drm/nouveau: fence: fix undefined fence state after emit
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/kexec.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/virtext.h>
51 #include <asm/vmx.h>
52
53 #include "capabilities.h"
54 #include "cpuid.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69 #include "smm.h"
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 #ifdef MODULE
75 static const struct x86_cpu_id vmx_cpu_id[] = {
76         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
77         {}
78 };
79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
80 #endif
81
82 bool __read_mostly enable_vpid = 1;
83 module_param_named(vpid, enable_vpid, bool, 0444);
84
85 static bool __read_mostly enable_vnmi = 1;
86 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
87
88 bool __read_mostly flexpriority_enabled = 1;
89 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
90
91 bool __read_mostly enable_ept = 1;
92 module_param_named(ept, enable_ept, bool, S_IRUGO);
93
94 bool __read_mostly enable_unrestricted_guest = 1;
95 module_param_named(unrestricted_guest,
96                         enable_unrestricted_guest, bool, S_IRUGO);
97
98 bool __read_mostly enable_ept_ad_bits = 1;
99 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
100
101 static bool __read_mostly emulate_invalid_guest_state = true;
102 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
103
104 static bool __read_mostly fasteoi = 1;
105 module_param(fasteoi, bool, S_IRUGO);
106
107 module_param(enable_apicv, bool, S_IRUGO);
108
109 bool __read_mostly enable_ipiv = true;
110 module_param(enable_ipiv, bool, 0444);
111
112 /*
113  * If nested=1, nested virtualization is supported, i.e., guests may use
114  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
115  * use VMX instructions.
116  */
117 static bool __read_mostly nested = 1;
118 module_param(nested, bool, S_IRUGO);
119
120 bool __read_mostly enable_pml = 1;
121 module_param_named(pml, enable_pml, bool, S_IRUGO);
122
123 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
124 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
125
126 static bool __read_mostly dump_invalid_vmcs = 0;
127 module_param(dump_invalid_vmcs, bool, 0644);
128
129 #define MSR_BITMAP_MODE_X2APIC          1
130 #define MSR_BITMAP_MODE_X2APIC_APICV    2
131
132 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
133
134 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
135 static int __read_mostly cpu_preemption_timer_multi;
136 static bool __read_mostly enable_preemption_timer = 1;
137 #ifdef CONFIG_X86_64
138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
139 #endif
140
141 extern bool __read_mostly allow_smaller_maxphyaddr;
142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
143
144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
146 #define KVM_VM_CR0_ALWAYS_ON                            \
147         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
148
149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
152
153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
154
155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
156         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
157         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
158         RTIT_STATUS_BYTECNT))
159
160 /*
161  * List of MSRs that can be directly passed to the guest.
162  * In addition to these x2apic and PT MSRs are handled specially.
163  */
164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
165         MSR_IA32_SPEC_CTRL,
166         MSR_IA32_PRED_CMD,
167         MSR_IA32_FLUSH_CMD,
168         MSR_IA32_TSC,
169 #ifdef CONFIG_X86_64
170         MSR_FS_BASE,
171         MSR_GS_BASE,
172         MSR_KERNEL_GS_BASE,
173         MSR_IA32_XFD,
174         MSR_IA32_XFD_ERR,
175 #endif
176         MSR_IA32_SYSENTER_CS,
177         MSR_IA32_SYSENTER_ESP,
178         MSR_IA32_SYSENTER_EIP,
179         MSR_CORE_C1_RES,
180         MSR_CORE_C3_RESIDENCY,
181         MSR_CORE_C6_RESIDENCY,
182         MSR_CORE_C7_RESIDENCY,
183 };
184
185 /*
186  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
187  * ple_gap:    upper bound on the amount of time between two successive
188  *             executions of PAUSE in a loop. Also indicate if ple enabled.
189  *             According to test, this time is usually smaller than 128 cycles.
190  * ple_window: upper bound on the amount of time a guest is allowed to execute
191  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
192  *             less than 2^12 cycles
193  * Time is measured based on a counter that runs at the same rate as the TSC,
194  * refer SDM volume 3b section 21.6.13 & 22.1.3.
195  */
196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
197 module_param(ple_gap, uint, 0444);
198
199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
200 module_param(ple_window, uint, 0444);
201
202 /* Default doubles per-vcpu window every exit. */
203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
204 module_param(ple_window_grow, uint, 0444);
205
206 /* Default resets per-vcpu window every exit to ple_window. */
207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
208 module_param(ple_window_shrink, uint, 0444);
209
210 /* Default is to compute the maximum so we can never overflow. */
211 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
212 module_param(ple_window_max, uint, 0444);
213
214 /* Default is SYSTEM mode, 1 for host-guest mode */
215 int __read_mostly pt_mode = PT_MODE_SYSTEM;
216 module_param(pt_mode, int, S_IRUGO);
217
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
220 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
221
222 /* Storage for pre module init parameter parsing */
223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
224
225 static const struct {
226         const char *option;
227         bool for_parse;
228 } vmentry_l1d_param[] = {
229         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
230         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
231         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
232         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
233         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
234         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
235 };
236
237 #define L1D_CACHE_ORDER 4
238 static void *vmx_l1d_flush_pages;
239
240 /* Control for disabling CPU Fill buffer clear */
241 static bool __read_mostly vmx_fb_clear_ctrl_available;
242
243 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
244 {
245         struct page *page;
246         unsigned int i;
247
248         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
249                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250                 return 0;
251         }
252
253         if (!enable_ept) {
254                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
255                 return 0;
256         }
257
258         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
259                 u64 msr;
260
261                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
262                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
263                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
264                         return 0;
265                 }
266         }
267
268         /* If set to auto use the default l1tf mitigation method */
269         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
270                 switch (l1tf_mitigation) {
271                 case L1TF_MITIGATION_OFF:
272                         l1tf = VMENTER_L1D_FLUSH_NEVER;
273                         break;
274                 case L1TF_MITIGATION_FLUSH_NOWARN:
275                 case L1TF_MITIGATION_FLUSH:
276                 case L1TF_MITIGATION_FLUSH_NOSMT:
277                         l1tf = VMENTER_L1D_FLUSH_COND;
278                         break;
279                 case L1TF_MITIGATION_FULL:
280                 case L1TF_MITIGATION_FULL_FORCE:
281                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
282                         break;
283                 }
284         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
285                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
286         }
287
288         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
289             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
290                 /*
291                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
292                  * lifetime and so should not be charged to a memcg.
293                  */
294                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
295                 if (!page)
296                         return -ENOMEM;
297                 vmx_l1d_flush_pages = page_address(page);
298
299                 /*
300                  * Initialize each page with a different pattern in
301                  * order to protect against KSM in the nested
302                  * virtualization case.
303                  */
304                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
305                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
306                                PAGE_SIZE);
307                 }
308         }
309
310         l1tf_vmx_mitigation = l1tf;
311
312         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
313                 static_branch_enable(&vmx_l1d_should_flush);
314         else
315                 static_branch_disable(&vmx_l1d_should_flush);
316
317         if (l1tf == VMENTER_L1D_FLUSH_COND)
318                 static_branch_enable(&vmx_l1d_flush_cond);
319         else
320                 static_branch_disable(&vmx_l1d_flush_cond);
321         return 0;
322 }
323
324 static int vmentry_l1d_flush_parse(const char *s)
325 {
326         unsigned int i;
327
328         if (s) {
329                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
330                         if (vmentry_l1d_param[i].for_parse &&
331                             sysfs_streq(s, vmentry_l1d_param[i].option))
332                                 return i;
333                 }
334         }
335         return -EINVAL;
336 }
337
338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
339 {
340         int l1tf, ret;
341
342         l1tf = vmentry_l1d_flush_parse(s);
343         if (l1tf < 0)
344                 return l1tf;
345
346         if (!boot_cpu_has(X86_BUG_L1TF))
347                 return 0;
348
349         /*
350          * Has vmx_init() run already? If not then this is the pre init
351          * parameter parsing. In that case just store the value and let
352          * vmx_init() do the proper setup after enable_ept has been
353          * established.
354          */
355         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
356                 vmentry_l1d_flush_param = l1tf;
357                 return 0;
358         }
359
360         mutex_lock(&vmx_l1d_flush_mutex);
361         ret = vmx_setup_l1d_flush(l1tf);
362         mutex_unlock(&vmx_l1d_flush_mutex);
363         return ret;
364 }
365
366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
367 {
368         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
369                 return sprintf(s, "???\n");
370
371         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
372 }
373
374 static void vmx_setup_fb_clear_ctrl(void)
375 {
376         u64 msr;
377
378         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
379             !boot_cpu_has_bug(X86_BUG_MDS) &&
380             !boot_cpu_has_bug(X86_BUG_TAA)) {
381                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
382                 if (msr & ARCH_CAP_FB_CLEAR_CTRL)
383                         vmx_fb_clear_ctrl_available = true;
384         }
385 }
386
387 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
388 {
389         u64 msr;
390
391         if (!vmx->disable_fb_clear)
392                 return;
393
394         msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
395         msr |= FB_CLEAR_DIS;
396         native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
397         /* Cache the MSR value to avoid reading it later */
398         vmx->msr_ia32_mcu_opt_ctrl = msr;
399 }
400
401 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
402 {
403         if (!vmx->disable_fb_clear)
404                 return;
405
406         vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
407         native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
408 }
409
410 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
411 {
412         vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
413
414         /*
415          * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
416          * at VMEntry. Skip the MSR read/write when a guest has no use case to
417          * execute VERW.
418          */
419         if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
420            ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
421             (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
422             (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
423             (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
424             (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
425                 vmx->disable_fb_clear = false;
426 }
427
428 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
429         .set = vmentry_l1d_flush_set,
430         .get = vmentry_l1d_flush_get,
431 };
432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
433
434 static u32 vmx_segment_access_rights(struct kvm_segment *var);
435
436 void vmx_vmexit(void);
437
438 #define vmx_insn_failed(fmt...)         \
439 do {                                    \
440         WARN_ONCE(1, fmt);              \
441         pr_warn_ratelimited(fmt);       \
442 } while (0)
443
444 void vmread_error(unsigned long field, bool fault)
445 {
446         if (fault)
447                 kvm_spurious_fault();
448         else
449                 vmx_insn_failed("vmread failed: field=%lx\n", field);
450 }
451
452 noinline void vmwrite_error(unsigned long field, unsigned long value)
453 {
454         vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
455                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
456 }
457
458 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
459 {
460         vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
461                         vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
462 }
463
464 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
465 {
466         vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
467                         vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
468 }
469
470 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
471 {
472         vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
473                         ext, vpid, gva);
474 }
475
476 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
477 {
478         vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
479                         ext, eptp, gpa);
480 }
481
482 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
483 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
484 /*
485  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
486  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
487  */
488 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
489
490 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
491 static DEFINE_SPINLOCK(vmx_vpid_lock);
492
493 struct vmcs_config vmcs_config __ro_after_init;
494 struct vmx_capability vmx_capability __ro_after_init;
495
496 #define VMX_SEGMENT_FIELD(seg)                                  \
497         [VCPU_SREG_##seg] = {                                   \
498                 .selector = GUEST_##seg##_SELECTOR,             \
499                 .base = GUEST_##seg##_BASE,                     \
500                 .limit = GUEST_##seg##_LIMIT,                   \
501                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
502         }
503
504 static const struct kvm_vmx_segment_field {
505         unsigned selector;
506         unsigned base;
507         unsigned limit;
508         unsigned ar_bytes;
509 } kvm_vmx_segment_fields[] = {
510         VMX_SEGMENT_FIELD(CS),
511         VMX_SEGMENT_FIELD(DS),
512         VMX_SEGMENT_FIELD(ES),
513         VMX_SEGMENT_FIELD(FS),
514         VMX_SEGMENT_FIELD(GS),
515         VMX_SEGMENT_FIELD(SS),
516         VMX_SEGMENT_FIELD(TR),
517         VMX_SEGMENT_FIELD(LDTR),
518 };
519
520 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
521 {
522         vmx->segment_cache.bitmask = 0;
523 }
524
525 static unsigned long host_idt_base;
526
527 #if IS_ENABLED(CONFIG_HYPERV)
528 static struct kvm_x86_ops vmx_x86_ops __initdata;
529
530 static bool __read_mostly enlightened_vmcs = true;
531 module_param(enlightened_vmcs, bool, 0444);
532
533 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
534 {
535         struct hv_enlightened_vmcs *evmcs;
536         struct hv_partition_assist_pg **p_hv_pa_pg =
537                         &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
538         /*
539          * Synthetic VM-Exit is not enabled in current code and so All
540          * evmcs in singe VM shares same assist page.
541          */
542         if (!*p_hv_pa_pg)
543                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
544
545         if (!*p_hv_pa_pg)
546                 return -ENOMEM;
547
548         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
549
550         evmcs->partition_assist_page =
551                 __pa(*p_hv_pa_pg);
552         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
553         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
554
555         return 0;
556 }
557
558 static __init void hv_init_evmcs(void)
559 {
560         int cpu;
561
562         if (!enlightened_vmcs)
563                 return;
564
565         /*
566          * Enlightened VMCS usage should be recommended and the host needs
567          * to support eVMCS v1 or above.
568          */
569         if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
570             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
571              KVM_EVMCS_VERSION) {
572
573                 /* Check that we have assist pages on all online CPUs */
574                 for_each_online_cpu(cpu) {
575                         if (!hv_get_vp_assist_page(cpu)) {
576                                 enlightened_vmcs = false;
577                                 break;
578                         }
579                 }
580
581                 if (enlightened_vmcs) {
582                         pr_info("Using Hyper-V Enlightened VMCS\n");
583                         static_branch_enable(&__kvm_is_using_evmcs);
584                 }
585
586                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
587                         vmx_x86_ops.enable_l2_tlb_flush
588                                 = hv_enable_l2_tlb_flush;
589
590         } else {
591                 enlightened_vmcs = false;
592         }
593 }
594
595 static void hv_reset_evmcs(void)
596 {
597         struct hv_vp_assist_page *vp_ap;
598
599         if (!kvm_is_using_evmcs())
600                 return;
601
602         /*
603          * KVM should enable eVMCS if and only if all CPUs have a VP assist
604          * page, and should reject CPU onlining if eVMCS is enabled the CPU
605          * doesn't have a VP assist page allocated.
606          */
607         vp_ap = hv_get_vp_assist_page(smp_processor_id());
608         if (WARN_ON_ONCE(!vp_ap))
609                 return;
610
611         /*
612          * Reset everything to support using non-enlightened VMCS access later
613          * (e.g. when we reload the module with enlightened_vmcs=0)
614          */
615         vp_ap->nested_control.features.directhypercall = 0;
616         vp_ap->current_nested_vmcs = 0;
617         vp_ap->enlighten_vmentry = 0;
618 }
619
620 #else /* IS_ENABLED(CONFIG_HYPERV) */
621 static void hv_init_evmcs(void) {}
622 static void hv_reset_evmcs(void) {}
623 #endif /* IS_ENABLED(CONFIG_HYPERV) */
624
625 /*
626  * Comment's format: document - errata name - stepping - processor name.
627  * Refer from
628  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
629  */
630 static u32 vmx_preemption_cpu_tfms[] = {
631 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
632 0x000206E6,
633 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
634 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
635 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
636 0x00020652,
637 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
638 0x00020655,
639 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
640 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
641 /*
642  * 320767.pdf - AAP86  - B1 -
643  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
644  */
645 0x000106E5,
646 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
647 0x000106A0,
648 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
649 0x000106A1,
650 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
651 0x000106A4,
652  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
653  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
654  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
655 0x000106A5,
656  /* Xeon E3-1220 V2 */
657 0x000306A8,
658 };
659
660 static inline bool cpu_has_broken_vmx_preemption_timer(void)
661 {
662         u32 eax = cpuid_eax(0x00000001), i;
663
664         /* Clear the reserved bits */
665         eax &= ~(0x3U << 14 | 0xfU << 28);
666         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
667                 if (eax == vmx_preemption_cpu_tfms[i])
668                         return true;
669
670         return false;
671 }
672
673 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
674 {
675         return flexpriority_enabled && lapic_in_kernel(vcpu);
676 }
677
678 static int possible_passthrough_msr_slot(u32 msr)
679 {
680         u32 i;
681
682         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
683                 if (vmx_possible_passthrough_msrs[i] == msr)
684                         return i;
685
686         return -ENOENT;
687 }
688
689 static bool is_valid_passthrough_msr(u32 msr)
690 {
691         bool r;
692
693         switch (msr) {
694         case 0x800 ... 0x8ff:
695                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
696                 return true;
697         case MSR_IA32_RTIT_STATUS:
698         case MSR_IA32_RTIT_OUTPUT_BASE:
699         case MSR_IA32_RTIT_OUTPUT_MASK:
700         case MSR_IA32_RTIT_CR3_MATCH:
701         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
702                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
703         case MSR_LBR_SELECT:
704         case MSR_LBR_TOS:
705         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
706         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
707         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
708         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
709         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
710                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
711                 return true;
712         }
713
714         r = possible_passthrough_msr_slot(msr) != -ENOENT;
715
716         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
717
718         return r;
719 }
720
721 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
722 {
723         int i;
724
725         i = kvm_find_user_return_msr(msr);
726         if (i >= 0)
727                 return &vmx->guest_uret_msrs[i];
728         return NULL;
729 }
730
731 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
732                                   struct vmx_uret_msr *msr, u64 data)
733 {
734         unsigned int slot = msr - vmx->guest_uret_msrs;
735         int ret = 0;
736
737         if (msr->load_into_hardware) {
738                 preempt_disable();
739                 ret = kvm_set_user_return_msr(slot, data, msr->mask);
740                 preempt_enable();
741         }
742         if (!ret)
743                 msr->data = data;
744         return ret;
745 }
746
747 #ifdef CONFIG_KEXEC_CORE
748 static void crash_vmclear_local_loaded_vmcss(void)
749 {
750         int cpu = raw_smp_processor_id();
751         struct loaded_vmcs *v;
752
753         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
754                             loaded_vmcss_on_cpu_link)
755                 vmcs_clear(v->vmcs);
756 }
757 #endif /* CONFIG_KEXEC_CORE */
758
759 static void __loaded_vmcs_clear(void *arg)
760 {
761         struct loaded_vmcs *loaded_vmcs = arg;
762         int cpu = raw_smp_processor_id();
763
764         if (loaded_vmcs->cpu != cpu)
765                 return; /* vcpu migration can race with cpu offline */
766         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
767                 per_cpu(current_vmcs, cpu) = NULL;
768
769         vmcs_clear(loaded_vmcs->vmcs);
770         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
771                 vmcs_clear(loaded_vmcs->shadow_vmcs);
772
773         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
774
775         /*
776          * Ensure all writes to loaded_vmcs, including deleting it from its
777          * current percpu list, complete before setting loaded_vmcs->cpu to
778          * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
779          * and add loaded_vmcs to its percpu list before it's deleted from this
780          * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
781          */
782         smp_wmb();
783
784         loaded_vmcs->cpu = -1;
785         loaded_vmcs->launched = 0;
786 }
787
788 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
789 {
790         int cpu = loaded_vmcs->cpu;
791
792         if (cpu != -1)
793                 smp_call_function_single(cpu,
794                          __loaded_vmcs_clear, loaded_vmcs, 1);
795 }
796
797 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
798                                        unsigned field)
799 {
800         bool ret;
801         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
802
803         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
804                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
805                 vmx->segment_cache.bitmask = 0;
806         }
807         ret = vmx->segment_cache.bitmask & mask;
808         vmx->segment_cache.bitmask |= mask;
809         return ret;
810 }
811
812 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
813 {
814         u16 *p = &vmx->segment_cache.seg[seg].selector;
815
816         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
817                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
818         return *p;
819 }
820
821 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
822 {
823         ulong *p = &vmx->segment_cache.seg[seg].base;
824
825         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
826                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
827         return *p;
828 }
829
830 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
831 {
832         u32 *p = &vmx->segment_cache.seg[seg].limit;
833
834         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
835                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
836         return *p;
837 }
838
839 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
840 {
841         u32 *p = &vmx->segment_cache.seg[seg].ar;
842
843         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
844                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
845         return *p;
846 }
847
848 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
849 {
850         u32 eb;
851
852         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
853              (1u << DB_VECTOR) | (1u << AC_VECTOR);
854         /*
855          * Guest access to VMware backdoor ports could legitimately
856          * trigger #GP because of TSS I/O permission bitmap.
857          * We intercept those #GP and allow access to them anyway
858          * as VMware does.
859          */
860         if (enable_vmware_backdoor)
861                 eb |= (1u << GP_VECTOR);
862         if ((vcpu->guest_debug &
863              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
864             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
865                 eb |= 1u << BP_VECTOR;
866         if (to_vmx(vcpu)->rmode.vm86_active)
867                 eb = ~0;
868         if (!vmx_need_pf_intercept(vcpu))
869                 eb &= ~(1u << PF_VECTOR);
870
871         /* When we are running a nested L2 guest and L1 specified for it a
872          * certain exception bitmap, we must trap the same exceptions and pass
873          * them to L1. When running L2, we will only handle the exceptions
874          * specified above if L1 did not want them.
875          */
876         if (is_guest_mode(vcpu))
877                 eb |= get_vmcs12(vcpu)->exception_bitmap;
878         else {
879                 int mask = 0, match = 0;
880
881                 if (enable_ept && (eb & (1u << PF_VECTOR))) {
882                         /*
883                          * If EPT is enabled, #PF is currently only intercepted
884                          * if MAXPHYADDR is smaller on the guest than on the
885                          * host.  In that case we only care about present,
886                          * non-reserved faults.  For vmcs02, however, PFEC_MASK
887                          * and PFEC_MATCH are set in prepare_vmcs02_rare.
888                          */
889                         mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
890                         match = PFERR_PRESENT_MASK;
891                 }
892                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
893                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
894         }
895
896         /*
897          * Disabling xfd interception indicates that dynamic xfeatures
898          * might be used in the guest. Always trap #NM in this case
899          * to save guest xfd_err timely.
900          */
901         if (vcpu->arch.xfd_no_write_intercept)
902                 eb |= (1u << NM_VECTOR);
903
904         vmcs_write32(EXCEPTION_BITMAP, eb);
905 }
906
907 /*
908  * Check if MSR is intercepted for currently loaded MSR bitmap.
909  */
910 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
911 {
912         if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
913                 return true;
914
915         return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
916 }
917
918 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
919 {
920         unsigned int flags = 0;
921
922         if (vmx->loaded_vmcs->launched)
923                 flags |= VMX_RUN_VMRESUME;
924
925         /*
926          * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
927          * to change it directly without causing a vmexit.  In that case read
928          * it after vmexit and store it in vmx->spec_ctrl.
929          */
930         if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
931                 flags |= VMX_RUN_SAVE_SPEC_CTRL;
932
933         return flags;
934 }
935
936 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
937                 unsigned long entry, unsigned long exit)
938 {
939         vm_entry_controls_clearbit(vmx, entry);
940         vm_exit_controls_clearbit(vmx, exit);
941 }
942
943 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
944 {
945         unsigned int i;
946
947         for (i = 0; i < m->nr; ++i) {
948                 if (m->val[i].index == msr)
949                         return i;
950         }
951         return -ENOENT;
952 }
953
954 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
955 {
956         int i;
957         struct msr_autoload *m = &vmx->msr_autoload;
958
959         switch (msr) {
960         case MSR_EFER:
961                 if (cpu_has_load_ia32_efer()) {
962                         clear_atomic_switch_msr_special(vmx,
963                                         VM_ENTRY_LOAD_IA32_EFER,
964                                         VM_EXIT_LOAD_IA32_EFER);
965                         return;
966                 }
967                 break;
968         case MSR_CORE_PERF_GLOBAL_CTRL:
969                 if (cpu_has_load_perf_global_ctrl()) {
970                         clear_atomic_switch_msr_special(vmx,
971                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
972                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
973                         return;
974                 }
975                 break;
976         }
977         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
978         if (i < 0)
979                 goto skip_guest;
980         --m->guest.nr;
981         m->guest.val[i] = m->guest.val[m->guest.nr];
982         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
983
984 skip_guest:
985         i = vmx_find_loadstore_msr_slot(&m->host, msr);
986         if (i < 0)
987                 return;
988
989         --m->host.nr;
990         m->host.val[i] = m->host.val[m->host.nr];
991         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
992 }
993
994 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
995                 unsigned long entry, unsigned long exit,
996                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
997                 u64 guest_val, u64 host_val)
998 {
999         vmcs_write64(guest_val_vmcs, guest_val);
1000         if (host_val_vmcs != HOST_IA32_EFER)
1001                 vmcs_write64(host_val_vmcs, host_val);
1002         vm_entry_controls_setbit(vmx, entry);
1003         vm_exit_controls_setbit(vmx, exit);
1004 }
1005
1006 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1007                                   u64 guest_val, u64 host_val, bool entry_only)
1008 {
1009         int i, j = 0;
1010         struct msr_autoload *m = &vmx->msr_autoload;
1011
1012         switch (msr) {
1013         case MSR_EFER:
1014                 if (cpu_has_load_ia32_efer()) {
1015                         add_atomic_switch_msr_special(vmx,
1016                                         VM_ENTRY_LOAD_IA32_EFER,
1017                                         VM_EXIT_LOAD_IA32_EFER,
1018                                         GUEST_IA32_EFER,
1019                                         HOST_IA32_EFER,
1020                                         guest_val, host_val);
1021                         return;
1022                 }
1023                 break;
1024         case MSR_CORE_PERF_GLOBAL_CTRL:
1025                 if (cpu_has_load_perf_global_ctrl()) {
1026                         add_atomic_switch_msr_special(vmx,
1027                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1028                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1029                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1030                                         HOST_IA32_PERF_GLOBAL_CTRL,
1031                                         guest_val, host_val);
1032                         return;
1033                 }
1034                 break;
1035         case MSR_IA32_PEBS_ENABLE:
1036                 /* PEBS needs a quiescent period after being disabled (to write
1037                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1038                  * provide that period, so a CPU could write host's record into
1039                  * guest's memory.
1040                  */
1041                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1042         }
1043
1044         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1045         if (!entry_only)
1046                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1047
1048         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1049             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1050                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1051                                 "Can't add msr %x\n", msr);
1052                 return;
1053         }
1054         if (i < 0) {
1055                 i = m->guest.nr++;
1056                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1057         }
1058         m->guest.val[i].index = msr;
1059         m->guest.val[i].value = guest_val;
1060
1061         if (entry_only)
1062                 return;
1063
1064         if (j < 0) {
1065                 j = m->host.nr++;
1066                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1067         }
1068         m->host.val[j].index = msr;
1069         m->host.val[j].value = host_val;
1070 }
1071
1072 static bool update_transition_efer(struct vcpu_vmx *vmx)
1073 {
1074         u64 guest_efer = vmx->vcpu.arch.efer;
1075         u64 ignore_bits = 0;
1076         int i;
1077
1078         /* Shadow paging assumes NX to be available.  */
1079         if (!enable_ept)
1080                 guest_efer |= EFER_NX;
1081
1082         /*
1083          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1084          */
1085         ignore_bits |= EFER_SCE;
1086 #ifdef CONFIG_X86_64
1087         ignore_bits |= EFER_LMA | EFER_LME;
1088         /* SCE is meaningful only in long mode on Intel */
1089         if (guest_efer & EFER_LMA)
1090                 ignore_bits &= ~(u64)EFER_SCE;
1091 #endif
1092
1093         /*
1094          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1095          * On CPUs that support "load IA32_EFER", always switch EFER
1096          * atomically, since it's faster than switching it manually.
1097          */
1098         if (cpu_has_load_ia32_efer() ||
1099             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1100                 if (!(guest_efer & EFER_LMA))
1101                         guest_efer &= ~EFER_LME;
1102                 if (guest_efer != host_efer)
1103                         add_atomic_switch_msr(vmx, MSR_EFER,
1104                                               guest_efer, host_efer, false);
1105                 else
1106                         clear_atomic_switch_msr(vmx, MSR_EFER);
1107                 return false;
1108         }
1109
1110         i = kvm_find_user_return_msr(MSR_EFER);
1111         if (i < 0)
1112                 return false;
1113
1114         clear_atomic_switch_msr(vmx, MSR_EFER);
1115
1116         guest_efer &= ~ignore_bits;
1117         guest_efer |= host_efer & ignore_bits;
1118
1119         vmx->guest_uret_msrs[i].data = guest_efer;
1120         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1121
1122         return true;
1123 }
1124
1125 #ifdef CONFIG_X86_32
1126 /*
1127  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1128  * VMCS rather than the segment table.  KVM uses this helper to figure
1129  * out the current bases to poke them into the VMCS before entry.
1130  */
1131 static unsigned long segment_base(u16 selector)
1132 {
1133         struct desc_struct *table;
1134         unsigned long v;
1135
1136         if (!(selector & ~SEGMENT_RPL_MASK))
1137                 return 0;
1138
1139         table = get_current_gdt_ro();
1140
1141         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1142                 u16 ldt_selector = kvm_read_ldt();
1143
1144                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1145                         return 0;
1146
1147                 table = (struct desc_struct *)segment_base(ldt_selector);
1148         }
1149         v = get_desc_base(&table[selector >> 3]);
1150         return v;
1151 }
1152 #endif
1153
1154 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1155 {
1156         return vmx_pt_mode_is_host_guest() &&
1157                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1158 }
1159
1160 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1161 {
1162         /* The base must be 128-byte aligned and a legal physical address. */
1163         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1164 }
1165
1166 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1167 {
1168         u32 i;
1169
1170         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1171         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1172         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1173         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1174         for (i = 0; i < addr_range; i++) {
1175                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1176                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1177         }
1178 }
1179
1180 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1181 {
1182         u32 i;
1183
1184         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1185         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1186         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1187         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1188         for (i = 0; i < addr_range; i++) {
1189                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1190                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1191         }
1192 }
1193
1194 static void pt_guest_enter(struct vcpu_vmx *vmx)
1195 {
1196         if (vmx_pt_mode_is_system())
1197                 return;
1198
1199         /*
1200          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1201          * Save host state before VM entry.
1202          */
1203         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1204         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1205                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1206                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1207                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1208         }
1209 }
1210
1211 static void pt_guest_exit(struct vcpu_vmx *vmx)
1212 {
1213         if (vmx_pt_mode_is_system())
1214                 return;
1215
1216         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1217                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1218                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1219         }
1220
1221         /*
1222          * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1223          * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1224          */
1225         if (vmx->pt_desc.host.ctl)
1226                 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1227 }
1228
1229 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1230                         unsigned long fs_base, unsigned long gs_base)
1231 {
1232         if (unlikely(fs_sel != host->fs_sel)) {
1233                 if (!(fs_sel & 7))
1234                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1235                 else
1236                         vmcs_write16(HOST_FS_SELECTOR, 0);
1237                 host->fs_sel = fs_sel;
1238         }
1239         if (unlikely(gs_sel != host->gs_sel)) {
1240                 if (!(gs_sel & 7))
1241                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1242                 else
1243                         vmcs_write16(HOST_GS_SELECTOR, 0);
1244                 host->gs_sel = gs_sel;
1245         }
1246         if (unlikely(fs_base != host->fs_base)) {
1247                 vmcs_writel(HOST_FS_BASE, fs_base);
1248                 host->fs_base = fs_base;
1249         }
1250         if (unlikely(gs_base != host->gs_base)) {
1251                 vmcs_writel(HOST_GS_BASE, gs_base);
1252                 host->gs_base = gs_base;
1253         }
1254 }
1255
1256 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1257 {
1258         struct vcpu_vmx *vmx = to_vmx(vcpu);
1259         struct vmcs_host_state *host_state;
1260 #ifdef CONFIG_X86_64
1261         int cpu = raw_smp_processor_id();
1262 #endif
1263         unsigned long fs_base, gs_base;
1264         u16 fs_sel, gs_sel;
1265         int i;
1266
1267         vmx->req_immediate_exit = false;
1268
1269         /*
1270          * Note that guest MSRs to be saved/restored can also be changed
1271          * when guest state is loaded. This happens when guest transitions
1272          * to/from long-mode by setting MSR_EFER.LMA.
1273          */
1274         if (!vmx->guest_uret_msrs_loaded) {
1275                 vmx->guest_uret_msrs_loaded = true;
1276                 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1277                         if (!vmx->guest_uret_msrs[i].load_into_hardware)
1278                                 continue;
1279
1280                         kvm_set_user_return_msr(i,
1281                                                 vmx->guest_uret_msrs[i].data,
1282                                                 vmx->guest_uret_msrs[i].mask);
1283                 }
1284         }
1285
1286         if (vmx->nested.need_vmcs12_to_shadow_sync)
1287                 nested_sync_vmcs12_to_shadow(vcpu);
1288
1289         if (vmx->guest_state_loaded)
1290                 return;
1291
1292         host_state = &vmx->loaded_vmcs->host_state;
1293
1294         /*
1295          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1296          * allow segment selectors with cpl > 0 or ti == 1.
1297          */
1298         host_state->ldt_sel = kvm_read_ldt();
1299
1300 #ifdef CONFIG_X86_64
1301         savesegment(ds, host_state->ds_sel);
1302         savesegment(es, host_state->es_sel);
1303
1304         gs_base = cpu_kernelmode_gs_base(cpu);
1305         if (likely(is_64bit_mm(current->mm))) {
1306                 current_save_fsgs();
1307                 fs_sel = current->thread.fsindex;
1308                 gs_sel = current->thread.gsindex;
1309                 fs_base = current->thread.fsbase;
1310                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1311         } else {
1312                 savesegment(fs, fs_sel);
1313                 savesegment(gs, gs_sel);
1314                 fs_base = read_msr(MSR_FS_BASE);
1315                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1316         }
1317
1318         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1319 #else
1320         savesegment(fs, fs_sel);
1321         savesegment(gs, gs_sel);
1322         fs_base = segment_base(fs_sel);
1323         gs_base = segment_base(gs_sel);
1324 #endif
1325
1326         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1327         vmx->guest_state_loaded = true;
1328 }
1329
1330 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1331 {
1332         struct vmcs_host_state *host_state;
1333
1334         if (!vmx->guest_state_loaded)
1335                 return;
1336
1337         host_state = &vmx->loaded_vmcs->host_state;
1338
1339         ++vmx->vcpu.stat.host_state_reload;
1340
1341 #ifdef CONFIG_X86_64
1342         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1343 #endif
1344         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1345                 kvm_load_ldt(host_state->ldt_sel);
1346 #ifdef CONFIG_X86_64
1347                 load_gs_index(host_state->gs_sel);
1348 #else
1349                 loadsegment(gs, host_state->gs_sel);
1350 #endif
1351         }
1352         if (host_state->fs_sel & 7)
1353                 loadsegment(fs, host_state->fs_sel);
1354 #ifdef CONFIG_X86_64
1355         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1356                 loadsegment(ds, host_state->ds_sel);
1357                 loadsegment(es, host_state->es_sel);
1358         }
1359 #endif
1360         invalidate_tss_limit();
1361 #ifdef CONFIG_X86_64
1362         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1363 #endif
1364         load_fixmap_gdt(raw_smp_processor_id());
1365         vmx->guest_state_loaded = false;
1366         vmx->guest_uret_msrs_loaded = false;
1367 }
1368
1369 #ifdef CONFIG_X86_64
1370 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1371 {
1372         preempt_disable();
1373         if (vmx->guest_state_loaded)
1374                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1375         preempt_enable();
1376         return vmx->msr_guest_kernel_gs_base;
1377 }
1378
1379 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1380 {
1381         preempt_disable();
1382         if (vmx->guest_state_loaded)
1383                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1384         preempt_enable();
1385         vmx->msr_guest_kernel_gs_base = data;
1386 }
1387 #endif
1388
1389 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1390                         struct loaded_vmcs *buddy)
1391 {
1392         struct vcpu_vmx *vmx = to_vmx(vcpu);
1393         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1394         struct vmcs *prev;
1395
1396         if (!already_loaded) {
1397                 loaded_vmcs_clear(vmx->loaded_vmcs);
1398                 local_irq_disable();
1399
1400                 /*
1401                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1402                  * this cpu's percpu list, otherwise it may not yet be deleted
1403                  * from its previous cpu's percpu list.  Pairs with the
1404                  * smb_wmb() in __loaded_vmcs_clear().
1405                  */
1406                 smp_rmb();
1407
1408                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1409                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1410                 local_irq_enable();
1411         }
1412
1413         prev = per_cpu(current_vmcs, cpu);
1414         if (prev != vmx->loaded_vmcs->vmcs) {
1415                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1416                 vmcs_load(vmx->loaded_vmcs->vmcs);
1417
1418                 /*
1419                  * No indirect branch prediction barrier needed when switching
1420                  * the active VMCS within a vCPU, unless IBRS is advertised to
1421                  * the vCPU.  To minimize the number of IBPBs executed, KVM
1422                  * performs IBPB on nested VM-Exit (a single nested transition
1423                  * may switch the active VMCS multiple times).
1424                  */
1425                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1426                         indirect_branch_prediction_barrier();
1427         }
1428
1429         if (!already_loaded) {
1430                 void *gdt = get_current_gdt_ro();
1431
1432                 /*
1433                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1434                  * TLB entries from its previous association with the vCPU.
1435                  */
1436                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1437
1438                 /*
1439                  * Linux uses per-cpu TSS and GDT, so set these when switching
1440                  * processors.  See 22.2.4.
1441                  */
1442                 vmcs_writel(HOST_TR_BASE,
1443                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1444                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1445
1446                 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1447                         /* 22.2.3 */
1448                         vmcs_writel(HOST_IA32_SYSENTER_ESP,
1449                                     (unsigned long)(cpu_entry_stack(cpu) + 1));
1450                 }
1451
1452                 vmx->loaded_vmcs->cpu = cpu;
1453         }
1454 }
1455
1456 /*
1457  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1458  * vcpu mutex is already taken.
1459  */
1460 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1461 {
1462         struct vcpu_vmx *vmx = to_vmx(vcpu);
1463
1464         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1465
1466         vmx_vcpu_pi_load(vcpu, cpu);
1467
1468         vmx->host_debugctlmsr = get_debugctlmsr();
1469 }
1470
1471 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1472 {
1473         vmx_vcpu_pi_put(vcpu);
1474
1475         vmx_prepare_switch_to_host(to_vmx(vcpu));
1476 }
1477
1478 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1479 {
1480         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1481 }
1482
1483 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1484 {
1485         struct vcpu_vmx *vmx = to_vmx(vcpu);
1486         unsigned long rflags, save_rflags;
1487
1488         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1489                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1490                 rflags = vmcs_readl(GUEST_RFLAGS);
1491                 if (vmx->rmode.vm86_active) {
1492                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1493                         save_rflags = vmx->rmode.save_rflags;
1494                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1495                 }
1496                 vmx->rflags = rflags;
1497         }
1498         return vmx->rflags;
1499 }
1500
1501 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1502 {
1503         struct vcpu_vmx *vmx = to_vmx(vcpu);
1504         unsigned long old_rflags;
1505
1506         if (is_unrestricted_guest(vcpu)) {
1507                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1508                 vmx->rflags = rflags;
1509                 vmcs_writel(GUEST_RFLAGS, rflags);
1510                 return;
1511         }
1512
1513         old_rflags = vmx_get_rflags(vcpu);
1514         vmx->rflags = rflags;
1515         if (vmx->rmode.vm86_active) {
1516                 vmx->rmode.save_rflags = rflags;
1517                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1518         }
1519         vmcs_writel(GUEST_RFLAGS, rflags);
1520
1521         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1522                 vmx->emulation_required = vmx_emulation_required(vcpu);
1523 }
1524
1525 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1526 {
1527         return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1528 }
1529
1530 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1531 {
1532         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1533         int ret = 0;
1534
1535         if (interruptibility & GUEST_INTR_STATE_STI)
1536                 ret |= KVM_X86_SHADOW_INT_STI;
1537         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1538                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1539
1540         return ret;
1541 }
1542
1543 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1544 {
1545         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1546         u32 interruptibility = interruptibility_old;
1547
1548         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1549
1550         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1551                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1552         else if (mask & KVM_X86_SHADOW_INT_STI)
1553                 interruptibility |= GUEST_INTR_STATE_STI;
1554
1555         if ((interruptibility != interruptibility_old))
1556                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1557 }
1558
1559 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1560 {
1561         struct vcpu_vmx *vmx = to_vmx(vcpu);
1562         unsigned long value;
1563
1564         /*
1565          * Any MSR write that attempts to change bits marked reserved will
1566          * case a #GP fault.
1567          */
1568         if (data & vmx->pt_desc.ctl_bitmask)
1569                 return 1;
1570
1571         /*
1572          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1573          * result in a #GP unless the same write also clears TraceEn.
1574          */
1575         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1576                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1577                 return 1;
1578
1579         /*
1580          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1581          * and FabricEn would cause #GP, if
1582          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1583          */
1584         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1585                 !(data & RTIT_CTL_FABRIC_EN) &&
1586                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1587                                         PT_CAP_single_range_output))
1588                 return 1;
1589
1590         /*
1591          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1592          * utilize encodings marked reserved will cause a #GP fault.
1593          */
1594         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1595         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1596                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1597                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1598                 return 1;
1599         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1600                                                 PT_CAP_cycle_thresholds);
1601         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1602                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1603                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1604                 return 1;
1605         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1606         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1607                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1608                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1609                 return 1;
1610
1611         /*
1612          * If ADDRx_CFG is reserved or the encodings is >2 will
1613          * cause a #GP fault.
1614          */
1615         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1616         if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1617                 return 1;
1618         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1619         if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1620                 return 1;
1621         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1622         if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1623                 return 1;
1624         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1625         if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1626                 return 1;
1627
1628         return 0;
1629 }
1630
1631 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1632                                         void *insn, int insn_len)
1633 {
1634         /*
1635          * Emulation of instructions in SGX enclaves is impossible as RIP does
1636          * not point at the failing instruction, and even if it did, the code
1637          * stream is inaccessible.  Inject #UD instead of exiting to userspace
1638          * so that guest userspace can't DoS the guest simply by triggering
1639          * emulation (enclaves are CPL3 only).
1640          */
1641         if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1642                 kvm_queue_exception(vcpu, UD_VECTOR);
1643                 return false;
1644         }
1645         return true;
1646 }
1647
1648 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1649 {
1650         union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1651         unsigned long rip, orig_rip;
1652         u32 instr_len;
1653
1654         /*
1655          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1656          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1657          * set when EPT misconfig occurs.  In practice, real hardware updates
1658          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1659          * (namely Hyper-V) don't set it due to it being undefined behavior,
1660          * i.e. we end up advancing IP with some random value.
1661          */
1662         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1663             exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1664                 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1665
1666                 /*
1667                  * Emulating an enclave's instructions isn't supported as KVM
1668                  * cannot access the enclave's memory or its true RIP, e.g. the
1669                  * vmcs.GUEST_RIP points at the exit point of the enclave, not
1670                  * the RIP that actually triggered the VM-Exit.  But, because
1671                  * most instructions that cause VM-Exit will #UD in an enclave,
1672                  * most instruction-based VM-Exits simply do not occur.
1673                  *
1674                  * There are a few exceptions, notably the debug instructions
1675                  * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1676                  * and generate #DB/#BP as expected, which KVM might intercept.
1677                  * But again, the CPU does the dirty work and saves an instr
1678                  * length of zero so VMMs don't shoot themselves in the foot.
1679                  * WARN if KVM tries to skip a non-zero length instruction on
1680                  * a VM-Exit from an enclave.
1681                  */
1682                 if (!instr_len)
1683                         goto rip_updated;
1684
1685                 WARN_ONCE(exit_reason.enclave_mode,
1686                           "skipping instruction after SGX enclave VM-Exit");
1687
1688                 orig_rip = kvm_rip_read(vcpu);
1689                 rip = orig_rip + instr_len;
1690 #ifdef CONFIG_X86_64
1691                 /*
1692                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1693                  * mode, but just finding out that we are in 64-bit mode is
1694                  * quite expensive.  Only do it if there was a carry.
1695                  */
1696                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1697                         rip = (u32)rip;
1698 #endif
1699                 kvm_rip_write(vcpu, rip);
1700         } else {
1701                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1702                         return 0;
1703         }
1704
1705 rip_updated:
1706         /* skipping an emulated instruction also counts */
1707         vmx_set_interrupt_shadow(vcpu, 0);
1708
1709         return 1;
1710 }
1711
1712 /*
1713  * Recognizes a pending MTF VM-exit and records the nested state for later
1714  * delivery.
1715  */
1716 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1717 {
1718         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1719         struct vcpu_vmx *vmx = to_vmx(vcpu);
1720
1721         if (!is_guest_mode(vcpu))
1722                 return;
1723
1724         /*
1725          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1726          * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1727          * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1728          * intercepted #DB deliberately avoids single-step #DB and MTF updates
1729          * as ICEBP is higher priority than both.  As instruction emulation is
1730          * completed at this point (i.e. KVM is at the instruction boundary),
1731          * any #DB exception pending delivery must be a debug-trap of lower
1732          * priority than MTF.  Record the pending MTF state to be delivered in
1733          * vmx_check_nested_events().
1734          */
1735         if (nested_cpu_has_mtf(vmcs12) &&
1736             (!vcpu->arch.exception.pending ||
1737              vcpu->arch.exception.vector == DB_VECTOR) &&
1738             (!vcpu->arch.exception_vmexit.pending ||
1739              vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1740                 vmx->nested.mtf_pending = true;
1741                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1742         } else {
1743                 vmx->nested.mtf_pending = false;
1744         }
1745 }
1746
1747 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1748 {
1749         vmx_update_emulated_instruction(vcpu);
1750         return skip_emulated_instruction(vcpu);
1751 }
1752
1753 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1754 {
1755         /*
1756          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1757          * explicitly skip the instruction because if the HLT state is set,
1758          * then the instruction is already executing and RIP has already been
1759          * advanced.
1760          */
1761         if (kvm_hlt_in_guest(vcpu->kvm) &&
1762                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1763                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1764 }
1765
1766 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1767 {
1768         struct kvm_queued_exception *ex = &vcpu->arch.exception;
1769         u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1770         struct vcpu_vmx *vmx = to_vmx(vcpu);
1771
1772         kvm_deliver_exception_payload(vcpu, ex);
1773
1774         if (ex->has_error_code) {
1775                 /*
1776                  * Despite the error code being architecturally defined as 32
1777                  * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1778                  * VMX don't actually supporting setting bits 31:16.  Hardware
1779                  * will (should) never provide a bogus error code, but AMD CPUs
1780                  * do generate error codes with bits 31:16 set, and so KVM's
1781                  * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1782                  * the upper bits to avoid VM-Fail, losing information that
1783                  * does't really exist is preferable to killing the VM.
1784                  */
1785                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1786                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1787         }
1788
1789         if (vmx->rmode.vm86_active) {
1790                 int inc_eip = 0;
1791                 if (kvm_exception_is_soft(ex->vector))
1792                         inc_eip = vcpu->arch.event_exit_inst_len;
1793                 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1794                 return;
1795         }
1796
1797         WARN_ON_ONCE(vmx->emulation_required);
1798
1799         if (kvm_exception_is_soft(ex->vector)) {
1800                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1801                              vmx->vcpu.arch.event_exit_inst_len);
1802                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1803         } else
1804                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1805
1806         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1807
1808         vmx_clear_hlt(vcpu);
1809 }
1810
1811 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1812                                bool load_into_hardware)
1813 {
1814         struct vmx_uret_msr *uret_msr;
1815
1816         uret_msr = vmx_find_uret_msr(vmx, msr);
1817         if (!uret_msr)
1818                 return;
1819
1820         uret_msr->load_into_hardware = load_into_hardware;
1821 }
1822
1823 /*
1824  * Configuring user return MSRs to automatically save, load, and restore MSRs
1825  * that need to be shoved into hardware when running the guest.  Note, omitting
1826  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1827  * loaded into hardware when running the guest.
1828  */
1829 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1830 {
1831 #ifdef CONFIG_X86_64
1832         bool load_syscall_msrs;
1833
1834         /*
1835          * The SYSCALL MSRs are only needed on long mode guests, and only
1836          * when EFER.SCE is set.
1837          */
1838         load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1839                             (vmx->vcpu.arch.efer & EFER_SCE);
1840
1841         vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1842         vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1843         vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1844 #endif
1845         vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1846
1847         vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1848                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1849                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1850
1851         /*
1852          * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1853          * kernel and old userspace.  If those guests run on a tsx=off host, do
1854          * allow guests to use TSX_CTRL, but don't change the value in hardware
1855          * so that TSX remains always disabled.
1856          */
1857         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1858
1859         /*
1860          * The set of MSRs to load may have changed, reload MSRs before the
1861          * next VM-Enter.
1862          */
1863         vmx->guest_uret_msrs_loaded = false;
1864 }
1865
1866 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1867 {
1868         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1869
1870         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1871                 return vmcs12->tsc_offset;
1872
1873         return 0;
1874 }
1875
1876 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1877 {
1878         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1879
1880         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1881             nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1882                 return vmcs12->tsc_multiplier;
1883
1884         return kvm_caps.default_tsc_scaling_ratio;
1885 }
1886
1887 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1888 {
1889         vmcs_write64(TSC_OFFSET, offset);
1890 }
1891
1892 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1893 {
1894         vmcs_write64(TSC_MULTIPLIER, multiplier);
1895 }
1896
1897 /*
1898  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1899  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1900  * all guests if the "nested" module option is off, and can also be disabled
1901  * for a single guest by disabling its VMX cpuid bit.
1902  */
1903 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1904 {
1905         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1906 }
1907
1908 /*
1909  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1910  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1911  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1912  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1913  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1914  */
1915 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED                  | \
1916                                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX  | \
1917                                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1918                                         FEAT_CTL_SGX_LC_ENABLED          | \
1919                                         FEAT_CTL_SGX_ENABLED             | \
1920                                         FEAT_CTL_LMCE_ENABLED)
1921
1922 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1923                                                     struct msr_data *msr)
1924 {
1925         uint64_t valid_bits;
1926
1927         /*
1928          * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1929          * exposed to the guest.
1930          */
1931         WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1932                      ~KVM_SUPPORTED_FEATURE_CONTROL);
1933
1934         if (!msr->host_initiated &&
1935             (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1936                 return false;
1937
1938         if (msr->host_initiated)
1939                 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1940         else
1941                 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1942
1943         return !(msr->data & ~valid_bits);
1944 }
1945
1946 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1947 {
1948         switch (msr->index) {
1949         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1950                 if (!nested)
1951                         return 1;
1952                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1953         default:
1954                 return KVM_MSR_RET_INVALID;
1955         }
1956 }
1957
1958 /*
1959  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1960  * Returns 0 on success, non-0 otherwise.
1961  * Assumes vcpu_load() was already called.
1962  */
1963 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1964 {
1965         struct vcpu_vmx *vmx = to_vmx(vcpu);
1966         struct vmx_uret_msr *msr;
1967         u32 index;
1968
1969         switch (msr_info->index) {
1970 #ifdef CONFIG_X86_64
1971         case MSR_FS_BASE:
1972                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1973                 break;
1974         case MSR_GS_BASE:
1975                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1976                 break;
1977         case MSR_KERNEL_GS_BASE:
1978                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1979                 break;
1980 #endif
1981         case MSR_EFER:
1982                 return kvm_get_msr_common(vcpu, msr_info);
1983         case MSR_IA32_TSX_CTRL:
1984                 if (!msr_info->host_initiated &&
1985                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1986                         return 1;
1987                 goto find_uret_msr;
1988         case MSR_IA32_UMWAIT_CONTROL:
1989                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1990                         return 1;
1991
1992                 msr_info->data = vmx->msr_ia32_umwait_control;
1993                 break;
1994         case MSR_IA32_SPEC_CTRL:
1995                 if (!msr_info->host_initiated &&
1996                     !guest_has_spec_ctrl_msr(vcpu))
1997                         return 1;
1998
1999                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2000                 break;
2001         case MSR_IA32_SYSENTER_CS:
2002                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2003                 break;
2004         case MSR_IA32_SYSENTER_EIP:
2005                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2006                 break;
2007         case MSR_IA32_SYSENTER_ESP:
2008                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2009                 break;
2010         case MSR_IA32_BNDCFGS:
2011                 if (!kvm_mpx_supported() ||
2012                     (!msr_info->host_initiated &&
2013                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2014                         return 1;
2015                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2016                 break;
2017         case MSR_IA32_MCG_EXT_CTL:
2018                 if (!msr_info->host_initiated &&
2019                     !(vmx->msr_ia32_feature_control &
2020                       FEAT_CTL_LMCE_ENABLED))
2021                         return 1;
2022                 msr_info->data = vcpu->arch.mcg_ext_ctl;
2023                 break;
2024         case MSR_IA32_FEAT_CTL:
2025                 msr_info->data = vmx->msr_ia32_feature_control;
2026                 break;
2027         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2028                 if (!msr_info->host_initiated &&
2029                     !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2030                         return 1;
2031                 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2032                         [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2033                 break;
2034         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2035                 if (!nested_vmx_allowed(vcpu))
2036                         return 1;
2037                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2038                                     &msr_info->data))
2039                         return 1;
2040                 /*
2041                  * Enlightened VMCS v1 doesn't have certain VMCS fields but
2042                  * instead of just ignoring the features, different Hyper-V
2043                  * versions are either trying to use them and fail or do some
2044                  * sanity checking and refuse to boot. Filter all unsupported
2045                  * features out.
2046                  */
2047                 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2048                         nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2049                                                         &msr_info->data);
2050                 break;
2051         case MSR_IA32_RTIT_CTL:
2052                 if (!vmx_pt_mode_is_host_guest())
2053                         return 1;
2054                 msr_info->data = vmx->pt_desc.guest.ctl;
2055                 break;
2056         case MSR_IA32_RTIT_STATUS:
2057                 if (!vmx_pt_mode_is_host_guest())
2058                         return 1;
2059                 msr_info->data = vmx->pt_desc.guest.status;
2060                 break;
2061         case MSR_IA32_RTIT_CR3_MATCH:
2062                 if (!vmx_pt_mode_is_host_guest() ||
2063                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2064                                                 PT_CAP_cr3_filtering))
2065                         return 1;
2066                 msr_info->data = vmx->pt_desc.guest.cr3_match;
2067                 break;
2068         case MSR_IA32_RTIT_OUTPUT_BASE:
2069                 if (!vmx_pt_mode_is_host_guest() ||
2070                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2071                                         PT_CAP_topa_output) &&
2072                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2073                                         PT_CAP_single_range_output)))
2074                         return 1;
2075                 msr_info->data = vmx->pt_desc.guest.output_base;
2076                 break;
2077         case MSR_IA32_RTIT_OUTPUT_MASK:
2078                 if (!vmx_pt_mode_is_host_guest() ||
2079                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2080                                         PT_CAP_topa_output) &&
2081                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2082                                         PT_CAP_single_range_output)))
2083                         return 1;
2084                 msr_info->data = vmx->pt_desc.guest.output_mask;
2085                 break;
2086         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2087                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2088                 if (!vmx_pt_mode_is_host_guest() ||
2089                     (index >= 2 * vmx->pt_desc.num_address_ranges))
2090                         return 1;
2091                 if (index % 2)
2092                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2093                 else
2094                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2095                 break;
2096         case MSR_IA32_DEBUGCTLMSR:
2097                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2098                 break;
2099         default:
2100         find_uret_msr:
2101                 msr = vmx_find_uret_msr(vmx, msr_info->index);
2102                 if (msr) {
2103                         msr_info->data = msr->data;
2104                         break;
2105                 }
2106                 return kvm_get_msr_common(vcpu, msr_info);
2107         }
2108
2109         return 0;
2110 }
2111
2112 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2113                                                     u64 data)
2114 {
2115 #ifdef CONFIG_X86_64
2116         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2117                 return (u32)data;
2118 #endif
2119         return (unsigned long)data;
2120 }
2121
2122 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2123 {
2124         u64 debugctl = 0;
2125
2126         if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2127             (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2128                 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2129
2130         if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2131             (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2132                 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2133
2134         return debugctl;
2135 }
2136
2137 /*
2138  * Writes msr value into the appropriate "register".
2139  * Returns 0 on success, non-0 otherwise.
2140  * Assumes vcpu_load() was already called.
2141  */
2142 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2143 {
2144         struct vcpu_vmx *vmx = to_vmx(vcpu);
2145         struct vmx_uret_msr *msr;
2146         int ret = 0;
2147         u32 msr_index = msr_info->index;
2148         u64 data = msr_info->data;
2149         u32 index;
2150
2151         switch (msr_index) {
2152         case MSR_EFER:
2153                 ret = kvm_set_msr_common(vcpu, msr_info);
2154                 break;
2155 #ifdef CONFIG_X86_64
2156         case MSR_FS_BASE:
2157                 vmx_segment_cache_clear(vmx);
2158                 vmcs_writel(GUEST_FS_BASE, data);
2159                 break;
2160         case MSR_GS_BASE:
2161                 vmx_segment_cache_clear(vmx);
2162                 vmcs_writel(GUEST_GS_BASE, data);
2163                 break;
2164         case MSR_KERNEL_GS_BASE:
2165                 vmx_write_guest_kernel_gs_base(vmx, data);
2166                 break;
2167         case MSR_IA32_XFD:
2168                 ret = kvm_set_msr_common(vcpu, msr_info);
2169                 /*
2170                  * Always intercepting WRMSR could incur non-negligible
2171                  * overhead given xfd might be changed frequently in
2172                  * guest context switch. Disable write interception
2173                  * upon the first write with a non-zero value (indicating
2174                  * potential usage on dynamic xfeatures). Also update
2175                  * exception bitmap to trap #NM for proper virtualization
2176                  * of guest xfd_err.
2177                  */
2178                 if (!ret && data) {
2179                         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2180                                                       MSR_TYPE_RW);
2181                         vcpu->arch.xfd_no_write_intercept = true;
2182                         vmx_update_exception_bitmap(vcpu);
2183                 }
2184                 break;
2185 #endif
2186         case MSR_IA32_SYSENTER_CS:
2187                 if (is_guest_mode(vcpu))
2188                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
2189                 vmcs_write32(GUEST_SYSENTER_CS, data);
2190                 break;
2191         case MSR_IA32_SYSENTER_EIP:
2192                 if (is_guest_mode(vcpu)) {
2193                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2194                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
2195                 }
2196                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2197                 break;
2198         case MSR_IA32_SYSENTER_ESP:
2199                 if (is_guest_mode(vcpu)) {
2200                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2201                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2202                 }
2203                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2204                 break;
2205         case MSR_IA32_DEBUGCTLMSR: {
2206                 u64 invalid;
2207
2208                 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2209                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2210                         kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2211                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2212                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2213                 }
2214
2215                 if (invalid)
2216                         return 1;
2217
2218                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2219                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2220                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2221
2222                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2223                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2224                     (data & DEBUGCTLMSR_LBR))
2225                         intel_pmu_create_guest_lbr_event(vcpu);
2226                 return 0;
2227         }
2228         case MSR_IA32_BNDCFGS:
2229                 if (!kvm_mpx_supported() ||
2230                     (!msr_info->host_initiated &&
2231                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2232                         return 1;
2233                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2234                     (data & MSR_IA32_BNDCFGS_RSVD))
2235                         return 1;
2236
2237                 if (is_guest_mode(vcpu) &&
2238                     ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2239                      (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2240                         get_vmcs12(vcpu)->guest_bndcfgs = data;
2241
2242                 vmcs_write64(GUEST_BNDCFGS, data);
2243                 break;
2244         case MSR_IA32_UMWAIT_CONTROL:
2245                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2246                         return 1;
2247
2248                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2249                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2250                         return 1;
2251
2252                 vmx->msr_ia32_umwait_control = data;
2253                 break;
2254         case MSR_IA32_SPEC_CTRL:
2255                 if (!msr_info->host_initiated &&
2256                     !guest_has_spec_ctrl_msr(vcpu))
2257                         return 1;
2258
2259                 if (kvm_spec_ctrl_test_value(data))
2260                         return 1;
2261
2262                 vmx->spec_ctrl = data;
2263                 if (!data)
2264                         break;
2265
2266                 /*
2267                  * For non-nested:
2268                  * When it's written (to non-zero) for the first time, pass
2269                  * it through.
2270                  *
2271                  * For nested:
2272                  * The handling of the MSR bitmap for L2 guests is done in
2273                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2274                  * vmcs02.msr_bitmap here since it gets completely overwritten
2275                  * in the merging. We update the vmcs01 here for L1 as well
2276                  * since it will end up touching the MSR anyway now.
2277                  */
2278                 vmx_disable_intercept_for_msr(vcpu,
2279                                               MSR_IA32_SPEC_CTRL,
2280                                               MSR_TYPE_RW);
2281                 break;
2282         case MSR_IA32_TSX_CTRL:
2283                 if (!msr_info->host_initiated &&
2284                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2285                         return 1;
2286                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2287                         return 1;
2288                 goto find_uret_msr;
2289         case MSR_IA32_CR_PAT:
2290                 ret = kvm_set_msr_common(vcpu, msr_info);
2291                 if (ret)
2292                         break;
2293
2294                 if (is_guest_mode(vcpu) &&
2295                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2296                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2297
2298                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2299                         vmcs_write64(GUEST_IA32_PAT, data);
2300                 break;
2301         case MSR_IA32_MCG_EXT_CTL:
2302                 if ((!msr_info->host_initiated &&
2303                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2304                        FEAT_CTL_LMCE_ENABLED)) ||
2305                     (data & ~MCG_EXT_CTL_LMCE_EN))
2306                         return 1;
2307                 vcpu->arch.mcg_ext_ctl = data;
2308                 break;
2309         case MSR_IA32_FEAT_CTL:
2310                 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2311                         return 1;
2312
2313                 vmx->msr_ia32_feature_control = data;
2314                 if (msr_info->host_initiated && data == 0)
2315                         vmx_leave_nested(vcpu);
2316
2317                 /* SGX may be enabled/disabled by guest's firmware */
2318                 vmx_write_encls_bitmap(vcpu, NULL);
2319                 break;
2320         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2321                 /*
2322                  * On real hardware, the LE hash MSRs are writable before
2323                  * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2324                  * at which point SGX related bits in IA32_FEATURE_CONTROL
2325                  * become writable.
2326                  *
2327                  * KVM does not emulate SGX activation for simplicity, so
2328                  * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2329                  * is unlocked.  This is technically not architectural
2330                  * behavior, but it's close enough.
2331                  */
2332                 if (!msr_info->host_initiated &&
2333                     (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2334                     ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2335                     !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2336                         return 1;
2337                 vmx->msr_ia32_sgxlepubkeyhash
2338                         [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2339                 break;
2340         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2341                 if (!msr_info->host_initiated)
2342                         return 1; /* they are read-only */
2343                 if (!nested_vmx_allowed(vcpu))
2344                         return 1;
2345                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2346         case MSR_IA32_RTIT_CTL:
2347                 if (!vmx_pt_mode_is_host_guest() ||
2348                         vmx_rtit_ctl_check(vcpu, data) ||
2349                         vmx->nested.vmxon)
2350                         return 1;
2351                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2352                 vmx->pt_desc.guest.ctl = data;
2353                 pt_update_intercept_for_msr(vcpu);
2354                 break;
2355         case MSR_IA32_RTIT_STATUS:
2356                 if (!pt_can_write_msr(vmx))
2357                         return 1;
2358                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2359                         return 1;
2360                 vmx->pt_desc.guest.status = data;
2361                 break;
2362         case MSR_IA32_RTIT_CR3_MATCH:
2363                 if (!pt_can_write_msr(vmx))
2364                         return 1;
2365                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2366                                            PT_CAP_cr3_filtering))
2367                         return 1;
2368                 vmx->pt_desc.guest.cr3_match = data;
2369                 break;
2370         case MSR_IA32_RTIT_OUTPUT_BASE:
2371                 if (!pt_can_write_msr(vmx))
2372                         return 1;
2373                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2374                                            PT_CAP_topa_output) &&
2375                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2376                                            PT_CAP_single_range_output))
2377                         return 1;
2378                 if (!pt_output_base_valid(vcpu, data))
2379                         return 1;
2380                 vmx->pt_desc.guest.output_base = data;
2381                 break;
2382         case MSR_IA32_RTIT_OUTPUT_MASK:
2383                 if (!pt_can_write_msr(vmx))
2384                         return 1;
2385                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2386                                            PT_CAP_topa_output) &&
2387                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2388                                            PT_CAP_single_range_output))
2389                         return 1;
2390                 vmx->pt_desc.guest.output_mask = data;
2391                 break;
2392         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2393                 if (!pt_can_write_msr(vmx))
2394                         return 1;
2395                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2396                 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2397                         return 1;
2398                 if (is_noncanonical_address(data, vcpu))
2399                         return 1;
2400                 if (index % 2)
2401                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2402                 else
2403                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2404                 break;
2405         case MSR_IA32_PERF_CAPABILITIES:
2406                 if (data && !vcpu_to_pmu(vcpu)->version)
2407                         return 1;
2408                 if (data & PMU_CAP_LBR_FMT) {
2409                         if ((data & PMU_CAP_LBR_FMT) !=
2410                             (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2411                                 return 1;
2412                         if (!cpuid_model_is_consistent(vcpu))
2413                                 return 1;
2414                 }
2415                 if (data & PERF_CAP_PEBS_FORMAT) {
2416                         if ((data & PERF_CAP_PEBS_MASK) !=
2417                             (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2418                                 return 1;
2419                         if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2420                                 return 1;
2421                         if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2422                                 return 1;
2423                         if (!cpuid_model_is_consistent(vcpu))
2424                                 return 1;
2425                 }
2426                 ret = kvm_set_msr_common(vcpu, msr_info);
2427                 break;
2428
2429         default:
2430         find_uret_msr:
2431                 msr = vmx_find_uret_msr(vmx, msr_index);
2432                 if (msr)
2433                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2434                 else
2435                         ret = kvm_set_msr_common(vcpu, msr_info);
2436         }
2437
2438         /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2439         if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2440                 vmx_update_fb_clear_dis(vcpu, vmx);
2441
2442         return ret;
2443 }
2444
2445 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2446 {
2447         unsigned long guest_owned_bits;
2448
2449         kvm_register_mark_available(vcpu, reg);
2450
2451         switch (reg) {
2452         case VCPU_REGS_RSP:
2453                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2454                 break;
2455         case VCPU_REGS_RIP:
2456                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2457                 break;
2458         case VCPU_EXREG_PDPTR:
2459                 if (enable_ept)
2460                         ept_save_pdptrs(vcpu);
2461                 break;
2462         case VCPU_EXREG_CR0:
2463                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2464
2465                 vcpu->arch.cr0 &= ~guest_owned_bits;
2466                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2467                 break;
2468         case VCPU_EXREG_CR3:
2469                 /*
2470                  * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2471                  * CR3 is loaded into hardware, not the guest's CR3.
2472                  */
2473                 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2474                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2475                 break;
2476         case VCPU_EXREG_CR4:
2477                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2478
2479                 vcpu->arch.cr4 &= ~guest_owned_bits;
2480                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2481                 break;
2482         default:
2483                 KVM_BUG_ON(1, vcpu->kvm);
2484                 break;
2485         }
2486 }
2487
2488 /*
2489  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2490  * directly instead of going through cpu_has(), to ensure KVM is trapping
2491  * ENCLS whenever it's supported in hardware.  It does not matter whether
2492  * the host OS supports or has enabled SGX.
2493  */
2494 static bool cpu_has_sgx(void)
2495 {
2496         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2497 }
2498
2499 /*
2500  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2501  * can't be used due to errata where VM Exit may incorrectly clear
2502  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2503  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2504  */
2505 static bool cpu_has_perf_global_ctrl_bug(void)
2506 {
2507         if (boot_cpu_data.x86 == 0x6) {
2508                 switch (boot_cpu_data.x86_model) {
2509                 case INTEL_FAM6_NEHALEM_EP:     /* AAK155 */
2510                 case INTEL_FAM6_NEHALEM:        /* AAP115 */
2511                 case INTEL_FAM6_WESTMERE:       /* AAT100 */
2512                 case INTEL_FAM6_WESTMERE_EP:    /* BC86,AAY89,BD102 */
2513                 case INTEL_FAM6_NEHALEM_EX:     /* BA97 */
2514                         return true;
2515                 default:
2516                         break;
2517                 }
2518         }
2519
2520         return false;
2521 }
2522
2523 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2524 {
2525         u32 vmx_msr_low, vmx_msr_high;
2526         u32 ctl = ctl_min | ctl_opt;
2527
2528         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2529
2530         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2531         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2532
2533         /* Ensure minimum (required) set of control bits are supported. */
2534         if (ctl_min & ~ctl)
2535                 return -EIO;
2536
2537         *result = ctl;
2538         return 0;
2539 }
2540
2541 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2542 {
2543         u64 allowed;
2544
2545         rdmsrl(msr, allowed);
2546
2547         return  ctl_opt & allowed;
2548 }
2549
2550 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2551                              struct vmx_capability *vmx_cap)
2552 {
2553         u32 vmx_msr_low, vmx_msr_high;
2554         u32 _pin_based_exec_control = 0;
2555         u32 _cpu_based_exec_control = 0;
2556         u32 _cpu_based_2nd_exec_control = 0;
2557         u64 _cpu_based_3rd_exec_control = 0;
2558         u32 _vmexit_control = 0;
2559         u32 _vmentry_control = 0;
2560         u64 misc_msr;
2561         int i;
2562
2563         /*
2564          * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2565          * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2566          * intercepts writes to PAT and EFER, i.e. never enables those controls.
2567          */
2568         struct {
2569                 u32 entry_control;
2570                 u32 exit_control;
2571         } const vmcs_entry_exit_pairs[] = {
2572                 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,  VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2573                 { VM_ENTRY_LOAD_IA32_PAT,               VM_EXIT_LOAD_IA32_PAT },
2574                 { VM_ENTRY_LOAD_IA32_EFER,              VM_EXIT_LOAD_IA32_EFER },
2575                 { VM_ENTRY_LOAD_BNDCFGS,                VM_EXIT_CLEAR_BNDCFGS },
2576                 { VM_ENTRY_LOAD_IA32_RTIT_CTL,          VM_EXIT_CLEAR_IA32_RTIT_CTL },
2577         };
2578
2579         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2580
2581         if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2582                                 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2583                                 MSR_IA32_VMX_PROCBASED_CTLS,
2584                                 &_cpu_based_exec_control))
2585                 return -EIO;
2586         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2587                 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2588                                         KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2589                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2590                                         &_cpu_based_2nd_exec_control))
2591                         return -EIO;
2592         }
2593 #ifndef CONFIG_X86_64
2594         if (!(_cpu_based_2nd_exec_control &
2595                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2596                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2597 #endif
2598
2599         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2600                 _cpu_based_2nd_exec_control &= ~(
2601                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2602                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2603                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2604
2605         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2606                 &vmx_cap->ept, &vmx_cap->vpid);
2607
2608         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2609             vmx_cap->ept) {
2610                 pr_warn_once("EPT CAP should not exist if not support "
2611                                 "1-setting enable EPT VM-execution control\n");
2612
2613                 if (error_on_inconsistent_vmcs_config)
2614                         return -EIO;
2615
2616                 vmx_cap->ept = 0;
2617         }
2618         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2619             vmx_cap->vpid) {
2620                 pr_warn_once("VPID CAP should not exist if not support "
2621                                 "1-setting enable VPID VM-execution control\n");
2622
2623                 if (error_on_inconsistent_vmcs_config)
2624                         return -EIO;
2625
2626                 vmx_cap->vpid = 0;
2627         }
2628
2629         if (!cpu_has_sgx())
2630                 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2631
2632         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2633                 _cpu_based_3rd_exec_control =
2634                         adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2635                                               MSR_IA32_VMX_PROCBASED_CTLS3);
2636
2637         if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2638                                 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2639                                 MSR_IA32_VMX_EXIT_CTLS,
2640                                 &_vmexit_control))
2641                 return -EIO;
2642
2643         if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2644                                 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2645                                 MSR_IA32_VMX_PINBASED_CTLS,
2646                                 &_pin_based_exec_control))
2647                 return -EIO;
2648
2649         if (cpu_has_broken_vmx_preemption_timer())
2650                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2651         if (!(_cpu_based_2nd_exec_control &
2652                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2653                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2654
2655         if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2656                                 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2657                                 MSR_IA32_VMX_ENTRY_CTLS,
2658                                 &_vmentry_control))
2659                 return -EIO;
2660
2661         for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2662                 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2663                 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2664
2665                 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2666                         continue;
2667
2668                 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2669                              _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2670
2671                 if (error_on_inconsistent_vmcs_config)
2672                         return -EIO;
2673
2674                 _vmentry_control &= ~n_ctrl;
2675                 _vmexit_control &= ~x_ctrl;
2676         }
2677
2678         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2679
2680         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2681         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2682                 return -EIO;
2683
2684 #ifdef CONFIG_X86_64
2685         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2686         if (vmx_msr_high & (1u<<16))
2687                 return -EIO;
2688 #endif
2689
2690         /* Require Write-Back (WB) memory type for VMCS accesses. */
2691         if (((vmx_msr_high >> 18) & 15) != 6)
2692                 return -EIO;
2693
2694         rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2695
2696         vmcs_conf->size = vmx_msr_high & 0x1fff;
2697         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2698
2699         vmcs_conf->revision_id = vmx_msr_low;
2700
2701         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2702         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2703         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2704         vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2705         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2706         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2707         vmcs_conf->misc = misc_msr;
2708
2709 #if IS_ENABLED(CONFIG_HYPERV)
2710         if (enlightened_vmcs)
2711                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2712 #endif
2713
2714         return 0;
2715 }
2716
2717 static bool kvm_is_vmx_supported(void)
2718 {
2719         int cpu = raw_smp_processor_id();
2720
2721         if (!cpu_has_vmx()) {
2722                 pr_err("VMX not supported by CPU %d\n", cpu);
2723                 return false;
2724         }
2725
2726         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2727             !this_cpu_has(X86_FEATURE_VMX)) {
2728                 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2729                 return false;
2730         }
2731
2732         return true;
2733 }
2734
2735 static int vmx_check_processor_compat(void)
2736 {
2737         int cpu = raw_smp_processor_id();
2738         struct vmcs_config vmcs_conf;
2739         struct vmx_capability vmx_cap;
2740
2741         if (!kvm_is_vmx_supported())
2742                 return -EIO;
2743
2744         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2745                 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2746                 return -EIO;
2747         }
2748         if (nested)
2749                 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2750         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2751                 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2752                 return -EIO;
2753         }
2754         return 0;
2755 }
2756
2757 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2758 {
2759         u64 msr;
2760
2761         cr4_set_bits(X86_CR4_VMXE);
2762
2763         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2764                           _ASM_EXTABLE(1b, %l[fault])
2765                           : : [vmxon_pointer] "m"(vmxon_pointer)
2766                           : : fault);
2767         return 0;
2768
2769 fault:
2770         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2771                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2772         cr4_clear_bits(X86_CR4_VMXE);
2773
2774         return -EFAULT;
2775 }
2776
2777 static int vmx_hardware_enable(void)
2778 {
2779         int cpu = raw_smp_processor_id();
2780         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2781         int r;
2782
2783         if (cr4_read_shadow() & X86_CR4_VMXE)
2784                 return -EBUSY;
2785
2786         /*
2787          * This can happen if we hot-added a CPU but failed to allocate
2788          * VP assist page for it.
2789          */
2790         if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2791                 return -EFAULT;
2792
2793         intel_pt_handle_vmx(1);
2794
2795         r = kvm_cpu_vmxon(phys_addr);
2796         if (r) {
2797                 intel_pt_handle_vmx(0);
2798                 return r;
2799         }
2800
2801         if (enable_ept)
2802                 ept_sync_global();
2803
2804         return 0;
2805 }
2806
2807 static void vmclear_local_loaded_vmcss(void)
2808 {
2809         int cpu = raw_smp_processor_id();
2810         struct loaded_vmcs *v, *n;
2811
2812         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2813                                  loaded_vmcss_on_cpu_link)
2814                 __loaded_vmcs_clear(v);
2815 }
2816
2817 static void vmx_hardware_disable(void)
2818 {
2819         vmclear_local_loaded_vmcss();
2820
2821         if (cpu_vmxoff())
2822                 kvm_spurious_fault();
2823
2824         hv_reset_evmcs();
2825
2826         intel_pt_handle_vmx(0);
2827 }
2828
2829 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2830 {
2831         int node = cpu_to_node(cpu);
2832         struct page *pages;
2833         struct vmcs *vmcs;
2834
2835         pages = __alloc_pages_node(node, flags, 0);
2836         if (!pages)
2837                 return NULL;
2838         vmcs = page_address(pages);
2839         memset(vmcs, 0, vmcs_config.size);
2840
2841         /* KVM supports Enlightened VMCS v1 only */
2842         if (kvm_is_using_evmcs())
2843                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2844         else
2845                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2846
2847         if (shadow)
2848                 vmcs->hdr.shadow_vmcs = 1;
2849         return vmcs;
2850 }
2851
2852 void free_vmcs(struct vmcs *vmcs)
2853 {
2854         free_page((unsigned long)vmcs);
2855 }
2856
2857 /*
2858  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2859  */
2860 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2861 {
2862         if (!loaded_vmcs->vmcs)
2863                 return;
2864         loaded_vmcs_clear(loaded_vmcs);
2865         free_vmcs(loaded_vmcs->vmcs);
2866         loaded_vmcs->vmcs = NULL;
2867         if (loaded_vmcs->msr_bitmap)
2868                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2869         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2870 }
2871
2872 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2873 {
2874         loaded_vmcs->vmcs = alloc_vmcs(false);
2875         if (!loaded_vmcs->vmcs)
2876                 return -ENOMEM;
2877
2878         vmcs_clear(loaded_vmcs->vmcs);
2879
2880         loaded_vmcs->shadow_vmcs = NULL;
2881         loaded_vmcs->hv_timer_soft_disabled = false;
2882         loaded_vmcs->cpu = -1;
2883         loaded_vmcs->launched = 0;
2884
2885         if (cpu_has_vmx_msr_bitmap()) {
2886                 loaded_vmcs->msr_bitmap = (unsigned long *)
2887                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2888                 if (!loaded_vmcs->msr_bitmap)
2889                         goto out_vmcs;
2890                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2891         }
2892
2893         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2894         memset(&loaded_vmcs->controls_shadow, 0,
2895                 sizeof(struct vmcs_controls_shadow));
2896
2897         return 0;
2898
2899 out_vmcs:
2900         free_loaded_vmcs(loaded_vmcs);
2901         return -ENOMEM;
2902 }
2903
2904 static void free_kvm_area(void)
2905 {
2906         int cpu;
2907
2908         for_each_possible_cpu(cpu) {
2909                 free_vmcs(per_cpu(vmxarea, cpu));
2910                 per_cpu(vmxarea, cpu) = NULL;
2911         }
2912 }
2913
2914 static __init int alloc_kvm_area(void)
2915 {
2916         int cpu;
2917
2918         for_each_possible_cpu(cpu) {
2919                 struct vmcs *vmcs;
2920
2921                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2922                 if (!vmcs) {
2923                         free_kvm_area();
2924                         return -ENOMEM;
2925                 }
2926
2927                 /*
2928                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2929                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2930                  * revision_id reported by MSR_IA32_VMX_BASIC.
2931                  *
2932                  * However, even though not explicitly documented by
2933                  * TLFS, VMXArea passed as VMXON argument should
2934                  * still be marked with revision_id reported by
2935                  * physical CPU.
2936                  */
2937                 if (kvm_is_using_evmcs())
2938                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2939
2940                 per_cpu(vmxarea, cpu) = vmcs;
2941         }
2942         return 0;
2943 }
2944
2945 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2946                 struct kvm_segment *save)
2947 {
2948         if (!emulate_invalid_guest_state) {
2949                 /*
2950                  * CS and SS RPL should be equal during guest entry according
2951                  * to VMX spec, but in reality it is not always so. Since vcpu
2952                  * is in the middle of the transition from real mode to
2953                  * protected mode it is safe to assume that RPL 0 is a good
2954                  * default value.
2955                  */
2956                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2957                         save->selector &= ~SEGMENT_RPL_MASK;
2958                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2959                 save->s = 1;
2960         }
2961         __vmx_set_segment(vcpu, save, seg);
2962 }
2963
2964 static void enter_pmode(struct kvm_vcpu *vcpu)
2965 {
2966         unsigned long flags;
2967         struct vcpu_vmx *vmx = to_vmx(vcpu);
2968
2969         /*
2970          * Update real mode segment cache. It may be not up-to-date if segment
2971          * register was written while vcpu was in a guest mode.
2972          */
2973         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2974         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2975         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2976         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2977         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2978         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2979
2980         vmx->rmode.vm86_active = 0;
2981
2982         __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2983
2984         flags = vmcs_readl(GUEST_RFLAGS);
2985         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2986         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2987         vmcs_writel(GUEST_RFLAGS, flags);
2988
2989         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2990                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2991
2992         vmx_update_exception_bitmap(vcpu);
2993
2994         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2995         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2996         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2997         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2998         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2999         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3000 }
3001
3002 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3003 {
3004         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3005         struct kvm_segment var = *save;
3006
3007         var.dpl = 0x3;
3008         if (seg == VCPU_SREG_CS)
3009                 var.type = 0x3;
3010
3011         if (!emulate_invalid_guest_state) {
3012                 var.selector = var.base >> 4;
3013                 var.base = var.base & 0xffff0;
3014                 var.limit = 0xffff;
3015                 var.g = 0;
3016                 var.db = 0;
3017                 var.present = 1;
3018                 var.s = 1;
3019                 var.l = 0;
3020                 var.unusable = 0;
3021                 var.type = 0x3;
3022                 var.avl = 0;
3023                 if (save->base & 0xf)
3024                         pr_warn_once("segment base is not paragraph aligned "
3025                                      "when entering protected mode (seg=%d)", seg);
3026         }
3027
3028         vmcs_write16(sf->selector, var.selector);
3029         vmcs_writel(sf->base, var.base);
3030         vmcs_write32(sf->limit, var.limit);
3031         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3032 }
3033
3034 static void enter_rmode(struct kvm_vcpu *vcpu)
3035 {
3036         unsigned long flags;
3037         struct vcpu_vmx *vmx = to_vmx(vcpu);
3038         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3039
3040         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3041         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3042         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3043         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3044         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3045         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3046         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3047
3048         vmx->rmode.vm86_active = 1;
3049
3050         /*
3051          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3052          * vcpu. Warn the user that an update is overdue.
3053          */
3054         if (!kvm_vmx->tss_addr)
3055                 pr_warn_once("KVM_SET_TSS_ADDR needs to be called before running vCPU\n");
3056
3057         vmx_segment_cache_clear(vmx);
3058
3059         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3060         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3061         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3062
3063         flags = vmcs_readl(GUEST_RFLAGS);
3064         vmx->rmode.save_rflags = flags;
3065
3066         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3067
3068         vmcs_writel(GUEST_RFLAGS, flags);
3069         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3070         vmx_update_exception_bitmap(vcpu);
3071
3072         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3073         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3074         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3075         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3076         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3077         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3078 }
3079
3080 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3081 {
3082         struct vcpu_vmx *vmx = to_vmx(vcpu);
3083
3084         /* Nothing to do if hardware doesn't support EFER. */
3085         if (!vmx_find_uret_msr(vmx, MSR_EFER))
3086                 return 0;
3087
3088         vcpu->arch.efer = efer;
3089 #ifdef CONFIG_X86_64
3090         if (efer & EFER_LMA)
3091                 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3092         else
3093                 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3094 #else
3095         if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3096                 return 1;
3097 #endif
3098
3099         vmx_setup_uret_msrs(vmx);
3100         return 0;
3101 }
3102
3103 #ifdef CONFIG_X86_64
3104
3105 static void enter_lmode(struct kvm_vcpu *vcpu)
3106 {
3107         u32 guest_tr_ar;
3108
3109         vmx_segment_cache_clear(to_vmx(vcpu));
3110
3111         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3112         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3113                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3114                                      __func__);
3115                 vmcs_write32(GUEST_TR_AR_BYTES,
3116                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3117                              | VMX_AR_TYPE_BUSY_64_TSS);
3118         }
3119         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3120 }
3121
3122 static void exit_lmode(struct kvm_vcpu *vcpu)
3123 {
3124         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3125 }
3126
3127 #endif
3128
3129 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3130 {
3131         struct vcpu_vmx *vmx = to_vmx(vcpu);
3132
3133         /*
3134          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3135          * the CPU is not required to invalidate guest-physical mappings on
3136          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3137          * associated with the root EPT structure and not any particular VPID
3138          * (INVVPID also isn't required to invalidate guest-physical mappings).
3139          */
3140         if (enable_ept) {
3141                 ept_sync_global();
3142         } else if (enable_vpid) {
3143                 if (cpu_has_vmx_invvpid_global()) {
3144                         vpid_sync_vcpu_global();
3145                 } else {
3146                         vpid_sync_vcpu_single(vmx->vpid);
3147                         vpid_sync_vcpu_single(vmx->nested.vpid02);
3148                 }
3149         }
3150 }
3151
3152 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3153 {
3154         if (is_guest_mode(vcpu))
3155                 return nested_get_vpid02(vcpu);
3156         return to_vmx(vcpu)->vpid;
3157 }
3158
3159 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3160 {
3161         struct kvm_mmu *mmu = vcpu->arch.mmu;
3162         u64 root_hpa = mmu->root.hpa;
3163
3164         /* No flush required if the current context is invalid. */
3165         if (!VALID_PAGE(root_hpa))
3166                 return;
3167
3168         if (enable_ept)
3169                 ept_sync_context(construct_eptp(vcpu, root_hpa,
3170                                                 mmu->root_role.level));
3171         else
3172                 vpid_sync_context(vmx_get_current_vpid(vcpu));
3173 }
3174
3175 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3176 {
3177         /*
3178          * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3179          * vmx_flush_tlb_guest() for an explanation of why this is ok.
3180          */
3181         vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3182 }
3183
3184 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3185 {
3186         /*
3187          * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3188          * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3189          * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3190          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3191          * i.e. no explicit INVVPID is necessary.
3192          */
3193         vpid_sync_context(vmx_get_current_vpid(vcpu));
3194 }
3195
3196 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3197 {
3198         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3199
3200         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3201                 return;
3202
3203         if (is_pae_paging(vcpu)) {
3204                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3205                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3206                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3207                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3208         }
3209 }
3210
3211 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3212 {
3213         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3214
3215         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3216                 return;
3217
3218         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3219         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3220         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3221         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3222
3223         kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3224 }
3225
3226 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3227                           CPU_BASED_CR3_STORE_EXITING)
3228
3229 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3230 {
3231         struct vcpu_vmx *vmx = to_vmx(vcpu);
3232         unsigned long hw_cr0, old_cr0_pg;
3233         u32 tmp;
3234
3235         old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3236
3237         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3238         if (is_unrestricted_guest(vcpu))
3239                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3240         else {
3241                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3242                 if (!enable_ept)
3243                         hw_cr0 |= X86_CR0_WP;
3244
3245                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3246                         enter_pmode(vcpu);
3247
3248                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3249                         enter_rmode(vcpu);
3250         }
3251
3252         vmcs_writel(CR0_READ_SHADOW, cr0);
3253         vmcs_writel(GUEST_CR0, hw_cr0);
3254         vcpu->arch.cr0 = cr0;
3255         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3256
3257 #ifdef CONFIG_X86_64
3258         if (vcpu->arch.efer & EFER_LME) {
3259                 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3260                         enter_lmode(vcpu);
3261                 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3262                         exit_lmode(vcpu);
3263         }
3264 #endif
3265
3266         if (enable_ept && !is_unrestricted_guest(vcpu)) {
3267                 /*
3268                  * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3269                  * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3270                  * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3271                  * KVM's CR3 is installed.
3272                  */
3273                 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3274                         vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3275
3276                 /*
3277                  * When running with EPT but not unrestricted guest, KVM must
3278                  * intercept CR3 accesses when paging is _disabled_.  This is
3279                  * necessary because restricted guests can't actually run with
3280                  * paging disabled, and so KVM stuffs its own CR3 in order to
3281                  * run the guest when identity mapped page tables.
3282                  *
3283                  * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3284                  * update, it may be stale with respect to CR3 interception,
3285                  * e.g. after nested VM-Enter.
3286                  *
3287                  * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3288                  * stores to forward them to L1, even if KVM does not need to
3289                  * intercept them to preserve its identity mapped page tables.
3290                  */
3291                 if (!(cr0 & X86_CR0_PG)) {
3292                         exec_controls_setbit(vmx, CR3_EXITING_BITS);
3293                 } else if (!is_guest_mode(vcpu)) {
3294                         exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3295                 } else {
3296                         tmp = exec_controls_get(vmx);
3297                         tmp &= ~CR3_EXITING_BITS;
3298                         tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3299                         exec_controls_set(vmx, tmp);
3300                 }
3301
3302                 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3303                 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3304                         vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3305
3306                 /*
3307                  * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3308                  * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3309                  */
3310                 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3311                         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3312         }
3313
3314         /* depends on vcpu->arch.cr0 to be set to a new value */
3315         vmx->emulation_required = vmx_emulation_required(vcpu);
3316 }
3317
3318 static int vmx_get_max_tdp_level(void)
3319 {
3320         if (cpu_has_vmx_ept_5levels())
3321                 return 5;
3322         return 4;
3323 }
3324
3325 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3326 {
3327         u64 eptp = VMX_EPTP_MT_WB;
3328
3329         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3330
3331         if (enable_ept_ad_bits &&
3332             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3333                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3334         eptp |= root_hpa;
3335
3336         return eptp;
3337 }
3338
3339 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3340                              int root_level)
3341 {
3342         struct kvm *kvm = vcpu->kvm;
3343         bool update_guest_cr3 = true;
3344         unsigned long guest_cr3;
3345         u64 eptp;
3346
3347         if (enable_ept) {
3348                 eptp = construct_eptp(vcpu, root_hpa, root_level);
3349                 vmcs_write64(EPT_POINTER, eptp);
3350
3351                 hv_track_root_tdp(vcpu, root_hpa);
3352
3353                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3354                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3355                 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3356                         guest_cr3 = vcpu->arch.cr3;
3357                 else /* vmcs.GUEST_CR3 is already up-to-date. */
3358                         update_guest_cr3 = false;
3359                 vmx_ept_load_pdptrs(vcpu);
3360         } else {
3361                 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3362         }
3363
3364         if (update_guest_cr3)
3365                 vmcs_writel(GUEST_CR3, guest_cr3);
3366 }
3367
3368
3369 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3370 {
3371         /*
3372          * We operate under the default treatment of SMM, so VMX cannot be
3373          * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3374          * i.e. is a reserved bit, is handled by common x86 code.
3375          */
3376         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3377                 return false;
3378
3379         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3380                 return false;
3381
3382         return true;
3383 }
3384
3385 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3386 {
3387         unsigned long old_cr4 = kvm_read_cr4(vcpu);
3388         struct vcpu_vmx *vmx = to_vmx(vcpu);
3389         unsigned long hw_cr4;
3390
3391         /*
3392          * Pass through host's Machine Check Enable value to hw_cr4, which
3393          * is in force while we are in guest mode.  Do not let guests control
3394          * this bit, even if host CR4.MCE == 0.
3395          */
3396         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3397         if (is_unrestricted_guest(vcpu))
3398                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3399         else if (vmx->rmode.vm86_active)
3400                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3401         else
3402                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3403
3404         if (vmx_umip_emulated()) {
3405                 if (cr4 & X86_CR4_UMIP) {
3406                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3407                         hw_cr4 &= ~X86_CR4_UMIP;
3408                 } else if (!is_guest_mode(vcpu) ||
3409                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3410                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3411                 }
3412         }
3413
3414         vcpu->arch.cr4 = cr4;
3415         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3416
3417         if (!is_unrestricted_guest(vcpu)) {
3418                 if (enable_ept) {
3419                         if (!is_paging(vcpu)) {
3420                                 hw_cr4 &= ~X86_CR4_PAE;
3421                                 hw_cr4 |= X86_CR4_PSE;
3422                         } else if (!(cr4 & X86_CR4_PAE)) {
3423                                 hw_cr4 &= ~X86_CR4_PAE;
3424                         }
3425                 }
3426
3427                 /*
3428                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3429                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3430                  * to be manually disabled when guest switches to non-paging
3431                  * mode.
3432                  *
3433                  * If !enable_unrestricted_guest, the CPU is always running
3434                  * with CR0.PG=1 and CR4 needs to be modified.
3435                  * If enable_unrestricted_guest, the CPU automatically
3436                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3437                  */
3438                 if (!is_paging(vcpu))
3439                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3440         }
3441
3442         vmcs_writel(CR4_READ_SHADOW, cr4);
3443         vmcs_writel(GUEST_CR4, hw_cr4);
3444
3445         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3446                 kvm_update_cpuid_runtime(vcpu);
3447 }
3448
3449 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3450 {
3451         struct vcpu_vmx *vmx = to_vmx(vcpu);
3452         u32 ar;
3453
3454         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3455                 *var = vmx->rmode.segs[seg];
3456                 if (seg == VCPU_SREG_TR
3457                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3458                         return;
3459                 var->base = vmx_read_guest_seg_base(vmx, seg);
3460                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3461                 return;
3462         }
3463         var->base = vmx_read_guest_seg_base(vmx, seg);
3464         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3465         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3466         ar = vmx_read_guest_seg_ar(vmx, seg);
3467         var->unusable = (ar >> 16) & 1;
3468         var->type = ar & 15;
3469         var->s = (ar >> 4) & 1;
3470         var->dpl = (ar >> 5) & 3;
3471         /*
3472          * Some userspaces do not preserve unusable property. Since usable
3473          * segment has to be present according to VMX spec we can use present
3474          * property to amend userspace bug by making unusable segment always
3475          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3476          * segment as unusable.
3477          */
3478         var->present = !var->unusable;
3479         var->avl = (ar >> 12) & 1;
3480         var->l = (ar >> 13) & 1;
3481         var->db = (ar >> 14) & 1;
3482         var->g = (ar >> 15) & 1;
3483 }
3484
3485 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3486 {
3487         struct kvm_segment s;
3488
3489         if (to_vmx(vcpu)->rmode.vm86_active) {
3490                 vmx_get_segment(vcpu, &s, seg);
3491                 return s.base;
3492         }
3493         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3494 }
3495
3496 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3497 {
3498         struct vcpu_vmx *vmx = to_vmx(vcpu);
3499
3500         if (unlikely(vmx->rmode.vm86_active))
3501                 return 0;
3502         else {
3503                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3504                 return VMX_AR_DPL(ar);
3505         }
3506 }
3507
3508 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3509 {
3510         u32 ar;
3511
3512         ar = var->type & 15;
3513         ar |= (var->s & 1) << 4;
3514         ar |= (var->dpl & 3) << 5;
3515         ar |= (var->present & 1) << 7;
3516         ar |= (var->avl & 1) << 12;
3517         ar |= (var->l & 1) << 13;
3518         ar |= (var->db & 1) << 14;
3519         ar |= (var->g & 1) << 15;
3520         ar |= (var->unusable || !var->present) << 16;
3521
3522         return ar;
3523 }
3524
3525 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3526 {
3527         struct vcpu_vmx *vmx = to_vmx(vcpu);
3528         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3529
3530         vmx_segment_cache_clear(vmx);
3531
3532         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3533                 vmx->rmode.segs[seg] = *var;
3534                 if (seg == VCPU_SREG_TR)
3535                         vmcs_write16(sf->selector, var->selector);
3536                 else if (var->s)
3537                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3538                 return;
3539         }
3540
3541         vmcs_writel(sf->base, var->base);
3542         vmcs_write32(sf->limit, var->limit);
3543         vmcs_write16(sf->selector, var->selector);
3544
3545         /*
3546          *   Fix the "Accessed" bit in AR field of segment registers for older
3547          * qemu binaries.
3548          *   IA32 arch specifies that at the time of processor reset the
3549          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3550          * is setting it to 0 in the userland code. This causes invalid guest
3551          * state vmexit when "unrestricted guest" mode is turned on.
3552          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3553          * tree. Newer qemu binaries with that qemu fix would not need this
3554          * kvm hack.
3555          */
3556         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3557                 var->type |= 0x1; /* Accessed */
3558
3559         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3560 }
3561
3562 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3563 {
3564         __vmx_set_segment(vcpu, var, seg);
3565
3566         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3567 }
3568
3569 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3570 {
3571         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3572
3573         *db = (ar >> 14) & 1;
3574         *l = (ar >> 13) & 1;
3575 }
3576
3577 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3578 {
3579         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3580         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3581 }
3582
3583 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3584 {
3585         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3586         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3587 }
3588
3589 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3590 {
3591         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3592         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3593 }
3594
3595 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3596 {
3597         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3598         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3599 }
3600
3601 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3602 {
3603         struct kvm_segment var;
3604         u32 ar;
3605
3606         vmx_get_segment(vcpu, &var, seg);
3607         var.dpl = 0x3;
3608         if (seg == VCPU_SREG_CS)
3609                 var.type = 0x3;
3610         ar = vmx_segment_access_rights(&var);
3611
3612         if (var.base != (var.selector << 4))
3613                 return false;
3614         if (var.limit != 0xffff)
3615                 return false;
3616         if (ar != 0xf3)
3617                 return false;
3618
3619         return true;
3620 }
3621
3622 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3623 {
3624         struct kvm_segment cs;
3625         unsigned int cs_rpl;
3626
3627         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3628         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3629
3630         if (cs.unusable)
3631                 return false;
3632         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3633                 return false;
3634         if (!cs.s)
3635                 return false;
3636         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3637                 if (cs.dpl > cs_rpl)
3638                         return false;
3639         } else {
3640                 if (cs.dpl != cs_rpl)
3641                         return false;
3642         }
3643         if (!cs.present)
3644                 return false;
3645
3646         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3647         return true;
3648 }
3649
3650 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3651 {
3652         struct kvm_segment ss;
3653         unsigned int ss_rpl;
3654
3655         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3656         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3657
3658         if (ss.unusable)
3659                 return true;
3660         if (ss.type != 3 && ss.type != 7)
3661                 return false;
3662         if (!ss.s)
3663                 return false;
3664         if (ss.dpl != ss_rpl) /* DPL != RPL */
3665                 return false;
3666         if (!ss.present)
3667                 return false;
3668
3669         return true;
3670 }
3671
3672 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3673 {
3674         struct kvm_segment var;
3675         unsigned int rpl;
3676
3677         vmx_get_segment(vcpu, &var, seg);
3678         rpl = var.selector & SEGMENT_RPL_MASK;
3679
3680         if (var.unusable)
3681                 return true;
3682         if (!var.s)
3683                 return false;
3684         if (!var.present)
3685                 return false;
3686         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3687                 if (var.dpl < rpl) /* DPL < RPL */
3688                         return false;
3689         }
3690
3691         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3692          * rights flags
3693          */
3694         return true;
3695 }
3696
3697 static bool tr_valid(struct kvm_vcpu *vcpu)
3698 {
3699         struct kvm_segment tr;
3700
3701         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3702
3703         if (tr.unusable)
3704                 return false;
3705         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3706                 return false;
3707         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3708                 return false;
3709         if (!tr.present)
3710                 return false;
3711
3712         return true;
3713 }
3714
3715 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3716 {
3717         struct kvm_segment ldtr;
3718
3719         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3720
3721         if (ldtr.unusable)
3722                 return true;
3723         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3724                 return false;
3725         if (ldtr.type != 2)
3726                 return false;
3727         if (!ldtr.present)
3728                 return false;
3729
3730         return true;
3731 }
3732
3733 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3734 {
3735         struct kvm_segment cs, ss;
3736
3737         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3738         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3739
3740         return ((cs.selector & SEGMENT_RPL_MASK) ==
3741                  (ss.selector & SEGMENT_RPL_MASK));
3742 }
3743
3744 /*
3745  * Check if guest state is valid. Returns true if valid, false if
3746  * not.
3747  * We assume that registers are always usable
3748  */
3749 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3750 {
3751         /* real mode guest state checks */
3752         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3753                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3754                         return false;
3755                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3756                         return false;
3757                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3758                         return false;
3759                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3760                         return false;
3761                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3762                         return false;
3763                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3764                         return false;
3765         } else {
3766         /* protected mode guest state checks */
3767                 if (!cs_ss_rpl_check(vcpu))
3768                         return false;
3769                 if (!code_segment_valid(vcpu))
3770                         return false;
3771                 if (!stack_segment_valid(vcpu))
3772                         return false;
3773                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3774                         return false;
3775                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3776                         return false;
3777                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3778                         return false;
3779                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3780                         return false;
3781                 if (!tr_valid(vcpu))
3782                         return false;
3783                 if (!ldtr_valid(vcpu))
3784                         return false;
3785         }
3786         /* TODO:
3787          * - Add checks on RIP
3788          * - Add checks on RFLAGS
3789          */
3790
3791         return true;
3792 }
3793
3794 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3795 {
3796         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3797         u16 data;
3798         int i;
3799
3800         for (i = 0; i < 3; i++) {
3801                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3802                         return -EFAULT;
3803         }
3804
3805         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3806         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3807                 return -EFAULT;
3808
3809         data = ~0;
3810         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3811                 return -EFAULT;
3812
3813         return 0;
3814 }
3815
3816 static int init_rmode_identity_map(struct kvm *kvm)
3817 {
3818         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3819         int i, r = 0;
3820         void __user *uaddr;
3821         u32 tmp;
3822
3823         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3824         mutex_lock(&kvm->slots_lock);
3825
3826         if (likely(kvm_vmx->ept_identity_pagetable_done))
3827                 goto out;
3828
3829         if (!kvm_vmx->ept_identity_map_addr)
3830                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3831
3832         uaddr = __x86_set_memory_region(kvm,
3833                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3834                                         kvm_vmx->ept_identity_map_addr,
3835                                         PAGE_SIZE);
3836         if (IS_ERR(uaddr)) {
3837                 r = PTR_ERR(uaddr);
3838                 goto out;
3839         }
3840
3841         /* Set up identity-mapping pagetable for EPT in real mode */
3842         for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3843                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3844                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3845                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3846                         r = -EFAULT;
3847                         goto out;
3848                 }
3849         }
3850         kvm_vmx->ept_identity_pagetable_done = true;
3851
3852 out:
3853         mutex_unlock(&kvm->slots_lock);
3854         return r;
3855 }
3856
3857 static void seg_setup(int seg)
3858 {
3859         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3860         unsigned int ar;
3861
3862         vmcs_write16(sf->selector, 0);
3863         vmcs_writel(sf->base, 0);
3864         vmcs_write32(sf->limit, 0xffff);
3865         ar = 0x93;
3866         if (seg == VCPU_SREG_CS)
3867                 ar |= 0x08; /* code segment */
3868
3869         vmcs_write32(sf->ar_bytes, ar);
3870 }
3871
3872 int allocate_vpid(void)
3873 {
3874         int vpid;
3875
3876         if (!enable_vpid)
3877                 return 0;
3878         spin_lock(&vmx_vpid_lock);
3879         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3880         if (vpid < VMX_NR_VPIDS)
3881                 __set_bit(vpid, vmx_vpid_bitmap);
3882         else
3883                 vpid = 0;
3884         spin_unlock(&vmx_vpid_lock);
3885         return vpid;
3886 }
3887
3888 void free_vpid(int vpid)
3889 {
3890         if (!enable_vpid || vpid == 0)
3891                 return;
3892         spin_lock(&vmx_vpid_lock);
3893         __clear_bit(vpid, vmx_vpid_bitmap);
3894         spin_unlock(&vmx_vpid_lock);
3895 }
3896
3897 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3898 {
3899         /*
3900          * When KVM is a nested hypervisor on top of Hyper-V and uses
3901          * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3902          * bitmap has changed.
3903          */
3904         if (kvm_is_using_evmcs()) {
3905                 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3906
3907                 if (evmcs->hv_enlightenments_control.msr_bitmap)
3908                         evmcs->hv_clean_fields &=
3909                                 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3910         }
3911
3912         vmx->nested.force_msr_bitmap_recalc = true;
3913 }
3914
3915 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3916 {
3917         struct vcpu_vmx *vmx = to_vmx(vcpu);
3918         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3919
3920         if (!cpu_has_vmx_msr_bitmap())
3921                 return;
3922
3923         vmx_msr_bitmap_l01_changed(vmx);
3924
3925         /*
3926          * Mark the desired intercept state in shadow bitmap, this is needed
3927          * for resync when the MSR filters change.
3928         */
3929         if (is_valid_passthrough_msr(msr)) {
3930                 int idx = possible_passthrough_msr_slot(msr);
3931
3932                 if (idx != -ENOENT) {
3933                         if (type & MSR_TYPE_R)
3934                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3935                         if (type & MSR_TYPE_W)
3936                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3937                 }
3938         }
3939
3940         if ((type & MSR_TYPE_R) &&
3941             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3942                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3943                 type &= ~MSR_TYPE_R;
3944         }
3945
3946         if ((type & MSR_TYPE_W) &&
3947             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3948                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3949                 type &= ~MSR_TYPE_W;
3950         }
3951
3952         if (type & MSR_TYPE_R)
3953                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3954
3955         if (type & MSR_TYPE_W)
3956                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3957 }
3958
3959 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3960 {
3961         struct vcpu_vmx *vmx = to_vmx(vcpu);
3962         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3963
3964         if (!cpu_has_vmx_msr_bitmap())
3965                 return;
3966
3967         vmx_msr_bitmap_l01_changed(vmx);
3968
3969         /*
3970          * Mark the desired intercept state in shadow bitmap, this is needed
3971          * for resync when the MSR filter changes.
3972         */
3973         if (is_valid_passthrough_msr(msr)) {
3974                 int idx = possible_passthrough_msr_slot(msr);
3975
3976                 if (idx != -ENOENT) {
3977                         if (type & MSR_TYPE_R)
3978                                 set_bit(idx, vmx->shadow_msr_intercept.read);
3979                         if (type & MSR_TYPE_W)
3980                                 set_bit(idx, vmx->shadow_msr_intercept.write);
3981                 }
3982         }
3983
3984         if (type & MSR_TYPE_R)
3985                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3986
3987         if (type & MSR_TYPE_W)
3988                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3989 }
3990
3991 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3992 {
3993         /*
3994          * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
3995          * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
3996          * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
3997          */
3998         const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
3999         const int write_idx = read_idx + (0x800 / sizeof(u64));
4000         struct vcpu_vmx *vmx = to_vmx(vcpu);
4001         u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4002         u8 mode;
4003
4004         if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4005                 return;
4006
4007         if (cpu_has_secondary_exec_ctrls() &&
4008             (secondary_exec_controls_get(vmx) &
4009              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4010                 mode = MSR_BITMAP_MODE_X2APIC;
4011                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4012                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4013         } else {
4014                 mode = 0;
4015         }
4016
4017         if (mode == vmx->x2apic_msr_bitmap_mode)
4018                 return;
4019
4020         vmx->x2apic_msr_bitmap_mode = mode;
4021
4022         /*
4023          * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4024          * registers (0x840 and above) intercepted, KVM doesn't support them.
4025          * Intercept all writes by default and poke holes as needed.  Pass
4026          * through reads for all valid registers by default in x2APIC+APICv
4027          * mode, only the current timer count needs on-demand emulation by KVM.
4028          */
4029         if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4030                 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4031         else
4032                 msr_bitmap[read_idx] = ~0ull;
4033         msr_bitmap[write_idx] = ~0ull;
4034
4035         /*
4036          * TPR reads and writes can be virtualized even if virtual interrupt
4037          * delivery is not in use.
4038          */
4039         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4040                                   !(mode & MSR_BITMAP_MODE_X2APIC));
4041
4042         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4043                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4044                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4045                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4046                 if (enable_ipiv)
4047                         vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4048         }
4049 }
4050
4051 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4052 {
4053         struct vcpu_vmx *vmx = to_vmx(vcpu);
4054         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4055         u32 i;
4056
4057         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4058         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4059         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4060         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4061         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4062                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4063                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4064         }
4065 }
4066
4067 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4068 {
4069         struct vcpu_vmx *vmx = to_vmx(vcpu);
4070         void *vapic_page;
4071         u32 vppr;
4072         int rvi;
4073
4074         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4075                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4076                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4077                 return false;
4078
4079         rvi = vmx_get_rvi();
4080
4081         vapic_page = vmx->nested.virtual_apic_map.hva;
4082         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4083
4084         return ((rvi & 0xf0) > (vppr & 0xf0));
4085 }
4086
4087 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4088 {
4089         struct vcpu_vmx *vmx = to_vmx(vcpu);
4090         u32 i;
4091
4092         /*
4093          * Redo intercept permissions for MSRs that KVM is passing through to
4094          * the guest.  Disabling interception will check the new MSR filter and
4095          * ensure that KVM enables interception if usersepace wants to filter
4096          * the MSR.  MSRs that KVM is already intercepting don't need to be
4097          * refreshed since KVM is going to intercept them regardless of what
4098          * userspace wants.
4099          */
4100         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4101                 u32 msr = vmx_possible_passthrough_msrs[i];
4102
4103                 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4104                         vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4105
4106                 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4107                         vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4108         }
4109
4110         /* PT MSRs can be passed through iff PT is exposed to the guest. */
4111         if (vmx_pt_mode_is_host_guest())
4112                 pt_update_intercept_for_msr(vcpu);
4113 }
4114
4115 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4116                                                      int pi_vec)
4117 {
4118 #ifdef CONFIG_SMP
4119         if (vcpu->mode == IN_GUEST_MODE) {
4120                 /*
4121                  * The vector of the virtual has already been set in the PIR.
4122                  * Send a notification event to deliver the virtual interrupt
4123                  * unless the vCPU is the currently running vCPU, i.e. the
4124                  * event is being sent from a fastpath VM-Exit handler, in
4125                  * which case the PIR will be synced to the vIRR before
4126                  * re-entering the guest.
4127                  *
4128                  * When the target is not the running vCPU, the following
4129                  * possibilities emerge:
4130                  *
4131                  * Case 1: vCPU stays in non-root mode. Sending a notification
4132                  * event posts the interrupt to the vCPU.
4133                  *
4134                  * Case 2: vCPU exits to root mode and is still runnable. The
4135                  * PIR will be synced to the vIRR before re-entering the guest.
4136                  * Sending a notification event is ok as the host IRQ handler
4137                  * will ignore the spurious event.
4138                  *
4139                  * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4140                  * has already synced PIR to vIRR and never blocks the vCPU if
4141                  * the vIRR is not empty. Therefore, a blocked vCPU here does
4142                  * not wait for any requested interrupts in PIR, and sending a
4143                  * notification event also results in a benign, spurious event.
4144                  */
4145
4146                 if (vcpu != kvm_get_running_vcpu())
4147                         apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4148                 return;
4149         }
4150 #endif
4151         /*
4152          * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4153          * otherwise do nothing as KVM will grab the highest priority pending
4154          * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4155          */
4156         kvm_vcpu_wake_up(vcpu);
4157 }
4158
4159 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4160                                                 int vector)
4161 {
4162         struct vcpu_vmx *vmx = to_vmx(vcpu);
4163
4164         if (is_guest_mode(vcpu) &&
4165             vector == vmx->nested.posted_intr_nv) {
4166                 /*
4167                  * If a posted intr is not recognized by hardware,
4168                  * we will accomplish it in the next vmentry.
4169                  */
4170                 vmx->nested.pi_pending = true;
4171                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4172
4173                 /*
4174                  * This pairs with the smp_mb_*() after setting vcpu->mode in
4175                  * vcpu_enter_guest() to guarantee the vCPU sees the event
4176                  * request if triggering a posted interrupt "fails" because
4177                  * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4178                  * the smb_wmb() in kvm_make_request() only ensures everything
4179                  * done before making the request is visible when the request
4180                  * is visible, it doesn't ensure ordering between the store to
4181                  * vcpu->requests and the load from vcpu->mode.
4182                  */
4183                 smp_mb__after_atomic();
4184
4185                 /* the PIR and ON have been set by L1. */
4186                 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4187                 return 0;
4188         }
4189         return -1;
4190 }
4191 /*
4192  * Send interrupt to vcpu via posted interrupt way.
4193  * 1. If target vcpu is running(non-root mode), send posted interrupt
4194  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4195  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4196  * interrupt from PIR in next vmentry.
4197  */
4198 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4199 {
4200         struct vcpu_vmx *vmx = to_vmx(vcpu);
4201         int r;
4202
4203         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4204         if (!r)
4205                 return 0;
4206
4207         /* Note, this is called iff the local APIC is in-kernel. */
4208         if (!vcpu->arch.apic->apicv_active)
4209                 return -1;
4210
4211         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4212                 return 0;
4213
4214         /* If a previous notification has sent the IPI, nothing to do.  */
4215         if (pi_test_and_set_on(&vmx->pi_desc))
4216                 return 0;
4217
4218         /*
4219          * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4220          * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4221          * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4222          * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4223          */
4224         kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4225         return 0;
4226 }
4227
4228 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4229                                   int trig_mode, int vector)
4230 {
4231         struct kvm_vcpu *vcpu = apic->vcpu;
4232
4233         if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4234                 kvm_lapic_set_irr(vector, apic);
4235                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4236                 kvm_vcpu_kick(vcpu);
4237         } else {
4238                 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4239                                            trig_mode, vector);
4240         }
4241 }
4242
4243 /*
4244  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4245  * will not change in the lifetime of the guest.
4246  * Note that host-state that does change is set elsewhere. E.g., host-state
4247  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4248  */
4249 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4250 {
4251         u32 low32, high32;
4252         unsigned long tmpl;
4253         unsigned long cr0, cr3, cr4;
4254
4255         cr0 = read_cr0();
4256         WARN_ON(cr0 & X86_CR0_TS);
4257         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4258
4259         /*
4260          * Save the most likely value for this task's CR3 in the VMCS.
4261          * We can't use __get_current_cr3_fast() because we're not atomic.
4262          */
4263         cr3 = __read_cr3();
4264         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4265         vmx->loaded_vmcs->host_state.cr3 = cr3;
4266
4267         /* Save the most likely value for this task's CR4 in the VMCS. */
4268         cr4 = cr4_read_shadow();
4269         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4270         vmx->loaded_vmcs->host_state.cr4 = cr4;
4271
4272         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4273 #ifdef CONFIG_X86_64
4274         /*
4275          * Load null selectors, so we can avoid reloading them in
4276          * vmx_prepare_switch_to_host(), in case userspace uses
4277          * the null selectors too (the expected case).
4278          */
4279         vmcs_write16(HOST_DS_SELECTOR, 0);
4280         vmcs_write16(HOST_ES_SELECTOR, 0);
4281 #else
4282         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4283         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4284 #endif
4285         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4286         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4287
4288         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4289
4290         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4291
4292         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4293         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4294
4295         /*
4296          * SYSENTER is used for 32-bit system calls on either 32-bit or
4297          * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4298          * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4299          * have already done so!).
4300          */
4301         if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4302                 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4303
4304         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4305         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4306
4307         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4308                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4309                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4310         }
4311
4312         if (cpu_has_load_ia32_efer())
4313                 vmcs_write64(HOST_IA32_EFER, host_efer);
4314 }
4315
4316 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4317 {
4318         struct kvm_vcpu *vcpu = &vmx->vcpu;
4319
4320         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4321                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4322         if (!enable_ept) {
4323                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4324                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4325         }
4326         if (is_guest_mode(&vmx->vcpu))
4327                 vcpu->arch.cr4_guest_owned_bits &=
4328                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4329         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4330 }
4331
4332 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4333 {
4334         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4335
4336         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4337                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4338
4339         if (!enable_vnmi)
4340                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4341
4342         if (!enable_preemption_timer)
4343                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4344
4345         return pin_based_exec_ctrl;
4346 }
4347
4348 static u32 vmx_vmentry_ctrl(void)
4349 {
4350         u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4351
4352         if (vmx_pt_mode_is_system())
4353                 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4354                                   VM_ENTRY_LOAD_IA32_RTIT_CTL);
4355         /*
4356          * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4357          */
4358         vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4359                           VM_ENTRY_LOAD_IA32_EFER |
4360                           VM_ENTRY_IA32E_MODE);
4361
4362         if (cpu_has_perf_global_ctrl_bug())
4363                 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4364
4365         return vmentry_ctrl;
4366 }
4367
4368 static u32 vmx_vmexit_ctrl(void)
4369 {
4370         u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4371
4372         /*
4373          * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4374          * nested virtualization and thus allowed to be set in vmcs12.
4375          */
4376         vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4377                          VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4378
4379         if (vmx_pt_mode_is_system())
4380                 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4381                                  VM_EXIT_CLEAR_IA32_RTIT_CTL);
4382
4383         if (cpu_has_perf_global_ctrl_bug())
4384                 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4385
4386         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4387         return vmexit_ctrl &
4388                 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4389 }
4390
4391 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4392 {
4393         struct vcpu_vmx *vmx = to_vmx(vcpu);
4394
4395         if (is_guest_mode(vcpu)) {
4396                 vmx->nested.update_vmcs01_apicv_status = true;
4397                 return;
4398         }
4399
4400         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4401
4402         if (kvm_vcpu_apicv_active(vcpu)) {
4403                 secondary_exec_controls_setbit(vmx,
4404                                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
4405                                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4406                 if (enable_ipiv)
4407                         tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4408         } else {
4409                 secondary_exec_controls_clearbit(vmx,
4410                                                  SECONDARY_EXEC_APIC_REGISTER_VIRT |
4411                                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4412                 if (enable_ipiv)
4413                         tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4414         }
4415
4416         vmx_update_msr_bitmap_x2apic(vcpu);
4417 }
4418
4419 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4420 {
4421         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4422
4423         /*
4424          * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4425          * vmcs12 and propagated to vmcs02 when set in vmcs12.
4426          */
4427         exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4428                           CPU_BASED_USE_IO_BITMAPS |
4429                           CPU_BASED_MONITOR_TRAP_FLAG |
4430                           CPU_BASED_PAUSE_EXITING);
4431
4432         /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4433         exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4434                           CPU_BASED_NMI_WINDOW_EXITING);
4435
4436         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4437                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4438
4439         if (!cpu_need_tpr_shadow(&vmx->vcpu))
4440                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4441
4442 #ifdef CONFIG_X86_64
4443         if (exec_control & CPU_BASED_TPR_SHADOW)
4444                 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4445                                   CPU_BASED_CR8_STORE_EXITING);
4446         else
4447                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4448                                 CPU_BASED_CR8_LOAD_EXITING;
4449 #endif
4450         /* No need to intercept CR3 access or INVPLG when using EPT. */
4451         if (enable_ept)
4452                 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4453                                   CPU_BASED_CR3_STORE_EXITING |
4454                                   CPU_BASED_INVLPG_EXITING);
4455         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4456                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4457                                 CPU_BASED_MONITOR_EXITING);
4458         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4459                 exec_control &= ~CPU_BASED_HLT_EXITING;
4460         return exec_control;
4461 }
4462
4463 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4464 {
4465         u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4466
4467         /*
4468          * IPI virtualization relies on APICv. Disable IPI virtualization if
4469          * APICv is inhibited.
4470          */
4471         if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4472                 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4473
4474         return exec_control;
4475 }
4476
4477 /*
4478  * Adjust a single secondary execution control bit to intercept/allow an
4479  * instruction in the guest.  This is usually done based on whether or not a
4480  * feature has been exposed to the guest in order to correctly emulate faults.
4481  */
4482 static inline void
4483 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4484                                   u32 control, bool enabled, bool exiting)
4485 {
4486         /*
4487          * If the control is for an opt-in feature, clear the control if the
4488          * feature is not exposed to the guest, i.e. not enabled.  If the
4489          * control is opt-out, i.e. an exiting control, clear the control if
4490          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4491          * disabled for the associated instruction.  Note, the caller is
4492          * responsible presetting exec_control to set all supported bits.
4493          */
4494         if (enabled == exiting)
4495                 *exec_control &= ~control;
4496
4497         /*
4498          * Update the nested MSR settings so that a nested VMM can/can't set
4499          * controls for features that are/aren't exposed to the guest.
4500          */
4501         if (nested) {
4502                 /*
4503                  * All features that can be added or removed to VMX MSRs must
4504                  * be supported in the first place for nested virtualization.
4505                  */
4506                 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4507                         enabled = false;
4508
4509                 if (enabled)
4510                         vmx->nested.msrs.secondary_ctls_high |= control;
4511                 else
4512                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4513         }
4514 }
4515
4516 /*
4517  * Wrapper macro for the common case of adjusting a secondary execution control
4518  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4519  * verifies that the control is actually supported by KVM and hardware.
4520  */
4521 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4522 ({                                                                       \
4523         bool __enabled;                                                  \
4524                                                                          \
4525         if (cpu_has_vmx_##name()) {                                      \
4526                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
4527                                             X86_FEATURE_##feat_name);    \
4528                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
4529                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4530         }                                                                \
4531 })
4532
4533 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4534 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4535         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4536
4537 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4538         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4539
4540 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4541 {
4542         struct kvm_vcpu *vcpu = &vmx->vcpu;
4543
4544         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4545
4546         if (vmx_pt_mode_is_system())
4547                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4548         if (!cpu_need_virtualize_apic_accesses(vcpu))
4549                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4550         if (vmx->vpid == 0)
4551                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4552         if (!enable_ept) {
4553                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4554                 enable_unrestricted_guest = 0;
4555         }
4556         if (!enable_unrestricted_guest)
4557                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4558         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4559                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4560         if (!kvm_vcpu_apicv_active(vcpu))
4561                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4562                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4563         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4564
4565         /*
4566          * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4567          * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4568          */
4569         exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4570
4571         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4572          * in vmx_set_cr4.  */
4573         exec_control &= ~SECONDARY_EXEC_DESC;
4574
4575         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4576            (handle_vmptrld).
4577            We can NOT enable shadow_vmcs here because we don't have yet
4578            a current VMCS12
4579         */
4580         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4581
4582         /*
4583          * PML is enabled/disabled when dirty logging of memsmlots changes, but
4584          * it needs to be set here when dirty logging is already active, e.g.
4585          * if this vCPU was created after dirty logging was enabled.
4586          */
4587         if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4588                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4589
4590         if (cpu_has_vmx_xsaves()) {
4591                 /* Exposing XSAVES only when XSAVE is exposed */
4592                 bool xsaves_enabled =
4593                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4594                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4595                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4596
4597                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4598
4599                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4600                                                   SECONDARY_EXEC_XSAVES,
4601                                                   xsaves_enabled, false);
4602         }
4603
4604         /*
4605          * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4606          * feature is exposed to the guest.  This creates a virtualization hole
4607          * if both are supported in hardware but only one is exposed to the
4608          * guest, but letting the guest execute RDTSCP or RDPID when either one
4609          * is advertised is preferable to emulating the advertised instruction
4610          * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4611          */
4612         if (cpu_has_vmx_rdtscp()) {
4613                 bool rdpid_or_rdtscp_enabled =
4614                         guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4615                         guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4616
4617                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4618                                                   SECONDARY_EXEC_ENABLE_RDTSCP,
4619                                                   rdpid_or_rdtscp_enabled, false);
4620         }
4621         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4622
4623         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4624         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4625
4626         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4627                                     ENABLE_USR_WAIT_PAUSE, false);
4628
4629         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4630                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4631
4632         if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4633                 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4634
4635         return exec_control;
4636 }
4637
4638 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4639 {
4640         return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4641 }
4642
4643 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4644 {
4645         struct page *pages;
4646         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4647
4648         if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4649                 return 0;
4650
4651         if (kvm_vmx->pid_table)
4652                 return 0;
4653
4654         pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4655         if (!pages)
4656                 return -ENOMEM;
4657
4658         kvm_vmx->pid_table = (void *)page_address(pages);
4659         return 0;
4660 }
4661
4662 static int vmx_vcpu_precreate(struct kvm *kvm)
4663 {
4664         return vmx_alloc_ipiv_pid_table(kvm);
4665 }
4666
4667 #define VMX_XSS_EXIT_BITMAP 0
4668
4669 static void init_vmcs(struct vcpu_vmx *vmx)
4670 {
4671         struct kvm *kvm = vmx->vcpu.kvm;
4672         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4673
4674         if (nested)
4675                 nested_vmx_set_vmcs_shadowing_bitmap();
4676
4677         if (cpu_has_vmx_msr_bitmap())
4678                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4679
4680         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4681
4682         /* Control */
4683         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4684
4685         exec_controls_set(vmx, vmx_exec_control(vmx));
4686
4687         if (cpu_has_secondary_exec_ctrls())
4688                 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4689
4690         if (cpu_has_tertiary_exec_ctrls())
4691                 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4692
4693         if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4694                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4695                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4696                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4697                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4698
4699                 vmcs_write16(GUEST_INTR_STATUS, 0);
4700
4701                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4702                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4703         }
4704
4705         if (vmx_can_use_ipiv(&vmx->vcpu)) {
4706                 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4707                 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4708         }
4709
4710         if (!kvm_pause_in_guest(kvm)) {
4711                 vmcs_write32(PLE_GAP, ple_gap);
4712                 vmx->ple_window = ple_window;
4713                 vmx->ple_window_dirty = true;
4714         }
4715
4716         if (kvm_notify_vmexit_enabled(kvm))
4717                 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4718
4719         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4720         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4721         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4722
4723         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4724         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4725         vmx_set_constant_host_state(vmx);
4726         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4727         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4728
4729         if (cpu_has_vmx_vmfunc())
4730                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4731
4732         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4733         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4734         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4735         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4736         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4737
4738         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4739                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4740
4741         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4742
4743         /* 22.2.1, 20.8.1 */
4744         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4745
4746         vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4747         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4748
4749         set_cr4_guest_host_mask(vmx);
4750
4751         if (vmx->vpid != 0)
4752                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4753
4754         if (cpu_has_vmx_xsaves())
4755                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4756
4757         if (enable_pml) {
4758                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4759                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4760         }
4761
4762         vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4763
4764         if (vmx_pt_mode_is_host_guest()) {
4765                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4766                 /* Bit[6~0] are forced to 1, writes are ignored. */
4767                 vmx->pt_desc.guest.output_mask = 0x7F;
4768                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4769         }
4770
4771         vmcs_write32(GUEST_SYSENTER_CS, 0);
4772         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4773         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4774         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4775
4776         if (cpu_has_vmx_tpr_shadow()) {
4777                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4778                 if (cpu_need_tpr_shadow(&vmx->vcpu))
4779                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4780                                      __pa(vmx->vcpu.arch.apic->regs));
4781                 vmcs_write32(TPR_THRESHOLD, 0);
4782         }
4783
4784         vmx_setup_uret_msrs(vmx);
4785 }
4786
4787 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4788 {
4789         struct vcpu_vmx *vmx = to_vmx(vcpu);
4790
4791         init_vmcs(vmx);
4792
4793         if (nested)
4794                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4795
4796         vcpu_setup_sgx_lepubkeyhash(vcpu);
4797
4798         vmx->nested.posted_intr_nv = -1;
4799         vmx->nested.vmxon_ptr = INVALID_GPA;
4800         vmx->nested.current_vmptr = INVALID_GPA;
4801         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4802
4803         vcpu->arch.microcode_version = 0x100000000ULL;
4804         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4805
4806         /*
4807          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4808          * or POSTED_INTR_WAKEUP_VECTOR.
4809          */
4810         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4811         vmx->pi_desc.sn = 1;
4812 }
4813
4814 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4815 {
4816         struct vcpu_vmx *vmx = to_vmx(vcpu);
4817
4818         if (!init_event)
4819                 __vmx_vcpu_reset(vcpu);
4820
4821         vmx->rmode.vm86_active = 0;
4822         vmx->spec_ctrl = 0;
4823
4824         vmx->msr_ia32_umwait_control = 0;
4825
4826         vmx->hv_deadline_tsc = -1;
4827         kvm_set_cr8(vcpu, 0);
4828
4829         vmx_segment_cache_clear(vmx);
4830         kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4831
4832         seg_setup(VCPU_SREG_CS);
4833         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4834         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4835
4836         seg_setup(VCPU_SREG_DS);
4837         seg_setup(VCPU_SREG_ES);
4838         seg_setup(VCPU_SREG_FS);
4839         seg_setup(VCPU_SREG_GS);
4840         seg_setup(VCPU_SREG_SS);
4841
4842         vmcs_write16(GUEST_TR_SELECTOR, 0);
4843         vmcs_writel(GUEST_TR_BASE, 0);
4844         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4845         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4846
4847         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4848         vmcs_writel(GUEST_LDTR_BASE, 0);
4849         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4850         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4851
4852         vmcs_writel(GUEST_GDTR_BASE, 0);
4853         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4854
4855         vmcs_writel(GUEST_IDTR_BASE, 0);
4856         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4857
4858         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4859         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4860         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4861         if (kvm_mpx_supported())
4862                 vmcs_write64(GUEST_BNDCFGS, 0);
4863
4864         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4865
4866         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4867
4868         vpid_sync_context(vmx->vpid);
4869
4870         vmx_update_fb_clear_dis(vcpu, vmx);
4871 }
4872
4873 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4874 {
4875         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4876 }
4877
4878 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4879 {
4880         if (!enable_vnmi ||
4881             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4882                 vmx_enable_irq_window(vcpu);
4883                 return;
4884         }
4885
4886         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4887 }
4888
4889 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4890 {
4891         struct vcpu_vmx *vmx = to_vmx(vcpu);
4892         uint32_t intr;
4893         int irq = vcpu->arch.interrupt.nr;
4894
4895         trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4896
4897         ++vcpu->stat.irq_injections;
4898         if (vmx->rmode.vm86_active) {
4899                 int inc_eip = 0;
4900                 if (vcpu->arch.interrupt.soft)
4901                         inc_eip = vcpu->arch.event_exit_inst_len;
4902                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4903                 return;
4904         }
4905         intr = irq | INTR_INFO_VALID_MASK;
4906         if (vcpu->arch.interrupt.soft) {
4907                 intr |= INTR_TYPE_SOFT_INTR;
4908                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4909                              vmx->vcpu.arch.event_exit_inst_len);
4910         } else
4911                 intr |= INTR_TYPE_EXT_INTR;
4912         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4913
4914         vmx_clear_hlt(vcpu);
4915 }
4916
4917 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4918 {
4919         struct vcpu_vmx *vmx = to_vmx(vcpu);
4920
4921         if (!enable_vnmi) {
4922                 /*
4923                  * Tracking the NMI-blocked state in software is built upon
4924                  * finding the next open IRQ window. This, in turn, depends on
4925                  * well-behaving guests: They have to keep IRQs disabled at
4926                  * least as long as the NMI handler runs. Otherwise we may
4927                  * cause NMI nesting, maybe breaking the guest. But as this is
4928                  * highly unlikely, we can live with the residual risk.
4929                  */
4930                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4931                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4932         }
4933
4934         ++vcpu->stat.nmi_injections;
4935         vmx->loaded_vmcs->nmi_known_unmasked = false;
4936
4937         if (vmx->rmode.vm86_active) {
4938                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4939                 return;
4940         }
4941
4942         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4943                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4944
4945         vmx_clear_hlt(vcpu);
4946 }
4947
4948 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4949 {
4950         struct vcpu_vmx *vmx = to_vmx(vcpu);
4951         bool masked;
4952
4953         if (!enable_vnmi)
4954                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4955         if (vmx->loaded_vmcs->nmi_known_unmasked)
4956                 return false;
4957         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4958         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4959         return masked;
4960 }
4961
4962 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4963 {
4964         struct vcpu_vmx *vmx = to_vmx(vcpu);
4965
4966         if (!enable_vnmi) {
4967                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4968                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4969                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4970                 }
4971         } else {
4972                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4973                 if (masked)
4974                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4975                                       GUEST_INTR_STATE_NMI);
4976                 else
4977                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4978                                         GUEST_INTR_STATE_NMI);
4979         }
4980 }
4981
4982 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4983 {
4984         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4985                 return false;
4986
4987         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4988                 return true;
4989
4990         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4991                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4992                  GUEST_INTR_STATE_NMI));
4993 }
4994
4995 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4996 {
4997         if (to_vmx(vcpu)->nested.nested_run_pending)
4998                 return -EBUSY;
4999
5000         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5001         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5002                 return -EBUSY;
5003
5004         return !vmx_nmi_blocked(vcpu);
5005 }
5006
5007 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5008 {
5009         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5010                 return false;
5011
5012         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5013                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5014                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5015 }
5016
5017 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5018 {
5019         if (to_vmx(vcpu)->nested.nested_run_pending)
5020                 return -EBUSY;
5021
5022         /*
5023          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5024          * e.g. if the IRQ arrived asynchronously after checking nested events.
5025          */
5026         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5027                 return -EBUSY;
5028
5029         return !vmx_interrupt_blocked(vcpu);
5030 }
5031
5032 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5033 {
5034         void __user *ret;
5035
5036         if (enable_unrestricted_guest)
5037                 return 0;
5038
5039         mutex_lock(&kvm->slots_lock);
5040         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5041                                       PAGE_SIZE * 3);
5042         mutex_unlock(&kvm->slots_lock);
5043
5044         if (IS_ERR(ret))
5045                 return PTR_ERR(ret);
5046
5047         to_kvm_vmx(kvm)->tss_addr = addr;
5048
5049         return init_rmode_tss(kvm, ret);
5050 }
5051
5052 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5053 {
5054         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5055         return 0;
5056 }
5057
5058 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5059 {
5060         switch (vec) {
5061         case BP_VECTOR:
5062                 /*
5063                  * Update instruction length as we may reinject the exception
5064                  * from user space while in guest debugging mode.
5065                  */
5066                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5067                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5068                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5069                         return false;
5070                 fallthrough;
5071         case DB_VECTOR:
5072                 return !(vcpu->guest_debug &
5073                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5074         case DE_VECTOR:
5075         case OF_VECTOR:
5076         case BR_VECTOR:
5077         case UD_VECTOR:
5078         case DF_VECTOR:
5079         case SS_VECTOR:
5080         case GP_VECTOR:
5081         case MF_VECTOR:
5082                 return true;
5083         }
5084         return false;
5085 }
5086
5087 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5088                                   int vec, u32 err_code)
5089 {
5090         /*
5091          * Instruction with address size override prefix opcode 0x67
5092          * Cause the #SS fault with 0 error code in VM86 mode.
5093          */
5094         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5095                 if (kvm_emulate_instruction(vcpu, 0)) {
5096                         if (vcpu->arch.halt_request) {
5097                                 vcpu->arch.halt_request = 0;
5098                                 return kvm_emulate_halt_noskip(vcpu);
5099                         }
5100                         return 1;
5101                 }
5102                 return 0;
5103         }
5104
5105         /*
5106          * Forward all other exceptions that are valid in real mode.
5107          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5108          *        the required debugging infrastructure rework.
5109          */
5110         kvm_queue_exception(vcpu, vec);
5111         return 1;
5112 }
5113
5114 static int handle_machine_check(struct kvm_vcpu *vcpu)
5115 {
5116         /* handled by vmx_vcpu_run() */
5117         return 1;
5118 }
5119
5120 /*
5121  * If the host has split lock detection disabled, then #AC is
5122  * unconditionally injected into the guest, which is the pre split lock
5123  * detection behaviour.
5124  *
5125  * If the host has split lock detection enabled then #AC is
5126  * only injected into the guest when:
5127  *  - Guest CPL == 3 (user mode)
5128  *  - Guest has #AC detection enabled in CR0
5129  *  - Guest EFLAGS has AC bit set
5130  */
5131 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5132 {
5133         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5134                 return true;
5135
5136         return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5137                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5138 }
5139
5140 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5141 {
5142         struct vcpu_vmx *vmx = to_vmx(vcpu);
5143         struct kvm_run *kvm_run = vcpu->run;
5144         u32 intr_info, ex_no, error_code;
5145         unsigned long cr2, dr6;
5146         u32 vect_info;
5147
5148         vect_info = vmx->idt_vectoring_info;
5149         intr_info = vmx_get_intr_info(vcpu);
5150
5151         /*
5152          * Machine checks are handled by handle_exception_irqoff(), or by
5153          * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5154          * vmx_vcpu_enter_exit().
5155          */
5156         if (is_machine_check(intr_info) || is_nmi(intr_info))
5157                 return 1;
5158
5159         /*
5160          * Queue the exception here instead of in handle_nm_fault_irqoff().
5161          * This ensures the nested_vmx check is not skipped so vmexit can
5162          * be reflected to L1 (when it intercepts #NM) before reaching this
5163          * point.
5164          */
5165         if (is_nm_fault(intr_info)) {
5166                 kvm_queue_exception(vcpu, NM_VECTOR);
5167                 return 1;
5168         }
5169
5170         if (is_invalid_opcode(intr_info))
5171                 return handle_ud(vcpu);
5172
5173         error_code = 0;
5174         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5175                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5176
5177         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5178                 WARN_ON_ONCE(!enable_vmware_backdoor);
5179
5180                 /*
5181                  * VMware backdoor emulation on #GP interception only handles
5182                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5183                  * error code on #GP.
5184                  */
5185                 if (error_code) {
5186                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5187                         return 1;
5188                 }
5189                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5190         }
5191
5192         /*
5193          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5194          * MMIO, it is better to report an internal error.
5195          * See the comments in vmx_handle_exit.
5196          */
5197         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5198             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5199                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5200                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5201                 vcpu->run->internal.ndata = 4;
5202                 vcpu->run->internal.data[0] = vect_info;
5203                 vcpu->run->internal.data[1] = intr_info;
5204                 vcpu->run->internal.data[2] = error_code;
5205                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5206                 return 0;
5207         }
5208
5209         if (is_page_fault(intr_info)) {
5210                 cr2 = vmx_get_exit_qual(vcpu);
5211                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5212                         /*
5213                          * EPT will cause page fault only if we need to
5214                          * detect illegal GPAs.
5215                          */
5216                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5217                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5218                         return 1;
5219                 } else
5220                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5221         }
5222
5223         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5224
5225         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5226                 return handle_rmode_exception(vcpu, ex_no, error_code);
5227
5228         switch (ex_no) {
5229         case DB_VECTOR:
5230                 dr6 = vmx_get_exit_qual(vcpu);
5231                 if (!(vcpu->guest_debug &
5232                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5233                         /*
5234                          * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5235                          * instruction.  ICEBP generates a trap-like #DB, but
5236                          * despite its interception control being tied to #DB,
5237                          * is an instruction intercept, i.e. the VM-Exit occurs
5238                          * on the ICEBP itself.  Use the inner "skip" helper to
5239                          * avoid single-step #DB and MTF updates, as ICEBP is
5240                          * higher priority.  Note, skipping ICEBP still clears
5241                          * STI and MOVSS blocking.
5242                          *
5243                          * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5244                          * if single-step is enabled in RFLAGS and STI or MOVSS
5245                          * blocking is active, as the CPU doesn't set the bit
5246                          * on VM-Exit due to #DB interception.  VM-Entry has a
5247                          * consistency check that a single-step #DB is pending
5248                          * in this scenario as the previous instruction cannot
5249                          * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5250                          * don't modify RFLAGS), therefore the one instruction
5251                          * delay when activating single-step breakpoints must
5252                          * have already expired.  Note, the CPU sets/clears BS
5253                          * as appropriate for all other VM-Exits types.
5254                          */
5255                         if (is_icebp(intr_info))
5256                                 WARN_ON(!skip_emulated_instruction(vcpu));
5257                         else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5258                                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5259                                   (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5260                                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5261                                             vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5262
5263                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5264                         return 1;
5265                 }
5266                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5267                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5268                 fallthrough;
5269         case BP_VECTOR:
5270                 /*
5271                  * Update instruction length as we may reinject #BP from
5272                  * user space while in guest debugging mode. Reading it for
5273                  * #DB as well causes no harm, it is not used in that case.
5274                  */
5275                 vmx->vcpu.arch.event_exit_inst_len =
5276                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5277                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5278                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5279                 kvm_run->debug.arch.exception = ex_no;
5280                 break;
5281         case AC_VECTOR:
5282                 if (vmx_guest_inject_ac(vcpu)) {
5283                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5284                         return 1;
5285                 }
5286
5287                 /*
5288                  * Handle split lock. Depending on detection mode this will
5289                  * either warn and disable split lock detection for this
5290                  * task or force SIGBUS on it.
5291                  */
5292                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5293                         return 1;
5294                 fallthrough;
5295         default:
5296                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5297                 kvm_run->ex.exception = ex_no;
5298                 kvm_run->ex.error_code = error_code;
5299                 break;
5300         }
5301         return 0;
5302 }
5303
5304 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5305 {
5306         ++vcpu->stat.irq_exits;
5307         return 1;
5308 }
5309
5310 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5311 {
5312         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5313         vcpu->mmio_needed = 0;
5314         return 0;
5315 }
5316
5317 static int handle_io(struct kvm_vcpu *vcpu)
5318 {
5319         unsigned long exit_qualification;
5320         int size, in, string;
5321         unsigned port;
5322
5323         exit_qualification = vmx_get_exit_qual(vcpu);
5324         string = (exit_qualification & 16) != 0;
5325
5326         ++vcpu->stat.io_exits;
5327
5328         if (string)
5329                 return kvm_emulate_instruction(vcpu, 0);
5330
5331         port = exit_qualification >> 16;
5332         size = (exit_qualification & 7) + 1;
5333         in = (exit_qualification & 8) != 0;
5334
5335         return kvm_fast_pio(vcpu, size, port, in);
5336 }
5337
5338 static void
5339 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5340 {
5341         /*
5342          * Patch in the VMCALL instruction:
5343          */
5344         hypercall[0] = 0x0f;
5345         hypercall[1] = 0x01;
5346         hypercall[2] = 0xc1;
5347 }
5348
5349 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5350 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5351 {
5352         if (is_guest_mode(vcpu)) {
5353                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5354                 unsigned long orig_val = val;
5355
5356                 /*
5357                  * We get here when L2 changed cr0 in a way that did not change
5358                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5359                  * but did change L0 shadowed bits. So we first calculate the
5360                  * effective cr0 value that L1 would like to write into the
5361                  * hardware. It consists of the L2-owned bits from the new
5362                  * value combined with the L1-owned bits from L1's guest_cr0.
5363                  */
5364                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5365                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5366
5367                 if (!nested_guest_cr0_valid(vcpu, val))
5368                         return 1;
5369
5370                 if (kvm_set_cr0(vcpu, val))
5371                         return 1;
5372                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5373                 return 0;
5374         } else {
5375                 if (to_vmx(vcpu)->nested.vmxon &&
5376                     !nested_host_cr0_valid(vcpu, val))
5377                         return 1;
5378
5379                 return kvm_set_cr0(vcpu, val);
5380         }
5381 }
5382
5383 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5384 {
5385         if (is_guest_mode(vcpu)) {
5386                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5387                 unsigned long orig_val = val;
5388
5389                 /* analogously to handle_set_cr0 */
5390                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5391                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5392                 if (kvm_set_cr4(vcpu, val))
5393                         return 1;
5394                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5395                 return 0;
5396         } else
5397                 return kvm_set_cr4(vcpu, val);
5398 }
5399
5400 static int handle_desc(struct kvm_vcpu *vcpu)
5401 {
5402         /*
5403          * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5404          * and other code needs to be updated if UMIP can be guest owned.
5405          */
5406         BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5407
5408         WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5409         return kvm_emulate_instruction(vcpu, 0);
5410 }
5411
5412 static int handle_cr(struct kvm_vcpu *vcpu)
5413 {
5414         unsigned long exit_qualification, val;
5415         int cr;
5416         int reg;
5417         int err;
5418         int ret;
5419
5420         exit_qualification = vmx_get_exit_qual(vcpu);
5421         cr = exit_qualification & 15;
5422         reg = (exit_qualification >> 8) & 15;
5423         switch ((exit_qualification >> 4) & 3) {
5424         case 0: /* mov to cr */
5425                 val = kvm_register_read(vcpu, reg);
5426                 trace_kvm_cr_write(cr, val);
5427                 switch (cr) {
5428                 case 0:
5429                         err = handle_set_cr0(vcpu, val);
5430                         return kvm_complete_insn_gp(vcpu, err);
5431                 case 3:
5432                         WARN_ON_ONCE(enable_unrestricted_guest);
5433
5434                         err = kvm_set_cr3(vcpu, val);
5435                         return kvm_complete_insn_gp(vcpu, err);
5436                 case 4:
5437                         err = handle_set_cr4(vcpu, val);
5438                         return kvm_complete_insn_gp(vcpu, err);
5439                 case 8: {
5440                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5441                                 u8 cr8 = (u8)val;
5442                                 err = kvm_set_cr8(vcpu, cr8);
5443                                 ret = kvm_complete_insn_gp(vcpu, err);
5444                                 if (lapic_in_kernel(vcpu))
5445                                         return ret;
5446                                 if (cr8_prev <= cr8)
5447                                         return ret;
5448                                 /*
5449                                  * TODO: we might be squashing a
5450                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5451                                  * KVM_EXIT_DEBUG here.
5452                                  */
5453                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5454                                 return 0;
5455                         }
5456                 }
5457                 break;
5458         case 2: /* clts */
5459                 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5460                 return -EIO;
5461         case 1: /*mov from cr*/
5462                 switch (cr) {
5463                 case 3:
5464                         WARN_ON_ONCE(enable_unrestricted_guest);
5465
5466                         val = kvm_read_cr3(vcpu);
5467                         kvm_register_write(vcpu, reg, val);
5468                         trace_kvm_cr_read(cr, val);
5469                         return kvm_skip_emulated_instruction(vcpu);
5470                 case 8:
5471                         val = kvm_get_cr8(vcpu);
5472                         kvm_register_write(vcpu, reg, val);
5473                         trace_kvm_cr_read(cr, val);
5474                         return kvm_skip_emulated_instruction(vcpu);
5475                 }
5476                 break;
5477         case 3: /* lmsw */
5478                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5479                 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5480                 kvm_lmsw(vcpu, val);
5481
5482                 return kvm_skip_emulated_instruction(vcpu);
5483         default:
5484                 break;
5485         }
5486         vcpu->run->exit_reason = 0;
5487         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5488                (int)(exit_qualification >> 4) & 3, cr);
5489         return 0;
5490 }
5491
5492 static int handle_dr(struct kvm_vcpu *vcpu)
5493 {
5494         unsigned long exit_qualification;
5495         int dr, dr7, reg;
5496         int err = 1;
5497
5498         exit_qualification = vmx_get_exit_qual(vcpu);
5499         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5500
5501         /* First, if DR does not exist, trigger UD */
5502         if (!kvm_require_dr(vcpu, dr))
5503                 return 1;
5504
5505         if (vmx_get_cpl(vcpu) > 0)
5506                 goto out;
5507
5508         dr7 = vmcs_readl(GUEST_DR7);
5509         if (dr7 & DR7_GD) {
5510                 /*
5511                  * As the vm-exit takes precedence over the debug trap, we
5512                  * need to emulate the latter, either for the host or the
5513                  * guest debugging itself.
5514                  */
5515                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5516                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5517                         vcpu->run->debug.arch.dr7 = dr7;
5518                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5519                         vcpu->run->debug.arch.exception = DB_VECTOR;
5520                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5521                         return 0;
5522                 } else {
5523                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5524                         return 1;
5525                 }
5526         }
5527
5528         if (vcpu->guest_debug == 0) {
5529                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5530
5531                 /*
5532                  * No more DR vmexits; force a reload of the debug registers
5533                  * and reenter on this instruction.  The next vmexit will
5534                  * retrieve the full state of the debug registers.
5535                  */
5536                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5537                 return 1;
5538         }
5539
5540         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5541         if (exit_qualification & TYPE_MOV_FROM_DR) {
5542                 unsigned long val;
5543
5544                 kvm_get_dr(vcpu, dr, &val);
5545                 kvm_register_write(vcpu, reg, val);
5546                 err = 0;
5547         } else {
5548                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5549         }
5550
5551 out:
5552         return kvm_complete_insn_gp(vcpu, err);
5553 }
5554
5555 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5556 {
5557         get_debugreg(vcpu->arch.db[0], 0);
5558         get_debugreg(vcpu->arch.db[1], 1);
5559         get_debugreg(vcpu->arch.db[2], 2);
5560         get_debugreg(vcpu->arch.db[3], 3);
5561         get_debugreg(vcpu->arch.dr6, 6);
5562         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5563
5564         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5565         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5566
5567         /*
5568          * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5569          * a stale dr6 from the guest.
5570          */
5571         set_debugreg(DR6_RESERVED, 6);
5572 }
5573
5574 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5575 {
5576         vmcs_writel(GUEST_DR7, val);
5577 }
5578
5579 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5580 {
5581         kvm_apic_update_ppr(vcpu);
5582         return 1;
5583 }
5584
5585 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5586 {
5587         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5588
5589         kvm_make_request(KVM_REQ_EVENT, vcpu);
5590
5591         ++vcpu->stat.irq_window_exits;
5592         return 1;
5593 }
5594
5595 static int handle_invlpg(struct kvm_vcpu *vcpu)
5596 {
5597         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5598
5599         kvm_mmu_invlpg(vcpu, exit_qualification);
5600         return kvm_skip_emulated_instruction(vcpu);
5601 }
5602
5603 static int handle_apic_access(struct kvm_vcpu *vcpu)
5604 {
5605         if (likely(fasteoi)) {
5606                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5607                 int access_type, offset;
5608
5609                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5610                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5611                 /*
5612                  * Sane guest uses MOV to write EOI, with written value
5613                  * not cared. So make a short-circuit here by avoiding
5614                  * heavy instruction emulation.
5615                  */
5616                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5617                     (offset == APIC_EOI)) {
5618                         kvm_lapic_set_eoi(vcpu);
5619                         return kvm_skip_emulated_instruction(vcpu);
5620                 }
5621         }
5622         return kvm_emulate_instruction(vcpu, 0);
5623 }
5624
5625 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5626 {
5627         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5628         int vector = exit_qualification & 0xff;
5629
5630         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5631         kvm_apic_set_eoi_accelerated(vcpu, vector);
5632         return 1;
5633 }
5634
5635 static int handle_apic_write(struct kvm_vcpu *vcpu)
5636 {
5637         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5638
5639         /*
5640          * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5641          * hardware has done any necessary aliasing, offset adjustments, etc...
5642          * for the access.  I.e. the correct value has already been  written to
5643          * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5644          * retrieve the register value and emulate the access.
5645          */
5646         u32 offset = exit_qualification & 0xff0;
5647
5648         kvm_apic_write_nodecode(vcpu, offset);
5649         return 1;
5650 }
5651
5652 static int handle_task_switch(struct kvm_vcpu *vcpu)
5653 {
5654         struct vcpu_vmx *vmx = to_vmx(vcpu);
5655         unsigned long exit_qualification;
5656         bool has_error_code = false;
5657         u32 error_code = 0;
5658         u16 tss_selector;
5659         int reason, type, idt_v, idt_index;
5660
5661         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5662         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5663         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5664
5665         exit_qualification = vmx_get_exit_qual(vcpu);
5666
5667         reason = (u32)exit_qualification >> 30;
5668         if (reason == TASK_SWITCH_GATE && idt_v) {
5669                 switch (type) {
5670                 case INTR_TYPE_NMI_INTR:
5671                         vcpu->arch.nmi_injected = false;
5672                         vmx_set_nmi_mask(vcpu, true);
5673                         break;
5674                 case INTR_TYPE_EXT_INTR:
5675                 case INTR_TYPE_SOFT_INTR:
5676                         kvm_clear_interrupt_queue(vcpu);
5677                         break;
5678                 case INTR_TYPE_HARD_EXCEPTION:
5679                         if (vmx->idt_vectoring_info &
5680                             VECTORING_INFO_DELIVER_CODE_MASK) {
5681                                 has_error_code = true;
5682                                 error_code =
5683                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5684                         }
5685                         fallthrough;
5686                 case INTR_TYPE_SOFT_EXCEPTION:
5687                         kvm_clear_exception_queue(vcpu);
5688                         break;
5689                 default:
5690                         break;
5691                 }
5692         }
5693         tss_selector = exit_qualification;
5694
5695         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5696                        type != INTR_TYPE_EXT_INTR &&
5697                        type != INTR_TYPE_NMI_INTR))
5698                 WARN_ON(!skip_emulated_instruction(vcpu));
5699
5700         /*
5701          * TODO: What about debug traps on tss switch?
5702          *       Are we supposed to inject them and update dr6?
5703          */
5704         return kvm_task_switch(vcpu, tss_selector,
5705                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5706                                reason, has_error_code, error_code);
5707 }
5708
5709 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5710 {
5711         unsigned long exit_qualification;
5712         gpa_t gpa;
5713         u64 error_code;
5714
5715         exit_qualification = vmx_get_exit_qual(vcpu);
5716
5717         /*
5718          * EPT violation happened while executing iret from NMI,
5719          * "blocked by NMI" bit has to be set before next VM entry.
5720          * There are errata that may cause this bit to not be set:
5721          * AAK134, BY25.
5722          */
5723         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5724                         enable_vnmi &&
5725                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5726                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5727
5728         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5729         trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5730
5731         /* Is it a read fault? */
5732         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5733                      ? PFERR_USER_MASK : 0;
5734         /* Is it a write fault? */
5735         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5736                       ? PFERR_WRITE_MASK : 0;
5737         /* Is it a fetch fault? */
5738         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5739                       ? PFERR_FETCH_MASK : 0;
5740         /* ept page table entry is present? */
5741         error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5742                       ? PFERR_PRESENT_MASK : 0;
5743
5744         error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5745                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5746
5747         vcpu->arch.exit_qualification = exit_qualification;
5748
5749         /*
5750          * Check that the GPA doesn't exceed physical memory limits, as that is
5751          * a guest page fault.  We have to emulate the instruction here, because
5752          * if the illegal address is that of a paging structure, then
5753          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5754          * would also use advanced VM-exit information for EPT violations to
5755          * reconstruct the page fault error code.
5756          */
5757         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5758                 return kvm_emulate_instruction(vcpu, 0);
5759
5760         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5761 }
5762
5763 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5764 {
5765         gpa_t gpa;
5766
5767         if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5768                 return 1;
5769
5770         /*
5771          * A nested guest cannot optimize MMIO vmexits, because we have an
5772          * nGPA here instead of the required GPA.
5773          */
5774         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5775         if (!is_guest_mode(vcpu) &&
5776             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5777                 trace_kvm_fast_mmio(gpa);
5778                 return kvm_skip_emulated_instruction(vcpu);
5779         }
5780
5781         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5782 }
5783
5784 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5785 {
5786         if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5787                 return -EIO;
5788
5789         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5790         ++vcpu->stat.nmi_window_exits;
5791         kvm_make_request(KVM_REQ_EVENT, vcpu);
5792
5793         return 1;
5794 }
5795
5796 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5797 {
5798         struct vcpu_vmx *vmx = to_vmx(vcpu);
5799
5800         return vmx->emulation_required && !vmx->rmode.vm86_active &&
5801                (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5802 }
5803
5804 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5805 {
5806         struct vcpu_vmx *vmx = to_vmx(vcpu);
5807         bool intr_window_requested;
5808         unsigned count = 130;
5809
5810         intr_window_requested = exec_controls_get(vmx) &
5811                                 CPU_BASED_INTR_WINDOW_EXITING;
5812
5813         while (vmx->emulation_required && count-- != 0) {
5814                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5815                         return handle_interrupt_window(&vmx->vcpu);
5816
5817                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5818                         return 1;
5819
5820                 if (!kvm_emulate_instruction(vcpu, 0))
5821                         return 0;
5822
5823                 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5824                         kvm_prepare_emulation_failure_exit(vcpu);
5825                         return 0;
5826                 }
5827
5828                 if (vcpu->arch.halt_request) {
5829                         vcpu->arch.halt_request = 0;
5830                         return kvm_emulate_halt_noskip(vcpu);
5831                 }
5832
5833                 /*
5834                  * Note, return 1 and not 0, vcpu_run() will invoke
5835                  * xfer_to_guest_mode() which will create a proper return
5836                  * code.
5837                  */
5838                 if (__xfer_to_guest_mode_work_pending())
5839                         return 1;
5840         }
5841
5842         return 1;
5843 }
5844
5845 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5846 {
5847         if (vmx_emulation_required_with_pending_exception(vcpu)) {
5848                 kvm_prepare_emulation_failure_exit(vcpu);
5849                 return 0;
5850         }
5851
5852         return 1;
5853 }
5854
5855 static void grow_ple_window(struct kvm_vcpu *vcpu)
5856 {
5857         struct vcpu_vmx *vmx = to_vmx(vcpu);
5858         unsigned int old = vmx->ple_window;
5859
5860         vmx->ple_window = __grow_ple_window(old, ple_window,
5861                                             ple_window_grow,
5862                                             ple_window_max);
5863
5864         if (vmx->ple_window != old) {
5865                 vmx->ple_window_dirty = true;
5866                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5867                                             vmx->ple_window, old);
5868         }
5869 }
5870
5871 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5872 {
5873         struct vcpu_vmx *vmx = to_vmx(vcpu);
5874         unsigned int old = vmx->ple_window;
5875
5876         vmx->ple_window = __shrink_ple_window(old, ple_window,
5877                                               ple_window_shrink,
5878                                               ple_window);
5879
5880         if (vmx->ple_window != old) {
5881                 vmx->ple_window_dirty = true;
5882                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5883                                             vmx->ple_window, old);
5884         }
5885 }
5886
5887 /*
5888  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5889  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5890  */
5891 static int handle_pause(struct kvm_vcpu *vcpu)
5892 {
5893         if (!kvm_pause_in_guest(vcpu->kvm))
5894                 grow_ple_window(vcpu);
5895
5896         /*
5897          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5898          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5899          * never set PAUSE_EXITING and just set PLE if supported,
5900          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5901          */
5902         kvm_vcpu_on_spin(vcpu, true);
5903         return kvm_skip_emulated_instruction(vcpu);
5904 }
5905
5906 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5907 {
5908         return 1;
5909 }
5910
5911 static int handle_invpcid(struct kvm_vcpu *vcpu)
5912 {
5913         u32 vmx_instruction_info;
5914         unsigned long type;
5915         gva_t gva;
5916         struct {
5917                 u64 pcid;
5918                 u64 gla;
5919         } operand;
5920         int gpr_index;
5921
5922         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5923                 kvm_queue_exception(vcpu, UD_VECTOR);
5924                 return 1;
5925         }
5926
5927         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5928         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5929         type = kvm_register_read(vcpu, gpr_index);
5930
5931         /* According to the Intel instruction reference, the memory operand
5932          * is read even if it isn't needed (e.g., for type==all)
5933          */
5934         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5935                                 vmx_instruction_info, false,
5936                                 sizeof(operand), &gva))
5937                 return 1;
5938
5939         return kvm_handle_invpcid(vcpu, type, gva);
5940 }
5941
5942 static int handle_pml_full(struct kvm_vcpu *vcpu)
5943 {
5944         unsigned long exit_qualification;
5945
5946         trace_kvm_pml_full(vcpu->vcpu_id);
5947
5948         exit_qualification = vmx_get_exit_qual(vcpu);
5949
5950         /*
5951          * PML buffer FULL happened while executing iret from NMI,
5952          * "blocked by NMI" bit has to be set before next VM entry.
5953          */
5954         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5955                         enable_vnmi &&
5956                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5957                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5958                                 GUEST_INTR_STATE_NMI);
5959
5960         /*
5961          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5962          * here.., and there's no userspace involvement needed for PML.
5963          */
5964         return 1;
5965 }
5966
5967 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5968 {
5969         struct vcpu_vmx *vmx = to_vmx(vcpu);
5970
5971         if (!vmx->req_immediate_exit &&
5972             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5973                 kvm_lapic_expired_hv_timer(vcpu);
5974                 return EXIT_FASTPATH_REENTER_GUEST;
5975         }
5976
5977         return EXIT_FASTPATH_NONE;
5978 }
5979
5980 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5981 {
5982         handle_fastpath_preemption_timer(vcpu);
5983         return 1;
5984 }
5985
5986 /*
5987  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5988  * are overwritten by nested_vmx_setup() when nested=1.
5989  */
5990 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5991 {
5992         kvm_queue_exception(vcpu, UD_VECTOR);
5993         return 1;
5994 }
5995
5996 #ifndef CONFIG_X86_SGX_KVM
5997 static int handle_encls(struct kvm_vcpu *vcpu)
5998 {
5999         /*
6000          * SGX virtualization is disabled.  There is no software enable bit for
6001          * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6002          * the guest from executing ENCLS (when SGX is supported by hardware).
6003          */
6004         kvm_queue_exception(vcpu, UD_VECTOR);
6005         return 1;
6006 }
6007 #endif /* CONFIG_X86_SGX_KVM */
6008
6009 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6010 {
6011         /*
6012          * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6013          * VM-Exits. Unconditionally set the flag here and leave the handling to
6014          * vmx_handle_exit().
6015          */
6016         to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6017         return 1;
6018 }
6019
6020 static int handle_notify(struct kvm_vcpu *vcpu)
6021 {
6022         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6023         bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6024
6025         ++vcpu->stat.notify_window_exits;
6026
6027         /*
6028          * Notify VM exit happened while executing iret from NMI,
6029          * "blocked by NMI" bit has to be set before next VM entry.
6030          */
6031         if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6032                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6033                               GUEST_INTR_STATE_NMI);
6034
6035         if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6036             context_invalid) {
6037                 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6038                 vcpu->run->notify.flags = context_invalid ?
6039                                           KVM_NOTIFY_CONTEXT_INVALID : 0;
6040                 return 0;
6041         }
6042
6043         return 1;
6044 }
6045
6046 /*
6047  * The exit handlers return 1 if the exit was handled fully and guest execution
6048  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6049  * to be done to userspace and return 0.
6050  */
6051 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6052         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6053         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6054         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6055         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6056         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6057         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6058         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6059         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6060         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6061         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6062         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6063         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
6064         [EXIT_REASON_INVD]                    = kvm_emulate_invd,
6065         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6066         [EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6067         [EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6068         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
6069         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
6070         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
6071         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
6072         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
6073         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
6074         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
6075         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
6076         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
6077         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6078         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6079         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6080         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6081         [EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6082         [EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6083         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6084         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6085         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
6086         [EXIT_REASON_LDTR_TR]                 = handle_desc,
6087         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6088         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6089         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6090         [EXIT_REASON_MWAIT_INSTRUCTION]       = kvm_emulate_mwait,
6091         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6092         [EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6093         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6094         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6095         [EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6096         [EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6097         [EXIT_REASON_PML_FULL]                = handle_pml_full,
6098         [EXIT_REASON_INVPCID]                 = handle_invpcid,
6099         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
6100         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
6101         [EXIT_REASON_ENCLS]                   = handle_encls,
6102         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6103         [EXIT_REASON_NOTIFY]                  = handle_notify,
6104 };
6105
6106 static const int kvm_vmx_max_exit_handlers =
6107         ARRAY_SIZE(kvm_vmx_exit_handlers);
6108
6109 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6110                               u64 *info1, u64 *info2,
6111                               u32 *intr_info, u32 *error_code)
6112 {
6113         struct vcpu_vmx *vmx = to_vmx(vcpu);
6114
6115         *reason = vmx->exit_reason.full;
6116         *info1 = vmx_get_exit_qual(vcpu);
6117         if (!(vmx->exit_reason.failed_vmentry)) {
6118                 *info2 = vmx->idt_vectoring_info;
6119                 *intr_info = vmx_get_intr_info(vcpu);
6120                 if (is_exception_with_error_code(*intr_info))
6121                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6122                 else
6123                         *error_code = 0;
6124         } else {
6125                 *info2 = 0;
6126                 *intr_info = 0;
6127                 *error_code = 0;
6128         }
6129 }
6130
6131 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6132 {
6133         if (vmx->pml_pg) {
6134                 __free_page(vmx->pml_pg);
6135                 vmx->pml_pg = NULL;
6136         }
6137 }
6138
6139 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6140 {
6141         struct vcpu_vmx *vmx = to_vmx(vcpu);
6142         u64 *pml_buf;
6143         u16 pml_idx;
6144
6145         pml_idx = vmcs_read16(GUEST_PML_INDEX);
6146
6147         /* Do nothing if PML buffer is empty */
6148         if (pml_idx == (PML_ENTITY_NUM - 1))
6149                 return;
6150
6151         /* PML index always points to next available PML buffer entity */
6152         if (pml_idx >= PML_ENTITY_NUM)
6153                 pml_idx = 0;
6154         else
6155                 pml_idx++;
6156
6157         pml_buf = page_address(vmx->pml_pg);
6158         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6159                 u64 gpa;
6160
6161                 gpa = pml_buf[pml_idx];
6162                 WARN_ON(gpa & (PAGE_SIZE - 1));
6163                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6164         }
6165
6166         /* reset PML index */
6167         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6168 }
6169
6170 static void vmx_dump_sel(char *name, uint32_t sel)
6171 {
6172         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6173                name, vmcs_read16(sel),
6174                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6175                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6176                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6177 }
6178
6179 static void vmx_dump_dtsel(char *name, uint32_t limit)
6180 {
6181         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6182                name, vmcs_read32(limit),
6183                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6184 }
6185
6186 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6187 {
6188         unsigned int i;
6189         struct vmx_msr_entry *e;
6190
6191         pr_err("MSR %s:\n", name);
6192         for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6193                 pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6194 }
6195
6196 void dump_vmcs(struct kvm_vcpu *vcpu)
6197 {
6198         struct vcpu_vmx *vmx = to_vmx(vcpu);
6199         u32 vmentry_ctl, vmexit_ctl;
6200         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6201         u64 tertiary_exec_control;
6202         unsigned long cr4;
6203         int efer_slot;
6204
6205         if (!dump_invalid_vmcs) {
6206                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6207                 return;
6208         }
6209
6210         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6211         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6212         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6213         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6214         cr4 = vmcs_readl(GUEST_CR4);
6215
6216         if (cpu_has_secondary_exec_ctrls())
6217                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6218         else
6219                 secondary_exec_control = 0;
6220
6221         if (cpu_has_tertiary_exec_ctrls())
6222                 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6223         else
6224                 tertiary_exec_control = 0;
6225
6226         pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6227                vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6228         pr_err("*** Guest State ***\n");
6229         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6230                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6231                vmcs_readl(CR0_GUEST_HOST_MASK));
6232         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6233                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6234         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6235         if (cpu_has_vmx_ept()) {
6236                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6237                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6238                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6239                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6240         }
6241         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6242                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6243         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6244                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6245         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6246                vmcs_readl(GUEST_SYSENTER_ESP),
6247                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6248         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6249         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6250         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6251         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6252         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6253         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6254         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6255         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6256         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6257         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6258         efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6259         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6260                 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6261         else if (efer_slot >= 0)
6262                 pr_err("EFER= 0x%016llx (autoload)\n",
6263                        vmx->msr_autoload.guest.val[efer_slot].value);
6264         else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6265                 pr_err("EFER= 0x%016llx (effective)\n",
6266                        vcpu->arch.efer | (EFER_LMA | EFER_LME));
6267         else
6268                 pr_err("EFER= 0x%016llx (effective)\n",
6269                        vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6270         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6271                 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6272         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6273                vmcs_read64(GUEST_IA32_DEBUGCTL),
6274                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6275         if (cpu_has_load_perf_global_ctrl() &&
6276             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6277                 pr_err("PerfGlobCtl = 0x%016llx\n",
6278                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6279         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6280                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6281         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6282                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6283                vmcs_read32(GUEST_ACTIVITY_STATE));
6284         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6285                 pr_err("InterruptStatus = %04x\n",
6286                        vmcs_read16(GUEST_INTR_STATUS));
6287         if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6288                 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6289         if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6290                 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6291
6292         pr_err("*** Host State ***\n");
6293         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6294                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6295         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6296                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6297                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6298                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6299                vmcs_read16(HOST_TR_SELECTOR));
6300         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6301                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6302                vmcs_readl(HOST_TR_BASE));
6303         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6304                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6305         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6306                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6307                vmcs_readl(HOST_CR4));
6308         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6309                vmcs_readl(HOST_IA32_SYSENTER_ESP),
6310                vmcs_read32(HOST_IA32_SYSENTER_CS),
6311                vmcs_readl(HOST_IA32_SYSENTER_EIP));
6312         if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6313                 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6314         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6315                 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6316         if (cpu_has_load_perf_global_ctrl() &&
6317             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6318                 pr_err("PerfGlobCtl = 0x%016llx\n",
6319                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6320         if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6321                 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6322
6323         pr_err("*** Control State ***\n");
6324         pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6325                cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6326         pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6327                pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6328         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6329                vmcs_read32(EXCEPTION_BITMAP),
6330                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6331                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6332         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6333                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6334                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6335                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6336         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6337                vmcs_read32(VM_EXIT_INTR_INFO),
6338                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6339                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6340         pr_err("        reason=%08x qualification=%016lx\n",
6341                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6342         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6343                vmcs_read32(IDT_VECTORING_INFO_FIELD),
6344                vmcs_read32(IDT_VECTORING_ERROR_CODE));
6345         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6346         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6347                 pr_err("TSC Multiplier = 0x%016llx\n",
6348                        vmcs_read64(TSC_MULTIPLIER));
6349         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6350                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6351                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
6352                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6353                 }
6354                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6355                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6356                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6357                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6358         }
6359         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6360                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6361         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6362                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6363         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6364                 pr_err("PLE Gap=%08x Window=%08x\n",
6365                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6366         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6367                 pr_err("Virtual processor ID = 0x%04x\n",
6368                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
6369 }
6370
6371 /*
6372  * The guest has exited.  See if we can fix it or if we need userspace
6373  * assistance.
6374  */
6375 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6376 {
6377         struct vcpu_vmx *vmx = to_vmx(vcpu);
6378         union vmx_exit_reason exit_reason = vmx->exit_reason;
6379         u32 vectoring_info = vmx->idt_vectoring_info;
6380         u16 exit_handler_index;
6381
6382         /*
6383          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6384          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6385          * querying dirty_bitmap, we only need to kick all vcpus out of guest
6386          * mode as if vcpus is in root mode, the PML buffer must has been
6387          * flushed already.  Note, PML is never enabled in hardware while
6388          * running L2.
6389          */
6390         if (enable_pml && !is_guest_mode(vcpu))
6391                 vmx_flush_pml_buffer(vcpu);
6392
6393         /*
6394          * KVM should never reach this point with a pending nested VM-Enter.
6395          * More specifically, short-circuiting VM-Entry to emulate L2 due to
6396          * invalid guest state should never happen as that means KVM knowingly
6397          * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6398          */
6399         if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6400                 return -EIO;
6401
6402         if (is_guest_mode(vcpu)) {
6403                 /*
6404                  * PML is never enabled when running L2, bail immediately if a
6405                  * PML full exit occurs as something is horribly wrong.
6406                  */
6407                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6408                         goto unexpected_vmexit;
6409
6410                 /*
6411                  * The host physical addresses of some pages of guest memory
6412                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6413                  * Page). The CPU may write to these pages via their host
6414                  * physical address while L2 is running, bypassing any
6415                  * address-translation-based dirty tracking (e.g. EPT write
6416                  * protection).
6417                  *
6418                  * Mark them dirty on every exit from L2 to prevent them from
6419                  * getting out of sync with dirty tracking.
6420                  */
6421                 nested_mark_vmcs12_pages_dirty(vcpu);
6422
6423                 /*
6424                  * Synthesize a triple fault if L2 state is invalid.  In normal
6425                  * operation, nested VM-Enter rejects any attempt to enter L2
6426                  * with invalid state.  However, those checks are skipped if
6427                  * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6428                  * L2 state is invalid, it means either L1 modified SMRAM state
6429                  * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6430                  * doing so is architecturally allowed in the RSM case, and is
6431                  * the least awful solution for the userspace case without
6432                  * risking false positives.
6433                  */
6434                 if (vmx->emulation_required) {
6435                         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6436                         return 1;
6437                 }
6438
6439                 if (nested_vmx_reflect_vmexit(vcpu))
6440                         return 1;
6441         }
6442
6443         /* If guest state is invalid, start emulating.  L2 is handled above. */
6444         if (vmx->emulation_required)
6445                 return handle_invalid_guest_state(vcpu);
6446
6447         if (exit_reason.failed_vmentry) {
6448                 dump_vmcs(vcpu);
6449                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6450                 vcpu->run->fail_entry.hardware_entry_failure_reason
6451                         = exit_reason.full;
6452                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6453                 return 0;
6454         }
6455
6456         if (unlikely(vmx->fail)) {
6457                 dump_vmcs(vcpu);
6458                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6459                 vcpu->run->fail_entry.hardware_entry_failure_reason
6460                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6461                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6462                 return 0;
6463         }
6464
6465         /*
6466          * Note:
6467          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6468          * delivery event since it indicates guest is accessing MMIO.
6469          * The vm-exit can be triggered again after return to guest that
6470          * will cause infinite loop.
6471          */
6472         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6473             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6474              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6475              exit_reason.basic != EXIT_REASON_PML_FULL &&
6476              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6477              exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6478              exit_reason.basic != EXIT_REASON_NOTIFY)) {
6479                 int ndata = 3;
6480
6481                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6482                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6483                 vcpu->run->internal.data[0] = vectoring_info;
6484                 vcpu->run->internal.data[1] = exit_reason.full;
6485                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6486                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6487                         vcpu->run->internal.data[ndata++] =
6488                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6489                 }
6490                 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6491                 vcpu->run->internal.ndata = ndata;
6492                 return 0;
6493         }
6494
6495         if (unlikely(!enable_vnmi &&
6496                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6497                 if (!vmx_interrupt_blocked(vcpu)) {
6498                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6499                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6500                            vcpu->arch.nmi_pending) {
6501                         /*
6502                          * This CPU don't support us in finding the end of an
6503                          * NMI-blocked window if the guest runs with IRQs
6504                          * disabled. So we pull the trigger after 1 s of
6505                          * futile waiting, but inform the user about this.
6506                          */
6507                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6508                                "state on VCPU %d after 1 s timeout\n",
6509                                __func__, vcpu->vcpu_id);
6510                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6511                 }
6512         }
6513
6514         if (exit_fastpath != EXIT_FASTPATH_NONE)
6515                 return 1;
6516
6517         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6518                 goto unexpected_vmexit;
6519 #ifdef CONFIG_RETPOLINE
6520         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6521                 return kvm_emulate_wrmsr(vcpu);
6522         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6523                 return handle_preemption_timer(vcpu);
6524         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6525                 return handle_interrupt_window(vcpu);
6526         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6527                 return handle_external_interrupt(vcpu);
6528         else if (exit_reason.basic == EXIT_REASON_HLT)
6529                 return kvm_emulate_halt(vcpu);
6530         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6531                 return handle_ept_misconfig(vcpu);
6532 #endif
6533
6534         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6535                                                 kvm_vmx_max_exit_handlers);
6536         if (!kvm_vmx_exit_handlers[exit_handler_index])
6537                 goto unexpected_vmexit;
6538
6539         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6540
6541 unexpected_vmexit:
6542         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6543                     exit_reason.full);
6544         dump_vmcs(vcpu);
6545         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6546         vcpu->run->internal.suberror =
6547                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6548         vcpu->run->internal.ndata = 2;
6549         vcpu->run->internal.data[0] = exit_reason.full;
6550         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6551         return 0;
6552 }
6553
6554 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6555 {
6556         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6557
6558         /*
6559          * Exit to user space when bus lock detected to inform that there is
6560          * a bus lock in guest.
6561          */
6562         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6563                 if (ret > 0)
6564                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6565
6566                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6567                 return 0;
6568         }
6569         return ret;
6570 }
6571
6572 /*
6573  * Software based L1D cache flush which is used when microcode providing
6574  * the cache control MSR is not loaded.
6575  *
6576  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6577  * flush it is required to read in 64 KiB because the replacement algorithm
6578  * is not exactly LRU. This could be sized at runtime via topology
6579  * information but as all relevant affected CPUs have 32KiB L1D cache size
6580  * there is no point in doing so.
6581  */
6582 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6583 {
6584         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6585
6586         /*
6587          * This code is only executed when the flush mode is 'cond' or
6588          * 'always'
6589          */
6590         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6591                 bool flush_l1d;
6592
6593                 /*
6594                  * Clear the per-vcpu flush bit, it gets set again
6595                  * either from vcpu_run() or from one of the unsafe
6596                  * VMEXIT handlers.
6597                  */
6598                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6599                 vcpu->arch.l1tf_flush_l1d = false;
6600
6601                 /*
6602                  * Clear the per-cpu flush bit, it gets set again from
6603                  * the interrupt handlers.
6604                  */
6605                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6606                 kvm_clear_cpu_l1tf_flush_l1d();
6607
6608                 if (!flush_l1d)
6609                         return;
6610         }
6611
6612         vcpu->stat.l1d_flush++;
6613
6614         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6615                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6616                 return;
6617         }
6618
6619         asm volatile(
6620                 /* First ensure the pages are in the TLB */
6621                 "xorl   %%eax, %%eax\n"
6622                 ".Lpopulate_tlb:\n\t"
6623                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6624                 "addl   $4096, %%eax\n\t"
6625                 "cmpl   %%eax, %[size]\n\t"
6626                 "jne    .Lpopulate_tlb\n\t"
6627                 "xorl   %%eax, %%eax\n\t"
6628                 "cpuid\n\t"
6629                 /* Now fill the cache */
6630                 "xorl   %%eax, %%eax\n"
6631                 ".Lfill_cache:\n"
6632                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6633                 "addl   $64, %%eax\n\t"
6634                 "cmpl   %%eax, %[size]\n\t"
6635                 "jne    .Lfill_cache\n\t"
6636                 "lfence\n"
6637                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6638                     [size] "r" (size)
6639                 : "eax", "ebx", "ecx", "edx");
6640 }
6641
6642 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6643 {
6644         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6645         int tpr_threshold;
6646
6647         if (is_guest_mode(vcpu) &&
6648                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6649                 return;
6650
6651         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6652         if (is_guest_mode(vcpu))
6653                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6654         else
6655                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6656 }
6657
6658 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6659 {
6660         struct vcpu_vmx *vmx = to_vmx(vcpu);
6661         u32 sec_exec_control;
6662
6663         if (!lapic_in_kernel(vcpu))
6664                 return;
6665
6666         if (!flexpriority_enabled &&
6667             !cpu_has_vmx_virtualize_x2apic_mode())
6668                 return;
6669
6670         /* Postpone execution until vmcs01 is the current VMCS. */
6671         if (is_guest_mode(vcpu)) {
6672                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6673                 return;
6674         }
6675
6676         sec_exec_control = secondary_exec_controls_get(vmx);
6677         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6678                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6679
6680         switch (kvm_get_apic_mode(vcpu)) {
6681         case LAPIC_MODE_INVALID:
6682                 WARN_ONCE(true, "Invalid local APIC state");
6683                 break;
6684         case LAPIC_MODE_DISABLED:
6685                 break;
6686         case LAPIC_MODE_XAPIC:
6687                 if (flexpriority_enabled) {
6688                         sec_exec_control |=
6689                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6690                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6691
6692                         /*
6693                          * Flush the TLB, reloading the APIC access page will
6694                          * only do so if its physical address has changed, but
6695                          * the guest may have inserted a non-APIC mapping into
6696                          * the TLB while the APIC access page was disabled.
6697                          */
6698                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6699                 }
6700                 break;
6701         case LAPIC_MODE_X2APIC:
6702                 if (cpu_has_vmx_virtualize_x2apic_mode())
6703                         sec_exec_control |=
6704                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6705                 break;
6706         }
6707         secondary_exec_controls_set(vmx, sec_exec_control);
6708
6709         vmx_update_msr_bitmap_x2apic(vcpu);
6710 }
6711
6712 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6713 {
6714         const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6715         struct kvm *kvm = vcpu->kvm;
6716         struct kvm_memslots *slots = kvm_memslots(kvm);
6717         struct kvm_memory_slot *slot;
6718         unsigned long mmu_seq;
6719         kvm_pfn_t pfn;
6720
6721         /* Defer reload until vmcs01 is the current VMCS. */
6722         if (is_guest_mode(vcpu)) {
6723                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6724                 return;
6725         }
6726
6727         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6728             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6729                 return;
6730
6731         /*
6732          * Grab the memslot so that the hva lookup for the mmu_notifier retry
6733          * is guaranteed to use the same memslot as the pfn lookup, i.e. rely
6734          * on the pfn lookup's validation of the memslot to ensure a valid hva
6735          * is used for the retry check.
6736          */
6737         slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6738         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6739                 return;
6740
6741         /*
6742          * Ensure that the mmu_notifier sequence count is read before KVM
6743          * retrieves the pfn from the primary MMU.  Note, the memslot is
6744          * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6745          * in kvm_mmu_invalidate_end().
6746          */
6747         mmu_seq = kvm->mmu_invalidate_seq;
6748         smp_rmb();
6749
6750         /*
6751          * No need to retry if the memslot does not exist or is invalid.  KVM
6752          * controls the APIC-access page memslot, and only deletes the memslot
6753          * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6754          */
6755         pfn = gfn_to_pfn_memslot(slot, gfn);
6756         if (is_error_noslot_pfn(pfn))
6757                 return;
6758
6759         read_lock(&vcpu->kvm->mmu_lock);
6760         if (mmu_invalidate_retry_hva(kvm, mmu_seq,
6761                                      gfn_to_hva_memslot(slot, gfn))) {
6762                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6763                 read_unlock(&vcpu->kvm->mmu_lock);
6764                 goto out;
6765         }
6766
6767         vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6768         read_unlock(&vcpu->kvm->mmu_lock);
6769
6770         vmx_flush_tlb_current(vcpu);
6771
6772 out:
6773         /*
6774          * Do not pin apic access page in memory, the MMU notifier
6775          * will call us again if it is migrated or swapped out.
6776          */
6777         kvm_release_pfn_clean(pfn);
6778 }
6779
6780 static void vmx_hwapic_isr_update(int max_isr)
6781 {
6782         u16 status;
6783         u8 old;
6784
6785         if (max_isr == -1)
6786                 max_isr = 0;
6787
6788         status = vmcs_read16(GUEST_INTR_STATUS);
6789         old = status >> 8;
6790         if (max_isr != old) {
6791                 status &= 0xff;
6792                 status |= max_isr << 8;
6793                 vmcs_write16(GUEST_INTR_STATUS, status);
6794         }
6795 }
6796
6797 static void vmx_set_rvi(int vector)
6798 {
6799         u16 status;
6800         u8 old;
6801
6802         if (vector == -1)
6803                 vector = 0;
6804
6805         status = vmcs_read16(GUEST_INTR_STATUS);
6806         old = (u8)status & 0xff;
6807         if ((u8)vector != old) {
6808                 status &= ~0xff;
6809                 status |= (u8)vector;
6810                 vmcs_write16(GUEST_INTR_STATUS, status);
6811         }
6812 }
6813
6814 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6815 {
6816         /*
6817          * When running L2, updating RVI is only relevant when
6818          * vmcs12 virtual-interrupt-delivery enabled.
6819          * However, it can be enabled only when L1 also
6820          * intercepts external-interrupts and in that case
6821          * we should not update vmcs02 RVI but instead intercept
6822          * interrupt. Therefore, do nothing when running L2.
6823          */
6824         if (!is_guest_mode(vcpu))
6825                 vmx_set_rvi(max_irr);
6826 }
6827
6828 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6829 {
6830         struct vcpu_vmx *vmx = to_vmx(vcpu);
6831         int max_irr;
6832         bool got_posted_interrupt;
6833
6834         if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6835                 return -EIO;
6836
6837         if (pi_test_on(&vmx->pi_desc)) {
6838                 pi_clear_on(&vmx->pi_desc);
6839                 /*
6840                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6841                  * But on x86 this is just a compiler barrier anyway.
6842                  */
6843                 smp_mb__after_atomic();
6844                 got_posted_interrupt =
6845                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6846         } else {
6847                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6848                 got_posted_interrupt = false;
6849         }
6850
6851         /*
6852          * Newly recognized interrupts are injected via either virtual interrupt
6853          * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6854          * disabled in two cases:
6855          *
6856          * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6857          * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6858          * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6859          * into L2, but KVM doesn't use virtual interrupt delivery to inject
6860          * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6861          *
6862          * 2) If APICv is disabled for this vCPU, assigned devices may still
6863          * attempt to post interrupts.  The posted interrupt vector will cause
6864          * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6865          */
6866         if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6867                 vmx_set_rvi(max_irr);
6868         else if (got_posted_interrupt)
6869                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6870
6871         return max_irr;
6872 }
6873
6874 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6875 {
6876         if (!kvm_vcpu_apicv_active(vcpu))
6877                 return;
6878
6879         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6880         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6881         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6882         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6883 }
6884
6885 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6886 {
6887         struct vcpu_vmx *vmx = to_vmx(vcpu);
6888
6889         pi_clear_on(&vmx->pi_desc);
6890         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6891 }
6892
6893 void vmx_do_interrupt_irqoff(unsigned long entry);
6894 void vmx_do_nmi_irqoff(void);
6895
6896 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6897 {
6898         /*
6899          * Save xfd_err to guest_fpu before interrupt is enabled, so the
6900          * MSR value is not clobbered by the host activity before the guest
6901          * has chance to consume it.
6902          *
6903          * Do not blindly read xfd_err here, since this exception might
6904          * be caused by L1 interception on a platform which doesn't
6905          * support xfd at all.
6906          *
6907          * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6908          * only when xfd contains a non-zero value.
6909          *
6910          * Queuing exception is done in vmx_handle_exit. See comment there.
6911          */
6912         if (vcpu->arch.guest_fpu.fpstate->xfd)
6913                 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6914 }
6915
6916 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6917 {
6918         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6919
6920         /* if exit due to PF check for async PF */
6921         if (is_page_fault(intr_info))
6922                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6923         /* if exit due to NM, handle before interrupts are enabled */
6924         else if (is_nm_fault(intr_info))
6925                 handle_nm_fault_irqoff(&vmx->vcpu);
6926         /* Handle machine checks before interrupts are enabled */
6927         else if (is_machine_check(intr_info))
6928                 kvm_machine_check();
6929 }
6930
6931 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6932 {
6933         u32 intr_info = vmx_get_intr_info(vcpu);
6934         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6935         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6936
6937         if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6938             "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6939                 return;
6940
6941         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6942         vmx_do_interrupt_irqoff(gate_offset(desc));
6943         kvm_after_interrupt(vcpu);
6944
6945         vcpu->arch.at_instruction_boundary = true;
6946 }
6947
6948 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6949 {
6950         struct vcpu_vmx *vmx = to_vmx(vcpu);
6951
6952         if (vmx->emulation_required)
6953                 return;
6954
6955         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6956                 handle_external_interrupt_irqoff(vcpu);
6957         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6958                 handle_exception_irqoff(vmx);
6959 }
6960
6961 /*
6962  * The kvm parameter can be NULL (module initialization, or invocation before
6963  * VM creation). Be sure to check the kvm parameter before using it.
6964  */
6965 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6966 {
6967         switch (index) {
6968         case MSR_IA32_SMBASE:
6969                 if (!IS_ENABLED(CONFIG_KVM_SMM))
6970                         return false;
6971                 /*
6972                  * We cannot do SMM unless we can run the guest in big
6973                  * real mode.
6974                  */
6975                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6976         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
6977                 return nested;
6978         case MSR_AMD64_VIRT_SPEC_CTRL:
6979         case MSR_AMD64_TSC_RATIO:
6980                 /* This is AMD only.  */
6981                 return false;
6982         default:
6983                 return true;
6984         }
6985 }
6986
6987 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6988 {
6989         u32 exit_intr_info;
6990         bool unblock_nmi;
6991         u8 vector;
6992         bool idtv_info_valid;
6993
6994         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6995
6996         if (enable_vnmi) {
6997                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6998                         return;
6999
7000                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7001                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7002                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7003                 /*
7004                  * SDM 3: 27.7.1.2 (September 2008)
7005                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7006                  * a guest IRET fault.
7007                  * SDM 3: 23.2.2 (September 2008)
7008                  * Bit 12 is undefined in any of the following cases:
7009                  *  If the VM exit sets the valid bit in the IDT-vectoring
7010                  *   information field.
7011                  *  If the VM exit is due to a double fault.
7012                  */
7013                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7014                     vector != DF_VECTOR && !idtv_info_valid)
7015                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7016                                       GUEST_INTR_STATE_NMI);
7017                 else
7018                         vmx->loaded_vmcs->nmi_known_unmasked =
7019                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7020                                   & GUEST_INTR_STATE_NMI);
7021         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7022                 vmx->loaded_vmcs->vnmi_blocked_time +=
7023                         ktime_to_ns(ktime_sub(ktime_get(),
7024                                               vmx->loaded_vmcs->entry_time));
7025 }
7026
7027 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7028                                       u32 idt_vectoring_info,
7029                                       int instr_len_field,
7030                                       int error_code_field)
7031 {
7032         u8 vector;
7033         int type;
7034         bool idtv_info_valid;
7035
7036         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7037
7038         vcpu->arch.nmi_injected = false;
7039         kvm_clear_exception_queue(vcpu);
7040         kvm_clear_interrupt_queue(vcpu);
7041
7042         if (!idtv_info_valid)
7043                 return;
7044
7045         kvm_make_request(KVM_REQ_EVENT, vcpu);
7046
7047         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7048         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7049
7050         switch (type) {
7051         case INTR_TYPE_NMI_INTR:
7052                 vcpu->arch.nmi_injected = true;
7053                 /*
7054                  * SDM 3: 27.7.1.2 (September 2008)
7055                  * Clear bit "block by NMI" before VM entry if a NMI
7056                  * delivery faulted.
7057                  */
7058                 vmx_set_nmi_mask(vcpu, false);
7059                 break;
7060         case INTR_TYPE_SOFT_EXCEPTION:
7061                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7062                 fallthrough;
7063         case INTR_TYPE_HARD_EXCEPTION:
7064                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7065                         u32 err = vmcs_read32(error_code_field);
7066                         kvm_requeue_exception_e(vcpu, vector, err);
7067                 } else
7068                         kvm_requeue_exception(vcpu, vector);
7069                 break;
7070         case INTR_TYPE_SOFT_INTR:
7071                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7072                 fallthrough;
7073         case INTR_TYPE_EXT_INTR:
7074                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7075                 break;
7076         default:
7077                 break;
7078         }
7079 }
7080
7081 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7082 {
7083         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7084                                   VM_EXIT_INSTRUCTION_LEN,
7085                                   IDT_VECTORING_ERROR_CODE);
7086 }
7087
7088 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7089 {
7090         __vmx_complete_interrupts(vcpu,
7091                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7092                                   VM_ENTRY_INSTRUCTION_LEN,
7093                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7094
7095         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7096 }
7097
7098 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7099 {
7100         int i, nr_msrs;
7101         struct perf_guest_switch_msr *msrs;
7102         struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7103
7104         pmu->host_cross_mapped_mask = 0;
7105         if (pmu->pebs_enable & pmu->global_ctrl)
7106                 intel_pmu_cross_mapped_check(pmu);
7107
7108         /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7109         msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7110         if (!msrs)
7111                 return;
7112
7113         for (i = 0; i < nr_msrs; i++)
7114                 if (msrs[i].host == msrs[i].guest)
7115                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7116                 else
7117                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7118                                         msrs[i].host, false);
7119 }
7120
7121 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7122 {
7123         struct vcpu_vmx *vmx = to_vmx(vcpu);
7124         u64 tscl;
7125         u32 delta_tsc;
7126
7127         if (vmx->req_immediate_exit) {
7128                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7129                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7130         } else if (vmx->hv_deadline_tsc != -1) {
7131                 tscl = rdtsc();
7132                 if (vmx->hv_deadline_tsc > tscl)
7133                         /* set_hv_timer ensures the delta fits in 32-bits */
7134                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7135                                 cpu_preemption_timer_multi);
7136                 else
7137                         delta_tsc = 0;
7138
7139                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7140                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7141         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7142                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7143                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7144         }
7145 }
7146
7147 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7148 {
7149         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7150                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7151                 vmcs_writel(HOST_RSP, host_rsp);
7152         }
7153 }
7154
7155 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7156                                         unsigned int flags)
7157 {
7158         u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7159
7160         if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7161                 return;
7162
7163         if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7164                 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7165
7166         /*
7167          * If the guest/host SPEC_CTRL values differ, restore the host value.
7168          *
7169          * For legacy IBRS, the IBRS bit always needs to be written after
7170          * transitioning from a less privileged predictor mode, regardless of
7171          * whether the guest/host values differ.
7172          */
7173         if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7174             vmx->spec_ctrl != hostval)
7175                 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7176
7177         barrier_nospec();
7178 }
7179
7180 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7181 {
7182         switch (to_vmx(vcpu)->exit_reason.basic) {
7183         case EXIT_REASON_MSR_WRITE:
7184                 return handle_fastpath_set_msr_irqoff(vcpu);
7185         case EXIT_REASON_PREEMPTION_TIMER:
7186                 return handle_fastpath_preemption_timer(vcpu);
7187         default:
7188                 return EXIT_FASTPATH_NONE;
7189         }
7190 }
7191
7192 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7193                                         unsigned int flags)
7194 {
7195         struct vcpu_vmx *vmx = to_vmx(vcpu);
7196
7197         guest_state_enter_irqoff();
7198
7199         /* L1D Flush includes CPU buffer clear to mitigate MDS */
7200         if (static_branch_unlikely(&vmx_l1d_should_flush))
7201                 vmx_l1d_flush(vcpu);
7202         else if (static_branch_unlikely(&mds_user_clear))
7203                 mds_clear_cpu_buffers();
7204         else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7205                  kvm_arch_has_assigned_device(vcpu->kvm))
7206                 mds_clear_cpu_buffers();
7207
7208         vmx_disable_fb_clear(vmx);
7209
7210         if (vcpu->arch.cr2 != native_read_cr2())
7211                 native_write_cr2(vcpu->arch.cr2);
7212
7213         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7214                                    flags);
7215
7216         vcpu->arch.cr2 = native_read_cr2();
7217
7218         vmx_enable_fb_clear(vmx);
7219
7220         if (unlikely(vmx->fail))
7221                 vmx->exit_reason.full = 0xdead;
7222         else
7223                 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7224
7225         if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7226             is_nmi(vmx_get_intr_info(vcpu))) {
7227                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7228                 vmx_do_nmi_irqoff();
7229                 kvm_after_interrupt(vcpu);
7230         }
7231
7232         guest_state_exit_irqoff();
7233 }
7234
7235 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7236 {
7237         struct vcpu_vmx *vmx = to_vmx(vcpu);
7238         unsigned long cr3, cr4;
7239
7240         /* Record the guest's net vcpu time for enforced NMI injections. */
7241         if (unlikely(!enable_vnmi &&
7242                      vmx->loaded_vmcs->soft_vnmi_blocked))
7243                 vmx->loaded_vmcs->entry_time = ktime_get();
7244
7245         /*
7246          * Don't enter VMX if guest state is invalid, let the exit handler
7247          * start emulation until we arrive back to a valid state.  Synthesize a
7248          * consistency check VM-Exit due to invalid guest state and bail.
7249          */
7250         if (unlikely(vmx->emulation_required)) {
7251                 vmx->fail = 0;
7252
7253                 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7254                 vmx->exit_reason.failed_vmentry = 1;
7255                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7256                 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7257                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7258                 vmx->exit_intr_info = 0;
7259                 return EXIT_FASTPATH_NONE;
7260         }
7261
7262         trace_kvm_entry(vcpu);
7263
7264         if (vmx->ple_window_dirty) {
7265                 vmx->ple_window_dirty = false;
7266                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7267         }
7268
7269         /*
7270          * We did this in prepare_switch_to_guest, because it needs to
7271          * be within srcu_read_lock.
7272          */
7273         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7274
7275         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7276                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7277         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7278                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7279         vcpu->arch.regs_dirty = 0;
7280
7281         /*
7282          * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7283          * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7284          * it switches back to the current->mm, which can occur in KVM context
7285          * when switching to a temporary mm to patch kernel code, e.g. if KVM
7286          * toggles a static key while handling a VM-Exit.
7287          */
7288         cr3 = __get_current_cr3_fast();
7289         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7290                 vmcs_writel(HOST_CR3, cr3);
7291                 vmx->loaded_vmcs->host_state.cr3 = cr3;
7292         }
7293
7294         cr4 = cr4_read_shadow();
7295         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7296                 vmcs_writel(HOST_CR4, cr4);
7297                 vmx->loaded_vmcs->host_state.cr4 = cr4;
7298         }
7299
7300         /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7301         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7302                 set_debugreg(vcpu->arch.dr6, 6);
7303
7304         /* When single-stepping over STI and MOV SS, we must clear the
7305          * corresponding interruptibility bits in the guest state. Otherwise
7306          * vmentry fails as it then expects bit 14 (BS) in pending debug
7307          * exceptions being set, but that's not correct for the guest debugging
7308          * case. */
7309         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7310                 vmx_set_interrupt_shadow(vcpu, 0);
7311
7312         kvm_load_guest_xsave_state(vcpu);
7313
7314         pt_guest_enter(vmx);
7315
7316         atomic_switch_perf_msrs(vmx);
7317         if (intel_pmu_lbr_is_enabled(vcpu))
7318                 vmx_passthrough_lbr_msrs(vcpu);
7319
7320         if (enable_preemption_timer)
7321                 vmx_update_hv_timer(vcpu);
7322
7323         kvm_wait_lapic_expire(vcpu);
7324
7325         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7326         vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7327
7328         /* All fields are clean at this point */
7329         if (kvm_is_using_evmcs()) {
7330                 current_evmcs->hv_clean_fields |=
7331                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7332
7333                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7334         }
7335
7336         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7337         if (vmx->host_debugctlmsr)
7338                 update_debugctlmsr(vmx->host_debugctlmsr);
7339
7340 #ifndef CONFIG_X86_64
7341         /*
7342          * The sysexit path does not restore ds/es, so we must set them to
7343          * a reasonable value ourselves.
7344          *
7345          * We can't defer this to vmx_prepare_switch_to_host() since that
7346          * function may be executed in interrupt context, which saves and
7347          * restore segments around it, nullifying its effect.
7348          */
7349         loadsegment(ds, __USER_DS);
7350         loadsegment(es, __USER_DS);
7351 #endif
7352
7353         vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7354
7355         pt_guest_exit(vmx);
7356
7357         kvm_load_host_xsave_state(vcpu);
7358
7359         if (is_guest_mode(vcpu)) {
7360                 /*
7361                  * Track VMLAUNCH/VMRESUME that have made past guest state
7362                  * checking.
7363                  */
7364                 if (vmx->nested.nested_run_pending &&
7365                     !vmx->exit_reason.failed_vmentry)
7366                         ++vcpu->stat.nested_run;
7367
7368                 vmx->nested.nested_run_pending = 0;
7369         }
7370
7371         vmx->idt_vectoring_info = 0;
7372
7373         if (unlikely(vmx->fail))
7374                 return EXIT_FASTPATH_NONE;
7375
7376         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7377                 kvm_machine_check();
7378
7379         if (likely(!vmx->exit_reason.failed_vmentry))
7380                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7381
7382         trace_kvm_exit(vcpu, KVM_ISA_VMX);
7383
7384         if (unlikely(vmx->exit_reason.failed_vmentry))
7385                 return EXIT_FASTPATH_NONE;
7386
7387         vmx->loaded_vmcs->launched = 1;
7388
7389         vmx_recover_nmi_blocking(vmx);
7390         vmx_complete_interrupts(vmx);
7391
7392         if (is_guest_mode(vcpu))
7393                 return EXIT_FASTPATH_NONE;
7394
7395         return vmx_exit_handlers_fastpath(vcpu);
7396 }
7397
7398 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7399 {
7400         struct vcpu_vmx *vmx = to_vmx(vcpu);
7401
7402         if (enable_pml)
7403                 vmx_destroy_pml_buffer(vmx);
7404         free_vpid(vmx->vpid);
7405         nested_vmx_free_vcpu(vcpu);
7406         free_loaded_vmcs(vmx->loaded_vmcs);
7407 }
7408
7409 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7410 {
7411         struct vmx_uret_msr *tsx_ctrl;
7412         struct vcpu_vmx *vmx;
7413         int i, err;
7414
7415         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7416         vmx = to_vmx(vcpu);
7417
7418         INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7419
7420         err = -ENOMEM;
7421
7422         vmx->vpid = allocate_vpid();
7423
7424         /*
7425          * If PML is turned on, failure on enabling PML just results in failure
7426          * of creating the vcpu, therefore we can simplify PML logic (by
7427          * avoiding dealing with cases, such as enabling PML partially on vcpus
7428          * for the guest), etc.
7429          */
7430         if (enable_pml) {
7431                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7432                 if (!vmx->pml_pg)
7433                         goto free_vpid;
7434         }
7435
7436         for (i = 0; i < kvm_nr_uret_msrs; ++i)
7437                 vmx->guest_uret_msrs[i].mask = -1ull;
7438         if (boot_cpu_has(X86_FEATURE_RTM)) {
7439                 /*
7440                  * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7441                  * Keep the host value unchanged to avoid changing CPUID bits
7442                  * under the host kernel's feet.
7443                  */
7444                 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7445                 if (tsx_ctrl)
7446                         tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7447         }
7448
7449         err = alloc_loaded_vmcs(&vmx->vmcs01);
7450         if (err < 0)
7451                 goto free_pml;
7452
7453         /*
7454          * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7455          * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7456          * feature only for vmcs01, KVM currently isn't equipped to realize any
7457          * performance benefits from enabling it for vmcs02.
7458          */
7459         if (kvm_is_using_evmcs() &&
7460             (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7461                 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7462
7463                 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7464         }
7465
7466         /* The MSR bitmap starts with all ones */
7467         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7468         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7469
7470         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7471 #ifdef CONFIG_X86_64
7472         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7473         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7474         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7475 #endif
7476         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7477         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7478         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7479         if (kvm_cstate_in_guest(vcpu->kvm)) {
7480                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7481                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7482                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7483                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7484         }
7485
7486         vmx->loaded_vmcs = &vmx->vmcs01;
7487
7488         if (cpu_need_virtualize_apic_accesses(vcpu)) {
7489                 err = kvm_alloc_apic_access_page(vcpu->kvm);
7490                 if (err)
7491                         goto free_vmcs;
7492         }
7493
7494         if (enable_ept && !enable_unrestricted_guest) {
7495                 err = init_rmode_identity_map(vcpu->kvm);
7496                 if (err)
7497                         goto free_vmcs;
7498         }
7499
7500         if (vmx_can_use_ipiv(vcpu))
7501                 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7502                            __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7503
7504         return 0;
7505
7506 free_vmcs:
7507         free_loaded_vmcs(vmx->loaded_vmcs);
7508 free_pml:
7509         vmx_destroy_pml_buffer(vmx);
7510 free_vpid:
7511         free_vpid(vmx->vpid);
7512         return err;
7513 }
7514
7515 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7516 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7517
7518 static int vmx_vm_init(struct kvm *kvm)
7519 {
7520         if (!ple_gap)
7521                 kvm->arch.pause_in_guest = true;
7522
7523         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7524                 switch (l1tf_mitigation) {
7525                 case L1TF_MITIGATION_OFF:
7526                 case L1TF_MITIGATION_FLUSH_NOWARN:
7527                         /* 'I explicitly don't care' is set */
7528                         break;
7529                 case L1TF_MITIGATION_FLUSH:
7530                 case L1TF_MITIGATION_FLUSH_NOSMT:
7531                 case L1TF_MITIGATION_FULL:
7532                         /*
7533                          * Warn upon starting the first VM in a potentially
7534                          * insecure environment.
7535                          */
7536                         if (sched_smt_active())
7537                                 pr_warn_once(L1TF_MSG_SMT);
7538                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7539                                 pr_warn_once(L1TF_MSG_L1D);
7540                         break;
7541                 case L1TF_MITIGATION_FULL_FORCE:
7542                         /* Flush is enforced */
7543                         break;
7544                 }
7545         }
7546         return 0;
7547 }
7548
7549 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7550 {
7551         u8 cache;
7552
7553         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7554          * memory aliases with conflicting memory types and sometimes MCEs.
7555          * We have to be careful as to what are honored and when.
7556          *
7557          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7558          * UC.  The effective memory type is UC or WC depending on guest PAT.
7559          * This was historically the source of MCEs and we want to be
7560          * conservative.
7561          *
7562          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7563          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7564          * EPT memory type is set to WB.  The effective memory type is forced
7565          * WB.
7566          *
7567          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7568          * EPT memory type is used to emulate guest CD/MTRR.
7569          */
7570
7571         if (is_mmio)
7572                 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7573
7574         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7575                 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7576
7577         if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7578                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7579                         cache = MTRR_TYPE_WRBACK;
7580                 else
7581                         cache = MTRR_TYPE_UNCACHABLE;
7582
7583                 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7584         }
7585
7586         return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7587 }
7588
7589 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7590 {
7591         /*
7592          * These bits in the secondary execution controls field
7593          * are dynamic, the others are mostly based on the hypervisor
7594          * architecture and the guest's CPUID.  Do not touch the
7595          * dynamic bits.
7596          */
7597         u32 mask =
7598                 SECONDARY_EXEC_SHADOW_VMCS |
7599                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7600                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7601                 SECONDARY_EXEC_DESC;
7602
7603         u32 cur_ctl = secondary_exec_controls_get(vmx);
7604
7605         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7606 }
7607
7608 /*
7609  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7610  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7611  */
7612 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7613 {
7614         struct vcpu_vmx *vmx = to_vmx(vcpu);
7615         struct kvm_cpuid_entry2 *entry;
7616
7617         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7618         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7619
7620 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7621         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7622                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7623 } while (0)
7624
7625         entry = kvm_find_cpuid_entry(vcpu, 0x1);
7626         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7627         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7628         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7629         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7630         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7631         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7632         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7633         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7634         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7635         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7636         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7637         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7638         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7639         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7640
7641         entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7642         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7643         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7644         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7645         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7646         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7647         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7648
7649 #undef cr4_fixed1_update
7650 }
7651
7652 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7653 {
7654         struct vcpu_vmx *vmx = to_vmx(vcpu);
7655         struct kvm_cpuid_entry2 *best = NULL;
7656         int i;
7657
7658         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7659                 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7660                 if (!best)
7661                         return;
7662                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7663                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7664                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7665                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7666         }
7667
7668         /* Get the number of configurable Address Ranges for filtering */
7669         vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7670                                                 PT_CAP_num_address_ranges);
7671
7672         /* Initialize and clear the no dependency bits */
7673         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7674                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7675                         RTIT_CTL_BRANCH_EN);
7676
7677         /*
7678          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7679          * will inject an #GP
7680          */
7681         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7682                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7683
7684         /*
7685          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7686          * PSBFreq can be set
7687          */
7688         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7689                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7690                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7691
7692         /*
7693          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7694          */
7695         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7696                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7697                                               RTIT_CTL_MTC_RANGE);
7698
7699         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7700         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7701                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7702                                                         RTIT_CTL_PTW_EN);
7703
7704         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7705         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7706                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7707
7708         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7709         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7710                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7711
7712         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7713         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7714                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7715
7716         /* unmask address range configure area */
7717         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7718                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7719 }
7720
7721 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7722 {
7723         struct vcpu_vmx *vmx = to_vmx(vcpu);
7724
7725         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7726         vcpu->arch.xsaves_enabled = false;
7727
7728         vmx_setup_uret_msrs(vmx);
7729
7730         if (cpu_has_secondary_exec_ctrls())
7731                 vmcs_set_secondary_exec_control(vmx,
7732                                                 vmx_secondary_exec_control(vmx));
7733
7734         if (nested_vmx_allowed(vcpu))
7735                 vmx->msr_ia32_feature_control_valid_bits |=
7736                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7737                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7738         else
7739                 vmx->msr_ia32_feature_control_valid_bits &=
7740                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7741                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7742
7743         if (nested_vmx_allowed(vcpu))
7744                 nested_vmx_cr_fixed1_bits_update(vcpu);
7745
7746         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7747                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7748                 update_intel_pt_cfg(vcpu);
7749
7750         if (boot_cpu_has(X86_FEATURE_RTM)) {
7751                 struct vmx_uret_msr *msr;
7752                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7753                 if (msr) {
7754                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7755                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7756                 }
7757         }
7758
7759         if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7760                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7761                                           !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7762
7763         if (boot_cpu_has(X86_FEATURE_IBPB))
7764                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7765                                           !guest_has_pred_cmd_msr(vcpu));
7766
7767         if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7768                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7769                                           !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7770
7771         set_cr4_guest_host_mask(vmx);
7772
7773         vmx_write_encls_bitmap(vcpu, NULL);
7774         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7775                 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7776         else
7777                 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7778
7779         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7780                 vmx->msr_ia32_feature_control_valid_bits |=
7781                         FEAT_CTL_SGX_LC_ENABLED;
7782         else
7783                 vmx->msr_ia32_feature_control_valid_bits &=
7784                         ~FEAT_CTL_SGX_LC_ENABLED;
7785
7786         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7787         vmx_update_exception_bitmap(vcpu);
7788 }
7789
7790 static u64 vmx_get_perf_capabilities(void)
7791 {
7792         u64 perf_cap = PMU_CAP_FW_WRITES;
7793         struct x86_pmu_lbr lbr;
7794         u64 host_perf_cap = 0;
7795
7796         if (!enable_pmu)
7797                 return 0;
7798
7799         if (boot_cpu_has(X86_FEATURE_PDCM))
7800                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7801
7802         if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7803                 x86_perf_get_lbr(&lbr);
7804                 if (lbr.nr)
7805                         perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7806         }
7807
7808         if (vmx_pebs_supported()) {
7809                 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7810                 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7811                         perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7812         }
7813
7814         return perf_cap;
7815 }
7816
7817 static __init void vmx_set_cpu_caps(void)
7818 {
7819         kvm_set_cpu_caps();
7820
7821         /* CPUID 0x1 */
7822         if (nested)
7823                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7824
7825         /* CPUID 0x7 */
7826         if (kvm_mpx_supported())
7827                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7828         if (!cpu_has_vmx_invpcid())
7829                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7830         if (vmx_pt_mode_is_host_guest())
7831                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7832         if (vmx_pebs_supported()) {
7833                 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7834                 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7835         }
7836
7837         if (!enable_pmu)
7838                 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7839         kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7840
7841         if (!enable_sgx) {
7842                 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7843                 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7844                 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7845                 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7846         }
7847
7848         if (vmx_umip_emulated())
7849                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7850
7851         /* CPUID 0xD.1 */
7852         kvm_caps.supported_xss = 0;
7853         if (!cpu_has_vmx_xsaves())
7854                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7855
7856         /* CPUID 0x80000001 and 0x7 (RDPID) */
7857         if (!cpu_has_vmx_rdtscp()) {
7858                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7859                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7860         }
7861
7862         if (cpu_has_vmx_waitpkg())
7863                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7864 }
7865
7866 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7867 {
7868         to_vmx(vcpu)->req_immediate_exit = true;
7869 }
7870
7871 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7872                                   struct x86_instruction_info *info)
7873 {
7874         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7875         unsigned short port;
7876         bool intercept;
7877         int size;
7878
7879         if (info->intercept == x86_intercept_in ||
7880             info->intercept == x86_intercept_ins) {
7881                 port = info->src_val;
7882                 size = info->dst_bytes;
7883         } else {
7884                 port = info->dst_val;
7885                 size = info->src_bytes;
7886         }
7887
7888         /*
7889          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7890          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7891          * control.
7892          *
7893          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7894          */
7895         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7896                 intercept = nested_cpu_has(vmcs12,
7897                                            CPU_BASED_UNCOND_IO_EXITING);
7898         else
7899                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7900
7901         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7902         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7903 }
7904
7905 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7906                                struct x86_instruction_info *info,
7907                                enum x86_intercept_stage stage,
7908                                struct x86_exception *exception)
7909 {
7910         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7911
7912         switch (info->intercept) {
7913         /*
7914          * RDPID causes #UD if disabled through secondary execution controls.
7915          * Because it is marked as EmulateOnUD, we need to intercept it here.
7916          * Note, RDPID is hidden behind ENABLE_RDTSCP.
7917          */
7918         case x86_intercept_rdpid:
7919                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7920                         exception->vector = UD_VECTOR;
7921                         exception->error_code_valid = false;
7922                         return X86EMUL_PROPAGATE_FAULT;
7923                 }
7924                 break;
7925
7926         case x86_intercept_in:
7927         case x86_intercept_ins:
7928         case x86_intercept_out:
7929         case x86_intercept_outs:
7930                 return vmx_check_intercept_io(vcpu, info);
7931
7932         case x86_intercept_lgdt:
7933         case x86_intercept_lidt:
7934         case x86_intercept_lldt:
7935         case x86_intercept_ltr:
7936         case x86_intercept_sgdt:
7937         case x86_intercept_sidt:
7938         case x86_intercept_sldt:
7939         case x86_intercept_str:
7940                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7941                         return X86EMUL_CONTINUE;
7942
7943                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7944                 break;
7945
7946         case x86_intercept_pause:
7947                 /*
7948                  * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
7949                  * with vanilla NOPs in the emulator.  Apply the interception
7950                  * check only to actual PAUSE instructions.  Don't check
7951                  * PAUSE-loop-exiting, software can't expect a given PAUSE to
7952                  * exit, i.e. KVM is within its rights to allow L2 to execute
7953                  * the PAUSE.
7954                  */
7955                 if ((info->rep_prefix != REPE_PREFIX) ||
7956                     !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
7957                         return X86EMUL_CONTINUE;
7958
7959                 break;
7960
7961         /* TODO: check more intercepts... */
7962         default:
7963                 break;
7964         }
7965
7966         return X86EMUL_UNHANDLEABLE;
7967 }
7968
7969 #ifdef CONFIG_X86_64
7970 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7971 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7972                                   u64 divisor, u64 *result)
7973 {
7974         u64 low = a << shift, high = a >> (64 - shift);
7975
7976         /* To avoid the overflow on divq */
7977         if (high >= divisor)
7978                 return 1;
7979
7980         /* Low hold the result, high hold rem which is discarded */
7981         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7982             "rm" (divisor), "0" (low), "1" (high));
7983         *result = low;
7984
7985         return 0;
7986 }
7987
7988 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7989                             bool *expired)
7990 {
7991         struct vcpu_vmx *vmx;
7992         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7993         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7994
7995         vmx = to_vmx(vcpu);
7996         tscl = rdtsc();
7997         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7998         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7999         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8000                                                     ktimer->timer_advance_ns);
8001
8002         if (delta_tsc > lapic_timer_advance_cycles)
8003                 delta_tsc -= lapic_timer_advance_cycles;
8004         else
8005                 delta_tsc = 0;
8006
8007         /* Convert to host delta tsc if tsc scaling is enabled */
8008         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8009             delta_tsc && u64_shl_div_u64(delta_tsc,
8010                                 kvm_caps.tsc_scaling_ratio_frac_bits,
8011                                 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8012                 return -ERANGE;
8013
8014         /*
8015          * If the delta tsc can't fit in the 32 bit after the multi shift,
8016          * we can't use the preemption timer.
8017          * It's possible that it fits on later vmentries, but checking
8018          * on every vmentry is costly so we just use an hrtimer.
8019          */
8020         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8021                 return -ERANGE;
8022
8023         vmx->hv_deadline_tsc = tscl + delta_tsc;
8024         *expired = !delta_tsc;
8025         return 0;
8026 }
8027
8028 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8029 {
8030         to_vmx(vcpu)->hv_deadline_tsc = -1;
8031 }
8032 #endif
8033
8034 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8035 {
8036         if (!kvm_pause_in_guest(vcpu->kvm))
8037                 shrink_ple_window(vcpu);
8038 }
8039
8040 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8041 {
8042         struct vcpu_vmx *vmx = to_vmx(vcpu);
8043
8044         if (WARN_ON_ONCE(!enable_pml))
8045                 return;
8046
8047         if (is_guest_mode(vcpu)) {
8048                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8049                 return;
8050         }
8051
8052         /*
8053          * Note, nr_memslots_dirty_logging can be changed concurrent with this
8054          * code, but in that case another update request will be made and so
8055          * the guest will never run with a stale PML value.
8056          */
8057         if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8058                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8059         else
8060                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8061 }
8062
8063 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8064 {
8065         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8066                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8067                         FEAT_CTL_LMCE_ENABLED;
8068         else
8069                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8070                         ~FEAT_CTL_LMCE_ENABLED;
8071 }
8072
8073 #ifdef CONFIG_KVM_SMM
8074 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8075 {
8076         /* we need a nested vmexit to enter SMM, postpone if run is pending */
8077         if (to_vmx(vcpu)->nested.nested_run_pending)
8078                 return -EBUSY;
8079         return !is_smm(vcpu);
8080 }
8081
8082 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8083 {
8084         struct vcpu_vmx *vmx = to_vmx(vcpu);
8085
8086         /*
8087          * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8088          * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8089          * SMI and RSM only modify state that is saved and restored via SMRAM.
8090          * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8091          * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8092          */
8093         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8094         if (vmx->nested.smm.guest_mode)
8095                 nested_vmx_vmexit(vcpu, -1, 0, 0);
8096
8097         vmx->nested.smm.vmxon = vmx->nested.vmxon;
8098         vmx->nested.vmxon = false;
8099         vmx_clear_hlt(vcpu);
8100         return 0;
8101 }
8102
8103 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8104 {
8105         struct vcpu_vmx *vmx = to_vmx(vcpu);
8106         int ret;
8107
8108         if (vmx->nested.smm.vmxon) {
8109                 vmx->nested.vmxon = true;
8110                 vmx->nested.smm.vmxon = false;
8111         }
8112
8113         if (vmx->nested.smm.guest_mode) {
8114                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8115                 if (ret)
8116                         return ret;
8117
8118                 vmx->nested.nested_run_pending = 1;
8119                 vmx->nested.smm.guest_mode = false;
8120         }
8121         return 0;
8122 }
8123
8124 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8125 {
8126         /* RSM will cause a vmexit anyway.  */
8127 }
8128 #endif
8129
8130 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8131 {
8132         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8133 }
8134
8135 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8136 {
8137         if (is_guest_mode(vcpu)) {
8138                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8139
8140                 if (hrtimer_try_to_cancel(timer) == 1)
8141                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8142         }
8143 }
8144
8145 static void vmx_hardware_unsetup(void)
8146 {
8147         kvm_set_posted_intr_wakeup_handler(NULL);
8148
8149         if (nested)
8150                 nested_vmx_hardware_unsetup();
8151
8152         free_kvm_area();
8153 }
8154
8155 #define VMX_REQUIRED_APICV_INHIBITS                     \
8156 (                                                       \
8157         BIT(APICV_INHIBIT_REASON_DISABLE)|              \
8158         BIT(APICV_INHIBIT_REASON_ABSENT) |              \
8159         BIT(APICV_INHIBIT_REASON_HYPERV) |              \
8160         BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |            \
8161         BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
8162         BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |    \
8163         BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)    \
8164 )
8165
8166 static void vmx_vm_destroy(struct kvm *kvm)
8167 {
8168         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8169
8170         free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8171 }
8172
8173 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8174         .name = KBUILD_MODNAME,
8175
8176         .check_processor_compatibility = vmx_check_processor_compat,
8177
8178         .hardware_unsetup = vmx_hardware_unsetup,
8179
8180         .hardware_enable = vmx_hardware_enable,
8181         .hardware_disable = vmx_hardware_disable,
8182         .has_emulated_msr = vmx_has_emulated_msr,
8183
8184         .vm_size = sizeof(struct kvm_vmx),
8185         .vm_init = vmx_vm_init,
8186         .vm_destroy = vmx_vm_destroy,
8187
8188         .vcpu_precreate = vmx_vcpu_precreate,
8189         .vcpu_create = vmx_vcpu_create,
8190         .vcpu_free = vmx_vcpu_free,
8191         .vcpu_reset = vmx_vcpu_reset,
8192
8193         .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8194         .vcpu_load = vmx_vcpu_load,
8195         .vcpu_put = vmx_vcpu_put,
8196
8197         .update_exception_bitmap = vmx_update_exception_bitmap,
8198         .get_msr_feature = vmx_get_msr_feature,
8199         .get_msr = vmx_get_msr,
8200         .set_msr = vmx_set_msr,
8201         .get_segment_base = vmx_get_segment_base,
8202         .get_segment = vmx_get_segment,
8203         .set_segment = vmx_set_segment,
8204         .get_cpl = vmx_get_cpl,
8205         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8206         .set_cr0 = vmx_set_cr0,
8207         .is_valid_cr4 = vmx_is_valid_cr4,
8208         .set_cr4 = vmx_set_cr4,
8209         .set_efer = vmx_set_efer,
8210         .get_idt = vmx_get_idt,
8211         .set_idt = vmx_set_idt,
8212         .get_gdt = vmx_get_gdt,
8213         .set_gdt = vmx_set_gdt,
8214         .set_dr7 = vmx_set_dr7,
8215         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8216         .cache_reg = vmx_cache_reg,
8217         .get_rflags = vmx_get_rflags,
8218         .set_rflags = vmx_set_rflags,
8219         .get_if_flag = vmx_get_if_flag,
8220
8221         .flush_tlb_all = vmx_flush_tlb_all,
8222         .flush_tlb_current = vmx_flush_tlb_current,
8223         .flush_tlb_gva = vmx_flush_tlb_gva,
8224         .flush_tlb_guest = vmx_flush_tlb_guest,
8225
8226         .vcpu_pre_run = vmx_vcpu_pre_run,
8227         .vcpu_run = vmx_vcpu_run,
8228         .handle_exit = vmx_handle_exit,
8229         .skip_emulated_instruction = vmx_skip_emulated_instruction,
8230         .update_emulated_instruction = vmx_update_emulated_instruction,
8231         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8232         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8233         .patch_hypercall = vmx_patch_hypercall,
8234         .inject_irq = vmx_inject_irq,
8235         .inject_nmi = vmx_inject_nmi,
8236         .inject_exception = vmx_inject_exception,
8237         .cancel_injection = vmx_cancel_injection,
8238         .interrupt_allowed = vmx_interrupt_allowed,
8239         .nmi_allowed = vmx_nmi_allowed,
8240         .get_nmi_mask = vmx_get_nmi_mask,
8241         .set_nmi_mask = vmx_set_nmi_mask,
8242         .enable_nmi_window = vmx_enable_nmi_window,
8243         .enable_irq_window = vmx_enable_irq_window,
8244         .update_cr8_intercept = vmx_update_cr8_intercept,
8245         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8246         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8247         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8248         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8249         .apicv_post_state_restore = vmx_apicv_post_state_restore,
8250         .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8251         .hwapic_irr_update = vmx_hwapic_irr_update,
8252         .hwapic_isr_update = vmx_hwapic_isr_update,
8253         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8254         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8255         .deliver_interrupt = vmx_deliver_interrupt,
8256         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8257
8258         .set_tss_addr = vmx_set_tss_addr,
8259         .set_identity_map_addr = vmx_set_identity_map_addr,
8260         .get_mt_mask = vmx_get_mt_mask,
8261
8262         .get_exit_info = vmx_get_exit_info,
8263
8264         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8265
8266         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8267
8268         .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8269         .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8270         .write_tsc_offset = vmx_write_tsc_offset,
8271         .write_tsc_multiplier = vmx_write_tsc_multiplier,
8272
8273         .load_mmu_pgd = vmx_load_mmu_pgd,
8274
8275         .check_intercept = vmx_check_intercept,
8276         .handle_exit_irqoff = vmx_handle_exit_irqoff,
8277
8278         .request_immediate_exit = vmx_request_immediate_exit,
8279
8280         .sched_in = vmx_sched_in,
8281
8282         .cpu_dirty_log_size = PML_ENTITY_NUM,
8283         .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8284
8285         .nested_ops = &vmx_nested_ops,
8286
8287         .pi_update_irte = vmx_pi_update_irte,
8288         .pi_start_assignment = vmx_pi_start_assignment,
8289
8290 #ifdef CONFIG_X86_64
8291         .set_hv_timer = vmx_set_hv_timer,
8292         .cancel_hv_timer = vmx_cancel_hv_timer,
8293 #endif
8294
8295         .setup_mce = vmx_setup_mce,
8296
8297 #ifdef CONFIG_KVM_SMM
8298         .smi_allowed = vmx_smi_allowed,
8299         .enter_smm = vmx_enter_smm,
8300         .leave_smm = vmx_leave_smm,
8301         .enable_smi_window = vmx_enable_smi_window,
8302 #endif
8303
8304         .can_emulate_instruction = vmx_can_emulate_instruction,
8305         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8306         .migrate_timers = vmx_migrate_timers,
8307
8308         .msr_filter_changed = vmx_msr_filter_changed,
8309         .complete_emulated_msr = kvm_complete_insn_gp,
8310
8311         .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8312 };
8313
8314 static unsigned int vmx_handle_intel_pt_intr(void)
8315 {
8316         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8317
8318         /* '0' on failure so that the !PT case can use a RET0 static call. */
8319         if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8320                 return 0;
8321
8322         kvm_make_request(KVM_REQ_PMI, vcpu);
8323         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8324                   (unsigned long *)&vcpu->arch.pmu.global_status);
8325         return 1;
8326 }
8327
8328 static __init void vmx_setup_user_return_msrs(void)
8329 {
8330
8331         /*
8332          * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8333          * will emulate SYSCALL in legacy mode if the vendor string in guest
8334          * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8335          * support this emulation, MSR_STAR is included in the list for i386,
8336          * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8337          * into hardware and is here purely for emulation purposes.
8338          */
8339         const u32 vmx_uret_msrs_list[] = {
8340         #ifdef CONFIG_X86_64
8341                 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8342         #endif
8343                 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8344                 MSR_IA32_TSX_CTRL,
8345         };
8346         int i;
8347
8348         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8349
8350         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8351                 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8352 }
8353
8354 static void __init vmx_setup_me_spte_mask(void)
8355 {
8356         u64 me_mask = 0;
8357
8358         /*
8359          * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8360          * the former to avoid exposing shadow_phys_bits.
8361          *
8362          * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8363          * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8364          * boot_cpu_data.x86_phys_bits holds the actual physical address
8365          * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8366          * reported by CPUID.  Those bits between are KeyID bits.
8367          */
8368         if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8369                 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8370                         kvm_get_shadow_phys_bits() - 1);
8371         /*
8372          * Unlike SME, host kernel doesn't support setting up any
8373          * MKTME KeyID on Intel platforms.  No memory encryption
8374          * bits should be included into the SPTE.
8375          */
8376         kvm_mmu_set_me_spte_mask(0, me_mask);
8377 }
8378
8379 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8380
8381 static __init int hardware_setup(void)
8382 {
8383         unsigned long host_bndcfgs;
8384         struct desc_ptr dt;
8385         int r;
8386
8387         store_idt(&dt);
8388         host_idt_base = dt.address;
8389
8390         vmx_setup_user_return_msrs();
8391
8392         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8393                 return -EIO;
8394
8395         if (cpu_has_perf_global_ctrl_bug())
8396                 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8397                              "does not work properly. Using workaround\n");
8398
8399         if (boot_cpu_has(X86_FEATURE_NX))
8400                 kvm_enable_efer_bits(EFER_NX);
8401
8402         if (boot_cpu_has(X86_FEATURE_MPX)) {
8403                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8404                 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8405         }
8406
8407         if (!cpu_has_vmx_mpx())
8408                 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8409                                              XFEATURE_MASK_BNDCSR);
8410
8411         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8412             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8413                 enable_vpid = 0;
8414
8415         if (!cpu_has_vmx_ept() ||
8416             !cpu_has_vmx_ept_4levels() ||
8417             !cpu_has_vmx_ept_mt_wb() ||
8418             !cpu_has_vmx_invept_global())
8419                 enable_ept = 0;
8420
8421         /* NX support is required for shadow paging. */
8422         if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8423                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8424                 return -EOPNOTSUPP;
8425         }
8426
8427         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8428                 enable_ept_ad_bits = 0;
8429
8430         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8431                 enable_unrestricted_guest = 0;
8432
8433         if (!cpu_has_vmx_flexpriority())
8434                 flexpriority_enabled = 0;
8435
8436         if (!cpu_has_virtual_nmis())
8437                 enable_vnmi = 0;
8438
8439 #ifdef CONFIG_X86_SGX_KVM
8440         if (!cpu_has_vmx_encls_vmexit())
8441                 enable_sgx = false;
8442 #endif
8443
8444         /*
8445          * set_apic_access_page_addr() is used to reload apic access
8446          * page upon invalidation.  No need to do anything if not
8447          * using the APIC_ACCESS_ADDR VMCS field.
8448          */
8449         if (!flexpriority_enabled)
8450                 vmx_x86_ops.set_apic_access_page_addr = NULL;
8451
8452         if (!cpu_has_vmx_tpr_shadow())
8453                 vmx_x86_ops.update_cr8_intercept = NULL;
8454
8455 #if IS_ENABLED(CONFIG_HYPERV)
8456         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8457             && enable_ept) {
8458                 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8459                 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8460         }
8461 #endif
8462
8463         if (!cpu_has_vmx_ple()) {
8464                 ple_gap = 0;
8465                 ple_window = 0;
8466                 ple_window_grow = 0;
8467                 ple_window_max = 0;
8468                 ple_window_shrink = 0;
8469         }
8470
8471         if (!cpu_has_vmx_apicv())
8472                 enable_apicv = 0;
8473         if (!enable_apicv)
8474                 vmx_x86_ops.sync_pir_to_irr = NULL;
8475
8476         if (!enable_apicv || !cpu_has_vmx_ipiv())
8477                 enable_ipiv = false;
8478
8479         if (cpu_has_vmx_tsc_scaling())
8480                 kvm_caps.has_tsc_control = true;
8481
8482         kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8483         kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8484         kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8485         kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8486
8487         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8488
8489         if (enable_ept)
8490                 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8491                                       cpu_has_vmx_ept_execute_only());
8492
8493         /*
8494          * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8495          * bits to shadow_zero_check.
8496          */
8497         vmx_setup_me_spte_mask();
8498
8499         kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8500                           ept_caps_to_lpage_level(vmx_capability.ept));
8501
8502         /*
8503          * Only enable PML when hardware supports PML feature, and both EPT
8504          * and EPT A/D bit features are enabled -- PML depends on them to work.
8505          */
8506         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8507                 enable_pml = 0;
8508
8509         if (!enable_pml)
8510                 vmx_x86_ops.cpu_dirty_log_size = 0;
8511
8512         if (!cpu_has_vmx_preemption_timer())
8513                 enable_preemption_timer = false;
8514
8515         if (enable_preemption_timer) {
8516                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8517
8518                 cpu_preemption_timer_multi =
8519                         vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8520
8521                 if (tsc_khz)
8522                         use_timer_freq = (u64)tsc_khz * 1000;
8523                 use_timer_freq >>= cpu_preemption_timer_multi;
8524
8525                 /*
8526                  * KVM "disables" the preemption timer by setting it to its max
8527                  * value.  Don't use the timer if it might cause spurious exits
8528                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8529                  */
8530                 if (use_timer_freq > 0xffffffffu / 10)
8531                         enable_preemption_timer = false;
8532         }
8533
8534         if (!enable_preemption_timer) {
8535                 vmx_x86_ops.set_hv_timer = NULL;
8536                 vmx_x86_ops.cancel_hv_timer = NULL;
8537                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8538         }
8539
8540         kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8541         kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8542
8543         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8544                 return -EINVAL;
8545         if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8546                 pt_mode = PT_MODE_SYSTEM;
8547         if (pt_mode == PT_MODE_HOST_GUEST)
8548                 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8549         else
8550                 vmx_init_ops.handle_intel_pt_intr = NULL;
8551
8552         setup_default_sgx_lepubkeyhash();
8553
8554         if (nested) {
8555                 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8556
8557                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8558                 if (r)
8559                         return r;
8560         }
8561
8562         vmx_set_cpu_caps();
8563
8564         r = alloc_kvm_area();
8565         if (r && nested)
8566                 nested_vmx_hardware_unsetup();
8567
8568         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8569
8570         return r;
8571 }
8572
8573 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8574         .hardware_setup = hardware_setup,
8575         .handle_intel_pt_intr = NULL,
8576
8577         .runtime_ops = &vmx_x86_ops,
8578         .pmu_ops = &intel_pmu_ops,
8579 };
8580
8581 static void vmx_cleanup_l1d_flush(void)
8582 {
8583         if (vmx_l1d_flush_pages) {
8584                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8585                 vmx_l1d_flush_pages = NULL;
8586         }
8587         /* Restore state so sysfs ignores VMX */
8588         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8589 }
8590
8591 static void __vmx_exit(void)
8592 {
8593         allow_smaller_maxphyaddr = false;
8594
8595 #ifdef CONFIG_KEXEC_CORE
8596         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8597         synchronize_rcu();
8598 #endif
8599         vmx_cleanup_l1d_flush();
8600 }
8601
8602 static void vmx_exit(void)
8603 {
8604         kvm_exit();
8605         kvm_x86_vendor_exit();
8606
8607         __vmx_exit();
8608 }
8609 module_exit(vmx_exit);
8610
8611 static int __init vmx_init(void)
8612 {
8613         int r, cpu;
8614
8615         if (!kvm_is_vmx_supported())
8616                 return -EOPNOTSUPP;
8617
8618         /*
8619          * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8620          * to unwind if a later step fails.
8621          */
8622         hv_init_evmcs();
8623
8624         r = kvm_x86_vendor_init(&vmx_init_ops);
8625         if (r)
8626                 return r;
8627
8628         /*
8629          * Must be called after common x86 init so enable_ept is properly set
8630          * up. Hand the parameter mitigation value in which was stored in
8631          * the pre module init parser. If no parameter was given, it will
8632          * contain 'auto' which will be turned into the default 'cond'
8633          * mitigation mode.
8634          */
8635         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8636         if (r)
8637                 goto err_l1d_flush;
8638
8639         vmx_setup_fb_clear_ctrl();
8640
8641         for_each_possible_cpu(cpu) {
8642                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8643
8644                 pi_init_cpu(cpu);
8645         }
8646
8647 #ifdef CONFIG_KEXEC_CORE
8648         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8649                            crash_vmclear_local_loaded_vmcss);
8650 #endif
8651         vmx_check_vmcs12_offsets();
8652
8653         /*
8654          * Shadow paging doesn't have a (further) performance penalty
8655          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8656          * by default
8657          */
8658         if (!enable_ept)
8659                 allow_smaller_maxphyaddr = true;
8660
8661         /*
8662          * Common KVM initialization _must_ come last, after this, /dev/kvm is
8663          * exposed to userspace!
8664          */
8665         r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8666                      THIS_MODULE);
8667         if (r)
8668                 goto err_kvm_init;
8669
8670         return 0;
8671
8672 err_kvm_init:
8673         __vmx_exit();
8674 err_l1d_flush:
8675         kvm_x86_vendor_exit();
8676         return r;
8677 }
8678 module_init(vmx_init);