4ca1f1f4ef1a25bf0ef50b305e9b76b3c6e12e4e
[platform/kernel/linux-starfive.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/debugreg.h>
36 #include <asm/desc.h>
37 #include <asm/fpu/internal.h>
38 #include <asm/io.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kexec.h>
41 #include <asm/perf_event.h>
42 #include <asm/mce.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "irq.h"
54 #include "kvm_cache_regs.h"
55 #include "lapic.h"
56 #include "mmu.h"
57 #include "nested.h"
58 #include "ops.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72         {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91                         enable_unrestricted_guest, bool, S_IRUGO);
92
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118
119 #define MSR_BITMAP_MODE_X2APIC          1
120 #define MSR_BITMAP_MODE_X2APIC_APICV    2
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
133 #define KVM_VM_CR0_ALWAYS_ON                            \
134         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
135          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
136 #define KVM_CR4_GUEST_OWNED_BITS                                      \
137         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
138          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
139
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149         RTIT_STATUS_BYTECNT))
150
151 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
152         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
153
154 /*
155  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
156  * ple_gap:    upper bound on the amount of time between two successive
157  *             executions of PAUSE in a loop. Also indicate if ple enabled.
158  *             According to test, this time is usually smaller than 128 cycles.
159  * ple_window: upper bound on the amount of time a guest is allowed to execute
160  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
161  *             less than 2^12 cycles
162  * Time is measured based on a counter that runs at the same rate as the TSC,
163  * refer SDM volume 3b section 21.6.13 & 22.1.3.
164  */
165 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
166 module_param(ple_gap, uint, 0444);
167
168 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169 module_param(ple_window, uint, 0444);
170
171 /* Default doubles per-vcpu window every exit. */
172 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
173 module_param(ple_window_grow, uint, 0444);
174
175 /* Default resets per-vcpu window every exit to ple_window. */
176 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
177 module_param(ple_window_shrink, uint, 0444);
178
179 /* Default is to compute the maximum so we can never overflow. */
180 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181 module_param(ple_window_max, uint, 0444);
182
183 /* Default is SYSTEM mode, 1 for host-guest mode */
184 int __read_mostly pt_mode = PT_MODE_SYSTEM;
185 module_param(pt_mode, int, S_IRUGO);
186
187 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
188 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
189 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
190
191 /* Storage for pre module init parameter parsing */
192 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
193
194 static const struct {
195         const char *option;
196         bool for_parse;
197 } vmentry_l1d_param[] = {
198         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
199         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
200         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
201         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
202         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
203         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
204 };
205
206 #define L1D_CACHE_ORDER 4
207 static void *vmx_l1d_flush_pages;
208
209 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
210 {
211         struct page *page;
212         unsigned int i;
213
214         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
215                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
216                 return 0;
217         }
218
219         if (!enable_ept) {
220                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
221                 return 0;
222         }
223
224         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225                 u64 msr;
226
227                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
228                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
229                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
230                         return 0;
231                 }
232         }
233
234         /* If set to auto use the default l1tf mitigation method */
235         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
236                 switch (l1tf_mitigation) {
237                 case L1TF_MITIGATION_OFF:
238                         l1tf = VMENTER_L1D_FLUSH_NEVER;
239                         break;
240                 case L1TF_MITIGATION_FLUSH_NOWARN:
241                 case L1TF_MITIGATION_FLUSH:
242                 case L1TF_MITIGATION_FLUSH_NOSMT:
243                         l1tf = VMENTER_L1D_FLUSH_COND;
244                         break;
245                 case L1TF_MITIGATION_FULL:
246                 case L1TF_MITIGATION_FULL_FORCE:
247                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248                         break;
249                 }
250         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
251                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
252         }
253
254         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
255             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
256                 /*
257                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
258                  * lifetime and so should not be charged to a memcg.
259                  */
260                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261                 if (!page)
262                         return -ENOMEM;
263                 vmx_l1d_flush_pages = page_address(page);
264
265                 /*
266                  * Initialize each page with a different pattern in
267                  * order to protect against KSM in the nested
268                  * virtualization case.
269                  */
270                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
271                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
272                                PAGE_SIZE);
273                 }
274         }
275
276         l1tf_vmx_mitigation = l1tf;
277
278         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
279                 static_branch_enable(&vmx_l1d_should_flush);
280         else
281                 static_branch_disable(&vmx_l1d_should_flush);
282
283         if (l1tf == VMENTER_L1D_FLUSH_COND)
284                 static_branch_enable(&vmx_l1d_flush_cond);
285         else
286                 static_branch_disable(&vmx_l1d_flush_cond);
287         return 0;
288 }
289
290 static int vmentry_l1d_flush_parse(const char *s)
291 {
292         unsigned int i;
293
294         if (s) {
295                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
296                         if (vmentry_l1d_param[i].for_parse &&
297                             sysfs_streq(s, vmentry_l1d_param[i].option))
298                                 return i;
299                 }
300         }
301         return -EINVAL;
302 }
303
304 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
305 {
306         int l1tf, ret;
307
308         l1tf = vmentry_l1d_flush_parse(s);
309         if (l1tf < 0)
310                 return l1tf;
311
312         if (!boot_cpu_has(X86_BUG_L1TF))
313                 return 0;
314
315         /*
316          * Has vmx_init() run already? If not then this is the pre init
317          * parameter parsing. In that case just store the value and let
318          * vmx_init() do the proper setup after enable_ept has been
319          * established.
320          */
321         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
322                 vmentry_l1d_flush_param = l1tf;
323                 return 0;
324         }
325
326         mutex_lock(&vmx_l1d_flush_mutex);
327         ret = vmx_setup_l1d_flush(l1tf);
328         mutex_unlock(&vmx_l1d_flush_mutex);
329         return ret;
330 }
331
332 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
333 {
334         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
335                 return sprintf(s, "???\n");
336
337         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
338 }
339
340 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
341         .set = vmentry_l1d_flush_set,
342         .get = vmentry_l1d_flush_get,
343 };
344 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
345
346 static bool guest_state_valid(struct kvm_vcpu *vcpu);
347 static u32 vmx_segment_access_rights(struct kvm_segment *var);
348 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349                                                           u32 msr, int type);
350
351 void vmx_vmexit(void);
352
353 #define vmx_insn_failed(fmt...)         \
354 do {                                    \
355         WARN_ONCE(1, fmt);              \
356         pr_warn_ratelimited(fmt);       \
357 } while (0)
358
359 asmlinkage void vmread_error(unsigned long field, bool fault)
360 {
361         if (fault)
362                 kvm_spurious_fault();
363         else
364                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
365 }
366
367 noinline void vmwrite_error(unsigned long field, unsigned long value)
368 {
369         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
370                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
371 }
372
373 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
374 {
375         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
376 }
377
378 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
379 {
380         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
381 }
382
383 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
384 {
385         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
386                         ext, vpid, gva);
387 }
388
389 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
390 {
391         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
392                         ext, eptp, gpa);
393 }
394
395 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
396 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
397 /*
398  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
399  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
400  */
401 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
402
403 /*
404  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
405  * can find which vCPU should be waken up.
406  */
407 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
408 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
409
410 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
411 static DEFINE_SPINLOCK(vmx_vpid_lock);
412
413 struct vmcs_config vmcs_config;
414 struct vmx_capability vmx_capability;
415
416 #define VMX_SEGMENT_FIELD(seg)                                  \
417         [VCPU_SREG_##seg] = {                                   \
418                 .selector = GUEST_##seg##_SELECTOR,             \
419                 .base = GUEST_##seg##_BASE,                     \
420                 .limit = GUEST_##seg##_LIMIT,                   \
421                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
422         }
423
424 static const struct kvm_vmx_segment_field {
425         unsigned selector;
426         unsigned base;
427         unsigned limit;
428         unsigned ar_bytes;
429 } kvm_vmx_segment_fields[] = {
430         VMX_SEGMENT_FIELD(CS),
431         VMX_SEGMENT_FIELD(DS),
432         VMX_SEGMENT_FIELD(ES),
433         VMX_SEGMENT_FIELD(FS),
434         VMX_SEGMENT_FIELD(GS),
435         VMX_SEGMENT_FIELD(SS),
436         VMX_SEGMENT_FIELD(TR),
437         VMX_SEGMENT_FIELD(LDTR),
438 };
439
440 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
441 {
442         vmx->segment_cache.bitmask = 0;
443 }
444
445 static unsigned long host_idt_base;
446
447 /*
448  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
449  * will emulate SYSCALL in legacy mode if the vendor string in guest
450  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
451  * support this emulation, IA32_STAR must always be included in
452  * vmx_msr_index[], even in i386 builds.
453  */
454 const u32 vmx_msr_index[] = {
455 #ifdef CONFIG_X86_64
456         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
457 #endif
458         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
459         MSR_IA32_TSX_CTRL,
460 };
461
462 #if IS_ENABLED(CONFIG_HYPERV)
463 static bool __read_mostly enlightened_vmcs = true;
464 module_param(enlightened_vmcs, bool, 0444);
465
466 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
467 static void check_ept_pointer_match(struct kvm *kvm)
468 {
469         struct kvm_vcpu *vcpu;
470         u64 tmp_eptp = INVALID_PAGE;
471         int i;
472
473         kvm_for_each_vcpu(i, vcpu, kvm) {
474                 if (!VALID_PAGE(tmp_eptp)) {
475                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
476                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
477                         to_kvm_vmx(kvm)->ept_pointers_match
478                                 = EPT_POINTERS_MISMATCH;
479                         return;
480                 }
481         }
482
483         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
484 }
485
486 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
487                 void *data)
488 {
489         struct kvm_tlb_range *range = data;
490
491         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
492                         range->pages);
493 }
494
495 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
496                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
497 {
498         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
499
500         /*
501          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
502          * of the base of EPT PML4 table, strip off EPT configuration
503          * information.
504          */
505         if (range)
506                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
507                                 kvm_fill_hv_flush_list_func, (void *)range);
508         else
509                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
510 }
511
512 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
513                 struct kvm_tlb_range *range)
514 {
515         struct kvm_vcpu *vcpu;
516         int ret = 0, i;
517
518         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
519
520         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
521                 check_ept_pointer_match(kvm);
522
523         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
524                 kvm_for_each_vcpu(i, vcpu, kvm) {
525                         /* If ept_pointer is invalid pointer, bypass flush request. */
526                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
527                                 ret |= __hv_remote_flush_tlb_with_range(
528                                         kvm, vcpu, range);
529                 }
530         } else {
531                 ret = __hv_remote_flush_tlb_with_range(kvm,
532                                 kvm_get_vcpu(kvm, 0), range);
533         }
534
535         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
536         return ret;
537 }
538 static int hv_remote_flush_tlb(struct kvm *kvm)
539 {
540         return hv_remote_flush_tlb_with_range(kvm, NULL);
541 }
542
543 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
544 {
545         struct hv_enlightened_vmcs *evmcs;
546         struct hv_partition_assist_pg **p_hv_pa_pg =
547                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
548         /*
549          * Synthetic VM-Exit is not enabled in current code and so All
550          * evmcs in singe VM shares same assist page.
551          */
552         if (!*p_hv_pa_pg)
553                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
554
555         if (!*p_hv_pa_pg)
556                 return -ENOMEM;
557
558         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
559
560         evmcs->partition_assist_page =
561                 __pa(*p_hv_pa_pg);
562         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
563         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
564
565         return 0;
566 }
567
568 #endif /* IS_ENABLED(CONFIG_HYPERV) */
569
570 /*
571  * Comment's format: document - errata name - stepping - processor name.
572  * Refer from
573  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
574  */
575 static u32 vmx_preemption_cpu_tfms[] = {
576 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
577 0x000206E6,
578 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
579 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
580 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
581 0x00020652,
582 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
583 0x00020655,
584 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
585 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
586 /*
587  * 320767.pdf - AAP86  - B1 -
588  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
589  */
590 0x000106E5,
591 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
592 0x000106A0,
593 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
594 0x000106A1,
595 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
596 0x000106A4,
597  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
598  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
599  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
600 0x000106A5,
601  /* Xeon E3-1220 V2 */
602 0x000306A8,
603 };
604
605 static inline bool cpu_has_broken_vmx_preemption_timer(void)
606 {
607         u32 eax = cpuid_eax(0x00000001), i;
608
609         /* Clear the reserved bits */
610         eax &= ~(0x3U << 14 | 0xfU << 28);
611         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
612                 if (eax == vmx_preemption_cpu_tfms[i])
613                         return true;
614
615         return false;
616 }
617
618 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
619 {
620         return flexpriority_enabled && lapic_in_kernel(vcpu);
621 }
622
623 static inline bool report_flexpriority(void)
624 {
625         return flexpriority_enabled;
626 }
627
628 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
629 {
630         int i;
631
632         for (i = 0; i < vmx->nmsrs; ++i)
633                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
634                         return i;
635         return -1;
636 }
637
638 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
639 {
640         int i;
641
642         i = __find_msr_index(vmx, msr);
643         if (i >= 0)
644                 return &vmx->guest_msrs[i];
645         return NULL;
646 }
647
648 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
649 {
650         int ret = 0;
651
652         u64 old_msr_data = msr->data;
653         msr->data = data;
654         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
655                 preempt_disable();
656                 ret = kvm_set_shared_msr(msr->index, msr->data,
657                                          msr->mask);
658                 preempt_enable();
659                 if (ret)
660                         msr->data = old_msr_data;
661         }
662         return ret;
663 }
664
665 #ifdef CONFIG_KEXEC_CORE
666 static void crash_vmclear_local_loaded_vmcss(void)
667 {
668         int cpu = raw_smp_processor_id();
669         struct loaded_vmcs *v;
670
671         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
672                             loaded_vmcss_on_cpu_link)
673                 vmcs_clear(v->vmcs);
674 }
675 #endif /* CONFIG_KEXEC_CORE */
676
677 static void __loaded_vmcs_clear(void *arg)
678 {
679         struct loaded_vmcs *loaded_vmcs = arg;
680         int cpu = raw_smp_processor_id();
681
682         if (loaded_vmcs->cpu != cpu)
683                 return; /* vcpu migration can race with cpu offline */
684         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
685                 per_cpu(current_vmcs, cpu) = NULL;
686
687         vmcs_clear(loaded_vmcs->vmcs);
688         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
689                 vmcs_clear(loaded_vmcs->shadow_vmcs);
690
691         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
692
693         /*
694          * Ensure all writes to loaded_vmcs, including deleting it from its
695          * current percpu list, complete before setting loaded_vmcs->vcpu to
696          * -1, otherwise a different cpu can see vcpu == -1 first and add
697          * loaded_vmcs to its percpu list before it's deleted from this cpu's
698          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
699          */
700         smp_wmb();
701
702         loaded_vmcs->cpu = -1;
703         loaded_vmcs->launched = 0;
704 }
705
706 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
707 {
708         int cpu = loaded_vmcs->cpu;
709
710         if (cpu != -1)
711                 smp_call_function_single(cpu,
712                          __loaded_vmcs_clear, loaded_vmcs, 1);
713 }
714
715 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
716                                        unsigned field)
717 {
718         bool ret;
719         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
720
721         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
722                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
723                 vmx->segment_cache.bitmask = 0;
724         }
725         ret = vmx->segment_cache.bitmask & mask;
726         vmx->segment_cache.bitmask |= mask;
727         return ret;
728 }
729
730 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
731 {
732         u16 *p = &vmx->segment_cache.seg[seg].selector;
733
734         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
735                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
736         return *p;
737 }
738
739 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
740 {
741         ulong *p = &vmx->segment_cache.seg[seg].base;
742
743         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
744                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
745         return *p;
746 }
747
748 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
749 {
750         u32 *p = &vmx->segment_cache.seg[seg].limit;
751
752         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
753                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
754         return *p;
755 }
756
757 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
758 {
759         u32 *p = &vmx->segment_cache.seg[seg].ar;
760
761         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
762                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
763         return *p;
764 }
765
766 void update_exception_bitmap(struct kvm_vcpu *vcpu)
767 {
768         u32 eb;
769
770         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
771              (1u << DB_VECTOR) | (1u << AC_VECTOR);
772         /*
773          * Guest access to VMware backdoor ports could legitimately
774          * trigger #GP because of TSS I/O permission bitmap.
775          * We intercept those #GP and allow access to them anyway
776          * as VMware does.
777          */
778         if (enable_vmware_backdoor)
779                 eb |= (1u << GP_VECTOR);
780         if ((vcpu->guest_debug &
781              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
782             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
783                 eb |= 1u << BP_VECTOR;
784         if (to_vmx(vcpu)->rmode.vm86_active)
785                 eb = ~0;
786         if (enable_ept)
787                 eb &= ~(1u << PF_VECTOR);
788
789         /* When we are running a nested L2 guest and L1 specified for it a
790          * certain exception bitmap, we must trap the same exceptions and pass
791          * them to L1. When running L2, we will only handle the exceptions
792          * specified above if L1 did not want them.
793          */
794         if (is_guest_mode(vcpu))
795                 eb |= get_vmcs12(vcpu)->exception_bitmap;
796
797         vmcs_write32(EXCEPTION_BITMAP, eb);
798 }
799
800 /*
801  * Check if MSR is intercepted for currently loaded MSR bitmap.
802  */
803 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
804 {
805         unsigned long *msr_bitmap;
806         int f = sizeof(unsigned long);
807
808         if (!cpu_has_vmx_msr_bitmap())
809                 return true;
810
811         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
812
813         if (msr <= 0x1fff) {
814                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
815         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
816                 msr &= 0x1fff;
817                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
818         }
819
820         return true;
821 }
822
823 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
824                 unsigned long entry, unsigned long exit)
825 {
826         vm_entry_controls_clearbit(vmx, entry);
827         vm_exit_controls_clearbit(vmx, exit);
828 }
829
830 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
831 {
832         unsigned int i;
833
834         for (i = 0; i < m->nr; ++i) {
835                 if (m->val[i].index == msr)
836                         return i;
837         }
838         return -ENOENT;
839 }
840
841 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
842 {
843         int i;
844         struct msr_autoload *m = &vmx->msr_autoload;
845
846         switch (msr) {
847         case MSR_EFER:
848                 if (cpu_has_load_ia32_efer()) {
849                         clear_atomic_switch_msr_special(vmx,
850                                         VM_ENTRY_LOAD_IA32_EFER,
851                                         VM_EXIT_LOAD_IA32_EFER);
852                         return;
853                 }
854                 break;
855         case MSR_CORE_PERF_GLOBAL_CTRL:
856                 if (cpu_has_load_perf_global_ctrl()) {
857                         clear_atomic_switch_msr_special(vmx,
858                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
859                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
860                         return;
861                 }
862                 break;
863         }
864         i = vmx_find_msr_index(&m->guest, msr);
865         if (i < 0)
866                 goto skip_guest;
867         --m->guest.nr;
868         m->guest.val[i] = m->guest.val[m->guest.nr];
869         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
870
871 skip_guest:
872         i = vmx_find_msr_index(&m->host, msr);
873         if (i < 0)
874                 return;
875
876         --m->host.nr;
877         m->host.val[i] = m->host.val[m->host.nr];
878         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
879 }
880
881 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
882                 unsigned long entry, unsigned long exit,
883                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
884                 u64 guest_val, u64 host_val)
885 {
886         vmcs_write64(guest_val_vmcs, guest_val);
887         if (host_val_vmcs != HOST_IA32_EFER)
888                 vmcs_write64(host_val_vmcs, host_val);
889         vm_entry_controls_setbit(vmx, entry);
890         vm_exit_controls_setbit(vmx, exit);
891 }
892
893 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
894                                   u64 guest_val, u64 host_val, bool entry_only)
895 {
896         int i, j = 0;
897         struct msr_autoload *m = &vmx->msr_autoload;
898
899         switch (msr) {
900         case MSR_EFER:
901                 if (cpu_has_load_ia32_efer()) {
902                         add_atomic_switch_msr_special(vmx,
903                                         VM_ENTRY_LOAD_IA32_EFER,
904                                         VM_EXIT_LOAD_IA32_EFER,
905                                         GUEST_IA32_EFER,
906                                         HOST_IA32_EFER,
907                                         guest_val, host_val);
908                         return;
909                 }
910                 break;
911         case MSR_CORE_PERF_GLOBAL_CTRL:
912                 if (cpu_has_load_perf_global_ctrl()) {
913                         add_atomic_switch_msr_special(vmx,
914                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
915                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
916                                         GUEST_IA32_PERF_GLOBAL_CTRL,
917                                         HOST_IA32_PERF_GLOBAL_CTRL,
918                                         guest_val, host_val);
919                         return;
920                 }
921                 break;
922         case MSR_IA32_PEBS_ENABLE:
923                 /* PEBS needs a quiescent period after being disabled (to write
924                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
925                  * provide that period, so a CPU could write host's record into
926                  * guest's memory.
927                  */
928                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
929         }
930
931         i = vmx_find_msr_index(&m->guest, msr);
932         if (!entry_only)
933                 j = vmx_find_msr_index(&m->host, msr);
934
935         if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
936                 (j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
937                 printk_once(KERN_WARNING "Not enough msr switch entries. "
938                                 "Can't add msr %x\n", msr);
939                 return;
940         }
941         if (i < 0) {
942                 i = m->guest.nr++;
943                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
944         }
945         m->guest.val[i].index = msr;
946         m->guest.val[i].value = guest_val;
947
948         if (entry_only)
949                 return;
950
951         if (j < 0) {
952                 j = m->host.nr++;
953                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
954         }
955         m->host.val[j].index = msr;
956         m->host.val[j].value = host_val;
957 }
958
959 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
960 {
961         u64 guest_efer = vmx->vcpu.arch.efer;
962         u64 ignore_bits = 0;
963
964         /* Shadow paging assumes NX to be available.  */
965         if (!enable_ept)
966                 guest_efer |= EFER_NX;
967
968         /*
969          * LMA and LME handled by hardware; SCE meaningless outside long mode.
970          */
971         ignore_bits |= EFER_SCE;
972 #ifdef CONFIG_X86_64
973         ignore_bits |= EFER_LMA | EFER_LME;
974         /* SCE is meaningful only in long mode on Intel */
975         if (guest_efer & EFER_LMA)
976                 ignore_bits &= ~(u64)EFER_SCE;
977 #endif
978
979         /*
980          * On EPT, we can't emulate NX, so we must switch EFER atomically.
981          * On CPUs that support "load IA32_EFER", always switch EFER
982          * atomically, since it's faster than switching it manually.
983          */
984         if (cpu_has_load_ia32_efer() ||
985             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
986                 if (!(guest_efer & EFER_LMA))
987                         guest_efer &= ~EFER_LME;
988                 if (guest_efer != host_efer)
989                         add_atomic_switch_msr(vmx, MSR_EFER,
990                                               guest_efer, host_efer, false);
991                 else
992                         clear_atomic_switch_msr(vmx, MSR_EFER);
993                 return false;
994         } else {
995                 clear_atomic_switch_msr(vmx, MSR_EFER);
996
997                 guest_efer &= ~ignore_bits;
998                 guest_efer |= host_efer & ignore_bits;
999
1000                 vmx->guest_msrs[efer_offset].data = guest_efer;
1001                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1002
1003                 return true;
1004         }
1005 }
1006
1007 #ifdef CONFIG_X86_32
1008 /*
1009  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1010  * VMCS rather than the segment table.  KVM uses this helper to figure
1011  * out the current bases to poke them into the VMCS before entry.
1012  */
1013 static unsigned long segment_base(u16 selector)
1014 {
1015         struct desc_struct *table;
1016         unsigned long v;
1017
1018         if (!(selector & ~SEGMENT_RPL_MASK))
1019                 return 0;
1020
1021         table = get_current_gdt_ro();
1022
1023         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1024                 u16 ldt_selector = kvm_read_ldt();
1025
1026                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1027                         return 0;
1028
1029                 table = (struct desc_struct *)segment_base(ldt_selector);
1030         }
1031         v = get_desc_base(&table[selector >> 3]);
1032         return v;
1033 }
1034 #endif
1035
1036 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1037 {
1038         return vmx_pt_mode_is_host_guest() &&
1039                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1040 }
1041
1042 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1043 {
1044         u32 i;
1045
1046         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1047         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1048         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1049         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1050         for (i = 0; i < addr_range; i++) {
1051                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1052                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1053         }
1054 }
1055
1056 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1057 {
1058         u32 i;
1059
1060         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1061         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1062         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1063         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1064         for (i = 0; i < addr_range; i++) {
1065                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1066                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1067         }
1068 }
1069
1070 static void pt_guest_enter(struct vcpu_vmx *vmx)
1071 {
1072         if (vmx_pt_mode_is_system())
1073                 return;
1074
1075         /*
1076          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1077          * Save host state before VM entry.
1078          */
1079         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1080         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1081                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1082                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1083                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1084         }
1085 }
1086
1087 static void pt_guest_exit(struct vcpu_vmx *vmx)
1088 {
1089         if (vmx_pt_mode_is_system())
1090                 return;
1091
1092         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1093                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1094                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1095         }
1096
1097         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1098         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1099 }
1100
1101 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1102                         unsigned long fs_base, unsigned long gs_base)
1103 {
1104         if (unlikely(fs_sel != host->fs_sel)) {
1105                 if (!(fs_sel & 7))
1106                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1107                 else
1108                         vmcs_write16(HOST_FS_SELECTOR, 0);
1109                 host->fs_sel = fs_sel;
1110         }
1111         if (unlikely(gs_sel != host->gs_sel)) {
1112                 if (!(gs_sel & 7))
1113                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1114                 else
1115                         vmcs_write16(HOST_GS_SELECTOR, 0);
1116                 host->gs_sel = gs_sel;
1117         }
1118         if (unlikely(fs_base != host->fs_base)) {
1119                 vmcs_writel(HOST_FS_BASE, fs_base);
1120                 host->fs_base = fs_base;
1121         }
1122         if (unlikely(gs_base != host->gs_base)) {
1123                 vmcs_writel(HOST_GS_BASE, gs_base);
1124                 host->gs_base = gs_base;
1125         }
1126 }
1127
1128 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1129 {
1130         struct vcpu_vmx *vmx = to_vmx(vcpu);
1131         struct vmcs_host_state *host_state;
1132 #ifdef CONFIG_X86_64
1133         int cpu = raw_smp_processor_id();
1134 #endif
1135         unsigned long fs_base, gs_base;
1136         u16 fs_sel, gs_sel;
1137         int i;
1138
1139         vmx->req_immediate_exit = false;
1140
1141         /*
1142          * Note that guest MSRs to be saved/restored can also be changed
1143          * when guest state is loaded. This happens when guest transitions
1144          * to/from long-mode by setting MSR_EFER.LMA.
1145          */
1146         if (!vmx->guest_msrs_ready) {
1147                 vmx->guest_msrs_ready = true;
1148                 for (i = 0; i < vmx->save_nmsrs; ++i)
1149                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1150                                            vmx->guest_msrs[i].data,
1151                                            vmx->guest_msrs[i].mask);
1152
1153         }
1154
1155         if (vmx->nested.need_vmcs12_to_shadow_sync)
1156                 nested_sync_vmcs12_to_shadow(vcpu);
1157
1158         if (vmx->guest_state_loaded)
1159                 return;
1160
1161         host_state = &vmx->loaded_vmcs->host_state;
1162
1163         /*
1164          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1165          * allow segment selectors with cpl > 0 or ti == 1.
1166          */
1167         host_state->ldt_sel = kvm_read_ldt();
1168
1169 #ifdef CONFIG_X86_64
1170         savesegment(ds, host_state->ds_sel);
1171         savesegment(es, host_state->es_sel);
1172
1173         gs_base = cpu_kernelmode_gs_base(cpu);
1174         if (likely(is_64bit_mm(current->mm))) {
1175                 save_fsgs_for_kvm();
1176                 fs_sel = current->thread.fsindex;
1177                 gs_sel = current->thread.gsindex;
1178                 fs_base = current->thread.fsbase;
1179                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1180         } else {
1181                 savesegment(fs, fs_sel);
1182                 savesegment(gs, gs_sel);
1183                 fs_base = read_msr(MSR_FS_BASE);
1184                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1185         }
1186
1187         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1188 #else
1189         savesegment(fs, fs_sel);
1190         savesegment(gs, gs_sel);
1191         fs_base = segment_base(fs_sel);
1192         gs_base = segment_base(gs_sel);
1193 #endif
1194
1195         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1196         vmx->guest_state_loaded = true;
1197 }
1198
1199 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1200 {
1201         struct vmcs_host_state *host_state;
1202
1203         if (!vmx->guest_state_loaded)
1204                 return;
1205
1206         host_state = &vmx->loaded_vmcs->host_state;
1207
1208         ++vmx->vcpu.stat.host_state_reload;
1209
1210 #ifdef CONFIG_X86_64
1211         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1212 #endif
1213         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1214                 kvm_load_ldt(host_state->ldt_sel);
1215 #ifdef CONFIG_X86_64
1216                 load_gs_index(host_state->gs_sel);
1217 #else
1218                 loadsegment(gs, host_state->gs_sel);
1219 #endif
1220         }
1221         if (host_state->fs_sel & 7)
1222                 loadsegment(fs, host_state->fs_sel);
1223 #ifdef CONFIG_X86_64
1224         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1225                 loadsegment(ds, host_state->ds_sel);
1226                 loadsegment(es, host_state->es_sel);
1227         }
1228 #endif
1229         invalidate_tss_limit();
1230 #ifdef CONFIG_X86_64
1231         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1232 #endif
1233         load_fixmap_gdt(raw_smp_processor_id());
1234         vmx->guest_state_loaded = false;
1235         vmx->guest_msrs_ready = false;
1236 }
1237
1238 #ifdef CONFIG_X86_64
1239 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1240 {
1241         preempt_disable();
1242         if (vmx->guest_state_loaded)
1243                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1244         preempt_enable();
1245         return vmx->msr_guest_kernel_gs_base;
1246 }
1247
1248 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1249 {
1250         preempt_disable();
1251         if (vmx->guest_state_loaded)
1252                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1253         preempt_enable();
1254         vmx->msr_guest_kernel_gs_base = data;
1255 }
1256 #endif
1257
1258 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1259 {
1260         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1261         struct pi_desc old, new;
1262         unsigned int dest;
1263
1264         /*
1265          * In case of hot-plug or hot-unplug, we may have to undo
1266          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1267          * always keep PI.NDST up to date for simplicity: it makes the
1268          * code easier, and CPU migration is not a fast path.
1269          */
1270         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1271                 return;
1272
1273         /*
1274          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1275          * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1276          * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1277          * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1278          * correctly.
1279          */
1280         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1281                 pi_clear_sn(pi_desc);
1282                 goto after_clear_sn;
1283         }
1284
1285         /* The full case.  */
1286         do {
1287                 old.control = new.control = pi_desc->control;
1288
1289                 dest = cpu_physical_id(cpu);
1290
1291                 if (x2apic_enabled())
1292                         new.ndst = dest;
1293                 else
1294                         new.ndst = (dest << 8) & 0xFF00;
1295
1296                 new.sn = 0;
1297         } while (cmpxchg64(&pi_desc->control, old.control,
1298                            new.control) != old.control);
1299
1300 after_clear_sn:
1301
1302         /*
1303          * Clear SN before reading the bitmap.  The VT-d firmware
1304          * writes the bitmap and reads SN atomically (5.2.3 in the
1305          * spec), so it doesn't really have a memory barrier that
1306          * pairs with this, but we cannot do that and we need one.
1307          */
1308         smp_mb__after_atomic();
1309
1310         if (!pi_is_pir_empty(pi_desc))
1311                 pi_set_on(pi_desc);
1312 }
1313
1314 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1315 {
1316         struct vcpu_vmx *vmx = to_vmx(vcpu);
1317         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1318
1319         if (!already_loaded) {
1320                 loaded_vmcs_clear(vmx->loaded_vmcs);
1321                 local_irq_disable();
1322
1323                 /*
1324                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1325                  * this cpu's percpu list, otherwise it may not yet be deleted
1326                  * from its previous cpu's percpu list.  Pairs with the
1327                  * smb_wmb() in __loaded_vmcs_clear().
1328                  */
1329                 smp_rmb();
1330
1331                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1332                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1333                 local_irq_enable();
1334         }
1335
1336         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1337                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1338                 vmcs_load(vmx->loaded_vmcs->vmcs);
1339                 indirect_branch_prediction_barrier();
1340         }
1341
1342         if (!already_loaded) {
1343                 void *gdt = get_current_gdt_ro();
1344                 unsigned long sysenter_esp;
1345
1346                 /*
1347                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1348                  * TLB entries from its previous association with the vCPU.
1349                  */
1350                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1351
1352                 /*
1353                  * Linux uses per-cpu TSS and GDT, so set these when switching
1354                  * processors.  See 22.2.4.
1355                  */
1356                 vmcs_writel(HOST_TR_BASE,
1357                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1358                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1359
1360                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1361                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1362
1363                 vmx->loaded_vmcs->cpu = cpu;
1364         }
1365
1366         /* Setup TSC multiplier */
1367         if (kvm_has_tsc_control &&
1368             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1369                 decache_tsc_multiplier(vmx);
1370 }
1371
1372 /*
1373  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1374  * vcpu mutex is already taken.
1375  */
1376 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1377 {
1378         struct vcpu_vmx *vmx = to_vmx(vcpu);
1379
1380         vmx_vcpu_load_vmcs(vcpu, cpu);
1381
1382         vmx_vcpu_pi_load(vcpu, cpu);
1383
1384         vmx->host_debugctlmsr = get_debugctlmsr();
1385 }
1386
1387 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1388 {
1389         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1390
1391         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1392                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1393                 !kvm_vcpu_apicv_active(vcpu))
1394                 return;
1395
1396         /* Set SN when the vCPU is preempted */
1397         if (vcpu->preempted)
1398                 pi_set_sn(pi_desc);
1399 }
1400
1401 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1402 {
1403         vmx_vcpu_pi_put(vcpu);
1404
1405         vmx_prepare_switch_to_host(to_vmx(vcpu));
1406 }
1407
1408 static bool emulation_required(struct kvm_vcpu *vcpu)
1409 {
1410         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1411 }
1412
1413 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1414 {
1415         struct vcpu_vmx *vmx = to_vmx(vcpu);
1416         unsigned long rflags, save_rflags;
1417
1418         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1419                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1420                 rflags = vmcs_readl(GUEST_RFLAGS);
1421                 if (vmx->rmode.vm86_active) {
1422                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1423                         save_rflags = vmx->rmode.save_rflags;
1424                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1425                 }
1426                 vmx->rflags = rflags;
1427         }
1428         return vmx->rflags;
1429 }
1430
1431 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1432 {
1433         struct vcpu_vmx *vmx = to_vmx(vcpu);
1434         unsigned long old_rflags;
1435
1436         if (enable_unrestricted_guest) {
1437                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1438                 vmx->rflags = rflags;
1439                 vmcs_writel(GUEST_RFLAGS, rflags);
1440                 return;
1441         }
1442
1443         old_rflags = vmx_get_rflags(vcpu);
1444         vmx->rflags = rflags;
1445         if (vmx->rmode.vm86_active) {
1446                 vmx->rmode.save_rflags = rflags;
1447                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1448         }
1449         vmcs_writel(GUEST_RFLAGS, rflags);
1450
1451         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1452                 vmx->emulation_required = emulation_required(vcpu);
1453 }
1454
1455 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1456 {
1457         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1458         int ret = 0;
1459
1460         if (interruptibility & GUEST_INTR_STATE_STI)
1461                 ret |= KVM_X86_SHADOW_INT_STI;
1462         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1463                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1464
1465         return ret;
1466 }
1467
1468 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1469 {
1470         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1471         u32 interruptibility = interruptibility_old;
1472
1473         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1474
1475         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1476                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1477         else if (mask & KVM_X86_SHADOW_INT_STI)
1478                 interruptibility |= GUEST_INTR_STATE_STI;
1479
1480         if ((interruptibility != interruptibility_old))
1481                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1482 }
1483
1484 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1485 {
1486         struct vcpu_vmx *vmx = to_vmx(vcpu);
1487         unsigned long value;
1488
1489         /*
1490          * Any MSR write that attempts to change bits marked reserved will
1491          * case a #GP fault.
1492          */
1493         if (data & vmx->pt_desc.ctl_bitmask)
1494                 return 1;
1495
1496         /*
1497          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1498          * result in a #GP unless the same write also clears TraceEn.
1499          */
1500         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1501                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1502                 return 1;
1503
1504         /*
1505          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1506          * and FabricEn would cause #GP, if
1507          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1508          */
1509         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1510                 !(data & RTIT_CTL_FABRIC_EN) &&
1511                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1512                                         PT_CAP_single_range_output))
1513                 return 1;
1514
1515         /*
1516          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1517          * utilize encodings marked reserved will casue a #GP fault.
1518          */
1519         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1520         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1521                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1522                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1523                 return 1;
1524         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1525                                                 PT_CAP_cycle_thresholds);
1526         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1527                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1528                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1529                 return 1;
1530         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1531         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1532                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1533                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1534                 return 1;
1535
1536         /*
1537          * If ADDRx_CFG is reserved or the encodings is >2 will
1538          * cause a #GP fault.
1539          */
1540         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1541         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1542                 return 1;
1543         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1544         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1545                 return 1;
1546         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1547         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1548                 return 1;
1549         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1550         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1551                 return 1;
1552
1553         return 0;
1554 }
1555
1556 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1557 {
1558         unsigned long rip;
1559
1560         /*
1561          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1562          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1563          * set when EPT misconfig occurs.  In practice, real hardware updates
1564          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1565          * (namely Hyper-V) don't set it due to it being undefined behavior,
1566          * i.e. we end up advancing IP with some random value.
1567          */
1568         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1569             to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1570                 rip = kvm_rip_read(vcpu);
1571                 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1572                 kvm_rip_write(vcpu, rip);
1573         } else {
1574                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1575                         return 0;
1576         }
1577
1578         /* skipping an emulated instruction also counts */
1579         vmx_set_interrupt_shadow(vcpu, 0);
1580
1581         return 1;
1582 }
1583
1584
1585 /*
1586  * Recognizes a pending MTF VM-exit and records the nested state for later
1587  * delivery.
1588  */
1589 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1590 {
1591         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1592         struct vcpu_vmx *vmx = to_vmx(vcpu);
1593
1594         if (!is_guest_mode(vcpu))
1595                 return;
1596
1597         /*
1598          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1599          * T-bit traps. As instruction emulation is completed (i.e. at the
1600          * instruction boundary), any #DB exception pending delivery must be a
1601          * debug-trap. Record the pending MTF state to be delivered in
1602          * vmx_check_nested_events().
1603          */
1604         if (nested_cpu_has_mtf(vmcs12) &&
1605             (!vcpu->arch.exception.pending ||
1606              vcpu->arch.exception.nr == DB_VECTOR))
1607                 vmx->nested.mtf_pending = true;
1608         else
1609                 vmx->nested.mtf_pending = false;
1610 }
1611
1612 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1613 {
1614         vmx_update_emulated_instruction(vcpu);
1615         return skip_emulated_instruction(vcpu);
1616 }
1617
1618 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1619 {
1620         /*
1621          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1622          * explicitly skip the instruction because if the HLT state is set,
1623          * then the instruction is already executing and RIP has already been
1624          * advanced.
1625          */
1626         if (kvm_hlt_in_guest(vcpu->kvm) &&
1627                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1628                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1629 }
1630
1631 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1632 {
1633         struct vcpu_vmx *vmx = to_vmx(vcpu);
1634         unsigned nr = vcpu->arch.exception.nr;
1635         bool has_error_code = vcpu->arch.exception.has_error_code;
1636         u32 error_code = vcpu->arch.exception.error_code;
1637         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1638
1639         kvm_deliver_exception_payload(vcpu);
1640
1641         if (has_error_code) {
1642                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1643                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1644         }
1645
1646         if (vmx->rmode.vm86_active) {
1647                 int inc_eip = 0;
1648                 if (kvm_exception_is_soft(nr))
1649                         inc_eip = vcpu->arch.event_exit_inst_len;
1650                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1651                 return;
1652         }
1653
1654         WARN_ON_ONCE(vmx->emulation_required);
1655
1656         if (kvm_exception_is_soft(nr)) {
1657                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1658                              vmx->vcpu.arch.event_exit_inst_len);
1659                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1660         } else
1661                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1662
1663         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1664
1665         vmx_clear_hlt(vcpu);
1666 }
1667
1668 /*
1669  * Swap MSR entry in host/guest MSR entry array.
1670  */
1671 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1672 {
1673         struct shared_msr_entry tmp;
1674
1675         tmp = vmx->guest_msrs[to];
1676         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1677         vmx->guest_msrs[from] = tmp;
1678 }
1679
1680 /*
1681  * Set up the vmcs to automatically save and restore system
1682  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1683  * mode, as fiddling with msrs is very expensive.
1684  */
1685 static void setup_msrs(struct vcpu_vmx *vmx)
1686 {
1687         int save_nmsrs, index;
1688
1689         save_nmsrs = 0;
1690 #ifdef CONFIG_X86_64
1691         /*
1692          * The SYSCALL MSRs are only needed on long mode guests, and only
1693          * when EFER.SCE is set.
1694          */
1695         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1696                 index = __find_msr_index(vmx, MSR_STAR);
1697                 if (index >= 0)
1698                         move_msr_up(vmx, index, save_nmsrs++);
1699                 index = __find_msr_index(vmx, MSR_LSTAR);
1700                 if (index >= 0)
1701                         move_msr_up(vmx, index, save_nmsrs++);
1702                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1703                 if (index >= 0)
1704                         move_msr_up(vmx, index, save_nmsrs++);
1705         }
1706 #endif
1707         index = __find_msr_index(vmx, MSR_EFER);
1708         if (index >= 0 && update_transition_efer(vmx, index))
1709                 move_msr_up(vmx, index, save_nmsrs++);
1710         index = __find_msr_index(vmx, MSR_TSC_AUX);
1711         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1712                 move_msr_up(vmx, index, save_nmsrs++);
1713         index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1714         if (index >= 0)
1715                 move_msr_up(vmx, index, save_nmsrs++);
1716
1717         vmx->save_nmsrs = save_nmsrs;
1718         vmx->guest_msrs_ready = false;
1719
1720         if (cpu_has_vmx_msr_bitmap())
1721                 vmx_update_msr_bitmap(&vmx->vcpu);
1722 }
1723
1724 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1725 {
1726         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1727
1728         if (is_guest_mode(vcpu) &&
1729             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1730                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1731
1732         return vcpu->arch.tsc_offset;
1733 }
1734
1735 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1736 {
1737         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1738         u64 g_tsc_offset = 0;
1739
1740         /*
1741          * We're here if L1 chose not to trap WRMSR to TSC. According
1742          * to the spec, this should set L1's TSC; The offset that L1
1743          * set for L2 remains unchanged, and still needs to be added
1744          * to the newly set TSC to get L2's TSC.
1745          */
1746         if (is_guest_mode(vcpu) &&
1747             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1748                 g_tsc_offset = vmcs12->tsc_offset;
1749
1750         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1751                                    vcpu->arch.tsc_offset - g_tsc_offset,
1752                                    offset);
1753         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1754         return offset + g_tsc_offset;
1755 }
1756
1757 /*
1758  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1759  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1760  * all guests if the "nested" module option is off, and can also be disabled
1761  * for a single guest by disabling its VMX cpuid bit.
1762  */
1763 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1764 {
1765         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1766 }
1767
1768 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1769                                                  uint64_t val)
1770 {
1771         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1772
1773         return !(val & ~valid_bits);
1774 }
1775
1776 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1777 {
1778         switch (msr->index) {
1779         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1780                 if (!nested)
1781                         return 1;
1782                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1783         default:
1784                 return 1;
1785         }
1786 }
1787
1788 /*
1789  * Reads an msr value (of 'msr_index') into 'pdata'.
1790  * Returns 0 on success, non-0 otherwise.
1791  * Assumes vcpu_load() was already called.
1792  */
1793 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1794 {
1795         struct vcpu_vmx *vmx = to_vmx(vcpu);
1796         struct shared_msr_entry *msr;
1797         u32 index;
1798
1799         switch (msr_info->index) {
1800 #ifdef CONFIG_X86_64
1801         case MSR_FS_BASE:
1802                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1803                 break;
1804         case MSR_GS_BASE:
1805                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1806                 break;
1807         case MSR_KERNEL_GS_BASE:
1808                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1809                 break;
1810 #endif
1811         case MSR_EFER:
1812                 return kvm_get_msr_common(vcpu, msr_info);
1813         case MSR_IA32_TSX_CTRL:
1814                 if (!msr_info->host_initiated &&
1815                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1816                         return 1;
1817                 goto find_shared_msr;
1818         case MSR_IA32_UMWAIT_CONTROL:
1819                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1820                         return 1;
1821
1822                 msr_info->data = vmx->msr_ia32_umwait_control;
1823                 break;
1824         case MSR_IA32_SPEC_CTRL:
1825                 if (!msr_info->host_initiated &&
1826                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1827                         return 1;
1828
1829                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1830                 break;
1831         case MSR_IA32_SYSENTER_CS:
1832                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1833                 break;
1834         case MSR_IA32_SYSENTER_EIP:
1835                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1836                 break;
1837         case MSR_IA32_SYSENTER_ESP:
1838                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1839                 break;
1840         case MSR_IA32_BNDCFGS:
1841                 if (!kvm_mpx_supported() ||
1842                     (!msr_info->host_initiated &&
1843                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1844                         return 1;
1845                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1846                 break;
1847         case MSR_IA32_MCG_EXT_CTL:
1848                 if (!msr_info->host_initiated &&
1849                     !(vmx->msr_ia32_feature_control &
1850                       FEAT_CTL_LMCE_ENABLED))
1851                         return 1;
1852                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1853                 break;
1854         case MSR_IA32_FEAT_CTL:
1855                 msr_info->data = vmx->msr_ia32_feature_control;
1856                 break;
1857         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1858                 if (!nested_vmx_allowed(vcpu))
1859                         return 1;
1860                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1861                                     &msr_info->data))
1862                         return 1;
1863                 /*
1864                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1865                  * Hyper-V versions are still trying to use corresponding
1866                  * features when they are exposed. Filter out the essential
1867                  * minimum.
1868                  */
1869                 if (!msr_info->host_initiated &&
1870                     vmx->nested.enlightened_vmcs_enabled)
1871                         nested_evmcs_filter_control_msr(msr_info->index,
1872                                                         &msr_info->data);
1873                 break;
1874         case MSR_IA32_RTIT_CTL:
1875                 if (!vmx_pt_mode_is_host_guest())
1876                         return 1;
1877                 msr_info->data = vmx->pt_desc.guest.ctl;
1878                 break;
1879         case MSR_IA32_RTIT_STATUS:
1880                 if (!vmx_pt_mode_is_host_guest())
1881                         return 1;
1882                 msr_info->data = vmx->pt_desc.guest.status;
1883                 break;
1884         case MSR_IA32_RTIT_CR3_MATCH:
1885                 if (!vmx_pt_mode_is_host_guest() ||
1886                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1887                                                 PT_CAP_cr3_filtering))
1888                         return 1;
1889                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1890                 break;
1891         case MSR_IA32_RTIT_OUTPUT_BASE:
1892                 if (!vmx_pt_mode_is_host_guest() ||
1893                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1894                                         PT_CAP_topa_output) &&
1895                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1896                                         PT_CAP_single_range_output)))
1897                         return 1;
1898                 msr_info->data = vmx->pt_desc.guest.output_base;
1899                 break;
1900         case MSR_IA32_RTIT_OUTPUT_MASK:
1901                 if (!vmx_pt_mode_is_host_guest() ||
1902                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1903                                         PT_CAP_topa_output) &&
1904                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1905                                         PT_CAP_single_range_output)))
1906                         return 1;
1907                 msr_info->data = vmx->pt_desc.guest.output_mask;
1908                 break;
1909         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1910                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1911                 if (!vmx_pt_mode_is_host_guest() ||
1912                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1913                                         PT_CAP_num_address_ranges)))
1914                         return 1;
1915                 if (index % 2)
1916                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1917                 else
1918                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1919                 break;
1920         case MSR_TSC_AUX:
1921                 if (!msr_info->host_initiated &&
1922                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1923                         return 1;
1924                 goto find_shared_msr;
1925         default:
1926         find_shared_msr:
1927                 msr = find_msr_entry(vmx, msr_info->index);
1928                 if (msr) {
1929                         msr_info->data = msr->data;
1930                         break;
1931                 }
1932                 return kvm_get_msr_common(vcpu, msr_info);
1933         }
1934
1935         return 0;
1936 }
1937
1938 /*
1939  * Writes msr value into the appropriate "register".
1940  * Returns 0 on success, non-0 otherwise.
1941  * Assumes vcpu_load() was already called.
1942  */
1943 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1944 {
1945         struct vcpu_vmx *vmx = to_vmx(vcpu);
1946         struct shared_msr_entry *msr;
1947         int ret = 0;
1948         u32 msr_index = msr_info->index;
1949         u64 data = msr_info->data;
1950         u32 index;
1951
1952         switch (msr_index) {
1953         case MSR_EFER:
1954                 ret = kvm_set_msr_common(vcpu, msr_info);
1955                 break;
1956 #ifdef CONFIG_X86_64
1957         case MSR_FS_BASE:
1958                 vmx_segment_cache_clear(vmx);
1959                 vmcs_writel(GUEST_FS_BASE, data);
1960                 break;
1961         case MSR_GS_BASE:
1962                 vmx_segment_cache_clear(vmx);
1963                 vmcs_writel(GUEST_GS_BASE, data);
1964                 break;
1965         case MSR_KERNEL_GS_BASE:
1966                 vmx_write_guest_kernel_gs_base(vmx, data);
1967                 break;
1968 #endif
1969         case MSR_IA32_SYSENTER_CS:
1970                 if (is_guest_mode(vcpu))
1971                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1972                 vmcs_write32(GUEST_SYSENTER_CS, data);
1973                 break;
1974         case MSR_IA32_SYSENTER_EIP:
1975                 if (is_guest_mode(vcpu))
1976                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1977                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1978                 break;
1979         case MSR_IA32_SYSENTER_ESP:
1980                 if (is_guest_mode(vcpu))
1981                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1982                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1983                 break;
1984         case MSR_IA32_DEBUGCTLMSR:
1985                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1986                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
1987                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1988
1989                 ret = kvm_set_msr_common(vcpu, msr_info);
1990                 break;
1991
1992         case MSR_IA32_BNDCFGS:
1993                 if (!kvm_mpx_supported() ||
1994                     (!msr_info->host_initiated &&
1995                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1996                         return 1;
1997                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1998                     (data & MSR_IA32_BNDCFGS_RSVD))
1999                         return 1;
2000                 vmcs_write64(GUEST_BNDCFGS, data);
2001                 break;
2002         case MSR_IA32_UMWAIT_CONTROL:
2003                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2004                         return 1;
2005
2006                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2007                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2008                         return 1;
2009
2010                 vmx->msr_ia32_umwait_control = data;
2011                 break;
2012         case MSR_IA32_SPEC_CTRL:
2013                 if (!msr_info->host_initiated &&
2014                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2015                         return 1;
2016
2017                 if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2018                         return 1;
2019
2020                 vmx->spec_ctrl = data;
2021                 if (!data)
2022                         break;
2023
2024                 /*
2025                  * For non-nested:
2026                  * When it's written (to non-zero) for the first time, pass
2027                  * it through.
2028                  *
2029                  * For nested:
2030                  * The handling of the MSR bitmap for L2 guests is done in
2031                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2032                  * vmcs02.msr_bitmap here since it gets completely overwritten
2033                  * in the merging. We update the vmcs01 here for L1 as well
2034                  * since it will end up touching the MSR anyway now.
2035                  */
2036                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2037                                               MSR_IA32_SPEC_CTRL,
2038                                               MSR_TYPE_RW);
2039                 break;
2040         case MSR_IA32_TSX_CTRL:
2041                 if (!msr_info->host_initiated &&
2042                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2043                         return 1;
2044                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2045                         return 1;
2046                 goto find_shared_msr;
2047         case MSR_IA32_PRED_CMD:
2048                 if (!msr_info->host_initiated &&
2049                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2050                         return 1;
2051
2052                 if (data & ~PRED_CMD_IBPB)
2053                         return 1;
2054                 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2055                         return 1;
2056                 if (!data)
2057                         break;
2058
2059                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2060
2061                 /*
2062                  * For non-nested:
2063                  * When it's written (to non-zero) for the first time, pass
2064                  * it through.
2065                  *
2066                  * For nested:
2067                  * The handling of the MSR bitmap for L2 guests is done in
2068                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2069                  * vmcs02.msr_bitmap here since it gets completely overwritten
2070                  * in the merging.
2071                  */
2072                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2073                                               MSR_TYPE_W);
2074                 break;
2075         case MSR_IA32_CR_PAT:
2076                 if (!kvm_pat_valid(data))
2077                         return 1;
2078
2079                 if (is_guest_mode(vcpu) &&
2080                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2081                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2082
2083                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2084                         vmcs_write64(GUEST_IA32_PAT, data);
2085                         vcpu->arch.pat = data;
2086                         break;
2087                 }
2088                 ret = kvm_set_msr_common(vcpu, msr_info);
2089                 break;
2090         case MSR_IA32_TSC_ADJUST:
2091                 ret = kvm_set_msr_common(vcpu, msr_info);
2092                 break;
2093         case MSR_IA32_MCG_EXT_CTL:
2094                 if ((!msr_info->host_initiated &&
2095                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2096                        FEAT_CTL_LMCE_ENABLED)) ||
2097                     (data & ~MCG_EXT_CTL_LMCE_EN))
2098                         return 1;
2099                 vcpu->arch.mcg_ext_ctl = data;
2100                 break;
2101         case MSR_IA32_FEAT_CTL:
2102                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2103                     (to_vmx(vcpu)->msr_ia32_feature_control &
2104                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2105                         return 1;
2106                 vmx->msr_ia32_feature_control = data;
2107                 if (msr_info->host_initiated && data == 0)
2108                         vmx_leave_nested(vcpu);
2109                 break;
2110         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2111                 if (!msr_info->host_initiated)
2112                         return 1; /* they are read-only */
2113                 if (!nested_vmx_allowed(vcpu))
2114                         return 1;
2115                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2116         case MSR_IA32_RTIT_CTL:
2117                 if (!vmx_pt_mode_is_host_guest() ||
2118                         vmx_rtit_ctl_check(vcpu, data) ||
2119                         vmx->nested.vmxon)
2120                         return 1;
2121                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2122                 vmx->pt_desc.guest.ctl = data;
2123                 pt_update_intercept_for_msr(vmx);
2124                 break;
2125         case MSR_IA32_RTIT_STATUS:
2126                 if (!pt_can_write_msr(vmx))
2127                         return 1;
2128                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2129                         return 1;
2130                 vmx->pt_desc.guest.status = data;
2131                 break;
2132         case MSR_IA32_RTIT_CR3_MATCH:
2133                 if (!pt_can_write_msr(vmx))
2134                         return 1;
2135                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2136                                            PT_CAP_cr3_filtering))
2137                         return 1;
2138                 vmx->pt_desc.guest.cr3_match = data;
2139                 break;
2140         case MSR_IA32_RTIT_OUTPUT_BASE:
2141                 if (!pt_can_write_msr(vmx))
2142                         return 1;
2143                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2144                                            PT_CAP_topa_output) &&
2145                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2146                                            PT_CAP_single_range_output))
2147                         return 1;
2148                 if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2149                         return 1;
2150                 vmx->pt_desc.guest.output_base = data;
2151                 break;
2152         case MSR_IA32_RTIT_OUTPUT_MASK:
2153                 if (!pt_can_write_msr(vmx))
2154                         return 1;
2155                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2156                                            PT_CAP_topa_output) &&
2157                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2158                                            PT_CAP_single_range_output))
2159                         return 1;
2160                 vmx->pt_desc.guest.output_mask = data;
2161                 break;
2162         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2163                 if (!pt_can_write_msr(vmx))
2164                         return 1;
2165                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2166                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2167                                                        PT_CAP_num_address_ranges))
2168                         return 1;
2169                 if (is_noncanonical_address(data, vcpu))
2170                         return 1;
2171                 if (index % 2)
2172                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2173                 else
2174                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2175                 break;
2176         case MSR_TSC_AUX:
2177                 if (!msr_info->host_initiated &&
2178                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2179                         return 1;
2180                 /* Check reserved bit, higher 32 bits should be zero */
2181                 if ((data >> 32) != 0)
2182                         return 1;
2183                 goto find_shared_msr;
2184
2185         default:
2186         find_shared_msr:
2187                 msr = find_msr_entry(vmx, msr_index);
2188                 if (msr)
2189                         ret = vmx_set_guest_msr(vmx, msr, data);
2190                 else
2191                         ret = kvm_set_msr_common(vcpu, msr_info);
2192         }
2193
2194         return ret;
2195 }
2196
2197 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2198 {
2199         kvm_register_mark_available(vcpu, reg);
2200
2201         switch (reg) {
2202         case VCPU_REGS_RSP:
2203                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2204                 break;
2205         case VCPU_REGS_RIP:
2206                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2207                 break;
2208         case VCPU_EXREG_PDPTR:
2209                 if (enable_ept)
2210                         ept_save_pdptrs(vcpu);
2211                 break;
2212         case VCPU_EXREG_CR3:
2213                 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2214                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2215                 break;
2216         default:
2217                 WARN_ON_ONCE(1);
2218                 break;
2219         }
2220 }
2221
2222 static __init int cpu_has_kvm_support(void)
2223 {
2224         return cpu_has_vmx();
2225 }
2226
2227 static __init int vmx_disabled_by_bios(void)
2228 {
2229         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2230                !boot_cpu_has(X86_FEATURE_VMX);
2231 }
2232
2233 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2234 {
2235         u64 msr;
2236
2237         cr4_set_bits(X86_CR4_VMXE);
2238         intel_pt_handle_vmx(1);
2239
2240         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2241                           _ASM_EXTABLE(1b, %l[fault])
2242                           : : [vmxon_pointer] "m"(vmxon_pointer)
2243                           : : fault);
2244         return 0;
2245
2246 fault:
2247         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2248                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2249         intel_pt_handle_vmx(0);
2250         cr4_clear_bits(X86_CR4_VMXE);
2251
2252         return -EFAULT;
2253 }
2254
2255 static int hardware_enable(void)
2256 {
2257         int cpu = raw_smp_processor_id();
2258         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2259         int r;
2260
2261         if (cr4_read_shadow() & X86_CR4_VMXE)
2262                 return -EBUSY;
2263
2264         /*
2265          * This can happen if we hot-added a CPU but failed to allocate
2266          * VP assist page for it.
2267          */
2268         if (static_branch_unlikely(&enable_evmcs) &&
2269             !hv_get_vp_assist_page(cpu))
2270                 return -EFAULT;
2271
2272         r = kvm_cpu_vmxon(phys_addr);
2273         if (r)
2274                 return r;
2275
2276         if (enable_ept)
2277                 ept_sync_global();
2278
2279         return 0;
2280 }
2281
2282 static void vmclear_local_loaded_vmcss(void)
2283 {
2284         int cpu = raw_smp_processor_id();
2285         struct loaded_vmcs *v, *n;
2286
2287         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2288                                  loaded_vmcss_on_cpu_link)
2289                 __loaded_vmcs_clear(v);
2290 }
2291
2292
2293 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2294  * tricks.
2295  */
2296 static void kvm_cpu_vmxoff(void)
2297 {
2298         asm volatile (__ex("vmxoff"));
2299
2300         intel_pt_handle_vmx(0);
2301         cr4_clear_bits(X86_CR4_VMXE);
2302 }
2303
2304 static void hardware_disable(void)
2305 {
2306         vmclear_local_loaded_vmcss();
2307         kvm_cpu_vmxoff();
2308 }
2309
2310 /*
2311  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2312  * directly instead of going through cpu_has(), to ensure KVM is trapping
2313  * ENCLS whenever it's supported in hardware.  It does not matter whether
2314  * the host OS supports or has enabled SGX.
2315  */
2316 static bool cpu_has_sgx(void)
2317 {
2318         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2319 }
2320
2321 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2322                                       u32 msr, u32 *result)
2323 {
2324         u32 vmx_msr_low, vmx_msr_high;
2325         u32 ctl = ctl_min | ctl_opt;
2326
2327         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2328
2329         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2330         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2331
2332         /* Ensure minimum (required) set of control bits are supported. */
2333         if (ctl_min & ~ctl)
2334                 return -EIO;
2335
2336         *result = ctl;
2337         return 0;
2338 }
2339
2340 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2341                                     struct vmx_capability *vmx_cap)
2342 {
2343         u32 vmx_msr_low, vmx_msr_high;
2344         u32 min, opt, min2, opt2;
2345         u32 _pin_based_exec_control = 0;
2346         u32 _cpu_based_exec_control = 0;
2347         u32 _cpu_based_2nd_exec_control = 0;
2348         u32 _vmexit_control = 0;
2349         u32 _vmentry_control = 0;
2350
2351         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2352         min = CPU_BASED_HLT_EXITING |
2353 #ifdef CONFIG_X86_64
2354               CPU_BASED_CR8_LOAD_EXITING |
2355               CPU_BASED_CR8_STORE_EXITING |
2356 #endif
2357               CPU_BASED_CR3_LOAD_EXITING |
2358               CPU_BASED_CR3_STORE_EXITING |
2359               CPU_BASED_UNCOND_IO_EXITING |
2360               CPU_BASED_MOV_DR_EXITING |
2361               CPU_BASED_USE_TSC_OFFSETTING |
2362               CPU_BASED_MWAIT_EXITING |
2363               CPU_BASED_MONITOR_EXITING |
2364               CPU_BASED_INVLPG_EXITING |
2365               CPU_BASED_RDPMC_EXITING;
2366
2367         opt = CPU_BASED_TPR_SHADOW |
2368               CPU_BASED_USE_MSR_BITMAPS |
2369               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2370         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2371                                 &_cpu_based_exec_control) < 0)
2372                 return -EIO;
2373 #ifdef CONFIG_X86_64
2374         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2375                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2376                                            ~CPU_BASED_CR8_STORE_EXITING;
2377 #endif
2378         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2379                 min2 = 0;
2380                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2381                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2382                         SECONDARY_EXEC_WBINVD_EXITING |
2383                         SECONDARY_EXEC_ENABLE_VPID |
2384                         SECONDARY_EXEC_ENABLE_EPT |
2385                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2386                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2387                         SECONDARY_EXEC_DESC |
2388                         SECONDARY_EXEC_RDTSCP |
2389                         SECONDARY_EXEC_ENABLE_INVPCID |
2390                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2391                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2392                         SECONDARY_EXEC_SHADOW_VMCS |
2393                         SECONDARY_EXEC_XSAVES |
2394                         SECONDARY_EXEC_RDSEED_EXITING |
2395                         SECONDARY_EXEC_RDRAND_EXITING |
2396                         SECONDARY_EXEC_ENABLE_PML |
2397                         SECONDARY_EXEC_TSC_SCALING |
2398                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2399                         SECONDARY_EXEC_PT_USE_GPA |
2400                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2401                         SECONDARY_EXEC_ENABLE_VMFUNC;
2402                 if (cpu_has_sgx())
2403                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2404                 if (adjust_vmx_controls(min2, opt2,
2405                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2406                                         &_cpu_based_2nd_exec_control) < 0)
2407                         return -EIO;
2408         }
2409 #ifndef CONFIG_X86_64
2410         if (!(_cpu_based_2nd_exec_control &
2411                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2412                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2413 #endif
2414
2415         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2416                 _cpu_based_2nd_exec_control &= ~(
2417                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2418                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2419                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2420
2421         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2422                 &vmx_cap->ept, &vmx_cap->vpid);
2423
2424         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2425                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2426                    enabled */
2427                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2428                                              CPU_BASED_CR3_STORE_EXITING |
2429                                              CPU_BASED_INVLPG_EXITING);
2430         } else if (vmx_cap->ept) {
2431                 vmx_cap->ept = 0;
2432                 pr_warn_once("EPT CAP should not exist if not support "
2433                                 "1-setting enable EPT VM-execution control\n");
2434         }
2435         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2436                 vmx_cap->vpid) {
2437                 vmx_cap->vpid = 0;
2438                 pr_warn_once("VPID CAP should not exist if not support "
2439                                 "1-setting enable VPID VM-execution control\n");
2440         }
2441
2442         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2443 #ifdef CONFIG_X86_64
2444         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2445 #endif
2446         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2447               VM_EXIT_LOAD_IA32_PAT |
2448               VM_EXIT_LOAD_IA32_EFER |
2449               VM_EXIT_CLEAR_BNDCFGS |
2450               VM_EXIT_PT_CONCEAL_PIP |
2451               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2452         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2453                                 &_vmexit_control) < 0)
2454                 return -EIO;
2455
2456         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2457         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2458                  PIN_BASED_VMX_PREEMPTION_TIMER;
2459         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2460                                 &_pin_based_exec_control) < 0)
2461                 return -EIO;
2462
2463         if (cpu_has_broken_vmx_preemption_timer())
2464                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2465         if (!(_cpu_based_2nd_exec_control &
2466                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2467                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2468
2469         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2470         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2471               VM_ENTRY_LOAD_IA32_PAT |
2472               VM_ENTRY_LOAD_IA32_EFER |
2473               VM_ENTRY_LOAD_BNDCFGS |
2474               VM_ENTRY_PT_CONCEAL_PIP |
2475               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2476         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2477                                 &_vmentry_control) < 0)
2478                 return -EIO;
2479
2480         /*
2481          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2482          * can't be used due to an errata where VM Exit may incorrectly clear
2483          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2484          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2485          */
2486         if (boot_cpu_data.x86 == 0x6) {
2487                 switch (boot_cpu_data.x86_model) {
2488                 case 26: /* AAK155 */
2489                 case 30: /* AAP115 */
2490                 case 37: /* AAT100 */
2491                 case 44: /* BC86,AAY89,BD102 */
2492                 case 46: /* BA97 */
2493                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2494                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2495                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2496                                         "does not work properly. Using workaround\n");
2497                         break;
2498                 default:
2499                         break;
2500                 }
2501         }
2502
2503
2504         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2505
2506         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2507         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2508                 return -EIO;
2509
2510 #ifdef CONFIG_X86_64
2511         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2512         if (vmx_msr_high & (1u<<16))
2513                 return -EIO;
2514 #endif
2515
2516         /* Require Write-Back (WB) memory type for VMCS accesses. */
2517         if (((vmx_msr_high >> 18) & 15) != 6)
2518                 return -EIO;
2519
2520         vmcs_conf->size = vmx_msr_high & 0x1fff;
2521         vmcs_conf->order = get_order(vmcs_conf->size);
2522         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2523
2524         vmcs_conf->revision_id = vmx_msr_low;
2525
2526         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2527         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2528         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2529         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2530         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2531
2532         if (static_branch_unlikely(&enable_evmcs))
2533                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2534
2535         return 0;
2536 }
2537
2538 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2539 {
2540         int node = cpu_to_node(cpu);
2541         struct page *pages;
2542         struct vmcs *vmcs;
2543
2544         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2545         if (!pages)
2546                 return NULL;
2547         vmcs = page_address(pages);
2548         memset(vmcs, 0, vmcs_config.size);
2549
2550         /* KVM supports Enlightened VMCS v1 only */
2551         if (static_branch_unlikely(&enable_evmcs))
2552                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2553         else
2554                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2555
2556         if (shadow)
2557                 vmcs->hdr.shadow_vmcs = 1;
2558         return vmcs;
2559 }
2560
2561 void free_vmcs(struct vmcs *vmcs)
2562 {
2563         free_pages((unsigned long)vmcs, vmcs_config.order);
2564 }
2565
2566 /*
2567  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2568  */
2569 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2570 {
2571         if (!loaded_vmcs->vmcs)
2572                 return;
2573         loaded_vmcs_clear(loaded_vmcs);
2574         free_vmcs(loaded_vmcs->vmcs);
2575         loaded_vmcs->vmcs = NULL;
2576         if (loaded_vmcs->msr_bitmap)
2577                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2578         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2579 }
2580
2581 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2582 {
2583         loaded_vmcs->vmcs = alloc_vmcs(false);
2584         if (!loaded_vmcs->vmcs)
2585                 return -ENOMEM;
2586
2587         vmcs_clear(loaded_vmcs->vmcs);
2588
2589         loaded_vmcs->shadow_vmcs = NULL;
2590         loaded_vmcs->hv_timer_soft_disabled = false;
2591         loaded_vmcs->cpu = -1;
2592         loaded_vmcs->launched = 0;
2593
2594         if (cpu_has_vmx_msr_bitmap()) {
2595                 loaded_vmcs->msr_bitmap = (unsigned long *)
2596                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2597                 if (!loaded_vmcs->msr_bitmap)
2598                         goto out_vmcs;
2599                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2600
2601                 if (IS_ENABLED(CONFIG_HYPERV) &&
2602                     static_branch_unlikely(&enable_evmcs) &&
2603                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2604                         struct hv_enlightened_vmcs *evmcs =
2605                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2606
2607                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2608                 }
2609         }
2610
2611         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2612         memset(&loaded_vmcs->controls_shadow, 0,
2613                 sizeof(struct vmcs_controls_shadow));
2614
2615         return 0;
2616
2617 out_vmcs:
2618         free_loaded_vmcs(loaded_vmcs);
2619         return -ENOMEM;
2620 }
2621
2622 static void free_kvm_area(void)
2623 {
2624         int cpu;
2625
2626         for_each_possible_cpu(cpu) {
2627                 free_vmcs(per_cpu(vmxarea, cpu));
2628                 per_cpu(vmxarea, cpu) = NULL;
2629         }
2630 }
2631
2632 static __init int alloc_kvm_area(void)
2633 {
2634         int cpu;
2635
2636         for_each_possible_cpu(cpu) {
2637                 struct vmcs *vmcs;
2638
2639                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2640                 if (!vmcs) {
2641                         free_kvm_area();
2642                         return -ENOMEM;
2643                 }
2644
2645                 /*
2646                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2647                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2648                  * revision_id reported by MSR_IA32_VMX_BASIC.
2649                  *
2650                  * However, even though not explicitly documented by
2651                  * TLFS, VMXArea passed as VMXON argument should
2652                  * still be marked with revision_id reported by
2653                  * physical CPU.
2654                  */
2655                 if (static_branch_unlikely(&enable_evmcs))
2656                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2657
2658                 per_cpu(vmxarea, cpu) = vmcs;
2659         }
2660         return 0;
2661 }
2662
2663 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2664                 struct kvm_segment *save)
2665 {
2666         if (!emulate_invalid_guest_state) {
2667                 /*
2668                  * CS and SS RPL should be equal during guest entry according
2669                  * to VMX spec, but in reality it is not always so. Since vcpu
2670                  * is in the middle of the transition from real mode to
2671                  * protected mode it is safe to assume that RPL 0 is a good
2672                  * default value.
2673                  */
2674                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2675                         save->selector &= ~SEGMENT_RPL_MASK;
2676                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2677                 save->s = 1;
2678         }
2679         vmx_set_segment(vcpu, save, seg);
2680 }
2681
2682 static void enter_pmode(struct kvm_vcpu *vcpu)
2683 {
2684         unsigned long flags;
2685         struct vcpu_vmx *vmx = to_vmx(vcpu);
2686
2687         /*
2688          * Update real mode segment cache. It may be not up-to-date if sement
2689          * register was written while vcpu was in a guest mode.
2690          */
2691         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2692         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2693         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2694         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2695         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2696         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2697
2698         vmx->rmode.vm86_active = 0;
2699
2700         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2701
2702         flags = vmcs_readl(GUEST_RFLAGS);
2703         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2704         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2705         vmcs_writel(GUEST_RFLAGS, flags);
2706
2707         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2708                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2709
2710         update_exception_bitmap(vcpu);
2711
2712         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2713         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2714         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2715         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2716         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2717         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2718 }
2719
2720 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2721 {
2722         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2723         struct kvm_segment var = *save;
2724
2725         var.dpl = 0x3;
2726         if (seg == VCPU_SREG_CS)
2727                 var.type = 0x3;
2728
2729         if (!emulate_invalid_guest_state) {
2730                 var.selector = var.base >> 4;
2731                 var.base = var.base & 0xffff0;
2732                 var.limit = 0xffff;
2733                 var.g = 0;
2734                 var.db = 0;
2735                 var.present = 1;
2736                 var.s = 1;
2737                 var.l = 0;
2738                 var.unusable = 0;
2739                 var.type = 0x3;
2740                 var.avl = 0;
2741                 if (save->base & 0xf)
2742                         printk_once(KERN_WARNING "kvm: segment base is not "
2743                                         "paragraph aligned when entering "
2744                                         "protected mode (seg=%d)", seg);
2745         }
2746
2747         vmcs_write16(sf->selector, var.selector);
2748         vmcs_writel(sf->base, var.base);
2749         vmcs_write32(sf->limit, var.limit);
2750         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2751 }
2752
2753 static void enter_rmode(struct kvm_vcpu *vcpu)
2754 {
2755         unsigned long flags;
2756         struct vcpu_vmx *vmx = to_vmx(vcpu);
2757         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2758
2759         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2760         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2761         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2762         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2763         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2764         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2765         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2766
2767         vmx->rmode.vm86_active = 1;
2768
2769         /*
2770          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2771          * vcpu. Warn the user that an update is overdue.
2772          */
2773         if (!kvm_vmx->tss_addr)
2774                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2775                              "called before entering vcpu\n");
2776
2777         vmx_segment_cache_clear(vmx);
2778
2779         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2780         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2781         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2782
2783         flags = vmcs_readl(GUEST_RFLAGS);
2784         vmx->rmode.save_rflags = flags;
2785
2786         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2787
2788         vmcs_writel(GUEST_RFLAGS, flags);
2789         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2790         update_exception_bitmap(vcpu);
2791
2792         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2793         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2794         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2795         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2796         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2797         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2798
2799         kvm_mmu_reset_context(vcpu);
2800 }
2801
2802 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2803 {
2804         struct vcpu_vmx *vmx = to_vmx(vcpu);
2805         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2806
2807         if (!msr)
2808                 return;
2809
2810         vcpu->arch.efer = efer;
2811         if (efer & EFER_LMA) {
2812                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2813                 msr->data = efer;
2814         } else {
2815                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2816
2817                 msr->data = efer & ~EFER_LME;
2818         }
2819         setup_msrs(vmx);
2820 }
2821
2822 #ifdef CONFIG_X86_64
2823
2824 static void enter_lmode(struct kvm_vcpu *vcpu)
2825 {
2826         u32 guest_tr_ar;
2827
2828         vmx_segment_cache_clear(to_vmx(vcpu));
2829
2830         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2831         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2832                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2833                                      __func__);
2834                 vmcs_write32(GUEST_TR_AR_BYTES,
2835                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2836                              | VMX_AR_TYPE_BUSY_64_TSS);
2837         }
2838         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2839 }
2840
2841 static void exit_lmode(struct kvm_vcpu *vcpu)
2842 {
2843         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2844         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2845 }
2846
2847 #endif
2848
2849 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2850 {
2851         struct vcpu_vmx *vmx = to_vmx(vcpu);
2852
2853         /*
2854          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2855          * the CPU is not required to invalidate guest-physical mappings on
2856          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2857          * associated with the root EPT structure and not any particular VPID
2858          * (INVVPID also isn't required to invalidate guest-physical mappings).
2859          */
2860         if (enable_ept) {
2861                 ept_sync_global();
2862         } else if (enable_vpid) {
2863                 if (cpu_has_vmx_invvpid_global()) {
2864                         vpid_sync_vcpu_global();
2865                 } else {
2866                         vpid_sync_vcpu_single(vmx->vpid);
2867                         vpid_sync_vcpu_single(vmx->nested.vpid02);
2868                 }
2869         }
2870 }
2871
2872 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2873 {
2874         u64 root_hpa = vcpu->arch.mmu->root_hpa;
2875
2876         /* No flush required if the current context is invalid. */
2877         if (!VALID_PAGE(root_hpa))
2878                 return;
2879
2880         if (enable_ept)
2881                 ept_sync_context(construct_eptp(vcpu, root_hpa));
2882         else if (!is_guest_mode(vcpu))
2883                 vpid_sync_context(to_vmx(vcpu)->vpid);
2884         else
2885                 vpid_sync_context(nested_get_vpid02(vcpu));
2886 }
2887
2888 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2889 {
2890         /*
2891          * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2892          * vmx_flush_tlb_guest() for an explanation of why this is ok.
2893          */
2894         vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2895 }
2896
2897 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2898 {
2899         /*
2900          * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2901          * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2902          * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2903          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2904          * i.e. no explicit INVVPID is necessary.
2905          */
2906         vpid_sync_context(to_vmx(vcpu)->vpid);
2907 }
2908
2909 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2910 {
2911         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2912
2913         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2914         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2915 }
2916
2917 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2918 {
2919         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2920
2921         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2922         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2923 }
2924
2925 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2926 {
2927         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2928
2929         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2930                 return;
2931
2932         if (is_pae_paging(vcpu)) {
2933                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2934                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2935                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2936                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2937         }
2938 }
2939
2940 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2941 {
2942         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2943
2944         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2945                 return;
2946
2947         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2948         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2949         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2950         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2951
2952         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2953 }
2954
2955 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2956                                         unsigned long cr0,
2957                                         struct kvm_vcpu *vcpu)
2958 {
2959         struct vcpu_vmx *vmx = to_vmx(vcpu);
2960
2961         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2962                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2963         if (!(cr0 & X86_CR0_PG)) {
2964                 /* From paging/starting to nonpaging */
2965                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2966                                           CPU_BASED_CR3_STORE_EXITING);
2967                 vcpu->arch.cr0 = cr0;
2968                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2969         } else if (!is_paging(vcpu)) {
2970                 /* From nonpaging to paging */
2971                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2972                                             CPU_BASED_CR3_STORE_EXITING);
2973                 vcpu->arch.cr0 = cr0;
2974                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2975         }
2976
2977         if (!(cr0 & X86_CR0_WP))
2978                 *hw_cr0 &= ~X86_CR0_WP;
2979 }
2980
2981 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2982 {
2983         struct vcpu_vmx *vmx = to_vmx(vcpu);
2984         unsigned long hw_cr0;
2985
2986         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2987         if (enable_unrestricted_guest)
2988                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2989         else {
2990                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2991
2992                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2993                         enter_pmode(vcpu);
2994
2995                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2996                         enter_rmode(vcpu);
2997         }
2998
2999 #ifdef CONFIG_X86_64
3000         if (vcpu->arch.efer & EFER_LME) {
3001                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3002                         enter_lmode(vcpu);
3003                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3004                         exit_lmode(vcpu);
3005         }
3006 #endif
3007
3008         if (enable_ept && !enable_unrestricted_guest)
3009                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3010
3011         vmcs_writel(CR0_READ_SHADOW, cr0);
3012         vmcs_writel(GUEST_CR0, hw_cr0);
3013         vcpu->arch.cr0 = cr0;
3014
3015         /* depends on vcpu->arch.cr0 to be set to a new value */
3016         vmx->emulation_required = emulation_required(vcpu);
3017 }
3018
3019 static int get_ept_level(struct kvm_vcpu *vcpu)
3020 {
3021         if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
3022                 return vmx_eptp_page_walk_level(nested_ept_get_eptp(vcpu));
3023         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
3024                 return 5;
3025         return 4;
3026 }
3027
3028 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
3029 {
3030         u64 eptp = VMX_EPTP_MT_WB;
3031
3032         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3033
3034         if (enable_ept_ad_bits &&
3035             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3036                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3037         eptp |= (root_hpa & PAGE_MASK);
3038
3039         return eptp;
3040 }
3041
3042 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd)
3043 {
3044         struct kvm *kvm = vcpu->kvm;
3045         bool update_guest_cr3 = true;
3046         unsigned long guest_cr3;
3047         u64 eptp;
3048
3049         if (enable_ept) {
3050                 eptp = construct_eptp(vcpu, pgd);
3051                 vmcs_write64(EPT_POINTER, eptp);
3052
3053                 if (kvm_x86_ops.tlb_remote_flush) {
3054                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3055                         to_vmx(vcpu)->ept_pointer = eptp;
3056                         to_kvm_vmx(kvm)->ept_pointers_match
3057                                 = EPT_POINTERS_CHECK;
3058                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3059                 }
3060
3061                 /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3062                 if (is_guest_mode(vcpu))
3063                         update_guest_cr3 = false;
3064                 else if (!enable_unrestricted_guest && !is_paging(vcpu))
3065                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3066                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3067                         guest_cr3 = vcpu->arch.cr3;
3068                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3069                         update_guest_cr3 = false;
3070                 ept_load_pdptrs(vcpu);
3071         } else {
3072                 guest_cr3 = pgd;
3073         }
3074
3075         if (update_guest_cr3)
3076                 vmcs_writel(GUEST_CR3, guest_cr3);
3077 }
3078
3079 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3080 {
3081         struct vcpu_vmx *vmx = to_vmx(vcpu);
3082         /*
3083          * Pass through host's Machine Check Enable value to hw_cr4, which
3084          * is in force while we are in guest mode.  Do not let guests control
3085          * this bit, even if host CR4.MCE == 0.
3086          */
3087         unsigned long hw_cr4;
3088
3089         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3090         if (enable_unrestricted_guest)
3091                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3092         else if (vmx->rmode.vm86_active)
3093                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3094         else
3095                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3096
3097         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3098                 if (cr4 & X86_CR4_UMIP) {
3099                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3100                         hw_cr4 &= ~X86_CR4_UMIP;
3101                 } else if (!is_guest_mode(vcpu) ||
3102                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3103                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3104                 }
3105         }
3106
3107         if (cr4 & X86_CR4_VMXE) {
3108                 /*
3109                  * To use VMXON (and later other VMX instructions), a guest
3110                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3111                  * So basically the check on whether to allow nested VMX
3112                  * is here.  We operate under the default treatment of SMM,
3113                  * so VMX cannot be enabled under SMM.
3114                  */
3115                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3116                         return 1;
3117         }
3118
3119         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3120                 return 1;
3121
3122         vcpu->arch.cr4 = cr4;
3123
3124         if (!enable_unrestricted_guest) {
3125                 if (enable_ept) {
3126                         if (!is_paging(vcpu)) {
3127                                 hw_cr4 &= ~X86_CR4_PAE;
3128                                 hw_cr4 |= X86_CR4_PSE;
3129                         } else if (!(cr4 & X86_CR4_PAE)) {
3130                                 hw_cr4 &= ~X86_CR4_PAE;
3131                         }
3132                 }
3133
3134                 /*
3135                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3136                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3137                  * to be manually disabled when guest switches to non-paging
3138                  * mode.
3139                  *
3140                  * If !enable_unrestricted_guest, the CPU is always running
3141                  * with CR0.PG=1 and CR4 needs to be modified.
3142                  * If enable_unrestricted_guest, the CPU automatically
3143                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3144                  */
3145                 if (!is_paging(vcpu))
3146                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3147         }
3148
3149         vmcs_writel(CR4_READ_SHADOW, cr4);
3150         vmcs_writel(GUEST_CR4, hw_cr4);
3151         return 0;
3152 }
3153
3154 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3155 {
3156         struct vcpu_vmx *vmx = to_vmx(vcpu);
3157         u32 ar;
3158
3159         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3160                 *var = vmx->rmode.segs[seg];
3161                 if (seg == VCPU_SREG_TR
3162                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3163                         return;
3164                 var->base = vmx_read_guest_seg_base(vmx, seg);
3165                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3166                 return;
3167         }
3168         var->base = vmx_read_guest_seg_base(vmx, seg);
3169         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3170         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3171         ar = vmx_read_guest_seg_ar(vmx, seg);
3172         var->unusable = (ar >> 16) & 1;
3173         var->type = ar & 15;
3174         var->s = (ar >> 4) & 1;
3175         var->dpl = (ar >> 5) & 3;
3176         /*
3177          * Some userspaces do not preserve unusable property. Since usable
3178          * segment has to be present according to VMX spec we can use present
3179          * property to amend userspace bug by making unusable segment always
3180          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3181          * segment as unusable.
3182          */
3183         var->present = !var->unusable;
3184         var->avl = (ar >> 12) & 1;
3185         var->l = (ar >> 13) & 1;
3186         var->db = (ar >> 14) & 1;
3187         var->g = (ar >> 15) & 1;
3188 }
3189
3190 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3191 {
3192         struct kvm_segment s;
3193
3194         if (to_vmx(vcpu)->rmode.vm86_active) {
3195                 vmx_get_segment(vcpu, &s, seg);
3196                 return s.base;
3197         }
3198         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3199 }
3200
3201 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3202 {
3203         struct vcpu_vmx *vmx = to_vmx(vcpu);
3204
3205         if (unlikely(vmx->rmode.vm86_active))
3206                 return 0;
3207         else {
3208                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3209                 return VMX_AR_DPL(ar);
3210         }
3211 }
3212
3213 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3214 {
3215         u32 ar;
3216
3217         if (var->unusable || !var->present)
3218                 ar = 1 << 16;
3219         else {
3220                 ar = var->type & 15;
3221                 ar |= (var->s & 1) << 4;
3222                 ar |= (var->dpl & 3) << 5;
3223                 ar |= (var->present & 1) << 7;
3224                 ar |= (var->avl & 1) << 12;
3225                 ar |= (var->l & 1) << 13;
3226                 ar |= (var->db & 1) << 14;
3227                 ar |= (var->g & 1) << 15;
3228         }
3229
3230         return ar;
3231 }
3232
3233 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3234 {
3235         struct vcpu_vmx *vmx = to_vmx(vcpu);
3236         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3237
3238         vmx_segment_cache_clear(vmx);
3239
3240         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3241                 vmx->rmode.segs[seg] = *var;
3242                 if (seg == VCPU_SREG_TR)
3243                         vmcs_write16(sf->selector, var->selector);
3244                 else if (var->s)
3245                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3246                 goto out;
3247         }
3248
3249         vmcs_writel(sf->base, var->base);
3250         vmcs_write32(sf->limit, var->limit);
3251         vmcs_write16(sf->selector, var->selector);
3252
3253         /*
3254          *   Fix the "Accessed" bit in AR field of segment registers for older
3255          * qemu binaries.
3256          *   IA32 arch specifies that at the time of processor reset the
3257          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3258          * is setting it to 0 in the userland code. This causes invalid guest
3259          * state vmexit when "unrestricted guest" mode is turned on.
3260          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3261          * tree. Newer qemu binaries with that qemu fix would not need this
3262          * kvm hack.
3263          */
3264         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3265                 var->type |= 0x1; /* Accessed */
3266
3267         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3268
3269 out:
3270         vmx->emulation_required = emulation_required(vcpu);
3271 }
3272
3273 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3274 {
3275         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3276
3277         *db = (ar >> 14) & 1;
3278         *l = (ar >> 13) & 1;
3279 }
3280
3281 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3282 {
3283         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3284         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3285 }
3286
3287 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3288 {
3289         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3290         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3291 }
3292
3293 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3294 {
3295         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3296         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3297 }
3298
3299 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3300 {
3301         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3302         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3303 }
3304
3305 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3306 {
3307         struct kvm_segment var;
3308         u32 ar;
3309
3310         vmx_get_segment(vcpu, &var, seg);
3311         var.dpl = 0x3;
3312         if (seg == VCPU_SREG_CS)
3313                 var.type = 0x3;
3314         ar = vmx_segment_access_rights(&var);
3315
3316         if (var.base != (var.selector << 4))
3317                 return false;
3318         if (var.limit != 0xffff)
3319                 return false;
3320         if (ar != 0xf3)
3321                 return false;
3322
3323         return true;
3324 }
3325
3326 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3327 {
3328         struct kvm_segment cs;
3329         unsigned int cs_rpl;
3330
3331         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3332         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3333
3334         if (cs.unusable)
3335                 return false;
3336         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3337                 return false;
3338         if (!cs.s)
3339                 return false;
3340         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3341                 if (cs.dpl > cs_rpl)
3342                         return false;
3343         } else {
3344                 if (cs.dpl != cs_rpl)
3345                         return false;
3346         }
3347         if (!cs.present)
3348                 return false;
3349
3350         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3351         return true;
3352 }
3353
3354 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3355 {
3356         struct kvm_segment ss;
3357         unsigned int ss_rpl;
3358
3359         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3360         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3361
3362         if (ss.unusable)
3363                 return true;
3364         if (ss.type != 3 && ss.type != 7)
3365                 return false;
3366         if (!ss.s)
3367                 return false;
3368         if (ss.dpl != ss_rpl) /* DPL != RPL */
3369                 return false;
3370         if (!ss.present)
3371                 return false;
3372
3373         return true;
3374 }
3375
3376 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3377 {
3378         struct kvm_segment var;
3379         unsigned int rpl;
3380
3381         vmx_get_segment(vcpu, &var, seg);
3382         rpl = var.selector & SEGMENT_RPL_MASK;
3383
3384         if (var.unusable)
3385                 return true;
3386         if (!var.s)
3387                 return false;
3388         if (!var.present)
3389                 return false;
3390         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3391                 if (var.dpl < rpl) /* DPL < RPL */
3392                         return false;
3393         }
3394
3395         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3396          * rights flags
3397          */
3398         return true;
3399 }
3400
3401 static bool tr_valid(struct kvm_vcpu *vcpu)
3402 {
3403         struct kvm_segment tr;
3404
3405         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3406
3407         if (tr.unusable)
3408                 return false;
3409         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3410                 return false;
3411         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3412                 return false;
3413         if (!tr.present)
3414                 return false;
3415
3416         return true;
3417 }
3418
3419 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3420 {
3421         struct kvm_segment ldtr;
3422
3423         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3424
3425         if (ldtr.unusable)
3426                 return true;
3427         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3428                 return false;
3429         if (ldtr.type != 2)
3430                 return false;
3431         if (!ldtr.present)
3432                 return false;
3433
3434         return true;
3435 }
3436
3437 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3438 {
3439         struct kvm_segment cs, ss;
3440
3441         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3442         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3443
3444         return ((cs.selector & SEGMENT_RPL_MASK) ==
3445                  (ss.selector & SEGMENT_RPL_MASK));
3446 }
3447
3448 /*
3449  * Check if guest state is valid. Returns true if valid, false if
3450  * not.
3451  * We assume that registers are always usable
3452  */
3453 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3454 {
3455         if (enable_unrestricted_guest)
3456                 return true;
3457
3458         /* real mode guest state checks */
3459         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3460                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3461                         return false;
3462                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3463                         return false;
3464                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3465                         return false;
3466                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3467                         return false;
3468                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3469                         return false;
3470                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3471                         return false;
3472         } else {
3473         /* protected mode guest state checks */
3474                 if (!cs_ss_rpl_check(vcpu))
3475                         return false;
3476                 if (!code_segment_valid(vcpu))
3477                         return false;
3478                 if (!stack_segment_valid(vcpu))
3479                         return false;
3480                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3481                         return false;
3482                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3483                         return false;
3484                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3485                         return false;
3486                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3487                         return false;
3488                 if (!tr_valid(vcpu))
3489                         return false;
3490                 if (!ldtr_valid(vcpu))
3491                         return false;
3492         }
3493         /* TODO:
3494          * - Add checks on RIP
3495          * - Add checks on RFLAGS
3496          */
3497
3498         return true;
3499 }
3500
3501 static int init_rmode_tss(struct kvm *kvm)
3502 {
3503         gfn_t fn;
3504         u16 data = 0;
3505         int idx, r;
3506
3507         idx = srcu_read_lock(&kvm->srcu);
3508         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3509         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3510         if (r < 0)
3511                 goto out;
3512         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3513         r = kvm_write_guest_page(kvm, fn++, &data,
3514                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3515         if (r < 0)
3516                 goto out;
3517         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3518         if (r < 0)
3519                 goto out;
3520         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3521         if (r < 0)
3522                 goto out;
3523         data = ~0;
3524         r = kvm_write_guest_page(kvm, fn, &data,
3525                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3526                                  sizeof(u8));
3527 out:
3528         srcu_read_unlock(&kvm->srcu, idx);
3529         return r;
3530 }
3531
3532 static int init_rmode_identity_map(struct kvm *kvm)
3533 {
3534         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3535         int i, r = 0;
3536         kvm_pfn_t identity_map_pfn;
3537         u32 tmp;
3538
3539         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3540         mutex_lock(&kvm->slots_lock);
3541
3542         if (likely(kvm_vmx->ept_identity_pagetable_done))
3543                 goto out;
3544
3545         if (!kvm_vmx->ept_identity_map_addr)
3546                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3547         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3548
3549         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3550                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3551         if (r < 0)
3552                 goto out;
3553
3554         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3555         if (r < 0)
3556                 goto out;
3557         /* Set up identity-mapping pagetable for EPT in real mode */
3558         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3559                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3560                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3561                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3562                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3563                 if (r < 0)
3564                         goto out;
3565         }
3566         kvm_vmx->ept_identity_pagetable_done = true;
3567
3568 out:
3569         mutex_unlock(&kvm->slots_lock);
3570         return r;
3571 }
3572
3573 static void seg_setup(int seg)
3574 {
3575         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3576         unsigned int ar;
3577
3578         vmcs_write16(sf->selector, 0);
3579         vmcs_writel(sf->base, 0);
3580         vmcs_write32(sf->limit, 0xffff);
3581         ar = 0x93;
3582         if (seg == VCPU_SREG_CS)
3583                 ar |= 0x08; /* code segment */
3584
3585         vmcs_write32(sf->ar_bytes, ar);
3586 }
3587
3588 static int alloc_apic_access_page(struct kvm *kvm)
3589 {
3590         struct page *page;
3591         int r = 0;
3592
3593         mutex_lock(&kvm->slots_lock);
3594         if (kvm->arch.apic_access_page_done)
3595                 goto out;
3596         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3597                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3598         if (r)
3599                 goto out;
3600
3601         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3602         if (is_error_page(page)) {
3603                 r = -EFAULT;
3604                 goto out;
3605         }
3606
3607         /*
3608          * Do not pin the page in memory, so that memory hot-unplug
3609          * is able to migrate it.
3610          */
3611         put_page(page);
3612         kvm->arch.apic_access_page_done = true;
3613 out:
3614         mutex_unlock(&kvm->slots_lock);
3615         return r;
3616 }
3617
3618 int allocate_vpid(void)
3619 {
3620         int vpid;
3621
3622         if (!enable_vpid)
3623                 return 0;
3624         spin_lock(&vmx_vpid_lock);
3625         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3626         if (vpid < VMX_NR_VPIDS)
3627                 __set_bit(vpid, vmx_vpid_bitmap);
3628         else
3629                 vpid = 0;
3630         spin_unlock(&vmx_vpid_lock);
3631         return vpid;
3632 }
3633
3634 void free_vpid(int vpid)
3635 {
3636         if (!enable_vpid || vpid == 0)
3637                 return;
3638         spin_lock(&vmx_vpid_lock);
3639         __clear_bit(vpid, vmx_vpid_bitmap);
3640         spin_unlock(&vmx_vpid_lock);
3641 }
3642
3643 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3644                                                           u32 msr, int type)
3645 {
3646         int f = sizeof(unsigned long);
3647
3648         if (!cpu_has_vmx_msr_bitmap())
3649                 return;
3650
3651         if (static_branch_unlikely(&enable_evmcs))
3652                 evmcs_touch_msr_bitmap();
3653
3654         /*
3655          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3656          * have the write-low and read-high bitmap offsets the wrong way round.
3657          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3658          */
3659         if (msr <= 0x1fff) {
3660                 if (type & MSR_TYPE_R)
3661                         /* read-low */
3662                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3663
3664                 if (type & MSR_TYPE_W)
3665                         /* write-low */
3666                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3667
3668         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3669                 msr &= 0x1fff;
3670                 if (type & MSR_TYPE_R)
3671                         /* read-high */
3672                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3673
3674                 if (type & MSR_TYPE_W)
3675                         /* write-high */
3676                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3677
3678         }
3679 }
3680
3681 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3682                                                          u32 msr, int type)
3683 {
3684         int f = sizeof(unsigned long);
3685
3686         if (!cpu_has_vmx_msr_bitmap())
3687                 return;
3688
3689         if (static_branch_unlikely(&enable_evmcs))
3690                 evmcs_touch_msr_bitmap();
3691
3692         /*
3693          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3694          * have the write-low and read-high bitmap offsets the wrong way round.
3695          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3696          */
3697         if (msr <= 0x1fff) {
3698                 if (type & MSR_TYPE_R)
3699                         /* read-low */
3700                         __set_bit(msr, msr_bitmap + 0x000 / f);
3701
3702                 if (type & MSR_TYPE_W)
3703                         /* write-low */
3704                         __set_bit(msr, msr_bitmap + 0x800 / f);
3705
3706         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3707                 msr &= 0x1fff;
3708                 if (type & MSR_TYPE_R)
3709                         /* read-high */
3710                         __set_bit(msr, msr_bitmap + 0x400 / f);
3711
3712                 if (type & MSR_TYPE_W)
3713                         /* write-high */
3714                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3715
3716         }
3717 }
3718
3719 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3720                                                       u32 msr, int type, bool value)
3721 {
3722         if (value)
3723                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3724         else
3725                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3726 }
3727
3728 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3729 {
3730         u8 mode = 0;
3731
3732         if (cpu_has_secondary_exec_ctrls() &&
3733             (secondary_exec_controls_get(to_vmx(vcpu)) &
3734              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3735                 mode |= MSR_BITMAP_MODE_X2APIC;
3736                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3737                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3738         }
3739
3740         return mode;
3741 }
3742
3743 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3744                                          u8 mode)
3745 {
3746         int msr;
3747
3748         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3749                 unsigned word = msr / BITS_PER_LONG;
3750                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3751                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3752         }
3753
3754         if (mode & MSR_BITMAP_MODE_X2APIC) {
3755                 /*
3756                  * TPR reads and writes can be virtualized even if virtual interrupt
3757                  * delivery is not in use.
3758                  */
3759                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3760                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3761                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3762                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3763                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3764                 }
3765         }
3766 }
3767
3768 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3769 {
3770         struct vcpu_vmx *vmx = to_vmx(vcpu);
3771         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3772         u8 mode = vmx_msr_bitmap_mode(vcpu);
3773         u8 changed = mode ^ vmx->msr_bitmap_mode;
3774
3775         if (!changed)
3776                 return;
3777
3778         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3779                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3780
3781         vmx->msr_bitmap_mode = mode;
3782 }
3783
3784 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3785 {
3786         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3787         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3788         u32 i;
3789
3790         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3791                                                         MSR_TYPE_RW, flag);
3792         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3793                                                         MSR_TYPE_RW, flag);
3794         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3795                                                         MSR_TYPE_RW, flag);
3796         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3797                                                         MSR_TYPE_RW, flag);
3798         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3799                 vmx_set_intercept_for_msr(msr_bitmap,
3800                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3801                 vmx_set_intercept_for_msr(msr_bitmap,
3802                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3803         }
3804 }
3805
3806 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3807 {
3808         struct vcpu_vmx *vmx = to_vmx(vcpu);
3809         void *vapic_page;
3810         u32 vppr;
3811         int rvi;
3812
3813         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3814                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3815                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3816                 return false;
3817
3818         rvi = vmx_get_rvi();
3819
3820         vapic_page = vmx->nested.virtual_apic_map.hva;
3821         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3822
3823         return ((rvi & 0xf0) > (vppr & 0xf0));
3824 }
3825
3826 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3827                                                      bool nested)
3828 {
3829 #ifdef CONFIG_SMP
3830         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3831
3832         if (vcpu->mode == IN_GUEST_MODE) {
3833                 /*
3834                  * The vector of interrupt to be delivered to vcpu had
3835                  * been set in PIR before this function.
3836                  *
3837                  * Following cases will be reached in this block, and
3838                  * we always send a notification event in all cases as
3839                  * explained below.
3840                  *
3841                  * Case 1: vcpu keeps in non-root mode. Sending a
3842                  * notification event posts the interrupt to vcpu.
3843                  *
3844                  * Case 2: vcpu exits to root mode and is still
3845                  * runnable. PIR will be synced to vIRR before the
3846                  * next vcpu entry. Sending a notification event in
3847                  * this case has no effect, as vcpu is not in root
3848                  * mode.
3849                  *
3850                  * Case 3: vcpu exits to root mode and is blocked.
3851                  * vcpu_block() has already synced PIR to vIRR and
3852                  * never blocks vcpu if vIRR is not cleared. Therefore,
3853                  * a blocked vcpu here does not wait for any requested
3854                  * interrupts in PIR, and sending a notification event
3855                  * which has no effect is safe here.
3856                  */
3857
3858                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3859                 return true;
3860         }
3861 #endif
3862         return false;
3863 }
3864
3865 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3866                                                 int vector)
3867 {
3868         struct vcpu_vmx *vmx = to_vmx(vcpu);
3869
3870         if (is_guest_mode(vcpu) &&
3871             vector == vmx->nested.posted_intr_nv) {
3872                 /*
3873                  * If a posted intr is not recognized by hardware,
3874                  * we will accomplish it in the next vmentry.
3875                  */
3876                 vmx->nested.pi_pending = true;
3877                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3878                 /* the PIR and ON have been set by L1. */
3879                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3880                         kvm_vcpu_kick(vcpu);
3881                 return 0;
3882         }
3883         return -1;
3884 }
3885 /*
3886  * Send interrupt to vcpu via posted interrupt way.
3887  * 1. If target vcpu is running(non-root mode), send posted interrupt
3888  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3889  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3890  * interrupt from PIR in next vmentry.
3891  */
3892 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3893 {
3894         struct vcpu_vmx *vmx = to_vmx(vcpu);
3895         int r;
3896
3897         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3898         if (!r)
3899                 return 0;
3900
3901         if (!vcpu->arch.apicv_active)
3902                 return -1;
3903
3904         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3905                 return 0;
3906
3907         /* If a previous notification has sent the IPI, nothing to do.  */
3908         if (pi_test_and_set_on(&vmx->pi_desc))
3909                 return 0;
3910
3911         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3912                 kvm_vcpu_kick(vcpu);
3913
3914         return 0;
3915 }
3916
3917 /*
3918  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3919  * will not change in the lifetime of the guest.
3920  * Note that host-state that does change is set elsewhere. E.g., host-state
3921  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3922  */
3923 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3924 {
3925         u32 low32, high32;
3926         unsigned long tmpl;
3927         unsigned long cr0, cr3, cr4;
3928
3929         cr0 = read_cr0();
3930         WARN_ON(cr0 & X86_CR0_TS);
3931         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3932
3933         /*
3934          * Save the most likely value for this task's CR3 in the VMCS.
3935          * We can't use __get_current_cr3_fast() because we're not atomic.
3936          */
3937         cr3 = __read_cr3();
3938         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3939         vmx->loaded_vmcs->host_state.cr3 = cr3;
3940
3941         /* Save the most likely value for this task's CR4 in the VMCS. */
3942         cr4 = cr4_read_shadow();
3943         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3944         vmx->loaded_vmcs->host_state.cr4 = cr4;
3945
3946         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3947 #ifdef CONFIG_X86_64
3948         /*
3949          * Load null selectors, so we can avoid reloading them in
3950          * vmx_prepare_switch_to_host(), in case userspace uses
3951          * the null selectors too (the expected case).
3952          */
3953         vmcs_write16(HOST_DS_SELECTOR, 0);
3954         vmcs_write16(HOST_ES_SELECTOR, 0);
3955 #else
3956         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3957         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3958 #endif
3959         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3960         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3961
3962         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3963
3964         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3965
3966         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3967         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3968         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3969         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3970
3971         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3972                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3973                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3974         }
3975
3976         if (cpu_has_load_ia32_efer())
3977                 vmcs_write64(HOST_IA32_EFER, host_efer);
3978 }
3979
3980 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3981 {
3982         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3983         if (enable_ept)
3984                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3985         if (is_guest_mode(&vmx->vcpu))
3986                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3987                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3988         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3989 }
3990
3991 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3992 {
3993         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3994
3995         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3996                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3997
3998         if (!enable_vnmi)
3999                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4000
4001         if (!enable_preemption_timer)
4002                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4003
4004         return pin_based_exec_ctrl;
4005 }
4006
4007 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4008 {
4009         struct vcpu_vmx *vmx = to_vmx(vcpu);
4010
4011         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4012         if (cpu_has_secondary_exec_ctrls()) {
4013                 if (kvm_vcpu_apicv_active(vcpu))
4014                         secondary_exec_controls_setbit(vmx,
4015                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4016                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4017                 else
4018                         secondary_exec_controls_clearbit(vmx,
4019                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4020                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4021         }
4022
4023         if (cpu_has_vmx_msr_bitmap())
4024                 vmx_update_msr_bitmap(vcpu);
4025 }
4026
4027 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4028 {
4029         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4030
4031         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4032                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4033
4034         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4035                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4036 #ifdef CONFIG_X86_64
4037                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4038                                 CPU_BASED_CR8_LOAD_EXITING;
4039 #endif
4040         }
4041         if (!enable_ept)
4042                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4043                                 CPU_BASED_CR3_LOAD_EXITING  |
4044                                 CPU_BASED_INVLPG_EXITING;
4045         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4046                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4047                                 CPU_BASED_MONITOR_EXITING);
4048         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4049                 exec_control &= ~CPU_BASED_HLT_EXITING;
4050         return exec_control;
4051 }
4052
4053
4054 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4055 {
4056         struct kvm_vcpu *vcpu = &vmx->vcpu;
4057
4058         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4059
4060         if (vmx_pt_mode_is_system())
4061                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4062         if (!cpu_need_virtualize_apic_accesses(vcpu))
4063                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4064         if (vmx->vpid == 0)
4065                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4066         if (!enable_ept) {
4067                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4068                 enable_unrestricted_guest = 0;
4069         }
4070         if (!enable_unrestricted_guest)
4071                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4072         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4073                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4074         if (!kvm_vcpu_apicv_active(vcpu))
4075                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4076                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4077         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4078
4079         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4080          * in vmx_set_cr4.  */
4081         exec_control &= ~SECONDARY_EXEC_DESC;
4082
4083         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4084            (handle_vmptrld).
4085            We can NOT enable shadow_vmcs here because we don't have yet
4086            a current VMCS12
4087         */
4088         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4089
4090         if (!enable_pml)
4091                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4092
4093         if (vmx_xsaves_supported()) {
4094                 /* Exposing XSAVES only when XSAVE is exposed */
4095                 bool xsaves_enabled =
4096                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4097                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4098                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4099
4100                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4101
4102                 if (!xsaves_enabled)
4103                         exec_control &= ~SECONDARY_EXEC_XSAVES;
4104
4105                 if (nested) {
4106                         if (xsaves_enabled)
4107                                 vmx->nested.msrs.secondary_ctls_high |=
4108                                         SECONDARY_EXEC_XSAVES;
4109                         else
4110                                 vmx->nested.msrs.secondary_ctls_high &=
4111                                         ~SECONDARY_EXEC_XSAVES;
4112                 }
4113         }
4114
4115         if (cpu_has_vmx_rdtscp()) {
4116                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4117                 if (!rdtscp_enabled)
4118                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
4119
4120                 if (nested) {
4121                         if (rdtscp_enabled)
4122                                 vmx->nested.msrs.secondary_ctls_high |=
4123                                         SECONDARY_EXEC_RDTSCP;
4124                         else
4125                                 vmx->nested.msrs.secondary_ctls_high &=
4126                                         ~SECONDARY_EXEC_RDTSCP;
4127                 }
4128         }
4129
4130         if (cpu_has_vmx_invpcid()) {
4131                 /* Exposing INVPCID only when PCID is exposed */
4132                 bool invpcid_enabled =
4133                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4134                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4135
4136                 if (!invpcid_enabled) {
4137                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4138                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4139                 }
4140
4141                 if (nested) {
4142                         if (invpcid_enabled)
4143                                 vmx->nested.msrs.secondary_ctls_high |=
4144                                         SECONDARY_EXEC_ENABLE_INVPCID;
4145                         else
4146                                 vmx->nested.msrs.secondary_ctls_high &=
4147                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
4148                 }
4149         }
4150
4151         if (vmx_rdrand_supported()) {
4152                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4153                 if (rdrand_enabled)
4154                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4155
4156                 if (nested) {
4157                         if (rdrand_enabled)
4158                                 vmx->nested.msrs.secondary_ctls_high |=
4159                                         SECONDARY_EXEC_RDRAND_EXITING;
4160                         else
4161                                 vmx->nested.msrs.secondary_ctls_high &=
4162                                         ~SECONDARY_EXEC_RDRAND_EXITING;
4163                 }
4164         }
4165
4166         if (vmx_rdseed_supported()) {
4167                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4168                 if (rdseed_enabled)
4169                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4170
4171                 if (nested) {
4172                         if (rdseed_enabled)
4173                                 vmx->nested.msrs.secondary_ctls_high |=
4174                                         SECONDARY_EXEC_RDSEED_EXITING;
4175                         else
4176                                 vmx->nested.msrs.secondary_ctls_high &=
4177                                         ~SECONDARY_EXEC_RDSEED_EXITING;
4178                 }
4179         }
4180
4181         if (vmx_waitpkg_supported()) {
4182                 bool waitpkg_enabled =
4183                         guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4184
4185                 if (!waitpkg_enabled)
4186                         exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4187
4188                 if (nested) {
4189                         if (waitpkg_enabled)
4190                                 vmx->nested.msrs.secondary_ctls_high |=
4191                                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4192                         else
4193                                 vmx->nested.msrs.secondary_ctls_high &=
4194                                         ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4195                 }
4196         }
4197
4198         vmx->secondary_exec_control = exec_control;
4199 }
4200
4201 static void ept_set_mmio_spte_mask(void)
4202 {
4203         /*
4204          * EPT Misconfigurations can be generated if the value of bits 2:0
4205          * of an EPT paging-structure entry is 110b (write/execute).
4206          */
4207         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4208                                    VMX_EPT_MISCONFIG_WX_VALUE, 0);
4209 }
4210
4211 #define VMX_XSS_EXIT_BITMAP 0
4212
4213 /*
4214  * Noting that the initialization of Guest-state Area of VMCS is in
4215  * vmx_vcpu_reset().
4216  */
4217 static void init_vmcs(struct vcpu_vmx *vmx)
4218 {
4219         if (nested)
4220                 nested_vmx_set_vmcs_shadowing_bitmap();
4221
4222         if (cpu_has_vmx_msr_bitmap())
4223                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4224
4225         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4226
4227         /* Control */
4228         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4229
4230         exec_controls_set(vmx, vmx_exec_control(vmx));
4231
4232         if (cpu_has_secondary_exec_ctrls()) {
4233                 vmx_compute_secondary_exec_control(vmx);
4234                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4235         }
4236
4237         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4238                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4239                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4240                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4241                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4242
4243                 vmcs_write16(GUEST_INTR_STATUS, 0);
4244
4245                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4246                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4247         }
4248
4249         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4250                 vmcs_write32(PLE_GAP, ple_gap);
4251                 vmx->ple_window = ple_window;
4252                 vmx->ple_window_dirty = true;
4253         }
4254
4255         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4256         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4257         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4258
4259         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4260         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4261         vmx_set_constant_host_state(vmx);
4262         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4263         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4264
4265         if (cpu_has_vmx_vmfunc())
4266                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4267
4268         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4269         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4270         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4271         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4272         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4273
4274         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4275                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4276
4277         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4278
4279         /* 22.2.1, 20.8.1 */
4280         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4281
4282         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4283         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4284
4285         set_cr4_guest_host_mask(vmx);
4286
4287         if (vmx->vpid != 0)
4288                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4289
4290         if (vmx_xsaves_supported())
4291                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4292
4293         if (enable_pml) {
4294                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4295                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4296         }
4297
4298         if (cpu_has_vmx_encls_vmexit())
4299                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4300
4301         if (vmx_pt_mode_is_host_guest()) {
4302                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4303                 /* Bit[6~0] are forced to 1, writes are ignored. */
4304                 vmx->pt_desc.guest.output_mask = 0x7F;
4305                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4306         }
4307 }
4308
4309 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4310 {
4311         struct vcpu_vmx *vmx = to_vmx(vcpu);
4312         struct msr_data apic_base_msr;
4313         u64 cr0;
4314
4315         vmx->rmode.vm86_active = 0;
4316         vmx->spec_ctrl = 0;
4317
4318         vmx->msr_ia32_umwait_control = 0;
4319
4320         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4321         vmx->hv_deadline_tsc = -1;
4322         kvm_set_cr8(vcpu, 0);
4323
4324         if (!init_event) {
4325                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4326                                      MSR_IA32_APICBASE_ENABLE;
4327                 if (kvm_vcpu_is_reset_bsp(vcpu))
4328                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4329                 apic_base_msr.host_initiated = true;
4330                 kvm_set_apic_base(vcpu, &apic_base_msr);
4331         }
4332
4333         vmx_segment_cache_clear(vmx);
4334
4335         seg_setup(VCPU_SREG_CS);
4336         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4337         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4338
4339         seg_setup(VCPU_SREG_DS);
4340         seg_setup(VCPU_SREG_ES);
4341         seg_setup(VCPU_SREG_FS);
4342         seg_setup(VCPU_SREG_GS);
4343         seg_setup(VCPU_SREG_SS);
4344
4345         vmcs_write16(GUEST_TR_SELECTOR, 0);
4346         vmcs_writel(GUEST_TR_BASE, 0);
4347         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4348         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4349
4350         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4351         vmcs_writel(GUEST_LDTR_BASE, 0);
4352         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4353         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4354
4355         if (!init_event) {
4356                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4357                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4358                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4359                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4360         }
4361
4362         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4363         kvm_rip_write(vcpu, 0xfff0);
4364
4365         vmcs_writel(GUEST_GDTR_BASE, 0);
4366         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4367
4368         vmcs_writel(GUEST_IDTR_BASE, 0);
4369         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4370
4371         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4372         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4373         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4374         if (kvm_mpx_supported())
4375                 vmcs_write64(GUEST_BNDCFGS, 0);
4376
4377         setup_msrs(vmx);
4378
4379         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4380
4381         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4382                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4383                 if (cpu_need_tpr_shadow(vcpu))
4384                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4385                                      __pa(vcpu->arch.apic->regs));
4386                 vmcs_write32(TPR_THRESHOLD, 0);
4387         }
4388
4389         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4390
4391         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4392         vmx->vcpu.arch.cr0 = cr0;
4393         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4394         vmx_set_cr4(vcpu, 0);
4395         vmx_set_efer(vcpu, 0);
4396
4397         update_exception_bitmap(vcpu);
4398
4399         vpid_sync_context(vmx->vpid);
4400         if (init_event)
4401                 vmx_clear_hlt(vcpu);
4402 }
4403
4404 static void enable_irq_window(struct kvm_vcpu *vcpu)
4405 {
4406         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4407 }
4408
4409 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4410 {
4411         if (!enable_vnmi ||
4412             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4413                 enable_irq_window(vcpu);
4414                 return;
4415         }
4416
4417         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4418 }
4419
4420 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4421 {
4422         struct vcpu_vmx *vmx = to_vmx(vcpu);
4423         uint32_t intr;
4424         int irq = vcpu->arch.interrupt.nr;
4425
4426         trace_kvm_inj_virq(irq);
4427
4428         ++vcpu->stat.irq_injections;
4429         if (vmx->rmode.vm86_active) {
4430                 int inc_eip = 0;
4431                 if (vcpu->arch.interrupt.soft)
4432                         inc_eip = vcpu->arch.event_exit_inst_len;
4433                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4434                 return;
4435         }
4436         intr = irq | INTR_INFO_VALID_MASK;
4437         if (vcpu->arch.interrupt.soft) {
4438                 intr |= INTR_TYPE_SOFT_INTR;
4439                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4440                              vmx->vcpu.arch.event_exit_inst_len);
4441         } else
4442                 intr |= INTR_TYPE_EXT_INTR;
4443         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4444
4445         vmx_clear_hlt(vcpu);
4446 }
4447
4448 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4449 {
4450         struct vcpu_vmx *vmx = to_vmx(vcpu);
4451
4452         if (!enable_vnmi) {
4453                 /*
4454                  * Tracking the NMI-blocked state in software is built upon
4455                  * finding the next open IRQ window. This, in turn, depends on
4456                  * well-behaving guests: They have to keep IRQs disabled at
4457                  * least as long as the NMI handler runs. Otherwise we may
4458                  * cause NMI nesting, maybe breaking the guest. But as this is
4459                  * highly unlikely, we can live with the residual risk.
4460                  */
4461                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4462                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4463         }
4464
4465         ++vcpu->stat.nmi_injections;
4466         vmx->loaded_vmcs->nmi_known_unmasked = false;
4467
4468         if (vmx->rmode.vm86_active) {
4469                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4470                 return;
4471         }
4472
4473         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4474                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4475
4476         vmx_clear_hlt(vcpu);
4477 }
4478
4479 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4480 {
4481         struct vcpu_vmx *vmx = to_vmx(vcpu);
4482         bool masked;
4483
4484         if (!enable_vnmi)
4485                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4486         if (vmx->loaded_vmcs->nmi_known_unmasked)
4487                 return false;
4488         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4489         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4490         return masked;
4491 }
4492
4493 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4494 {
4495         struct vcpu_vmx *vmx = to_vmx(vcpu);
4496
4497         if (!enable_vnmi) {
4498                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4499                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4500                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4501                 }
4502         } else {
4503                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4504                 if (masked)
4505                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4506                                       GUEST_INTR_STATE_NMI);
4507                 else
4508                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4509                                         GUEST_INTR_STATE_NMI);
4510         }
4511 }
4512
4513 static bool vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4514 {
4515         if (to_vmx(vcpu)->nested.nested_run_pending)
4516                 return false;
4517
4518         if (!enable_vnmi &&
4519             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4520                 return false;
4521
4522         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4523                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4524                    | GUEST_INTR_STATE_NMI));
4525 }
4526
4527 static bool vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4528 {
4529         if (to_vmx(vcpu)->nested.nested_run_pending)
4530                 return false;
4531
4532         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4533                 return true;
4534
4535         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4536                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4537                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4538 }
4539
4540 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4541 {
4542         int ret;
4543
4544         if (enable_unrestricted_guest)
4545                 return 0;
4546
4547         mutex_lock(&kvm->slots_lock);
4548         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4549                                       PAGE_SIZE * 3);
4550         mutex_unlock(&kvm->slots_lock);
4551
4552         if (ret)
4553                 return ret;
4554         to_kvm_vmx(kvm)->tss_addr = addr;
4555         return init_rmode_tss(kvm);
4556 }
4557
4558 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4559 {
4560         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4561         return 0;
4562 }
4563
4564 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4565 {
4566         switch (vec) {
4567         case BP_VECTOR:
4568                 /*
4569                  * Update instruction length as we may reinject the exception
4570                  * from user space while in guest debugging mode.
4571                  */
4572                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4573                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4574                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4575                         return false;
4576                 /* fall through */
4577         case DB_VECTOR:
4578                 if (vcpu->guest_debug &
4579                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4580                         return false;
4581                 /* fall through */
4582         case DE_VECTOR:
4583         case OF_VECTOR:
4584         case BR_VECTOR:
4585         case UD_VECTOR:
4586         case DF_VECTOR:
4587         case SS_VECTOR:
4588         case GP_VECTOR:
4589         case MF_VECTOR:
4590                 return true;
4591         }
4592         return false;
4593 }
4594
4595 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4596                                   int vec, u32 err_code)
4597 {
4598         /*
4599          * Instruction with address size override prefix opcode 0x67
4600          * Cause the #SS fault with 0 error code in VM86 mode.
4601          */
4602         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4603                 if (kvm_emulate_instruction(vcpu, 0)) {
4604                         if (vcpu->arch.halt_request) {
4605                                 vcpu->arch.halt_request = 0;
4606                                 return kvm_vcpu_halt(vcpu);
4607                         }
4608                         return 1;
4609                 }
4610                 return 0;
4611         }
4612
4613         /*
4614          * Forward all other exceptions that are valid in real mode.
4615          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4616          *        the required debugging infrastructure rework.
4617          */
4618         kvm_queue_exception(vcpu, vec);
4619         return 1;
4620 }
4621
4622 /*
4623  * Trigger machine check on the host. We assume all the MSRs are already set up
4624  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4625  * We pass a fake environment to the machine check handler because we want
4626  * the guest to be always treated like user space, no matter what context
4627  * it used internally.
4628  */
4629 static void kvm_machine_check(void)
4630 {
4631 #if defined(CONFIG_X86_MCE)
4632         struct pt_regs regs = {
4633                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4634                 .flags = X86_EFLAGS_IF,
4635         };
4636
4637         do_machine_check(&regs, 0);
4638 #endif
4639 }
4640
4641 static int handle_machine_check(struct kvm_vcpu *vcpu)
4642 {
4643         /* handled by vmx_vcpu_run() */
4644         return 1;
4645 }
4646
4647 /*
4648  * If the host has split lock detection disabled, then #AC is
4649  * unconditionally injected into the guest, which is the pre split lock
4650  * detection behaviour.
4651  *
4652  * If the host has split lock detection enabled then #AC is
4653  * only injected into the guest when:
4654  *  - Guest CPL == 3 (user mode)
4655  *  - Guest has #AC detection enabled in CR0
4656  *  - Guest EFLAGS has AC bit set
4657  */
4658 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4659 {
4660         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4661                 return true;
4662
4663         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4664                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4665 }
4666
4667 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4668 {
4669         struct vcpu_vmx *vmx = to_vmx(vcpu);
4670         struct kvm_run *kvm_run = vcpu->run;
4671         u32 intr_info, ex_no, error_code;
4672         unsigned long cr2, rip, dr6;
4673         u32 vect_info;
4674
4675         vect_info = vmx->idt_vectoring_info;
4676         intr_info = vmx->exit_intr_info;
4677
4678         if (is_machine_check(intr_info) || is_nmi(intr_info))
4679                 return 1; /* handled by handle_exception_nmi_irqoff() */
4680
4681         if (is_invalid_opcode(intr_info))
4682                 return handle_ud(vcpu);
4683
4684         error_code = 0;
4685         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4686                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4687
4688         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4689                 WARN_ON_ONCE(!enable_vmware_backdoor);
4690
4691                 /*
4692                  * VMware backdoor emulation on #GP interception only handles
4693                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4694                  * error code on #GP.
4695                  */
4696                 if (error_code) {
4697                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4698                         return 1;
4699                 }
4700                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4701         }
4702
4703         /*
4704          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4705          * MMIO, it is better to report an internal error.
4706          * See the comments in vmx_handle_exit.
4707          */
4708         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4709             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4710                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4711                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4712                 vcpu->run->internal.ndata = 3;
4713                 vcpu->run->internal.data[0] = vect_info;
4714                 vcpu->run->internal.data[1] = intr_info;
4715                 vcpu->run->internal.data[2] = error_code;
4716                 return 0;
4717         }
4718
4719         if (is_page_fault(intr_info)) {
4720                 cr2 = vmx_get_exit_qual(vcpu);
4721                 /* EPT won't cause page fault directly */
4722                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4723                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4724         }
4725
4726         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4727
4728         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4729                 return handle_rmode_exception(vcpu, ex_no, error_code);
4730
4731         switch (ex_no) {
4732         case DB_VECTOR:
4733                 dr6 = vmx_get_exit_qual(vcpu);
4734                 if (!(vcpu->guest_debug &
4735                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4736                         if (is_icebp(intr_info))
4737                                 WARN_ON(!skip_emulated_instruction(vcpu));
4738
4739                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4740                         return 1;
4741                 }
4742                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4743                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4744                 /* fall through */
4745         case BP_VECTOR:
4746                 /*
4747                  * Update instruction length as we may reinject #BP from
4748                  * user space while in guest debugging mode. Reading it for
4749                  * #DB as well causes no harm, it is not used in that case.
4750                  */
4751                 vmx->vcpu.arch.event_exit_inst_len =
4752                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4753                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4754                 rip = kvm_rip_read(vcpu);
4755                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4756                 kvm_run->debug.arch.exception = ex_no;
4757                 break;
4758         case AC_VECTOR:
4759                 if (guest_inject_ac(vcpu)) {
4760                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4761                         return 1;
4762                 }
4763
4764                 /*
4765                  * Handle split lock. Depending on detection mode this will
4766                  * either warn and disable split lock detection for this
4767                  * task or force SIGBUS on it.
4768                  */
4769                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4770                         return 1;
4771                 fallthrough;
4772         default:
4773                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4774                 kvm_run->ex.exception = ex_no;
4775                 kvm_run->ex.error_code = error_code;
4776                 break;
4777         }
4778         return 0;
4779 }
4780
4781 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4782 {
4783         ++vcpu->stat.irq_exits;
4784         return 1;
4785 }
4786
4787 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4788 {
4789         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4790         vcpu->mmio_needed = 0;
4791         return 0;
4792 }
4793
4794 static int handle_io(struct kvm_vcpu *vcpu)
4795 {
4796         unsigned long exit_qualification;
4797         int size, in, string;
4798         unsigned port;
4799
4800         exit_qualification = vmx_get_exit_qual(vcpu);
4801         string = (exit_qualification & 16) != 0;
4802
4803         ++vcpu->stat.io_exits;
4804
4805         if (string)
4806                 return kvm_emulate_instruction(vcpu, 0);
4807
4808         port = exit_qualification >> 16;
4809         size = (exit_qualification & 7) + 1;
4810         in = (exit_qualification & 8) != 0;
4811
4812         return kvm_fast_pio(vcpu, size, port, in);
4813 }
4814
4815 static void
4816 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4817 {
4818         /*
4819          * Patch in the VMCALL instruction:
4820          */
4821         hypercall[0] = 0x0f;
4822         hypercall[1] = 0x01;
4823         hypercall[2] = 0xc1;
4824 }
4825
4826 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4827 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4828 {
4829         if (is_guest_mode(vcpu)) {
4830                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4831                 unsigned long orig_val = val;
4832
4833                 /*
4834                  * We get here when L2 changed cr0 in a way that did not change
4835                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4836                  * but did change L0 shadowed bits. So we first calculate the
4837                  * effective cr0 value that L1 would like to write into the
4838                  * hardware. It consists of the L2-owned bits from the new
4839                  * value combined with the L1-owned bits from L1's guest_cr0.
4840                  */
4841                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4842                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4843
4844                 if (!nested_guest_cr0_valid(vcpu, val))
4845                         return 1;
4846
4847                 if (kvm_set_cr0(vcpu, val))
4848                         return 1;
4849                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4850                 return 0;
4851         } else {
4852                 if (to_vmx(vcpu)->nested.vmxon &&
4853                     !nested_host_cr0_valid(vcpu, val))
4854                         return 1;
4855
4856                 return kvm_set_cr0(vcpu, val);
4857         }
4858 }
4859
4860 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4861 {
4862         if (is_guest_mode(vcpu)) {
4863                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4864                 unsigned long orig_val = val;
4865
4866                 /* analogously to handle_set_cr0 */
4867                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4868                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4869                 if (kvm_set_cr4(vcpu, val))
4870                         return 1;
4871                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4872                 return 0;
4873         } else
4874                 return kvm_set_cr4(vcpu, val);
4875 }
4876
4877 static int handle_desc(struct kvm_vcpu *vcpu)
4878 {
4879         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4880         return kvm_emulate_instruction(vcpu, 0);
4881 }
4882
4883 static int handle_cr(struct kvm_vcpu *vcpu)
4884 {
4885         unsigned long exit_qualification, val;
4886         int cr;
4887         int reg;
4888         int err;
4889         int ret;
4890
4891         exit_qualification = vmx_get_exit_qual(vcpu);
4892         cr = exit_qualification & 15;
4893         reg = (exit_qualification >> 8) & 15;
4894         switch ((exit_qualification >> 4) & 3) {
4895         case 0: /* mov to cr */
4896                 val = kvm_register_readl(vcpu, reg);
4897                 trace_kvm_cr_write(cr, val);
4898                 switch (cr) {
4899                 case 0:
4900                         err = handle_set_cr0(vcpu, val);
4901                         return kvm_complete_insn_gp(vcpu, err);
4902                 case 3:
4903                         WARN_ON_ONCE(enable_unrestricted_guest);
4904                         err = kvm_set_cr3(vcpu, val);
4905                         return kvm_complete_insn_gp(vcpu, err);
4906                 case 4:
4907                         err = handle_set_cr4(vcpu, val);
4908                         return kvm_complete_insn_gp(vcpu, err);
4909                 case 8: {
4910                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4911                                 u8 cr8 = (u8)val;
4912                                 err = kvm_set_cr8(vcpu, cr8);
4913                                 ret = kvm_complete_insn_gp(vcpu, err);
4914                                 if (lapic_in_kernel(vcpu))
4915                                         return ret;
4916                                 if (cr8_prev <= cr8)
4917                                         return ret;
4918                                 /*
4919                                  * TODO: we might be squashing a
4920                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4921                                  * KVM_EXIT_DEBUG here.
4922                                  */
4923                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4924                                 return 0;
4925                         }
4926                 }
4927                 break;
4928         case 2: /* clts */
4929                 WARN_ONCE(1, "Guest should always own CR0.TS");
4930                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4931                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4932                 return kvm_skip_emulated_instruction(vcpu);
4933         case 1: /*mov from cr*/
4934                 switch (cr) {
4935                 case 3:
4936                         WARN_ON_ONCE(enable_unrestricted_guest);
4937                         val = kvm_read_cr3(vcpu);
4938                         kvm_register_write(vcpu, reg, val);
4939                         trace_kvm_cr_read(cr, val);
4940                         return kvm_skip_emulated_instruction(vcpu);
4941                 case 8:
4942                         val = kvm_get_cr8(vcpu);
4943                         kvm_register_write(vcpu, reg, val);
4944                         trace_kvm_cr_read(cr, val);
4945                         return kvm_skip_emulated_instruction(vcpu);
4946                 }
4947                 break;
4948         case 3: /* lmsw */
4949                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4950                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4951                 kvm_lmsw(vcpu, val);
4952
4953                 return kvm_skip_emulated_instruction(vcpu);
4954         default:
4955                 break;
4956         }
4957         vcpu->run->exit_reason = 0;
4958         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4959                (int)(exit_qualification >> 4) & 3, cr);
4960         return 0;
4961 }
4962
4963 static int handle_dr(struct kvm_vcpu *vcpu)
4964 {
4965         unsigned long exit_qualification;
4966         int dr, dr7, reg;
4967
4968         exit_qualification = vmx_get_exit_qual(vcpu);
4969         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4970
4971         /* First, if DR does not exist, trigger UD */
4972         if (!kvm_require_dr(vcpu, dr))
4973                 return 1;
4974
4975         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4976         if (!kvm_require_cpl(vcpu, 0))
4977                 return 1;
4978         dr7 = vmcs_readl(GUEST_DR7);
4979         if (dr7 & DR7_GD) {
4980                 /*
4981                  * As the vm-exit takes precedence over the debug trap, we
4982                  * need to emulate the latter, either for the host or the
4983                  * guest debugging itself.
4984                  */
4985                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4986                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
4987                         vcpu->run->debug.arch.dr7 = dr7;
4988                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4989                         vcpu->run->debug.arch.exception = DB_VECTOR;
4990                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4991                         return 0;
4992                 } else {
4993                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
4994                         return 1;
4995                 }
4996         }
4997
4998         if (vcpu->guest_debug == 0) {
4999                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5000
5001                 /*
5002                  * No more DR vmexits; force a reload of the debug registers
5003                  * and reenter on this instruction.  The next vmexit will
5004                  * retrieve the full state of the debug registers.
5005                  */
5006                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5007                 return 1;
5008         }
5009
5010         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5011         if (exit_qualification & TYPE_MOV_FROM_DR) {
5012                 unsigned long val;
5013
5014                 if (kvm_get_dr(vcpu, dr, &val))
5015                         return 1;
5016                 kvm_register_write(vcpu, reg, val);
5017         } else
5018                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5019                         return 1;
5020
5021         return kvm_skip_emulated_instruction(vcpu);
5022 }
5023
5024 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5025 {
5026         get_debugreg(vcpu->arch.db[0], 0);
5027         get_debugreg(vcpu->arch.db[1], 1);
5028         get_debugreg(vcpu->arch.db[2], 2);
5029         get_debugreg(vcpu->arch.db[3], 3);
5030         get_debugreg(vcpu->arch.dr6, 6);
5031         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5032
5033         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5034         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5035 }
5036
5037 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5038 {
5039         vmcs_writel(GUEST_DR7, val);
5040 }
5041
5042 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5043 {
5044         kvm_apic_update_ppr(vcpu);
5045         return 1;
5046 }
5047
5048 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5049 {
5050         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5051
5052         kvm_make_request(KVM_REQ_EVENT, vcpu);
5053
5054         ++vcpu->stat.irq_window_exits;
5055         return 1;
5056 }
5057
5058 static int handle_vmcall(struct kvm_vcpu *vcpu)
5059 {
5060         return kvm_emulate_hypercall(vcpu);
5061 }
5062
5063 static int handle_invd(struct kvm_vcpu *vcpu)
5064 {
5065         return kvm_emulate_instruction(vcpu, 0);
5066 }
5067
5068 static int handle_invlpg(struct kvm_vcpu *vcpu)
5069 {
5070         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5071
5072         kvm_mmu_invlpg(vcpu, exit_qualification);
5073         return kvm_skip_emulated_instruction(vcpu);
5074 }
5075
5076 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5077 {
5078         int err;
5079
5080         err = kvm_rdpmc(vcpu);
5081         return kvm_complete_insn_gp(vcpu, err);
5082 }
5083
5084 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5085 {
5086         return kvm_emulate_wbinvd(vcpu);
5087 }
5088
5089 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5090 {
5091         u64 new_bv = kvm_read_edx_eax(vcpu);
5092         u32 index = kvm_rcx_read(vcpu);
5093
5094         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5095                 return kvm_skip_emulated_instruction(vcpu);
5096         return 1;
5097 }
5098
5099 static int handle_apic_access(struct kvm_vcpu *vcpu)
5100 {
5101         if (likely(fasteoi)) {
5102                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5103                 int access_type, offset;
5104
5105                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5106                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5107                 /*
5108                  * Sane guest uses MOV to write EOI, with written value
5109                  * not cared. So make a short-circuit here by avoiding
5110                  * heavy instruction emulation.
5111                  */
5112                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5113                     (offset == APIC_EOI)) {
5114                         kvm_lapic_set_eoi(vcpu);
5115                         return kvm_skip_emulated_instruction(vcpu);
5116                 }
5117         }
5118         return kvm_emulate_instruction(vcpu, 0);
5119 }
5120
5121 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5122 {
5123         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5124         int vector = exit_qualification & 0xff;
5125
5126         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5127         kvm_apic_set_eoi_accelerated(vcpu, vector);
5128         return 1;
5129 }
5130
5131 static int handle_apic_write(struct kvm_vcpu *vcpu)
5132 {
5133         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5134         u32 offset = exit_qualification & 0xfff;
5135
5136         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5137         kvm_apic_write_nodecode(vcpu, offset);
5138         return 1;
5139 }
5140
5141 static int handle_task_switch(struct kvm_vcpu *vcpu)
5142 {
5143         struct vcpu_vmx *vmx = to_vmx(vcpu);
5144         unsigned long exit_qualification;
5145         bool has_error_code = false;
5146         u32 error_code = 0;
5147         u16 tss_selector;
5148         int reason, type, idt_v, idt_index;
5149
5150         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5151         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5152         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5153
5154         exit_qualification = vmx_get_exit_qual(vcpu);
5155
5156         reason = (u32)exit_qualification >> 30;
5157         if (reason == TASK_SWITCH_GATE && idt_v) {
5158                 switch (type) {
5159                 case INTR_TYPE_NMI_INTR:
5160                         vcpu->arch.nmi_injected = false;
5161                         vmx_set_nmi_mask(vcpu, true);
5162                         break;
5163                 case INTR_TYPE_EXT_INTR:
5164                 case INTR_TYPE_SOFT_INTR:
5165                         kvm_clear_interrupt_queue(vcpu);
5166                         break;
5167                 case INTR_TYPE_HARD_EXCEPTION:
5168                         if (vmx->idt_vectoring_info &
5169                             VECTORING_INFO_DELIVER_CODE_MASK) {
5170                                 has_error_code = true;
5171                                 error_code =
5172                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5173                         }
5174                         /* fall through */
5175                 case INTR_TYPE_SOFT_EXCEPTION:
5176                         kvm_clear_exception_queue(vcpu);
5177                         break;
5178                 default:
5179                         break;
5180                 }
5181         }
5182         tss_selector = exit_qualification;
5183
5184         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5185                        type != INTR_TYPE_EXT_INTR &&
5186                        type != INTR_TYPE_NMI_INTR))
5187                 WARN_ON(!skip_emulated_instruction(vcpu));
5188
5189         /*
5190          * TODO: What about debug traps on tss switch?
5191          *       Are we supposed to inject them and update dr6?
5192          */
5193         return kvm_task_switch(vcpu, tss_selector,
5194                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5195                                reason, has_error_code, error_code);
5196 }
5197
5198 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5199 {
5200         unsigned long exit_qualification;
5201         gpa_t gpa;
5202         u64 error_code;
5203
5204         exit_qualification = vmx_get_exit_qual(vcpu);
5205
5206         /*
5207          * EPT violation happened while executing iret from NMI,
5208          * "blocked by NMI" bit has to be set before next VM entry.
5209          * There are errata that may cause this bit to not be set:
5210          * AAK134, BY25.
5211          */
5212         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5213                         enable_vnmi &&
5214                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5215                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5216
5217         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5218         trace_kvm_page_fault(gpa, exit_qualification);
5219
5220         /* Is it a read fault? */
5221         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5222                      ? PFERR_USER_MASK : 0;
5223         /* Is it a write fault? */
5224         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5225                       ? PFERR_WRITE_MASK : 0;
5226         /* Is it a fetch fault? */
5227         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5228                       ? PFERR_FETCH_MASK : 0;
5229         /* ept page table entry is present? */
5230         error_code |= (exit_qualification &
5231                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5232                         EPT_VIOLATION_EXECUTABLE))
5233                       ? PFERR_PRESENT_MASK : 0;
5234
5235         error_code |= (exit_qualification & 0x100) != 0 ?
5236                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5237
5238         vcpu->arch.exit_qualification = exit_qualification;
5239         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5240 }
5241
5242 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5243 {
5244         gpa_t gpa;
5245
5246         /*
5247          * A nested guest cannot optimize MMIO vmexits, because we have an
5248          * nGPA here instead of the required GPA.
5249          */
5250         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5251         if (!is_guest_mode(vcpu) &&
5252             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5253                 trace_kvm_fast_mmio(gpa);
5254                 return kvm_skip_emulated_instruction(vcpu);
5255         }
5256
5257         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5258 }
5259
5260 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5261 {
5262         WARN_ON_ONCE(!enable_vnmi);
5263         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5264         ++vcpu->stat.nmi_window_exits;
5265         kvm_make_request(KVM_REQ_EVENT, vcpu);
5266
5267         return 1;
5268 }
5269
5270 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5271 {
5272         struct vcpu_vmx *vmx = to_vmx(vcpu);
5273         bool intr_window_requested;
5274         unsigned count = 130;
5275
5276         /*
5277          * We should never reach the point where we are emulating L2
5278          * due to invalid guest state as that means we incorrectly
5279          * allowed a nested VMEntry with an invalid vmcs12.
5280          */
5281         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5282
5283         intr_window_requested = exec_controls_get(vmx) &
5284                                 CPU_BASED_INTR_WINDOW_EXITING;
5285
5286         while (vmx->emulation_required && count-- != 0) {
5287                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5288                         return handle_interrupt_window(&vmx->vcpu);
5289
5290                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5291                         return 1;
5292
5293                 if (!kvm_emulate_instruction(vcpu, 0))
5294                         return 0;
5295
5296                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5297                     vcpu->arch.exception.pending) {
5298                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5299                         vcpu->run->internal.suberror =
5300                                                 KVM_INTERNAL_ERROR_EMULATION;
5301                         vcpu->run->internal.ndata = 0;
5302                         return 0;
5303                 }
5304
5305                 if (vcpu->arch.halt_request) {
5306                         vcpu->arch.halt_request = 0;
5307                         return kvm_vcpu_halt(vcpu);
5308                 }
5309
5310                 /*
5311                  * Note, return 1 and not 0, vcpu_run() is responsible for
5312                  * morphing the pending signal into the proper return code.
5313                  */
5314                 if (signal_pending(current))
5315                         return 1;
5316
5317                 if (need_resched())
5318                         schedule();
5319         }
5320
5321         return 1;
5322 }
5323
5324 static void grow_ple_window(struct kvm_vcpu *vcpu)
5325 {
5326         struct vcpu_vmx *vmx = to_vmx(vcpu);
5327         unsigned int old = vmx->ple_window;
5328
5329         vmx->ple_window = __grow_ple_window(old, ple_window,
5330                                             ple_window_grow,
5331                                             ple_window_max);
5332
5333         if (vmx->ple_window != old) {
5334                 vmx->ple_window_dirty = true;
5335                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5336                                             vmx->ple_window, old);
5337         }
5338 }
5339
5340 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5341 {
5342         struct vcpu_vmx *vmx = to_vmx(vcpu);
5343         unsigned int old = vmx->ple_window;
5344
5345         vmx->ple_window = __shrink_ple_window(old, ple_window,
5346                                               ple_window_shrink,
5347                                               ple_window);
5348
5349         if (vmx->ple_window != old) {
5350                 vmx->ple_window_dirty = true;
5351                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5352                                             vmx->ple_window, old);
5353         }
5354 }
5355
5356 /*
5357  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5358  */
5359 static void wakeup_handler(void)
5360 {
5361         struct kvm_vcpu *vcpu;
5362         int cpu = smp_processor_id();
5363
5364         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5365         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5366                         blocked_vcpu_list) {
5367                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5368
5369                 if (pi_test_on(pi_desc) == 1)
5370                         kvm_vcpu_kick(vcpu);
5371         }
5372         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5373 }
5374
5375 static void vmx_enable_tdp(void)
5376 {
5377         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5378                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5379                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5380                 0ull, VMX_EPT_EXECUTABLE_MASK,
5381                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5382                 VMX_EPT_RWX_MASK, 0ull);
5383
5384         ept_set_mmio_spte_mask();
5385 }
5386
5387 /*
5388  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5389  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5390  */
5391 static int handle_pause(struct kvm_vcpu *vcpu)
5392 {
5393         if (!kvm_pause_in_guest(vcpu->kvm))
5394                 grow_ple_window(vcpu);
5395
5396         /*
5397          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5398          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5399          * never set PAUSE_EXITING and just set PLE if supported,
5400          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5401          */
5402         kvm_vcpu_on_spin(vcpu, true);
5403         return kvm_skip_emulated_instruction(vcpu);
5404 }
5405
5406 static int handle_nop(struct kvm_vcpu *vcpu)
5407 {
5408         return kvm_skip_emulated_instruction(vcpu);
5409 }
5410
5411 static int handle_mwait(struct kvm_vcpu *vcpu)
5412 {
5413         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5414         return handle_nop(vcpu);
5415 }
5416
5417 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5418 {
5419         kvm_queue_exception(vcpu, UD_VECTOR);
5420         return 1;
5421 }
5422
5423 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5424 {
5425         return 1;
5426 }
5427
5428 static int handle_monitor(struct kvm_vcpu *vcpu)
5429 {
5430         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5431         return handle_nop(vcpu);
5432 }
5433
5434 static int handle_invpcid(struct kvm_vcpu *vcpu)
5435 {
5436         u32 vmx_instruction_info;
5437         unsigned long type;
5438         bool pcid_enabled;
5439         gva_t gva;
5440         struct x86_exception e;
5441         unsigned i;
5442         unsigned long roots_to_free = 0;
5443         struct {
5444                 u64 pcid;
5445                 u64 gla;
5446         } operand;
5447
5448         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5449                 kvm_queue_exception(vcpu, UD_VECTOR);
5450                 return 1;
5451         }
5452
5453         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5454         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5455
5456         if (type > 3) {
5457                 kvm_inject_gp(vcpu, 0);
5458                 return 1;
5459         }
5460
5461         /* According to the Intel instruction reference, the memory operand
5462          * is read even if it isn't needed (e.g., for type==all)
5463          */
5464         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5465                                 vmx_instruction_info, false,
5466                                 sizeof(operand), &gva))
5467                 return 1;
5468
5469         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5470                 kvm_inject_emulated_page_fault(vcpu, &e);
5471                 return 1;
5472         }
5473
5474         if (operand.pcid >> 12 != 0) {
5475                 kvm_inject_gp(vcpu, 0);
5476                 return 1;
5477         }
5478
5479         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5480
5481         switch (type) {
5482         case INVPCID_TYPE_INDIV_ADDR:
5483                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5484                     is_noncanonical_address(operand.gla, vcpu)) {
5485                         kvm_inject_gp(vcpu, 0);
5486                         return 1;
5487                 }
5488                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5489                 return kvm_skip_emulated_instruction(vcpu);
5490
5491         case INVPCID_TYPE_SINGLE_CTXT:
5492                 if (!pcid_enabled && (operand.pcid != 0)) {
5493                         kvm_inject_gp(vcpu, 0);
5494                         return 1;
5495                 }
5496
5497                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5498                         kvm_mmu_sync_roots(vcpu);
5499                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
5500                 }
5501
5502                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5503                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
5504                             == operand.pcid)
5505                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5506
5507                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5508                 /*
5509                  * If neither the current cr3 nor any of the prev_roots use the
5510                  * given PCID, then nothing needs to be done here because a
5511                  * resync will happen anyway before switching to any other CR3.
5512                  */
5513
5514                 return kvm_skip_emulated_instruction(vcpu);
5515
5516         case INVPCID_TYPE_ALL_NON_GLOBAL:
5517                 /*
5518                  * Currently, KVM doesn't mark global entries in the shadow
5519                  * page tables, so a non-global flush just degenerates to a
5520                  * global flush. If needed, we could optimize this later by
5521                  * keeping track of global entries in shadow page tables.
5522                  */
5523
5524                 /* fall-through */
5525         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5526                 kvm_mmu_unload(vcpu);
5527                 return kvm_skip_emulated_instruction(vcpu);
5528
5529         default:
5530                 BUG(); /* We have already checked above that type <= 3 */
5531         }
5532 }
5533
5534 static int handle_pml_full(struct kvm_vcpu *vcpu)
5535 {
5536         unsigned long exit_qualification;
5537
5538         trace_kvm_pml_full(vcpu->vcpu_id);
5539
5540         exit_qualification = vmx_get_exit_qual(vcpu);
5541
5542         /*
5543          * PML buffer FULL happened while executing iret from NMI,
5544          * "blocked by NMI" bit has to be set before next VM entry.
5545          */
5546         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5547                         enable_vnmi &&
5548                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5549                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5550                                 GUEST_INTR_STATE_NMI);
5551
5552         /*
5553          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5554          * here.., and there's no userspace involvement needed for PML.
5555          */
5556         return 1;
5557 }
5558
5559 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5560 {
5561         struct vcpu_vmx *vmx = to_vmx(vcpu);
5562
5563         if (!vmx->req_immediate_exit &&
5564             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5565                 kvm_lapic_expired_hv_timer(vcpu);
5566
5567         return 1;
5568 }
5569
5570 /*
5571  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5572  * are overwritten by nested_vmx_setup() when nested=1.
5573  */
5574 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5575 {
5576         kvm_queue_exception(vcpu, UD_VECTOR);
5577         return 1;
5578 }
5579
5580 static int handle_encls(struct kvm_vcpu *vcpu)
5581 {
5582         /*
5583          * SGX virtualization is not yet supported.  There is no software
5584          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5585          * to prevent the guest from executing ENCLS.
5586          */
5587         kvm_queue_exception(vcpu, UD_VECTOR);
5588         return 1;
5589 }
5590
5591 /*
5592  * The exit handlers return 1 if the exit was handled fully and guest execution
5593  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5594  * to be done to userspace and return 0.
5595  */
5596 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5597         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5598         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5599         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5600         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5601         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5602         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5603         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5604         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5605         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5606         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5607         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5608         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5609         [EXIT_REASON_INVD]                    = handle_invd,
5610         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5611         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5612         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5613         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5614         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5615         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5616         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5617         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5618         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5619         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5620         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5621         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5622         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5623         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5624         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5625         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5626         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5627         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5628         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5629         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5630         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5631         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5632         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5633         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5634         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5635         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5636         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5637         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5638         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5639         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5640         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5641         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5642         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5643         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5644         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5645         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5646         [EXIT_REASON_ENCLS]                   = handle_encls,
5647 };
5648
5649 static const int kvm_vmx_max_exit_handlers =
5650         ARRAY_SIZE(kvm_vmx_exit_handlers);
5651
5652 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5653 {
5654         *info1 = vmx_get_exit_qual(vcpu);
5655         *info2 = vmx_get_intr_info(vcpu);
5656 }
5657
5658 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5659 {
5660         if (vmx->pml_pg) {
5661                 __free_page(vmx->pml_pg);
5662                 vmx->pml_pg = NULL;
5663         }
5664 }
5665
5666 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5667 {
5668         struct vcpu_vmx *vmx = to_vmx(vcpu);
5669         u64 *pml_buf;
5670         u16 pml_idx;
5671
5672         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5673
5674         /* Do nothing if PML buffer is empty */
5675         if (pml_idx == (PML_ENTITY_NUM - 1))
5676                 return;
5677
5678         /* PML index always points to next available PML buffer entity */
5679         if (pml_idx >= PML_ENTITY_NUM)
5680                 pml_idx = 0;
5681         else
5682                 pml_idx++;
5683
5684         pml_buf = page_address(vmx->pml_pg);
5685         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5686                 u64 gpa;
5687
5688                 gpa = pml_buf[pml_idx];
5689                 WARN_ON(gpa & (PAGE_SIZE - 1));
5690                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5691         }
5692
5693         /* reset PML index */
5694         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5695 }
5696
5697 /*
5698  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5699  * Called before reporting dirty_bitmap to userspace.
5700  */
5701 static void kvm_flush_pml_buffers(struct kvm *kvm)
5702 {
5703         int i;
5704         struct kvm_vcpu *vcpu;
5705         /*
5706          * We only need to kick vcpu out of guest mode here, as PML buffer
5707          * is flushed at beginning of all VMEXITs, and it's obvious that only
5708          * vcpus running in guest are possible to have unflushed GPAs in PML
5709          * buffer.
5710          */
5711         kvm_for_each_vcpu(i, vcpu, kvm)
5712                 kvm_vcpu_kick(vcpu);
5713 }
5714
5715 static void vmx_dump_sel(char *name, uint32_t sel)
5716 {
5717         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5718                name, vmcs_read16(sel),
5719                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5720                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5721                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5722 }
5723
5724 static void vmx_dump_dtsel(char *name, uint32_t limit)
5725 {
5726         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5727                name, vmcs_read32(limit),
5728                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5729 }
5730
5731 void dump_vmcs(void)
5732 {
5733         u32 vmentry_ctl, vmexit_ctl;
5734         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5735         unsigned long cr4;
5736         u64 efer;
5737
5738         if (!dump_invalid_vmcs) {
5739                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5740                 return;
5741         }
5742
5743         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5744         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5745         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5746         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5747         cr4 = vmcs_readl(GUEST_CR4);
5748         efer = vmcs_read64(GUEST_IA32_EFER);
5749         secondary_exec_control = 0;
5750         if (cpu_has_secondary_exec_ctrls())
5751                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5752
5753         pr_err("*** Guest State ***\n");
5754         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5755                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5756                vmcs_readl(CR0_GUEST_HOST_MASK));
5757         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5758                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5759         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5760         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5761             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5762         {
5763                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5764                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5765                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5766                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5767         }
5768         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5769                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5770         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5771                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5772         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5773                vmcs_readl(GUEST_SYSENTER_ESP),
5774                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5775         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5776         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5777         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5778         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5779         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5780         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5781         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5782         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5783         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5784         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5785         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5786             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5787                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5788                        efer, vmcs_read64(GUEST_IA32_PAT));
5789         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5790                vmcs_read64(GUEST_IA32_DEBUGCTL),
5791                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5792         if (cpu_has_load_perf_global_ctrl() &&
5793             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5794                 pr_err("PerfGlobCtl = 0x%016llx\n",
5795                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5796         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5797                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5798         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5799                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5800                vmcs_read32(GUEST_ACTIVITY_STATE));
5801         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5802                 pr_err("InterruptStatus = %04x\n",
5803                        vmcs_read16(GUEST_INTR_STATUS));
5804
5805         pr_err("*** Host State ***\n");
5806         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5807                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5808         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5809                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5810                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5811                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5812                vmcs_read16(HOST_TR_SELECTOR));
5813         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5814                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5815                vmcs_readl(HOST_TR_BASE));
5816         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5817                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5818         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5819                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5820                vmcs_readl(HOST_CR4));
5821         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5822                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5823                vmcs_read32(HOST_IA32_SYSENTER_CS),
5824                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5825         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5826                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5827                        vmcs_read64(HOST_IA32_EFER),
5828                        vmcs_read64(HOST_IA32_PAT));
5829         if (cpu_has_load_perf_global_ctrl() &&
5830             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5831                 pr_err("PerfGlobCtl = 0x%016llx\n",
5832                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5833
5834         pr_err("*** Control State ***\n");
5835         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5836                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5837         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5838         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5839                vmcs_read32(EXCEPTION_BITMAP),
5840                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5841                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5842         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5843                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5844                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5845                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5846         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5847                vmcs_read32(VM_EXIT_INTR_INFO),
5848                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5849                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5850         pr_err("        reason=%08x qualification=%016lx\n",
5851                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5852         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5853                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5854                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5855         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5856         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5857                 pr_err("TSC Multiplier = 0x%016llx\n",
5858                        vmcs_read64(TSC_MULTIPLIER));
5859         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5860                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5861                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5862                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5863                 }
5864                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5865                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5866                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5867                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5868         }
5869         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5870                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5871         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5872                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5873         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5874                 pr_err("PLE Gap=%08x Window=%08x\n",
5875                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5876         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5877                 pr_err("Virtual processor ID = 0x%04x\n",
5878                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5879 }
5880
5881 /*
5882  * The guest has exited.  See if we can fix it or if we need userspace
5883  * assistance.
5884  */
5885 static int vmx_handle_exit(struct kvm_vcpu *vcpu,
5886         enum exit_fastpath_completion exit_fastpath)
5887 {
5888         struct vcpu_vmx *vmx = to_vmx(vcpu);
5889         u32 exit_reason = vmx->exit_reason;
5890         u32 vectoring_info = vmx->idt_vectoring_info;
5891
5892         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5893
5894         /*
5895          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5896          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5897          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5898          * mode as if vcpus is in root mode, the PML buffer must has been
5899          * flushed already.
5900          */
5901         if (enable_pml)
5902                 vmx_flush_pml_buffer(vcpu);
5903
5904         /* If guest state is invalid, start emulating */
5905         if (vmx->emulation_required)
5906                 return handle_invalid_guest_state(vcpu);
5907
5908         if (is_guest_mode(vcpu)) {
5909                 /*
5910                  * The host physical addresses of some pages of guest memory
5911                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5912                  * Page). The CPU may write to these pages via their host
5913                  * physical address while L2 is running, bypassing any
5914                  * address-translation-based dirty tracking (e.g. EPT write
5915                  * protection).
5916                  *
5917                  * Mark them dirty on every exit from L2 to prevent them from
5918                  * getting out of sync with dirty tracking.
5919                  */
5920                 nested_mark_vmcs12_pages_dirty(vcpu);
5921
5922                 if (nested_vmx_reflect_vmexit(vcpu))
5923                         return 1;
5924         }
5925
5926         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5927                 dump_vmcs();
5928                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5929                 vcpu->run->fail_entry.hardware_entry_failure_reason
5930                         = exit_reason;
5931                 return 0;
5932         }
5933
5934         if (unlikely(vmx->fail)) {
5935                 dump_vmcs();
5936                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5937                 vcpu->run->fail_entry.hardware_entry_failure_reason
5938                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5939                 return 0;
5940         }
5941
5942         /*
5943          * Note:
5944          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5945          * delivery event since it indicates guest is accessing MMIO.
5946          * The vm-exit can be triggered again after return to guest that
5947          * will cause infinite loop.
5948          */
5949         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5950                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5951                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5952                         exit_reason != EXIT_REASON_PML_FULL &&
5953                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5954                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5955                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5956                 vcpu->run->internal.ndata = 3;
5957                 vcpu->run->internal.data[0] = vectoring_info;
5958                 vcpu->run->internal.data[1] = exit_reason;
5959                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5960                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5961                         vcpu->run->internal.ndata++;
5962                         vcpu->run->internal.data[3] =
5963                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5964                 }
5965                 return 0;
5966         }
5967
5968         if (unlikely(!enable_vnmi &&
5969                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5970                 if (vmx_interrupt_allowed(vcpu)) {
5971                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5972                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5973                            vcpu->arch.nmi_pending) {
5974                         /*
5975                          * This CPU don't support us in finding the end of an
5976                          * NMI-blocked window if the guest runs with IRQs
5977                          * disabled. So we pull the trigger after 1 s of
5978                          * futile waiting, but inform the user about this.
5979                          */
5980                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5981                                "state on VCPU %d after 1 s timeout\n",
5982                                __func__, vcpu->vcpu_id);
5983                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5984                 }
5985         }
5986
5987         if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
5988                 kvm_skip_emulated_instruction(vcpu);
5989                 return 1;
5990         }
5991
5992         if (exit_reason >= kvm_vmx_max_exit_handlers)
5993                 goto unexpected_vmexit;
5994 #ifdef CONFIG_RETPOLINE
5995         if (exit_reason == EXIT_REASON_MSR_WRITE)
5996                 return kvm_emulate_wrmsr(vcpu);
5997         else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
5998                 return handle_preemption_timer(vcpu);
5999         else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
6000                 return handle_interrupt_window(vcpu);
6001         else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6002                 return handle_external_interrupt(vcpu);
6003         else if (exit_reason == EXIT_REASON_HLT)
6004                 return kvm_emulate_halt(vcpu);
6005         else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
6006                 return handle_ept_misconfig(vcpu);
6007 #endif
6008
6009         exit_reason = array_index_nospec(exit_reason,
6010                                          kvm_vmx_max_exit_handlers);
6011         if (!kvm_vmx_exit_handlers[exit_reason])
6012                 goto unexpected_vmexit;
6013
6014         return kvm_vmx_exit_handlers[exit_reason](vcpu);
6015
6016 unexpected_vmexit:
6017         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
6018         dump_vmcs();
6019         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6020         vcpu->run->internal.suberror =
6021                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6022         vcpu->run->internal.ndata = 1;
6023         vcpu->run->internal.data[0] = exit_reason;
6024         return 0;
6025 }
6026
6027 /*
6028  * Software based L1D cache flush which is used when microcode providing
6029  * the cache control MSR is not loaded.
6030  *
6031  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6032  * flush it is required to read in 64 KiB because the replacement algorithm
6033  * is not exactly LRU. This could be sized at runtime via topology
6034  * information but as all relevant affected CPUs have 32KiB L1D cache size
6035  * there is no point in doing so.
6036  */
6037 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6038 {
6039         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6040
6041         /*
6042          * This code is only executed when the the flush mode is 'cond' or
6043          * 'always'
6044          */
6045         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6046                 bool flush_l1d;
6047
6048                 /*
6049                  * Clear the per-vcpu flush bit, it gets set again
6050                  * either from vcpu_run() or from one of the unsafe
6051                  * VMEXIT handlers.
6052                  */
6053                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6054                 vcpu->arch.l1tf_flush_l1d = false;
6055
6056                 /*
6057                  * Clear the per-cpu flush bit, it gets set again from
6058                  * the interrupt handlers.
6059                  */
6060                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6061                 kvm_clear_cpu_l1tf_flush_l1d();
6062
6063                 if (!flush_l1d)
6064                         return;
6065         }
6066
6067         vcpu->stat.l1d_flush++;
6068
6069         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6070                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6071                 return;
6072         }
6073
6074         asm volatile(
6075                 /* First ensure the pages are in the TLB */
6076                 "xorl   %%eax, %%eax\n"
6077                 ".Lpopulate_tlb:\n\t"
6078                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6079                 "addl   $4096, %%eax\n\t"
6080                 "cmpl   %%eax, %[size]\n\t"
6081                 "jne    .Lpopulate_tlb\n\t"
6082                 "xorl   %%eax, %%eax\n\t"
6083                 "cpuid\n\t"
6084                 /* Now fill the cache */
6085                 "xorl   %%eax, %%eax\n"
6086                 ".Lfill_cache:\n"
6087                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6088                 "addl   $64, %%eax\n\t"
6089                 "cmpl   %%eax, %[size]\n\t"
6090                 "jne    .Lfill_cache\n\t"
6091                 "lfence\n"
6092                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6093                     [size] "r" (size)
6094                 : "eax", "ebx", "ecx", "edx");
6095 }
6096
6097 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6098 {
6099         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6100         int tpr_threshold;
6101
6102         if (is_guest_mode(vcpu) &&
6103                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6104                 return;
6105
6106         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6107         if (is_guest_mode(vcpu))
6108                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6109         else
6110                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6111 }
6112
6113 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6114 {
6115         struct vcpu_vmx *vmx = to_vmx(vcpu);
6116         u32 sec_exec_control;
6117
6118         if (!lapic_in_kernel(vcpu))
6119                 return;
6120
6121         if (!flexpriority_enabled &&
6122             !cpu_has_vmx_virtualize_x2apic_mode())
6123                 return;
6124
6125         /* Postpone execution until vmcs01 is the current VMCS. */
6126         if (is_guest_mode(vcpu)) {
6127                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6128                 return;
6129         }
6130
6131         sec_exec_control = secondary_exec_controls_get(vmx);
6132         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6133                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6134
6135         switch (kvm_get_apic_mode(vcpu)) {
6136         case LAPIC_MODE_INVALID:
6137                 WARN_ONCE(true, "Invalid local APIC state");
6138         case LAPIC_MODE_DISABLED:
6139                 break;
6140         case LAPIC_MODE_XAPIC:
6141                 if (flexpriority_enabled) {
6142                         sec_exec_control |=
6143                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6144                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6145
6146                         /*
6147                          * Flush the TLB, reloading the APIC access page will
6148                          * only do so if its physical address has changed, but
6149                          * the guest may have inserted a non-APIC mapping into
6150                          * the TLB while the APIC access page was disabled.
6151                          */
6152                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6153                 }
6154                 break;
6155         case LAPIC_MODE_X2APIC:
6156                 if (cpu_has_vmx_virtualize_x2apic_mode())
6157                         sec_exec_control |=
6158                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6159                 break;
6160         }
6161         secondary_exec_controls_set(vmx, sec_exec_control);
6162
6163         vmx_update_msr_bitmap(vcpu);
6164 }
6165
6166 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6167 {
6168         struct page *page;
6169
6170         /* Defer reload until vmcs01 is the current VMCS. */
6171         if (is_guest_mode(vcpu)) {
6172                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6173                 return;
6174         }
6175
6176         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6177             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6178                 return;
6179
6180         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6181         if (is_error_page(page))
6182                 return;
6183
6184         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6185         vmx_flush_tlb_current(vcpu);
6186
6187         /*
6188          * Do not pin apic access page in memory, the MMU notifier
6189          * will call us again if it is migrated or swapped out.
6190          */
6191         put_page(page);
6192 }
6193
6194 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6195 {
6196         u16 status;
6197         u8 old;
6198
6199         if (max_isr == -1)
6200                 max_isr = 0;
6201
6202         status = vmcs_read16(GUEST_INTR_STATUS);
6203         old = status >> 8;
6204         if (max_isr != old) {
6205                 status &= 0xff;
6206                 status |= max_isr << 8;
6207                 vmcs_write16(GUEST_INTR_STATUS, status);
6208         }
6209 }
6210
6211 static void vmx_set_rvi(int vector)
6212 {
6213         u16 status;
6214         u8 old;
6215
6216         if (vector == -1)
6217                 vector = 0;
6218
6219         status = vmcs_read16(GUEST_INTR_STATUS);
6220         old = (u8)status & 0xff;
6221         if ((u8)vector != old) {
6222                 status &= ~0xff;
6223                 status |= (u8)vector;
6224                 vmcs_write16(GUEST_INTR_STATUS, status);
6225         }
6226 }
6227
6228 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6229 {
6230         /*
6231          * When running L2, updating RVI is only relevant when
6232          * vmcs12 virtual-interrupt-delivery enabled.
6233          * However, it can be enabled only when L1 also
6234          * intercepts external-interrupts and in that case
6235          * we should not update vmcs02 RVI but instead intercept
6236          * interrupt. Therefore, do nothing when running L2.
6237          */
6238         if (!is_guest_mode(vcpu))
6239                 vmx_set_rvi(max_irr);
6240 }
6241
6242 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6243 {
6244         struct vcpu_vmx *vmx = to_vmx(vcpu);
6245         int max_irr;
6246         bool max_irr_updated;
6247
6248         WARN_ON(!vcpu->arch.apicv_active);
6249         if (pi_test_on(&vmx->pi_desc)) {
6250                 pi_clear_on(&vmx->pi_desc);
6251                 /*
6252                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6253                  * But on x86 this is just a compiler barrier anyway.
6254                  */
6255                 smp_mb__after_atomic();
6256                 max_irr_updated =
6257                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6258
6259                 /*
6260                  * If we are running L2 and L1 has a new pending interrupt
6261                  * which can be injected, we should re-evaluate
6262                  * what should be done with this new L1 interrupt.
6263                  * If L1 intercepts external-interrupts, we should
6264                  * exit from L2 to L1. Otherwise, interrupt should be
6265                  * delivered directly to L2.
6266                  */
6267                 if (is_guest_mode(vcpu) && max_irr_updated) {
6268                         if (nested_exit_on_intr(vcpu))
6269                                 kvm_vcpu_exiting_guest_mode(vcpu);
6270                         else
6271                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6272                 }
6273         } else {
6274                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6275         }
6276         vmx_hwapic_irr_update(vcpu, max_irr);
6277         return max_irr;
6278 }
6279
6280 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6281 {
6282         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6283
6284         return pi_test_on(pi_desc) ||
6285                 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6286 }
6287
6288 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6289 {
6290         if (!kvm_vcpu_apicv_active(vcpu))
6291                 return;
6292
6293         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6294         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6295         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6296         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6297 }
6298
6299 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6300 {
6301         struct vcpu_vmx *vmx = to_vmx(vcpu);
6302
6303         pi_clear_on(&vmx->pi_desc);
6304         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6305 }
6306
6307 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6308 {
6309         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6310
6311         /* if exit due to PF check for async PF */
6312         if (is_page_fault(intr_info)) {
6313                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6314         /* Handle machine checks before interrupts are enabled */
6315         } else if (is_machine_check(intr_info)) {
6316                 kvm_machine_check();
6317         /* We need to handle NMIs before interrupts are enabled */
6318         } else if (is_nmi(intr_info)) {
6319                 kvm_before_interrupt(&vmx->vcpu);
6320                 asm("int $2");
6321                 kvm_after_interrupt(&vmx->vcpu);
6322         }
6323 }
6324
6325 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6326 {
6327         unsigned int vector;
6328         unsigned long entry;
6329 #ifdef CONFIG_X86_64
6330         unsigned long tmp;
6331 #endif
6332         gate_desc *desc;
6333         u32 intr_info = vmx_get_intr_info(vcpu);
6334
6335         if (WARN_ONCE(!is_external_intr(intr_info),
6336             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6337                 return;
6338
6339         vector = intr_info & INTR_INFO_VECTOR_MASK;
6340         desc = (gate_desc *)host_idt_base + vector;
6341         entry = gate_offset(desc);
6342
6343         kvm_before_interrupt(vcpu);
6344
6345         asm volatile(
6346 #ifdef CONFIG_X86_64
6347                 "mov %%" _ASM_SP ", %[sp]\n\t"
6348                 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6349                 "push $%c[ss]\n\t"
6350                 "push %[sp]\n\t"
6351 #endif
6352                 "pushf\n\t"
6353                 __ASM_SIZE(push) " $%c[cs]\n\t"
6354                 CALL_NOSPEC
6355                 :
6356 #ifdef CONFIG_X86_64
6357                 [sp]"=&r"(tmp),
6358 #endif
6359                 ASM_CALL_CONSTRAINT
6360                 :
6361                 [thunk_target]"r"(entry),
6362                 [ss]"i"(__KERNEL_DS),
6363                 [cs]"i"(__KERNEL_CS)
6364         );
6365
6366         kvm_after_interrupt(vcpu);
6367 }
6368 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6369
6370 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6371 {
6372         struct vcpu_vmx *vmx = to_vmx(vcpu);
6373
6374         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6375                 handle_external_interrupt_irqoff(vcpu);
6376         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6377                 handle_exception_nmi_irqoff(vmx);
6378 }
6379
6380 static bool vmx_has_emulated_msr(int index)
6381 {
6382         switch (index) {
6383         case MSR_IA32_SMBASE:
6384                 /*
6385                  * We cannot do SMM unless we can run the guest in big
6386                  * real mode.
6387                  */
6388                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6389         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6390                 return nested;
6391         case MSR_AMD64_VIRT_SPEC_CTRL:
6392                 /* This is AMD only.  */
6393                 return false;
6394         default:
6395                 return true;
6396         }
6397 }
6398
6399 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6400 {
6401         u32 exit_intr_info;
6402         bool unblock_nmi;
6403         u8 vector;
6404         bool idtv_info_valid;
6405
6406         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6407
6408         if (enable_vnmi) {
6409                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6410                         return;
6411
6412                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6413                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6414                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6415                 /*
6416                  * SDM 3: 27.7.1.2 (September 2008)
6417                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6418                  * a guest IRET fault.
6419                  * SDM 3: 23.2.2 (September 2008)
6420                  * Bit 12 is undefined in any of the following cases:
6421                  *  If the VM exit sets the valid bit in the IDT-vectoring
6422                  *   information field.
6423                  *  If the VM exit is due to a double fault.
6424                  */
6425                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6426                     vector != DF_VECTOR && !idtv_info_valid)
6427                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6428                                       GUEST_INTR_STATE_NMI);
6429                 else
6430                         vmx->loaded_vmcs->nmi_known_unmasked =
6431                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6432                                   & GUEST_INTR_STATE_NMI);
6433         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6434                 vmx->loaded_vmcs->vnmi_blocked_time +=
6435                         ktime_to_ns(ktime_sub(ktime_get(),
6436                                               vmx->loaded_vmcs->entry_time));
6437 }
6438
6439 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6440                                       u32 idt_vectoring_info,
6441                                       int instr_len_field,
6442                                       int error_code_field)
6443 {
6444         u8 vector;
6445         int type;
6446         bool idtv_info_valid;
6447
6448         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6449
6450         vcpu->arch.nmi_injected = false;
6451         kvm_clear_exception_queue(vcpu);
6452         kvm_clear_interrupt_queue(vcpu);
6453
6454         if (!idtv_info_valid)
6455                 return;
6456
6457         kvm_make_request(KVM_REQ_EVENT, vcpu);
6458
6459         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6460         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6461
6462         switch (type) {
6463         case INTR_TYPE_NMI_INTR:
6464                 vcpu->arch.nmi_injected = true;
6465                 /*
6466                  * SDM 3: 27.7.1.2 (September 2008)
6467                  * Clear bit "block by NMI" before VM entry if a NMI
6468                  * delivery faulted.
6469                  */
6470                 vmx_set_nmi_mask(vcpu, false);
6471                 break;
6472         case INTR_TYPE_SOFT_EXCEPTION:
6473                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6474                 /* fall through */
6475         case INTR_TYPE_HARD_EXCEPTION:
6476                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6477                         u32 err = vmcs_read32(error_code_field);
6478                         kvm_requeue_exception_e(vcpu, vector, err);
6479                 } else
6480                         kvm_requeue_exception(vcpu, vector);
6481                 break;
6482         case INTR_TYPE_SOFT_INTR:
6483                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6484                 /* fall through */
6485         case INTR_TYPE_EXT_INTR:
6486                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6487                 break;
6488         default:
6489                 break;
6490         }
6491 }
6492
6493 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6494 {
6495         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6496                                   VM_EXIT_INSTRUCTION_LEN,
6497                                   IDT_VECTORING_ERROR_CODE);
6498 }
6499
6500 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6501 {
6502         __vmx_complete_interrupts(vcpu,
6503                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6504                                   VM_ENTRY_INSTRUCTION_LEN,
6505                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6506
6507         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6508 }
6509
6510 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6511 {
6512         int i, nr_msrs;
6513         struct perf_guest_switch_msr *msrs;
6514
6515         msrs = perf_guest_get_msrs(&nr_msrs);
6516
6517         if (!msrs)
6518                 return;
6519
6520         for (i = 0; i < nr_msrs; i++)
6521                 if (msrs[i].host == msrs[i].guest)
6522                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6523                 else
6524                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6525                                         msrs[i].host, false);
6526 }
6527
6528 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6529 {
6530         u32 host_umwait_control;
6531
6532         if (!vmx_has_waitpkg(vmx))
6533                 return;
6534
6535         host_umwait_control = get_umwait_control_msr();
6536
6537         if (vmx->msr_ia32_umwait_control != host_umwait_control)
6538                 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6539                         vmx->msr_ia32_umwait_control,
6540                         host_umwait_control, false);
6541         else
6542                 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6543 }
6544
6545 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6546 {
6547         struct vcpu_vmx *vmx = to_vmx(vcpu);
6548         u64 tscl;
6549         u32 delta_tsc;
6550
6551         if (vmx->req_immediate_exit) {
6552                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6553                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6554         } else if (vmx->hv_deadline_tsc != -1) {
6555                 tscl = rdtsc();
6556                 if (vmx->hv_deadline_tsc > tscl)
6557                         /* set_hv_timer ensures the delta fits in 32-bits */
6558                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6559                                 cpu_preemption_timer_multi);
6560                 else
6561                         delta_tsc = 0;
6562
6563                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6564                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6565         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6566                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6567                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6568         }
6569 }
6570
6571 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6572 {
6573         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6574                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6575                 vmcs_writel(HOST_RSP, host_rsp);
6576         }
6577 }
6578
6579 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6580
6581 static enum exit_fastpath_completion vmx_vcpu_run(struct kvm_vcpu *vcpu)
6582 {
6583         enum exit_fastpath_completion exit_fastpath;
6584         struct vcpu_vmx *vmx = to_vmx(vcpu);
6585         unsigned long cr3, cr4;
6586
6587         /* Record the guest's net vcpu time for enforced NMI injections. */
6588         if (unlikely(!enable_vnmi &&
6589                      vmx->loaded_vmcs->soft_vnmi_blocked))
6590                 vmx->loaded_vmcs->entry_time = ktime_get();
6591
6592         /* Don't enter VMX if guest state is invalid, let the exit handler
6593            start emulation until we arrive back to a valid state */
6594         if (vmx->emulation_required)
6595                 return EXIT_FASTPATH_NONE;
6596
6597         if (vmx->ple_window_dirty) {
6598                 vmx->ple_window_dirty = false;
6599                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6600         }
6601
6602         /*
6603          * We did this in prepare_switch_to_guest, because it needs to
6604          * be within srcu_read_lock.
6605          */
6606         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6607
6608         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6609                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6610         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6611                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6612
6613         cr3 = __get_current_cr3_fast();
6614         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6615                 vmcs_writel(HOST_CR3, cr3);
6616                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6617         }
6618
6619         cr4 = cr4_read_shadow();
6620         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6621                 vmcs_writel(HOST_CR4, cr4);
6622                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6623         }
6624
6625         /* When single-stepping over STI and MOV SS, we must clear the
6626          * corresponding interruptibility bits in the guest state. Otherwise
6627          * vmentry fails as it then expects bit 14 (BS) in pending debug
6628          * exceptions being set, but that's not correct for the guest debugging
6629          * case. */
6630         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6631                 vmx_set_interrupt_shadow(vcpu, 0);
6632
6633         kvm_load_guest_xsave_state(vcpu);
6634
6635         pt_guest_enter(vmx);
6636
6637         if (vcpu_to_pmu(vcpu)->version)
6638                 atomic_switch_perf_msrs(vmx);
6639         atomic_switch_umwait_control_msr(vmx);
6640
6641         if (enable_preemption_timer)
6642                 vmx_update_hv_timer(vcpu);
6643
6644         if (lapic_in_kernel(vcpu) &&
6645                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6646                 kvm_wait_lapic_expire(vcpu);
6647
6648         /*
6649          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6650          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6651          * is no need to worry about the conditional branch over the wrmsr
6652          * being speculatively taken.
6653          */
6654         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6655
6656         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6657         if (static_branch_unlikely(&vmx_l1d_should_flush))
6658                 vmx_l1d_flush(vcpu);
6659         else if (static_branch_unlikely(&mds_user_clear))
6660                 mds_clear_cpu_buffers();
6661
6662         if (vcpu->arch.cr2 != read_cr2())
6663                 write_cr2(vcpu->arch.cr2);
6664
6665         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6666                                    vmx->loaded_vmcs->launched);
6667
6668         vcpu->arch.cr2 = read_cr2();
6669
6670         /*
6671          * We do not use IBRS in the kernel. If this vCPU has used the
6672          * SPEC_CTRL MSR it may have left it on; save the value and
6673          * turn it off. This is much more efficient than blindly adding
6674          * it to the atomic save/restore list. Especially as the former
6675          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6676          *
6677          * For non-nested case:
6678          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6679          * save it.
6680          *
6681          * For nested case:
6682          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6683          * save it.
6684          */
6685         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6686                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6687
6688         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6689
6690         /* All fields are clean at this point */
6691         if (static_branch_unlikely(&enable_evmcs))
6692                 current_evmcs->hv_clean_fields |=
6693                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6694
6695         if (static_branch_unlikely(&enable_evmcs))
6696                 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6697
6698         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6699         if (vmx->host_debugctlmsr)
6700                 update_debugctlmsr(vmx->host_debugctlmsr);
6701
6702 #ifndef CONFIG_X86_64
6703         /*
6704          * The sysexit path does not restore ds/es, so we must set them to
6705          * a reasonable value ourselves.
6706          *
6707          * We can't defer this to vmx_prepare_switch_to_host() since that
6708          * function may be executed in interrupt context, which saves and
6709          * restore segments around it, nullifying its effect.
6710          */
6711         loadsegment(ds, __USER_DS);
6712         loadsegment(es, __USER_DS);
6713 #endif
6714
6715         vmx_register_cache_reset(vcpu);
6716
6717         pt_guest_exit(vmx);
6718
6719         kvm_load_host_xsave_state(vcpu);
6720
6721         vmx->nested.nested_run_pending = 0;
6722         vmx->idt_vectoring_info = 0;
6723
6724         if (unlikely(vmx->fail)) {
6725                 vmx->exit_reason = 0xdead;
6726                 return EXIT_FASTPATH_NONE;
6727         }
6728
6729         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6730         if (unlikely((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY))
6731                 kvm_machine_check();
6732
6733         if (unlikely(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6734                 return EXIT_FASTPATH_NONE;
6735
6736         if (!is_guest_mode(vcpu) && vmx->exit_reason == EXIT_REASON_MSR_WRITE)
6737                 exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
6738         else
6739                 exit_fastpath = EXIT_FASTPATH_NONE;
6740
6741         vmx->loaded_vmcs->launched = 1;
6742         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6743
6744         vmx_recover_nmi_blocking(vmx);
6745         vmx_complete_interrupts(vmx);
6746
6747         return exit_fastpath;
6748 }
6749
6750 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6751 {
6752         struct vcpu_vmx *vmx = to_vmx(vcpu);
6753
6754         if (enable_pml)
6755                 vmx_destroy_pml_buffer(vmx);
6756         free_vpid(vmx->vpid);
6757         nested_vmx_free_vcpu(vcpu);
6758         free_loaded_vmcs(vmx->loaded_vmcs);
6759 }
6760
6761 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6762 {
6763         struct vcpu_vmx *vmx;
6764         unsigned long *msr_bitmap;
6765         int i, cpu, err;
6766
6767         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6768         vmx = to_vmx(vcpu);
6769
6770         err = -ENOMEM;
6771
6772         vmx->vpid = allocate_vpid();
6773
6774         /*
6775          * If PML is turned on, failure on enabling PML just results in failure
6776          * of creating the vcpu, therefore we can simplify PML logic (by
6777          * avoiding dealing with cases, such as enabling PML partially on vcpus
6778          * for the guest), etc.
6779          */
6780         if (enable_pml) {
6781                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6782                 if (!vmx->pml_pg)
6783                         goto free_vpid;
6784         }
6785
6786         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6787
6788         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6789                 u32 index = vmx_msr_index[i];
6790                 u32 data_low, data_high;
6791                 int j = vmx->nmsrs;
6792
6793                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6794                         continue;
6795                 if (wrmsr_safe(index, data_low, data_high) < 0)
6796                         continue;
6797
6798                 vmx->guest_msrs[j].index = i;
6799                 vmx->guest_msrs[j].data = 0;
6800                 switch (index) {
6801                 case MSR_IA32_TSX_CTRL:
6802                         /*
6803                          * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6804                          * let's avoid changing CPUID bits under the host
6805                          * kernel's feet.
6806                          */
6807                         vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6808                         break;
6809                 default:
6810                         vmx->guest_msrs[j].mask = -1ull;
6811                         break;
6812                 }
6813                 ++vmx->nmsrs;
6814         }
6815
6816         err = alloc_loaded_vmcs(&vmx->vmcs01);
6817         if (err < 0)
6818                 goto free_pml;
6819
6820         msr_bitmap = vmx->vmcs01.msr_bitmap;
6821         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6822         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6823         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6824         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6825         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6826         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6827         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6828         if (kvm_cstate_in_guest(vcpu->kvm)) {
6829                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6830                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6831                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6832                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6833         }
6834         vmx->msr_bitmap_mode = 0;
6835
6836         vmx->loaded_vmcs = &vmx->vmcs01;
6837         cpu = get_cpu();
6838         vmx_vcpu_load(vcpu, cpu);
6839         vcpu->cpu = cpu;
6840         init_vmcs(vmx);
6841         vmx_vcpu_put(vcpu);
6842         put_cpu();
6843         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6844                 err = alloc_apic_access_page(vcpu->kvm);
6845                 if (err)
6846                         goto free_vmcs;
6847         }
6848
6849         if (enable_ept && !enable_unrestricted_guest) {
6850                 err = init_rmode_identity_map(vcpu->kvm);
6851                 if (err)
6852                         goto free_vmcs;
6853         }
6854
6855         if (nested)
6856                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6857                                            vmx_capability.ept);
6858         else
6859                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6860
6861         vmx->nested.posted_intr_nv = -1;
6862         vmx->nested.current_vmptr = -1ull;
6863
6864         vcpu->arch.microcode_version = 0x100000000ULL;
6865         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6866
6867         /*
6868          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6869          * or POSTED_INTR_WAKEUP_VECTOR.
6870          */
6871         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6872         vmx->pi_desc.sn = 1;
6873
6874         vmx->ept_pointer = INVALID_PAGE;
6875
6876         return 0;
6877
6878 free_vmcs:
6879         free_loaded_vmcs(vmx->loaded_vmcs);
6880 free_pml:
6881         vmx_destroy_pml_buffer(vmx);
6882 free_vpid:
6883         free_vpid(vmx->vpid);
6884         return err;
6885 }
6886
6887 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6888 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6889
6890 static int vmx_vm_init(struct kvm *kvm)
6891 {
6892         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6893
6894         if (!ple_gap)
6895                 kvm->arch.pause_in_guest = true;
6896
6897         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6898                 switch (l1tf_mitigation) {
6899                 case L1TF_MITIGATION_OFF:
6900                 case L1TF_MITIGATION_FLUSH_NOWARN:
6901                         /* 'I explicitly don't care' is set */
6902                         break;
6903                 case L1TF_MITIGATION_FLUSH:
6904                 case L1TF_MITIGATION_FLUSH_NOSMT:
6905                 case L1TF_MITIGATION_FULL:
6906                         /*
6907                          * Warn upon starting the first VM in a potentially
6908                          * insecure environment.
6909                          */
6910                         if (sched_smt_active())
6911                                 pr_warn_once(L1TF_MSG_SMT);
6912                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6913                                 pr_warn_once(L1TF_MSG_L1D);
6914                         break;
6915                 case L1TF_MITIGATION_FULL_FORCE:
6916                         /* Flush is enforced */
6917                         break;
6918                 }
6919         }
6920         kvm_apicv_init(kvm, enable_apicv);
6921         return 0;
6922 }
6923
6924 static int __init vmx_check_processor_compat(void)
6925 {
6926         struct vmcs_config vmcs_conf;
6927         struct vmx_capability vmx_cap;
6928
6929         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6930             !this_cpu_has(X86_FEATURE_VMX)) {
6931                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6932                 return -EIO;
6933         }
6934
6935         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6936                 return -EIO;
6937         if (nested)
6938                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6939         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6940                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6941                                 smp_processor_id());
6942                 return -EIO;
6943         }
6944         return 0;
6945 }
6946
6947 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6948 {
6949         u8 cache;
6950         u64 ipat = 0;
6951
6952         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6953          * memory aliases with conflicting memory types and sometimes MCEs.
6954          * We have to be careful as to what are honored and when.
6955          *
6956          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6957          * UC.  The effective memory type is UC or WC depending on guest PAT.
6958          * This was historically the source of MCEs and we want to be
6959          * conservative.
6960          *
6961          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6962          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
6963          * EPT memory type is set to WB.  The effective memory type is forced
6964          * WB.
6965          *
6966          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
6967          * EPT memory type is used to emulate guest CD/MTRR.
6968          */
6969
6970         if (is_mmio) {
6971                 cache = MTRR_TYPE_UNCACHABLE;
6972                 goto exit;
6973         }
6974
6975         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6976                 ipat = VMX_EPT_IPAT_BIT;
6977                 cache = MTRR_TYPE_WRBACK;
6978                 goto exit;
6979         }
6980
6981         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6982                 ipat = VMX_EPT_IPAT_BIT;
6983                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6984                         cache = MTRR_TYPE_WRBACK;
6985                 else
6986                         cache = MTRR_TYPE_UNCACHABLE;
6987                 goto exit;
6988         }
6989
6990         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6991
6992 exit:
6993         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6994 }
6995
6996 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6997 {
6998         /*
6999          * These bits in the secondary execution controls field
7000          * are dynamic, the others are mostly based on the hypervisor
7001          * architecture and the guest's CPUID.  Do not touch the
7002          * dynamic bits.
7003          */
7004         u32 mask =
7005                 SECONDARY_EXEC_SHADOW_VMCS |
7006                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7007                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7008                 SECONDARY_EXEC_DESC;
7009
7010         u32 new_ctl = vmx->secondary_exec_control;
7011         u32 cur_ctl = secondary_exec_controls_get(vmx);
7012
7013         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7014 }
7015
7016 /*
7017  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7018  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7019  */
7020 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7021 {
7022         struct vcpu_vmx *vmx = to_vmx(vcpu);
7023         struct kvm_cpuid_entry2 *entry;
7024
7025         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7026         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7027
7028 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7029         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7030                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7031 } while (0)
7032
7033         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7034         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7035         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7036         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7037         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7038         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7039         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7040         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7041         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7042         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7043         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7044         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7045         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7046         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7047         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7048
7049         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7050         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7051         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7052         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7053         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7054         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7055         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7056
7057 #undef cr4_fixed1_update
7058 }
7059
7060 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7061 {
7062         struct vcpu_vmx *vmx = to_vmx(vcpu);
7063
7064         if (kvm_mpx_supported()) {
7065                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7066
7067                 if (mpx_enabled) {
7068                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7069                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7070                 } else {
7071                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7072                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7073                 }
7074         }
7075 }
7076
7077 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7078 {
7079         struct vcpu_vmx *vmx = to_vmx(vcpu);
7080         struct kvm_cpuid_entry2 *best = NULL;
7081         int i;
7082
7083         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7084                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7085                 if (!best)
7086                         return;
7087                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7088                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7089                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7090                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7091         }
7092
7093         /* Get the number of configurable Address Ranges for filtering */
7094         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7095                                                 PT_CAP_num_address_ranges);
7096
7097         /* Initialize and clear the no dependency bits */
7098         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7099                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7100
7101         /*
7102          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7103          * will inject an #GP
7104          */
7105         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7106                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7107
7108         /*
7109          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7110          * PSBFreq can be set
7111          */
7112         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7113                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7114                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7115
7116         /*
7117          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7118          * MTCFreq can be set
7119          */
7120         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7121                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7122                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7123
7124         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7125         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7126                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7127                                                         RTIT_CTL_PTW_EN);
7128
7129         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7130         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7131                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7132
7133         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7134         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7135                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7136
7137         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7138         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7139                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7140
7141         /* unmask address range configure area */
7142         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7143                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7144 }
7145
7146 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7147 {
7148         struct vcpu_vmx *vmx = to_vmx(vcpu);
7149
7150         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7151         vcpu->arch.xsaves_enabled = false;
7152
7153         if (cpu_has_secondary_exec_ctrls()) {
7154                 vmx_compute_secondary_exec_control(vmx);
7155                 vmcs_set_secondary_exec_control(vmx);
7156         }
7157
7158         if (nested_vmx_allowed(vcpu))
7159                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7160                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7161                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7162         else
7163                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7164                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7165                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7166
7167         if (nested_vmx_allowed(vcpu)) {
7168                 nested_vmx_cr_fixed1_bits_update(vcpu);
7169                 nested_vmx_entry_exit_ctls_update(vcpu);
7170         }
7171
7172         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7173                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7174                 update_intel_pt_cfg(vcpu);
7175
7176         if (boot_cpu_has(X86_FEATURE_RTM)) {
7177                 struct shared_msr_entry *msr;
7178                 msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7179                 if (msr) {
7180                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7181                         vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7182                 }
7183         }
7184 }
7185
7186 static __init void vmx_set_cpu_caps(void)
7187 {
7188         kvm_set_cpu_caps();
7189
7190         /* CPUID 0x1 */
7191         if (nested)
7192                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7193
7194         /* CPUID 0x7 */
7195         if (kvm_mpx_supported())
7196                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7197         if (cpu_has_vmx_invpcid())
7198                 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7199         if (vmx_pt_mode_is_host_guest())
7200                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7201
7202         /* PKU is not yet implemented for shadow paging. */
7203         if (enable_ept && boot_cpu_has(X86_FEATURE_OSPKE))
7204                 kvm_cpu_cap_check_and_set(X86_FEATURE_PKU);
7205
7206         if (vmx_umip_emulated())
7207                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7208
7209         /* CPUID 0xD.1 */
7210         supported_xss = 0;
7211         if (!vmx_xsaves_supported())
7212                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7213
7214         /* CPUID 0x80000001 */
7215         if (!cpu_has_vmx_rdtscp())
7216                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7217 }
7218
7219 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7220 {
7221         to_vmx(vcpu)->req_immediate_exit = true;
7222 }
7223
7224 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7225                                   struct x86_instruction_info *info)
7226 {
7227         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7228         unsigned short port;
7229         bool intercept;
7230         int size;
7231
7232         if (info->intercept == x86_intercept_in ||
7233             info->intercept == x86_intercept_ins) {
7234                 port = info->src_val;
7235                 size = info->dst_bytes;
7236         } else {
7237                 port = info->dst_val;
7238                 size = info->src_bytes;
7239         }
7240
7241         /*
7242          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7243          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7244          * control.
7245          *
7246          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7247          */
7248         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7249                 intercept = nested_cpu_has(vmcs12,
7250                                            CPU_BASED_UNCOND_IO_EXITING);
7251         else
7252                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7253
7254         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7255         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7256 }
7257
7258 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7259                                struct x86_instruction_info *info,
7260                                enum x86_intercept_stage stage,
7261                                struct x86_exception *exception)
7262 {
7263         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7264
7265         switch (info->intercept) {
7266         /*
7267          * RDPID causes #UD if disabled through secondary execution controls.
7268          * Because it is marked as EmulateOnUD, we need to intercept it here.
7269          */
7270         case x86_intercept_rdtscp:
7271                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7272                         exception->vector = UD_VECTOR;
7273                         exception->error_code_valid = false;
7274                         return X86EMUL_PROPAGATE_FAULT;
7275                 }
7276                 break;
7277
7278         case x86_intercept_in:
7279         case x86_intercept_ins:
7280         case x86_intercept_out:
7281         case x86_intercept_outs:
7282                 return vmx_check_intercept_io(vcpu, info);
7283
7284         case x86_intercept_lgdt:
7285         case x86_intercept_lidt:
7286         case x86_intercept_lldt:
7287         case x86_intercept_ltr:
7288         case x86_intercept_sgdt:
7289         case x86_intercept_sidt:
7290         case x86_intercept_sldt:
7291         case x86_intercept_str:
7292                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7293                         return X86EMUL_CONTINUE;
7294
7295                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7296                 break;
7297
7298         /* TODO: check more intercepts... */
7299         default:
7300                 break;
7301         }
7302
7303         return X86EMUL_UNHANDLEABLE;
7304 }
7305
7306 #ifdef CONFIG_X86_64
7307 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7308 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7309                                   u64 divisor, u64 *result)
7310 {
7311         u64 low = a << shift, high = a >> (64 - shift);
7312
7313         /* To avoid the overflow on divq */
7314         if (high >= divisor)
7315                 return 1;
7316
7317         /* Low hold the result, high hold rem which is discarded */
7318         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7319             "rm" (divisor), "0" (low), "1" (high));
7320         *result = low;
7321
7322         return 0;
7323 }
7324
7325 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7326                             bool *expired)
7327 {
7328         struct vcpu_vmx *vmx;
7329         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7330         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7331
7332         if (kvm_mwait_in_guest(vcpu->kvm) ||
7333                 kvm_can_post_timer_interrupt(vcpu))
7334                 return -EOPNOTSUPP;
7335
7336         vmx = to_vmx(vcpu);
7337         tscl = rdtsc();
7338         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7339         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7340         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7341                                                     ktimer->timer_advance_ns);
7342
7343         if (delta_tsc > lapic_timer_advance_cycles)
7344                 delta_tsc -= lapic_timer_advance_cycles;
7345         else
7346                 delta_tsc = 0;
7347
7348         /* Convert to host delta tsc if tsc scaling is enabled */
7349         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7350             delta_tsc && u64_shl_div_u64(delta_tsc,
7351                                 kvm_tsc_scaling_ratio_frac_bits,
7352                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7353                 return -ERANGE;
7354
7355         /*
7356          * If the delta tsc can't fit in the 32 bit after the multi shift,
7357          * we can't use the preemption timer.
7358          * It's possible that it fits on later vmentries, but checking
7359          * on every vmentry is costly so we just use an hrtimer.
7360          */
7361         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7362                 return -ERANGE;
7363
7364         vmx->hv_deadline_tsc = tscl + delta_tsc;
7365         *expired = !delta_tsc;
7366         return 0;
7367 }
7368
7369 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7370 {
7371         to_vmx(vcpu)->hv_deadline_tsc = -1;
7372 }
7373 #endif
7374
7375 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7376 {
7377         if (!kvm_pause_in_guest(vcpu->kvm))
7378                 shrink_ple_window(vcpu);
7379 }
7380
7381 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7382                                      struct kvm_memory_slot *slot)
7383 {
7384         if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7385                 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7386         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7387 }
7388
7389 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7390                                        struct kvm_memory_slot *slot)
7391 {
7392         kvm_mmu_slot_set_dirty(kvm, slot);
7393 }
7394
7395 static void vmx_flush_log_dirty(struct kvm *kvm)
7396 {
7397         kvm_flush_pml_buffers(kvm);
7398 }
7399
7400 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7401 {
7402         struct vmcs12 *vmcs12;
7403         struct vcpu_vmx *vmx = to_vmx(vcpu);
7404         gpa_t gpa, dst;
7405
7406         if (is_guest_mode(vcpu)) {
7407                 WARN_ON_ONCE(vmx->nested.pml_full);
7408
7409                 /*
7410                  * Check if PML is enabled for the nested guest.
7411                  * Whether eptp bit 6 is set is already checked
7412                  * as part of A/D emulation.
7413                  */
7414                 vmcs12 = get_vmcs12(vcpu);
7415                 if (!nested_cpu_has_pml(vmcs12))
7416                         return 0;
7417
7418                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7419                         vmx->nested.pml_full = true;
7420                         return 1;
7421                 }
7422
7423                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7424                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7425
7426                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7427                                          offset_in_page(dst), sizeof(gpa)))
7428                         return 0;
7429
7430                 vmcs12->guest_pml_index--;
7431         }
7432
7433         return 0;
7434 }
7435
7436 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7437                                            struct kvm_memory_slot *memslot,
7438                                            gfn_t offset, unsigned long mask)
7439 {
7440         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7441 }
7442
7443 static void __pi_post_block(struct kvm_vcpu *vcpu)
7444 {
7445         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7446         struct pi_desc old, new;
7447         unsigned int dest;
7448
7449         do {
7450                 old.control = new.control = pi_desc->control;
7451                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7452                      "Wakeup handler not enabled while the VCPU is blocked\n");
7453
7454                 dest = cpu_physical_id(vcpu->cpu);
7455
7456                 if (x2apic_enabled())
7457                         new.ndst = dest;
7458                 else
7459                         new.ndst = (dest << 8) & 0xFF00;
7460
7461                 /* set 'NV' to 'notification vector' */
7462                 new.nv = POSTED_INTR_VECTOR;
7463         } while (cmpxchg64(&pi_desc->control, old.control,
7464                            new.control) != old.control);
7465
7466         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7467                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7468                 list_del(&vcpu->blocked_vcpu_list);
7469                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7470                 vcpu->pre_pcpu = -1;
7471         }
7472 }
7473
7474 /*
7475  * This routine does the following things for vCPU which is going
7476  * to be blocked if VT-d PI is enabled.
7477  * - Store the vCPU to the wakeup list, so when interrupts happen
7478  *   we can find the right vCPU to wake up.
7479  * - Change the Posted-interrupt descriptor as below:
7480  *      'NDST' <-- vcpu->pre_pcpu
7481  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7482  * - If 'ON' is set during this process, which means at least one
7483  *   interrupt is posted for this vCPU, we cannot block it, in
7484  *   this case, return 1, otherwise, return 0.
7485  *
7486  */
7487 static int pi_pre_block(struct kvm_vcpu *vcpu)
7488 {
7489         unsigned int dest;
7490         struct pi_desc old, new;
7491         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7492
7493         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7494                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7495                 !kvm_vcpu_apicv_active(vcpu))
7496                 return 0;
7497
7498         WARN_ON(irqs_disabled());
7499         local_irq_disable();
7500         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7501                 vcpu->pre_pcpu = vcpu->cpu;
7502                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7503                 list_add_tail(&vcpu->blocked_vcpu_list,
7504                               &per_cpu(blocked_vcpu_on_cpu,
7505                                        vcpu->pre_pcpu));
7506                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7507         }
7508
7509         do {
7510                 old.control = new.control = pi_desc->control;
7511
7512                 WARN((pi_desc->sn == 1),
7513                      "Warning: SN field of posted-interrupts "
7514                      "is set before blocking\n");
7515
7516                 /*
7517                  * Since vCPU can be preempted during this process,
7518                  * vcpu->cpu could be different with pre_pcpu, we
7519                  * need to set pre_pcpu as the destination of wakeup
7520                  * notification event, then we can find the right vCPU
7521                  * to wakeup in wakeup handler if interrupts happen
7522                  * when the vCPU is in blocked state.
7523                  */
7524                 dest = cpu_physical_id(vcpu->pre_pcpu);
7525
7526                 if (x2apic_enabled())
7527                         new.ndst = dest;
7528                 else
7529                         new.ndst = (dest << 8) & 0xFF00;
7530
7531                 /* set 'NV' to 'wakeup vector' */
7532                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7533         } while (cmpxchg64(&pi_desc->control, old.control,
7534                            new.control) != old.control);
7535
7536         /* We should not block the vCPU if an interrupt is posted for it.  */
7537         if (pi_test_on(pi_desc) == 1)
7538                 __pi_post_block(vcpu);
7539
7540         local_irq_enable();
7541         return (vcpu->pre_pcpu == -1);
7542 }
7543
7544 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7545 {
7546         if (pi_pre_block(vcpu))
7547                 return 1;
7548
7549         if (kvm_lapic_hv_timer_in_use(vcpu))
7550                 kvm_lapic_switch_to_sw_timer(vcpu);
7551
7552         return 0;
7553 }
7554
7555 static void pi_post_block(struct kvm_vcpu *vcpu)
7556 {
7557         if (vcpu->pre_pcpu == -1)
7558                 return;
7559
7560         WARN_ON(irqs_disabled());
7561         local_irq_disable();
7562         __pi_post_block(vcpu);
7563         local_irq_enable();
7564 }
7565
7566 static void vmx_post_block(struct kvm_vcpu *vcpu)
7567 {
7568         if (kvm_x86_ops.set_hv_timer)
7569                 kvm_lapic_switch_to_hv_timer(vcpu);
7570
7571         pi_post_block(vcpu);
7572 }
7573
7574 /*
7575  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7576  *
7577  * @kvm: kvm
7578  * @host_irq: host irq of the interrupt
7579  * @guest_irq: gsi of the interrupt
7580  * @set: set or unset PI
7581  * returns 0 on success, < 0 on failure
7582  */
7583 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7584                               uint32_t guest_irq, bool set)
7585 {
7586         struct kvm_kernel_irq_routing_entry *e;
7587         struct kvm_irq_routing_table *irq_rt;
7588         struct kvm_lapic_irq irq;
7589         struct kvm_vcpu *vcpu;
7590         struct vcpu_data vcpu_info;
7591         int idx, ret = 0;
7592
7593         if (!kvm_arch_has_assigned_device(kvm) ||
7594                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7595                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7596                 return 0;
7597
7598         idx = srcu_read_lock(&kvm->irq_srcu);
7599         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7600         if (guest_irq >= irq_rt->nr_rt_entries ||
7601             hlist_empty(&irq_rt->map[guest_irq])) {
7602                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7603                              guest_irq, irq_rt->nr_rt_entries);
7604                 goto out;
7605         }
7606
7607         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7608                 if (e->type != KVM_IRQ_ROUTING_MSI)
7609                         continue;
7610                 /*
7611                  * VT-d PI cannot support posting multicast/broadcast
7612                  * interrupts to a vCPU, we still use interrupt remapping
7613                  * for these kind of interrupts.
7614                  *
7615                  * For lowest-priority interrupts, we only support
7616                  * those with single CPU as the destination, e.g. user
7617                  * configures the interrupts via /proc/irq or uses
7618                  * irqbalance to make the interrupts single-CPU.
7619                  *
7620                  * We will support full lowest-priority interrupt later.
7621                  *
7622                  * In addition, we can only inject generic interrupts using
7623                  * the PI mechanism, refuse to route others through it.
7624                  */
7625
7626                 kvm_set_msi_irq(kvm, e, &irq);
7627                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7628                     !kvm_irq_is_postable(&irq)) {
7629                         /*
7630                          * Make sure the IRTE is in remapped mode if
7631                          * we don't handle it in posted mode.
7632                          */
7633                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7634                         if (ret < 0) {
7635                                 printk(KERN_INFO
7636                                    "failed to back to remapped mode, irq: %u\n",
7637                                    host_irq);
7638                                 goto out;
7639                         }
7640
7641                         continue;
7642                 }
7643
7644                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7645                 vcpu_info.vector = irq.vector;
7646
7647                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7648                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7649
7650                 if (set)
7651                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7652                 else
7653                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7654
7655                 if (ret < 0) {
7656                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7657                                         __func__);
7658                         goto out;
7659                 }
7660         }
7661
7662         ret = 0;
7663 out:
7664         srcu_read_unlock(&kvm->irq_srcu, idx);
7665         return ret;
7666 }
7667
7668 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7669 {
7670         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7671                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7672                         FEAT_CTL_LMCE_ENABLED;
7673         else
7674                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7675                         ~FEAT_CTL_LMCE_ENABLED;
7676 }
7677
7678 static bool vmx_smi_allowed(struct kvm_vcpu *vcpu)
7679 {
7680         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7681         if (to_vmx(vcpu)->nested.nested_run_pending)
7682                 return false;
7683         return true;
7684 }
7685
7686 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7687 {
7688         struct vcpu_vmx *vmx = to_vmx(vcpu);
7689
7690         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7691         if (vmx->nested.smm.guest_mode)
7692                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7693
7694         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7695         vmx->nested.vmxon = false;
7696         vmx_clear_hlt(vcpu);
7697         return 0;
7698 }
7699
7700 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7701 {
7702         struct vcpu_vmx *vmx = to_vmx(vcpu);
7703         int ret;
7704
7705         if (vmx->nested.smm.vmxon) {
7706                 vmx->nested.vmxon = true;
7707                 vmx->nested.smm.vmxon = false;
7708         }
7709
7710         if (vmx->nested.smm.guest_mode) {
7711                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7712                 if (ret)
7713                         return ret;
7714
7715                 vmx->nested.smm.guest_mode = false;
7716         }
7717         return 0;
7718 }
7719
7720 static int enable_smi_window(struct kvm_vcpu *vcpu)
7721 {
7722         return 0;
7723 }
7724
7725 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7726 {
7727         return false;
7728 }
7729
7730 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7731 {
7732         return to_vmx(vcpu)->nested.vmxon;
7733 }
7734
7735 static void hardware_unsetup(void)
7736 {
7737         if (nested)
7738                 nested_vmx_hardware_unsetup();
7739
7740         free_kvm_area();
7741 }
7742
7743 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7744 {
7745         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7746                           BIT(APICV_INHIBIT_REASON_HYPERV);
7747
7748         return supported & BIT(bit);
7749 }
7750
7751 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7752         .hardware_unsetup = hardware_unsetup,
7753
7754         .hardware_enable = hardware_enable,
7755         .hardware_disable = hardware_disable,
7756         .cpu_has_accelerated_tpr = report_flexpriority,
7757         .has_emulated_msr = vmx_has_emulated_msr,
7758
7759         .vm_size = sizeof(struct kvm_vmx),
7760         .vm_init = vmx_vm_init,
7761
7762         .vcpu_create = vmx_create_vcpu,
7763         .vcpu_free = vmx_free_vcpu,
7764         .vcpu_reset = vmx_vcpu_reset,
7765
7766         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7767         .vcpu_load = vmx_vcpu_load,
7768         .vcpu_put = vmx_vcpu_put,
7769
7770         .update_bp_intercept = update_exception_bitmap,
7771         .get_msr_feature = vmx_get_msr_feature,
7772         .get_msr = vmx_get_msr,
7773         .set_msr = vmx_set_msr,
7774         .get_segment_base = vmx_get_segment_base,
7775         .get_segment = vmx_get_segment,
7776         .set_segment = vmx_set_segment,
7777         .get_cpl = vmx_get_cpl,
7778         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7779         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7780         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7781         .set_cr0 = vmx_set_cr0,
7782         .set_cr4 = vmx_set_cr4,
7783         .set_efer = vmx_set_efer,
7784         .get_idt = vmx_get_idt,
7785         .set_idt = vmx_set_idt,
7786         .get_gdt = vmx_get_gdt,
7787         .set_gdt = vmx_set_gdt,
7788         .set_dr7 = vmx_set_dr7,
7789         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7790         .cache_reg = vmx_cache_reg,
7791         .get_rflags = vmx_get_rflags,
7792         .set_rflags = vmx_set_rflags,
7793
7794         .tlb_flush_all = vmx_flush_tlb_all,
7795         .tlb_flush_current = vmx_flush_tlb_current,
7796         .tlb_flush_gva = vmx_flush_tlb_gva,
7797         .tlb_flush_guest = vmx_flush_tlb_guest,
7798
7799         .run = vmx_vcpu_run,
7800         .handle_exit = vmx_handle_exit,
7801         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7802         .update_emulated_instruction = vmx_update_emulated_instruction,
7803         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7804         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7805         .patch_hypercall = vmx_patch_hypercall,
7806         .set_irq = vmx_inject_irq,
7807         .set_nmi = vmx_inject_nmi,
7808         .queue_exception = vmx_queue_exception,
7809         .cancel_injection = vmx_cancel_injection,
7810         .interrupt_allowed = vmx_interrupt_allowed,
7811         .nmi_allowed = vmx_nmi_allowed,
7812         .get_nmi_mask = vmx_get_nmi_mask,
7813         .set_nmi_mask = vmx_set_nmi_mask,
7814         .enable_nmi_window = enable_nmi_window,
7815         .enable_irq_window = enable_irq_window,
7816         .update_cr8_intercept = update_cr8_intercept,
7817         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7818         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7819         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7820         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7821         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7822         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7823         .hwapic_irr_update = vmx_hwapic_irr_update,
7824         .hwapic_isr_update = vmx_hwapic_isr_update,
7825         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7826         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7827         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7828         .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7829
7830         .set_tss_addr = vmx_set_tss_addr,
7831         .set_identity_map_addr = vmx_set_identity_map_addr,
7832         .get_tdp_level = get_ept_level,
7833         .get_mt_mask = vmx_get_mt_mask,
7834
7835         .get_exit_info = vmx_get_exit_info,
7836
7837         .cpuid_update = vmx_cpuid_update,
7838
7839         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7840
7841         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7842         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7843
7844         .load_mmu_pgd = vmx_load_mmu_pgd,
7845
7846         .check_intercept = vmx_check_intercept,
7847         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7848
7849         .request_immediate_exit = vmx_request_immediate_exit,
7850
7851         .sched_in = vmx_sched_in,
7852
7853         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7854         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7855         .flush_log_dirty = vmx_flush_log_dirty,
7856         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7857         .write_log_dirty = vmx_write_pml_buffer,
7858
7859         .pre_block = vmx_pre_block,
7860         .post_block = vmx_post_block,
7861
7862         .pmu_ops = &intel_pmu_ops,
7863         .nested_ops = &vmx_nested_ops,
7864
7865         .update_pi_irte = vmx_update_pi_irte,
7866
7867 #ifdef CONFIG_X86_64
7868         .set_hv_timer = vmx_set_hv_timer,
7869         .cancel_hv_timer = vmx_cancel_hv_timer,
7870 #endif
7871
7872         .setup_mce = vmx_setup_mce,
7873
7874         .smi_allowed = vmx_smi_allowed,
7875         .pre_enter_smm = vmx_pre_enter_smm,
7876         .pre_leave_smm = vmx_pre_leave_smm,
7877         .enable_smi_window = enable_smi_window,
7878
7879         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7880         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7881 };
7882
7883 static __init int hardware_setup(void)
7884 {
7885         unsigned long host_bndcfgs;
7886         struct desc_ptr dt;
7887         int r, i, ept_lpage_level;
7888
7889         store_idt(&dt);
7890         host_idt_base = dt.address;
7891
7892         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7893                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7894
7895         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7896                 return -EIO;
7897
7898         if (boot_cpu_has(X86_FEATURE_NX))
7899                 kvm_enable_efer_bits(EFER_NX);
7900
7901         if (boot_cpu_has(X86_FEATURE_MPX)) {
7902                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7903                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7904         }
7905
7906         if (!cpu_has_vmx_mpx())
7907                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7908                                     XFEATURE_MASK_BNDCSR);
7909
7910         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7911             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7912                 enable_vpid = 0;
7913
7914         if (!cpu_has_vmx_ept() ||
7915             !cpu_has_vmx_ept_4levels() ||
7916             !cpu_has_vmx_ept_mt_wb() ||
7917             !cpu_has_vmx_invept_global())
7918                 enable_ept = 0;
7919
7920         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7921                 enable_ept_ad_bits = 0;
7922
7923         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7924                 enable_unrestricted_guest = 0;
7925
7926         if (!cpu_has_vmx_flexpriority())
7927                 flexpriority_enabled = 0;
7928
7929         if (!cpu_has_virtual_nmis())
7930                 enable_vnmi = 0;
7931
7932         /*
7933          * set_apic_access_page_addr() is used to reload apic access
7934          * page upon invalidation.  No need to do anything if not
7935          * using the APIC_ACCESS_ADDR VMCS field.
7936          */
7937         if (!flexpriority_enabled)
7938                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7939
7940         if (!cpu_has_vmx_tpr_shadow())
7941                 vmx_x86_ops.update_cr8_intercept = NULL;
7942
7943 #if IS_ENABLED(CONFIG_HYPERV)
7944         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7945             && enable_ept) {
7946                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7947                 vmx_x86_ops.tlb_remote_flush_with_range =
7948                                 hv_remote_flush_tlb_with_range;
7949         }
7950 #endif
7951
7952         if (!cpu_has_vmx_ple()) {
7953                 ple_gap = 0;
7954                 ple_window = 0;
7955                 ple_window_grow = 0;
7956                 ple_window_max = 0;
7957                 ple_window_shrink = 0;
7958         }
7959
7960         if (!cpu_has_vmx_apicv()) {
7961                 enable_apicv = 0;
7962                 vmx_x86_ops.sync_pir_to_irr = NULL;
7963         }
7964
7965         if (cpu_has_vmx_tsc_scaling()) {
7966                 kvm_has_tsc_control = true;
7967                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7968                 kvm_tsc_scaling_ratio_frac_bits = 48;
7969         }
7970
7971         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7972
7973         if (enable_ept)
7974                 vmx_enable_tdp();
7975
7976         if (!enable_ept)
7977                 ept_lpage_level = 0;
7978         else if (cpu_has_vmx_ept_1g_page())
7979                 ept_lpage_level = PT_PDPE_LEVEL;
7980         else if (cpu_has_vmx_ept_2m_page())
7981                 ept_lpage_level = PT_DIRECTORY_LEVEL;
7982         else
7983                 ept_lpage_level = PT_PAGE_TABLE_LEVEL;
7984         kvm_configure_mmu(enable_ept, ept_lpage_level);
7985
7986         /*
7987          * Only enable PML when hardware supports PML feature, and both EPT
7988          * and EPT A/D bit features are enabled -- PML depends on them to work.
7989          */
7990         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7991                 enable_pml = 0;
7992
7993         if (!enable_pml) {
7994                 vmx_x86_ops.slot_enable_log_dirty = NULL;
7995                 vmx_x86_ops.slot_disable_log_dirty = NULL;
7996                 vmx_x86_ops.flush_log_dirty = NULL;
7997                 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7998         }
7999
8000         if (!cpu_has_vmx_preemption_timer())
8001                 enable_preemption_timer = false;
8002
8003         if (enable_preemption_timer) {
8004                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8005                 u64 vmx_msr;
8006
8007                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8008                 cpu_preemption_timer_multi =
8009                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8010
8011                 if (tsc_khz)
8012                         use_timer_freq = (u64)tsc_khz * 1000;
8013                 use_timer_freq >>= cpu_preemption_timer_multi;
8014
8015                 /*
8016                  * KVM "disables" the preemption timer by setting it to its max
8017                  * value.  Don't use the timer if it might cause spurious exits
8018                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8019                  */
8020                 if (use_timer_freq > 0xffffffffu / 10)
8021                         enable_preemption_timer = false;
8022         }
8023
8024         if (!enable_preemption_timer) {
8025                 vmx_x86_ops.set_hv_timer = NULL;
8026                 vmx_x86_ops.cancel_hv_timer = NULL;
8027                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8028         }
8029
8030         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
8031
8032         kvm_mce_cap_supported |= MCG_LMCE_P;
8033
8034         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8035                 return -EINVAL;
8036         if (!enable_ept || !cpu_has_vmx_intel_pt())
8037                 pt_mode = PT_MODE_SYSTEM;
8038
8039         if (nested) {
8040                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8041                                            vmx_capability.ept);
8042
8043                 r = nested_vmx_hardware_setup(&vmx_x86_ops,
8044                                               kvm_vmx_exit_handlers);
8045                 if (r)
8046                         return r;
8047         }
8048
8049         vmx_set_cpu_caps();
8050
8051         r = alloc_kvm_area();
8052         if (r)
8053                 nested_vmx_hardware_unsetup();
8054         return r;
8055 }
8056
8057 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8058         .cpu_has_kvm_support = cpu_has_kvm_support,
8059         .disabled_by_bios = vmx_disabled_by_bios,
8060         .check_processor_compatibility = vmx_check_processor_compat,
8061         .hardware_setup = hardware_setup,
8062
8063         .runtime_ops = &vmx_x86_ops,
8064 };
8065
8066 static void vmx_cleanup_l1d_flush(void)
8067 {
8068         if (vmx_l1d_flush_pages) {
8069                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8070                 vmx_l1d_flush_pages = NULL;
8071         }
8072         /* Restore state so sysfs ignores VMX */
8073         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8074 }
8075
8076 static void vmx_exit(void)
8077 {
8078 #ifdef CONFIG_KEXEC_CORE
8079         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8080         synchronize_rcu();
8081 #endif
8082
8083         kvm_exit();
8084
8085 #if IS_ENABLED(CONFIG_HYPERV)
8086         if (static_branch_unlikely(&enable_evmcs)) {
8087                 int cpu;
8088                 struct hv_vp_assist_page *vp_ap;
8089                 /*
8090                  * Reset everything to support using non-enlightened VMCS
8091                  * access later (e.g. when we reload the module with
8092                  * enlightened_vmcs=0)
8093                  */
8094                 for_each_online_cpu(cpu) {
8095                         vp_ap = hv_get_vp_assist_page(cpu);
8096
8097                         if (!vp_ap)
8098                                 continue;
8099
8100                         vp_ap->nested_control.features.directhypercall = 0;
8101                         vp_ap->current_nested_vmcs = 0;
8102                         vp_ap->enlighten_vmentry = 0;
8103                 }
8104
8105                 static_branch_disable(&enable_evmcs);
8106         }
8107 #endif
8108         vmx_cleanup_l1d_flush();
8109 }
8110 module_exit(vmx_exit);
8111
8112 static int __init vmx_init(void)
8113 {
8114         int r, cpu;
8115
8116 #if IS_ENABLED(CONFIG_HYPERV)
8117         /*
8118          * Enlightened VMCS usage should be recommended and the host needs
8119          * to support eVMCS v1 or above. We can also disable eVMCS support
8120          * with module parameter.
8121          */
8122         if (enlightened_vmcs &&
8123             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8124             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8125             KVM_EVMCS_VERSION) {
8126                 int cpu;
8127
8128                 /* Check that we have assist pages on all online CPUs */
8129                 for_each_online_cpu(cpu) {
8130                         if (!hv_get_vp_assist_page(cpu)) {
8131                                 enlightened_vmcs = false;
8132                                 break;
8133                         }
8134                 }
8135
8136                 if (enlightened_vmcs) {
8137                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8138                         static_branch_enable(&enable_evmcs);
8139                 }
8140
8141                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8142                         vmx_x86_ops.enable_direct_tlbflush
8143                                 = hv_enable_direct_tlbflush;
8144
8145         } else {
8146                 enlightened_vmcs = false;
8147         }
8148 #endif
8149
8150         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8151                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8152         if (r)
8153                 return r;
8154
8155         /*
8156          * Must be called after kvm_init() so enable_ept is properly set
8157          * up. Hand the parameter mitigation value in which was stored in
8158          * the pre module init parser. If no parameter was given, it will
8159          * contain 'auto' which will be turned into the default 'cond'
8160          * mitigation mode.
8161          */
8162         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8163         if (r) {
8164                 vmx_exit();
8165                 return r;
8166         }
8167
8168         for_each_possible_cpu(cpu) {
8169                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8170                 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
8171                 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8172         }
8173
8174 #ifdef CONFIG_KEXEC_CORE
8175         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8176                            crash_vmclear_local_loaded_vmcss);
8177 #endif
8178         vmx_check_vmcs12_offsets();
8179
8180         return 0;
8181 }
8182 module_init(vmx_init);