvm_segment cs, ss;
3739
3740         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3741         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3742
3743         return ((cs.selector & SEGMENT_RPL_MASK) ==
3744                  (ss.selector & SEGMENT_RPL_MASK));
3745 }
3746
3747 /*
3748  * Check if guest state is valid. Returns true if valid, false if
3749  * not.
3750  * We assume that registers are always usable
3751  */
3752 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3753 {
3754         /* real mode guest state checks */
3755         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3756                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3757                         return false;
3758                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3759                         return false;
3760                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3761                         return false;
3762                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3763                         return false;
3764                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3765                         return false;
3766                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3767                         return false;
3768         } else {
3769         /* protected mode guest state checks */
3770                 if (!cs_ss_rpl_check(vcpu))
3771                         return false;
3772                 if (!code_segment_valid(vcpu))
3773                         return false;
3774                 if (!stack_segment_valid(vcpu))
3775                         return false;
3776                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3777                         return false;
3778                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3779                         return false;
3780                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3781                         return false;
3782                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3783                         return false;
3784                 if (!tr_valid(vcpu))
3785                         return false;
3786                 if (!ldtr_valid(vcpu))
3787                         return false;
3788         }
3789         /* TODO:
3790          * - Add checks on RIP
3791          * - Add checks on RFLAGS
3792          */
3793
3794         return true;
3795 }
3796
3797 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3798 {
3799         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3800         u16 data;
3801         int i;
3802
3803         for (i = 0; i < 3; i++) {
3804                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3805                         return -EFAULT;
3806         }
3807
3808         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3809         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3810                 return -EFAULT;
3811
3812         data = ~0;
3813         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3814                 return -EFAULT;
3815
3816         return 0;
3817 }
3818
3819 static int init_rmode_identity_map(struct kvm *kvm)
3820 {
3821         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3822         int i, r = 0;
3823         void __user *uaddr;
3824         u32 tmp;
3825
3826         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3827         mutex_lock(&kvm->slots_lock);
3828
3829         if (likely(kvm_vmx->ept_identity_pagetable_done))
3830                 goto out;
3831
3832         if (!kvm_vmx->ept_identity_map_addr)
3833                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3834
3835         uaddr = __x86_set_memory_region(kvm,
3836                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3837                                         kvm_vmx->ept_identity_map_addr,
3838                                         PAGE_SIZE);
3839         if (IS_ERR(uaddr)) {
3840                 r = PTR_ERR(uaddr);
3841                 goto out;
3842         }
3843
3844         /* Set up identity-mapping pagetable for EPT in real mode */
3845         for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3846                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3847                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3848                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3849                         r = -EFAULT;
3850                         goto out;
3851                 }
3852         }
3853         kvm_vmx->ept_identity_pagetable_done = true;
3854
3855 out:
3856         mutex_unlock(&kvm->slots_lock);
3857         return r;
3858 }
3859
3860 static void seg_setup(int seg)
3861 {
3862         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3863         unsigned int ar;
3864
3865         vmcs_write16(sf->selector, 0);
3866         vmcs_writel(sf->base, 0);
3867         vmcs_write32(sf->limit, 0xffff);
3868         ar = 0x93;
3869         if (seg == VCPU_SREG_CS)
3870                 ar |= 0x08; /* code segment */
3871
3872         vmcs_write32(sf->ar_bytes, ar);
3873 }
3874
3875 int allocate_vpid(void)
3876 {
3877         int vpid;
3878
3879         if (!enable_vpid)
3880                 return 0;
3881         spin_lock(&vmx_vpid_lock);
3882         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3883         if (vpid < VMX_NR_VPIDS)
3884                 __set_bit(vpid, vmx_vpid_bitmap);
3885         else
3886                 vpid = 0;
3887         spin_unlock(&vmx_vpid_lock);
3888         return vpid;
3889 }
3890
3891 void free_vpid(int vpid)
3892 {
3893         if (!enable_vpid || vpid == 0)
3894                 return;
3895         spin_lock(&vmx_vpid_lock);
3896         __clear_bit(vpid, vmx_vpid_bitmap);
3897         spin_unlock(&vmx_vpid_lock);
3898 }
3899
3900 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3901 {
3902         /*
3903          * When KVM is a nested hypervisor on top of Hyper-V and uses
3904          * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3905          * bitmap has changed.
3906          */
3907         if (kvm_is_using_evmcs()) {
3908                 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3909
3910                 if (evmcs->hv_enlightenments_control.msr_bitmap)
3911                         evmcs->hv_clean_fields &=
3912                                 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3913         }
3914
3915         vmx->nested.force_msr_bitmap_recalc = true;
3916 }
3917
3918 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3919 {
3920         struct vcpu_vmx *vmx = to_vmx(vcpu);
3921         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3922
3923         if (!cpu_has_vmx_msr_bitmap())
3924                 return;
3925
3926         vmx_msr_bitmap_l01_changed(vmx);
3927
3928         /*
3929          * Mark the desired intercept state in shadow bitmap, this is needed
3930          * for resync when the MSR filters change.
3931         */
3932         if (is_valid_passthrough_msr(msr)) {
3933                 int idx = possible_passthrough_msr_slot(msr);
3934
3935                 if (idx != -ENOENT) {
3936                         if (type & MSR_TYPE_R)
3937                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3938                         if (type & MSR_TYPE_W)
3939                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3940                 }
3941         }
3942
3943         if ((type & MSR_TYPE_R) &&
3944             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3945                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3946                 type &= ~MSR_TYPE_R;
3947         }
3948
3949         if ((type & MSR_TYPE_W) &&
3950             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3951                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3952                 type &= ~MSR_TYPE_W;
3953         }
3954
3955         if (type & MSR_TYPE_R)
3956                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3957
3958         if (type & MSR_TYPE_W)
3959                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3960 }
3961
3962 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3963 {
3964         struct vcpu_vmx *vmx = to_vmx(vcpu);
3965         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3966
3967         if (!cpu_has_vmx_msr_bitmap())
3968                 return;
3969
3970         vmx_msr_bitmap_l01_changed(vmx);
3971
3972         /*
3973          * Mark the desired intercept state in shadow bitmap, this is needed
3974          * for resync when the MSR filter changes.
3975         */
3976         if (is_valid_passthrough_msr(msr)) {
3977                 int idx = possible_passthrough_msr_slot(msr);
3978
3979                 if (idx != -ENOENT) {
3980                         if (type & MSR_TYPE_R)
3981                                 set_bit(idx, vmx->shadow_msr_intercept.read);
3982                         if (type & MSR_TYPE_W)
3983                                 set_bit(idx, vmx->shadow_msr_intercept.write);
3984                 }
3985         }
3986
3987         if (type & MSR_TYPE_R)
3988                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3989
3990         if (type & MSR_TYPE_W)
3991                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3992 }
3993
3994 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3995 {
3996         /*
3997          * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
3998          * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
3999          * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4000          */
4001         const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4002         const int write_idx = read_idx + (0x800 / sizeof(u64));
4003         struct vcpu_vmx *vmx = to_vmx(vcpu);
4004         u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4005         u8 mode;
4006
4007         if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4008                 return;
4009
4010         if (cpu_has_secondary_exec_ctrls() &&
4011             (secondary_exec_controls_get(vmx) &
4012              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4013                 mode = MSR_BITMAP_MODE_X2APIC;
4014                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4015                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4016         } else {
4017                 mode = 0;
4018         }
4019
4020         if (mode == vmx->x2apic_msr_bitmap_mode)
4021                 return;
4022
4023         vmx->x2apic_msr_bitmap_mode = mode;
4024
4025         /*
4026          * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4027          * registers (0x840 and above) intercepted, KVM doesn't support them.
4028          * Intercept all writes by default and poke holes as needed.  Pass
4029          * through reads for all valid registers by default in x2APIC+APICv
4030          * mode, only the current timer count needs on-demand emulation by KVM.
4031          */
4032         if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4033                 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4034         else
4035                 msr_bitmap[read_idx] = ~0ull;
4036         msr_bitmap[write_idx] = ~0ull;
4037
4038         /*
4039          * TPR reads and writes can be virtualized even if virtual interrupt
4040          * delivery is not in use.
4041          */
4042         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4043                                   !(mode & MSR_BITMAP_MODE_X2APIC));
4044
4045         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4046                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4047                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4048                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4049                 if (enable_ipiv)
4050                         vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4051         }
4052 }
4053
4054 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4055 {
4056         struct vcpu_vmx *vmx = to_vmx(vcpu);
4057         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4058         u32 i;
4059
4060         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4061         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4062         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4063         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4064         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4065                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4066                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4067         }
4068 }
4069
4070 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4071 {
4072         struct vcpu_vmx *vmx = to_vmx(vcpu);
4073         void *vapic_page;
4074         u32 vppr;
4075         int rvi;
4076
4077         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4078                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4079                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4080                 return false;
4081
4082         rvi = vmx_get_rvi();
4083
4084         vapic_page = vmx->nested.virtual_apic_map.hva;
4085         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4086
4087         return ((rvi & 0xf0) > (vppr & 0xf0));
4088 }
4089
4090 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4091 {
4092         struct vcpu_vmx *vmx = to_vmx(vcpu);
4093         u32 i;
4094
4095         /*
4096          * Redo intercept permissions for MSRs that KVM is passing through to
4097          * the guest.  Disabling interception will check the new MSR filter and
4098          * ensure that KVM enables interception if usersepace wants to filter
4099          * the MSR.  MSRs that KVM is already intercepting don't need to be
4100          * refreshed since KVM is going to intercept them regardless of what
4101          * userspace wants.
4102          */
4103         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4104                 u32 msr = vmx_possible_passthrough_msrs[i];
4105
4106                 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4107                         vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4108
4109                 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4110                         vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4111         }
4112
4113         /* PT MSRs can be passed through iff PT is exposed to the guest. */
4114         if (vmx_pt_mode_is_host_guest())
4115                 pt_update_intercept_for_msr(vcpu);
4116 }
4117
4118 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4119                                                      int pi_vec)
4120 {
4121 #ifdef CONFIG_SMP
4122         if (vcpu->mode == IN_GUEST_MODE) {
4123                 /*
4124                  * The vector of the virtual has already been set in the PIR.
4125                  * Send a notification event to deliver the virtual interrupt
4126                  * unless the vCPU is the currently running vCPU, i.e. the
4127                  * event is being sent from a fastpath VM-Exit handler, in
4128                  * which case the PIR will be synced to the vIRR before
4129                  * re-entering the guest.
4130                  *
4131                  * When the target is not the running vCPU, the following
4132                  * possibilities emerge:
4133                  *
4134                  * Case 1: vCPU stays in non-root mode. Sending a notification
4135                  * event posts the interrupt to the vCPU.
4136                  *
4137                  * Case 2: vCPU exits to root mode and is still runnable. The
4138                  * PIR will be synced to the vIRR before re-entering the guest.
4139                  * Sending a notification event is ok as the host IRQ handler
4140                  * will ignore the spurious event.
4141                  *
4142                  * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4143                  * has already synced PIR to vIRR and never blocks the vCPU if
4144                  * the vIRR is not empty. Therefore, a blocked vCPU here does
4145                  * not wait for any requested interrupts in PIR, and sending a
4146                  * notification event also results in a benign, spurious event.
4147                  */
4148
4149                 if (vcpu != kvm_get_running_vcpu())
4150                         apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4151                 return;
4152         }
4153 #endif
4154         /*
4155          * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4156          * otherwise do nothing as KVM will grab the highest priority pending
4157          * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4158          */
4159         kvm_vcpu_wake_up(vcpu);
4160 }
4161
4162 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4163                                                 int vector)
4164 {
4165         struct vcpu_vmx *vmx = to_vmx(vcpu);
4166
4167         if (is_guest_mode(vcpu) &&
4168             vector == vmx->nested.posted_intr_nv) {
4169                 /*
4170                  * If a posted intr is not recognized by hardware,
4171                  * we will accomplish it in the next vmentry.
4172                  */
4173                 vmx->nested.pi_pending = true;
4174                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4175
4176                 /*
4177                  * This pairs with the smp_mb_*() after setting vcpu->mode in
4178                  * vcpu_enter_guest() to guarantee the vCPU sees the event
4179                  * request if triggering a posted interrupt "fails" because
4180                  * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4181                  * the smb_wmb() in kvm_make_request() only ensures everything
4182                  * done before making the request is visible when the request
4183                  * is visible, it doesn't ensure ordering between the store to
4184                  * vcpu->requests and the load from vcpu->mode.
4185                  */
4186                 smp_mb__after_atomic();
4187
4188                 /* the PIR and ON have been set by L1. */
4189                 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4190                 return 0;
4191         }
4192         return -1;
4193 }
4194 /*
4195  * Send interrupt to vcpu via posted interrupt way.
4196  * 1. If target vcpu is running(non-root mode), send posted interrupt
4197  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4198  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4199  * interrupt from PIR in next vmentry.
4200  */
4201 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4202 {
4203         struct vcpu_vmx *vmx = to_vmx(vcpu);
4204         int r;
4205
4206         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4207         if (!r)
4208                 return 0;
4209
4210         /* Note, this is called iff the local APIC is in-kernel. */
4211         if (!vcpu->arch.apic->apicv_active)
4212                 return -1;
4213
4214         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4215                 return 0;
4216
4217         /* If a previous notification has sent the IPI, nothing to do.  */
4218         if (pi_test_and_set_on(&vmx->pi_desc))
4219                 return 0;
4220
4221         /*
4222          * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4223          * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4224          * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4225          * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4226          */
4227         kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4228         return 0;
4229 }
4230
4231 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4232                                   int trig_mode, int vector)
4233 {
4234         struct kvm_vcpu *vcpu = apic->vcpu;
4235
4236         if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4237                 kvm_lapic_set_irr(vector, apic);
4238                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4239                 kvm_vcpu_kick(vcpu);
4240         } else {
4241                 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4242                                            trig_mode, vector);
4243         }
4244 }
4245
4246 /*
4247  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4248  * will not change in the lifetime of the guest.
4249  * Note that host-state that does change is set elsewhere. E.g., host-state
4250  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4251  */
4252 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4253 {
4254         u32 low32, high32;
4255         unsigned long tmpl;
4256         unsigned long cr0, cr3, cr4;
4257
4258         cr0 = read_cr0();
4259         WARN_ON(cr0 & X86_CR0_TS);
4260         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4261
4262         /*
4263          * Save the most likely value for this task's CR3 in the VMCS.
4264          * We can't use __get_current_cr3_fast() because we're not atomic.
4265          */
4266         cr3 = __read_cr3();
4267         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4268         vmx->loaded_vmcs->host_state.cr3 = cr3;
4269
4270         /* Save the most likely value for this task's CR4 in the VMCS. */
4271         cr4 = cr4_read_shadow();
4272         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4273         vmx->loaded_vmcs->host_state.cr4 = cr4;
4274
4275         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4276 #ifdef CONFIG_X86_64
4277         /*
4278          * Load null selectors, so we can avoid reloading them in
4279          * vmx_prepare_switch_to_host(), in case userspace uses
4280          * the null selectors too (the expected case).
4281          */
4282         vmcs_write16(HOST_DS_SELECTOR, 0);
4283         vmcs_write16(HOST_ES_SELECTOR, 0);
4284 #else
4285         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4286         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4287 #endif
4288         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4289         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4290
4291         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4292
4293         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4294
4295         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4296         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4297
4298         /*
4299          * SYSENTER is used for 32-bit system calls on either 32-bit or
4300          * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4301          * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4302          * have already done so!).
4303          */
4304         if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4305                 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4306
4307         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4308         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4309
4310         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4311                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4312                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4313         }
4314
4315         if (cpu_has_load_ia32_efer())
4316                 vmcs_write64(HOST_IA32_EFER, host_efer);
4317 }
4318
4319 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4320 {
4321         struct kvm_vcpu *vcpu = &vmx->vcpu;
4322
4323         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4324                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4325         if (!enable_ept) {
4326                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4327                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4328         }
4329         if (is_guest_mode(&vmx->vcpu))
4330                 vcpu->arch.cr4_guest_owned_bits &=
4331                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4332         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4333 }
4334
4335 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4336 {
4337         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4338
4339         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4340                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4341
4342         if (!enable_vnmi)
4343                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4344
4345         if (!enable_preemption_timer)
4346                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4347
4348         return pin_based_exec_ctrl;
4349 }
4350
4351 static u32 vmx_vmentry_ctrl(void)
4352 {
4353         u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4354
4355         if (vmx_pt_mode_is_system())
4356                 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4357                                   VM_ENTRY_LOAD_IA32_RTIT_CTL);
4358         /*
4359          * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4360          */
4361         vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4362                           VM_ENTRY_LOAD_IA32_EFER |
4363                           VM_ENTRY_IA32E_MODE);
4364
4365         if (cpu_has_perf_global_ctrl_bug())
4366                 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4367
4368         return vmentry_ctrl;
4369 }
4370
4371 static u32 vmx_vmexit_ctrl(void)
4372 {
4373         u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4374
4375         /*
4376          * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4377          * nested virtualization and thus allowed to be set in vmcs12.
4378          */
4379         vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4380                          VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4381
4382         if (vmx_pt_mode_is_system())
4383                 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4384                                  VM_EXIT_CLEAR_IA32_RTIT_CTL);
4385
4386         if (cpu_has_perf_global_ctrl_bug())
4387                 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4388
4389         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4390         return vmexit_ctrl &
4391                 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4392 }
4393
4394 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4395 {
4396         struct vcpu_vmx *vmx = to_vmx(vcpu);
4397
4398         if (is_guest_mode(vcpu)) {
4399                 vmx->nested.update_vmcs01_apicv_status = true;
4400                 return;
4401         }
4402
4403         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4404
4405         if (kvm_vcpu_apicv_active(vcpu)) {
4406                 secondary_exec_controls_setbit(vmx,
4407                                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
4408                                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4409                 if (enable_ipiv)
4410                         tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4411         } else {
4412                 secondary_exec_controls_clearbit(vmx,
4413                                                  SECONDARY_EXEC_APIC_REGISTER_VIRT |
4414                                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4415                 if (enable_ipiv)
4416                         tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4417         }
4418
4419         vmx_update_msr_bitmap_x2apic(vcpu);
4420 }
4421
4422 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4423 {
4424         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4425
4426         /*
4427          * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4428          * vmcs12 and propagated to vmcs02 when set in vmcs12.
4429          */
4430         exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4431                           CPU_BASED_USE_IO_BITMAPS |
4432                           CPU_BASED_MONITOR_TRAP_FLAG |
4433                           CPU_BASED_PAUSE_EXITING);
4434
4435         /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4436         exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4437                           CPU_BASED_NMI_WINDOW_EXITING);
4438
4439         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4440                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4441
4442         if (!cpu_need_tpr_shadow(&vmx->vcpu))
4443                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4444
4445 #ifdef CONFIG_X86_64
4446         if (exec_control & CPU_BASED_TPR_SHADOW)
4447                 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4448                                   CPU_BASED_CR8_STORE_EXITING);
4449         else
4450                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4451                                 CPU_BASED_CR8_LOAD_EXITING;
4452 #endif
4453         /* No need to intercept CR3 access or INVPLG when using EPT. */
4454         if (enable_ept)
4455                 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4456                                   CPU_BASED_CR3_STORE_EXITING |
4457                                   CPU_BASED_INVLPG_EXITING);
4458         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4459                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4460                                 CPU_BASED_MONITOR_EXITING);
4461         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4462                 exec_control &= ~CPU_BASED_HLT_EXITING;
4463         return exec_control;
4464 }
4465
4466 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4467 {
4468         u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4469
4470         /*
4471          * IPI virtualization relies on APICv. Disable IPI virtualization if
4472          * APICv is inhibited.
4473          */
4474         if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4475                 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4476
4477         return exec_control;
4478 }
4479
4480 /*
4481  * Adjust a single secondary execution control bit to intercept/allow an
4482  * instruction in the guest.  This is usually done based on whether or not a
4483  * feature has been exposed to the guest in order to correctly emulate faults.
4484  */
4485 static inline void
4486 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4487                                   u32 control, bool enabled, bool exiting)
4488 {
4489         /*
4490          * If the control is for an opt-in feature, clear the control if the
4491          * feature is not exposed to the guest, i.e. not enabled.  If the
4492          * control is opt-out, i.e. an exiting control, clear the control if
4493          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4494          * disabled for the associated instruction.  Note, the caller is
4495          * responsible presetting exec_control to set all supported bits.
4496          */
4497         if (enabled == exiting)
4498                 *exec_control &= ~control;
4499
4500         /*
4501          * Update the nested MSR settings so that a nested VMM can/can't set
4502          * controls for features that are/aren't exposed to the guest.
4503          */
4504         if (nested) {
4505                 /*
4506                  * All features that can be added or removed to VMX MSRs must
4507                  * be supported in the first place for nested virtualization.
4508                  */
4509                 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4510                         enabled = false;
4511
4512                 if (enabled)
4513                         vmx->nested.msrs.secondary_ctls_high |= control;
4514                 else
4515                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4516         }
4517 }
4518
4519 /*
4520  * Wrapper macro for the common case of adjusting a secondary execution control
4521  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4522  * verifies that the control is actually supported by KVM and hardware.
4523  */
4524 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4525 ({                                                                       \
4526         bool __enabled;                                                  \
4527                                                                          \
4528         if (cpu_has_vmx_##name()) {                                      \
4529                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
4530                                             X86_FEATURE_##feat_name);    \
4531                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
4532                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4533         }                                                                \
4534 })
4535
4536 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4537 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4538         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4539
4540 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4541         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4542
4543 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4544 {
4545         struct kvm_vcpu *vcpu = &vmx->vcpu;
4546
4547         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4548
4549         if (vmx_pt_mode_is_system())
4550                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4551         if (!cpu_need_virtualize_apic_accesses(vcpu))
4552                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4553         if (vmx->vpid == 0)
4554                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4555         if (!enable_ept) {
4556                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4557                 enable_unrestricted_guest = 0;
4558         }
4559         if (!enable_unrestricted_guest)
4560                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4561         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4562                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4563         if (!kvm_vcpu_apicv_active(vcpu))
4564                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4565                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4566         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4567
4568         /*
4569          * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4570          * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4571          */
4572         exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4573
4574         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4575          * in vmx_set_cr4.  */
4576         exec_control &= ~SECONDARY_EXEC_DESC;
4577
4578         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4579            (handle_vmptrld).
4580            We can NOT enable shadow_vmcs here because we don't have yet
4581            a current VMCS12
4582         */
4583         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4584
4585         /*
4586          * PML is enabled/disabled when dirty logging of memsmlots changes, but
4587          * it needs to be set here when dirty logging is already active, e.g.
4588          * if this vCPU was created after dirty logging was enabled.
4589          */
4590         if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4591                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4592
4593         if (cpu_has_vmx_xsaves()) {
4594                 /* Exposing XSAVES only when XSAVE is exposed */
4595                 bool xsaves_enabled =
4596                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4597                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4598                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4599
4600                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4601
4602                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4603                                                   SECONDARY_EXEC_XSAVES,
4604                                                   xsaves_enabled, false);
4605         }
4606
4607         /*
4608          * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4609          * feature is exposed to the guest.  This creates a virtualization hole
4610          * if both are supported in hardware but only one is exposed to the
4611          * guest, but letting the guest execute RDTSCP or RDPID when either one
4612          * is advertised is preferable to emulating the advertised instruction
4613          * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4614          */
4615         if (cpu_has_vmx_rdtscp()) {
4616                 bool rdpid_or_rdtscp_enabled =
4617                         guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4618                         guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4619
4620                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4621                                                   SECONDARY_EXEC_ENABLE_RDTSCP,
4622                                                   rdpid_or_rdtscp_enabled, false);
4623         }
4624         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4625
4626         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4627         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4628
4629         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4630                                     ENABLE_USR_WAIT_PAUSE, false);
4631
4632         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4633                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4634
4635         if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4636                 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4637
4638         return exec_control;
4639 }
4640
4641 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4642 {
4643         return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4644 }
4645
4646 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4647 {
4648         struct page *pages;
4649         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4650
4651         if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4652                 return 0;
4653
4654         if (kvm_vmx->pid_table)
4655                 return 0;
4656
4657         pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4658         if (!pages)
4659                 return -ENOMEM;
4660
4661         kvm_vmx->pid_table = (void *)page_address(pages);
4662         return 0;
4663 }
4664
4665 static int vmx_vcpu_precreate(struct kvm *kvm)
4666 {
4667         return vmx_alloc_ipiv_pid_table(kvm);
4668 }
4669
4670 #define VMX_XSS_EXIT_BITMAP 0
4671
4672 static void init_vmcs(struct vcpu_vmx *vmx)
4673 {
4674         struct kvm *kvm = vmx->vcpu.kvm;
4675         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4676
4677         if (nested)
4678                 nested_vmx_set_vmcs_shadowing_bitmap();
4679
4680         if (cpu_has_vmx_msr_bitmap())
4681                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4682
4683         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4684
4685         /* Control */
4686         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4687
4688         exec_controls_set(vmx, vmx_exec_control(vmx));
4689
4690         if (cpu_has_secondary_exec_ctrls())
4691                 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4692
4693         if (cpu_has_tertiary_exec_ctrls())
4694                 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4695
4696         if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4697                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4698                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4699                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4700                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4701
4702                 vmcs_write16(GUEST_INTR_STATUS, 0);
4703
4704                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4705                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4706         }
4707
4708         if (vmx_can_use_ipiv(&vmx->vcpu)) {
4709                 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4710                 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4711         }
4712
4713         if (!kvm_pause_in_guest(kvm)) {
4714                 vmcs_write32(PLE_GAP, ple_gap);
4715                 vmx->ple_window = ple_window;
4716                 vmx->ple_window_dirty = true;
4717         }
4718
4719         if (kvm_notify_vmexit_enabled(kvm))
4720                 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4721
4722         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4723         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4724         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4725
4726         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4727         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4728         vmx_set_constant_host_state(vmx);
4729         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4730         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4731
4732         if (cpu_has_vmx_vmfunc())
4733                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4734
4735         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4736         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4737         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4738         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4739         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4740
4741         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4742                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4743
4744         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4745
4746         /* 22.2.1, 20.8.1 */
4747         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4748
4749         vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4750         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4751
4752         set_cr4_guest_host_mask(vmx);
4753
4754         if (vmx->vpid != 0)
4755                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4756
4757         if (cpu_has_vmx_xsaves())
4758                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4759
4760         if (enable_pml) {
4761                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4762                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4763         }
4764
4765         vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4766
4767         if (vmx_pt_mode_is_host_guest()) {
4768                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4769                 /* Bit[6~0] are forced to 1, writes are ignored. */
4770                 vmx->pt_desc.guest.output_mask = 0x7F;
4771                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4772         }
4773
4774         vmcs_write32(GUEST_SYSENTER_CS, 0);
4775         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4776         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4777         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4778
4779         if (cpu_has_vmx_tpr_shadow()) {
4780                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4781                 if (cpu_need_tpr_shadow(&vmx->vcpu))
4782                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4783                                      __pa(vmx->vcpu.arch.apic->regs));
4784                 vmcs_write32(TPR_THRESHOLD, 0);
4785         }
4786
4787         vmx_setup_uret_msrs(vmx);
4788 }
4789
4790 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4791 {
4792         struct vcpu_vmx *vmx = to_vmx(vcpu);
4793
4794         init_vmcs(vmx);
4795
4796         if (nested)
4797                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4798
4799         vcpu_setup_sgx_lepubkeyhash(vcpu);
4800
4801         vmx->nested.posted_intr_nv = -1;
4802         vmx->nested.vmxon_ptr = INVALID_GPA;
4803         vmx->nested.current_vmptr = INVALID_GPA;
4804         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4805
4806         vcpu->arch.microcode_version = 0x100000000ULL;
4807         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4808
4809         /*
4810          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4811          * or POSTED_INTR_WAKEUP_VECTOR.
4812          */
4813         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4814         vmx->pi_desc.sn = 1;
4815 }
4816
4817 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4818 {
4819         struct vcpu_vmx *vmx = to_vmx(vcpu);
4820
4821         if (!init_event)
4822                 __vmx_vcpu_reset(vcpu);
4823
4824         vmx->rmode.vm86_active = 0;
4825         vmx->spec_ctrl = 0;
4826
4827         vmx->msr_ia32_umwait_control = 0;
4828
4829         vmx->hv_deadline_tsc = -1;
4830         kvm_set_cr8(vcpu, 0);
4831
4832         vmx_segment_cache_clear(vmx);
4833         kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4834
4835         seg_setup(VCPU_SREG_CS);
4836         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4837         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4838
4839         seg_setup(VCPU_SREG_DS);
4840         seg_setup(VCPU_SREG_ES);
4841         seg_setup(VCPU_SREG_FS);
4842         seg_setup(VCPU_SREG_GS);
4843         seg_setup(VCPU_SREG_SS);
4844
4845         vmcs_write16(GUEST_TR_SELECTOR, 0);
4846         vmcs_writel(GUEST_TR_BASE, 0);
4847         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4848         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4849
4850         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4851         vmcs_writel(GUEST_LDTR_BASE, 0);
4852         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4853         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4854
4855         vmcs_writel(GUEST_GDTR_BASE, 0);
4856         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4857
4858         vmcs_writel(GUEST_IDTR_BASE, 0);
4859         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4860
4861         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4862         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4863         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4864         if (kvm_mpx_supported())
4865                 vmcs_write64(GUEST_BNDCFGS, 0);
4866
4867         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4868
4869         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4870
4871         vpid_sync_context(vmx->vpid);
4872
4873         vmx_update_fb_clear_dis(vcpu, vmx);
4874 }
4875
4876 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4877 {
4878         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4879 }
4880
4881 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4882 {
4883         if (!enable_vnmi ||
4884             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4885                 vmx_enable_irq_window(vcpu);
4886                 return;
4887         }
4888
4889         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4890 }
4891
4892 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4893 {
4894         struct vcpu_vmx *vmx = to_vmx(vcpu);
4895         uint32_t intr;
4896         int irq = vcpu->arch.interrupt.nr;
4897
4898         trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4899
4900         ++vcpu->stat.irq_injections;
4901         if (vmx->rmode.vm86_active) {
4902                 int inc_eip = 0;
4903                 if (vcpu->arch.interrupt.soft)
4904                         inc_eip = vcpu->arch.event_exit_inst_len;
4905                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4906                 return;
4907         }
4908         intr = irq | INTR_INFO_VALID_MASK;
4909         if (vcpu->arch.interrupt.soft) {
4910                 intr |= INTR_TYPE_SOFT_INTR;
4911                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4912                              vmx->vcpu.arch.event_exit_inst_len);
4913         } else
4914                 intr |= INTR_TYPE_EXT_INTR;
4915         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4916
4917         vmx_clear_hlt(vcpu);
4918 }
4919
4920 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4921 {
4922         struct vcpu_vmx *vmx = to_vmx(vcpu);
4923
4924         if (!enable_vnmi) {
4925                 /*
4926                  * Tracking the NMI-blocked state in software is built upon
4927                  * finding the next open IRQ window. This, in turn, depends on
4928                  * well-behaving guests: They have to keep IRQs disabled at
4929                  * least as long as the NMI handler runs. Otherwise we may
4930                  * cause NMI nesting, maybe breaking the guest. But as this is
4931                  * highly unlikely, we can live with the residual risk.
4932                  */
4933                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4934                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4935         }
4936
4937         ++vcpu->stat.nmi_injections;
4938         vmx->loaded_vmcs->nmi_known_unmasked = false;
4939
4940         if (vmx->rmode.vm86_active) {
4941                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4942                 return;
4943         }
4944
4945         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4946                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4947
4948         vmx_clear_hlt(vcpu);
4949 }
4950
4951 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4952 {
4953         struct vcpu_vmx *vmx = to_vmx(vcpu);
4954         bool masked;
4955
4956         if (!enable_vnmi)
4957                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4958         if (vmx->loaded_vmcs->nmi_known_unmasked)
4959                 return false;
4960         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4961         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4962         return masked;
4963 }
4964
4965 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4966 {
4967         struct vcpu_vmx *vmx = to_vmx(vcpu);
4968
4969         if (!enable_vnmi) {
4970                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4971                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4972                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4973                 }
4974         } else {
4975                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4976                 if (masked)
4977                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4978                                       GUEST_INTR_STATE_NMI);
4979                 else
4980                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4981                                         GUEST_INTR_STATE_NMI);
4982         }
4983 }
4984
4985 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4986 {
4987         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4988                 return false;
4989
4990         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4991                 return true;
4992
4993         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4994                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4995                  GUEST_INTR_STATE_NMI));
4996 }
4997
4998 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4999 {
5000         if (to_vmx(vcpu)->nested.nested_run_pending)
5001                 return -EBUSY;
5002
5003         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5004         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5005                 return -EBUSY;
5006
5007         return !vmx_nmi_blocked(vcpu);
5008 }
5009
5010 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5011 {
5012         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5013                 return false;
5014
5015         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5016                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5017                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5018 }
5019
5020 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5021 {
5022         if (to_vmx(vcpu)->nested.nested_run_pending)
5023                 return -EBUSY;
5024
5025         /*
5026          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5027          * e.g. if the IRQ arrived asynchronously after checking nested events.
5028          */
5029         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5030                 return -EBUSY;
5031
5032         return !vmx_interrupt_blocked(vcpu);
5033 }
5034
5035 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5036 {
5037         void __user *ret;
5038
5039         if (enable_unrestricted_guest)
5040                 return 0;
5041
5042         mutex_lock(&kvm->slots_lock);
5043         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5044                                       PAGE_SIZE * 3);
5045         mutex_unlock(&kvm->slots_lock);
5046
5047         if (IS_ERR(ret))
5048                 return PTR_ERR(ret);
5049
5050         to_kvm_vmx(kvm)->tss_addr = addr;
5051
5052         return init_rmode_tss(kvm, ret);
5053 }
5054
5055 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5056 {
5057         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5058         return 0;
5059 }
5060
5061 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5062 {
5063         switch (vec) {
5064         case BP_VECTOR:
5065                 /*
5066                  * Update instruction length as we may reinject the exception
5067                  * from user space while in guest debugging mode.
5068                  */
5069                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5070                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5071                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5072                         return false;
5073                 fallthrough;
5074         case DB_VECTOR:
5075                 return !(vcpu->guest_debug &
5076                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5077         case DE_VECTOR:
5078         case OF_VECTOR:
5079         case BR_VECTOR:
5080         case UD_VECTOR:
5081         case DF_VECTOR:
5082         case SS_VECTOR:
5083         case GP_VECTOR:
5084         case MF_VECTOR:
5085                 return true;
5086         }
5087         return false;
5088 }
5089
5090 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5091                                   int vec, u32 err_code)
5092 {
5093         /*
5094          * Instruction with address size override prefix opcode 0x67
5095          * Cause the #SS fault with 0 error code in VM86 mode.
5096          */
5097         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5098                 if (kvm_emulate_instruction(vcpu, 0)) {
5099                         if (vcpu->arch.halt_request) {
5100                                 vcpu->arch.halt_request = 0;
5101                                 return kvm_emulate_halt_noskip(vcpu);
5102                         }
5103                         return 1;
5104                 }
5105                 return 0;
5106         }
5107
5108         /*
5109          * Forward all other exceptions that are valid in real mode.
5110          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5111          *        the required debugging infrastructure rework.
5112          */
5113         kvm_queue_exception(vcpu, vec);
5114         return 1;
5115 }
5116
5117 static int handle_machine_check(struct kvm_vcpu *vcpu)
5118 {
5119         /* handled by vmx_vcpu_run() */
5120         return 1;
5121 }
5122
5123 /*
5124  * If the host has split lock detection disabled, then #AC is
5125  * unconditionally injected into the guest, which is the pre split lock
5126  * detection behaviour.
5127  *
5128  * If the host has split lock detection enabled then #AC is
5129  * only injected into the guest when:
5130  *  - Guest CPL == 3 (user mode)
5131  *  - Guest has #AC detection enabled in CR0
5132  *  - Guest EFLAGS has AC bit set
5133  */
5134 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5135 {
5136         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5137                 return true;
5138
5139         return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5140                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5141 }
5142
5143 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5144 {
5145         struct vcpu_vmx *vmx = to_vmx(vcpu);
5146         struct kvm_run *kvm_run = vcpu->run;
5147         u32 intr_info, ex_no, error_code;
5148         unsigned long cr2, dr6;
5149         u32 vect_info;
5150
5151         vect_info = vmx->idt_vectoring_info;
5152         intr_info = vmx_get_intr_info(vcpu);
5153
5154         /*
5155          * Machine checks are handled by handle_exception_irqoff(), or by
5156          * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5157          * vmx_vcpu_enter_exit().
5158          */
5159         if (is_machine_check(intr_info) || is_nmi(intr_info))
5160                 return 1;
5161
5162         /*
5163          * Queue the exception here instead of in handle_nm_fault_irqoff().
5164          * This ensures the nested_vmx check is not skipped so vmexit can
5165          * be reflected to L1 (when it intercepts #NM) before reaching this
5166          * point.
5167          */
5168         if (is_nm_fault(intr_info)) {
5169                 kvm_queue_exception(vcpu, NM_VECTOR);
5170                 return 1;
5171         }
5172
5173         if (is_invalid_opcode(intr_info))
5174                 return handle_ud(vcpu);
5175
5176         error_code = 0;
5177         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5178                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5179
5180         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5181                 WARN_ON_ONCE(!enable_vmware_backdoor);
5182
5183                 /*
5184                  * VMware backdoor emulation on #GP interception only handles
5185                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5186                  * error code on #GP.
5187                  */
5188                 if (error_code) {
5189                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5190                         return 1;
5191                 }
5192                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5193         }
5194
5195         /*
5196          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5197          * MMIO, it is better to report an internal error.
5198          * See the comments in vmx_handle_exit.
5199          */
5200         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5201             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5202                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5203                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5204                 vcpu->run->internal.ndata = 4;
5205                 vcpu->run->internal.data[0] = vect_info;
5206                 vcpu->run->internal.data[1] = intr_info;
5207                 vcpu->run->internal.data[2] = error_code;
5208                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5209                 return 0;
5210         }
5211
5212         if (is_page_fault(intr_info)) {
5213                 cr2 = vmx_get_exit_qual(vcpu);
5214                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5215                         /*
5216                          * EPT will cause page fault only if we need to
5217                          * detect illegal GPAs.
5218                          */
5219                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5220                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5221                         return 1;
5222                 } else
5223                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5224         }
5225
5226         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5227
5228         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5229                 return handle_rmode_exception(vcpu, ex_no, error_code);
5230
5231         switch (ex_no) {
5232         case DB_VECTOR:
5233                 dr6 = vmx_get_exit_qual(vcpu);
5234                 if (!(vcpu->guest_debug &
5235                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5236                         /*
5237                          * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5238                          * instruction.  ICEBP generates a trap-like #DB, but
5239                          * despite its interception control being tied to #DB,
5240                          * is an instruction intercept, i.e. the VM-Exit occurs
5241                          * on the ICEBP itself.  Use the inner "skip" helper to
5242                          * avoid single-step #DB and MTF updates, as ICEBP is
5243                          * higher priority.  Note, skipping ICEBP still clears
5244                          * STI and MOVSS blocking.
5245                          *
5246                          * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5247                          * if single-step is enabled in RFLAGS and STI or MOVSS
5248                          * blocking is active, as the CPU doesn't set the bit
5249                          * on VM-Exit due to #DB interception.  VM-Entry has a
5250                          * consistency check that a single-step #DB is pending
5251                          * in this scenario as the previous instruction cannot
5252                          * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5253                          * don't modify RFLAGS), therefore the one instruction
5254                          * delay when activating single-step breakpoints must
5255                          * have already expired.  Note, the CPU sets/clears BS
5256                          * as appropriate for all other VM-Exits types.
5257                          */
5258                         if (is_icebp(intr_info))
5259                                 WARN_ON(!skip_emulated_instruction(vcpu));
5260                         else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5261                                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5262                                   (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5263                                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5264                                             vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5265
5266                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5267                         return 1;
5268                 }
5269                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5270                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5271                 fallthrough;
5272         case BP_VECTOR:
5273                 /*
5274                  * Update instruction length as we may reinject #BP from
5275                  * user space while in guest debugging mode. Reading it for
5276                  * #DB as well causes no harm, it is not used in that case.
5277                  */
5278                 vmx->vcpu.arch.event_exit_inst_len =
5279                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5280                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5281                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5282                 kvm_run->debug.arch.exception = ex_no;
5283                 break;
5284         case AC_VECTOR:
5285                 if (vmx_guest_inject_ac(vcpu)) {
5286                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5287                         return 1;
5288                 }
5289
5290                 /*
5291                  * Handle split lock. Depending on detection mode this will
5292                  * either warn and disable split lock detection for this
5293                  * task or force SIGBUS on it.
5294                  */
5295                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5296                         return 1;
5297                 fallthrough;
5298         default:
5299                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5300                 kvm_run->ex.exception = ex_no;
5301                 kvm_run->ex.error_code = error_code;
5302                 break;
5303         }
5304         return 0;
5305 }
5306
5307 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5308 {
5309         ++vcpu->stat.irq_exits;
5310         return 1;
5311 }
5312
5313 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5314 {
5315         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5316         vcpu->mmio_needed = 0;
5317         return 0;
5318 }
5319
5320 static int handle_io(struct kvm_vcpu *vcpu)
5321 {
5322         unsigned long exit_qualification;
5323         int size, in, string;
5324         unsigned port;
5325
5326         exit_qualification = vmx_get_exit_qual(vcpu);
5327         string = (exit_qualification & 16) != 0;
5328
5329         ++vcpu->stat.io_exits;
5330
5331         if (string)
5332                 return kvm_emulate_instruction(vcpu, 0);
5333
5334         port = exit_qualification >> 16;
5335         size = (exit_qualification & 7) + 1;
5336         in = (exit_qualification & 8) != 0;
5337
5338         return kvm_fast_pio(vcpu, size, port, in);
5339 }
5340
5341 static void
5342 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5343 {
5344         /*
5345          * Patch in the VMCALL instruction:
5346          */
5347         hypercall[0] = 0x0f;
5348         hypercall[1] = 0x01;
5349         hypercall[2] = 0xc1;
5350 }
5351
5352 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5353 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5354 {
5355         if (is_guest_mode(vcpu)) {
5356                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5357                 unsigned long orig_val = val;
5358
5359                 /*
5360                  * We get here when L2 changed cr0 in a way that did not change
5361                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5362                  * but did change L0 shadowed bits. So we first calculate the
5363                  * effective cr0 value that L1 would like to write into the
5364                  * hardware. It consists of the L2-owned bits from the new
5365                  * value combined with the L1-owned bits from L1's guest_cr0.
5366                  */
5367                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5368                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5369
5370                 if (!nested_guest_cr0_valid(vcpu, val))
5371                         return 1;
5372
5373                 if (kvm_set_cr0(vcpu, val))
5374                         return 1;
5375                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5376                 return 0;
5377         } else {
5378                 if (to_vmx(vcpu)->nested.vmxon &&
5379                     !nested_host_cr0_valid(vcpu, val))
5380                         return 1;
5381
5382                 return kvm_set_cr0(vcpu, val);
5383         }
5384 }
5385
5386 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5387 {
5388         if (is_guest_mode(vcpu)) {
5389                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5390                 unsigned long orig_val = val;
5391
5392                 /* analogously to handle_set_cr0 */
5393                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5394                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5395                 if (kvm_set_cr4(vcpu, val))
5396                         return 1;
5397                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5398                 return 0;
5399         } else
5400                 return kvm_set_cr4(vcpu, val);
5401 }
5402
5403 static int handle_desc(struct kvm_vcpu *vcpu)
5404 {
5405         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5406         return kvm_emulate_instruction(vcpu, 0);
5407 }
5408
5409 static int handle_cr(struct kvm_vcpu *vcpu)
5410 {
5411         unsigned long exit_qualification, val;
5412         int cr;
5413         int reg;
5414         int err;
5415         int ret;
5416
5417         exit_qualification = vmx_get_exit_qual(vcpu);
5418         cr = exit_qualification & 15;
5419         reg = (exit_qualification >> 8) & 15;
5420         switch ((exit_qualification >> 4) & 3) {
5421         case 0: /* mov to cr */
5422                 val = kvm_register_read(vcpu, reg);
5423                 trace_kvm_cr_write(cr, val);
5424                 switch (cr) {
5425                 case 0:
5426                         err = handle_set_cr0(vcpu, val);
5427                         return kvm_complete_insn_gp(vcpu, err);
5428                 case 3:
5429                         WARN_ON_ONCE(enable_unrestricted_guest);
5430
5431                         err = kvm_set_cr3(vcpu, val);
5432                         return kvm_complete_insn_gp(vcpu, err);
5433                 case 4:
5434                         err = handle_set_cr4(vcpu, val);
5435                         return kvm_complete_insn_gp(vcpu, err);
5436                 case 8: {
5437                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5438                                 u8 cr8 = (u8)val;
5439                                 err = kvm_set_cr8(vcpu, cr8);
5440                                 ret = kvm_complete_insn_gp(vcpu, err);
5441                                 if (lapic_in_kernel(vcpu))
5442                                         return ret;
5443                                 if (cr8_prev <= cr8)
5444                                         return ret;
5445                                 /*
5446                                  * TODO: we might be squashing a
5447                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5448                                  * KVM_EXIT_DEBUG here.
5449                                  */
5450                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5451                                 return 0;
5452                         }
5453                 }
5454                 break;
5455         case 2: /* clts */
5456                 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5457                 return -EIO;
5458         case 1: /*mov from cr*/
5459                 switch (cr) {
5460                 case 3:
5461                         WARN_ON_ONCE(enable_unrestricted_guest);
5462
5463                         val = kvm_read_cr3(vcpu);
5464                         kvm_register_write(vcpu, reg, val);
5465                         trace_kvm_cr_read(cr, val);
5466                         return kvm_skip_emulated_instruction(vcpu);
5467                 case 8:
5468                         val = kvm_get_cr8(vcpu);
5469                         kvm_register_write(vcpu, reg, val);
5470                         trace_kvm_cr_read(cr, val);
5471                         return kvm_skip_emulated_instruction(vcpu);
5472                 }
5473                 break;
5474         case 3: /* lmsw */
5475                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5476                 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5477                 kvm_lmsw(vcpu, val);
5478
5479                 return kvm_skip_emulated_instruction(vcpu);
5480         default:
5481                 break;
5482         }
5483         vcpu->run->exit_reason = 0;
5484         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5485                (int)(exit_qualification >> 4) & 3, cr);
5486         return 0;
5487 }
5488
5489 static int handle_dr(struct kvm_vcpu *vcpu)
5490 {
5491         unsigned long exit_qualification;
5492         int dr, dr7, reg;
5493         int err = 1;
5494
5495         exit_qualification = vmx_get_exit_qual(vcpu);
5496         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5497
5498         /* First, if DR does not exist, trigger UD */
5499         if (!kvm_require_dr(vcpu, dr))
5500                 return 1;
5501
5502         if (vmx_get_cpl(vcpu) > 0)
5503                 goto out;
5504
5505         dr7 = vmcs_readl(GUEST_DR7);
5506         if (dr7 & DR7_GD) {
5507                 /*
5508                  * As the vm-exit takes precedence over the debug trap, we
5509                  * need to emulate the latter, either for the host or the
5510                  * guest debugging itself.
5511                  */
5512                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5513                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5514                         vcpu->run->debug.arch.dr7 = dr7;
5515                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5516                         vcpu->run->debug.arch.exception = DB_VECTOR;
5517                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5518                         return 0;
5519                 } else {
5520                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5521                         return 1;
5522                 }
5523         }
5524
5525         if (vcpu->guest_debug == 0) {
5526                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5527
5528                 /*
5529                  * No more DR vmexits; force a reload of the debug registers
5530                  * and reenter on this instruction.  The next vmexit will
5531                  * retrieve the full state of the debug registers.
5532                  */
5533                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5534                 return 1;
5535         }
5536
5537         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5538         if (exit_qualification & TYPE_MOV_FROM_DR) {
5539                 unsigned long val;
5540
5541                 kvm_get_dr(vcpu, dr, &val);
5542                 kvm_register_write(vcpu, reg, val);
5543                 err = 0;
5544         } else {
5545                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5546         }
5547
5548 out:
5549         return kvm_complete_insn_gp(vcpu, err);
5550 }
5551
5552 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5553 {
5554         get_debugreg(vcpu->arch.db[0], 0);
5555         get_debugreg(vcpu->arch.db[1], 1);
5556         get_debugreg(vcpu->arch.db[2], 2);
5557         get_debugreg(vcpu->arch.db[3], 3);
5558         get_debugreg(vcpu->arch.dr6, 6);
5559         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5560
5561         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5562         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5563
5564         /*
5565          * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5566          * a stale dr6 from the guest.
5567          */
5568         set_debugreg(DR6_RESERVED, 6);
5569 }
5570
5571 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5572 {
5573         vmcs_writel(GUEST_DR7, val);
5574 }
5575
5576 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5577 {
5578         kvm_apic_update_ppr(vcpu);
5579         return 1;
5580 }
5581
5582 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5583 {
5584         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5585
5586         kvm_make_request(KVM_REQ_EVENT, vcpu);
5587
5588         ++vcpu->stat.irq_window_exits;
5589         return 1;
5590 }
5591
5592 static int handle_invlpg(struct kvm_vcpu *vcpu)
5593 {
5594         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5595
5596         kvm_mmu_invlpg(vcpu, exit_qualification);
5597         return kvm_skip_emulated_instruction(vcpu);
5598 }
5599
5600 static int handle_apic_access(struct kvm_vcpu *vcpu)
5601 {
5602         if (likely(fasteoi)) {
5603                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5604                 int access_type, offset;
5605
5606                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5607                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5608                 /*
5609                  * Sane guest uses MOV to write EOI, with written value
5610                  * not cared. So make a short-circuit here by avoiding
5611                  * heavy instruction emulation.
5612                  */
5613                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5614                     (offset == APIC_EOI)) {
5615                         kvm_lapic_set_eoi(vcpu);
5616                         return kvm_skip_emulated_instruction(vcpu);
5617                 }
5618         }
5619         return kvm_emulate_instruction(vcpu, 0);
5620 }
5621
5622 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5623 {
5624         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5625         int vector = exit_qualification & 0xff;
5626
5627         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5628         kvm_apic_set_eoi_accelerated(vcpu, vector);
5629         return 1;
5630 }
5631
5632 static int handle_apic_write(struct kvm_vcpu *vcpu)
5633 {
5634         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5635
5636         /*
5637          * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5638          * hardware has done any necessary aliasing, offset adjustments, etc...
5639          * for the access.  I.e. the correct value has already been  written to
5640          * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5641          * retrieve the register value and emulate the access.
5642          */
5643         u32 offset = exit_qualification & 0xff0;
5644
5645         kvm_apic_write_nodecode(vcpu, offset);
5646         return 1;
5647 }
5648
5649 static int handle_task_switch(struct kvm_vcpu *vcpu)
5650 {
5651         struct vcpu_vmx *vmx = to_vmx(vcpu);
5652         unsigned long exit_qualification;
5653         bool has_error_code = false;
5654         u32 error_code = 0;
5655         u16 tss_selector;
5656         int reason, type, idt_v, idt_index;
5657
5658         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5659         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5660         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5661
5662         exit_qualification = vmx_get_exit_qual(vcpu);
5663
5664         reason = (u32)exit_qualification >> 30;
5665         if (reason == TASK_SWITCH_GATE && idt_v) {
5666                 switch (type) {
5667                 case INTR_TYPE_NMI_INTR:
5668                         vcpu->arch.nmi_injected = false;
5669                         vmx_set_nmi_mask(vcpu, true);
5670                         break;
5671                 case INTR_TYPE_EXT_INTR:
5672                 case INTR_TYPE_SOFT_INTR:
5673                         kvm_clear_interrupt_queue(vcpu);
5674                         break;
5675                 case INTR_TYPE_HARD_EXCEPTION:
5676                         if (vmx->idt_vectoring_info &
5677                             VECTORING_INFO_DELIVER_CODE_MASK) {
5678                                 has_error_code = true;
5679                                 error_code =
5680                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5681                         }
5682                         fallthrough;
5683                 case INTR_TYPE_SOFT_EXCEPTION:
5684                         kvm_clear_exception_queue(vcpu);
5685                         break;
5686                 default:
5687                         break;
5688                 }
5689         }
5690         tss_selector = exit_qualification;
5691
5692         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5693                        type != INTR_TYPE_EXT_INTR &&
5694                        type != INTR_TYPE_NMI_INTR))
5695                 WARN_ON(!skip_emulated_instruction(vcpu));
5696
5697         /*
5698          * TODO: What about debug traps on tss switch?
5699          *       Are we supposed to inject them and update dr6?
5700          */
5701         return kvm_task_switch(vcpu, tss_selector,
5702                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5703                                reason, has_error_code, error_code);
5704 }
5705
5706 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5707 {
5708         unsigned long exit_qualification;
5709         gpa_t gpa;
5710         u64 error_code;
5711
5712         exit_qualification = vmx_get_exit_qual(vcpu);
5713
5714         /*
5715          * EPT violation happened while executing iret from NMI,
5716          * "blocked by NMI" bit has to be set before next VM entry.
5717          * There are errata that may cause this bit to not be set:
5718          * AAK134, BY25.
5719          */
5720         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5721                         enable_vnmi &&
5722                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5723                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5724
5725         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5726         trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5727
5728         /* Is it a read fault? */
5729         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5730                      ? PFERR_USER_MASK : 0;
5731         /* Is it a write fault? */
5732         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5733                       ? PFERR_WRITE_MASK : 0;
5734         /* Is it a fetch fault? */
5735         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5736                       ? PFERR_FETCH_MASK : 0;
5737         /* ept page table entry is present? */
5738         error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5739                       ? PFERR_PRESENT_MASK : 0;
5740
5741         error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5742                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5743
5744         vcpu->arch.exit_qualification = exit_qualification;
5745
5746         /*
5747          * Check that the GPA doesn't exceed physical memory limits, as that is
5748          * a guest page fault.  We have to emulate the instruction here, because
5749          * if the illegal address is that of a paging structure, then
5750          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5751          * would also use advanced VM-exit information for EPT violations to
5752          * reconstruct the page fault error code.
5753          */
5754         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5755                 return kvm_emulate_instruction(vcpu, 0);
5756
5757         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5758 }
5759
5760 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5761 {
5762         gpa_t gpa;
5763
5764         if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5765                 return 1;
5766
5767         /*
5768          * A nested guest cannot optimize MMIO vmexits, because we have an
5769          * nGPA here instead of the required GPA.
5770          */
5771         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5772         if (!is_guest_mode(vcpu) &&
5773             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5774                 trace_kvm_fast_mmio(gpa);
5775                 return kvm_skip_emulated_instruction(vcpu);
5776         }
5777
5778         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5779 }
5780
5781 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5782 {
5783         if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5784                 return -EIO;
5785
5786         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5787         ++vcpu->stat.nmi_window_exits;
5788         kvm_make_request(KVM_REQ_EVENT, vcpu);
5789
5790         return 1;
5791 }
5792
5793 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5794 {
5795         struct vcpu_vmx *vmx = to_vmx(vcpu);
5796
5797         return vmx->emulation_required && !vmx->rmode.vm86_active &&
5798                (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5799 }
5800
5801 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5802 {
5803         struct vcpu_vmx *vmx = to_vmx(vcpu);
5804         bool intr_window_requested;
5805         unsigned count = 130;
5806
5807         intr_window_requested = exec_controls_get(vmx) &
5808                                 CPU_BASED_INTR_WINDOW_EXITING;
5809
5810         while (vmx->emulation_required && count-- != 0) {
5811                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5812                         return handle_interrupt_window(&vmx->vcpu);
5813
5814                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5815                         return 1;
5816
5817                 if (!kvm_emulate_instruction(vcpu, 0))
5818                         return 0;
5819
5820                 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5821                         kvm_prepare_emulation_failure_exit(vcpu);
5822                         return 0;
5823                 }
5824
5825                 if (vcpu->arch.halt_request) {
5826                         vcpu->arch.halt_request = 0;
5827                         return kvm_emulate_halt_noskip(vcpu);
5828                 }
5829
5830                 /*
5831                  * Note, return 1 and not 0, vcpu_run() will invoke
5832                  * xfer_to_guest_mode() which will create a proper return
5833                  * code.
5834                  */
5835                 if (__xfer_to_guest_mode_work_pending())
5836                         return 1;
5837         }
5838
5839         return 1;
5840 }
5841
5842 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5843 {
5844         if (vmx_emulation_required_with_pending_exception(vcpu)) {
5845                 kvm_prepare_emulation_failure_exit(vcpu);
5846                 return 0;
5847         }
5848
5849         return 1;
5850 }
5851
5852 static void grow_ple_window(struct kvm_vcpu *vcpu)
5853 {
5854         struct vcpu_vmx *vmx = to_vmx(vcpu);
5855         unsigned int old = vmx->ple_window;
5856
5857         vmx->ple_window = __grow_ple_window(old, ple_window,
5858                                             ple_window_grow,
5859                                             ple_window_max);
5860
5861         if (vmx->ple_window != old) {
5862                 vmx->ple_window_dirty = true;
5863                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5864                                             vmx->ple_window, old);
5865         }
5866 }
5867
5868 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5869 {
5870         struct vcpu_vmx *vmx = to_vmx(vcpu);
5871         unsigned int old = vmx->ple_window;
5872
5873         vmx->ple_window = __shrink_ple_window(old, ple_window,
5874                                               ple_window_shrink,
5875                                               ple_window);
5876
5877         if (vmx->ple_window != old) {
5878                 vmx->ple_window_dirty = true;
5879                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5880                                             vmx->ple_window, old);
5881         }
5882 }
5883
5884 /*
5885  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5886  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5887  */
5888 static int handle_pause(struct kvm_vcpu *vcpu)
5889 {
5890         if (!kvm_pause_in_guest(vcpu->kvm))
5891                 grow_ple_window(vcpu);
5892
5893         /*
5894          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5895          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5896          * never set PAUSE_EXITING and just set PLE if supported,
5897          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5898          */
5899         kvm_vcpu_on_spin(vcpu, true);
5900         return kvm_skip_emulated_instruction(vcpu);
5901 }
5902
5903 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5904 {
5905         return 1;
5906 }
5907
5908 static int handle_invpcid(struct kvm_vcpu *vcpu)
5909 {
5910         u32 vmx_instruction_info;
5911         unsigned long type;
5912         gva_t gva;
5913         struct {
5914                 u64 pcid;
5915                 u64 gla;
5916         } operand;
5917         int gpr_index;
5918
5919         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5920                 kvm_queue_exception(vcpu, UD_VECTOR);
5921                 return 1;
5922         }
5923
5924         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5925         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5926         type = kvm_register_read(vcpu, gpr_index);
5927
5928         /* According to the Intel instruction reference, the memory operand
5929          * is read even if it isn't needed (e.g., for type==all)
5930          */
5931         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5932                                 vmx_instruction_info, false,
5933                                 sizeof(operand), &gva))
5934                 return 1;
5935
5936         return kvm_handle_invpcid(vcpu, type, gva);
5937 }
5938
5939 static int handle_pml_full(struct kvm_vcpu *vcpu)
5940 {
5941         unsigned long exit_qualification;
5942
5943         trace_kvm_pml_full(vcpu->vcpu_id);
5944
5945         exit_qualification = vmx_get_exit_qual(vcpu);
5946
5947         /*
5948          * PML buffer FULL happened while executing iret from NMI,
5949          * "blocked by NMI" bit has to be set before next VM entry.
5950          */
5951         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5952                         enable_vnmi &&
5953                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5954                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5955                                 GUEST_INTR_STATE_NMI);
5956
5957         /*
5958          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5959          * here.., and there's no userspace involvement needed for PML.
5960          */
5961         return 1;
5962 }
5963
5964 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5965 {
5966         struct vcpu_vmx *vmx = to_vmx(vcpu);
5967
5968         if (!vmx->req_immediate_exit &&
5969             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5970                 kvm_lapic_expired_hv_timer(vcpu);
5971                 return EXIT_FASTPATH_REENTER_GUEST;
5972         }
5973
5974         return EXIT_FASTPATH_NONE;
5975 }
5976
5977 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5978 {
5979         handle_fastpath_preemption_timer(vcpu);
5980         return 1;
5981 }
5982
5983 /*
5984  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5985  * are overwritten by nested_vmx_setup() when nested=1.
5986  */
5987 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5988 {
5989         kvm_queue_exception(vcpu, UD_VECTOR);
5990         return 1;
5991 }
5992
5993 #ifndef CONFIG_X86_SGX_KVM
5994 static int handle_encls(struct kvm_vcpu *vcpu)
5995 {
5996         /*
5997          * SGX virtualization is disabled.  There is no software enable bit for
5998          * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5999          * the guest from executing ENCLS (when SGX is supported by hardware).
6000          */
6001         kvm_queue_exception(vcpu, UD_VECTOR);
6002         return 1;
6003 }
6004 #endif /* CONFIG_X86_SGX_KVM */
6005
6006 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6007 {
6008         /*
6009          * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6010          * VM-Exits. Unconditionally set the flag here and leave the handling to
6011          * vmx_handle_exit().
6012          */
6013         to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6014         return 1;
6015 }
6016
6017 static int handle_notify(struct kvm_vcpu *vcpu)
6018 {
6019         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6020         bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6021
6022         ++vcpu->stat.notify_window_exits;
6023
6024         /*
6025          * Notify VM exit happened while executing iret from NMI,
6026          * "blocked by NMI" bit has to be set before next VM entry.
6027          */
6028         if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6029                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6030                               GUEST_INTR_STATE_NMI);
6031
6032         if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6033             context_invalid) {
6034                 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6035                 vcpu->run->notify.flags = context_invalid ?
6036                                           KVM_NOTIFY_CONTEXT_INVALID : 0;
6037                 return 0;
6038         }
6039
6040         return 1;
6041 }
6042
6043 /*
6044  * The exit handlers return 1 if the exit was handled fully and guest execution
6045  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6046  * to be done to userspace and return 0.
6047  */
6048 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6049         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6050         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6051         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6052         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6053         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6054         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6055         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6056         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6057         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6058         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6059         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6060         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
6061         [EXIT_REASON_INVD]                    = kvm_emulate_invd,
6062         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6063         [EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6064         [EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6065         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
6066         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
6067         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
6068         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
6069         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
6070         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
6071         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
6072         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
6073         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
6074         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6075         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6076         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6077         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6078         [EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6079         [EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6080         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6081         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6082         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
6083         [EXIT_REASON_LDTR_TR]                 = handle_desc,
6084         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6085         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6086         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6087         [EXIT_REASON_MWAIT_INSTRUCTION]       = kvm_emulate_mwait,
6088         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6089         [EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6090         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6091         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6092         [EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6093         [EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6094         [EXIT_REASON_PML_FULL]                = handle_pml_full,
6095         [EXIT_REASON_INVPCID]                 = handle_invpcid,
6096         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
6097         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
6098         [EXIT_REASON_ENCLS]                   = handle_encls,
6099         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6100         [EXIT_REASON_NOTIFY]                  = handle_notify,
6101 };
6102
6103 static const int kvm_vmx_max_exit_handlers =
6104         ARRAY_SIZE(kvm_vmx_exit_handlers);
6105
6106 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6107                               u64 *info1, u64 *info2,
6108                               u32 *intr_info, u32 *error_code)
6109 {
6110         struct vcpu_vmx *vmx = to_vmx(vcpu);
6111
6112         *reason = vmx->exit_reason.full;
6113         *info1 = vmx_get_exit_qual(vcpu);
6114         if (!(vmx->exit_reason.failed_vmentry)) {
6115                 *info2 = vmx->idt_vectoring_info;
6116                 *intr_info = vmx_get_intr_info(vcpu);
6117                 if (is_exception_with_error_code(*intr_info))
6118                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6119                 else
6120                         *error_code = 0;
6121         } else {
6122                 *info2 = 0;
6123                 *intr_info = 0;
6124                 *error_code = 0;
6125         }
6126 }
6127
6128 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6129 {
6130         if (vmx->pml_pg) {
6131                 __free_page(vmx->pml_pg);
6132                 vmx->pml_pg = NULL;
6133         }
6134 }
6135
6136 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6137 {
6138         struct vcpu_vmx *vmx = to_vmx(vcpu);
6139         u64 *pml_buf;
6140         u16 pml_idx;
6141
6142         pml_idx = vmcs_read16(GUEST_PML_INDEX);
6143
6144         /* Do nothing if PML buffer is empty */
6145         if (pml_idx == (PML_ENTITY_NUM - 1))
6146                 return;
6147
6148         /* PML index always points to next available PML buffer entity */
6149         if (pml_idx >= PML_ENTITY_NUM)
6150                 pml_idx = 0;
6151         else
6152                 pml_idx++;
6153
6154         pml_buf = page_address(vmx->pml_pg);
6155         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6156                 u64 gpa;
6157
6158                 gpa = pml_buf[pml_idx];
6159                 WARN_ON(gpa & (PAGE_SIZE - 1));
6160                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6161         }
6162
6163         /* reset PML index */
6164         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6165 }
6166
6167 static void vmx_dump_sel(char *name, uint32_t sel)
6168 {
6169         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6170                name, vmcs_read16(sel),
6171                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6172                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6173                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6174 }
6175
6176 static void vmx_dump_dtsel(char *name, uint32_t limit)
6177 {
6178         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6179                name, vmcs_read32(limit),
6180                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6181 }
6182
6183 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6184 {
6185         unsigned int i;
6186         struct vmx_msr_entry *e;
6187
6188         pr_err("MSR %s:\n", name);
6189         for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6190                 pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6191 }
6192
6193 void dump_vmcs(struct kvm_vcpu *vcpu)
6194 {
6195         struct vcpu_vmx *vmx = to_vmx(vcpu);
6196         u32 vmentry_ctl, vmexit_ctl;
6197         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6198         u64 tertiary_exec_control;
6199         unsigned long cr4;
6200         int efer_slot;
6201
6202         if (!dump_invalid_vmcs) {
6203                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6204                 return;
6205         }
6206
6207         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6208         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6209         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6210         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6211         cr4 = vmcs_readl(GUEST_CR4);
6212
6213         if (cpu_has_secondary_exec_ctrls())
6214                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6215         else
6216                 secondary_exec_control = 0;
6217
6218         if (cpu_has_tertiary_exec_ctrls())
6219                 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6220         else
6221                 tertiary_exec_control = 0;
6222
6223         pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6224                vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6225         pr_err("*** Guest State ***\n");
6226         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6227                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6228                vmcs_readl(CR0_GUEST_HOST_MASK));
6229         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6230                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6231         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6232         if (cpu_has_vmx_ept()) {
6233                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6234                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6235                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6236                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6237         }
6238         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6239                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6240         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6241                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6242         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6243                vmcs_readl(GUEST_SYSENTER_ESP),
6244                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6245         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6246         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6247         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6248         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6249         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6250         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6251         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6252         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6253         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6254         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6255         efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6256         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6257                 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6258         else if (efer_slot >= 0)
6259                 pr_err("EFER= 0x%016llx (autoload)\n",
6260                        vmx->msr_autoload.guest.val[efer_slot].value);
6261         else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6262                 pr_err("EFER= 0x%016llx (effective)\n",
6263                        vcpu->arch.efer | (EFER_LMA | EFER_LME));
6264         else
6265                 pr_err("EFER= 0x%016llx (effective)\n",
6266                        vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6267         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6268                 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6269         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6270                vmcs_read64(GUEST_IA32_DEBUGCTL),
6271                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6272         if (cpu_has_load_perf_global_ctrl() &&
6273             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6274                 pr_err("PerfGlobCtl = 0x%016llx\n",
6275                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6276         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6277                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6278         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6279                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6280                vmcs_read32(GUEST_ACTIVITY_STATE));
6281         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6282                 pr_err("InterruptStatus = %04x\n",
6283                        vmcs_read16(GUEST_INTR_STATUS));
6284         if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6285                 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6286         if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6287                 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6288
6289         pr_err("*** Host State ***\n");
6290         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6291                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6292         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6293                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6294                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6295                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6296                vmcs_read16(HOST_TR_SELECTOR));
6297         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6298                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6299                vmcs_readl(HOST_TR_BASE));
6300         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6301                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6302         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6303                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6304                vmcs_readl(HOST_CR4));
6305         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6306                vmcs_readl(HOST_IA32_SYSENTER_ESP),
6307                vmcs_read32(HOST_IA32_SYSENTER_CS),
6308                vmcs_readl(HOST_IA32_SYSENTER_EIP));
6309         if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6310                 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6311         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6312                 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6313         if (cpu_has_load_perf_global_ctrl() &&
6314             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6315                 pr_err("PerfGlobCtl = 0x%016llx\n",
6316                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6317         if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6318                 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6319
6320         pr_err("*** Control State ***\n");
6321         pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6322                cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6323         pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6324                pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6325         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6326                vmcs_read32(EXCEPTION_BITMAP),
6327                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6328                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6329         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6330                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6331                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6332                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6333         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6334                vmcs_read32(VM_EXIT_INTR_INFO),
6335                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6336                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6337         pr_err("        reason=%08x qualification=%016lx\n",
6338                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6339         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6340                vmcs_read32(IDT_VECTORING_INFO_FIELD),
6341                vmcs_read32(IDT_VECTORING_ERROR_CODE));
6342         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6343         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6344                 pr_err("TSC Multiplier = 0x%016llx\n",
6345                        vmcs_read64(TSC_MULTIPLIER));
6346         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6347                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6348                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
6349                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6350                 }
6351                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6352                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6353                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6354                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6355         }
6356         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6357                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6358         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6359                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6360         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6361                 pr_err("PLE Gap=%08x Window=%08x\n",
6362                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6363         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6364                 pr_err("Virtual processor ID = 0x%04x\n",
6365                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
6366 }
6367
6368 /*
6369  * The guest has exited.  See if we can fix it or if we need userspace
6370  * assistance.
6371  */
6372 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6373 {
6374         struct vcpu_vmx *vmx = to_vmx(vcpu);
6375         union vmx_exit_reason exit_reason = vmx->exit_reason;
6376         u32 vectoring_info = vmx->idt_vectoring_info;
6377         u16 exit_handler_index;
6378
6379         /*
6380          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6381          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6382          * querying dirty_bitmap, we only need to kick all vcpus out of guest
6383          * mode as if vcpus is in root mode, the PML buffer must has been
6384          * flushed already.  Note, PML is never enabled in hardware while
6385          * running L2.
6386          */
6387         if (enable_pml && !is_guest_mode(vcpu))
6388                 vmx_flush_pml_buffer(vcpu);
6389
6390         /*
6391          * KVM should never reach this point with a pending nested VM-Enter.
6392          * More specifically, short-circuiting VM-Entry to emulate L2 due to
6393          * invalid guest state should never happen as that means KVM knowingly
6394          * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6395          */
6396         if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6397                 return -EIO;
6398
6399         if (is_guest_mode(vcpu)) {
6400                 /*
6401                  * PML is never enabled when running L2, bail immediately if a
6402                  * PML full exit occurs as something is horribly wrong.
6403                  */
6404                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6405                         goto unexpected_vmexit;
6406
6407                 /*
6408                  * The host physical addresses of some pages of guest memory
6409                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6410                  * Page). The CPU may write to these pages via their host
6411                  * physical address while L2 is running, bypassing any
6412                  * address-translation-based dirty tracking (e.g. EPT write
6413                  * protection).
6414                  *
6415                  * Mark them dirty on every exit from L2 to prevent them from
6416                  * getting out of sync with dirty tracking.
6417                  */
6418                 nested_mark_vmcs12_pages_dirty(vcpu);
6419
6420                 /*
6421                  * Synthesize a triple fault if L2 state is invalid.  In normal
6422                  * operation, nested VM-Enter rejects any attempt to enter L2
6423                  * with invalid state.  However, those checks are skipped if
6424                  * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6425                  * L2 state is invalid, it means either L1 modified SMRAM state
6426                  * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6427                  * doing so is architecturally allowed in the RSM case, and is
6428                  * the least awful solution for the userspace case without
6429                  * risking false positives.
6430                  */
6431                 if (vmx->emulation_required) {
6432                         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6433                         return 1;
6434                 }
6435
6436                 if (nested_vmx_reflect_vmexit(vcpu))
6437                         return 1;
6438         }
6439
6440         /* If guest state is invalid, start emulating.  L2 is handled above. */
6441         if (vmx->emulation_required)
6442                 return handle_invalid_guest_state(vcpu);
6443
6444         if (exit_reason.failed_vmentry) {
6445                 dump_vmcs(vcpu);
6446                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6447                 vcpu->run->fail_entry.hardware_entry_failure_reason
6448                         = exit_reason.full;
6449                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6450                 return 0;
6451         }
6452
6453         if (unlikely(vmx->fail)) {
6454                 dump_vmcs(vcpu);
6455                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6456                 vcpu->run->fail_entry.hardware_entry_failure_reason
6457                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6458                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6459                 return 0;
6460         }
6461
6462         /*
6463          * Note:
6464          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6465          * delivery event since it indicates guest is accessing MMIO.
6466          * The vm-exit can be triggered again after return to guest that
6467          * will cause infinite loop.
6468          */
6469         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6470             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6471              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6472              exit_reason.basic != EXIT_REASON_PML_FULL &&
6473              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6474              exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6475              exit_reason.basic != EXIT_REASON_NOTIFY)) {
6476                 int ndata = 3;
6477
6478                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6479                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6480                 vcpu->run->internal.data[0] = vectoring_info;
6481                 vcpu->run->internal.data[1] = exit_reason.full;
6482                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6483                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6484                         vcpu->run->internal.data[ndata++] =
6485                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6486                 }
6487                 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6488                 vcpu->run->internal.ndata = ndata;
6489                 return 0;
6490         }
6491
6492         if (unlikely(!enable_vnmi &&
6493                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6494                 if (!vmx_interrupt_blocked(vcpu)) {
6495                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6496                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6497                            vcpu->arch.nmi_pending) {
6498                         /*
6499                          * This CPU don't support us in finding the end of an
6500                          * NMI-blocked window if the guest runs with IRQs
6501                          * disabled. So we pull the trigger after 1 s of
6502                          * futile waiting, but inform the user about this.
6503                          */
6504                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6505                                "state on VCPU %d after 1 s timeout\n",
6506                                __func__, vcpu->vcpu_id);
6507                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6508                 }
6509         }
6510
6511         if (exit_fastpath != EXIT_FASTPATH_NONE)
6512                 return 1;
6513
6514         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6515                 goto unexpected_vmexit;
6516 #ifdef CONFIG_RETPOLINE
6517         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6518                 return kvm_emulate_wrmsr(vcpu);
6519         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6520                 return handle_preemption_timer(vcpu);
6521         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6522                 return handle_interrupt_window(vcpu);
6523         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6524                 return handle_external_interrupt(vcpu);
6525         else if (exit_reason.basic == EXIT_REASON_HLT)
6526                 return kvm_emulate_halt(vcpu);
6527         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6528                 return handle_ept_misconfig(vcpu);
6529 #endif
6530
6531         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6532                                                 kvm_vmx_max_exit_handlers);
6533         if (!kvm_vmx_exit_handlers[exit_handler_index])
6534                 goto unexpected_vmexit;
6535
6536         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6537
6538 unexpected_vmexit:
6539         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6540                     exit_reason.full);
6541         dump_vmcs(vcpu);
6542         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6543         vcpu->run->internal.suberror =
6544                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6545         vcpu->run->internal.ndata = 2;
6546         vcpu->run->internal.data[0] = exit_reason.full;
6547         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6548         return 0;
6549 }
6550
6551 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6552 {
6553         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6554
6555         /*
6556          * Exit to user space when bus lock detected to inform that there is
6557          * a bus lock in guest.
6558          */
6559         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6560                 if (ret > 0)
6561                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6562
6563                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6564                 return 0;
6565         }
6566         return ret;
6567 }
6568
6569 /*
6570  * Software based L1D cache flush which is used when microcode providing
6571  * the cache control MSR is not loaded.
6572  *
6573  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6574  * flush it is required to read in 64 KiB because the replacement algorithm
6575  * is not exactly LRU. This could be sized at runtime via topology
6576  * information but as all relevant affected CPUs have 32KiB L1D cache size
6577  * there is no point in doing so.
6578  */
6579 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6580 {
6581         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6582
6583         /*
6584          * This code is only executed when the flush mode is 'cond' or
6585          * 'always'
6586          */
6587         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6588                 bool flush_l1d;
6589
6590                 /*
6591                  * Clear the per-vcpu flush bit, it gets set again
6592                  * either from vcpu_run() or from one of the unsafe
6593                  * VMEXIT handlers.
6594                  */
6595                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6596                 vcpu->arch.l1tf_flush_l1d = false;
6597
6598                 /*
6599                  * Clear the per-cpu flush bit, it gets set again from
6600                  * the interrupt handlers.
6601                  */
6602                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6603                 kvm_clear_cpu_l1tf_flush_l1d();
6604
6605                 if (!flush_l1d)
6606                         return;
6607         }
6608
6609         vcpu->stat.l1d_flush++;
6610
6611         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6612                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6613                 return;
6614         }
6615
6616         asm volatile(
6617                 /* First ensure the pages are in the TLB */
6618                 "xorl   %%eax, %%eax\n"
6619                 ".Lpopulate_tlb:\n\t"
6620                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6621                 "addl   $4096, %%eax\n\t"
6622                 "cmpl   %%eax, %[size]\n\t"
6623                 "jne    .Lpopulate_tlb\n\t"
6624                 "xorl   %%eax, %%eax\n\t"
6625                 "cpuid\n\t"
6626                 /* Now fill the cache */
6627                 "xorl   %%eax, %%eax\n"
6628                 ".Lfill_cache:\n"
6629                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6630                 "addl   $64, %%eax\n\t"
6631                 "cmpl   %%eax, %[size]\n\t"
6632                 "jne    .Lfill_cache\n\t"
6633                 "lfence\n"
6634                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6635                     [size] "r" (size)
6636                 : "eax", "ebx", "ecx", "edx");
6637 }
6638
6639 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6640 {
6641         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6642         int tpr_threshold;
6643
6644         if (is_guest_mode(vcpu) &&
6645                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6646                 return;
6647
6648         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6649         if (is_guest_mode(vcpu))
6650                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6651         else
6652                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6653 }
6654
6655 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6656 {
6657         struct vcpu_vmx *vmx = to_vmx(vcpu);
6658         u32 sec_exec_control;
6659
6660         if (!lapic_in_kernel(vcpu))
6661                 return;
6662
6663         if (!flexpriority_enabled &&
6664             !cpu_has_vmx_virtualize_x2apic_mode())
6665                 return;
6666
6667         /* Postpone execution until vmcs01 is the current VMCS. */
6668         if (is_guest_mode(vcpu)) {
6669                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6670                 return;
6671         }
6672
6673         sec_exec_control = secondary_exec_controls_get(vmx);
6674         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6675                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6676
6677         switch (kvm_get_apic_mode(vcpu)) {
6678         case LAPIC_MODE_INVALID:
6679                 WARN_ONCE(true, "Invalid local APIC state");
6680                 break;
6681         case LAPIC_MODE_DISABLED:
6682                 break;
6683         case LAPIC_MODE_XAPIC:
6684                 if (flexpriority_enabled) {
6685                         sec_exec_control |=
6686                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6687                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6688
6689                         /*
6690                          * Flush the TLB, reloading the APIC access page will
6691                          * only do so if its physical address has changed, but
6692                          * the guest may have inserted a non-APIC mapping into
6693                          * the TLB while the APIC access page was disabled.
6694                          */
6695                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6696                 }
6697                 break;
6698         case LAPIC_MODE_X2APIC:
6699                 if (cpu_has_vmx_virtualize_x2apic_mode())
6700                         sec_exec_control |=
6701                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6702                 break;
6703         }
6704         secondary_exec_controls_set(vmx, sec_exec_control);
6705
6706         vmx_update_msr_bitmap_x2apic(vcpu);
6707 }
6708
6709 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6710 {
6711         struct page *page;
6712
6713         /* Defer reload until vmcs01 is the current VMCS. */
6714         if (is_guest_mode(vcpu)) {
6715                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6716                 return;
6717         }
6718
6719         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6720             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6721                 return;
6722
6723         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6724         if (is_error_page(page))
6725                 return;
6726
6727         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6728         vmx_flush_tlb_current(vcpu);
6729
6730         /*
6731          * Do not pin apic access page in memory, the MMU notifier
6732          * will call us again if it is migrated or swapped out.
6733          */
6734         put_page(page);
6735 }
6736
6737 static void vmx_hwapic_isr_update(int max_isr)
6738 {
6739         u16 status;
6740         u8 old;
6741
6742         if (max_isr == -1)
6743                 max_isr = 0;
6744
6745         status = vmcs_read16(GUEST_INTR_STATUS);
6746         old = status >> 8;
6747         if (max_isr != old) {
6748                 status &= 0xff;
6749                 status |= max_isr << 8;
6750                 vmcs_write16(GUEST_INTR_STATUS, status);
6751         }
6752 }
6753
6754 static void vmx_set_rvi(int vector)
6755 {
6756         u16 status;
6757         u8 old;
6758
6759         if (vector == -1)
6760                 vector = 0;
6761
6762         status = vmcs_read16(GUEST_INTR_STATUS);
6763         old = (u8)status & 0xff;
6764         if ((u8)vector != old) {
6765                 status &= ~0xff;
6766                 status |= (u8)vector;
6767                 vmcs_write16(GUEST_INTR_STATUS, status);
6768         }
6769 }
6770
6771 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6772 {
6773         /*
6774          * When running L2, updating RVI is only relevant when
6775          * vmcs12 virtual-interrupt-delivery enabled.
6776          * However, it can be enabled only when L1 also
6777          * intercepts external-interrupts and in that case
6778          * we should not update vmcs02 RVI but instead intercept
6779          * interrupt. Therefore, do nothing when running L2.
6780          */
6781         if (!is_guest_mode(vcpu))
6782                 vmx_set_rvi(max_irr);
6783 }
6784
6785 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6786 {
6787         struct vcpu_vmx *vmx = to_vmx(vcpu);
6788         int max_irr;
6789         bool got_posted_interrupt;
6790
6791         if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6792                 return -EIO;
6793
6794         if (pi_test_on(&vmx->pi_desc)) {
6795                 pi_clear_on(&vmx->pi_desc);
6796                 /*
6797                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6798                  * But on x86 this is just a compiler barrier anyway.
6799                  */
6800                 smp_mb__after_atomic();
6801                 got_posted_interrupt =
6802                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6803         } else {
6804                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6805                 got_posted_interrupt = false;
6806         }
6807
6808         /*
6809          * Newly recognized interrupts are injected via either virtual interrupt
6810          * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6811          * disabled in two cases:
6812          *
6813          * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6814          * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6815          * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6816          * into L2, but KVM doesn't use virtual interrupt delivery to inject
6817          * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6818          *
6819          * 2) If APICv is disabled for this vCPU, assigned devices may still
6820          * attempt to post interrupts.  The posted interrupt vector will cause
6821          * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6822          */
6823         if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6824                 vmx_set_rvi(max_irr);
6825         else if (got_posted_interrupt)
6826                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6827
6828         return max_irr;
6829 }
6830
6831 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6832 {
6833         if (!kvm_vcpu_apicv_active(vcpu))
6834                 return;
6835
6836         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6837         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6838         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6839         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6840 }
6841
6842 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6843 {
6844         struct vcpu_vmx *vmx = to_vmx(vcpu);
6845
6846         pi_clear_on(&vmx->pi_desc);
6847         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6848 }
6849
6850 void vmx_do_interrupt_irqoff(unsigned long entry);
6851 void vmx_do_nmi_irqoff(void);
6852
6853 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6854 {
6855         /*
6856          * Save xfd_err to guest_fpu before interrupt is enabled, so the
6857          * MSR value is not clobbered by the host activity before the guest
6858          * has chance to consume it.
6859          *
6860          * Do not blindly read xfd_err here, since this exception might
6861          * be caused by L1 interception on a platform which doesn't
6862          * support xfd at all.
6863          *
6864          * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6865          * only when xfd contains a non-zero value.
6866          *
6867          * Queuing exception is done in vmx_handle_exit. See comment there.
6868          */
6869         if (vcpu->arch.guest_fpu.fpstate->xfd)
6870                 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6871 }
6872
6873 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6874 {
6875         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6876
6877         /* if exit due to PF check for async PF */
6878         if (is_page_fault(intr_info))
6879                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6880         /* if exit due to NM, handle before interrupts are enabled */
6881         else if (is_nm_fault(intr_info))
6882                 handle_nm_fault_irqoff(&vmx->vcpu);
6883         /* Handle machine checks before interrupts are enabled */
6884         else if (is_machine_check(intr_info))
6885                 kvm_machine_check();
6886 }
6887
6888 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6889 {
6890         u32 intr_info = vmx_get_intr_info(vcpu);
6891         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6892         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6893
6894         if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6895             "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6896                 return;
6897
6898         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6899         vmx_do_interrupt_irqoff(gate_offset(desc));
6900         kvm_after_interrupt(vcpu);
6901
6902         vcpu->arch.at_instruction_boundary = true;
6903 }
6904
6905 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6906 {
6907         struct vcpu_vmx *vmx = to_vmx(vcpu);
6908
6909         if (vmx->emulation_required)
6910                 return;
6911
6912         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6913                 handle_external_interrupt_irqoff(vcpu);
6914         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6915                 handle_exception_irqoff(vmx);
6916 }
6917
6918 /*
6919  * The kvm parameter can be NULL (module initialization, or invocation before
6920  * VM creation). Be sure to check the kvm parameter before using it.
6921  */
6922 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6923 {
6924         switch (index) {
6925         case MSR_IA32_SMBASE:
6926                 if (!IS_ENABLED(CONFIG_KVM_SMM))
6927                         return false;
6928                 /*
6929                  * We cannot do SMM unless we can run the guest in big
6930                  * real mode.
6931                  */
6932                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6933         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6934                 return nested;
6935         case MSR_AMD64_VIRT_SPEC_CTRL:
6936         case MSR_AMD64_TSC_RATIO:
6937                 /* This is AMD only.  */
6938                 return false;
6939         default:
6940                 return true;
6941         }
6942 }
6943
6944 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6945 {
6946         u32 exit_intr_info;
6947         bool unblock_nmi;
6948         u8 vector;
6949         bool idtv_info_valid;
6950
6951         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6952
6953         if (enable_vnmi) {
6954                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6955                         return;
6956
6957                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6958                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6959                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6960                 /*
6961                  * SDM 3: 27.7.1.2 (September 2008)
6962                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6963                  * a guest IRET fault.
6964                  * SDM 3: 23.2.2 (September 2008)
6965                  * Bit 12 is undefined in any of the following cases:
6966                  *  If the VM exit sets the valid bit in the IDT-vectoring
6967                  *   information field.
6968                  *  If the VM exit is due to a double fault.
6969                  */
6970                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6971                     vector != DF_VECTOR && !idtv_info_valid)
6972                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6973                                       GUEST_INTR_STATE_NMI);
6974                 else
6975                         vmx->loaded_vmcs->nmi_known_unmasked =
6976                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6977                                   & GUEST_INTR_STATE_NMI);
6978         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6979                 vmx->loaded_vmcs->vnmi_blocked_time +=
6980                         ktime_to_ns(ktime_sub(ktime_get(),
6981                                               vmx->loaded_vmcs->entry_time));
6982 }
6983
6984 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6985                                       u32 idt_vectoring_info,
6986                                       int instr_len_field,
6987                                       int error_code_field)
6988 {
6989         u8 vector;
6990         int type;
6991         bool idtv_info_valid;
6992
6993         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6994
6995         vcpu->arch.nmi_injected = false;
6996         kvm_clear_exception_queue(vcpu);
6997         kvm_clear_interrupt_queue(vcpu);
6998
6999         if (!idtv_info_valid)
7000                 return;
7001
7002         kvm_make_request(KVM_REQ_EVENT, vcpu);
7003
7004         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7005         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7006
7007         switch (type) {
7008         case INTR_TYPE_NMI_INTR:
7009                 vcpu->arch.nmi_injected = true;
7010                 /*
7011                  * SDM 3: 27.7.1.2 (September 2008)
7012                  * Clear bit "block by NMI" before VM entry if a NMI
7013                  * delivery faulted.
7014                  */
7015                 vmx_set_nmi_mask(vcpu, false);
7016                 break;
7017         case INTR_TYPE_SOFT_EXCEPTION:
7018                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7019                 fallthrough;
7020         case INTR_TYPE_HARD_EXCEPTION:
7021                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7022                         u32 err = vmcs_read32(error_code_field);
7023                         kvm_requeue_exception_e(vcpu, vector, err);
7024                 } else
7025                         kvm_requeue_exception(vcpu, vector);
7026                 break;
7027         case INTR_TYPE_SOFT_INTR:
7028                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7029                 fallthrough;
7030         case INTR_TYPE_EXT_INTR:
7031                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7032                 break;
7033         default:
7034                 break;
7035         }
7036 }
7037
7038 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7039 {
7040         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7041                                   VM_EXIT_INSTRUCTION_LEN,
7042                                   IDT_VECTORING_ERROR_CODE);
7043 }
7044
7045 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7046 {
7047         __vmx_complete_interrupts(vcpu,
7048                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7049                                   VM_ENTRY_INSTRUCTION_LEN,
7050                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7051
7052         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7053 }
7054
7055 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7056 {
7057         int i, nr_msrs;
7058         struct perf_guest_switch_msr *msrs;
7059         struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7060
7061         pmu->host_cross_mapped_mask = 0;
7062         if (pmu->pebs_enable & pmu->global_ctrl)
7063                 intel_pmu_cross_mapped_check(pmu);
7064
7065         /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7066         msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7067         if (!msrs)
7068                 return;
7069
7070         for (i = 0; i < nr_msrs; i++)
7071                 if (msrs[i].host == msrs[i].guest)
7072                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7073                 else
7074                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7075                                         msrs[i].host, false);
7076 }
7077
7078 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7079 {
7080         struct vcpu_vmx *vmx = to_vmx(vcpu);
7081         u64 tscl;
7082         u32 delta_tsc;
7083
7084         if (vmx->req_immediate_exit) {
7085                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7086                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7087         } else if (vmx->hv_deadline_tsc != -1) {
7088                 tscl = rdtsc();
7089                 if (vmx->hv_deadline_tsc > tscl)
7090                         /* set_hv_timer ensures the delta fits in 32-bits */
7091                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7092                                 cpu_preemption_timer_multi);
7093                 else
7094                         delta_tsc = 0;
7095
7096                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7097                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7098         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7099                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7100                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7101         }
7102 }
7103
7104 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7105 {
7106         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7107                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7108                 vmcs_writel(HOST_RSP, host_rsp);
7109         }
7110 }
7111
7112 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7113                                         unsigned int flags)
7114 {
7115         u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7116
7117         if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7118                 return;
7119
7120         if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7121                 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7122
7123         /*
7124          * If the guest/host SPEC_CTRL values differ, restore the host value.
7125          *
7126          * For legacy IBRS, the IBRS bit always needs to be written after
7127          * transitioning from a less privileged predictor mode, regardless of
7128          * whether the guest/host values differ.
7129          */
7130         if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7131             vmx->spec_ctrl != hostval)
7132                 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7133
7134         barrier_nospec();
7135 }
7136
7137 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7138 {
7139         switch (to_vmx(vcpu)->exit_reason.basic) {
7140         case EXIT_REASON_MSR_WRITE:
7141                 return handle_fastpath_set_msr_irqoff(vcpu);
7142         case EXIT_REASON_PREEMPTION_TIMER:
7143                 return handle_fastpath_preemption_timer(vcpu);
7144         default:
7145                 return EXIT_FASTPATH_NONE;
7146         }
7147 }
7148
7149 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7150                                         unsigned int flags)
7151 {
7152         struct vcpu_vmx *vmx = to_vmx(vcpu);
7153
7154         guest_state_enter_irqoff();
7155
7156         /* L1D Flush includes CPU buffer clear to mitigate MDS */
7157         if (static_branch_unlikely(&vmx_l1d_should_flush))
7158                 vmx_l1d_flush(vcpu);
7159         else if (static_branch_unlikely(&mds_user_clear))
7160                 mds_clear_cpu_buffers();
7161         else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7162                  kvm_arch_has_assigned_device(vcpu->kvm))
7163                 mds_clear_cpu_buffers();
7164
7165         vmx_disable_fb_clear(vmx);
7166
7167         if (vcpu->arch.cr2 != native_read_cr2())
7168                 native_write_cr2(vcpu->arch.cr2);
7169
7170         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7171                                    flags);
7172
7173         vcpu->arch.cr2 = native_read_cr2();
7174
7175         vmx_enable_fb_clear(vmx);
7176
7177         if (unlikely(vmx->fail))
7178                 vmx->exit_reason.full = 0xdead;
7179         else
7180                 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7181
7182         if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7183             is_nmi(vmx_get_intr_info(vcpu))) {
7184                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7185                 vmx_do_nmi_irqoff();
7186                 kvm_after_interrupt(vcpu);
7187         }
7188
7189         guest_state_exit_irqoff();
7190 }
7191
7192 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7193 {
7194         struct vcpu_vmx *vmx = to_vmx(vcpu);
7195         unsigned long cr3, cr4;
7196
7197         /* Record the guest's net vcpu time for enforced NMI injections. */
7198         if (unlikely(!enable_vnmi &&
7199                      vmx->loaded_vmcs->soft_vnmi_blocked))
7200                 vmx->loaded_vmcs->entry_time = ktime_get();
7201
7202         /*
7203          * Don't enter VMX if guest state is invalid, let the exit handler
7204          * start emulation until we arrive back to a valid state.  Synthesize a
7205          * consistency check VM-Exit due to invalid guest state and bail.
7206          */
7207         if (unlikely(vmx->emulation_required)) {
7208                 vmx->fail = 0;
7209
7210                 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7211                 vmx->exit_reason.failed_vmentry = 1;
7212                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7213                 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7214                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7215                 vmx->exit_intr_info = 0;
7216                 return EXIT_FASTPATH_NONE;
7217         }
7218
7219         trace_kvm_entry(vcpu);
7220
7221         if (vmx->ple_window_dirty) {
7222                 vmx->ple_window_dirty = false;
7223                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7224         }
7225
7226         /*
7227          * We did this in prepare_switch_to_guest, because it needs to
7228          * be within srcu_read_lock.
7229          */
7230         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7231
7232         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7233                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7234         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7235                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7236         vcpu->arch.regs_dirty = 0;
7237
7238         /*
7239          * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7240          * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7241          * it switches back to the current->mm, which can occur in KVM context
7242          * when switching to a temporary mm to patch kernel code, e.g. if KVM
7243          * toggles a static key while handling a VM-Exit.
7244          */
7245         cr3 = __get_current_cr3_fast();
7246         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7247                 vmcs_writel(HOST_CR3, cr3);
7248                 vmx->loaded_vmcs->host_state.cr3 = cr3;
7249         }
7250
7251         cr4 = cr4_read_shadow();
7252         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7253                 vmcs_writel(HOST_CR4, cr4);
7254                 vmx->loaded_vmcs->host_state.cr4 = cr4;
7255         }
7256
7257         /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7258         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7259                 set_debugreg(vcpu->arch.dr6, 6);
7260
7261         /* When single-stepping over STI and MOV SS, we must clear the
7262          * corresponding interruptibility bits in the guest state. Otherwise
7263          * vmentry fails as it then expects bit 14 (BS) in pending debug
7264          * exceptions being set, but that's not correct for the guest debugging
7265          * case. */
7266         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7267                 vmx_set_interrupt_shadow(vcpu, 0);
7268
7269         kvm_load_guest_xsave_state(vcpu);
7270
7271         pt_guest_enter(vmx);
7272
7273         atomic_switch_perf_msrs(vmx);
7274         if (intel_pmu_lbr_is_enabled(vcpu))
7275                 vmx_passthrough_lbr_msrs(vcpu);
7276
7277         if (enable_preemption_timer)
7278                 vmx_update_hv_timer(vcpu);
7279
7280         kvm_wait_lapic_expire(vcpu);
7281
7282         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7283         vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7284
7285         /* All fields are clean at this point */
7286         if (kvm_is_using_evmcs()) {
7287                 current_evmcs->hv_clean_fields |=
7288                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7289
7290                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7291         }
7292
7293         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7294         if (vmx->host_debugctlmsr)
7295                 update_debugctlmsr(vmx->host_debugctlmsr);
7296
7297 #ifndef CONFIG_X86_64
7298         /*
7299          * The sysexit path does not restore ds/es, so we must set them to
7300          * a reasonable value ourselves.
7301          *
7302          * We can't defer this to vmx_prepare_switch_to_host() since that
7303          * function may be executed in interrupt context, which saves and
7304          * restore segments around it, nullifying its effect.
7305          */
7306         loadsegment(ds, __USER_DS);
7307         loadsegment(es, __USER_DS);
7308 #endif
7309
7310         vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7311
7312         pt_guest_exit(vmx);
7313
7314         kvm_load_host_xsave_state(vcpu);
7315
7316         if (is_guest_mode(vcpu)) {
7317                 /*
7318                  * Track VMLAUNCH/VMRESUME that have made past guest state
7319                  * checking.
7320                  */
7321                 if (vmx->nested.nested_run_pending &&
7322                     !vmx->exit_reason.failed_vmentry)
7323                         ++vcpu->stat.nested_run;
7324
7325                 vmx->nested.nested_run_pending = 0;
7326         }
7327
7328         vmx->idt_vectoring_info = 0;
7329
7330         if (unlikely(vmx->fail))
7331                 return EXIT_FASTPATH_NONE;
7332
7333         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7334                 kvm_machine_check();
7335
7336         if (likely(!vmx->exit_reason.failed_vmentry))
7337                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7338
7339         trace_kvm_exit(vcpu, KVM_ISA_VMX);
7340
7341         if (unlikely(vmx->exit_reason.failed_vmentry))
7342                 return EXIT_FASTPATH_NONE;
7343
7344         vmx->loaded_vmcs->launched = 1;
7345
7346         vmx_recover_nmi_blocking(vmx);
7347         vmx_complete_interrupts(vmx);
7348
7349         if (is_guest_mode(vcpu))
7350                 return EXIT_FASTPATH_NONE;
7351
7352         return vmx_exit_handlers_fastpath(vcpu);
7353 }
7354
7355 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7356 {
7357         struct vcpu_vmx *vmx = to_vmx(vcpu);
7358
7359         if (enable_pml)
7360                 vmx_destroy_pml_buffer(vmx);
7361         free_vpid(vmx->vpid);
7362         nested_vmx_free_vcpu(vcpu);
7363         free_loaded_vmcs(vmx->loaded_vmcs);
7364 }
7365
7366 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7367 {
7368         struct vmx_uret_msr *tsx_ctrl;
7369         struct vcpu_vmx *vmx;
7370         int i, err;
7371
7372         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7373         vmx = to_vmx(vcpu);
7374
7375         INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7376
7377         err = -ENOMEM;
7378
7379         vmx->vpid = allocate_vpid();
7380
7381         /*
7382          * If PML is turned on, failure on enabling PML just results in failure
7383          * of creating the vcpu, therefore we can simplify PML logic (by
7384          * avoiding dealing with cases, such as enabling PML partially on vcpus
7385          * for the guest), etc.
7386          */
7387         if (enable_pml) {
7388                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7389                 if (!vmx->pml_pg)
7390                         goto free_vpid;
7391         }
7392
7393         for (i = 0; i < kvm_nr_uret_msrs; ++i)
7394                 vmx->guest_uret_msrs[i].mask = -1ull;
7395         if (boot_cpu_has(X86_FEATURE_RTM)) {
7396                 /*
7397                  * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7398                  * Keep the host value unchanged to avoid changing CPUID bits
7399                  * under the host kernel's feet.
7400                  */
7401                 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7402                 if (tsx_ctrl)
7403                         tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7404         }
7405
7406         err = alloc_loaded_vmcs(&vmx->vmcs01);
7407         if (err < 0)
7408                 goto free_pml;
7409
7410         /*
7411          * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7412          * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7413          * feature only for vmcs01, KVM currently isn't equipped to realize any
7414          * performance benefits from enabling it for vmcs02.
7415          */
7416         if (kvm_is_using_evmcs() &&
7417             (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7418                 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7419
7420                 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7421         }
7422
7423         /* The MSR bitmap starts with all ones */
7424         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7425         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7426
7427         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7428 #ifdef CONFIG_X86_64
7429         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7430         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7431         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7432 #endif
7433         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7434         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7435         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7436         if (kvm_cstate_in_guest(vcpu->kvm)) {
7437                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7438                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7439                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7440                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7441         }
7442
7443         vmx->loaded_vmcs = &vmx->vmcs01;
7444
7445         if (cpu_need_virtualize_apic_accesses(vcpu)) {
7446                 err = kvm_alloc_apic_access_page(vcpu->kvm);
7447                 if (err)
7448                         goto free_vmcs;
7449         }
7450
7451         if (enable_ept && !enable_unrestricted_guest) {
7452                 err = init_rmode_identity_map(vcpu->kvm);
7453                 if (err)
7454                         goto free_vmcs;
7455         }
7456
7457         if (vmx_can_use_ipiv(vcpu))
7458                 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7459                            __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7460
7461         return 0;
7462
7463 free_vmcs:
7464         free_loaded_vmcs(vmx->loaded_vmcs);
7465 free_pml:
7466         vmx_destroy_pml_buffer(vmx);
7467 free_vpid:
7468         free_vpid(vmx->vpid);
7469         return err;
7470 }
7471
7472 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7473 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7474
7475 static int vmx_vm_init(struct kvm *kvm)
7476 {
7477         if (!ple_gap)
7478                 kvm->arch.pause_in_guest = true;
7479
7480         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7481                 switch (l1tf_mitigation) {
7482                 case L1TF_MITIGATION_OFF:
7483                 case L1TF_MITIGATION_FLUSH_NOWARN:
7484                         /* 'I explicitly don't care' is set */
7485                         break;
7486                 case L1TF_MITIGATION_FLUSH:
7487                 case L1TF_MITIGATION_FLUSH_NOSMT:
7488                 case L1TF_MITIGATION_FULL:
7489                         /*
7490                          * Warn upon starting the first VM in a potentially
7491                          * insecure environment.
7492                          */
7493                         if (sched_smt_active())
7494                                 pr_warn_once(L1TF_MSG_SMT);
7495                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7496                                 pr_warn_once(L1TF_MSG_L1D);
7497                         break;
7498                 case L1TF_MITIGATION_FULL_FORCE:
7499                         /* Flush is enforced */
7500                         break;
7501                 }
7502         }
7503         return 0;
7504 }
7505
7506 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7507 {
7508         u8 cache;
7509
7510         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7511          * memory aliases with conflicting memory types and sometimes MCEs.
7512          * We have to be careful as to what are honored and when.
7513          *
7514          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7515          * UC.  The effective memory type is UC or WC depending on guest PAT.
7516          * This was historically the source of MCEs and we want to be
7517          * conservative.
7518          *
7519          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7520          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7521          * EPT memory type is set to WB.  The effective memory type is forced
7522          * WB.
7523          *
7524          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7525          * EPT memory type is used to emulate guest CD/MTRR.
7526          */
7527
7528         if (is_mmio)
7529                 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7530
7531         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7532                 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7533
7534         if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7535                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7536                         cache = MTRR_TYPE_WRBACK;
7537                 else
7538                         cache = MTRR_TYPE_UNCACHABLE;
7539
7540                 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7541         }
7542
7543         return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7544 }
7545
7546 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7547 {
7548         /*
7549          * These bits in the secondary execution controls field
7550          * are dynamic, the others are mostly based on the hypervisor
7551          * architecture and the guest's CPUID.  Do not touch the
7552          * dynamic bits.
7553          */
7554         u32 mask =
7555                 SECONDARY_EXEC_SHADOW_VMCS |
7556                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7557                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7558                 SECONDARY_EXEC_DESC;
7559
7560         u32 cur_ctl = secondary_exec_controls_get(vmx);
7561
7562         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7563 }
7564
7565 /*
7566  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7567  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7568  */
7569 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7570 {
7571         struct vcpu_vmx *vmx = to_vmx(vcpu);
7572         struct kvm_cpuid_entry2 *entry;
7573
7574         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7575         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7576
7577 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7578         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7579                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7580 } while (0)
7581
7582         entry = kvm_find_cpuid_entry(vcpu, 0x1);
7583         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7584         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7585         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7586         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7587         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7588         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7589         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7590         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7591         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7592         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7593         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7594         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7595         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7596         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7597
7598         entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7599         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7600         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7601         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7602         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7603         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7604         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7605
7606 #undef cr4_fixed1_update
7607 }
7608
7609 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7610 {
7611         struct vcpu_vmx *vmx = to_vmx(vcpu);
7612         struct kvm_cpuid_entry2 *best = NULL;
7613         int i;
7614
7615         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7616                 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7617                 if (!best)
7618                         return;
7619                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7620                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7621                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7622                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7623         }
7624
7625         /* Get the number of configurable Address Ranges for filtering */
7626         vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7627                                                 PT_CAP_num_address_ranges);
7628
7629         /* Initialize and clear the no dependency bits */
7630         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7631                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7632                         RTIT_CTL_BRANCH_EN);
7633
7634         /*
7635          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7636          * will inject an #GP
7637          */
7638         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7639                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7640
7641         /*
7642          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7643          * PSBFreq can be set
7644          */
7645         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7646                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7647                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7648
7649         /*
7650          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7651          */
7652         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7653                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7654                                               RTIT_CTL_MTC_RANGE);
7655
7656         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7657         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7658                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7659                                                         RTIT_CTL_PTW_EN);
7660
7661         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7662         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7663                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7664
7665         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7666         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7667                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7668
7669         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7670         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7671                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7672
7673         /* unmask address range configure area */
7674         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7675                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7676 }
7677
7678 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7679 {
7680         struct vcpu_vmx *vmx = to_vmx(vcpu);
7681
7682         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7683         vcpu->arch.xsaves_enabled = false;
7684
7685         vmx_setup_uret_msrs(vmx);
7686
7687         if (cpu_has_secondary_exec_ctrls())
7688                 vmcs_set_secondary_exec_control(vmx,
7689                                                 vmx_secondary_exec_control(vmx));
7690
7691         if (nested_vmx_allowed(vcpu))
7692                 vmx->msr_ia32_feature_control_valid_bits |=
7693                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7694                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7695         else
7696                 vmx->msr_ia32_feature_control_valid_bits &=
7697                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7698                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7699
7700         if (nested_vmx_allowed(vcpu))
7701                 nested_vmx_cr_fixed1_bits_update(vcpu);
7702
7703         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7704                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7705                 update_intel_pt_cfg(vcpu);
7706
7707         if (boot_cpu_has(X86_FEATURE_RTM)) {
7708                 struct vmx_uret_msr *msr;
7709                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7710                 if (msr) {
7711                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7712                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7713                 }
7714         }
7715
7716         if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7717                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7718                                           !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7719
7720         if (boot_cpu_has(X86_FEATURE_IBPB))
7721                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7722                                           !guest_has_pred_cmd_msr(vcpu));
7723
7724         if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7725                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7726                                           !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7727
7728         set_cr4_guest_host_mask(vmx);
7729
7730         vmx_write_encls_bitmap(vcpu, NULL);
7731         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7732                 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7733         else
7734                 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7735
7736         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7737                 vmx->msr_ia32_feature_control_valid_bits |=
7738                         FEAT_CTL_SGX_LC_ENABLED;
7739         else
7740                 vmx->msr_ia32_feature_control_valid_bits &=
7741                         ~FEAT_CTL_SGX_LC_ENABLED;
7742
7743         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7744         vmx_update_exception_bitmap(vcpu);
7745 }
7746
7747 static u64 vmx_get_perf_capabilities(void)
7748 {
7749         u64 perf_cap = PMU_CAP_FW_WRITES;
7750         struct x86_pmu_lbr lbr;
7751         u64 host_perf_cap = 0;
7752
7753         if (!enable_pmu)
7754                 return 0;
7755
7756         if (boot_cpu_has(X86_FEATURE_PDCM))
7757                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7758
7759         x86_perf_get_lbr(&lbr);
7760         if (lbr.nr)
7761                 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7762
7763         if (vmx_pebs_supported()) {
7764                 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7765                 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7766                         perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7767         }
7768
7769         return perf_cap;
7770 }
7771
7772 static __init void vmx_set_cpu_caps(void)
7773 {
7774         kvm_set_cpu_caps();
7775
7776         /* CPUID 0x1 */
7777         if (nested)
7778                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7779
7780         /* CPUID 0x7 */
7781         if (kvm_mpx_supported())
7782                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7783         if (!cpu_has_vmx_invpcid())
7784                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7785         if (vmx_pt_mode_is_host_guest())
7786                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7787         if (vmx_pebs_supported()) {
7788                 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7789                 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7790         }
7791
7792         if (!enable_pmu)
7793                 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7794         kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7795
7796         if (!enable_sgx) {
7797                 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7798                 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7799                 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7800                 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7801         }
7802
7803         if (vmx_umip_emulated())
7804                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7805
7806         /* CPUID 0xD.1 */
7807         kvm_caps.supported_xss = 0;
7808         if (!cpu_has_vmx_xsaves())
7809                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7810
7811         /* CPUID 0x80000001 and 0x7 (RDPID) */
7812         if (!cpu_has_vmx_rdtscp()) {
7813                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7814                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7815         }
7816
7817         if (cpu_has_vmx_waitpkg())
7818                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7819 }
7820
7821 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7822 {
7823         to_vmx(vcpu)->req_immediate_exit = true;
7824 }
7825
7826 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7827                                   struct x86_instruction_info *info)
7828 {
7829         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7830         unsigned short port;
7831         bool intercept;
7832         int size;
7833
7834         if (info->intercept == x86_intercept_in ||
7835             info->intercept == x86_intercept_ins) {
7836                 port = info->src_val;
7837                 size = info->dst_bytes;
7838         } else {
7839                 port = info->dst_val;
7840                 size = info->src_bytes;
7841         }
7842
7843         /*
7844          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7845          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7846          * control.
7847          *
7848          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7849          */
7850         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7851                 intercept = nested_cpu_has(vmcs12,
7852                                            CPU_BASED_UNCOND_IO_EXITING);
7853         else
7854                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7855
7856         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7857         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7858 }
7859
7860 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7861                                struct x86_instruction_info *info,
7862                                enum x86_intercept_stage stage,
7863                                struct x86_exception *exception)
7864 {
7865         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7866
7867         switch (info->intercept) {
7868         /*
7869          * RDPID causes #UD if disabled through secondary execution controls.
7870          * Because it is marked as EmulateOnUD, we need to intercept it here.
7871          * Note, RDPID is hidden behind ENABLE_RDTSCP.
7872          */
7873         case x86_intercept_rdpid:
7874                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7875                         exception->vector = UD_VECTOR;
7876                         exception->error_code_valid = false;
7877                         return X86EMUL_PROPAGATE_FAULT;
7878                 }
7879                 break;
7880
7881         case x86_intercept_in:
7882         case x86_intercept_ins:
7883         case x86_intercept_out:
7884         case x86_intercept_outs:
7885                 return vmx_check_intercept_io(vcpu, info);
7886
7887         case x86_intercept_lgdt:
7888         case x86_intercept_lidt:
7889         case x86_intercept_lldt:
7890         case x86_intercept_ltr:
7891         case x86_intercept_sgdt:
7892         case x86_intercept_sidt:
7893         case x86_intercept_sldt:
7894         case x86_intercept_str:
7895                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7896                         return X86EMUL_CONTINUE;
7897
7898                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7899                 break;
7900
7901         /* TODO: check more intercepts... */
7902         default:
7903                 break;
7904         }
7905
7906         return X86EMUL_UNHANDLEABLE;
7907 }
7908
7909 #ifdef CONFIG_X86_64
7910 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7911 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7912                                   u64 divisor, u64 *result)
7913 {
7914         u64 low = a << shift, high = a >> (64 - shift);
7915
7916         /* To avoid the overflow on divq */
7917         if (high >= divisor)
7918                 return 1;
7919
7920         /* Low hold the result, high hold rem which is discarded */
7921         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7922             "rm" (divisor), "0" (low), "1" (high));
7923         *result = low;
7924
7925         return 0;
7926 }
7927
7928 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7929                             bool *expired)
7930 {
7931         struct vcpu_vmx *vmx;
7932         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7933         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7934
7935         vmx = to_vmx(vcpu);
7936         tscl = rdtsc();
7937         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7938         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7939         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7940                                                     ktimer->timer_advance_ns);
7941
7942         if (delta_tsc > lapic_timer_advance_cycles)
7943                 delta_tsc -= lapic_timer_advance_cycles;
7944         else
7945                 delta_tsc = 0;
7946
7947         /* Convert to host delta tsc if tsc scaling is enabled */
7948         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
7949             delta_tsc && u64_shl_div_u64(delta_tsc,
7950                                 kvm_caps.tsc_scaling_ratio_frac_bits,
7951                                 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7952                 return -ERANGE;
7953
7954         /*
7955          * If the delta tsc can't fit in the 32 bit after the multi shift,
7956          * we can't use the preemption timer.
7957          * It's possible that it fits on later vmentries, but checking
7958          * on every vmentry is costly so we just use an hrtimer.
7959          */
7960         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7961                 return -ERANGE;
7962
7963         vmx->hv_deadline_tsc = tscl + delta_tsc;
7964         *expired = !delta_tsc;
7965         return 0;
7966 }
7967
7968 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7969 {
7970         to_vmx(vcpu)->hv_deadline_tsc = -1;
7971 }
7972 #endif
7973
7974 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7975 {
7976         if (!kvm_pause_in_guest(vcpu->kvm))
7977                 shrink_ple_window(vcpu);
7978 }
7979
7980 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7981 {
7982         struct vcpu_vmx *vmx = to_vmx(vcpu);
7983
7984         if (WARN_ON_ONCE(!enable_pml))
7985                 return;
7986
7987         if (is_guest_mode(vcpu)) {
7988                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7989                 return;
7990         }
7991
7992         /*
7993          * Note, nr_memslots_dirty_logging can be changed concurrent with this
7994          * code, but in that case another update request will be made and so
7995          * the guest will never run with a stale PML value.
7996          */
7997         if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
7998                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7999         else
8000                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8001 }
8002
8003 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8004 {
8005         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8006                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8007                         FEAT_CTL_LMCE_ENABLED;
8008         else
8009                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8010                         ~FEAT_CTL_LMCE_ENABLED;
8011 }
8012
8013 #ifdef CONFIG_KVM_SMM
8014 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8015 {
8016         /* we need a nested vmexit to enter SMM, postpone if run is pending */
8017         if (to_vmx(vcpu)->nested.nested_run_pending)
8018                 return -EBUSY;
8019         return !is_smm(vcpu);
8020 }
8021
8022 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8023 {
8024         struct vcpu_vmx *vmx = to_vmx(vcpu);
8025
8026         /*
8027          * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8028          * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8029          * SMI and RSM only modify state that is saved and restored via SMRAM.
8030          * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8031          * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8032          */
8033         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8034         if (vmx->nested.smm.guest_mode)
8035                 nested_vmx_vmexit(vcpu, -1, 0, 0);
8036
8037         vmx->nested.smm.vmxon = vmx->nested.vmxon;
8038         vmx->nested.vmxon = false;
8039         vmx_clear_hlt(vcpu);
8040         return 0;
8041 }
8042
8043 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8044 {
8045         struct vcpu_vmx *vmx = to_vmx(vcpu);
8046         int ret;
8047
8048         if (vmx->nested.smm.vmxon) {
8049                 vmx->nested.vmxon = true;
8050                 vmx->nested.smm.vmxon = false;
8051         }
8052
8053         if (vmx->nested.smm.guest_mode) {
8054                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8055                 if (ret)
8056                         return ret;
8057
8058                 vmx->nested.nested_run_pending = 1;
8059                 vmx->nested.smm.guest_mode = false;
8060         }
8061         return 0;
8062 }
8063
8064 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8065 {
8066         /* RSM will cause a vmexit anyway.  */
8067 }
8068 #endif
8069
8070 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8071 {
8072         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8073 }
8074
8075 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8076 {
8077         if (is_guest_mode(vcpu)) {
8078                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8079
8080                 if (hrtimer_try_to_cancel(timer) == 1)
8081                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8082         }
8083 }
8084
8085 static void vmx_hardware_unsetup(void)
8086 {
8087         kvm_set_posted_intr_wakeup_handler(NULL);
8088
8089         if (nested)
8090                 nested_vmx_hardware_unsetup();
8091
8092         free_kvm_area();
8093 }
8094
8095 #define VMX_REQUIRED_APICV_INHIBITS                     \
8096 (                                                       \
8097         BIT(APICV_INHIBIT_REASON_DISABLE)|              \
8098         BIT(APICV_INHIBIT_REASON_ABSENT) |              \
8099         BIT(APICV_INHIBIT_REASON_HYPERV) |              \
8100         BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |            \
8101         BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
8102         BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |    \
8103         BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)    \
8104 )
8105
8106 static void vmx_vm_destroy(struct kvm *kvm)
8107 {
8108         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8109
8110         free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8111 }
8112
8113 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8114         .name = KBUILD_MODNAME,
8115
8116         .check_processor_compatibility = vmx_check_processor_compat,
8117
8118         .hardware_unsetup = vmx_hardware_unsetup,
8119
8120         .hardware_enable = vmx_hardware_enable,
8121         .hardware_disable = vmx_hardware_disable,
8122         .has_emulated_msr = vmx_has_emulated_msr,
8123
8124         .vm_size = sizeof(struct kvm_vmx),
8125         .vm_init = vmx_vm_init,
8126         .vm_destroy = vmx_vm_destroy,
8127
8128         .vcpu_precreate = vmx_vcpu_precreate,
8129         .vcpu_create = vmx_vcpu_create,
8130         .vcpu_free = vmx_vcpu_free,
8131         .vcpu_reset = vmx_vcpu_reset,
8132
8133         .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8134         .vcpu_load = vmx_vcpu_load,
8135         .vcpu_put = vmx_vcpu_put,
8136
8137         .update_exception_bitmap = vmx_update_exception_bitmap,
8138         .get_msr_feature = vmx_get_msr_feature,
8139         .get_msr = vmx_get_msr,
8140         .set_msr = vmx_set_msr,
8141         .get_segment_base = vmx_get_segment_base,
8142         .get_segment = vmx_get_segment,
8143         .set_segment = vmx_set_segment,
8144         .get_cpl = vmx_get_cpl,
8145         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8146         .set_cr0 = vmx_set_cr0,
8147         .is_valid_cr4 = vmx_is_valid_cr4,
8148         .set_cr4 = vmx_set_cr4,
8149         .set_efer = vmx_set_efer,
8150         .get_idt = vmx_get_idt,
8151         .set_idt = vmx_set_idt,
8152         .get_gdt = vmx_get_gdt,
8153         .set_gdt = vmx_set_gdt,
8154         .set_dr7 = vmx_set_dr7,
8155         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8156         .cache_reg = vmx_cache_reg,
8157         .get_rflags = vmx_get_rflags,
8158         .set_rflags = vmx_set_rflags,
8159         .get_if_flag = vmx_get_if_flag,
8160
8161         .flush_tlb_all = vmx_flush_tlb_all,
8162         .flush_tlb_current = vmx_flush_tlb_current,
8163         .flush_tlb_gva = vmx_flush_tlb_gva,
8164         .flush_tlb_guest = vmx_flush_tlb_guest,
8165
8166         .vcpu_pre_run = vmx_vcpu_pre_run,
8167         .vcpu_run = vmx_vcpu_run,
8168         .handle_exit = vmx_handle_exit,
8169         .skip_emulated_instruction = vmx_skip_emulated_instruction,
8170         .update_emulated_instruction = vmx_update_emulated_instruction,
8171         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8172         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8173         .patch_hypercall = vmx_patch_hypercall,
8174         .inject_irq = vmx_inject_irq,
8175         .inject_nmi = vmx_inject_nmi,
8176         .inject_exception = vmx_inject_exception,
8177         .cancel_injection = vmx_cancel_injection,
8178         .interrupt_allowed = vmx_interrupt_allowed,
8179         .nmi_allowed = vmx_nmi_allowed,
8180         .get_nmi_mask = vmx_get_nmi_mask,
8181         .set_nmi_mask = vmx_set_nmi_mask,
8182         .enable_nmi_window = vmx_enable_nmi_window,
8183         .enable_irq_window = vmx_enable_irq_window,
8184         .update_cr8_intercept = vmx_update_cr8_intercept,
8185         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8186         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8187         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8188         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8189         .apicv_post_state_restore = vmx_apicv_post_state_restore,
8190         .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8191         .hwapic_irr_update = vmx_hwapic_irr_update,
8192         .hwapic_isr_update = vmx_hwapic_isr_update,
8193         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8194         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8195         .deliver_interrupt = vmx_deliver_interrupt,
8196         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8197
8198         .set_tss_addr = vmx_set_tss_addr,
8199         .set_identity_map_addr = vmx_set_identity_map_addr,
8200         .get_mt_mask = vmx_get_mt_mask,
8201
8202         .get_exit_info = vmx_get_exit_info,
8203
8204         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8205
8206         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8207
8208         .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8209         .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8210         .write_tsc_offset = vmx_write_tsc_offset,
8211         .write_tsc_multiplier = vmx_write_tsc_multiplier,
8212
8213         .load_mmu_pgd = vmx_load_mmu_pgd,
8214
8215         .check_intercept = vmx_check_intercept,
8216         .handle_exit_irqoff = vmx_handle_exit_irqoff,
8217
8218         .request_immediate_exit = vmx_request_immediate_exit,
8219
8220         .sched_in = vmx_sched_in,
8221
8222         .cpu_dirty_log_size = PML_ENTITY_NUM,
8223         .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8224
8225         .nested_ops = &vmx_nested_ops,
8226
8227         .pi_update_irte = vmx_pi_update_irte,
8228         .pi_start_assignment = vmx_pi_start_assignment,
8229
8230 #ifdef CONFIG_X86_64
8231         .set_hv_timer = vmx_set_hv_timer,
8232         .cancel_hv_timer = vmx_cancel_hv_timer,
8233 #endif
8234
8235         .setup_mce = vmx_setup_mce,
8236
8237 #ifdef CONFIG_KVM_SMM
8238         .smi_allowed = vmx_smi_allowed,
8239         .enter_smm = vmx_enter_smm,
8240         .leave_smm = vmx_leave_smm,
8241         .enable_smi_window = vmx_enable_smi_window,
8242 #endif
8243
8244         .can_emulate_instruction = vmx_can_emulate_instruction,
8245         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8246         .migrate_timers = vmx_migrate_timers,
8247
8248         .msr_filter_changed = vmx_msr_filter_changed,
8249         .complete_emulated_msr = kvm_complete_insn_gp,
8250
8251         .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8252 };
8253
8254 static unsigned int vmx_handle_intel_pt_intr(void)
8255 {
8256         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8257
8258         /* '0' on failure so that the !PT case can use a RET0 static call. */
8259         if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8260                 return 0;
8261
8262         kvm_make_request(KVM_REQ_PMI, vcpu);
8263         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8264                   (unsigned long *)&vcpu->arch.pmu.global_status);
8265         return 1;
8266 }
8267
8268 static __init void vmx_setup_user_return_msrs(void)
8269 {
8270
8271         /*
8272          * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8273          * will emulate SYSCALL in legacy mode if the vendor string in guest
8274          * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8275          * support this emulation, MSR_STAR is included in the list for i386,
8276          * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8277          * into hardware and is here purely for emulation purposes.
8278          */
8279         const u32 vmx_uret_msrs_list[] = {
8280         #ifdef CONFIG_X86_64
8281                 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8282         #endif
8283                 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8284                 MSR_IA32_TSX_CTRL,
8285         };
8286         int i;
8287
8288         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8289
8290         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8291                 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8292 }
8293
8294 static void __init vmx_setup_me_spte_mask(void)
8295 {
8296         u64 me_mask = 0;
8297
8298         /*
8299          * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8300          * the former to avoid exposing shadow_phys_bits.
8301          *
8302          * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8303          * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8304          * boot_cpu_data.x86_phys_bits holds the actual physical address
8305          * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8306          * reported by CPUID.  Those bits between are KeyID bits.
8307          */
8308         if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8309                 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8310                         kvm_get_shadow_phys_bits() - 1);
8311         /*
8312          * Unlike SME, host kernel doesn't support setting up any
8313          * MKTME KeyID on Intel platforms.  No memory encryption
8314          * bits should be included into the SPTE.
8315          */
8316         kvm_mmu_set_me_spte_mask(0, me_mask);
8317 }
8318
8319 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8320
8321 static __init int hardware_setup(void)
8322 {
8323         unsigned long host_bndcfgs;
8324         struct desc_ptr dt;
8325         int r;
8326
8327         store_idt(&dt);
8328         host_idt_base = dt.address;
8329
8330         vmx_setup_user_return_msrs();
8331
8332         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8333                 return -EIO;
8334
8335         if (cpu_has_perf_global_ctrl_bug())
8336                 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8337                              "does not work properly. Using workaround\n");
8338
8339         if (boot_cpu_has(X86_FEATURE_NX))
8340                 kvm_enable_efer_bits(EFER_NX);
8341
8342         if (boot_cpu_has(X86_FEATURE_MPX)) {
8343                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8344                 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8345         }
8346
8347         if (!cpu_has_vmx_mpx())
8348                 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8349                                              XFEATURE_MASK_BNDCSR);
8350
8351         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8352             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8353                 enable_vpid = 0;
8354
8355         if (!cpu_has_vmx_ept() ||
8356             !cpu_has_vmx_ept_4levels() ||
8357             !cpu_has_vmx_ept_mt_wb() ||
8358             !cpu_has_vmx_invept_global())
8359                 enable_ept = 0;
8360
8361         /* NX support is required for shadow paging. */
8362         if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8363                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8364                 return -EOPNOTSUPP;
8365         }
8366
8367         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8368                 enable_ept_ad_bits = 0;
8369
8370         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8371                 enable_unrestricted_guest = 0;
8372
8373         if (!cpu_has_vmx_flexpriority())
8374                 flexpriority_enabled = 0;
8375
8376         if (!cpu_has_virtual_nmis())
8377                 enable_vnmi = 0;
8378
8379 #ifdef CONFIG_X86_SGX_KVM
8380         if (!cpu_has_vmx_encls_vmexit())
8381                 enable_sgx = false;
8382 #endif
8383
8384         /*
8385          * set_apic_access_page_addr() is used to reload apic access
8386          * page upon invalidation.  No need to do anything if not
8387          * using the APIC_ACCESS_ADDR VMCS field.
8388          */
8389         if (!flexpriority_enabled)
8390                 vmx_x86_ops.set_apic_access_page_addr = NULL;
8391
8392         if (!cpu_has_vmx_tpr_shadow())
8393                 vmx_x86_ops.update_cr8_intercept = NULL;
8394
8395 #if IS_ENABLED(CONFIG_HYPERV)
8396         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8397             && enable_ept) {
8398                 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8399                 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8400         }
8401 #endif
8402
8403         if (!cpu_has_vmx_ple()) {
8404                 ple_gap = 0;
8405                 ple_window = 0;
8406                 ple_window_grow = 0;
8407                 ple_window_max = 0;
8408                 ple_window_shrink = 0;
8409         }
8410
8411         if (!cpu_has_vmx_apicv())
8412                 enable_apicv = 0;
8413         if (!enable_apicv)
8414                 vmx_x86_ops.sync_pir_to_irr = NULL;
8415
8416         if (!enable_apicv || !cpu_has_vmx_ipiv())
8417                 enable_ipiv = false;
8418
8419         if (cpu_has_vmx_tsc_scaling())
8420                 kvm_caps.has_tsc_control = true;
8421
8422         kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8423         kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8424         kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8425         kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8426
8427         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8428
8429         if (enable_ept)
8430                 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8431                                       cpu_has_vmx_ept_execute_only());
8432
8433         /*
8434          * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8435          * bits to shadow_zero_check.
8436          */
8437         vmx_setup_me_spte_mask();
8438
8439         kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8440                           ept_caps_to_lpage_level(vmx_capability.ept));
8441
8442         /*
8443          * Only enable PML when hardware supports PML feature, and both EPT
8444          * and EPT A/D bit features are enabled -- PML depends on them to work.
8445          */
8446         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8447                 enable_pml = 0;
8448
8449         if (!enable_pml)
8450                 vmx_x86_ops.cpu_dirty_log_size = 0;
8451
8452         if (!cpu_has_vmx_preemption_timer())
8453                 enable_preemption_timer = false;
8454
8455         if (enable_preemption_timer) {
8456                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8457
8458                 cpu_preemption_timer_multi =
8459                         vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8460
8461                 if (tsc_khz)
8462                         use_timer_freq = (u64)tsc_khz * 1000;
8463                 use_timer_freq >>= cpu_preemption_timer_multi;
8464
8465                 /*
8466                  * KVM "disables" the preemption timer by setting it to its max
8467                  * value.  Don't use the timer if it might cause spurious exits
8468                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8469                  */
8470                 if (use_timer_freq > 0xffffffffu / 10)
8471                         enable_preemption_timer = false;
8472         }
8473
8474         if (!enable_preemption_timer) {
8475                 vmx_x86_ops.set_hv_timer = NULL;
8476                 vmx_x86_ops.cancel_hv_timer = NULL;
8477                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8478         }
8479
8480         kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8481         kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8482
8483         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8484                 return -EINVAL;
8485         if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8486                 pt_mode = PT_MODE_SYSTEM;
8487         if (pt_mode == PT_MODE_HOST_GUEST)
8488                 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8489         else
8490                 vmx_init_ops.handle_intel_pt_intr = NULL;
8491
8492         setup_default_sgx_lepubkeyhash();
8493
8494         if (nested) {
8495                 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8496
8497                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8498                 if (r)
8499                         return r;
8500         }
8501
8502         vmx_set_cpu_caps();
8503
8504         r = alloc_kvm_area();
8505         if (r && nested)
8506                 nested_vmx_hardware_unsetup();
8507
8508         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8509
8510         return r;
8511 }
8512
8513 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8514         .hardware_setup = hardware_setup,
8515         .handle_intel_pt_intr = NULL,
8516
8517         .runtime_ops = &vmx_x86_ops,
8518         .pmu_ops = &intel_pmu_ops,
8519 };
8520
8521 static void vmx_cleanup_l1d_flush(void)
8522 {
8523         if (vmx_l1d_flush_pages) {
8524                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8525                 vmx_l1d_flush_pages = NULL;
8526         }
8527         /* Restore state so sysfs ignores VMX */
8528         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8529 }
8530
8531 static void __vmx_exit(void)
8532 {
8533         allow_smaller_maxphyaddr = false;
8534
8535 #ifdef CONFIG_KEXEC_CORE
8536         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8537         synchronize_rcu();
8538 #endif
8539         vmx_cleanup_l1d_flush();
8540 }
8541
8542 static void vmx_exit(void)
8543 {
8544         kvm_exit();
8545         kvm_x86_vendor_exit();
8546
8547         __vmx_exit();
8548 }
8549 module_exit(vmx_exit);
8550
8551 static int __init vmx_init(void)
8552 {
8553         int r, cpu;
8554
8555         if (!kvm_is_vmx_supported())
8556                 return -EOPNOTSUPP;
8557
8558         /*
8559          * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8560          * to unwind if a later step fails.
8561          */
8562         hv_init_evmcs();
8563
8564         r = kvm_x86_vendor_init(&vmx_init_ops);
8565         if (r)
8566                 return r;
8567
8568         /*
8569          * Must be called after common x86 init so enable_ept is properly set
8570          * up. Hand the parameter mitigation value in which was stored in
8571          * the pre module init parser. If no parameter was given, it will
8572          * contain 'auto' which will be turned into the default 'cond'
8573          * mitigation mode.
8574          */
8575         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8576         if (r)
8577                 goto err_l1d_flush;
8578
8579         vmx_setup_fb_clear_ctrl();
8580
8581         for_each_possible_cpu(cpu) {
8582                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8583
8584                 pi_init_cpu(cpu);
8585         }
8586
8587 #ifdef CONFIG_KEXEC_CORE
8588         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8589                            crash_vmclear_local_loaded_vmcss);
8590 #endif
8591         vmx_check_vmcs12_offsets();
8592
8593         /*
8594          * Shadow paging doesn't have a (further) performance penalty
8595          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8596          * by default
8597          */
8598         if (!enable_ept)
8599                 allow_smaller_maxphyaddr = true;
8600
8601         /*
8602          * Common KVM initialization _must_ come last, after this, /dev/kvm is
8603          * exposed to userspace!
8604          */
8605         r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8606                      THIS_MODULE);
8607         if (r)
8608                 goto err_kvm_init;
8609
8610         return 0;
8611
8612 err_kvm_init:
8613         __vmx_exit();
8614 err_l1d_flush:
8615         kvm_x86_vendor_exit();
8616         return r;
8617 }
8618 module_init(vmx_init);