Merge branch 'x86-iopl-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68         X86_FEATURE_MATCH(X86_FEATURE_VMX),
69         {}
70 };
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
72
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
75
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
78
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
81
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
84
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87                         enable_unrestricted_guest, bool, S_IRUGO);
88
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
91
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
94
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
97
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
100
101 /*
102  * If nested=1, nested virtualization is supported, i.e., guests may use
103  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104  * use VMX instructions.
105  */
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
108
109 bool __read_mostly enable_pml = 1;
110 module_param_named(pml, enable_pml, bool, S_IRUGO);
111
112 static bool __read_mostly dump_invalid_vmcs = 0;
113 module_param(dump_invalid_vmcs, bool, 0644);
114
115 #define MSR_BITMAP_MODE_X2APIC          1
116 #define MSR_BITMAP_MODE_X2APIC_APICV    2
117
118 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
119
120 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
121 static int __read_mostly cpu_preemption_timer_multi;
122 static bool __read_mostly enable_preemption_timer = 1;
123 #ifdef CONFIG_X86_64
124 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
125 #endif
126
127 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
128 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
129 #define KVM_VM_CR0_ALWAYS_ON                            \
130         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
131          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
132 #define KVM_CR4_GUEST_OWNED_BITS                                      \
133         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
134          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
135
136 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
137 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
138 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
139
140 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
141
142 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
143         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
144         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
145         RTIT_STATUS_BYTECNT))
146
147 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
148         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
149
150 /*
151  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
152  * ple_gap:    upper bound on the amount of time between two successive
153  *             executions of PAUSE in a loop. Also indicate if ple enabled.
154  *             According to test, this time is usually smaller than 128 cycles.
155  * ple_window: upper bound on the amount of time a guest is allowed to execute
156  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
157  *             less than 2^12 cycles
158  * Time is measured based on a counter that runs at the same rate as the TSC,
159  * refer SDM volume 3b section 21.6.13 & 22.1.3.
160  */
161 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
162 module_param(ple_gap, uint, 0444);
163
164 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
165 module_param(ple_window, uint, 0444);
166
167 /* Default doubles per-vcpu window every exit. */
168 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
169 module_param(ple_window_grow, uint, 0444);
170
171 /* Default resets per-vcpu window every exit to ple_window. */
172 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
173 module_param(ple_window_shrink, uint, 0444);
174
175 /* Default is to compute the maximum so we can never overflow. */
176 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
177 module_param(ple_window_max, uint, 0444);
178
179 /* Default is SYSTEM mode, 1 for host-guest mode */
180 int __read_mostly pt_mode = PT_MODE_SYSTEM;
181 module_param(pt_mode, int, S_IRUGO);
182
183 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
184 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
185 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
186
187 /* Storage for pre module init parameter parsing */
188 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
189
190 static const struct {
191         const char *option;
192         bool for_parse;
193 } vmentry_l1d_param[] = {
194         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
195         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
196         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
197         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
198         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
199         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
200 };
201
202 #define L1D_CACHE_ORDER 4
203 static void *vmx_l1d_flush_pages;
204
205 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
206 {
207         struct page *page;
208         unsigned int i;
209
210         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
211                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
212                 return 0;
213         }
214
215         if (!enable_ept) {
216                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
217                 return 0;
218         }
219
220         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
221                 u64 msr;
222
223                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
224                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
225                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
226                         return 0;
227                 }
228         }
229
230         /* If set to auto use the default l1tf mitigation method */
231         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
232                 switch (l1tf_mitigation) {
233                 case L1TF_MITIGATION_OFF:
234                         l1tf = VMENTER_L1D_FLUSH_NEVER;
235                         break;
236                 case L1TF_MITIGATION_FLUSH_NOWARN:
237                 case L1TF_MITIGATION_FLUSH:
238                 case L1TF_MITIGATION_FLUSH_NOSMT:
239                         l1tf = VMENTER_L1D_FLUSH_COND;
240                         break;
241                 case L1TF_MITIGATION_FULL:
242                 case L1TF_MITIGATION_FULL_FORCE:
243                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
244                         break;
245                 }
246         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
247                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248         }
249
250         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
251             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
252                 /*
253                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
254                  * lifetime and so should not be charged to a memcg.
255                  */
256                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
257                 if (!page)
258                         return -ENOMEM;
259                 vmx_l1d_flush_pages = page_address(page);
260
261                 /*
262                  * Initialize each page with a different pattern in
263                  * order to protect against KSM in the nested
264                  * virtualization case.
265                  */
266                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
267                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
268                                PAGE_SIZE);
269                 }
270         }
271
272         l1tf_vmx_mitigation = l1tf;
273
274         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
275                 static_branch_enable(&vmx_l1d_should_flush);
276         else
277                 static_branch_disable(&vmx_l1d_should_flush);
278
279         if (l1tf == VMENTER_L1D_FLUSH_COND)
280                 static_branch_enable(&vmx_l1d_flush_cond);
281         else
282                 static_branch_disable(&vmx_l1d_flush_cond);
283         return 0;
284 }
285
286 static int vmentry_l1d_flush_parse(const char *s)
287 {
288         unsigned int i;
289
290         if (s) {
291                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
292                         if (vmentry_l1d_param[i].for_parse &&
293                             sysfs_streq(s, vmentry_l1d_param[i].option))
294                                 return i;
295                 }
296         }
297         return -EINVAL;
298 }
299
300 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
301 {
302         int l1tf, ret;
303
304         l1tf = vmentry_l1d_flush_parse(s);
305         if (l1tf < 0)
306                 return l1tf;
307
308         if (!boot_cpu_has(X86_BUG_L1TF))
309                 return 0;
310
311         /*
312          * Has vmx_init() run already? If not then this is the pre init
313          * parameter parsing. In that case just store the value and let
314          * vmx_init() do the proper setup after enable_ept has been
315          * established.
316          */
317         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
318                 vmentry_l1d_flush_param = l1tf;
319                 return 0;
320         }
321
322         mutex_lock(&vmx_l1d_flush_mutex);
323         ret = vmx_setup_l1d_flush(l1tf);
324         mutex_unlock(&vmx_l1d_flush_mutex);
325         return ret;
326 }
327
328 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
329 {
330         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
331                 return sprintf(s, "???\n");
332
333         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
334 }
335
336 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
337         .set = vmentry_l1d_flush_set,
338         .get = vmentry_l1d_flush_get,
339 };
340 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
341
342 static bool guest_state_valid(struct kvm_vcpu *vcpu);
343 static u32 vmx_segment_access_rights(struct kvm_segment *var);
344 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
345                                                           u32 msr, int type);
346
347 void vmx_vmexit(void);
348
349 #define vmx_insn_failed(fmt...)         \
350 do {                                    \
351         WARN_ONCE(1, fmt);              \
352         pr_warn_ratelimited(fmt);       \
353 } while (0)
354
355 asmlinkage void vmread_error(unsigned long field, bool fault)
356 {
357         if (fault)
358                 kvm_spurious_fault();
359         else
360                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
361 }
362
363 noinline void vmwrite_error(unsigned long field, unsigned long value)
364 {
365         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
366                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
367 }
368
369 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
370 {
371         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
372 }
373
374 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
375 {
376         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
377 }
378
379 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
380 {
381         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
382                         ext, vpid, gva);
383 }
384
385 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
386 {
387         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
388                         ext, eptp, gpa);
389 }
390
391 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
392 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
393 /*
394  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
395  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
396  */
397 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
398
399 /*
400  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
401  * can find which vCPU should be waken up.
402  */
403 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
404 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
405
406 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
407 static DEFINE_SPINLOCK(vmx_vpid_lock);
408
409 struct vmcs_config vmcs_config;
410 struct vmx_capability vmx_capability;
411
412 #define VMX_SEGMENT_FIELD(seg)                                  \
413         [VCPU_SREG_##seg] = {                                   \
414                 .selector = GUEST_##seg##_SELECTOR,             \
415                 .base = GUEST_##seg##_BASE,                     \
416                 .limit = GUEST_##seg##_LIMIT,                   \
417                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
418         }
419
420 static const struct kvm_vmx_segment_field {
421         unsigned selector;
422         unsigned base;
423         unsigned limit;
424         unsigned ar_bytes;
425 } kvm_vmx_segment_fields[] = {
426         VMX_SEGMENT_FIELD(CS),
427         VMX_SEGMENT_FIELD(DS),
428         VMX_SEGMENT_FIELD(ES),
429         VMX_SEGMENT_FIELD(FS),
430         VMX_SEGMENT_FIELD(GS),
431         VMX_SEGMENT_FIELD(SS),
432         VMX_SEGMENT_FIELD(TR),
433         VMX_SEGMENT_FIELD(LDTR),
434 };
435
436 u64 host_efer;
437 static unsigned long host_idt_base;
438
439 /*
440  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
441  * will emulate SYSCALL in legacy mode if the vendor string in guest
442  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
443  * support this emulation, IA32_STAR must always be included in
444  * vmx_msr_index[], even in i386 builds.
445  */
446 const u32 vmx_msr_index[] = {
447 #ifdef CONFIG_X86_64
448         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
449 #endif
450         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
451         MSR_IA32_TSX_CTRL,
452 };
453
454 #if IS_ENABLED(CONFIG_HYPERV)
455 static bool __read_mostly enlightened_vmcs = true;
456 module_param(enlightened_vmcs, bool, 0444);
457
458 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
459 static void check_ept_pointer_match(struct kvm *kvm)
460 {
461         struct kvm_vcpu *vcpu;
462         u64 tmp_eptp = INVALID_PAGE;
463         int i;
464
465         kvm_for_each_vcpu(i, vcpu, kvm) {
466                 if (!VALID_PAGE(tmp_eptp)) {
467                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
468                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
469                         to_kvm_vmx(kvm)->ept_pointers_match
470                                 = EPT_POINTERS_MISMATCH;
471                         return;
472                 }
473         }
474
475         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
476 }
477
478 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
479                 void *data)
480 {
481         struct kvm_tlb_range *range = data;
482
483         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
484                         range->pages);
485 }
486
487 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
488                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
489 {
490         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
491
492         /*
493          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
494          * of the base of EPT PML4 table, strip off EPT configuration
495          * information.
496          */
497         if (range)
498                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
499                                 kvm_fill_hv_flush_list_func, (void *)range);
500         else
501                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
502 }
503
504 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
505                 struct kvm_tlb_range *range)
506 {
507         struct kvm_vcpu *vcpu;
508         int ret = 0, i;
509
510         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
511
512         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
513                 check_ept_pointer_match(kvm);
514
515         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
516                 kvm_for_each_vcpu(i, vcpu, kvm) {
517                         /* If ept_pointer is invalid pointer, bypass flush request. */
518                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
519                                 ret |= __hv_remote_flush_tlb_with_range(
520                                         kvm, vcpu, range);
521                 }
522         } else {
523                 ret = __hv_remote_flush_tlb_with_range(kvm,
524                                 kvm_get_vcpu(kvm, 0), range);
525         }
526
527         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
528         return ret;
529 }
530 static int hv_remote_flush_tlb(struct kvm *kvm)
531 {
532         return hv_remote_flush_tlb_with_range(kvm, NULL);
533 }
534
535 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
536 {
537         struct hv_enlightened_vmcs *evmcs;
538         struct hv_partition_assist_pg **p_hv_pa_pg =
539                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
540         /*
541          * Synthetic VM-Exit is not enabled in current code and so All
542          * evmcs in singe VM shares same assist page.
543          */
544         if (!*p_hv_pa_pg)
545                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
546
547         if (!*p_hv_pa_pg)
548                 return -ENOMEM;
549
550         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
551
552         evmcs->partition_assist_page =
553                 __pa(*p_hv_pa_pg);
554         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
555         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
556
557         return 0;
558 }
559
560 #endif /* IS_ENABLED(CONFIG_HYPERV) */
561
562 /*
563  * Comment's format: document - errata name - stepping - processor name.
564  * Refer from
565  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
566  */
567 static u32 vmx_preemption_cpu_tfms[] = {
568 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
569 0x000206E6,
570 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
571 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
572 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
573 0x00020652,
574 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
575 0x00020655,
576 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
577 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
578 /*
579  * 320767.pdf - AAP86  - B1 -
580  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
581  */
582 0x000106E5,
583 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
584 0x000106A0,
585 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
586 0x000106A1,
587 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
588 0x000106A4,
589  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
590  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
591  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
592 0x000106A5,
593  /* Xeon E3-1220 V2 */
594 0x000306A8,
595 };
596
597 static inline bool cpu_has_broken_vmx_preemption_timer(void)
598 {
599         u32 eax = cpuid_eax(0x00000001), i;
600
601         /* Clear the reserved bits */
602         eax &= ~(0x3U << 14 | 0xfU << 28);
603         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
604                 if (eax == vmx_preemption_cpu_tfms[i])
605                         return true;
606
607         return false;
608 }
609
610 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
611 {
612         return flexpriority_enabled && lapic_in_kernel(vcpu);
613 }
614
615 static inline bool report_flexpriority(void)
616 {
617         return flexpriority_enabled;
618 }
619
620 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
621 {
622         int i;
623
624         for (i = 0; i < vmx->nmsrs; ++i)
625                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
626                         return i;
627         return -1;
628 }
629
630 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
631 {
632         int i;
633
634         i = __find_msr_index(vmx, msr);
635         if (i >= 0)
636                 return &vmx->guest_msrs[i];
637         return NULL;
638 }
639
640 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
641 {
642         int ret = 0;
643
644         u64 old_msr_data = msr->data;
645         msr->data = data;
646         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
647                 preempt_disable();
648                 ret = kvm_set_shared_msr(msr->index, msr->data,
649                                          msr->mask);
650                 preempt_enable();
651                 if (ret)
652                         msr->data = old_msr_data;
653         }
654         return ret;
655 }
656
657 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
658 {
659         vmcs_clear(loaded_vmcs->vmcs);
660         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
661                 vmcs_clear(loaded_vmcs->shadow_vmcs);
662         loaded_vmcs->cpu = -1;
663         loaded_vmcs->launched = 0;
664 }
665
666 #ifdef CONFIG_KEXEC_CORE
667 /*
668  * This bitmap is used to indicate whether the vmclear
669  * operation is enabled on all cpus. All disabled by
670  * default.
671  */
672 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
673
674 static inline void crash_enable_local_vmclear(int cpu)
675 {
676         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
677 }
678
679 static inline void crash_disable_local_vmclear(int cpu)
680 {
681         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
682 }
683
684 static inline int crash_local_vmclear_enabled(int cpu)
685 {
686         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
687 }
688
689 static void crash_vmclear_local_loaded_vmcss(void)
690 {
691         int cpu = raw_smp_processor_id();
692         struct loaded_vmcs *v;
693
694         if (!crash_local_vmclear_enabled(cpu))
695                 return;
696
697         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
698                             loaded_vmcss_on_cpu_link)
699                 vmcs_clear(v->vmcs);
700 }
701 #else
702 static inline void crash_enable_local_vmclear(int cpu) { }
703 static inline void crash_disable_local_vmclear(int cpu) { }
704 #endif /* CONFIG_KEXEC_CORE */
705
706 static void __loaded_vmcs_clear(void *arg)
707 {
708         struct loaded_vmcs *loaded_vmcs = arg;
709         int cpu = raw_smp_processor_id();
710
711         if (loaded_vmcs->cpu != cpu)
712                 return; /* vcpu migration can race with cpu offline */
713         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
714                 per_cpu(current_vmcs, cpu) = NULL;
715         crash_disable_local_vmclear(cpu);
716         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
717
718         /*
719          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
720          * is before setting loaded_vmcs->vcpu to -1 which is done in
721          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
722          * then adds the vmcs into percpu list before it is deleted.
723          */
724         smp_wmb();
725
726         loaded_vmcs_init(loaded_vmcs);
727         crash_enable_local_vmclear(cpu);
728 }
729
730 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
731 {
732         int cpu = loaded_vmcs->cpu;
733
734         if (cpu != -1)
735                 smp_call_function_single(cpu,
736                          __loaded_vmcs_clear, loaded_vmcs, 1);
737 }
738
739 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
740                                        unsigned field)
741 {
742         bool ret;
743         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
744
745         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
746                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
747                 vmx->segment_cache.bitmask = 0;
748         }
749         ret = vmx->segment_cache.bitmask & mask;
750         vmx->segment_cache.bitmask |= mask;
751         return ret;
752 }
753
754 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
755 {
756         u16 *p = &vmx->segment_cache.seg[seg].selector;
757
758         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
759                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
760         return *p;
761 }
762
763 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
764 {
765         ulong *p = &vmx->segment_cache.seg[seg].base;
766
767         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
768                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
769         return *p;
770 }
771
772 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
773 {
774         u32 *p = &vmx->segment_cache.seg[seg].limit;
775
776         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
777                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
778         return *p;
779 }
780
781 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
782 {
783         u32 *p = &vmx->segment_cache.seg[seg].ar;
784
785         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
786                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
787         return *p;
788 }
789
790 void update_exception_bitmap(struct kvm_vcpu *vcpu)
791 {
792         u32 eb;
793
794         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
795              (1u << DB_VECTOR) | (1u << AC_VECTOR);
796         /*
797          * Guest access to VMware backdoor ports could legitimately
798          * trigger #GP because of TSS I/O permission bitmap.
799          * We intercept those #GP and allow access to them anyway
800          * as VMware does.
801          */
802         if (enable_vmware_backdoor)
803                 eb |= (1u << GP_VECTOR);
804         if ((vcpu->guest_debug &
805              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
806             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
807                 eb |= 1u << BP_VECTOR;
808         if (to_vmx(vcpu)->rmode.vm86_active)
809                 eb = ~0;
810         if (enable_ept)
811                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
812
813         /* When we are running a nested L2 guest and L1 specified for it a
814          * certain exception bitmap, we must trap the same exceptions and pass
815          * them to L1. When running L2, we will only handle the exceptions
816          * specified above if L1 did not want them.
817          */
818         if (is_guest_mode(vcpu))
819                 eb |= get_vmcs12(vcpu)->exception_bitmap;
820
821         vmcs_write32(EXCEPTION_BITMAP, eb);
822 }
823
824 /*
825  * Check if MSR is intercepted for currently loaded MSR bitmap.
826  */
827 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
828 {
829         unsigned long *msr_bitmap;
830         int f = sizeof(unsigned long);
831
832         if (!cpu_has_vmx_msr_bitmap())
833                 return true;
834
835         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
836
837         if (msr <= 0x1fff) {
838                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
839         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
840                 msr &= 0x1fff;
841                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
842         }
843
844         return true;
845 }
846
847 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
848                 unsigned long entry, unsigned long exit)
849 {
850         vm_entry_controls_clearbit(vmx, entry);
851         vm_exit_controls_clearbit(vmx, exit);
852 }
853
854 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
855 {
856         unsigned int i;
857
858         for (i = 0; i < m->nr; ++i) {
859                 if (m->val[i].index == msr)
860                         return i;
861         }
862         return -ENOENT;
863 }
864
865 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
866 {
867         int i;
868         struct msr_autoload *m = &vmx->msr_autoload;
869
870         switch (msr) {
871         case MSR_EFER:
872                 if (cpu_has_load_ia32_efer()) {
873                         clear_atomic_switch_msr_special(vmx,
874                                         VM_ENTRY_LOAD_IA32_EFER,
875                                         VM_EXIT_LOAD_IA32_EFER);
876                         return;
877                 }
878                 break;
879         case MSR_CORE_PERF_GLOBAL_CTRL:
880                 if (cpu_has_load_perf_global_ctrl()) {
881                         clear_atomic_switch_msr_special(vmx,
882                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
883                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
884                         return;
885                 }
886                 break;
887         }
888         i = vmx_find_msr_index(&m->guest, msr);
889         if (i < 0)
890                 goto skip_guest;
891         --m->guest.nr;
892         m->guest.val[i] = m->guest.val[m->guest.nr];
893         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
894
895 skip_guest:
896         i = vmx_find_msr_index(&m->host, msr);
897         if (i < 0)
898                 return;
899
900         --m->host.nr;
901         m->host.val[i] = m->host.val[m->host.nr];
902         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
903 }
904
905 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
906                 unsigned long entry, unsigned long exit,
907                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
908                 u64 guest_val, u64 host_val)
909 {
910         vmcs_write64(guest_val_vmcs, guest_val);
911         if (host_val_vmcs != HOST_IA32_EFER)
912                 vmcs_write64(host_val_vmcs, host_val);
913         vm_entry_controls_setbit(vmx, entry);
914         vm_exit_controls_setbit(vmx, exit);
915 }
916
917 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
918                                   u64 guest_val, u64 host_val, bool entry_only)
919 {
920         int i, j = 0;
921         struct msr_autoload *m = &vmx->msr_autoload;
922
923         switch (msr) {
924         case MSR_EFER:
925                 if (cpu_has_load_ia32_efer()) {
926                         add_atomic_switch_msr_special(vmx,
927                                         VM_ENTRY_LOAD_IA32_EFER,
928                                         VM_EXIT_LOAD_IA32_EFER,
929                                         GUEST_IA32_EFER,
930                                         HOST_IA32_EFER,
931                                         guest_val, host_val);
932                         return;
933                 }
934                 break;
935         case MSR_CORE_PERF_GLOBAL_CTRL:
936                 if (cpu_has_load_perf_global_ctrl()) {
937                         add_atomic_switch_msr_special(vmx,
938                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
939                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
940                                         GUEST_IA32_PERF_GLOBAL_CTRL,
941                                         HOST_IA32_PERF_GLOBAL_CTRL,
942                                         guest_val, host_val);
943                         return;
944                 }
945                 break;
946         case MSR_IA32_PEBS_ENABLE:
947                 /* PEBS needs a quiescent period after being disabled (to write
948                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
949                  * provide that period, so a CPU could write host's record into
950                  * guest's memory.
951                  */
952                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
953         }
954
955         i = vmx_find_msr_index(&m->guest, msr);
956         if (!entry_only)
957                 j = vmx_find_msr_index(&m->host, msr);
958
959         if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
960                 (j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
961                 printk_once(KERN_WARNING "Not enough msr switch entries. "
962                                 "Can't add msr %x\n", msr);
963                 return;
964         }
965         if (i < 0) {
966                 i = m->guest.nr++;
967                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
968         }
969         m->guest.val[i].index = msr;
970         m->guest.val[i].value = guest_val;
971
972         if (entry_only)
973                 return;
974
975         if (j < 0) {
976                 j = m->host.nr++;
977                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
978         }
979         m->host.val[j].index = msr;
980         m->host.val[j].value = host_val;
981 }
982
983 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
984 {
985         u64 guest_efer = vmx->vcpu.arch.efer;
986         u64 ignore_bits = 0;
987
988         /* Shadow paging assumes NX to be available.  */
989         if (!enable_ept)
990                 guest_efer |= EFER_NX;
991
992         /*
993          * LMA and LME handled by hardware; SCE meaningless outside long mode.
994          */
995         ignore_bits |= EFER_SCE;
996 #ifdef CONFIG_X86_64
997         ignore_bits |= EFER_LMA | EFER_LME;
998         /* SCE is meaningful only in long mode on Intel */
999         if (guest_efer & EFER_LMA)
1000                 ignore_bits &= ~(u64)EFER_SCE;
1001 #endif
1002
1003         /*
1004          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1005          * On CPUs that support "load IA32_EFER", always switch EFER
1006          * atomically, since it's faster than switching it manually.
1007          */
1008         if (cpu_has_load_ia32_efer() ||
1009             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1010                 if (!(guest_efer & EFER_LMA))
1011                         guest_efer &= ~EFER_LME;
1012                 if (guest_efer != host_efer)
1013                         add_atomic_switch_msr(vmx, MSR_EFER,
1014                                               guest_efer, host_efer, false);
1015                 else
1016                         clear_atomic_switch_msr(vmx, MSR_EFER);
1017                 return false;
1018         } else {
1019                 clear_atomic_switch_msr(vmx, MSR_EFER);
1020
1021                 guest_efer &= ~ignore_bits;
1022                 guest_efer |= host_efer & ignore_bits;
1023
1024                 vmx->guest_msrs[efer_offset].data = guest_efer;
1025                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1026
1027                 return true;
1028         }
1029 }
1030
1031 #ifdef CONFIG_X86_32
1032 /*
1033  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1034  * VMCS rather than the segment table.  KVM uses this helper to figure
1035  * out the current bases to poke them into the VMCS before entry.
1036  */
1037 static unsigned long segment_base(u16 selector)
1038 {
1039         struct desc_struct *table;
1040         unsigned long v;
1041
1042         if (!(selector & ~SEGMENT_RPL_MASK))
1043                 return 0;
1044
1045         table = get_current_gdt_ro();
1046
1047         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1048                 u16 ldt_selector = kvm_read_ldt();
1049
1050                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1051                         return 0;
1052
1053                 table = (struct desc_struct *)segment_base(ldt_selector);
1054         }
1055         v = get_desc_base(&table[selector >> 3]);
1056         return v;
1057 }
1058 #endif
1059
1060 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1061 {
1062         u32 i;
1063
1064         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1065         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1066         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1067         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1068         for (i = 0; i < addr_range; i++) {
1069                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1070                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1071         }
1072 }
1073
1074 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1075 {
1076         u32 i;
1077
1078         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1079         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1080         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1081         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1082         for (i = 0; i < addr_range; i++) {
1083                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1084                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1085         }
1086 }
1087
1088 static void pt_guest_enter(struct vcpu_vmx *vmx)
1089 {
1090         if (pt_mode == PT_MODE_SYSTEM)
1091                 return;
1092
1093         /*
1094          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1095          * Save host state before VM entry.
1096          */
1097         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1098         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1099                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1100                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1101                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1102         }
1103 }
1104
1105 static void pt_guest_exit(struct vcpu_vmx *vmx)
1106 {
1107         if (pt_mode == PT_MODE_SYSTEM)
1108                 return;
1109
1110         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1111                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1112                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1113         }
1114
1115         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1116         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1117 }
1118
1119 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1120                         unsigned long fs_base, unsigned long gs_base)
1121 {
1122         if (unlikely(fs_sel != host->fs_sel)) {
1123                 if (!(fs_sel & 7))
1124                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1125                 else
1126                         vmcs_write16(HOST_FS_SELECTOR, 0);
1127                 host->fs_sel = fs_sel;
1128         }
1129         if (unlikely(gs_sel != host->gs_sel)) {
1130                 if (!(gs_sel & 7))
1131                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1132                 else
1133                         vmcs_write16(HOST_GS_SELECTOR, 0);
1134                 host->gs_sel = gs_sel;
1135         }
1136         if (unlikely(fs_base != host->fs_base)) {
1137                 vmcs_writel(HOST_FS_BASE, fs_base);
1138                 host->fs_base = fs_base;
1139         }
1140         if (unlikely(gs_base != host->gs_base)) {
1141                 vmcs_writel(HOST_GS_BASE, gs_base);
1142                 host->gs_base = gs_base;
1143         }
1144 }
1145
1146 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1147 {
1148         struct vcpu_vmx *vmx = to_vmx(vcpu);
1149         struct vmcs_host_state *host_state;
1150 #ifdef CONFIG_X86_64
1151         int cpu = raw_smp_processor_id();
1152 #endif
1153         unsigned long fs_base, gs_base;
1154         u16 fs_sel, gs_sel;
1155         int i;
1156
1157         vmx->req_immediate_exit = false;
1158
1159         /*
1160          * Note that guest MSRs to be saved/restored can also be changed
1161          * when guest state is loaded. This happens when guest transitions
1162          * to/from long-mode by setting MSR_EFER.LMA.
1163          */
1164         if (!vmx->guest_msrs_ready) {
1165                 vmx->guest_msrs_ready = true;
1166                 for (i = 0; i < vmx->save_nmsrs; ++i)
1167                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1168                                            vmx->guest_msrs[i].data,
1169                                            vmx->guest_msrs[i].mask);
1170
1171         }
1172         if (vmx->guest_state_loaded)
1173                 return;
1174
1175         host_state = &vmx->loaded_vmcs->host_state;
1176
1177         /*
1178          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1179          * allow segment selectors with cpl > 0 or ti == 1.
1180          */
1181         host_state->ldt_sel = kvm_read_ldt();
1182
1183 #ifdef CONFIG_X86_64
1184         savesegment(ds, host_state->ds_sel);
1185         savesegment(es, host_state->es_sel);
1186
1187         gs_base = cpu_kernelmode_gs_base(cpu);
1188         if (likely(is_64bit_mm(current->mm))) {
1189                 save_fsgs_for_kvm();
1190                 fs_sel = current->thread.fsindex;
1191                 gs_sel = current->thread.gsindex;
1192                 fs_base = current->thread.fsbase;
1193                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1194         } else {
1195                 savesegment(fs, fs_sel);
1196                 savesegment(gs, gs_sel);
1197                 fs_base = read_msr(MSR_FS_BASE);
1198                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1199         }
1200
1201         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1202 #else
1203         savesegment(fs, fs_sel);
1204         savesegment(gs, gs_sel);
1205         fs_base = segment_base(fs_sel);
1206         gs_base = segment_base(gs_sel);
1207 #endif
1208
1209         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1210         vmx->guest_state_loaded = true;
1211 }
1212
1213 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1214 {
1215         struct vmcs_host_state *host_state;
1216
1217         if (!vmx->guest_state_loaded)
1218                 return;
1219
1220         host_state = &vmx->loaded_vmcs->host_state;
1221
1222         ++vmx->vcpu.stat.host_state_reload;
1223
1224 #ifdef CONFIG_X86_64
1225         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1226 #endif
1227         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1228                 kvm_load_ldt(host_state->ldt_sel);
1229 #ifdef CONFIG_X86_64
1230                 load_gs_index(host_state->gs_sel);
1231 #else
1232                 loadsegment(gs, host_state->gs_sel);
1233 #endif
1234         }
1235         if (host_state->fs_sel & 7)
1236                 loadsegment(fs, host_state->fs_sel);
1237 #ifdef CONFIG_X86_64
1238         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1239                 loadsegment(ds, host_state->ds_sel);
1240                 loadsegment(es, host_state->es_sel);
1241         }
1242 #endif
1243         invalidate_tss_limit();
1244 #ifdef CONFIG_X86_64
1245         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1246 #endif
1247         load_fixmap_gdt(raw_smp_processor_id());
1248         vmx->guest_state_loaded = false;
1249         vmx->guest_msrs_ready = false;
1250 }
1251
1252 #ifdef CONFIG_X86_64
1253 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1254 {
1255         preempt_disable();
1256         if (vmx->guest_state_loaded)
1257                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1258         preempt_enable();
1259         return vmx->msr_guest_kernel_gs_base;
1260 }
1261
1262 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1263 {
1264         preempt_disable();
1265         if (vmx->guest_state_loaded)
1266                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1267         preempt_enable();
1268         vmx->msr_guest_kernel_gs_base = data;
1269 }
1270 #endif
1271
1272 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1273 {
1274         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1275         struct pi_desc old, new;
1276         unsigned int dest;
1277
1278         /*
1279          * In case of hot-plug or hot-unplug, we may have to undo
1280          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1281          * always keep PI.NDST up to date for simplicity: it makes the
1282          * code easier, and CPU migration is not a fast path.
1283          */
1284         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1285                 return;
1286
1287         /*
1288          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1289          * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1290          * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1291          * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1292          * correctly.
1293          */
1294         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1295                 pi_clear_sn(pi_desc);
1296                 goto after_clear_sn;
1297         }
1298
1299         /* The full case.  */
1300         do {
1301                 old.control = new.control = pi_desc->control;
1302
1303                 dest = cpu_physical_id(cpu);
1304
1305                 if (x2apic_enabled())
1306                         new.ndst = dest;
1307                 else
1308                         new.ndst = (dest << 8) & 0xFF00;
1309
1310                 new.sn = 0;
1311         } while (cmpxchg64(&pi_desc->control, old.control,
1312                            new.control) != old.control);
1313
1314 after_clear_sn:
1315
1316         /*
1317          * Clear SN before reading the bitmap.  The VT-d firmware
1318          * writes the bitmap and reads SN atomically (5.2.3 in the
1319          * spec), so it doesn't really have a memory barrier that
1320          * pairs with this, but we cannot do that and we need one.
1321          */
1322         smp_mb__after_atomic();
1323
1324         if (!pi_is_pir_empty(pi_desc))
1325                 pi_set_on(pi_desc);
1326 }
1327
1328 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1329 {
1330         struct vcpu_vmx *vmx = to_vmx(vcpu);
1331         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1332
1333         if (!already_loaded) {
1334                 loaded_vmcs_clear(vmx->loaded_vmcs);
1335                 local_irq_disable();
1336                 crash_disable_local_vmclear(cpu);
1337
1338                 /*
1339                  * Read loaded_vmcs->cpu should be before fetching
1340                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1341                  * See the comments in __loaded_vmcs_clear().
1342                  */
1343                 smp_rmb();
1344
1345                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1346                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1347                 crash_enable_local_vmclear(cpu);
1348                 local_irq_enable();
1349         }
1350
1351         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1352                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1353                 vmcs_load(vmx->loaded_vmcs->vmcs);
1354                 indirect_branch_prediction_barrier();
1355         }
1356
1357         if (!already_loaded) {
1358                 void *gdt = get_current_gdt_ro();
1359                 unsigned long sysenter_esp;
1360
1361                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1362
1363                 /*
1364                  * Linux uses per-cpu TSS and GDT, so set these when switching
1365                  * processors.  See 22.2.4.
1366                  */
1367                 vmcs_writel(HOST_TR_BASE,
1368                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1369                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1370
1371                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1372                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1373
1374                 vmx->loaded_vmcs->cpu = cpu;
1375         }
1376
1377         /* Setup TSC multiplier */
1378         if (kvm_has_tsc_control &&
1379             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1380                 decache_tsc_multiplier(vmx);
1381 }
1382
1383 /*
1384  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1385  * vcpu mutex is already taken.
1386  */
1387 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1388 {
1389         struct vcpu_vmx *vmx = to_vmx(vcpu);
1390
1391         vmx_vcpu_load_vmcs(vcpu, cpu);
1392
1393         vmx_vcpu_pi_load(vcpu, cpu);
1394
1395         vmx->host_pkru = read_pkru();
1396         vmx->host_debugctlmsr = get_debugctlmsr();
1397 }
1398
1399 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1400 {
1401         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1402
1403         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1404                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1405                 !kvm_vcpu_apicv_active(vcpu))
1406                 return;
1407
1408         /* Set SN when the vCPU is preempted */
1409         if (vcpu->preempted)
1410                 pi_set_sn(pi_desc);
1411 }
1412
1413 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1414 {
1415         vmx_vcpu_pi_put(vcpu);
1416
1417         vmx_prepare_switch_to_host(to_vmx(vcpu));
1418 }
1419
1420 static bool emulation_required(struct kvm_vcpu *vcpu)
1421 {
1422         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1423 }
1424
1425 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1426
1427 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1428 {
1429         struct vcpu_vmx *vmx = to_vmx(vcpu);
1430         unsigned long rflags, save_rflags;
1431
1432         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1433                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1434                 rflags = vmcs_readl(GUEST_RFLAGS);
1435                 if (vmx->rmode.vm86_active) {
1436                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1437                         save_rflags = vmx->rmode.save_rflags;
1438                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1439                 }
1440                 vmx->rflags = rflags;
1441         }
1442         return vmx->rflags;
1443 }
1444
1445 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1446 {
1447         struct vcpu_vmx *vmx = to_vmx(vcpu);
1448         unsigned long old_rflags;
1449
1450         if (enable_unrestricted_guest) {
1451                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1452                 vmx->rflags = rflags;
1453                 vmcs_writel(GUEST_RFLAGS, rflags);
1454                 return;
1455         }
1456
1457         old_rflags = vmx_get_rflags(vcpu);
1458         vmx->rflags = rflags;
1459         if (vmx->rmode.vm86_active) {
1460                 vmx->rmode.save_rflags = rflags;
1461                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1462         }
1463         vmcs_writel(GUEST_RFLAGS, rflags);
1464
1465         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1466                 vmx->emulation_required = emulation_required(vcpu);
1467 }
1468
1469 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1470 {
1471         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1472         int ret = 0;
1473
1474         if (interruptibility & GUEST_INTR_STATE_STI)
1475                 ret |= KVM_X86_SHADOW_INT_STI;
1476         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1477                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1478
1479         return ret;
1480 }
1481
1482 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1483 {
1484         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1485         u32 interruptibility = interruptibility_old;
1486
1487         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1488
1489         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1490                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1491         else if (mask & KVM_X86_SHADOW_INT_STI)
1492                 interruptibility |= GUEST_INTR_STATE_STI;
1493
1494         if ((interruptibility != interruptibility_old))
1495                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1496 }
1497
1498 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1499 {
1500         struct vcpu_vmx *vmx = to_vmx(vcpu);
1501         unsigned long value;
1502
1503         /*
1504          * Any MSR write that attempts to change bits marked reserved will
1505          * case a #GP fault.
1506          */
1507         if (data & vmx->pt_desc.ctl_bitmask)
1508                 return 1;
1509
1510         /*
1511          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1512          * result in a #GP unless the same write also clears TraceEn.
1513          */
1514         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1515                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1516                 return 1;
1517
1518         /*
1519          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1520          * and FabricEn would cause #GP, if
1521          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1522          */
1523         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1524                 !(data & RTIT_CTL_FABRIC_EN) &&
1525                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1526                                         PT_CAP_single_range_output))
1527                 return 1;
1528
1529         /*
1530          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1531          * utilize encodings marked reserved will casue a #GP fault.
1532          */
1533         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1534         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1535                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1536                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1537                 return 1;
1538         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1539                                                 PT_CAP_cycle_thresholds);
1540         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1541                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1542                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1543                 return 1;
1544         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1545         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1546                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1547                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1548                 return 1;
1549
1550         /*
1551          * If ADDRx_CFG is reserved or the encodings is >2 will
1552          * cause a #GP fault.
1553          */
1554         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1555         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1556                 return 1;
1557         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1558         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1559                 return 1;
1560         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1561         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1562                 return 1;
1563         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1564         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1565                 return 1;
1566
1567         return 0;
1568 }
1569
1570 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1571 {
1572         unsigned long rip;
1573
1574         /*
1575          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1576          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1577          * set when EPT misconfig occurs.  In practice, real hardware updates
1578          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1579          * (namely Hyper-V) don't set it due to it being undefined behavior,
1580          * i.e. we end up advancing IP with some random value.
1581          */
1582         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1583             to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1584                 rip = kvm_rip_read(vcpu);
1585                 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1586                 kvm_rip_write(vcpu, rip);
1587         } else {
1588                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1589                         return 0;
1590         }
1591
1592         /* skipping an emulated instruction also counts */
1593         vmx_set_interrupt_shadow(vcpu, 0);
1594
1595         return 1;
1596 }
1597
1598 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1599 {
1600         /*
1601          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1602          * explicitly skip the instruction because if the HLT state is set,
1603          * then the instruction is already executing and RIP has already been
1604          * advanced.
1605          */
1606         if (kvm_hlt_in_guest(vcpu->kvm) &&
1607                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1608                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1609 }
1610
1611 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1612 {
1613         struct vcpu_vmx *vmx = to_vmx(vcpu);
1614         unsigned nr = vcpu->arch.exception.nr;
1615         bool has_error_code = vcpu->arch.exception.has_error_code;
1616         u32 error_code = vcpu->arch.exception.error_code;
1617         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1618
1619         kvm_deliver_exception_payload(vcpu);
1620
1621         if (has_error_code) {
1622                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1623                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1624         }
1625
1626         if (vmx->rmode.vm86_active) {
1627                 int inc_eip = 0;
1628                 if (kvm_exception_is_soft(nr))
1629                         inc_eip = vcpu->arch.event_exit_inst_len;
1630                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1631                 return;
1632         }
1633
1634         WARN_ON_ONCE(vmx->emulation_required);
1635
1636         if (kvm_exception_is_soft(nr)) {
1637                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1638                              vmx->vcpu.arch.event_exit_inst_len);
1639                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1640         } else
1641                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1642
1643         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1644
1645         vmx_clear_hlt(vcpu);
1646 }
1647
1648 static bool vmx_rdtscp_supported(void)
1649 {
1650         return cpu_has_vmx_rdtscp();
1651 }
1652
1653 static bool vmx_invpcid_supported(void)
1654 {
1655         return cpu_has_vmx_invpcid();
1656 }
1657
1658 /*
1659  * Swap MSR entry in host/guest MSR entry array.
1660  */
1661 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1662 {
1663         struct shared_msr_entry tmp;
1664
1665         tmp = vmx->guest_msrs[to];
1666         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1667         vmx->guest_msrs[from] = tmp;
1668 }
1669
1670 /*
1671  * Set up the vmcs to automatically save and restore system
1672  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1673  * mode, as fiddling with msrs is very expensive.
1674  */
1675 static void setup_msrs(struct vcpu_vmx *vmx)
1676 {
1677         int save_nmsrs, index;
1678
1679         save_nmsrs = 0;
1680 #ifdef CONFIG_X86_64
1681         /*
1682          * The SYSCALL MSRs are only needed on long mode guests, and only
1683          * when EFER.SCE is set.
1684          */
1685         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1686                 index = __find_msr_index(vmx, MSR_STAR);
1687                 if (index >= 0)
1688                         move_msr_up(vmx, index, save_nmsrs++);
1689                 index = __find_msr_index(vmx, MSR_LSTAR);
1690                 if (index >= 0)
1691                         move_msr_up(vmx, index, save_nmsrs++);
1692                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1693                 if (index >= 0)
1694                         move_msr_up(vmx, index, save_nmsrs++);
1695         }
1696 #endif
1697         index = __find_msr_index(vmx, MSR_EFER);
1698         if (index >= 0 && update_transition_efer(vmx, index))
1699                 move_msr_up(vmx, index, save_nmsrs++);
1700         index = __find_msr_index(vmx, MSR_TSC_AUX);
1701         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1702                 move_msr_up(vmx, index, save_nmsrs++);
1703         index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1704         if (index >= 0)
1705                 move_msr_up(vmx, index, save_nmsrs++);
1706
1707         vmx->save_nmsrs = save_nmsrs;
1708         vmx->guest_msrs_ready = false;
1709
1710         if (cpu_has_vmx_msr_bitmap())
1711                 vmx_update_msr_bitmap(&vmx->vcpu);
1712 }
1713
1714 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1715 {
1716         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1717
1718         if (is_guest_mode(vcpu) &&
1719             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1720                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1721
1722         return vcpu->arch.tsc_offset;
1723 }
1724
1725 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1726 {
1727         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1728         u64 g_tsc_offset = 0;
1729
1730         /*
1731          * We're here if L1 chose not to trap WRMSR to TSC. According
1732          * to the spec, this should set L1's TSC; The offset that L1
1733          * set for L2 remains unchanged, and still needs to be added
1734          * to the newly set TSC to get L2's TSC.
1735          */
1736         if (is_guest_mode(vcpu) &&
1737             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1738                 g_tsc_offset = vmcs12->tsc_offset;
1739
1740         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1741                                    vcpu->arch.tsc_offset - g_tsc_offset,
1742                                    offset);
1743         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1744         return offset + g_tsc_offset;
1745 }
1746
1747 /*
1748  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1749  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1750  * all guests if the "nested" module option is off, and can also be disabled
1751  * for a single guest by disabling its VMX cpuid bit.
1752  */
1753 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1754 {
1755         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1756 }
1757
1758 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1759                                                  uint64_t val)
1760 {
1761         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1762
1763         return !(val & ~valid_bits);
1764 }
1765
1766 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1767 {
1768         switch (msr->index) {
1769         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1770                 if (!nested)
1771                         return 1;
1772                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1773         default:
1774                 return 1;
1775         }
1776
1777         return 0;
1778 }
1779
1780 /*
1781  * Reads an msr value (of 'msr_index') into 'pdata'.
1782  * Returns 0 on success, non-0 otherwise.
1783  * Assumes vcpu_load() was already called.
1784  */
1785 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1786 {
1787         struct vcpu_vmx *vmx = to_vmx(vcpu);
1788         struct shared_msr_entry *msr;
1789         u32 index;
1790
1791         switch (msr_info->index) {
1792 #ifdef CONFIG_X86_64
1793         case MSR_FS_BASE:
1794                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1795                 break;
1796         case MSR_GS_BASE:
1797                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1798                 break;
1799         case MSR_KERNEL_GS_BASE:
1800                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1801                 break;
1802 #endif
1803         case MSR_EFER:
1804                 return kvm_get_msr_common(vcpu, msr_info);
1805         case MSR_IA32_TSX_CTRL:
1806                 if (!msr_info->host_initiated &&
1807                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1808                         return 1;
1809                 goto find_shared_msr;
1810         case MSR_IA32_UMWAIT_CONTROL:
1811                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1812                         return 1;
1813
1814                 msr_info->data = vmx->msr_ia32_umwait_control;
1815                 break;
1816         case MSR_IA32_SPEC_CTRL:
1817                 if (!msr_info->host_initiated &&
1818                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1819                         return 1;
1820
1821                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1822                 break;
1823         case MSR_IA32_SYSENTER_CS:
1824                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1825                 break;
1826         case MSR_IA32_SYSENTER_EIP:
1827                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1828                 break;
1829         case MSR_IA32_SYSENTER_ESP:
1830                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1831                 break;
1832         case MSR_IA32_BNDCFGS:
1833                 if (!kvm_mpx_supported() ||
1834                     (!msr_info->host_initiated &&
1835                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1836                         return 1;
1837                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1838                 break;
1839         case MSR_IA32_MCG_EXT_CTL:
1840                 if (!msr_info->host_initiated &&
1841                     !(vmx->msr_ia32_feature_control &
1842                       FEATURE_CONTROL_LMCE))
1843                         return 1;
1844                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1845                 break;
1846         case MSR_IA32_FEATURE_CONTROL:
1847                 msr_info->data = vmx->msr_ia32_feature_control;
1848                 break;
1849         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1850                 if (!nested_vmx_allowed(vcpu))
1851                         return 1;
1852                 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1853                                        &msr_info->data);
1854         case MSR_IA32_RTIT_CTL:
1855                 if (pt_mode != PT_MODE_HOST_GUEST)
1856                         return 1;
1857                 msr_info->data = vmx->pt_desc.guest.ctl;
1858                 break;
1859         case MSR_IA32_RTIT_STATUS:
1860                 if (pt_mode != PT_MODE_HOST_GUEST)
1861                         return 1;
1862                 msr_info->data = vmx->pt_desc.guest.status;
1863                 break;
1864         case MSR_IA32_RTIT_CR3_MATCH:
1865                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1866                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1867                                                 PT_CAP_cr3_filtering))
1868                         return 1;
1869                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1870                 break;
1871         case MSR_IA32_RTIT_OUTPUT_BASE:
1872                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1873                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1874                                         PT_CAP_topa_output) &&
1875                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1876                                         PT_CAP_single_range_output)))
1877                         return 1;
1878                 msr_info->data = vmx->pt_desc.guest.output_base;
1879                 break;
1880         case MSR_IA32_RTIT_OUTPUT_MASK:
1881                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1882                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1883                                         PT_CAP_topa_output) &&
1884                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1885                                         PT_CAP_single_range_output)))
1886                         return 1;
1887                 msr_info->data = vmx->pt_desc.guest.output_mask;
1888                 break;
1889         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1890                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1891                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1892                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1893                                         PT_CAP_num_address_ranges)))
1894                         return 1;
1895                 if (index % 2)
1896                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1897                 else
1898                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1899                 break;
1900         case MSR_TSC_AUX:
1901                 if (!msr_info->host_initiated &&
1902                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1903                         return 1;
1904                 goto find_shared_msr;
1905         default:
1906         find_shared_msr:
1907                 msr = find_msr_entry(vmx, msr_info->index);
1908                 if (msr) {
1909                         msr_info->data = msr->data;
1910                         break;
1911                 }
1912                 return kvm_get_msr_common(vcpu, msr_info);
1913         }
1914
1915         return 0;
1916 }
1917
1918 /*
1919  * Writes msr value into into the appropriate "register".
1920  * Returns 0 on success, non-0 otherwise.
1921  * Assumes vcpu_load() was already called.
1922  */
1923 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1924 {
1925         struct vcpu_vmx *vmx = to_vmx(vcpu);
1926         struct shared_msr_entry *msr;
1927         int ret = 0;
1928         u32 msr_index = msr_info->index;
1929         u64 data = msr_info->data;
1930         u32 index;
1931
1932         switch (msr_index) {
1933         case MSR_EFER:
1934                 ret = kvm_set_msr_common(vcpu, msr_info);
1935                 break;
1936 #ifdef CONFIG_X86_64
1937         case MSR_FS_BASE:
1938                 vmx_segment_cache_clear(vmx);
1939                 vmcs_writel(GUEST_FS_BASE, data);
1940                 break;
1941         case MSR_GS_BASE:
1942                 vmx_segment_cache_clear(vmx);
1943                 vmcs_writel(GUEST_GS_BASE, data);
1944                 break;
1945         case MSR_KERNEL_GS_BASE:
1946                 vmx_write_guest_kernel_gs_base(vmx, data);
1947                 break;
1948 #endif
1949         case MSR_IA32_SYSENTER_CS:
1950                 if (is_guest_mode(vcpu))
1951                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1952                 vmcs_write32(GUEST_SYSENTER_CS, data);
1953                 break;
1954         case MSR_IA32_SYSENTER_EIP:
1955                 if (is_guest_mode(vcpu))
1956                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1957                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1958                 break;
1959         case MSR_IA32_SYSENTER_ESP:
1960                 if (is_guest_mode(vcpu))
1961                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1962                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1963                 break;
1964         case MSR_IA32_DEBUGCTLMSR:
1965                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1966                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
1967                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1968
1969                 ret = kvm_set_msr_common(vcpu, msr_info);
1970                 break;
1971
1972         case MSR_IA32_BNDCFGS:
1973                 if (!kvm_mpx_supported() ||
1974                     (!msr_info->host_initiated &&
1975                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1976                         return 1;
1977                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1978                     (data & MSR_IA32_BNDCFGS_RSVD))
1979                         return 1;
1980                 vmcs_write64(GUEST_BNDCFGS, data);
1981                 break;
1982         case MSR_IA32_UMWAIT_CONTROL:
1983                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1984                         return 1;
1985
1986                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
1987                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1988                         return 1;
1989
1990                 vmx->msr_ia32_umwait_control = data;
1991                 break;
1992         case MSR_IA32_SPEC_CTRL:
1993                 if (!msr_info->host_initiated &&
1994                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1995                         return 1;
1996
1997                 /* The STIBP bit doesn't fault even if it's not advertised */
1998                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1999                         return 1;
2000
2001                 vmx->spec_ctrl = data;
2002
2003                 if (!data)
2004                         break;
2005
2006                 /*
2007                  * For non-nested:
2008                  * When it's written (to non-zero) for the first time, pass
2009                  * it through.
2010                  *
2011                  * For nested:
2012                  * The handling of the MSR bitmap for L2 guests is done in
2013                  * nested_vmx_merge_msr_bitmap. We should not touch the
2014                  * vmcs02.msr_bitmap here since it gets completely overwritten
2015                  * in the merging. We update the vmcs01 here for L1 as well
2016                  * since it will end up touching the MSR anyway now.
2017                  */
2018                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2019                                               MSR_IA32_SPEC_CTRL,
2020                                               MSR_TYPE_RW);
2021                 break;
2022         case MSR_IA32_TSX_CTRL:
2023                 if (!msr_info->host_initiated &&
2024                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2025                         return 1;
2026                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2027                         return 1;
2028                 goto find_shared_msr;
2029         case MSR_IA32_PRED_CMD:
2030                 if (!msr_info->host_initiated &&
2031                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2032                         return 1;
2033
2034                 if (data & ~PRED_CMD_IBPB)
2035                         return 1;
2036
2037                 if (!data)
2038                         break;
2039
2040                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2041
2042                 /*
2043                  * For non-nested:
2044                  * When it's written (to non-zero) for the first time, pass
2045                  * it through.
2046                  *
2047                  * For nested:
2048                  * The handling of the MSR bitmap for L2 guests is done in
2049                  * nested_vmx_merge_msr_bitmap. We should not touch the
2050                  * vmcs02.msr_bitmap here since it gets completely overwritten
2051                  * in the merging.
2052                  */
2053                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2054                                               MSR_TYPE_W);
2055                 break;
2056         case MSR_IA32_CR_PAT:
2057                 if (!kvm_pat_valid(data))
2058                         return 1;
2059
2060                 if (is_guest_mode(vcpu) &&
2061                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2062                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2063
2064                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2065                         vmcs_write64(GUEST_IA32_PAT, data);
2066                         vcpu->arch.pat = data;
2067                         break;
2068                 }
2069                 ret = kvm_set_msr_common(vcpu, msr_info);
2070                 break;
2071         case MSR_IA32_TSC_ADJUST:
2072                 ret = kvm_set_msr_common(vcpu, msr_info);
2073                 break;
2074         case MSR_IA32_MCG_EXT_CTL:
2075                 if ((!msr_info->host_initiated &&
2076                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2077                        FEATURE_CONTROL_LMCE)) ||
2078                     (data & ~MCG_EXT_CTL_LMCE_EN))
2079                         return 1;
2080                 vcpu->arch.mcg_ext_ctl = data;
2081                 break;
2082         case MSR_IA32_FEATURE_CONTROL:
2083                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2084                     (to_vmx(vcpu)->msr_ia32_feature_control &
2085                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2086                         return 1;
2087                 vmx->msr_ia32_feature_control = data;
2088                 if (msr_info->host_initiated && data == 0)
2089                         vmx_leave_nested(vcpu);
2090                 break;
2091         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2092                 if (!msr_info->host_initiated)
2093                         return 1; /* they are read-only */
2094                 if (!nested_vmx_allowed(vcpu))
2095                         return 1;
2096                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2097         case MSR_IA32_RTIT_CTL:
2098                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2099                         vmx_rtit_ctl_check(vcpu, data) ||
2100                         vmx->nested.vmxon)
2101                         return 1;
2102                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2103                 vmx->pt_desc.guest.ctl = data;
2104                 pt_update_intercept_for_msr(vmx);
2105                 break;
2106         case MSR_IA32_RTIT_STATUS:
2107                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2108                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2109                         (data & MSR_IA32_RTIT_STATUS_MASK))
2110                         return 1;
2111                 vmx->pt_desc.guest.status = data;
2112                 break;
2113         case MSR_IA32_RTIT_CR3_MATCH:
2114                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2115                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2116                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2117                                                 PT_CAP_cr3_filtering))
2118                         return 1;
2119                 vmx->pt_desc.guest.cr3_match = data;
2120                 break;
2121         case MSR_IA32_RTIT_OUTPUT_BASE:
2122                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2123                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2124                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2125                                         PT_CAP_topa_output) &&
2126                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2127                                         PT_CAP_single_range_output)) ||
2128                         (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2129                         return 1;
2130                 vmx->pt_desc.guest.output_base = data;
2131                 break;
2132         case MSR_IA32_RTIT_OUTPUT_MASK:
2133                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2134                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2135                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2136                                         PT_CAP_topa_output) &&
2137                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2138                                         PT_CAP_single_range_output)))
2139                         return 1;
2140                 vmx->pt_desc.guest.output_mask = data;
2141                 break;
2142         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2143                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2144                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2145                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2146                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2147                                         PT_CAP_num_address_ranges)))
2148                         return 1;
2149                 if (index % 2)
2150                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2151                 else
2152                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2153                 break;
2154         case MSR_TSC_AUX:
2155                 if (!msr_info->host_initiated &&
2156                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2157                         return 1;
2158                 /* Check reserved bit, higher 32 bits should be zero */
2159                 if ((data >> 32) != 0)
2160                         return 1;
2161                 goto find_shared_msr;
2162
2163         default:
2164         find_shared_msr:
2165                 msr = find_msr_entry(vmx, msr_index);
2166                 if (msr)
2167                         ret = vmx_set_guest_msr(vmx, msr, data);
2168                 else
2169                         ret = kvm_set_msr_common(vcpu, msr_info);
2170         }
2171
2172         return ret;
2173 }
2174
2175 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2176 {
2177         kvm_register_mark_available(vcpu, reg);
2178
2179         switch (reg) {
2180         case VCPU_REGS_RSP:
2181                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2182                 break;
2183         case VCPU_REGS_RIP:
2184                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2185                 break;
2186         case VCPU_EXREG_PDPTR:
2187                 if (enable_ept)
2188                         ept_save_pdptrs(vcpu);
2189                 break;
2190         case VCPU_EXREG_CR3:
2191                 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2192                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2193                 break;
2194         default:
2195                 WARN_ON_ONCE(1);
2196                 break;
2197         }
2198 }
2199
2200 static __init int cpu_has_kvm_support(void)
2201 {
2202         return cpu_has_vmx();
2203 }
2204
2205 static __init int vmx_disabled_by_bios(void)
2206 {
2207         u64 msr;
2208
2209         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2210         if (msr & FEATURE_CONTROL_LOCKED) {
2211                 /* launched w/ TXT and VMX disabled */
2212                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2213                         && tboot_enabled())
2214                         return 1;
2215                 /* launched w/o TXT and VMX only enabled w/ TXT */
2216                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2217                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2218                         && !tboot_enabled()) {
2219                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2220                                 "activate TXT before enabling KVM\n");
2221                         return 1;
2222                 }
2223                 /* launched w/o TXT and VMX disabled */
2224                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2225                         && !tboot_enabled())
2226                         return 1;
2227         }
2228
2229         return 0;
2230 }
2231
2232 static void kvm_cpu_vmxon(u64 addr)
2233 {
2234         cr4_set_bits(X86_CR4_VMXE);
2235         intel_pt_handle_vmx(1);
2236
2237         asm volatile ("vmxon %0" : : "m"(addr));
2238 }
2239
2240 static int hardware_enable(void)
2241 {
2242         int cpu = raw_smp_processor_id();
2243         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2244         u64 old, test_bits;
2245
2246         if (cr4_read_shadow() & X86_CR4_VMXE)
2247                 return -EBUSY;
2248
2249         /*
2250          * This can happen if we hot-added a CPU but failed to allocate
2251          * VP assist page for it.
2252          */
2253         if (static_branch_unlikely(&enable_evmcs) &&
2254             !hv_get_vp_assist_page(cpu))
2255                 return -EFAULT;
2256
2257         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2258         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2259         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2260
2261         /*
2262          * Now we can enable the vmclear operation in kdump
2263          * since the loaded_vmcss_on_cpu list on this cpu
2264          * has been initialized.
2265          *
2266          * Though the cpu is not in VMX operation now, there
2267          * is no problem to enable the vmclear operation
2268          * for the loaded_vmcss_on_cpu list is empty!
2269          */
2270         crash_enable_local_vmclear(cpu);
2271
2272         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2273
2274         test_bits = FEATURE_CONTROL_LOCKED;
2275         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2276         if (tboot_enabled())
2277                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2278
2279         if ((old & test_bits) != test_bits) {
2280                 /* enable and lock */
2281                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2282         }
2283         kvm_cpu_vmxon(phys_addr);
2284         if (enable_ept)
2285                 ept_sync_global();
2286
2287         return 0;
2288 }
2289
2290 static void vmclear_local_loaded_vmcss(void)
2291 {
2292         int cpu = raw_smp_processor_id();
2293         struct loaded_vmcs *v, *n;
2294
2295         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2296                                  loaded_vmcss_on_cpu_link)
2297                 __loaded_vmcs_clear(v);
2298 }
2299
2300
2301 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2302  * tricks.
2303  */
2304 static void kvm_cpu_vmxoff(void)
2305 {
2306         asm volatile (__ex("vmxoff"));
2307
2308         intel_pt_handle_vmx(0);
2309         cr4_clear_bits(X86_CR4_VMXE);
2310 }
2311
2312 static void hardware_disable(void)
2313 {
2314         vmclear_local_loaded_vmcss();
2315         kvm_cpu_vmxoff();
2316 }
2317
2318 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2319                                       u32 msr, u32 *result)
2320 {
2321         u32 vmx_msr_low, vmx_msr_high;
2322         u32 ctl = ctl_min | ctl_opt;
2323
2324         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2325
2326         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2327         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2328
2329         /* Ensure minimum (required) set of control bits are supported. */
2330         if (ctl_min & ~ctl)
2331                 return -EIO;
2332
2333         *result = ctl;
2334         return 0;
2335 }
2336
2337 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2338                                     struct vmx_capability *vmx_cap)
2339 {
2340         u32 vmx_msr_low, vmx_msr_high;
2341         u32 min, opt, min2, opt2;
2342         u32 _pin_based_exec_control = 0;
2343         u32 _cpu_based_exec_control = 0;
2344         u32 _cpu_based_2nd_exec_control = 0;
2345         u32 _vmexit_control = 0;
2346         u32 _vmentry_control = 0;
2347
2348         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2349         min = CPU_BASED_HLT_EXITING |
2350 #ifdef CONFIG_X86_64
2351               CPU_BASED_CR8_LOAD_EXITING |
2352               CPU_BASED_CR8_STORE_EXITING |
2353 #endif
2354               CPU_BASED_CR3_LOAD_EXITING |
2355               CPU_BASED_CR3_STORE_EXITING |
2356               CPU_BASED_UNCOND_IO_EXITING |
2357               CPU_BASED_MOV_DR_EXITING |
2358               CPU_BASED_USE_TSC_OFFSETING |
2359               CPU_BASED_MWAIT_EXITING |
2360               CPU_BASED_MONITOR_EXITING |
2361               CPU_BASED_INVLPG_EXITING |
2362               CPU_BASED_RDPMC_EXITING;
2363
2364         opt = CPU_BASED_TPR_SHADOW |
2365               CPU_BASED_USE_MSR_BITMAPS |
2366               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2367         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2368                                 &_cpu_based_exec_control) < 0)
2369                 return -EIO;
2370 #ifdef CONFIG_X86_64
2371         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2372                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2373                                            ~CPU_BASED_CR8_STORE_EXITING;
2374 #endif
2375         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2376                 min2 = 0;
2377                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2378                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2379                         SECONDARY_EXEC_WBINVD_EXITING |
2380                         SECONDARY_EXEC_ENABLE_VPID |
2381                         SECONDARY_EXEC_ENABLE_EPT |
2382                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2383                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2384                         SECONDARY_EXEC_DESC |
2385                         SECONDARY_EXEC_RDTSCP |
2386                         SECONDARY_EXEC_ENABLE_INVPCID |
2387                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2388                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2389                         SECONDARY_EXEC_SHADOW_VMCS |
2390                         SECONDARY_EXEC_XSAVES |
2391                         SECONDARY_EXEC_RDSEED_EXITING |
2392                         SECONDARY_EXEC_RDRAND_EXITING |
2393                         SECONDARY_EXEC_ENABLE_PML |
2394                         SECONDARY_EXEC_TSC_SCALING |
2395                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2396                         SECONDARY_EXEC_PT_USE_GPA |
2397                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2398                         SECONDARY_EXEC_ENABLE_VMFUNC |
2399                         SECONDARY_EXEC_ENCLS_EXITING;
2400                 if (adjust_vmx_controls(min2, opt2,
2401                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2402                                         &_cpu_based_2nd_exec_control) < 0)
2403                         return -EIO;
2404         }
2405 #ifndef CONFIG_X86_64
2406         if (!(_cpu_based_2nd_exec_control &
2407                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2408                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2409 #endif
2410
2411         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2412                 _cpu_based_2nd_exec_control &= ~(
2413                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2414                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2415                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2416
2417         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2418                 &vmx_cap->ept, &vmx_cap->vpid);
2419
2420         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2421                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2422                    enabled */
2423                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2424                                              CPU_BASED_CR3_STORE_EXITING |
2425                                              CPU_BASED_INVLPG_EXITING);
2426         } else if (vmx_cap->ept) {
2427                 vmx_cap->ept = 0;
2428                 pr_warn_once("EPT CAP should not exist if not support "
2429                                 "1-setting enable EPT VM-execution control\n");
2430         }
2431         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2432                 vmx_cap->vpid) {
2433                 vmx_cap->vpid = 0;
2434                 pr_warn_once("VPID CAP should not exist if not support "
2435                                 "1-setting enable VPID VM-execution control\n");
2436         }
2437
2438         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2439 #ifdef CONFIG_X86_64
2440         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2441 #endif
2442         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2443               VM_EXIT_LOAD_IA32_PAT |
2444               VM_EXIT_LOAD_IA32_EFER |
2445               VM_EXIT_CLEAR_BNDCFGS |
2446               VM_EXIT_PT_CONCEAL_PIP |
2447               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2448         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2449                                 &_vmexit_control) < 0)
2450                 return -EIO;
2451
2452         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2453         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2454                  PIN_BASED_VMX_PREEMPTION_TIMER;
2455         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2456                                 &_pin_based_exec_control) < 0)
2457                 return -EIO;
2458
2459         if (cpu_has_broken_vmx_preemption_timer())
2460                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2461         if (!(_cpu_based_2nd_exec_control &
2462                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2463                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2464
2465         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2466         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2467               VM_ENTRY_LOAD_IA32_PAT |
2468               VM_ENTRY_LOAD_IA32_EFER |
2469               VM_ENTRY_LOAD_BNDCFGS |
2470               VM_ENTRY_PT_CONCEAL_PIP |
2471               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2472         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2473                                 &_vmentry_control) < 0)
2474                 return -EIO;
2475
2476         /*
2477          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2478          * can't be used due to an errata where VM Exit may incorrectly clear
2479          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2480          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2481          */
2482         if (boot_cpu_data.x86 == 0x6) {
2483                 switch (boot_cpu_data.x86_model) {
2484                 case 26: /* AAK155 */
2485                 case 30: /* AAP115 */
2486                 case 37: /* AAT100 */
2487                 case 44: /* BC86,AAY89,BD102 */
2488                 case 46: /* BA97 */
2489                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2490                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2491                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2492                                         "does not work properly. Using workaround\n");
2493                         break;
2494                 default:
2495                         break;
2496                 }
2497         }
2498
2499
2500         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2501
2502         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2503         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2504                 return -EIO;
2505
2506 #ifdef CONFIG_X86_64
2507         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2508         if (vmx_msr_high & (1u<<16))
2509                 return -EIO;
2510 #endif
2511
2512         /* Require Write-Back (WB) memory type for VMCS accesses. */
2513         if (((vmx_msr_high >> 18) & 15) != 6)
2514                 return -EIO;
2515
2516         vmcs_conf->size = vmx_msr_high & 0x1fff;
2517         vmcs_conf->order = get_order(vmcs_conf->size);
2518         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2519
2520         vmcs_conf->revision_id = vmx_msr_low;
2521
2522         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2523         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2524         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2525         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2526         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2527
2528         if (static_branch_unlikely(&enable_evmcs))
2529                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2530
2531         return 0;
2532 }
2533
2534 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2535 {
2536         int node = cpu_to_node(cpu);
2537         struct page *pages;
2538         struct vmcs *vmcs;
2539
2540         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2541         if (!pages)
2542                 return NULL;
2543         vmcs = page_address(pages);
2544         memset(vmcs, 0, vmcs_config.size);
2545
2546         /* KVM supports Enlightened VMCS v1 only */
2547         if (static_branch_unlikely(&enable_evmcs))
2548                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2549         else
2550                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2551
2552         if (shadow)
2553                 vmcs->hdr.shadow_vmcs = 1;
2554         return vmcs;
2555 }
2556
2557 void free_vmcs(struct vmcs *vmcs)
2558 {
2559         free_pages((unsigned long)vmcs, vmcs_config.order);
2560 }
2561
2562 /*
2563  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2564  */
2565 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2566 {
2567         if (!loaded_vmcs->vmcs)
2568                 return;
2569         loaded_vmcs_clear(loaded_vmcs);
2570         free_vmcs(loaded_vmcs->vmcs);
2571         loaded_vmcs->vmcs = NULL;
2572         if (loaded_vmcs->msr_bitmap)
2573                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2574         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2575 }
2576
2577 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2578 {
2579         loaded_vmcs->vmcs = alloc_vmcs(false);
2580         if (!loaded_vmcs->vmcs)
2581                 return -ENOMEM;
2582
2583         loaded_vmcs->shadow_vmcs = NULL;
2584         loaded_vmcs->hv_timer_soft_disabled = false;
2585         loaded_vmcs_init(loaded_vmcs);
2586
2587         if (cpu_has_vmx_msr_bitmap()) {
2588                 loaded_vmcs->msr_bitmap = (unsigned long *)
2589                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2590                 if (!loaded_vmcs->msr_bitmap)
2591                         goto out_vmcs;
2592                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2593
2594                 if (IS_ENABLED(CONFIG_HYPERV) &&
2595                     static_branch_unlikely(&enable_evmcs) &&
2596                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2597                         struct hv_enlightened_vmcs *evmcs =
2598                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2599
2600                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2601                 }
2602         }
2603
2604         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2605         memset(&loaded_vmcs->controls_shadow, 0,
2606                 sizeof(struct vmcs_controls_shadow));
2607
2608         return 0;
2609
2610 out_vmcs:
2611         free_loaded_vmcs(loaded_vmcs);
2612         return -ENOMEM;
2613 }
2614
2615 static void free_kvm_area(void)
2616 {
2617         int cpu;
2618
2619         for_each_possible_cpu(cpu) {
2620                 free_vmcs(per_cpu(vmxarea, cpu));
2621                 per_cpu(vmxarea, cpu) = NULL;
2622         }
2623 }
2624
2625 static __init int alloc_kvm_area(void)
2626 {
2627         int cpu;
2628
2629         for_each_possible_cpu(cpu) {
2630                 struct vmcs *vmcs;
2631
2632                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2633                 if (!vmcs) {
2634                         free_kvm_area();
2635                         return -ENOMEM;
2636                 }
2637
2638                 /*
2639                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2640                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2641                  * revision_id reported by MSR_IA32_VMX_BASIC.
2642                  *
2643                  * However, even though not explicitly documented by
2644                  * TLFS, VMXArea passed as VMXON argument should
2645                  * still be marked with revision_id reported by
2646                  * physical CPU.
2647                  */
2648                 if (static_branch_unlikely(&enable_evmcs))
2649                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2650
2651                 per_cpu(vmxarea, cpu) = vmcs;
2652         }
2653         return 0;
2654 }
2655
2656 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2657                 struct kvm_segment *save)
2658 {
2659         if (!emulate_invalid_guest_state) {
2660                 /*
2661                  * CS and SS RPL should be equal during guest entry according
2662                  * to VMX spec, but in reality it is not always so. Since vcpu
2663                  * is in the middle of the transition from real mode to
2664                  * protected mode it is safe to assume that RPL 0 is a good
2665                  * default value.
2666                  */
2667                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2668                         save->selector &= ~SEGMENT_RPL_MASK;
2669                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2670                 save->s = 1;
2671         }
2672         vmx_set_segment(vcpu, save, seg);
2673 }
2674
2675 static void enter_pmode(struct kvm_vcpu *vcpu)
2676 {
2677         unsigned long flags;
2678         struct vcpu_vmx *vmx = to_vmx(vcpu);
2679
2680         /*
2681          * Update real mode segment cache. It may be not up-to-date if sement
2682          * register was written while vcpu was in a guest mode.
2683          */
2684         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2685         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2686         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2687         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2688         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2689         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2690
2691         vmx->rmode.vm86_active = 0;
2692
2693         vmx_segment_cache_clear(vmx);
2694
2695         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2696
2697         flags = vmcs_readl(GUEST_RFLAGS);
2698         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2699         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2700         vmcs_writel(GUEST_RFLAGS, flags);
2701
2702         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2703                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2704
2705         update_exception_bitmap(vcpu);
2706
2707         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2708         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2709         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2710         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2711         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2712         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2713 }
2714
2715 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2716 {
2717         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2718         struct kvm_segment var = *save;
2719
2720         var.dpl = 0x3;
2721         if (seg == VCPU_SREG_CS)
2722                 var.type = 0x3;
2723
2724         if (!emulate_invalid_guest_state) {
2725                 var.selector = var.base >> 4;
2726                 var.base = var.base & 0xffff0;
2727                 var.limit = 0xffff;
2728                 var.g = 0;
2729                 var.db = 0;
2730                 var.present = 1;
2731                 var.s = 1;
2732                 var.l = 0;
2733                 var.unusable = 0;
2734                 var.type = 0x3;
2735                 var.avl = 0;
2736                 if (save->base & 0xf)
2737                         printk_once(KERN_WARNING "kvm: segment base is not "
2738                                         "paragraph aligned when entering "
2739                                         "protected mode (seg=%d)", seg);
2740         }
2741
2742         vmcs_write16(sf->selector, var.selector);
2743         vmcs_writel(sf->base, var.base);
2744         vmcs_write32(sf->limit, var.limit);
2745         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2746 }
2747
2748 static void enter_rmode(struct kvm_vcpu *vcpu)
2749 {
2750         unsigned long flags;
2751         struct vcpu_vmx *vmx = to_vmx(vcpu);
2752         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2753
2754         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2755         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2756         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2757         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2758         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2759         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2760         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2761
2762         vmx->rmode.vm86_active = 1;
2763
2764         /*
2765          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2766          * vcpu. Warn the user that an update is overdue.
2767          */
2768         if (!kvm_vmx->tss_addr)
2769                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2770                              "called before entering vcpu\n");
2771
2772         vmx_segment_cache_clear(vmx);
2773
2774         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2775         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2776         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2777
2778         flags = vmcs_readl(GUEST_RFLAGS);
2779         vmx->rmode.save_rflags = flags;
2780
2781         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2782
2783         vmcs_writel(GUEST_RFLAGS, flags);
2784         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2785         update_exception_bitmap(vcpu);
2786
2787         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2788         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2789         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2790         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2791         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2792         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2793
2794         kvm_mmu_reset_context(vcpu);
2795 }
2796
2797 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2798 {
2799         struct vcpu_vmx *vmx = to_vmx(vcpu);
2800         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2801
2802         if (!msr)
2803                 return;
2804
2805         vcpu->arch.efer = efer;
2806         if (efer & EFER_LMA) {
2807                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2808                 msr->data = efer;
2809         } else {
2810                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2811
2812                 msr->data = efer & ~EFER_LME;
2813         }
2814         setup_msrs(vmx);
2815 }
2816
2817 #ifdef CONFIG_X86_64
2818
2819 static void enter_lmode(struct kvm_vcpu *vcpu)
2820 {
2821         u32 guest_tr_ar;
2822
2823         vmx_segment_cache_clear(to_vmx(vcpu));
2824
2825         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2826         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2827                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2828                                      __func__);
2829                 vmcs_write32(GUEST_TR_AR_BYTES,
2830                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2831                              | VMX_AR_TYPE_BUSY_64_TSS);
2832         }
2833         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2834 }
2835
2836 static void exit_lmode(struct kvm_vcpu *vcpu)
2837 {
2838         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2839         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2840 }
2841
2842 #endif
2843
2844 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2845 {
2846         int vpid = to_vmx(vcpu)->vpid;
2847
2848         if (!vpid_sync_vcpu_addr(vpid, addr))
2849                 vpid_sync_context(vpid);
2850
2851         /*
2852          * If VPIDs are not supported or enabled, then the above is a no-op.
2853          * But we don't really need a TLB flush in that case anyway, because
2854          * each VM entry/exit includes an implicit flush when VPID is 0.
2855          */
2856 }
2857
2858 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2859 {
2860         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2861
2862         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2863         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2864 }
2865
2866 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2867 {
2868         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2869
2870         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2871         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2872 }
2873
2874 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2875 {
2876         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2877
2878         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2879                 return;
2880
2881         if (is_pae_paging(vcpu)) {
2882                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2883                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2884                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2885                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2886         }
2887 }
2888
2889 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2890 {
2891         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2892
2893         if (is_pae_paging(vcpu)) {
2894                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2895                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2896                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2897                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2898         }
2899
2900         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2901 }
2902
2903 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2904                                         unsigned long cr0,
2905                                         struct kvm_vcpu *vcpu)
2906 {
2907         struct vcpu_vmx *vmx = to_vmx(vcpu);
2908
2909         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2910                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2911         if (!(cr0 & X86_CR0_PG)) {
2912                 /* From paging/starting to nonpaging */
2913                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2914                                           CPU_BASED_CR3_STORE_EXITING);
2915                 vcpu->arch.cr0 = cr0;
2916                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2917         } else if (!is_paging(vcpu)) {
2918                 /* From nonpaging to paging */
2919                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2920                                             CPU_BASED_CR3_STORE_EXITING);
2921                 vcpu->arch.cr0 = cr0;
2922                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2923         }
2924
2925         if (!(cr0 & X86_CR0_WP))
2926                 *hw_cr0 &= ~X86_CR0_WP;
2927 }
2928
2929 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2930 {
2931         struct vcpu_vmx *vmx = to_vmx(vcpu);
2932         unsigned long hw_cr0;
2933
2934         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2935         if (enable_unrestricted_guest)
2936                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2937         else {
2938                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2939
2940                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2941                         enter_pmode(vcpu);
2942
2943                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2944                         enter_rmode(vcpu);
2945         }
2946
2947 #ifdef CONFIG_X86_64
2948         if (vcpu->arch.efer & EFER_LME) {
2949                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2950                         enter_lmode(vcpu);
2951                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2952                         exit_lmode(vcpu);
2953         }
2954 #endif
2955
2956         if (enable_ept && !enable_unrestricted_guest)
2957                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2958
2959         vmcs_writel(CR0_READ_SHADOW, cr0);
2960         vmcs_writel(GUEST_CR0, hw_cr0);
2961         vcpu->arch.cr0 = cr0;
2962
2963         /* depends on vcpu->arch.cr0 to be set to a new value */
2964         vmx->emulation_required = emulation_required(vcpu);
2965 }
2966
2967 static int get_ept_level(struct kvm_vcpu *vcpu)
2968 {
2969         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2970                 return 5;
2971         return 4;
2972 }
2973
2974 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2975 {
2976         u64 eptp = VMX_EPTP_MT_WB;
2977
2978         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2979
2980         if (enable_ept_ad_bits &&
2981             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2982                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2983         eptp |= (root_hpa & PAGE_MASK);
2984
2985         return eptp;
2986 }
2987
2988 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2989 {
2990         struct kvm *kvm = vcpu->kvm;
2991         bool update_guest_cr3 = true;
2992         unsigned long guest_cr3;
2993         u64 eptp;
2994
2995         guest_cr3 = cr3;
2996         if (enable_ept) {
2997                 eptp = construct_eptp(vcpu, cr3);
2998                 vmcs_write64(EPT_POINTER, eptp);
2999
3000                 if (kvm_x86_ops->tlb_remote_flush) {
3001                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3002                         to_vmx(vcpu)->ept_pointer = eptp;
3003                         to_kvm_vmx(kvm)->ept_pointers_match
3004                                 = EPT_POINTERS_CHECK;
3005                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3006                 }
3007
3008                 /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3009                 if (is_guest_mode(vcpu))
3010                         update_guest_cr3 = false;
3011                 else if (!enable_unrestricted_guest && !is_paging(vcpu))
3012                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3013                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3014                         guest_cr3 = vcpu->arch.cr3;
3015                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3016                         update_guest_cr3 = false;
3017                 ept_load_pdptrs(vcpu);
3018         }
3019
3020         if (update_guest_cr3)
3021                 vmcs_writel(GUEST_CR3, guest_cr3);
3022 }
3023
3024 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3025 {
3026         struct vcpu_vmx *vmx = to_vmx(vcpu);
3027         /*
3028          * Pass through host's Machine Check Enable value to hw_cr4, which
3029          * is in force while we are in guest mode.  Do not let guests control
3030          * this bit, even if host CR4.MCE == 0.
3031          */
3032         unsigned long hw_cr4;
3033
3034         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3035         if (enable_unrestricted_guest)
3036                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3037         else if (vmx->rmode.vm86_active)
3038                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3039         else
3040                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3041
3042         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3043                 if (cr4 & X86_CR4_UMIP) {
3044                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3045                         hw_cr4 &= ~X86_CR4_UMIP;
3046                 } else if (!is_guest_mode(vcpu) ||
3047                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3048                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3049                 }
3050         }
3051
3052         if (cr4 & X86_CR4_VMXE) {
3053                 /*
3054                  * To use VMXON (and later other VMX instructions), a guest
3055                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3056                  * So basically the check on whether to allow nested VMX
3057                  * is here.  We operate under the default treatment of SMM,
3058                  * so VMX cannot be enabled under SMM.
3059                  */
3060                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3061                         return 1;
3062         }
3063
3064         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3065                 return 1;
3066
3067         vcpu->arch.cr4 = cr4;
3068
3069         if (!enable_unrestricted_guest) {
3070                 if (enable_ept) {
3071                         if (!is_paging(vcpu)) {
3072                                 hw_cr4 &= ~X86_CR4_PAE;
3073                                 hw_cr4 |= X86_CR4_PSE;
3074                         } else if (!(cr4 & X86_CR4_PAE)) {
3075                                 hw_cr4 &= ~X86_CR4_PAE;
3076                         }
3077                 }
3078
3079                 /*
3080                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3081                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3082                  * to be manually disabled when guest switches to non-paging
3083                  * mode.
3084                  *
3085                  * If !enable_unrestricted_guest, the CPU is always running
3086                  * with CR0.PG=1 and CR4 needs to be modified.
3087                  * If enable_unrestricted_guest, the CPU automatically
3088                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3089                  */
3090                 if (!is_paging(vcpu))
3091                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3092         }
3093
3094         vmcs_writel(CR4_READ_SHADOW, cr4);
3095         vmcs_writel(GUEST_CR4, hw_cr4);
3096         return 0;
3097 }
3098
3099 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3100 {
3101         struct vcpu_vmx *vmx = to_vmx(vcpu);
3102         u32 ar;
3103
3104         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3105                 *var = vmx->rmode.segs[seg];
3106                 if (seg == VCPU_SREG_TR
3107                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3108                         return;
3109                 var->base = vmx_read_guest_seg_base(vmx, seg);
3110                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3111                 return;
3112         }
3113         var->base = vmx_read_guest_seg_base(vmx, seg);
3114         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3115         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3116         ar = vmx_read_guest_seg_ar(vmx, seg);
3117         var->unusable = (ar >> 16) & 1;
3118         var->type = ar & 15;
3119         var->s = (ar >> 4) & 1;
3120         var->dpl = (ar >> 5) & 3;
3121         /*
3122          * Some userspaces do not preserve unusable property. Since usable
3123          * segment has to be present according to VMX spec we can use present
3124          * property to amend userspace bug by making unusable segment always
3125          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3126          * segment as unusable.
3127          */
3128         var->present = !var->unusable;
3129         var->avl = (ar >> 12) & 1;
3130         var->l = (ar >> 13) & 1;
3131         var->db = (ar >> 14) & 1;
3132         var->g = (ar >> 15) & 1;
3133 }
3134
3135 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3136 {
3137         struct kvm_segment s;
3138
3139         if (to_vmx(vcpu)->rmode.vm86_active) {
3140                 vmx_get_segment(vcpu, &s, seg);
3141                 return s.base;
3142         }
3143         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3144 }
3145
3146 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3147 {
3148         struct vcpu_vmx *vmx = to_vmx(vcpu);
3149
3150         if (unlikely(vmx->rmode.vm86_active))
3151                 return 0;
3152         else {
3153                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3154                 return VMX_AR_DPL(ar);
3155         }
3156 }
3157
3158 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3159 {
3160         u32 ar;
3161
3162         if (var->unusable || !var->present)
3163                 ar = 1 << 16;
3164         else {
3165                 ar = var->type & 15;
3166                 ar |= (var->s & 1) << 4;
3167                 ar |= (var->dpl & 3) << 5;
3168                 ar |= (var->present & 1) << 7;
3169                 ar |= (var->avl & 1) << 12;
3170                 ar |= (var->l & 1) << 13;
3171                 ar |= (var->db & 1) << 14;
3172                 ar |= (var->g & 1) << 15;
3173         }
3174
3175         return ar;
3176 }
3177
3178 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3179 {
3180         struct vcpu_vmx *vmx = to_vmx(vcpu);
3181         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3182
3183         vmx_segment_cache_clear(vmx);
3184
3185         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3186                 vmx->rmode.segs[seg] = *var;
3187                 if (seg == VCPU_SREG_TR)
3188                         vmcs_write16(sf->selector, var->selector);
3189                 else if (var->s)
3190                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3191                 goto out;
3192         }
3193
3194         vmcs_writel(sf->base, var->base);
3195         vmcs_write32(sf->limit, var->limit);
3196         vmcs_write16(sf->selector, var->selector);
3197
3198         /*
3199          *   Fix the "Accessed" bit in AR field of segment registers for older
3200          * qemu binaries.
3201          *   IA32 arch specifies that at the time of processor reset the
3202          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3203          * is setting it to 0 in the userland code. This causes invalid guest
3204          * state vmexit when "unrestricted guest" mode is turned on.
3205          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3206          * tree. Newer qemu binaries with that qemu fix would not need this
3207          * kvm hack.
3208          */
3209         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3210                 var->type |= 0x1; /* Accessed */
3211
3212         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3213
3214 out:
3215         vmx->emulation_required = emulation_required(vcpu);
3216 }
3217
3218 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3219 {
3220         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3221
3222         *db = (ar >> 14) & 1;
3223         *l = (ar >> 13) & 1;
3224 }
3225
3226 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3227 {
3228         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3229         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3230 }
3231
3232 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3233 {
3234         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3235         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3236 }
3237
3238 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3239 {
3240         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3241         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3242 }
3243
3244 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3245 {
3246         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3247         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3248 }
3249
3250 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3251 {
3252         struct kvm_segment var;
3253         u32 ar;
3254
3255         vmx_get_segment(vcpu, &var, seg);
3256         var.dpl = 0x3;
3257         if (seg == VCPU_SREG_CS)
3258                 var.type = 0x3;
3259         ar = vmx_segment_access_rights(&var);
3260
3261         if (var.base != (var.selector << 4))
3262                 return false;
3263         if (var.limit != 0xffff)
3264                 return false;
3265         if (ar != 0xf3)
3266                 return false;
3267
3268         return true;
3269 }
3270
3271 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3272 {
3273         struct kvm_segment cs;
3274         unsigned int cs_rpl;
3275
3276         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3277         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3278
3279         if (cs.unusable)
3280                 return false;
3281         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3282                 return false;
3283         if (!cs.s)
3284                 return false;
3285         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3286                 if (cs.dpl > cs_rpl)
3287                         return false;
3288         } else {
3289                 if (cs.dpl != cs_rpl)
3290                         return false;
3291         }
3292         if (!cs.present)
3293                 return false;
3294
3295         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3296         return true;
3297 }
3298
3299 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3300 {
3301         struct kvm_segment ss;
3302         unsigned int ss_rpl;
3303
3304         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3305         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3306
3307         if (ss.unusable)
3308                 return true;
3309         if (ss.type != 3 && ss.type != 7)
3310                 return false;
3311         if (!ss.s)
3312                 return false;
3313         if (ss.dpl != ss_rpl) /* DPL != RPL */
3314                 return false;
3315         if (!ss.present)
3316                 return false;
3317
3318         return true;
3319 }
3320
3321 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3322 {
3323         struct kvm_segment var;
3324         unsigned int rpl;
3325
3326         vmx_get_segment(vcpu, &var, seg);
3327         rpl = var.selector & SEGMENT_RPL_MASK;
3328
3329         if (var.unusable)
3330                 return true;
3331         if (!var.s)
3332                 return false;
3333         if (!var.present)
3334                 return false;
3335         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3336                 if (var.dpl < rpl) /* DPL < RPL */
3337                         return false;
3338         }
3339
3340         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3341          * rights flags
3342          */
3343         return true;
3344 }
3345
3346 static bool tr_valid(struct kvm_vcpu *vcpu)
3347 {
3348         struct kvm_segment tr;
3349
3350         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3351
3352         if (tr.unusable)
3353                 return false;
3354         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3355                 return false;
3356         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3357                 return false;
3358         if (!tr.present)
3359                 return false;
3360
3361         return true;
3362 }
3363
3364 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3365 {
3366         struct kvm_segment ldtr;
3367
3368         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3369
3370         if (ldtr.unusable)
3371                 return true;
3372         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3373                 return false;
3374         if (ldtr.type != 2)
3375                 return false;
3376         if (!ldtr.present)
3377                 return false;
3378
3379         return true;
3380 }
3381
3382 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3383 {
3384         struct kvm_segment cs, ss;
3385
3386         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3387         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3388
3389         return ((cs.selector & SEGMENT_RPL_MASK) ==
3390                  (ss.selector & SEGMENT_RPL_MASK));
3391 }
3392
3393 /*
3394  * Check if guest state is valid. Returns true if valid, false if
3395  * not.
3396  * We assume that registers are always usable
3397  */
3398 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3399 {
3400         if (enable_unrestricted_guest)
3401                 return true;
3402
3403         /* real mode guest state checks */
3404         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3405                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3406                         return false;
3407                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3408                         return false;
3409                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3410                         return false;
3411                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3412                         return false;
3413                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3414                         return false;
3415                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3416                         return false;
3417         } else {
3418         /* protected mode guest state checks */
3419                 if (!cs_ss_rpl_check(vcpu))
3420                         return false;
3421                 if (!code_segment_valid(vcpu))
3422                         return false;
3423                 if (!stack_segment_valid(vcpu))
3424                         return false;
3425                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3426                         return false;
3427                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3428                         return false;
3429                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3430                         return false;
3431                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3432                         return false;
3433                 if (!tr_valid(vcpu))
3434                         return false;
3435                 if (!ldtr_valid(vcpu))
3436                         return false;
3437         }
3438         /* TODO:
3439          * - Add checks on RIP
3440          * - Add checks on RFLAGS
3441          */
3442
3443         return true;
3444 }
3445
3446 static int init_rmode_tss(struct kvm *kvm)
3447 {
3448         gfn_t fn;
3449         u16 data = 0;
3450         int idx, r;
3451
3452         idx = srcu_read_lock(&kvm->srcu);
3453         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3454         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3455         if (r < 0)
3456                 goto out;
3457         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3458         r = kvm_write_guest_page(kvm, fn++, &data,
3459                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3460         if (r < 0)
3461                 goto out;
3462         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3463         if (r < 0)
3464                 goto out;
3465         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3466         if (r < 0)
3467                 goto out;
3468         data = ~0;
3469         r = kvm_write_guest_page(kvm, fn, &data,
3470                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3471                                  sizeof(u8));
3472 out:
3473         srcu_read_unlock(&kvm->srcu, idx);
3474         return r;
3475 }
3476
3477 static int init_rmode_identity_map(struct kvm *kvm)
3478 {
3479         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3480         int i, idx, r = 0;
3481         kvm_pfn_t identity_map_pfn;
3482         u32 tmp;
3483
3484         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3485         mutex_lock(&kvm->slots_lock);
3486
3487         if (likely(kvm_vmx->ept_identity_pagetable_done))
3488                 goto out2;
3489
3490         if (!kvm_vmx->ept_identity_map_addr)
3491                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3492         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3493
3494         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3495                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3496         if (r < 0)
3497                 goto out2;
3498
3499         idx = srcu_read_lock(&kvm->srcu);
3500         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3501         if (r < 0)
3502                 goto out;
3503         /* Set up identity-mapping pagetable for EPT in real mode */
3504         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3505                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3506                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3507                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3508                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3509                 if (r < 0)
3510                         goto out;
3511         }
3512         kvm_vmx->ept_identity_pagetable_done = true;
3513
3514 out:
3515         srcu_read_unlock(&kvm->srcu, idx);
3516
3517 out2:
3518         mutex_unlock(&kvm->slots_lock);
3519         return r;
3520 }
3521
3522 static void seg_setup(int seg)
3523 {
3524         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3525         unsigned int ar;
3526
3527         vmcs_write16(sf->selector, 0);
3528         vmcs_writel(sf->base, 0);
3529         vmcs_write32(sf->limit, 0xffff);
3530         ar = 0x93;
3531         if (seg == VCPU_SREG_CS)
3532                 ar |= 0x08; /* code segment */
3533
3534         vmcs_write32(sf->ar_bytes, ar);
3535 }
3536
3537 static int alloc_apic_access_page(struct kvm *kvm)
3538 {
3539         struct page *page;
3540         int r = 0;
3541
3542         mutex_lock(&kvm->slots_lock);
3543         if (kvm->arch.apic_access_page_done)
3544                 goto out;
3545         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3546                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3547         if (r)
3548                 goto out;
3549
3550         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3551         if (is_error_page(page)) {
3552                 r = -EFAULT;
3553                 goto out;
3554         }
3555
3556         /*
3557          * Do not pin the page in memory, so that memory hot-unplug
3558          * is able to migrate it.
3559          */
3560         put_page(page);
3561         kvm->arch.apic_access_page_done = true;
3562 out:
3563         mutex_unlock(&kvm->slots_lock);
3564         return r;
3565 }
3566
3567 int allocate_vpid(void)
3568 {
3569         int vpid;
3570
3571         if (!enable_vpid)
3572                 return 0;
3573         spin_lock(&vmx_vpid_lock);
3574         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3575         if (vpid < VMX_NR_VPIDS)
3576                 __set_bit(vpid, vmx_vpid_bitmap);
3577         else
3578                 vpid = 0;
3579         spin_unlock(&vmx_vpid_lock);
3580         return vpid;
3581 }
3582
3583 void free_vpid(int vpid)
3584 {
3585         if (!enable_vpid || vpid == 0)
3586                 return;
3587         spin_lock(&vmx_vpid_lock);
3588         __clear_bit(vpid, vmx_vpid_bitmap);
3589         spin_unlock(&vmx_vpid_lock);
3590 }
3591
3592 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3593                                                           u32 msr, int type)
3594 {
3595         int f = sizeof(unsigned long);
3596
3597         if (!cpu_has_vmx_msr_bitmap())
3598                 return;
3599
3600         if (static_branch_unlikely(&enable_evmcs))
3601                 evmcs_touch_msr_bitmap();
3602
3603         /*
3604          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3605          * have the write-low and read-high bitmap offsets the wrong way round.
3606          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3607          */
3608         if (msr <= 0x1fff) {
3609                 if (type & MSR_TYPE_R)
3610                         /* read-low */
3611                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3612
3613                 if (type & MSR_TYPE_W)
3614                         /* write-low */
3615                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3616
3617         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3618                 msr &= 0x1fff;
3619                 if (type & MSR_TYPE_R)
3620                         /* read-high */
3621                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3622
3623                 if (type & MSR_TYPE_W)
3624                         /* write-high */
3625                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3626
3627         }
3628 }
3629
3630 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3631                                                          u32 msr, int type)
3632 {
3633         int f = sizeof(unsigned long);
3634
3635         if (!cpu_has_vmx_msr_bitmap())
3636                 return;
3637
3638         if (static_branch_unlikely(&enable_evmcs))
3639                 evmcs_touch_msr_bitmap();
3640
3641         /*
3642          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3643          * have the write-low and read-high bitmap offsets the wrong way round.
3644          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3645          */
3646         if (msr <= 0x1fff) {
3647                 if (type & MSR_TYPE_R)
3648                         /* read-low */
3649                         __set_bit(msr, msr_bitmap + 0x000 / f);
3650
3651                 if (type & MSR_TYPE_W)
3652                         /* write-low */
3653                         __set_bit(msr, msr_bitmap + 0x800 / f);
3654
3655         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3656                 msr &= 0x1fff;
3657                 if (type & MSR_TYPE_R)
3658                         /* read-high */
3659                         __set_bit(msr, msr_bitmap + 0x400 / f);
3660
3661                 if (type & MSR_TYPE_W)
3662                         /* write-high */
3663                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3664
3665         }
3666 }
3667
3668 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3669                                                       u32 msr, int type, bool value)
3670 {
3671         if (value)
3672                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3673         else
3674                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3675 }
3676
3677 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3678 {
3679         u8 mode = 0;
3680
3681         if (cpu_has_secondary_exec_ctrls() &&
3682             (secondary_exec_controls_get(to_vmx(vcpu)) &
3683              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3684                 mode |= MSR_BITMAP_MODE_X2APIC;
3685                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3686                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3687         }
3688
3689         return mode;
3690 }
3691
3692 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3693                                          u8 mode)
3694 {
3695         int msr;
3696
3697         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3698                 unsigned word = msr / BITS_PER_LONG;
3699                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3700                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3701         }
3702
3703         if (mode & MSR_BITMAP_MODE_X2APIC) {
3704                 /*
3705                  * TPR reads and writes can be virtualized even if virtual interrupt
3706                  * delivery is not in use.
3707                  */
3708                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3709                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3710                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3711                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3712                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3713                 }
3714         }
3715 }
3716
3717 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3718 {
3719         struct vcpu_vmx *vmx = to_vmx(vcpu);
3720         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3721         u8 mode = vmx_msr_bitmap_mode(vcpu);
3722         u8 changed = mode ^ vmx->msr_bitmap_mode;
3723
3724         if (!changed)
3725                 return;
3726
3727         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3728                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3729
3730         vmx->msr_bitmap_mode = mode;
3731 }
3732
3733 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3734 {
3735         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3736         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3737         u32 i;
3738
3739         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3740                                                         MSR_TYPE_RW, flag);
3741         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3742                                                         MSR_TYPE_RW, flag);
3743         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3744                                                         MSR_TYPE_RW, flag);
3745         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3746                                                         MSR_TYPE_RW, flag);
3747         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3748                 vmx_set_intercept_for_msr(msr_bitmap,
3749                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3750                 vmx_set_intercept_for_msr(msr_bitmap,
3751                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3752         }
3753 }
3754
3755 static bool vmx_get_enable_apicv(struct kvm *kvm)
3756 {
3757         return enable_apicv;
3758 }
3759
3760 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3761 {
3762         struct vcpu_vmx *vmx = to_vmx(vcpu);
3763         void *vapic_page;
3764         u32 vppr;
3765         int rvi;
3766
3767         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3768                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3769                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3770                 return false;
3771
3772         rvi = vmx_get_rvi();
3773
3774         vapic_page = vmx->nested.virtual_apic_map.hva;
3775         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3776
3777         return ((rvi & 0xf0) > (vppr & 0xf0));
3778 }
3779
3780 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3781                                                      bool nested)
3782 {
3783 #ifdef CONFIG_SMP
3784         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3785
3786         if (vcpu->mode == IN_GUEST_MODE) {
3787                 /*
3788                  * The vector of interrupt to be delivered to vcpu had
3789                  * been set in PIR before this function.
3790                  *
3791                  * Following cases will be reached in this block, and
3792                  * we always send a notification event in all cases as
3793                  * explained below.
3794                  *
3795                  * Case 1: vcpu keeps in non-root mode. Sending a
3796                  * notification event posts the interrupt to vcpu.
3797                  *
3798                  * Case 2: vcpu exits to root mode and is still
3799                  * runnable. PIR will be synced to vIRR before the
3800                  * next vcpu entry. Sending a notification event in
3801                  * this case has no effect, as vcpu is not in root
3802                  * mode.
3803                  *
3804                  * Case 3: vcpu exits to root mode and is blocked.
3805                  * vcpu_block() has already synced PIR to vIRR and
3806                  * never blocks vcpu if vIRR is not cleared. Therefore,
3807                  * a blocked vcpu here does not wait for any requested
3808                  * interrupts in PIR, and sending a notification event
3809                  * which has no effect is safe here.
3810                  */
3811
3812                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3813                 return true;
3814         }
3815 #endif
3816         return false;
3817 }
3818
3819 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3820                                                 int vector)
3821 {
3822         struct vcpu_vmx *vmx = to_vmx(vcpu);
3823
3824         if (is_guest_mode(vcpu) &&
3825             vector == vmx->nested.posted_intr_nv) {
3826                 /*
3827                  * If a posted intr is not recognized by hardware,
3828                  * we will accomplish it in the next vmentry.
3829                  */
3830                 vmx->nested.pi_pending = true;
3831                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3832                 /* the PIR and ON have been set by L1. */
3833                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3834                         kvm_vcpu_kick(vcpu);
3835                 return 0;
3836         }
3837         return -1;
3838 }
3839 /*
3840  * Send interrupt to vcpu via posted interrupt way.
3841  * 1. If target vcpu is running(non-root mode), send posted interrupt
3842  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3843  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3844  * interrupt from PIR in next vmentry.
3845  */
3846 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3847 {
3848         struct vcpu_vmx *vmx = to_vmx(vcpu);
3849         int r;
3850
3851         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3852         if (!r)
3853                 return;
3854
3855         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3856                 return;
3857
3858         /* If a previous notification has sent the IPI, nothing to do.  */
3859         if (pi_test_and_set_on(&vmx->pi_desc))
3860                 return;
3861
3862         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3863                 kvm_vcpu_kick(vcpu);
3864 }
3865
3866 /*
3867  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3868  * will not change in the lifetime of the guest.
3869  * Note that host-state that does change is set elsewhere. E.g., host-state
3870  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3871  */
3872 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3873 {
3874         u32 low32, high32;
3875         unsigned long tmpl;
3876         unsigned long cr0, cr3, cr4;
3877
3878         cr0 = read_cr0();
3879         WARN_ON(cr0 & X86_CR0_TS);
3880         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3881
3882         /*
3883          * Save the most likely value for this task's CR3 in the VMCS.
3884          * We can't use __get_current_cr3_fast() because we're not atomic.
3885          */
3886         cr3 = __read_cr3();
3887         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3888         vmx->loaded_vmcs->host_state.cr3 = cr3;
3889
3890         /* Save the most likely value for this task's CR4 in the VMCS. */
3891         cr4 = cr4_read_shadow();
3892         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3893         vmx->loaded_vmcs->host_state.cr4 = cr4;
3894
3895         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3896 #ifdef CONFIG_X86_64
3897         /*
3898          * Load null selectors, so we can avoid reloading them in
3899          * vmx_prepare_switch_to_host(), in case userspace uses
3900          * the null selectors too (the expected case).
3901          */
3902         vmcs_write16(HOST_DS_SELECTOR, 0);
3903         vmcs_write16(HOST_ES_SELECTOR, 0);
3904 #else
3905         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3906         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3907 #endif
3908         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3909         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3910
3911         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3912
3913         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3914
3915         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3916         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3917         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3918         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3919
3920         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3921                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3922                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3923         }
3924
3925         if (cpu_has_load_ia32_efer())
3926                 vmcs_write64(HOST_IA32_EFER, host_efer);
3927 }
3928
3929 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3930 {
3931         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3932         if (enable_ept)
3933                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3934         if (is_guest_mode(&vmx->vcpu))
3935                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3936                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3937         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3938 }
3939
3940 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3941 {
3942         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3943
3944         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3945                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3946
3947         if (!enable_vnmi)
3948                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3949
3950         if (!enable_preemption_timer)
3951                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3952
3953         return pin_based_exec_ctrl;
3954 }
3955
3956 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3957 {
3958         struct vcpu_vmx *vmx = to_vmx(vcpu);
3959
3960         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3961         if (cpu_has_secondary_exec_ctrls()) {
3962                 if (kvm_vcpu_apicv_active(vcpu))
3963                         secondary_exec_controls_setbit(vmx,
3964                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3965                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3966                 else
3967                         secondary_exec_controls_clearbit(vmx,
3968                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3969                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3970         }
3971
3972         if (cpu_has_vmx_msr_bitmap())
3973                 vmx_update_msr_bitmap(vcpu);
3974 }
3975
3976 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3977 {
3978         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3979
3980         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3981                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3982
3983         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3984                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3985 #ifdef CONFIG_X86_64
3986                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3987                                 CPU_BASED_CR8_LOAD_EXITING;
3988 #endif
3989         }
3990         if (!enable_ept)
3991                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3992                                 CPU_BASED_CR3_LOAD_EXITING  |
3993                                 CPU_BASED_INVLPG_EXITING;
3994         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3995                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3996                                 CPU_BASED_MONITOR_EXITING);
3997         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3998                 exec_control &= ~CPU_BASED_HLT_EXITING;
3999         return exec_control;
4000 }
4001
4002
4003 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4004 {
4005         struct kvm_vcpu *vcpu = &vmx->vcpu;
4006
4007         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4008
4009         if (pt_mode == PT_MODE_SYSTEM)
4010                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4011         if (!cpu_need_virtualize_apic_accesses(vcpu))
4012                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4013         if (vmx->vpid == 0)
4014                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4015         if (!enable_ept) {
4016                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4017                 enable_unrestricted_guest = 0;
4018         }
4019         if (!enable_unrestricted_guest)
4020                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4021         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4022                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4023         if (!kvm_vcpu_apicv_active(vcpu))
4024                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4025                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4026         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4027
4028         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4029          * in vmx_set_cr4.  */
4030         exec_control &= ~SECONDARY_EXEC_DESC;
4031
4032         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4033            (handle_vmptrld).
4034            We can NOT enable shadow_vmcs here because we don't have yet
4035            a current VMCS12
4036         */
4037         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4038
4039         if (!enable_pml)
4040                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4041
4042         if (vmx_xsaves_supported()) {
4043                 /* Exposing XSAVES only when XSAVE is exposed */
4044                 bool xsaves_enabled =
4045                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4046                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4047
4048                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4049
4050                 if (!xsaves_enabled)
4051                         exec_control &= ~SECONDARY_EXEC_XSAVES;
4052
4053                 if (nested) {
4054                         if (xsaves_enabled)
4055                                 vmx->nested.msrs.secondary_ctls_high |=
4056                                         SECONDARY_EXEC_XSAVES;
4057                         else
4058                                 vmx->nested.msrs.secondary_ctls_high &=
4059                                         ~SECONDARY_EXEC_XSAVES;
4060                 }
4061         }
4062
4063         if (vmx_rdtscp_supported()) {
4064                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4065                 if (!rdtscp_enabled)
4066                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
4067
4068                 if (nested) {
4069                         if (rdtscp_enabled)
4070                                 vmx->nested.msrs.secondary_ctls_high |=
4071                                         SECONDARY_EXEC_RDTSCP;
4072                         else
4073                                 vmx->nested.msrs.secondary_ctls_high &=
4074                                         ~SECONDARY_EXEC_RDTSCP;
4075                 }
4076         }
4077
4078         if (vmx_invpcid_supported()) {
4079                 /* Exposing INVPCID only when PCID is exposed */
4080                 bool invpcid_enabled =
4081                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4082                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4083
4084                 if (!invpcid_enabled) {
4085                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4086                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4087                 }
4088
4089                 if (nested) {
4090                         if (invpcid_enabled)
4091                                 vmx->nested.msrs.secondary_ctls_high |=
4092                                         SECONDARY_EXEC_ENABLE_INVPCID;
4093                         else
4094                                 vmx->nested.msrs.secondary_ctls_high &=
4095                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
4096                 }
4097         }
4098
4099         if (vmx_rdrand_supported()) {
4100                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4101                 if (rdrand_enabled)
4102                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4103
4104                 if (nested) {
4105                         if (rdrand_enabled)
4106                                 vmx->nested.msrs.secondary_ctls_high |=
4107                                         SECONDARY_EXEC_RDRAND_EXITING;
4108                         else
4109                                 vmx->nested.msrs.secondary_ctls_high &=
4110                                         ~SECONDARY_EXEC_RDRAND_EXITING;
4111                 }
4112         }
4113
4114         if (vmx_rdseed_supported()) {
4115                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4116                 if (rdseed_enabled)
4117                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4118
4119                 if (nested) {
4120                         if (rdseed_enabled)
4121                                 vmx->nested.msrs.secondary_ctls_high |=
4122                                         SECONDARY_EXEC_RDSEED_EXITING;
4123                         else
4124                                 vmx->nested.msrs.secondary_ctls_high &=
4125                                         ~SECONDARY_EXEC_RDSEED_EXITING;
4126                 }
4127         }
4128
4129         if (vmx_waitpkg_supported()) {
4130                 bool waitpkg_enabled =
4131                         guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4132
4133                 if (!waitpkg_enabled)
4134                         exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4135
4136                 if (nested) {
4137                         if (waitpkg_enabled)
4138                                 vmx->nested.msrs.secondary_ctls_high |=
4139                                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4140                         else
4141                                 vmx->nested.msrs.secondary_ctls_high &=
4142                                         ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4143                 }
4144         }
4145
4146         vmx->secondary_exec_control = exec_control;
4147 }
4148
4149 static void ept_set_mmio_spte_mask(void)
4150 {
4151         /*
4152          * EPT Misconfigurations can be generated if the value of bits 2:0
4153          * of an EPT paging-structure entry is 110b (write/execute).
4154          */
4155         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4156                                    VMX_EPT_MISCONFIG_WX_VALUE, 0);
4157 }
4158
4159 #define VMX_XSS_EXIT_BITMAP 0
4160
4161 /*
4162  * Noting that the initialization of Guest-state Area of VMCS is in
4163  * vmx_vcpu_reset().
4164  */
4165 static void init_vmcs(struct vcpu_vmx *vmx)
4166 {
4167         if (nested)
4168                 nested_vmx_set_vmcs_shadowing_bitmap();
4169
4170         if (cpu_has_vmx_msr_bitmap())
4171                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4172
4173         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4174
4175         /* Control */
4176         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4177
4178         exec_controls_set(vmx, vmx_exec_control(vmx));
4179
4180         if (cpu_has_secondary_exec_ctrls()) {
4181                 vmx_compute_secondary_exec_control(vmx);
4182                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4183         }
4184
4185         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4186                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4187                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4188                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4189                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4190
4191                 vmcs_write16(GUEST_INTR_STATUS, 0);
4192
4193                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4194                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4195         }
4196
4197         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4198                 vmcs_write32(PLE_GAP, ple_gap);
4199                 vmx->ple_window = ple_window;
4200                 vmx->ple_window_dirty = true;
4201         }
4202
4203         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4204         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4205         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4206
4207         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4208         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4209         vmx_set_constant_host_state(vmx);
4210         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4211         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4212
4213         if (cpu_has_vmx_vmfunc())
4214                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4215
4216         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4217         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4218         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4219         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4220         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4221
4222         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4223                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4224
4225         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4226
4227         /* 22.2.1, 20.8.1 */
4228         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4229
4230         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4231         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4232
4233         set_cr4_guest_host_mask(vmx);
4234
4235         if (vmx->vpid != 0)
4236                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4237
4238         if (vmx_xsaves_supported())
4239                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4240
4241         if (enable_pml) {
4242                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4243                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4244         }
4245
4246         if (cpu_has_vmx_encls_vmexit())
4247                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4248
4249         if (pt_mode == PT_MODE_HOST_GUEST) {
4250                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4251                 /* Bit[6~0] are forced to 1, writes are ignored. */
4252                 vmx->pt_desc.guest.output_mask = 0x7F;
4253                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4254         }
4255 }
4256
4257 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4258 {
4259         struct vcpu_vmx *vmx = to_vmx(vcpu);
4260         struct msr_data apic_base_msr;
4261         u64 cr0;
4262
4263         vmx->rmode.vm86_active = 0;
4264         vmx->spec_ctrl = 0;
4265
4266         vmx->msr_ia32_umwait_control = 0;
4267
4268         vcpu->arch.microcode_version = 0x100000000ULL;
4269         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4270         vmx->hv_deadline_tsc = -1;
4271         kvm_set_cr8(vcpu, 0);
4272
4273         if (!init_event) {
4274                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4275                                      MSR_IA32_APICBASE_ENABLE;
4276                 if (kvm_vcpu_is_reset_bsp(vcpu))
4277                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4278                 apic_base_msr.host_initiated = true;
4279                 kvm_set_apic_base(vcpu, &apic_base_msr);
4280         }
4281
4282         vmx_segment_cache_clear(vmx);
4283
4284         seg_setup(VCPU_SREG_CS);
4285         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4286         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4287
4288         seg_setup(VCPU_SREG_DS);
4289         seg_setup(VCPU_SREG_ES);
4290         seg_setup(VCPU_SREG_FS);
4291         seg_setup(VCPU_SREG_GS);
4292         seg_setup(VCPU_SREG_SS);
4293
4294         vmcs_write16(GUEST_TR_SELECTOR, 0);
4295         vmcs_writel(GUEST_TR_BASE, 0);
4296         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4297         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4298
4299         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4300         vmcs_writel(GUEST_LDTR_BASE, 0);
4301         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4302         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4303
4304         if (!init_event) {
4305                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4306                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4307                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4308                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4309         }
4310
4311         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4312         kvm_rip_write(vcpu, 0xfff0);
4313
4314         vmcs_writel(GUEST_GDTR_BASE, 0);
4315         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4316
4317         vmcs_writel(GUEST_IDTR_BASE, 0);
4318         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4319
4320         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4321         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4322         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4323         if (kvm_mpx_supported())
4324                 vmcs_write64(GUEST_BNDCFGS, 0);
4325
4326         setup_msrs(vmx);
4327
4328         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4329
4330         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4331                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4332                 if (cpu_need_tpr_shadow(vcpu))
4333                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4334                                      __pa(vcpu->arch.apic->regs));
4335                 vmcs_write32(TPR_THRESHOLD, 0);
4336         }
4337
4338         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4339
4340         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4341         vmx->vcpu.arch.cr0 = cr0;
4342         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4343         vmx_set_cr4(vcpu, 0);
4344         vmx_set_efer(vcpu, 0);
4345
4346         update_exception_bitmap(vcpu);
4347
4348         vpid_sync_context(vmx->vpid);
4349         if (init_event)
4350                 vmx_clear_hlt(vcpu);
4351 }
4352
4353 static void enable_irq_window(struct kvm_vcpu *vcpu)
4354 {
4355         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4356 }
4357
4358 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4359 {
4360         if (!enable_vnmi ||
4361             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4362                 enable_irq_window(vcpu);
4363                 return;
4364         }
4365
4366         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4367 }
4368
4369 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4370 {
4371         struct vcpu_vmx *vmx = to_vmx(vcpu);
4372         uint32_t intr;
4373         int irq = vcpu->arch.interrupt.nr;
4374
4375         trace_kvm_inj_virq(irq);
4376
4377         ++vcpu->stat.irq_injections;
4378         if (vmx->rmode.vm86_active) {
4379                 int inc_eip = 0;
4380                 if (vcpu->arch.interrupt.soft)
4381                         inc_eip = vcpu->arch.event_exit_inst_len;
4382                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4383                 return;
4384         }
4385         intr = irq | INTR_INFO_VALID_MASK;
4386         if (vcpu->arch.interrupt.soft) {
4387                 intr |= INTR_TYPE_SOFT_INTR;
4388                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4389                              vmx->vcpu.arch.event_exit_inst_len);
4390         } else
4391                 intr |= INTR_TYPE_EXT_INTR;
4392         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4393
4394         vmx_clear_hlt(vcpu);
4395 }
4396
4397 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4398 {
4399         struct vcpu_vmx *vmx = to_vmx(vcpu);
4400
4401         if (!enable_vnmi) {
4402                 /*
4403                  * Tracking the NMI-blocked state in software is built upon
4404                  * finding the next open IRQ window. This, in turn, depends on
4405                  * well-behaving guests: They have to keep IRQs disabled at
4406                  * least as long as the NMI handler runs. Otherwise we may
4407                  * cause NMI nesting, maybe breaking the guest. But as this is
4408                  * highly unlikely, we can live with the residual risk.
4409                  */
4410                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4411                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4412         }
4413
4414         ++vcpu->stat.nmi_injections;
4415         vmx->loaded_vmcs->nmi_known_unmasked = false;
4416
4417         if (vmx->rmode.vm86_active) {
4418                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4419                 return;
4420         }
4421
4422         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4423                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4424
4425         vmx_clear_hlt(vcpu);
4426 }
4427
4428 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4429 {
4430         struct vcpu_vmx *vmx = to_vmx(vcpu);
4431         bool masked;
4432
4433         if (!enable_vnmi)
4434                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4435         if (vmx->loaded_vmcs->nmi_known_unmasked)
4436                 return false;
4437         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4438         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4439         return masked;
4440 }
4441
4442 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4443 {
4444         struct vcpu_vmx *vmx = to_vmx(vcpu);
4445
4446         if (!enable_vnmi) {
4447                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4448                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4449                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4450                 }
4451         } else {
4452                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4453                 if (masked)
4454                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4455                                       GUEST_INTR_STATE_NMI);
4456                 else
4457                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4458                                         GUEST_INTR_STATE_NMI);
4459         }
4460 }
4461
4462 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4463 {
4464         if (to_vmx(vcpu)->nested.nested_run_pending)
4465                 return 0;
4466
4467         if (!enable_vnmi &&
4468             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4469                 return 0;
4470
4471         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4472                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4473                    | GUEST_INTR_STATE_NMI));
4474 }
4475
4476 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4477 {
4478         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4479                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4480                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4481                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4482 }
4483
4484 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4485 {
4486         int ret;
4487
4488         if (enable_unrestricted_guest)
4489                 return 0;
4490
4491         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4492                                     PAGE_SIZE * 3);
4493         if (ret)
4494                 return ret;
4495         to_kvm_vmx(kvm)->tss_addr = addr;
4496         return init_rmode_tss(kvm);
4497 }
4498
4499 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4500 {
4501         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4502         return 0;
4503 }
4504
4505 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4506 {
4507         switch (vec) {
4508         case BP_VECTOR:
4509                 /*
4510                  * Update instruction length as we may reinject the exception
4511                  * from user space while in guest debugging mode.
4512                  */
4513                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4514                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4515                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4516                         return false;
4517                 /* fall through */
4518         case DB_VECTOR:
4519                 if (vcpu->guest_debug &
4520                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4521                         return false;
4522                 /* fall through */
4523         case DE_VECTOR:
4524         case OF_VECTOR:
4525         case BR_VECTOR:
4526         case UD_VECTOR:
4527         case DF_VECTOR:
4528         case SS_VECTOR:
4529         case GP_VECTOR:
4530         case MF_VECTOR:
4531                 return true;
4532         break;
4533         }
4534         return false;
4535 }
4536
4537 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4538                                   int vec, u32 err_code)
4539 {
4540         /*
4541          * Instruction with address size override prefix opcode 0x67
4542          * Cause the #SS fault with 0 error code in VM86 mode.
4543          */
4544         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4545                 if (kvm_emulate_instruction(vcpu, 0)) {
4546                         if (vcpu->arch.halt_request) {
4547                                 vcpu->arch.halt_request = 0;
4548                                 return kvm_vcpu_halt(vcpu);
4549                         }
4550                         return 1;
4551                 }
4552                 return 0;
4553         }
4554
4555         /*
4556          * Forward all other exceptions that are valid in real mode.
4557          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4558          *        the required debugging infrastructure rework.
4559          */
4560         kvm_queue_exception(vcpu, vec);
4561         return 1;
4562 }
4563
4564 /*
4565  * Trigger machine check on the host. We assume all the MSRs are already set up
4566  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4567  * We pass a fake environment to the machine check handler because we want
4568  * the guest to be always treated like user space, no matter what context
4569  * it used internally.
4570  */
4571 static void kvm_machine_check(void)
4572 {
4573 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4574         struct pt_regs regs = {
4575                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4576                 .flags = X86_EFLAGS_IF,
4577         };
4578
4579         do_machine_check(&regs, 0);
4580 #endif
4581 }
4582
4583 static int handle_machine_check(struct kvm_vcpu *vcpu)
4584 {
4585         /* handled by vmx_vcpu_run() */
4586         return 1;
4587 }
4588
4589 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4590 {
4591         struct vcpu_vmx *vmx = to_vmx(vcpu);
4592         struct kvm_run *kvm_run = vcpu->run;
4593         u32 intr_info, ex_no, error_code;
4594         unsigned long cr2, rip, dr6;
4595         u32 vect_info;
4596
4597         vect_info = vmx->idt_vectoring_info;
4598         intr_info = vmx->exit_intr_info;
4599
4600         if (is_machine_check(intr_info) || is_nmi(intr_info))
4601                 return 1; /* handled by handle_exception_nmi_irqoff() */
4602
4603         if (is_invalid_opcode(intr_info))
4604                 return handle_ud(vcpu);
4605
4606         error_code = 0;
4607         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4608                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4609
4610         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4611                 WARN_ON_ONCE(!enable_vmware_backdoor);
4612
4613                 /*
4614                  * VMware backdoor emulation on #GP interception only handles
4615                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4616                  * error code on #GP.
4617                  */
4618                 if (error_code) {
4619                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4620                         return 1;
4621                 }
4622                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4623         }
4624
4625         /*
4626          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4627          * MMIO, it is better to report an internal error.
4628          * See the comments in vmx_handle_exit.
4629          */
4630         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4631             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4632                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4633                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4634                 vcpu->run->internal.ndata = 3;
4635                 vcpu->run->internal.data[0] = vect_info;
4636                 vcpu->run->internal.data[1] = intr_info;
4637                 vcpu->run->internal.data[2] = error_code;
4638                 return 0;
4639         }
4640
4641         if (is_page_fault(intr_info)) {
4642                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4643                 /* EPT won't cause page fault directly */
4644                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4645                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4646         }
4647
4648         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4649
4650         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4651                 return handle_rmode_exception(vcpu, ex_no, error_code);
4652
4653         switch (ex_no) {
4654         case AC_VECTOR:
4655                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4656                 return 1;
4657         case DB_VECTOR:
4658                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4659                 if (!(vcpu->guest_debug &
4660                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4661                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4662                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4663                         if (is_icebp(intr_info))
4664                                 WARN_ON(!skip_emulated_instruction(vcpu));
4665
4666                         kvm_queue_exception(vcpu, DB_VECTOR);
4667                         return 1;
4668                 }
4669                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4670                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4671                 /* fall through */
4672         case BP_VECTOR:
4673                 /*
4674                  * Update instruction length as we may reinject #BP from
4675                  * user space while in guest debugging mode. Reading it for
4676                  * #DB as well causes no harm, it is not used in that case.
4677                  */
4678                 vmx->vcpu.arch.event_exit_inst_len =
4679                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4680                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4681                 rip = kvm_rip_read(vcpu);
4682                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4683                 kvm_run->debug.arch.exception = ex_no;
4684                 break;
4685         default:
4686                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4687                 kvm_run->ex.exception = ex_no;
4688                 kvm_run->ex.error_code = error_code;
4689                 break;
4690         }
4691         return 0;
4692 }
4693
4694 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4695 {
4696         ++vcpu->stat.irq_exits;
4697         return 1;
4698 }
4699
4700 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4701 {
4702         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4703         vcpu->mmio_needed = 0;
4704         return 0;
4705 }
4706
4707 static int handle_io(struct kvm_vcpu *vcpu)
4708 {
4709         unsigned long exit_qualification;
4710         int size, in, string;
4711         unsigned port;
4712
4713         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4714         string = (exit_qualification & 16) != 0;
4715
4716         ++vcpu->stat.io_exits;
4717
4718         if (string)
4719                 return kvm_emulate_instruction(vcpu, 0);
4720
4721         port = exit_qualification >> 16;
4722         size = (exit_qualification & 7) + 1;
4723         in = (exit_qualification & 8) != 0;
4724
4725         return kvm_fast_pio(vcpu, size, port, in);
4726 }
4727
4728 static void
4729 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4730 {
4731         /*
4732          * Patch in the VMCALL instruction:
4733          */
4734         hypercall[0] = 0x0f;
4735         hypercall[1] = 0x01;
4736         hypercall[2] = 0xc1;
4737 }
4738
4739 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4740 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4741 {
4742         if (is_guest_mode(vcpu)) {
4743                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4744                 unsigned long orig_val = val;
4745
4746                 /*
4747                  * We get here when L2 changed cr0 in a way that did not change
4748                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4749                  * but did change L0 shadowed bits. So we first calculate the
4750                  * effective cr0 value that L1 would like to write into the
4751                  * hardware. It consists of the L2-owned bits from the new
4752                  * value combined with the L1-owned bits from L1's guest_cr0.
4753                  */
4754                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4755                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4756
4757                 if (!nested_guest_cr0_valid(vcpu, val))
4758                         return 1;
4759
4760                 if (kvm_set_cr0(vcpu, val))
4761                         return 1;
4762                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4763                 return 0;
4764         } else {
4765                 if (to_vmx(vcpu)->nested.vmxon &&
4766                     !nested_host_cr0_valid(vcpu, val))
4767                         return 1;
4768
4769                 return kvm_set_cr0(vcpu, val);
4770         }
4771 }
4772
4773 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4774 {
4775         if (is_guest_mode(vcpu)) {
4776                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4777                 unsigned long orig_val = val;
4778
4779                 /* analogously to handle_set_cr0 */
4780                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4781                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4782                 if (kvm_set_cr4(vcpu, val))
4783                         return 1;
4784                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4785                 return 0;
4786         } else
4787                 return kvm_set_cr4(vcpu, val);
4788 }
4789
4790 static int handle_desc(struct kvm_vcpu *vcpu)
4791 {
4792         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4793         return kvm_emulate_instruction(vcpu, 0);
4794 }
4795
4796 static int handle_cr(struct kvm_vcpu *vcpu)
4797 {
4798         unsigned long exit_qualification, val;
4799         int cr;
4800         int reg;
4801         int err;
4802         int ret;
4803
4804         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4805         cr = exit_qualification & 15;
4806         reg = (exit_qualification >> 8) & 15;
4807         switch ((exit_qualification >> 4) & 3) {
4808         case 0: /* mov to cr */
4809                 val = kvm_register_readl(vcpu, reg);
4810                 trace_kvm_cr_write(cr, val);
4811                 switch (cr) {
4812                 case 0:
4813                         err = handle_set_cr0(vcpu, val);
4814                         return kvm_complete_insn_gp(vcpu, err);
4815                 case 3:
4816                         WARN_ON_ONCE(enable_unrestricted_guest);
4817                         err = kvm_set_cr3(vcpu, val);
4818                         return kvm_complete_insn_gp(vcpu, err);
4819                 case 4:
4820                         err = handle_set_cr4(vcpu, val);
4821                         return kvm_complete_insn_gp(vcpu, err);
4822                 case 8: {
4823                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4824                                 u8 cr8 = (u8)val;
4825                                 err = kvm_set_cr8(vcpu, cr8);
4826                                 ret = kvm_complete_insn_gp(vcpu, err);
4827                                 if (lapic_in_kernel(vcpu))
4828                                         return ret;
4829                                 if (cr8_prev <= cr8)
4830                                         return ret;
4831                                 /*
4832                                  * TODO: we might be squashing a
4833                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4834                                  * KVM_EXIT_DEBUG here.
4835                                  */
4836                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4837                                 return 0;
4838                         }
4839                 }
4840                 break;
4841         case 2: /* clts */
4842                 WARN_ONCE(1, "Guest should always own CR0.TS");
4843                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4844                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4845                 return kvm_skip_emulated_instruction(vcpu);
4846         case 1: /*mov from cr*/
4847                 switch (cr) {
4848                 case 3:
4849                         WARN_ON_ONCE(enable_unrestricted_guest);
4850                         val = kvm_read_cr3(vcpu);
4851                         kvm_register_write(vcpu, reg, val);
4852                         trace_kvm_cr_read(cr, val);
4853                         return kvm_skip_emulated_instruction(vcpu);
4854                 case 8:
4855                         val = kvm_get_cr8(vcpu);
4856                         kvm_register_write(vcpu, reg, val);
4857                         trace_kvm_cr_read(cr, val);
4858                         return kvm_skip_emulated_instruction(vcpu);
4859                 }
4860                 break;
4861         case 3: /* lmsw */
4862                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4863                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4864                 kvm_lmsw(vcpu, val);
4865
4866                 return kvm_skip_emulated_instruction(vcpu);
4867         default:
4868                 break;
4869         }
4870         vcpu->run->exit_reason = 0;
4871         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4872                (int)(exit_qualification >> 4) & 3, cr);
4873         return 0;
4874 }
4875
4876 static int handle_dr(struct kvm_vcpu *vcpu)
4877 {
4878         unsigned long exit_qualification;
4879         int dr, dr7, reg;
4880
4881         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4882         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4883
4884         /* First, if DR does not exist, trigger UD */
4885         if (!kvm_require_dr(vcpu, dr))
4886                 return 1;
4887
4888         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4889         if (!kvm_require_cpl(vcpu, 0))
4890                 return 1;
4891         dr7 = vmcs_readl(GUEST_DR7);
4892         if (dr7 & DR7_GD) {
4893                 /*
4894                  * As the vm-exit takes precedence over the debug trap, we
4895                  * need to emulate the latter, either for the host or the
4896                  * guest debugging itself.
4897                  */
4898                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4899                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4900                         vcpu->run->debug.arch.dr7 = dr7;
4901                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4902                         vcpu->run->debug.arch.exception = DB_VECTOR;
4903                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4904                         return 0;
4905                 } else {
4906                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4907                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4908                         kvm_queue_exception(vcpu, DB_VECTOR);
4909                         return 1;
4910                 }
4911         }
4912
4913         if (vcpu->guest_debug == 0) {
4914                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4915
4916                 /*
4917                  * No more DR vmexits; force a reload of the debug registers
4918                  * and reenter on this instruction.  The next vmexit will
4919                  * retrieve the full state of the debug registers.
4920                  */
4921                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4922                 return 1;
4923         }
4924
4925         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4926         if (exit_qualification & TYPE_MOV_FROM_DR) {
4927                 unsigned long val;
4928
4929                 if (kvm_get_dr(vcpu, dr, &val))
4930                         return 1;
4931                 kvm_register_write(vcpu, reg, val);
4932         } else
4933                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4934                         return 1;
4935
4936         return kvm_skip_emulated_instruction(vcpu);
4937 }
4938
4939 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4940 {
4941         return vcpu->arch.dr6;
4942 }
4943
4944 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4945 {
4946 }
4947
4948 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4949 {
4950         get_debugreg(vcpu->arch.db[0], 0);
4951         get_debugreg(vcpu->arch.db[1], 1);
4952         get_debugreg(vcpu->arch.db[2], 2);
4953         get_debugreg(vcpu->arch.db[3], 3);
4954         get_debugreg(vcpu->arch.dr6, 6);
4955         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4956
4957         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4958         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4959 }
4960
4961 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4962 {
4963         vmcs_writel(GUEST_DR7, val);
4964 }
4965
4966 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4967 {
4968         kvm_apic_update_ppr(vcpu);
4969         return 1;
4970 }
4971
4972 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4973 {
4974         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4975
4976         kvm_make_request(KVM_REQ_EVENT, vcpu);
4977
4978         ++vcpu->stat.irq_window_exits;
4979         return 1;
4980 }
4981
4982 static int handle_vmcall(struct kvm_vcpu *vcpu)
4983 {
4984         return kvm_emulate_hypercall(vcpu);
4985 }
4986
4987 static int handle_invd(struct kvm_vcpu *vcpu)
4988 {
4989         return kvm_emulate_instruction(vcpu, 0);
4990 }
4991
4992 static int handle_invlpg(struct kvm_vcpu *vcpu)
4993 {
4994         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4995
4996         kvm_mmu_invlpg(vcpu, exit_qualification);
4997         return kvm_skip_emulated_instruction(vcpu);
4998 }
4999
5000 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5001 {
5002         int err;
5003
5004         err = kvm_rdpmc(vcpu);
5005         return kvm_complete_insn_gp(vcpu, err);
5006 }
5007
5008 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5009 {
5010         return kvm_emulate_wbinvd(vcpu);
5011 }
5012
5013 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5014 {
5015         u64 new_bv = kvm_read_edx_eax(vcpu);
5016         u32 index = kvm_rcx_read(vcpu);
5017
5018         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5019                 return kvm_skip_emulated_instruction(vcpu);
5020         return 1;
5021 }
5022
5023 static int handle_apic_access(struct kvm_vcpu *vcpu)
5024 {
5025         if (likely(fasteoi)) {
5026                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5027                 int access_type, offset;
5028
5029                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5030                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5031                 /*
5032                  * Sane guest uses MOV to write EOI, with written value
5033                  * not cared. So make a short-circuit here by avoiding
5034                  * heavy instruction emulation.
5035                  */
5036                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5037                     (offset == APIC_EOI)) {
5038                         kvm_lapic_set_eoi(vcpu);
5039                         return kvm_skip_emulated_instruction(vcpu);
5040                 }
5041         }
5042         return kvm_emulate_instruction(vcpu, 0);
5043 }
5044
5045 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5046 {
5047         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5048         int vector = exit_qualification & 0xff;
5049
5050         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5051         kvm_apic_set_eoi_accelerated(vcpu, vector);
5052         return 1;
5053 }
5054
5055 static int handle_apic_write(struct kvm_vcpu *vcpu)
5056 {
5057         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5058         u32 offset = exit_qualification & 0xfff;
5059
5060         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5061         kvm_apic_write_nodecode(vcpu, offset);
5062         return 1;
5063 }
5064
5065 static int handle_task_switch(struct kvm_vcpu *vcpu)
5066 {
5067         struct vcpu_vmx *vmx = to_vmx(vcpu);
5068         unsigned long exit_qualification;
5069         bool has_error_code = false;
5070         u32 error_code = 0;
5071         u16 tss_selector;
5072         int reason, type, idt_v, idt_index;
5073
5074         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5075         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5076         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5077
5078         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5079
5080         reason = (u32)exit_qualification >> 30;
5081         if (reason == TASK_SWITCH_GATE && idt_v) {
5082                 switch (type) {
5083                 case INTR_TYPE_NMI_INTR:
5084                         vcpu->arch.nmi_injected = false;
5085                         vmx_set_nmi_mask(vcpu, true);
5086                         break;
5087                 case INTR_TYPE_EXT_INTR:
5088                 case INTR_TYPE_SOFT_INTR:
5089                         kvm_clear_interrupt_queue(vcpu);
5090                         break;
5091                 case INTR_TYPE_HARD_EXCEPTION:
5092                         if (vmx->idt_vectoring_info &
5093                             VECTORING_INFO_DELIVER_CODE_MASK) {
5094                                 has_error_code = true;
5095                                 error_code =
5096                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5097                         }
5098                         /* fall through */
5099                 case INTR_TYPE_SOFT_EXCEPTION:
5100                         kvm_clear_exception_queue(vcpu);
5101                         break;
5102                 default:
5103                         break;
5104                 }
5105         }
5106         tss_selector = exit_qualification;
5107
5108         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5109                        type != INTR_TYPE_EXT_INTR &&
5110                        type != INTR_TYPE_NMI_INTR))
5111                 WARN_ON(!skip_emulated_instruction(vcpu));
5112
5113         /*
5114          * TODO: What about debug traps on tss switch?
5115          *       Are we supposed to inject them and update dr6?
5116          */
5117         return kvm_task_switch(vcpu, tss_selector,
5118                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5119                                reason, has_error_code, error_code);
5120 }
5121
5122 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5123 {
5124         unsigned long exit_qualification;
5125         gpa_t gpa;
5126         u64 error_code;
5127
5128         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5129
5130         /*
5131          * EPT violation happened while executing iret from NMI,
5132          * "blocked by NMI" bit has to be set before next VM entry.
5133          * There are errata that may cause this bit to not be set:
5134          * AAK134, BY25.
5135          */
5136         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5137                         enable_vnmi &&
5138                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5139                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5140
5141         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5142         trace_kvm_page_fault(gpa, exit_qualification);
5143
5144         /* Is it a read fault? */
5145         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5146                      ? PFERR_USER_MASK : 0;
5147         /* Is it a write fault? */
5148         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5149                       ? PFERR_WRITE_MASK : 0;
5150         /* Is it a fetch fault? */
5151         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5152                       ? PFERR_FETCH_MASK : 0;
5153         /* ept page table entry is present? */
5154         error_code |= (exit_qualification &
5155                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5156                         EPT_VIOLATION_EXECUTABLE))
5157                       ? PFERR_PRESENT_MASK : 0;
5158
5159         error_code |= (exit_qualification & 0x100) != 0 ?
5160                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5161
5162         vcpu->arch.exit_qualification = exit_qualification;
5163         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5164 }
5165
5166 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5167 {
5168         gpa_t gpa;
5169
5170         /*
5171          * A nested guest cannot optimize MMIO vmexits, because we have an
5172          * nGPA here instead of the required GPA.
5173          */
5174         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5175         if (!is_guest_mode(vcpu) &&
5176             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5177                 trace_kvm_fast_mmio(gpa);
5178                 return kvm_skip_emulated_instruction(vcpu);
5179         }
5180
5181         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5182 }
5183
5184 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5185 {
5186         WARN_ON_ONCE(!enable_vnmi);
5187         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5188         ++vcpu->stat.nmi_window_exits;
5189         kvm_make_request(KVM_REQ_EVENT, vcpu);
5190
5191         return 1;
5192 }
5193
5194 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5195 {
5196         struct vcpu_vmx *vmx = to_vmx(vcpu);
5197         bool intr_window_requested;
5198         unsigned count = 130;
5199
5200         /*
5201          * We should never reach the point where we are emulating L2
5202          * due to invalid guest state as that means we incorrectly
5203          * allowed a nested VMEntry with an invalid vmcs12.
5204          */
5205         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5206
5207         intr_window_requested = exec_controls_get(vmx) &
5208                                 CPU_BASED_VIRTUAL_INTR_PENDING;
5209
5210         while (vmx->emulation_required && count-- != 0) {
5211                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5212                         return handle_interrupt_window(&vmx->vcpu);
5213
5214                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5215                         return 1;
5216
5217                 if (!kvm_emulate_instruction(vcpu, 0))
5218                         return 0;
5219
5220                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5221                     vcpu->arch.exception.pending) {
5222                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5223                         vcpu->run->internal.suberror =
5224                                                 KVM_INTERNAL_ERROR_EMULATION;
5225                         vcpu->run->internal.ndata = 0;
5226                         return 0;
5227                 }
5228
5229                 if (vcpu->arch.halt_request) {
5230                         vcpu->arch.halt_request = 0;
5231                         return kvm_vcpu_halt(vcpu);
5232                 }
5233
5234                 /*
5235                  * Note, return 1 and not 0, vcpu_run() is responsible for
5236                  * morphing the pending signal into the proper return code.
5237                  */
5238                 if (signal_pending(current))
5239                         return 1;
5240
5241                 if (need_resched())
5242                         schedule();
5243         }
5244
5245         return 1;
5246 }
5247
5248 static void grow_ple_window(struct kvm_vcpu *vcpu)
5249 {
5250         struct vcpu_vmx *vmx = to_vmx(vcpu);
5251         unsigned int old = vmx->ple_window;
5252
5253         vmx->ple_window = __grow_ple_window(old, ple_window,
5254                                             ple_window_grow,
5255                                             ple_window_max);
5256
5257         if (vmx->ple_window != old) {
5258                 vmx->ple_window_dirty = true;
5259                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5260                                             vmx->ple_window, old);
5261         }
5262 }
5263
5264 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5265 {
5266         struct vcpu_vmx *vmx = to_vmx(vcpu);
5267         unsigned int old = vmx->ple_window;
5268
5269         vmx->ple_window = __shrink_ple_window(old, ple_window,
5270                                               ple_window_shrink,
5271                                               ple_window);
5272
5273         if (vmx->ple_window != old) {
5274                 vmx->ple_window_dirty = true;
5275                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5276                                             vmx->ple_window, old);
5277         }
5278 }
5279
5280 /*
5281  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5282  */
5283 static void wakeup_handler(void)
5284 {
5285         struct kvm_vcpu *vcpu;
5286         int cpu = smp_processor_id();
5287
5288         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5289         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5290                         blocked_vcpu_list) {
5291                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5292
5293                 if (pi_test_on(pi_desc) == 1)
5294                         kvm_vcpu_kick(vcpu);
5295         }
5296         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5297 }
5298
5299 static void vmx_enable_tdp(void)
5300 {
5301         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5302                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5303                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5304                 0ull, VMX_EPT_EXECUTABLE_MASK,
5305                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5306                 VMX_EPT_RWX_MASK, 0ull);
5307
5308         ept_set_mmio_spte_mask();
5309         kvm_enable_tdp();
5310 }
5311
5312 /*
5313  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5314  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5315  */
5316 static int handle_pause(struct kvm_vcpu *vcpu)
5317 {
5318         if (!kvm_pause_in_guest(vcpu->kvm))
5319                 grow_ple_window(vcpu);
5320
5321         /*
5322          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5323          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5324          * never set PAUSE_EXITING and just set PLE if supported,
5325          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5326          */
5327         kvm_vcpu_on_spin(vcpu, true);
5328         return kvm_skip_emulated_instruction(vcpu);
5329 }
5330
5331 static int handle_nop(struct kvm_vcpu *vcpu)
5332 {
5333         return kvm_skip_emulated_instruction(vcpu);
5334 }
5335
5336 static int handle_mwait(struct kvm_vcpu *vcpu)
5337 {
5338         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5339         return handle_nop(vcpu);
5340 }
5341
5342 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5343 {
5344         kvm_queue_exception(vcpu, UD_VECTOR);
5345         return 1;
5346 }
5347
5348 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5349 {
5350         return 1;
5351 }
5352
5353 static int handle_monitor(struct kvm_vcpu *vcpu)
5354 {
5355         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5356         return handle_nop(vcpu);
5357 }
5358
5359 static int handle_invpcid(struct kvm_vcpu *vcpu)
5360 {
5361         u32 vmx_instruction_info;
5362         unsigned long type;
5363         bool pcid_enabled;
5364         gva_t gva;
5365         struct x86_exception e;
5366         unsigned i;
5367         unsigned long roots_to_free = 0;
5368         struct {
5369                 u64 pcid;
5370                 u64 gla;
5371         } operand;
5372
5373         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5374                 kvm_queue_exception(vcpu, UD_VECTOR);
5375                 return 1;
5376         }
5377
5378         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5379         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5380
5381         if (type > 3) {
5382                 kvm_inject_gp(vcpu, 0);
5383                 return 1;
5384         }
5385
5386         /* According to the Intel instruction reference, the memory operand
5387          * is read even if it isn't needed (e.g., for type==all)
5388          */
5389         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5390                                 vmx_instruction_info, false,
5391                                 sizeof(operand), &gva))
5392                 return 1;
5393
5394         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5395                 kvm_inject_page_fault(vcpu, &e);
5396                 return 1;
5397         }
5398
5399         if (operand.pcid >> 12 != 0) {
5400                 kvm_inject_gp(vcpu, 0);
5401                 return 1;
5402         }
5403
5404         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5405
5406         switch (type) {
5407         case INVPCID_TYPE_INDIV_ADDR:
5408                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5409                     is_noncanonical_address(operand.gla, vcpu)) {
5410                         kvm_inject_gp(vcpu, 0);
5411                         return 1;
5412                 }
5413                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5414                 return kvm_skip_emulated_instruction(vcpu);
5415
5416         case INVPCID_TYPE_SINGLE_CTXT:
5417                 if (!pcid_enabled && (operand.pcid != 0)) {
5418                         kvm_inject_gp(vcpu, 0);
5419                         return 1;
5420                 }
5421
5422                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5423                         kvm_mmu_sync_roots(vcpu);
5424                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5425                 }
5426
5427                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5428                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5429                             == operand.pcid)
5430                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5431
5432                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5433                 /*
5434                  * If neither the current cr3 nor any of the prev_roots use the
5435                  * given PCID, then nothing needs to be done here because a
5436                  * resync will happen anyway before switching to any other CR3.
5437                  */
5438
5439                 return kvm_skip_emulated_instruction(vcpu);
5440
5441         case INVPCID_TYPE_ALL_NON_GLOBAL:
5442                 /*
5443                  * Currently, KVM doesn't mark global entries in the shadow
5444                  * page tables, so a non-global flush just degenerates to a
5445                  * global flush. If needed, we could optimize this later by
5446                  * keeping track of global entries in shadow page tables.
5447                  */
5448
5449                 /* fall-through */
5450         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5451                 kvm_mmu_unload(vcpu);
5452                 return kvm_skip_emulated_instruction(vcpu);
5453
5454         default:
5455                 BUG(); /* We have already checked above that type <= 3 */
5456         }
5457 }
5458
5459 static int handle_pml_full(struct kvm_vcpu *vcpu)
5460 {
5461         unsigned long exit_qualification;
5462
5463         trace_kvm_pml_full(vcpu->vcpu_id);
5464
5465         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5466
5467         /*
5468          * PML buffer FULL happened while executing iret from NMI,
5469          * "blocked by NMI" bit has to be set before next VM entry.
5470          */
5471         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5472                         enable_vnmi &&
5473                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5474                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5475                                 GUEST_INTR_STATE_NMI);
5476
5477         /*
5478          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5479          * here.., and there's no userspace involvement needed for PML.
5480          */
5481         return 1;
5482 }
5483
5484 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5485 {
5486         struct vcpu_vmx *vmx = to_vmx(vcpu);
5487
5488         if (!vmx->req_immediate_exit &&
5489             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5490                 kvm_lapic_expired_hv_timer(vcpu);
5491
5492         return 1;
5493 }
5494
5495 /*
5496  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5497  * are overwritten by nested_vmx_setup() when nested=1.
5498  */
5499 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5500 {
5501         kvm_queue_exception(vcpu, UD_VECTOR);
5502         return 1;
5503 }
5504
5505 static int handle_encls(struct kvm_vcpu *vcpu)
5506 {
5507         /*
5508          * SGX virtualization is not yet supported.  There is no software
5509          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5510          * to prevent the guest from executing ENCLS.
5511          */
5512         kvm_queue_exception(vcpu, UD_VECTOR);
5513         return 1;
5514 }
5515
5516 /*
5517  * The exit handlers return 1 if the exit was handled fully and guest execution
5518  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5519  * to be done to userspace and return 0.
5520  */
5521 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5522         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5523         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5524         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5525         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5526         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5527         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5528         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5529         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5530         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5531         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5532         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5533         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5534         [EXIT_REASON_INVD]                    = handle_invd,
5535         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5536         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5537         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5538         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5539         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5540         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5541         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5542         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5543         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5544         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5545         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5546         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5547         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5548         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5549         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5550         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5551         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5552         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5553         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5554         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5555         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5556         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5557         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5558         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5559         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5560         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5561         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5562         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5563         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5564         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5565         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5566         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5567         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5568         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5569         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5570         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5571         [EXIT_REASON_ENCLS]                   = handle_encls,
5572 };
5573
5574 static const int kvm_vmx_max_exit_handlers =
5575         ARRAY_SIZE(kvm_vmx_exit_handlers);
5576
5577 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5578 {
5579         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5580         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5581 }
5582
5583 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5584 {
5585         if (vmx->pml_pg) {
5586                 __free_page(vmx->pml_pg);
5587                 vmx->pml_pg = NULL;
5588         }
5589 }
5590
5591 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5592 {
5593         struct vcpu_vmx *vmx = to_vmx(vcpu);
5594         u64 *pml_buf;
5595         u16 pml_idx;
5596
5597         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5598
5599         /* Do nothing if PML buffer is empty */
5600         if (pml_idx == (PML_ENTITY_NUM - 1))
5601                 return;
5602
5603         /* PML index always points to next available PML buffer entity */
5604         if (pml_idx >= PML_ENTITY_NUM)
5605                 pml_idx = 0;
5606         else
5607                 pml_idx++;
5608
5609         pml_buf = page_address(vmx->pml_pg);
5610         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5611                 u64 gpa;
5612
5613                 gpa = pml_buf[pml_idx];
5614                 WARN_ON(gpa & (PAGE_SIZE - 1));
5615                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5616         }
5617
5618         /* reset PML index */
5619         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5620 }
5621
5622 /*
5623  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5624  * Called before reporting dirty_bitmap to userspace.
5625  */
5626 static void kvm_flush_pml_buffers(struct kvm *kvm)
5627 {
5628         int i;
5629         struct kvm_vcpu *vcpu;
5630         /*
5631          * We only need to kick vcpu out of guest mode here, as PML buffer
5632          * is flushed at beginning of all VMEXITs, and it's obvious that only
5633          * vcpus running in guest are possible to have unflushed GPAs in PML
5634          * buffer.
5635          */
5636         kvm_for_each_vcpu(i, vcpu, kvm)
5637                 kvm_vcpu_kick(vcpu);
5638 }
5639
5640 static void vmx_dump_sel(char *name, uint32_t sel)
5641 {
5642         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5643                name, vmcs_read16(sel),
5644                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5645                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5646                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5647 }
5648
5649 static void vmx_dump_dtsel(char *name, uint32_t limit)
5650 {
5651         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5652                name, vmcs_read32(limit),
5653                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5654 }
5655
5656 void dump_vmcs(void)
5657 {
5658         u32 vmentry_ctl, vmexit_ctl;
5659         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5660         unsigned long cr4;
5661         u64 efer;
5662         int i, n;
5663
5664         if (!dump_invalid_vmcs) {
5665                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5666                 return;
5667         }
5668
5669         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5670         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5671         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5672         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5673         cr4 = vmcs_readl(GUEST_CR4);
5674         efer = vmcs_read64(GUEST_IA32_EFER);
5675         secondary_exec_control = 0;
5676         if (cpu_has_secondary_exec_ctrls())
5677                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5678
5679         pr_err("*** Guest State ***\n");
5680         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5681                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5682                vmcs_readl(CR0_GUEST_HOST_MASK));
5683         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5684                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5685         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5686         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5687             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5688         {
5689                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5690                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5691                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5692                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5693         }
5694         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5695                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5696         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5697                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5698         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5699                vmcs_readl(GUEST_SYSENTER_ESP),
5700                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5701         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5702         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5703         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5704         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5705         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5706         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5707         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5708         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5709         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5710         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5711         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5712             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5713                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5714                        efer, vmcs_read64(GUEST_IA32_PAT));
5715         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5716                vmcs_read64(GUEST_IA32_DEBUGCTL),
5717                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5718         if (cpu_has_load_perf_global_ctrl() &&
5719             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5720                 pr_err("PerfGlobCtl = 0x%016llx\n",
5721                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5722         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5723                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5724         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5725                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5726                vmcs_read32(GUEST_ACTIVITY_STATE));
5727         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5728                 pr_err("InterruptStatus = %04x\n",
5729                        vmcs_read16(GUEST_INTR_STATUS));
5730
5731         pr_err("*** Host State ***\n");
5732         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5733                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5734         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5735                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5736                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5737                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5738                vmcs_read16(HOST_TR_SELECTOR));
5739         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5740                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5741                vmcs_readl(HOST_TR_BASE));
5742         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5743                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5744         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5745                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5746                vmcs_readl(HOST_CR4));
5747         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5748                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5749                vmcs_read32(HOST_IA32_SYSENTER_CS),
5750                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5751         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5752                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5753                        vmcs_read64(HOST_IA32_EFER),
5754                        vmcs_read64(HOST_IA32_PAT));
5755         if (cpu_has_load_perf_global_ctrl() &&
5756             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5757                 pr_err("PerfGlobCtl = 0x%016llx\n",
5758                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5759
5760         pr_err("*** Control State ***\n");
5761         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5762                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5763         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5764         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5765                vmcs_read32(EXCEPTION_BITMAP),
5766                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5767                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5768         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5769                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5770                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5771                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5772         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5773                vmcs_read32(VM_EXIT_INTR_INFO),
5774                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5775                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5776         pr_err("        reason=%08x qualification=%016lx\n",
5777                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5778         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5779                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5780                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5781         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5782         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5783                 pr_err("TSC Multiplier = 0x%016llx\n",
5784                        vmcs_read64(TSC_MULTIPLIER));
5785         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5786                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5787                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5788                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5789                 }
5790                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5791                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5792                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5793                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5794         }
5795         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5796                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5797         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5798                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5799         n = vmcs_read32(CR3_TARGET_COUNT);
5800         for (i = 0; i + 1 < n; i += 4)
5801                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5802                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5803                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5804         if (i < n)
5805                 pr_err("CR3 target%u=%016lx\n",
5806                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5807         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5808                 pr_err("PLE Gap=%08x Window=%08x\n",
5809                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5810         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5811                 pr_err("Virtual processor ID = 0x%04x\n",
5812                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5813 }
5814
5815 /*
5816  * The guest has exited.  See if we can fix it or if we need userspace
5817  * assistance.
5818  */
5819 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5820 {
5821         struct vcpu_vmx *vmx = to_vmx(vcpu);
5822         u32 exit_reason = vmx->exit_reason;
5823         u32 vectoring_info = vmx->idt_vectoring_info;
5824
5825         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5826
5827         /*
5828          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5829          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5830          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5831          * mode as if vcpus is in root mode, the PML buffer must has been
5832          * flushed already.
5833          */
5834         if (enable_pml)
5835                 vmx_flush_pml_buffer(vcpu);
5836
5837         /* If guest state is invalid, start emulating */
5838         if (vmx->emulation_required)
5839                 return handle_invalid_guest_state(vcpu);
5840
5841         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5842                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5843
5844         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5845                 dump_vmcs();
5846                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5847                 vcpu->run->fail_entry.hardware_entry_failure_reason
5848                         = exit_reason;
5849                 return 0;
5850         }
5851
5852         if (unlikely(vmx->fail)) {
5853                 dump_vmcs();
5854                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5855                 vcpu->run->fail_entry.hardware_entry_failure_reason
5856                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5857                 return 0;
5858         }
5859
5860         /*
5861          * Note:
5862          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5863          * delivery event since it indicates guest is accessing MMIO.
5864          * The vm-exit can be triggered again after return to guest that
5865          * will cause infinite loop.
5866          */
5867         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5868                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5869                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5870                         exit_reason != EXIT_REASON_PML_FULL &&
5871                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5872                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5873                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5874                 vcpu->run->internal.ndata = 3;
5875                 vcpu->run->internal.data[0] = vectoring_info;
5876                 vcpu->run->internal.data[1] = exit_reason;
5877                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5878                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5879                         vcpu->run->internal.ndata++;
5880                         vcpu->run->internal.data[3] =
5881                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5882                 }
5883                 return 0;
5884         }
5885
5886         if (unlikely(!enable_vnmi &&
5887                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5888                 if (vmx_interrupt_allowed(vcpu)) {
5889                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5890                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5891                            vcpu->arch.nmi_pending) {
5892                         /*
5893                          * This CPU don't support us in finding the end of an
5894                          * NMI-blocked window if the guest runs with IRQs
5895                          * disabled. So we pull the trigger after 1 s of
5896                          * futile waiting, but inform the user about this.
5897                          */
5898                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5899                                "state on VCPU %d after 1 s timeout\n",
5900                                __func__, vcpu->vcpu_id);
5901                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5902                 }
5903         }
5904
5905         if (exit_reason < kvm_vmx_max_exit_handlers
5906             && kvm_vmx_exit_handlers[exit_reason]) {
5907 #ifdef CONFIG_RETPOLINE
5908                 if (exit_reason == EXIT_REASON_MSR_WRITE)
5909                         return kvm_emulate_wrmsr(vcpu);
5910                 else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
5911                         return handle_preemption_timer(vcpu);
5912                 else if (exit_reason == EXIT_REASON_PENDING_INTERRUPT)
5913                         return handle_interrupt_window(vcpu);
5914                 else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
5915                         return handle_external_interrupt(vcpu);
5916                 else if (exit_reason == EXIT_REASON_HLT)
5917                         return kvm_emulate_halt(vcpu);
5918                 else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
5919                         return handle_ept_misconfig(vcpu);
5920 #endif
5921                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5922         } else {
5923                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5924                                 exit_reason);
5925                 dump_vmcs();
5926                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5927                 vcpu->run->internal.suberror =
5928                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5929                 vcpu->run->internal.ndata = 1;
5930                 vcpu->run->internal.data[0] = exit_reason;
5931                 return 0;
5932         }
5933 }
5934
5935 /*
5936  * Software based L1D cache flush which is used when microcode providing
5937  * the cache control MSR is not loaded.
5938  *
5939  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5940  * flush it is required to read in 64 KiB because the replacement algorithm
5941  * is not exactly LRU. This could be sized at runtime via topology
5942  * information but as all relevant affected CPUs have 32KiB L1D cache size
5943  * there is no point in doing so.
5944  */
5945 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5946 {
5947         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5948
5949         /*
5950          * This code is only executed when the the flush mode is 'cond' or
5951          * 'always'
5952          */
5953         if (static_branch_likely(&vmx_l1d_flush_cond)) {
5954                 bool flush_l1d;
5955
5956                 /*
5957                  * Clear the per-vcpu flush bit, it gets set again
5958                  * either from vcpu_run() or from one of the unsafe
5959                  * VMEXIT handlers.
5960                  */
5961                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5962                 vcpu->arch.l1tf_flush_l1d = false;
5963
5964                 /*
5965                  * Clear the per-cpu flush bit, it gets set again from
5966                  * the interrupt handlers.
5967                  */
5968                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5969                 kvm_clear_cpu_l1tf_flush_l1d();
5970
5971                 if (!flush_l1d)
5972                         return;
5973         }
5974
5975         vcpu->stat.l1d_flush++;
5976
5977         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5978                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5979                 return;
5980         }
5981
5982         asm volatile(
5983                 /* First ensure the pages are in the TLB */
5984                 "xorl   %%eax, %%eax\n"
5985                 ".Lpopulate_tlb:\n\t"
5986                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5987                 "addl   $4096, %%eax\n\t"
5988                 "cmpl   %%eax, %[size]\n\t"
5989                 "jne    .Lpopulate_tlb\n\t"
5990                 "xorl   %%eax, %%eax\n\t"
5991                 "cpuid\n\t"
5992                 /* Now fill the cache */
5993                 "xorl   %%eax, %%eax\n"
5994                 ".Lfill_cache:\n"
5995                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5996                 "addl   $64, %%eax\n\t"
5997                 "cmpl   %%eax, %[size]\n\t"
5998                 "jne    .Lfill_cache\n\t"
5999                 "lfence\n"
6000                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6001                     [size] "r" (size)
6002                 : "eax", "ebx", "ecx", "edx");
6003 }
6004
6005 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6006 {
6007         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6008         int tpr_threshold;
6009
6010         if (is_guest_mode(vcpu) &&
6011                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6012                 return;
6013
6014         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6015         if (is_guest_mode(vcpu))
6016                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6017         else
6018                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6019 }
6020
6021 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6022 {
6023         struct vcpu_vmx *vmx = to_vmx(vcpu);
6024         u32 sec_exec_control;
6025
6026         if (!lapic_in_kernel(vcpu))
6027                 return;
6028
6029         if (!flexpriority_enabled &&
6030             !cpu_has_vmx_virtualize_x2apic_mode())
6031                 return;
6032
6033         /* Postpone execution until vmcs01 is the current VMCS. */
6034         if (is_guest_mode(vcpu)) {
6035                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6036                 return;
6037         }
6038
6039         sec_exec_control = secondary_exec_controls_get(vmx);
6040         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6041                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6042
6043         switch (kvm_get_apic_mode(vcpu)) {
6044         case LAPIC_MODE_INVALID:
6045                 WARN_ONCE(true, "Invalid local APIC state");
6046         case LAPIC_MODE_DISABLED:
6047                 break;
6048         case LAPIC_MODE_XAPIC:
6049                 if (flexpriority_enabled) {
6050                         sec_exec_control |=
6051                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6052                         vmx_flush_tlb(vcpu, true);
6053                 }
6054                 break;
6055         case LAPIC_MODE_X2APIC:
6056                 if (cpu_has_vmx_virtualize_x2apic_mode())
6057                         sec_exec_control |=
6058                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6059                 break;
6060         }
6061         secondary_exec_controls_set(vmx, sec_exec_control);
6062
6063         vmx_update_msr_bitmap(vcpu);
6064 }
6065
6066 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6067 {
6068         if (!is_guest_mode(vcpu)) {
6069                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6070                 vmx_flush_tlb(vcpu, true);
6071         }
6072 }
6073
6074 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6075 {
6076         u16 status;
6077         u8 old;
6078
6079         if (max_isr == -1)
6080                 max_isr = 0;
6081
6082         status = vmcs_read16(GUEST_INTR_STATUS);
6083         old = status >> 8;
6084         if (max_isr != old) {
6085                 status &= 0xff;
6086                 status |= max_isr << 8;
6087                 vmcs_write16(GUEST_INTR_STATUS, status);
6088         }
6089 }
6090
6091 static void vmx_set_rvi(int vector)
6092 {
6093         u16 status;
6094         u8 old;
6095
6096         if (vector == -1)
6097                 vector = 0;
6098
6099         status = vmcs_read16(GUEST_INTR_STATUS);
6100         old = (u8)status & 0xff;
6101         if ((u8)vector != old) {
6102                 status &= ~0xff;
6103                 status |= (u8)vector;
6104                 vmcs_write16(GUEST_INTR_STATUS, status);
6105         }
6106 }
6107
6108 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6109 {
6110         /*
6111          * When running L2, updating RVI is only relevant when
6112          * vmcs12 virtual-interrupt-delivery enabled.
6113          * However, it can be enabled only when L1 also
6114          * intercepts external-interrupts and in that case
6115          * we should not update vmcs02 RVI but instead intercept
6116          * interrupt. Therefore, do nothing when running L2.
6117          */
6118         if (!is_guest_mode(vcpu))
6119                 vmx_set_rvi(max_irr);
6120 }
6121
6122 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6123 {
6124         struct vcpu_vmx *vmx = to_vmx(vcpu);
6125         int max_irr;
6126         bool max_irr_updated;
6127
6128         WARN_ON(!vcpu->arch.apicv_active);
6129         if (pi_test_on(&vmx->pi_desc)) {
6130                 pi_clear_on(&vmx->pi_desc);
6131                 /*
6132                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6133                  * But on x86 this is just a compiler barrier anyway.
6134                  */
6135                 smp_mb__after_atomic();
6136                 max_irr_updated =
6137                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6138
6139                 /*
6140                  * If we are running L2 and L1 has a new pending interrupt
6141                  * which can be injected, we should re-evaluate
6142                  * what should be done with this new L1 interrupt.
6143                  * If L1 intercepts external-interrupts, we should
6144                  * exit from L2 to L1. Otherwise, interrupt should be
6145                  * delivered directly to L2.
6146                  */
6147                 if (is_guest_mode(vcpu) && max_irr_updated) {
6148                         if (nested_exit_on_intr(vcpu))
6149                                 kvm_vcpu_exiting_guest_mode(vcpu);
6150                         else
6151                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6152                 }
6153         } else {
6154                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6155         }
6156         vmx_hwapic_irr_update(vcpu, max_irr);
6157         return max_irr;
6158 }
6159
6160 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6161 {
6162         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6163
6164         return pi_test_on(pi_desc) ||
6165                 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6166 }
6167
6168 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6169 {
6170         if (!kvm_vcpu_apicv_active(vcpu))
6171                 return;
6172
6173         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6174         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6175         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6176         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6177 }
6178
6179 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6180 {
6181         struct vcpu_vmx *vmx = to_vmx(vcpu);
6182
6183         pi_clear_on(&vmx->pi_desc);
6184         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6185 }
6186
6187 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6188 {
6189         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6190
6191         /* if exit due to PF check for async PF */
6192         if (is_page_fault(vmx->exit_intr_info))
6193                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6194
6195         /* Handle machine checks before interrupts are enabled */
6196         if (is_machine_check(vmx->exit_intr_info))
6197                 kvm_machine_check();
6198
6199         /* We need to handle NMIs before interrupts are enabled */
6200         if (is_nmi(vmx->exit_intr_info)) {
6201                 kvm_before_interrupt(&vmx->vcpu);
6202                 asm("int $2");
6203                 kvm_after_interrupt(&vmx->vcpu);
6204         }
6205 }
6206
6207 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6208 {
6209         unsigned int vector;
6210         unsigned long entry;
6211 #ifdef CONFIG_X86_64
6212         unsigned long tmp;
6213 #endif
6214         gate_desc *desc;
6215         u32 intr_info;
6216
6217         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6218         if (WARN_ONCE(!is_external_intr(intr_info),
6219             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6220                 return;
6221
6222         vector = intr_info & INTR_INFO_VECTOR_MASK;
6223         desc = (gate_desc *)host_idt_base + vector;
6224         entry = gate_offset(desc);
6225
6226         kvm_before_interrupt(vcpu);
6227
6228         asm volatile(
6229 #ifdef CONFIG_X86_64
6230                 "mov %%" _ASM_SP ", %[sp]\n\t"
6231                 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6232                 "push $%c[ss]\n\t"
6233                 "push %[sp]\n\t"
6234 #endif
6235                 "pushf\n\t"
6236                 __ASM_SIZE(push) " $%c[cs]\n\t"
6237                 CALL_NOSPEC
6238                 :
6239 #ifdef CONFIG_X86_64
6240                 [sp]"=&r"(tmp),
6241 #endif
6242                 ASM_CALL_CONSTRAINT
6243                 :
6244                 THUNK_TARGET(entry),
6245                 [ss]"i"(__KERNEL_DS),
6246                 [cs]"i"(__KERNEL_CS)
6247         );
6248
6249         kvm_after_interrupt(vcpu);
6250 }
6251 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6252
6253 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6254 {
6255         struct vcpu_vmx *vmx = to_vmx(vcpu);
6256
6257         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6258                 handle_external_interrupt_irqoff(vcpu);
6259         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6260                 handle_exception_nmi_irqoff(vmx);
6261 }
6262
6263 static bool vmx_has_emulated_msr(int index)
6264 {
6265         switch (index) {
6266         case MSR_IA32_SMBASE:
6267                 /*
6268                  * We cannot do SMM unless we can run the guest in big
6269                  * real mode.
6270                  */
6271                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6272         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6273                 return nested;
6274         case MSR_AMD64_VIRT_SPEC_CTRL:
6275                 /* This is AMD only.  */
6276                 return false;
6277         default:
6278                 return true;
6279         }
6280 }
6281
6282 static bool vmx_pt_supported(void)
6283 {
6284         return pt_mode == PT_MODE_HOST_GUEST;
6285 }
6286
6287 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6288 {
6289         u32 exit_intr_info;
6290         bool unblock_nmi;
6291         u8 vector;
6292         bool idtv_info_valid;
6293
6294         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6295
6296         if (enable_vnmi) {
6297                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6298                         return;
6299                 /*
6300                  * Can't use vmx->exit_intr_info since we're not sure what
6301                  * the exit reason is.
6302                  */
6303                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6304                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6305                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6306                 /*
6307                  * SDM 3: 27.7.1.2 (September 2008)
6308                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6309                  * a guest IRET fault.
6310                  * SDM 3: 23.2.2 (September 2008)
6311                  * Bit 12 is undefined in any of the following cases:
6312                  *  If the VM exit sets the valid bit in the IDT-vectoring
6313                  *   information field.
6314                  *  If the VM exit is due to a double fault.
6315                  */
6316                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6317                     vector != DF_VECTOR && !idtv_info_valid)
6318                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6319                                       GUEST_INTR_STATE_NMI);
6320                 else
6321                         vmx->loaded_vmcs->nmi_known_unmasked =
6322                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6323                                   & GUEST_INTR_STATE_NMI);
6324         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6325                 vmx->loaded_vmcs->vnmi_blocked_time +=
6326                         ktime_to_ns(ktime_sub(ktime_get(),
6327                                               vmx->loaded_vmcs->entry_time));
6328 }
6329
6330 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6331                                       u32 idt_vectoring_info,
6332                                       int instr_len_field,
6333                                       int error_code_field)
6334 {
6335         u8 vector;
6336         int type;
6337         bool idtv_info_valid;
6338
6339         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6340
6341         vcpu->arch.nmi_injected = false;
6342         kvm_clear_exception_queue(vcpu);
6343         kvm_clear_interrupt_queue(vcpu);
6344
6345         if (!idtv_info_valid)
6346                 return;
6347
6348         kvm_make_request(KVM_REQ_EVENT, vcpu);
6349
6350         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6351         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6352
6353         switch (type) {
6354         case INTR_TYPE_NMI_INTR:
6355                 vcpu->arch.nmi_injected = true;
6356                 /*
6357                  * SDM 3: 27.7.1.2 (September 2008)
6358                  * Clear bit "block by NMI" before VM entry if a NMI
6359                  * delivery faulted.
6360                  */
6361                 vmx_set_nmi_mask(vcpu, false);
6362                 break;
6363         case INTR_TYPE_SOFT_EXCEPTION:
6364                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6365                 /* fall through */
6366         case INTR_TYPE_HARD_EXCEPTION:
6367                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6368                         u32 err = vmcs_read32(error_code_field);
6369                         kvm_requeue_exception_e(vcpu, vector, err);
6370                 } else
6371                         kvm_requeue_exception(vcpu, vector);
6372                 break;
6373         case INTR_TYPE_SOFT_INTR:
6374                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6375                 /* fall through */
6376         case INTR_TYPE_EXT_INTR:
6377                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6378                 break;
6379         default:
6380                 break;
6381         }
6382 }
6383
6384 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6385 {
6386         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6387                                   VM_EXIT_INSTRUCTION_LEN,
6388                                   IDT_VECTORING_ERROR_CODE);
6389 }
6390
6391 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6392 {
6393         __vmx_complete_interrupts(vcpu,
6394                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6395                                   VM_ENTRY_INSTRUCTION_LEN,
6396                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6397
6398         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6399 }
6400
6401 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6402 {
6403         int i, nr_msrs;
6404         struct perf_guest_switch_msr *msrs;
6405
6406         msrs = perf_guest_get_msrs(&nr_msrs);
6407
6408         if (!msrs)
6409                 return;
6410
6411         for (i = 0; i < nr_msrs; i++)
6412                 if (msrs[i].host == msrs[i].guest)
6413                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6414                 else
6415                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6416                                         msrs[i].host, false);
6417 }
6418
6419 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6420 {
6421         u32 host_umwait_control;
6422
6423         if (!vmx_has_waitpkg(vmx))
6424                 return;
6425
6426         host_umwait_control = get_umwait_control_msr();
6427
6428         if (vmx->msr_ia32_umwait_control != host_umwait_control)
6429                 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6430                         vmx->msr_ia32_umwait_control,
6431                         host_umwait_control, false);
6432         else
6433                 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6434 }
6435
6436 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6437 {
6438         struct vcpu_vmx *vmx = to_vmx(vcpu);
6439         u64 tscl;
6440         u32 delta_tsc;
6441
6442         if (vmx->req_immediate_exit) {
6443                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6444                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6445         } else if (vmx->hv_deadline_tsc != -1) {
6446                 tscl = rdtsc();
6447                 if (vmx->hv_deadline_tsc > tscl)
6448                         /* set_hv_timer ensures the delta fits in 32-bits */
6449                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6450                                 cpu_preemption_timer_multi);
6451                 else
6452                         delta_tsc = 0;
6453
6454                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6455                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6456         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6457                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6458                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6459         }
6460 }
6461
6462 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6463 {
6464         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6465                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6466                 vmcs_writel(HOST_RSP, host_rsp);
6467         }
6468 }
6469
6470 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6471
6472 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6473 {
6474         struct vcpu_vmx *vmx = to_vmx(vcpu);
6475         unsigned long cr3, cr4;
6476
6477         /* Record the guest's net vcpu time for enforced NMI injections. */
6478         if (unlikely(!enable_vnmi &&
6479                      vmx->loaded_vmcs->soft_vnmi_blocked))
6480                 vmx->loaded_vmcs->entry_time = ktime_get();
6481
6482         /* Don't enter VMX if guest state is invalid, let the exit handler
6483            start emulation until we arrive back to a valid state */
6484         if (vmx->emulation_required)
6485                 return;
6486
6487         if (vmx->ple_window_dirty) {
6488                 vmx->ple_window_dirty = false;
6489                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6490         }
6491
6492         if (vmx->nested.need_vmcs12_to_shadow_sync)
6493                 nested_sync_vmcs12_to_shadow(vcpu);
6494
6495         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6496                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6497         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6498                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6499
6500         cr3 = __get_current_cr3_fast();
6501         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6502                 vmcs_writel(HOST_CR3, cr3);
6503                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6504         }
6505
6506         cr4 = cr4_read_shadow();
6507         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6508                 vmcs_writel(HOST_CR4, cr4);
6509                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6510         }
6511
6512         /* When single-stepping over STI and MOV SS, we must clear the
6513          * corresponding interruptibility bits in the guest state. Otherwise
6514          * vmentry fails as it then expects bit 14 (BS) in pending debug
6515          * exceptions being set, but that's not correct for the guest debugging
6516          * case. */
6517         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6518                 vmx_set_interrupt_shadow(vcpu, 0);
6519
6520         kvm_load_guest_xsave_state(vcpu);
6521
6522         if (static_cpu_has(X86_FEATURE_PKU) &&
6523             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6524             vcpu->arch.pkru != vmx->host_pkru)
6525                 __write_pkru(vcpu->arch.pkru);
6526
6527         pt_guest_enter(vmx);
6528
6529         atomic_switch_perf_msrs(vmx);
6530         atomic_switch_umwait_control_msr(vmx);
6531
6532         if (enable_preemption_timer)
6533                 vmx_update_hv_timer(vcpu);
6534
6535         if (lapic_in_kernel(vcpu) &&
6536                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6537                 kvm_wait_lapic_expire(vcpu);
6538
6539         /*
6540          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6541          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6542          * is no need to worry about the conditional branch over the wrmsr
6543          * being speculatively taken.
6544          */
6545         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6546
6547         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6548         if (static_branch_unlikely(&vmx_l1d_should_flush))
6549                 vmx_l1d_flush(vcpu);
6550         else if (static_branch_unlikely(&mds_user_clear))
6551                 mds_clear_cpu_buffers();
6552
6553         if (vcpu->arch.cr2 != read_cr2())
6554                 write_cr2(vcpu->arch.cr2);
6555
6556         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6557                                    vmx->loaded_vmcs->launched);
6558
6559         vcpu->arch.cr2 = read_cr2();
6560
6561         /*
6562          * We do not use IBRS in the kernel. If this vCPU has used the
6563          * SPEC_CTRL MSR it may have left it on; save the value and
6564          * turn it off. This is much more efficient than blindly adding
6565          * it to the atomic save/restore list. Especially as the former
6566          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6567          *
6568          * For non-nested case:
6569          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6570          * save it.
6571          *
6572          * For nested case:
6573          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6574          * save it.
6575          */
6576         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6577                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6578
6579         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6580
6581         /* All fields are clean at this point */
6582         if (static_branch_unlikely(&enable_evmcs))
6583                 current_evmcs->hv_clean_fields |=
6584                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6585
6586         if (static_branch_unlikely(&enable_evmcs))
6587                 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6588
6589         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6590         if (vmx->host_debugctlmsr)
6591                 update_debugctlmsr(vmx->host_debugctlmsr);
6592
6593 #ifndef CONFIG_X86_64
6594         /*
6595          * The sysexit path does not restore ds/es, so we must set them to
6596          * a reasonable value ourselves.
6597          *
6598          * We can't defer this to vmx_prepare_switch_to_host() since that
6599          * function may be executed in interrupt context, which saves and
6600          * restore segments around it, nullifying its effect.
6601          */
6602         loadsegment(ds, __USER_DS);
6603         loadsegment(es, __USER_DS);
6604 #endif
6605
6606         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6607                                   | (1 << VCPU_EXREG_RFLAGS)
6608                                   | (1 << VCPU_EXREG_PDPTR)
6609                                   | (1 << VCPU_EXREG_SEGMENTS)
6610                                   | (1 << VCPU_EXREG_CR3));
6611         vcpu->arch.regs_dirty = 0;
6612
6613         pt_guest_exit(vmx);
6614
6615         /*
6616          * eager fpu is enabled if PKEY is supported and CR4 is switched
6617          * back on host, so it is safe to read guest PKRU from current
6618          * XSAVE.
6619          */
6620         if (static_cpu_has(X86_FEATURE_PKU) &&
6621             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6622                 vcpu->arch.pkru = rdpkru();
6623                 if (vcpu->arch.pkru != vmx->host_pkru)
6624                         __write_pkru(vmx->host_pkru);
6625         }
6626
6627         kvm_load_host_xsave_state(vcpu);
6628
6629         vmx->nested.nested_run_pending = 0;
6630         vmx->idt_vectoring_info = 0;
6631
6632         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6633         if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6634                 kvm_machine_check();
6635
6636         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6637                 return;
6638
6639         vmx->loaded_vmcs->launched = 1;
6640         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6641
6642         vmx_recover_nmi_blocking(vmx);
6643         vmx_complete_interrupts(vmx);
6644 }
6645
6646 static struct kvm *vmx_vm_alloc(void)
6647 {
6648         struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6649                                             GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6650                                             PAGE_KERNEL);
6651         return &kvm_vmx->kvm;
6652 }
6653
6654 static void vmx_vm_free(struct kvm *kvm)
6655 {
6656         kfree(kvm->arch.hyperv.hv_pa_pg);
6657         vfree(to_kvm_vmx(kvm));
6658 }
6659
6660 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6661 {
6662         struct vcpu_vmx *vmx = to_vmx(vcpu);
6663
6664         if (enable_pml)
6665                 vmx_destroy_pml_buffer(vmx);
6666         free_vpid(vmx->vpid);
6667         nested_vmx_free_vcpu(vcpu);
6668         free_loaded_vmcs(vmx->loaded_vmcs);
6669         kfree(vmx->guest_msrs);
6670         kvm_vcpu_uninit(vcpu);
6671         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6672         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6673         kmem_cache_free(kvm_vcpu_cache, vmx);
6674 }
6675
6676 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6677 {
6678         int err;
6679         struct vcpu_vmx *vmx;
6680         unsigned long *msr_bitmap;
6681         int i, cpu;
6682
6683         BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6684                 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
6685
6686         vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6687         if (!vmx)
6688                 return ERR_PTR(-ENOMEM);
6689
6690         vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6691                         GFP_KERNEL_ACCOUNT);
6692         if (!vmx->vcpu.arch.user_fpu) {
6693                 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6694                 err = -ENOMEM;
6695                 goto free_partial_vcpu;
6696         }
6697
6698         vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6699                         GFP_KERNEL_ACCOUNT);
6700         if (!vmx->vcpu.arch.guest_fpu) {
6701                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6702                 err = -ENOMEM;
6703                 goto free_user_fpu;
6704         }
6705
6706         vmx->vpid = allocate_vpid();
6707
6708         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6709         if (err)
6710                 goto free_vcpu;
6711
6712         err = -ENOMEM;
6713
6714         /*
6715          * If PML is turned on, failure on enabling PML just results in failure
6716          * of creating the vcpu, therefore we can simplify PML logic (by
6717          * avoiding dealing with cases, such as enabling PML partially on vcpus
6718          * for the guest, etc.
6719          */
6720         if (enable_pml) {
6721                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6722                 if (!vmx->pml_pg)
6723                         goto uninit_vcpu;
6724         }
6725
6726         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6727         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6728                      > PAGE_SIZE);
6729
6730         if (!vmx->guest_msrs)
6731                 goto free_pml;
6732
6733         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6734                 u32 index = vmx_msr_index[i];
6735                 u32 data_low, data_high;
6736                 int j = vmx->nmsrs;
6737
6738                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6739                         continue;
6740                 if (wrmsr_safe(index, data_low, data_high) < 0)
6741                         continue;
6742
6743                 vmx->guest_msrs[j].index = i;
6744                 vmx->guest_msrs[j].data = 0;
6745                 switch (index) {
6746                 case MSR_IA32_TSX_CTRL:
6747                         /*
6748                          * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6749                          * let's avoid changing CPUID bits under the host
6750                          * kernel's feet.
6751                          */
6752                         vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6753                         break;
6754                 default:
6755                         vmx->guest_msrs[j].mask = -1ull;
6756                         break;
6757                 }
6758                 ++vmx->nmsrs;
6759         }
6760
6761         err = alloc_loaded_vmcs(&vmx->vmcs01);
6762         if (err < 0)
6763                 goto free_msrs;
6764
6765         msr_bitmap = vmx->vmcs01.msr_bitmap;
6766         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6767         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6768         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6769         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6770         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6771         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6772         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6773         if (kvm_cstate_in_guest(kvm)) {
6774                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6775                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6776                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6777                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6778         }
6779         vmx->msr_bitmap_mode = 0;
6780
6781         vmx->loaded_vmcs = &vmx->vmcs01;
6782         cpu = get_cpu();
6783         vmx_vcpu_load(&vmx->vcpu, cpu);
6784         vmx->vcpu.cpu = cpu;
6785         init_vmcs(vmx);
6786         vmx_vcpu_put(&vmx->vcpu);
6787         put_cpu();
6788         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6789                 err = alloc_apic_access_page(kvm);
6790                 if (err)
6791                         goto free_vmcs;
6792         }
6793
6794         if (enable_ept && !enable_unrestricted_guest) {
6795                 err = init_rmode_identity_map(kvm);
6796                 if (err)
6797                         goto free_vmcs;
6798         }
6799
6800         if (nested)
6801                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6802                                            vmx_capability.ept,
6803                                            kvm_vcpu_apicv_active(&vmx->vcpu));
6804         else
6805                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6806
6807         vmx->nested.posted_intr_nv = -1;
6808         vmx->nested.current_vmptr = -1ull;
6809
6810         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6811
6812         /*
6813          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6814          * or POSTED_INTR_WAKEUP_VECTOR.
6815          */
6816         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6817         vmx->pi_desc.sn = 1;
6818
6819         vmx->ept_pointer = INVALID_PAGE;
6820
6821         return &vmx->vcpu;
6822
6823 free_vmcs:
6824         free_loaded_vmcs(vmx->loaded_vmcs);
6825 free_msrs:
6826         kfree(vmx->guest_msrs);
6827 free_pml:
6828         vmx_destroy_pml_buffer(vmx);
6829 uninit_vcpu:
6830         kvm_vcpu_uninit(&vmx->vcpu);
6831 free_vcpu:
6832         free_vpid(vmx->vpid);
6833         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6834 free_user_fpu:
6835         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6836 free_partial_vcpu:
6837         kmem_cache_free(kvm_vcpu_cache, vmx);
6838         return ERR_PTR(err);
6839 }
6840
6841 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6842 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6843
6844 static int vmx_vm_init(struct kvm *kvm)
6845 {
6846         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6847
6848         if (!ple_gap)
6849                 kvm->arch.pause_in_guest = true;
6850
6851         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6852                 switch (l1tf_mitigation) {
6853                 case L1TF_MITIGATION_OFF:
6854                 case L1TF_MITIGATION_FLUSH_NOWARN:
6855                         /* 'I explicitly don't care' is set */
6856                         break;
6857                 case L1TF_MITIGATION_FLUSH:
6858                 case L1TF_MITIGATION_FLUSH_NOSMT:
6859                 case L1TF_MITIGATION_FULL:
6860                         /*
6861                          * Warn upon starting the first VM in a potentially
6862                          * insecure environment.
6863                          */
6864                         if (sched_smt_active())
6865                                 pr_warn_once(L1TF_MSG_SMT);
6866                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6867                                 pr_warn_once(L1TF_MSG_L1D);
6868                         break;
6869                 case L1TF_MITIGATION_FULL_FORCE:
6870                         /* Flush is enforced */
6871                         break;
6872                 }
6873         }
6874         return 0;
6875 }
6876
6877 static int __init vmx_check_processor_compat(void)
6878 {
6879         struct vmcs_config vmcs_conf;
6880         struct vmx_capability vmx_cap;
6881
6882         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6883                 return -EIO;
6884         if (nested)
6885                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6886                                            enable_apicv);
6887         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6888                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6889                                 smp_processor_id());
6890                 return -EIO;
6891         }
6892         return 0;
6893 }
6894
6895 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6896 {
6897         u8 cache;
6898         u64 ipat = 0;
6899
6900         /* For VT-d and EPT combination
6901          * 1. MMIO: always map as UC
6902          * 2. EPT with VT-d:
6903          *   a. VT-d without snooping control feature: can't guarantee the
6904          *      result, try to trust guest.
6905          *   b. VT-d with snooping control feature: snooping control feature of
6906          *      VT-d engine can guarantee the cache correctness. Just set it
6907          *      to WB to keep consistent with host. So the same as item 3.
6908          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6909          *    consistent with host MTRR
6910          */
6911         if (is_mmio) {
6912                 cache = MTRR_TYPE_UNCACHABLE;
6913                 goto exit;
6914         }
6915
6916         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6917                 ipat = VMX_EPT_IPAT_BIT;
6918                 cache = MTRR_TYPE_WRBACK;
6919                 goto exit;
6920         }
6921
6922         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6923                 ipat = VMX_EPT_IPAT_BIT;
6924                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6925                         cache = MTRR_TYPE_WRBACK;
6926                 else
6927                         cache = MTRR_TYPE_UNCACHABLE;
6928                 goto exit;
6929         }
6930
6931         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6932
6933 exit:
6934         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6935 }
6936
6937 static int vmx_get_lpage_level(void)
6938 {
6939         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6940                 return PT_DIRECTORY_LEVEL;
6941         else
6942                 /* For shadow and EPT supported 1GB page */
6943                 return PT_PDPE_LEVEL;
6944 }
6945
6946 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6947 {
6948         /*
6949          * These bits in the secondary execution controls field
6950          * are dynamic, the others are mostly based on the hypervisor
6951          * architecture and the guest's CPUID.  Do not touch the
6952          * dynamic bits.
6953          */
6954         u32 mask =
6955                 SECONDARY_EXEC_SHADOW_VMCS |
6956                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6957                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6958                 SECONDARY_EXEC_DESC;
6959
6960         u32 new_ctl = vmx->secondary_exec_control;
6961         u32 cur_ctl = secondary_exec_controls_get(vmx);
6962
6963         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6964 }
6965
6966 /*
6967  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6968  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6969  */
6970 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6971 {
6972         struct vcpu_vmx *vmx = to_vmx(vcpu);
6973         struct kvm_cpuid_entry2 *entry;
6974
6975         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6976         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6977
6978 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6979         if (entry && (entry->_reg & (_cpuid_mask)))                     \
6980                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6981 } while (0)
6982
6983         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6984         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6985         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6986         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6987         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6988         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6989         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6990         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6991         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6992         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6993         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6994         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6995         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6996         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6997         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6998
6999         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7000         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
7001         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
7002         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
7003         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
7004         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
7005         cr4_fixed1_update(X86_CR4_LA57,       ecx, bit(X86_FEATURE_LA57));
7006
7007 #undef cr4_fixed1_update
7008 }
7009
7010 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7011 {
7012         struct vcpu_vmx *vmx = to_vmx(vcpu);
7013
7014         if (kvm_mpx_supported()) {
7015                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7016
7017                 if (mpx_enabled) {
7018                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7019                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7020                 } else {
7021                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7022                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7023                 }
7024         }
7025 }
7026
7027 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7028 {
7029         struct vcpu_vmx *vmx = to_vmx(vcpu);
7030         struct kvm_cpuid_entry2 *best = NULL;
7031         int i;
7032
7033         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7034                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7035                 if (!best)
7036                         return;
7037                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7038                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7039                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7040                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7041         }
7042
7043         /* Get the number of configurable Address Ranges for filtering */
7044         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7045                                                 PT_CAP_num_address_ranges);
7046
7047         /* Initialize and clear the no dependency bits */
7048         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7049                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7050
7051         /*
7052          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7053          * will inject an #GP
7054          */
7055         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7056                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7057
7058         /*
7059          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7060          * PSBFreq can be set
7061          */
7062         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7063                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7064                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7065
7066         /*
7067          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7068          * MTCFreq can be set
7069          */
7070         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7071                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7072                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7073
7074         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7075         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7076                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7077                                                         RTIT_CTL_PTW_EN);
7078
7079         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7080         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7081                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7082
7083         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7084         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7085                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7086
7087         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7088         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7089                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7090
7091         /* unmask address range configure area */
7092         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7093                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7094 }
7095
7096 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7097 {
7098         struct vcpu_vmx *vmx = to_vmx(vcpu);
7099
7100         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7101         vcpu->arch.xsaves_enabled = false;
7102
7103         if (cpu_has_secondary_exec_ctrls()) {
7104                 vmx_compute_secondary_exec_control(vmx);
7105                 vmcs_set_secondary_exec_control(vmx);
7106         }
7107
7108         if (nested_vmx_allowed(vcpu))
7109                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7110                         FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX |
7111                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7112         else
7113                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7114                         ~(FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX |
7115                           FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX);
7116
7117         if (nested_vmx_allowed(vcpu)) {
7118                 nested_vmx_cr_fixed1_bits_update(vcpu);
7119                 nested_vmx_entry_exit_ctls_update(vcpu);
7120         }
7121
7122         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7123                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7124                 update_intel_pt_cfg(vcpu);
7125
7126         if (boot_cpu_has(X86_FEATURE_RTM)) {
7127                 struct shared_msr_entry *msr;
7128                 msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7129                 if (msr) {
7130                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7131                         vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7132                 }
7133         }
7134 }
7135
7136 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7137 {
7138         if (func == 1 && nested)
7139                 entry->ecx |= bit(X86_FEATURE_VMX);
7140 }
7141
7142 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7143 {
7144         to_vmx(vcpu)->req_immediate_exit = true;
7145 }
7146
7147 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7148                                struct x86_instruction_info *info,
7149                                enum x86_intercept_stage stage)
7150 {
7151         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7152         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7153
7154         /*
7155          * RDPID causes #UD if disabled through secondary execution controls.
7156          * Because it is marked as EmulateOnUD, we need to intercept it here.
7157          */
7158         if (info->intercept == x86_intercept_rdtscp &&
7159             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7160                 ctxt->exception.vector = UD_VECTOR;
7161                 ctxt->exception.error_code_valid = false;
7162                 return X86EMUL_PROPAGATE_FAULT;
7163         }
7164
7165         /* TODO: check more intercepts... */
7166         return X86EMUL_CONTINUE;
7167 }
7168
7169 #ifdef CONFIG_X86_64
7170 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7171 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7172                                   u64 divisor, u64 *result)
7173 {
7174         u64 low = a << shift, high = a >> (64 - shift);
7175
7176         /* To avoid the overflow on divq */
7177         if (high >= divisor)
7178                 return 1;
7179
7180         /* Low hold the result, high hold rem which is discarded */
7181         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7182             "rm" (divisor), "0" (low), "1" (high));
7183         *result = low;
7184
7185         return 0;
7186 }
7187
7188 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7189                             bool *expired)
7190 {
7191         struct vcpu_vmx *vmx;
7192         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7193         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7194
7195         if (kvm_mwait_in_guest(vcpu->kvm) ||
7196                 kvm_can_post_timer_interrupt(vcpu))
7197                 return -EOPNOTSUPP;
7198
7199         vmx = to_vmx(vcpu);
7200         tscl = rdtsc();
7201         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7202         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7203         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7204                                                     ktimer->timer_advance_ns);
7205
7206         if (delta_tsc > lapic_timer_advance_cycles)
7207                 delta_tsc -= lapic_timer_advance_cycles;
7208         else
7209                 delta_tsc = 0;
7210
7211         /* Convert to host delta tsc if tsc scaling is enabled */
7212         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7213             delta_tsc && u64_shl_div_u64(delta_tsc,
7214                                 kvm_tsc_scaling_ratio_frac_bits,
7215                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7216                 return -ERANGE;
7217
7218         /*
7219          * If the delta tsc can't fit in the 32 bit after the multi shift,
7220          * we can't use the preemption timer.
7221          * It's possible that it fits on later vmentries, but checking
7222          * on every vmentry is costly so we just use an hrtimer.
7223          */
7224         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7225                 return -ERANGE;
7226
7227         vmx->hv_deadline_tsc = tscl + delta_tsc;
7228         *expired = !delta_tsc;
7229         return 0;
7230 }
7231
7232 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7233 {
7234         to_vmx(vcpu)->hv_deadline_tsc = -1;
7235 }
7236 #endif
7237
7238 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7239 {
7240         if (!kvm_pause_in_guest(vcpu->kvm))
7241                 shrink_ple_window(vcpu);
7242 }
7243
7244 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7245                                      struct kvm_memory_slot *slot)
7246 {
7247         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7248         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7249 }
7250
7251 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7252                                        struct kvm_memory_slot *slot)
7253 {
7254         kvm_mmu_slot_set_dirty(kvm, slot);
7255 }
7256
7257 static void vmx_flush_log_dirty(struct kvm *kvm)
7258 {
7259         kvm_flush_pml_buffers(kvm);
7260 }
7261
7262 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7263 {
7264         struct vmcs12 *vmcs12;
7265         struct vcpu_vmx *vmx = to_vmx(vcpu);
7266         gpa_t gpa, dst;
7267
7268         if (is_guest_mode(vcpu)) {
7269                 WARN_ON_ONCE(vmx->nested.pml_full);
7270
7271                 /*
7272                  * Check if PML is enabled for the nested guest.
7273                  * Whether eptp bit 6 is set is already checked
7274                  * as part of A/D emulation.
7275                  */
7276                 vmcs12 = get_vmcs12(vcpu);
7277                 if (!nested_cpu_has_pml(vmcs12))
7278                         return 0;
7279
7280                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7281                         vmx->nested.pml_full = true;
7282                         return 1;
7283                 }
7284
7285                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7286                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7287
7288                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7289                                          offset_in_page(dst), sizeof(gpa)))
7290                         return 0;
7291
7292                 vmcs12->guest_pml_index--;
7293         }
7294
7295         return 0;
7296 }
7297
7298 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7299                                            struct kvm_memory_slot *memslot,
7300                                            gfn_t offset, unsigned long mask)
7301 {
7302         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7303 }
7304
7305 static void __pi_post_block(struct kvm_vcpu *vcpu)
7306 {
7307         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7308         struct pi_desc old, new;
7309         unsigned int dest;
7310
7311         do {
7312                 old.control = new.control = pi_desc->control;
7313                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7314                      "Wakeup handler not enabled while the VCPU is blocked\n");
7315
7316                 dest = cpu_physical_id(vcpu->cpu);
7317
7318                 if (x2apic_enabled())
7319                         new.ndst = dest;
7320                 else
7321                         new.ndst = (dest << 8) & 0xFF00;
7322
7323                 /* set 'NV' to 'notification vector' */
7324                 new.nv = POSTED_INTR_VECTOR;
7325         } while (cmpxchg64(&pi_desc->control, old.control,
7326                            new.control) != old.control);
7327
7328         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7329                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7330                 list_del(&vcpu->blocked_vcpu_list);
7331                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7332                 vcpu->pre_pcpu = -1;
7333         }
7334 }
7335
7336 /*
7337  * This routine does the following things for vCPU which is going
7338  * to be blocked if VT-d PI is enabled.
7339  * - Store the vCPU to the wakeup list, so when interrupts happen
7340  *   we can find the right vCPU to wake up.
7341  * - Change the Posted-interrupt descriptor as below:
7342  *      'NDST' <-- vcpu->pre_pcpu
7343  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7344  * - If 'ON' is set during this process, which means at least one
7345  *   interrupt is posted for this vCPU, we cannot block it, in
7346  *   this case, return 1, otherwise, return 0.
7347  *
7348  */
7349 static int pi_pre_block(struct kvm_vcpu *vcpu)
7350 {
7351         unsigned int dest;
7352         struct pi_desc old, new;
7353         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7354
7355         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7356                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7357                 !kvm_vcpu_apicv_active(vcpu))
7358                 return 0;
7359
7360         WARN_ON(irqs_disabled());
7361         local_irq_disable();
7362         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7363                 vcpu->pre_pcpu = vcpu->cpu;
7364                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7365                 list_add_tail(&vcpu->blocked_vcpu_list,
7366                               &per_cpu(blocked_vcpu_on_cpu,
7367                                        vcpu->pre_pcpu));
7368                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7369         }
7370
7371         do {
7372                 old.control = new.control = pi_desc->control;
7373
7374                 WARN((pi_desc->sn == 1),
7375                      "Warning: SN field of posted-interrupts "
7376                      "is set before blocking\n");
7377
7378                 /*
7379                  * Since vCPU can be preempted during this process,
7380                  * vcpu->cpu could be different with pre_pcpu, we
7381                  * need to set pre_pcpu as the destination of wakeup
7382                  * notification event, then we can find the right vCPU
7383                  * to wakeup in wakeup handler if interrupts happen
7384                  * when the vCPU is in blocked state.
7385                  */
7386                 dest = cpu_physical_id(vcpu->pre_pcpu);
7387
7388                 if (x2apic_enabled())
7389                         new.ndst = dest;
7390                 else
7391                         new.ndst = (dest << 8) & 0xFF00;
7392
7393                 /* set 'NV' to 'wakeup vector' */
7394                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7395         } while (cmpxchg64(&pi_desc->control, old.control,
7396                            new.control) != old.control);
7397
7398         /* We should not block the vCPU if an interrupt is posted for it.  */
7399         if (pi_test_on(pi_desc) == 1)
7400                 __pi_post_block(vcpu);
7401
7402         local_irq_enable();
7403         return (vcpu->pre_pcpu == -1);
7404 }
7405
7406 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7407 {
7408         if (pi_pre_block(vcpu))
7409                 return 1;
7410
7411         if (kvm_lapic_hv_timer_in_use(vcpu))
7412                 kvm_lapic_switch_to_sw_timer(vcpu);
7413
7414         return 0;
7415 }
7416
7417 static void pi_post_block(struct kvm_vcpu *vcpu)
7418 {
7419         if (vcpu->pre_pcpu == -1)
7420                 return;
7421
7422         WARN_ON(irqs_disabled());
7423         local_irq_disable();
7424         __pi_post_block(vcpu);
7425         local_irq_enable();
7426 }
7427
7428 static void vmx_post_block(struct kvm_vcpu *vcpu)
7429 {
7430         if (kvm_x86_ops->set_hv_timer)
7431                 kvm_lapic_switch_to_hv_timer(vcpu);
7432
7433         pi_post_block(vcpu);
7434 }
7435
7436 /*
7437  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7438  *
7439  * @kvm: kvm
7440  * @host_irq: host irq of the interrupt
7441  * @guest_irq: gsi of the interrupt
7442  * @set: set or unset PI
7443  * returns 0 on success, < 0 on failure
7444  */
7445 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7446                               uint32_t guest_irq, bool set)
7447 {
7448         struct kvm_kernel_irq_routing_entry *e;
7449         struct kvm_irq_routing_table *irq_rt;
7450         struct kvm_lapic_irq irq;
7451         struct kvm_vcpu *vcpu;
7452         struct vcpu_data vcpu_info;
7453         int idx, ret = 0;
7454
7455         if (!kvm_arch_has_assigned_device(kvm) ||
7456                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7457                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7458                 return 0;
7459
7460         idx = srcu_read_lock(&kvm->irq_srcu);
7461         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7462         if (guest_irq >= irq_rt->nr_rt_entries ||
7463             hlist_empty(&irq_rt->map[guest_irq])) {
7464                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7465                              guest_irq, irq_rt->nr_rt_entries);
7466                 goto out;
7467         }
7468
7469         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7470                 if (e->type != KVM_IRQ_ROUTING_MSI)
7471                         continue;
7472                 /*
7473                  * VT-d PI cannot support posting multicast/broadcast
7474                  * interrupts to a vCPU, we still use interrupt remapping
7475                  * for these kind of interrupts.
7476                  *
7477                  * For lowest-priority interrupts, we only support
7478                  * those with single CPU as the destination, e.g. user
7479                  * configures the interrupts via /proc/irq or uses
7480                  * irqbalance to make the interrupts single-CPU.
7481                  *
7482                  * We will support full lowest-priority interrupt later.
7483                  *
7484                  * In addition, we can only inject generic interrupts using
7485                  * the PI mechanism, refuse to route others through it.
7486                  */
7487
7488                 kvm_set_msi_irq(kvm, e, &irq);
7489                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7490                     !kvm_irq_is_postable(&irq)) {
7491                         /*
7492                          * Make sure the IRTE is in remapped mode if
7493                          * we don't handle it in posted mode.
7494                          */
7495                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7496                         if (ret < 0) {
7497                                 printk(KERN_INFO
7498                                    "failed to back to remapped mode, irq: %u\n",
7499                                    host_irq);
7500                                 goto out;
7501                         }
7502
7503                         continue;
7504                 }
7505
7506                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7507                 vcpu_info.vector = irq.vector;
7508
7509                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7510                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7511
7512                 if (set)
7513                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7514                 else
7515                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7516
7517                 if (ret < 0) {
7518                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7519                                         __func__);
7520                         goto out;
7521                 }
7522         }
7523
7524         ret = 0;
7525 out:
7526         srcu_read_unlock(&kvm->irq_srcu, idx);
7527         return ret;
7528 }
7529
7530 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7531 {
7532         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7533                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7534                         FEATURE_CONTROL_LMCE;
7535         else
7536                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7537                         ~FEATURE_CONTROL_LMCE;
7538 }
7539
7540 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7541 {
7542         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7543         if (to_vmx(vcpu)->nested.nested_run_pending)
7544                 return 0;
7545         return 1;
7546 }
7547
7548 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7549 {
7550         struct vcpu_vmx *vmx = to_vmx(vcpu);
7551
7552         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7553         if (vmx->nested.smm.guest_mode)
7554                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7555
7556         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7557         vmx->nested.vmxon = false;
7558         vmx_clear_hlt(vcpu);
7559         return 0;
7560 }
7561
7562 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7563 {
7564         struct vcpu_vmx *vmx = to_vmx(vcpu);
7565         int ret;
7566
7567         if (vmx->nested.smm.vmxon) {
7568                 vmx->nested.vmxon = true;
7569                 vmx->nested.smm.vmxon = false;
7570         }
7571
7572         if (vmx->nested.smm.guest_mode) {
7573                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7574                 if (ret)
7575                         return ret;
7576
7577                 vmx->nested.smm.guest_mode = false;
7578         }
7579         return 0;
7580 }
7581
7582 static int enable_smi_window(struct kvm_vcpu *vcpu)
7583 {
7584         return 0;
7585 }
7586
7587 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7588 {
7589         return false;
7590 }
7591
7592 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7593 {
7594         return to_vmx(vcpu)->nested.vmxon;
7595 }
7596
7597 static __init int hardware_setup(void)
7598 {
7599         unsigned long host_bndcfgs;
7600         struct desc_ptr dt;
7601         int r, i;
7602
7603         rdmsrl_safe(MSR_EFER, &host_efer);
7604
7605         store_idt(&dt);
7606         host_idt_base = dt.address;
7607
7608         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7609                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7610
7611         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7612                 return -EIO;
7613
7614         if (boot_cpu_has(X86_FEATURE_NX))
7615                 kvm_enable_efer_bits(EFER_NX);
7616
7617         if (boot_cpu_has(X86_FEATURE_MPX)) {
7618                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7619                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7620         }
7621
7622         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7623             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7624                 enable_vpid = 0;
7625
7626         if (!cpu_has_vmx_ept() ||
7627             !cpu_has_vmx_ept_4levels() ||
7628             !cpu_has_vmx_ept_mt_wb() ||
7629             !cpu_has_vmx_invept_global())
7630                 enable_ept = 0;
7631
7632         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7633                 enable_ept_ad_bits = 0;
7634
7635         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7636                 enable_unrestricted_guest = 0;
7637
7638         if (!cpu_has_vmx_flexpriority())
7639                 flexpriority_enabled = 0;
7640
7641         if (!cpu_has_virtual_nmis())
7642                 enable_vnmi = 0;
7643
7644         /*
7645          * set_apic_access_page_addr() is used to reload apic access
7646          * page upon invalidation.  No need to do anything if not
7647          * using the APIC_ACCESS_ADDR VMCS field.
7648          */
7649         if (!flexpriority_enabled)
7650                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7651
7652         if (!cpu_has_vmx_tpr_shadow())
7653                 kvm_x86_ops->update_cr8_intercept = NULL;
7654
7655         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7656                 kvm_disable_largepages();
7657
7658 #if IS_ENABLED(CONFIG_HYPERV)
7659         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7660             && enable_ept) {
7661                 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7662                 kvm_x86_ops->tlb_remote_flush_with_range =
7663                                 hv_remote_flush_tlb_with_range;
7664         }
7665 #endif
7666
7667         if (!cpu_has_vmx_ple()) {
7668                 ple_gap = 0;
7669                 ple_window = 0;
7670                 ple_window_grow = 0;
7671                 ple_window_max = 0;
7672                 ple_window_shrink = 0;
7673         }
7674
7675         if (!cpu_has_vmx_apicv()) {
7676                 enable_apicv = 0;
7677                 kvm_x86_ops->sync_pir_to_irr = NULL;
7678         }
7679
7680         if (cpu_has_vmx_tsc_scaling()) {
7681                 kvm_has_tsc_control = true;
7682                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7683                 kvm_tsc_scaling_ratio_frac_bits = 48;
7684         }
7685
7686         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7687
7688         if (enable_ept)
7689                 vmx_enable_tdp();
7690         else
7691                 kvm_disable_tdp();
7692
7693         /*
7694          * Only enable PML when hardware supports PML feature, and both EPT
7695          * and EPT A/D bit features are enabled -- PML depends on them to work.
7696          */
7697         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7698                 enable_pml = 0;
7699
7700         if (!enable_pml) {
7701                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7702                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7703                 kvm_x86_ops->flush_log_dirty = NULL;
7704                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7705         }
7706
7707         if (!cpu_has_vmx_preemption_timer())
7708                 enable_preemption_timer = false;
7709
7710         if (enable_preemption_timer) {
7711                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7712                 u64 vmx_msr;
7713
7714                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7715                 cpu_preemption_timer_multi =
7716                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7717
7718                 if (tsc_khz)
7719                         use_timer_freq = (u64)tsc_khz * 1000;
7720                 use_timer_freq >>= cpu_preemption_timer_multi;
7721
7722                 /*
7723                  * KVM "disables" the preemption timer by setting it to its max
7724                  * value.  Don't use the timer if it might cause spurious exits
7725                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7726                  */
7727                 if (use_timer_freq > 0xffffffffu / 10)
7728                         enable_preemption_timer = false;
7729         }
7730
7731         if (!enable_preemption_timer) {
7732                 kvm_x86_ops->set_hv_timer = NULL;
7733                 kvm_x86_ops->cancel_hv_timer = NULL;
7734                 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7735         }
7736
7737         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7738
7739         kvm_mce_cap_supported |= MCG_LMCE_P;
7740
7741         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7742                 return -EINVAL;
7743         if (!enable_ept || !cpu_has_vmx_intel_pt())
7744                 pt_mode = PT_MODE_SYSTEM;
7745
7746         if (nested) {
7747                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7748                                            vmx_capability.ept, enable_apicv);
7749
7750                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7751                 if (r)
7752                         return r;
7753         }
7754
7755         r = alloc_kvm_area();
7756         if (r)
7757                 nested_vmx_hardware_unsetup();
7758         return r;
7759 }
7760
7761 static __exit void hardware_unsetup(void)
7762 {
7763         if (nested)
7764                 nested_vmx_hardware_unsetup();
7765
7766         free_kvm_area();
7767 }
7768
7769 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7770         .cpu_has_kvm_support = cpu_has_kvm_support,
7771         .disabled_by_bios = vmx_disabled_by_bios,
7772         .hardware_setup = hardware_setup,
7773         .hardware_unsetup = hardware_unsetup,
7774         .check_processor_compatibility = vmx_check_processor_compat,
7775         .hardware_enable = hardware_enable,
7776         .hardware_disable = hardware_disable,
7777         .cpu_has_accelerated_tpr = report_flexpriority,
7778         .has_emulated_msr = vmx_has_emulated_msr,
7779
7780         .vm_init = vmx_vm_init,
7781         .vm_alloc = vmx_vm_alloc,
7782         .vm_free = vmx_vm_free,
7783
7784         .vcpu_create = vmx_create_vcpu,
7785         .vcpu_free = vmx_free_vcpu,
7786         .vcpu_reset = vmx_vcpu_reset,
7787
7788         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7789         .vcpu_load = vmx_vcpu_load,
7790         .vcpu_put = vmx_vcpu_put,
7791
7792         .update_bp_intercept = update_exception_bitmap,
7793         .get_msr_feature = vmx_get_msr_feature,
7794         .get_msr = vmx_get_msr,
7795         .set_msr = vmx_set_msr,
7796         .get_segment_base = vmx_get_segment_base,
7797         .get_segment = vmx_get_segment,
7798         .set_segment = vmx_set_segment,
7799         .get_cpl = vmx_get_cpl,
7800         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7801         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7802         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7803         .set_cr0 = vmx_set_cr0,
7804         .set_cr3 = vmx_set_cr3,
7805         .set_cr4 = vmx_set_cr4,
7806         .set_efer = vmx_set_efer,
7807         .get_idt = vmx_get_idt,
7808         .set_idt = vmx_set_idt,
7809         .get_gdt = vmx_get_gdt,
7810         .set_gdt = vmx_set_gdt,
7811         .get_dr6 = vmx_get_dr6,
7812         .set_dr6 = vmx_set_dr6,
7813         .set_dr7 = vmx_set_dr7,
7814         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7815         .cache_reg = vmx_cache_reg,
7816         .get_rflags = vmx_get_rflags,
7817         .set_rflags = vmx_set_rflags,
7818
7819         .tlb_flush = vmx_flush_tlb,
7820         .tlb_flush_gva = vmx_flush_tlb_gva,
7821
7822         .run = vmx_vcpu_run,
7823         .handle_exit = vmx_handle_exit,
7824         .skip_emulated_instruction = skip_emulated_instruction,
7825         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7826         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7827         .patch_hypercall = vmx_patch_hypercall,
7828         .set_irq = vmx_inject_irq,
7829         .set_nmi = vmx_inject_nmi,
7830         .queue_exception = vmx_queue_exception,
7831         .cancel_injection = vmx_cancel_injection,
7832         .interrupt_allowed = vmx_interrupt_allowed,
7833         .nmi_allowed = vmx_nmi_allowed,
7834         .get_nmi_mask = vmx_get_nmi_mask,
7835         .set_nmi_mask = vmx_set_nmi_mask,
7836         .enable_nmi_window = enable_nmi_window,
7837         .enable_irq_window = enable_irq_window,
7838         .update_cr8_intercept = update_cr8_intercept,
7839         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7840         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7841         .get_enable_apicv = vmx_get_enable_apicv,
7842         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7843         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7844         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7845         .hwapic_irr_update = vmx_hwapic_irr_update,
7846         .hwapic_isr_update = vmx_hwapic_isr_update,
7847         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7848         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7849         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7850         .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7851
7852         .set_tss_addr = vmx_set_tss_addr,
7853         .set_identity_map_addr = vmx_set_identity_map_addr,
7854         .get_tdp_level = get_ept_level,
7855         .get_mt_mask = vmx_get_mt_mask,
7856
7857         .get_exit_info = vmx_get_exit_info,
7858
7859         .get_lpage_level = vmx_get_lpage_level,
7860
7861         .cpuid_update = vmx_cpuid_update,
7862
7863         .rdtscp_supported = vmx_rdtscp_supported,
7864         .invpcid_supported = vmx_invpcid_supported,
7865
7866         .set_supported_cpuid = vmx_set_supported_cpuid,
7867
7868         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7869
7870         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7871         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7872
7873         .set_tdp_cr3 = vmx_set_cr3,
7874
7875         .check_intercept = vmx_check_intercept,
7876         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7877         .mpx_supported = vmx_mpx_supported,
7878         .xsaves_supported = vmx_xsaves_supported,
7879         .umip_emulated = vmx_umip_emulated,
7880         .pt_supported = vmx_pt_supported,
7881
7882         .request_immediate_exit = vmx_request_immediate_exit,
7883
7884         .sched_in = vmx_sched_in,
7885
7886         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7887         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7888         .flush_log_dirty = vmx_flush_log_dirty,
7889         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7890         .write_log_dirty = vmx_write_pml_buffer,
7891
7892         .pre_block = vmx_pre_block,
7893         .post_block = vmx_post_block,
7894
7895         .pmu_ops = &intel_pmu_ops,
7896
7897         .update_pi_irte = vmx_update_pi_irte,
7898
7899 #ifdef CONFIG_X86_64
7900         .set_hv_timer = vmx_set_hv_timer,
7901         .cancel_hv_timer = vmx_cancel_hv_timer,
7902 #endif
7903
7904         .setup_mce = vmx_setup_mce,
7905
7906         .smi_allowed = vmx_smi_allowed,
7907         .pre_enter_smm = vmx_pre_enter_smm,
7908         .pre_leave_smm = vmx_pre_leave_smm,
7909         .enable_smi_window = enable_smi_window,
7910
7911         .check_nested_events = NULL,
7912         .get_nested_state = NULL,
7913         .set_nested_state = NULL,
7914         .get_vmcs12_pages = NULL,
7915         .nested_enable_evmcs = NULL,
7916         .nested_get_evmcs_version = NULL,
7917         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7918         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7919 };
7920
7921 static void vmx_cleanup_l1d_flush(void)
7922 {
7923         if (vmx_l1d_flush_pages) {
7924                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7925                 vmx_l1d_flush_pages = NULL;
7926         }
7927         /* Restore state so sysfs ignores VMX */
7928         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7929 }
7930
7931 static void vmx_exit(void)
7932 {
7933 #ifdef CONFIG_KEXEC_CORE
7934         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7935         synchronize_rcu();
7936 #endif
7937
7938         kvm_exit();
7939
7940 #if IS_ENABLED(CONFIG_HYPERV)
7941         if (static_branch_unlikely(&enable_evmcs)) {
7942                 int cpu;
7943                 struct hv_vp_assist_page *vp_ap;
7944                 /*
7945                  * Reset everything to support using non-enlightened VMCS
7946                  * access later (e.g. when we reload the module with
7947                  * enlightened_vmcs=0)
7948                  */
7949                 for_each_online_cpu(cpu) {
7950                         vp_ap = hv_get_vp_assist_page(cpu);
7951
7952                         if (!vp_ap)
7953                                 continue;
7954
7955                         vp_ap->nested_control.features.directhypercall = 0;
7956                         vp_ap->current_nested_vmcs = 0;
7957                         vp_ap->enlighten_vmentry = 0;
7958                 }
7959
7960                 static_branch_disable(&enable_evmcs);
7961         }
7962 #endif
7963         vmx_cleanup_l1d_flush();
7964 }
7965 module_exit(vmx_exit);
7966
7967 static int __init vmx_init(void)
7968 {
7969         int r;
7970
7971 #if IS_ENABLED(CONFIG_HYPERV)
7972         /*
7973          * Enlightened VMCS usage should be recommended and the host needs
7974          * to support eVMCS v1 or above. We can also disable eVMCS support
7975          * with module parameter.
7976          */
7977         if (enlightened_vmcs &&
7978             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7979             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7980             KVM_EVMCS_VERSION) {
7981                 int cpu;
7982
7983                 /* Check that we have assist pages on all online CPUs */
7984                 for_each_online_cpu(cpu) {
7985                         if (!hv_get_vp_assist_page(cpu)) {
7986                                 enlightened_vmcs = false;
7987                                 break;
7988                         }
7989                 }
7990
7991                 if (enlightened_vmcs) {
7992                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7993                         static_branch_enable(&enable_evmcs);
7994                 }
7995
7996                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7997                         vmx_x86_ops.enable_direct_tlbflush
7998                                 = hv_enable_direct_tlbflush;
7999
8000         } else {
8001                 enlightened_vmcs = false;
8002         }
8003 #endif
8004
8005         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8006                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8007         if (r)
8008                 return r;
8009
8010         /*
8011          * Must be called after kvm_init() so enable_ept is properly set
8012          * up. Hand the parameter mitigation value in which was stored in
8013          * the pre module init parser. If no parameter was given, it will
8014          * contain 'auto' which will be turned into the default 'cond'
8015          * mitigation mode.
8016          */
8017         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8018         if (r) {
8019                 vmx_exit();
8020                 return r;
8021         }
8022
8023 #ifdef CONFIG_KEXEC_CORE
8024         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8025                            crash_vmclear_local_loaded_vmcss);
8026 #endif
8027         vmx_check_vmcs12_offsets();
8028
8029         return 0;
8030 }
8031 module_init(vmx_init);