1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/kexec.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/virtext.h>
53 #include "capabilities.h"
56 #include "kvm_onhyperv.h"
58 #include "kvm_cache_regs.h"
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
75 static const struct x86_cpu_id vmx_cpu_id[] = {
76 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
82 bool __read_mostly enable_vpid = 1;
83 module_param_named(vpid, enable_vpid, bool, 0444);
85 static bool __read_mostly enable_vnmi = 1;
86 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
88 bool __read_mostly flexpriority_enabled = 1;
89 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
91 bool __read_mostly enable_ept = 1;
92 module_param_named(ept, enable_ept, bool, S_IRUGO);
94 bool __read_mostly enable_unrestricted_guest = 1;
95 module_param_named(unrestricted_guest,
96 enable_unrestricted_guest, bool, S_IRUGO);
98 bool __read_mostly enable_ept_ad_bits = 1;
99 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
101 static bool __read_mostly emulate_invalid_guest_state = true;
102 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
104 static bool __read_mostly fasteoi = 1;
105 module_param(fasteoi, bool, S_IRUGO);
107 module_param(enable_apicv, bool, S_IRUGO);
109 bool __read_mostly enable_ipiv = true;
110 module_param(enable_ipiv, bool, 0444);
113 * If nested=1, nested virtualization is supported, i.e., guests may use
114 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
115 * use VMX instructions.
117 static bool __read_mostly nested = 1;
118 module_param(nested, bool, S_IRUGO);
120 bool __read_mostly enable_pml = 1;
121 module_param_named(pml, enable_pml, bool, S_IRUGO);
123 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
124 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
126 static bool __read_mostly dump_invalid_vmcs = 0;
127 module_param(dump_invalid_vmcs, bool, 0644);
129 #define MSR_BITMAP_MODE_X2APIC 1
130 #define MSR_BITMAP_MODE_X2APIC_APICV 2
132 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
134 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
135 static int __read_mostly cpu_preemption_timer_multi;
136 static bool __read_mostly enable_preemption_timer = 1;
138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
141 extern bool __read_mostly allow_smaller_maxphyaddr;
142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
146 #define KVM_VM_CR0_ALWAYS_ON \
147 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
156 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
157 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
158 RTIT_STATUS_BYTECNT))
161 * List of MSRs that can be directly passed to the guest.
162 * In addition to these x2apic and PT MSRs are handled specially.
164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
176 MSR_IA32_SYSENTER_CS,
177 MSR_IA32_SYSENTER_ESP,
178 MSR_IA32_SYSENTER_EIP,
180 MSR_CORE_C3_RESIDENCY,
181 MSR_CORE_C6_RESIDENCY,
182 MSR_CORE_C7_RESIDENCY,
186 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
187 * ple_gap: upper bound on the amount of time between two successive
188 * executions of PAUSE in a loop. Also indicate if ple enabled.
189 * According to test, this time is usually smaller than 128 cycles.
190 * ple_window: upper bound on the amount of time a guest is allowed to execute
191 * in a PAUSE loop. Tests indicate that most spinlocks are held for
192 * less than 2^12 cycles
193 * Time is measured based on a counter that runs at the same rate as the TSC,
194 * refer SDM volume 3b section 21.6.13 & 22.1.3.
196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
197 module_param(ple_gap, uint, 0444);
199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
200 module_param(ple_window, uint, 0444);
202 /* Default doubles per-vcpu window every exit. */
203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
204 module_param(ple_window_grow, uint, 0444);
206 /* Default resets per-vcpu window every exit to ple_window. */
207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
208 module_param(ple_window_shrink, uint, 0444);
210 /* Default is to compute the maximum so we can never overflow. */
211 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
212 module_param(ple_window_max, uint, 0444);
214 /* Default is SYSTEM mode, 1 for host-guest mode */
215 int __read_mostly pt_mode = PT_MODE_SYSTEM;
216 module_param(pt_mode, int, S_IRUGO);
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
220 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
222 /* Storage for pre module init parameter parsing */
223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
225 static const struct {
228 } vmentry_l1d_param[] = {
229 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
230 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
231 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
232 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
233 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
234 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
237 #define L1D_CACHE_ORDER 4
238 static void *vmx_l1d_flush_pages;
240 /* Control for disabling CPU Fill buffer clear */
241 static bool __read_mostly vmx_fb_clear_ctrl_available;
243 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
248 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
254 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
258 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
261 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
262 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
263 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
268 /* If set to auto use the default l1tf mitigation method */
269 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
270 switch (l1tf_mitigation) {
271 case L1TF_MITIGATION_OFF:
272 l1tf = VMENTER_L1D_FLUSH_NEVER;
274 case L1TF_MITIGATION_FLUSH_NOWARN:
275 case L1TF_MITIGATION_FLUSH:
276 case L1TF_MITIGATION_FLUSH_NOSMT:
277 l1tf = VMENTER_L1D_FLUSH_COND;
279 case L1TF_MITIGATION_FULL:
280 case L1TF_MITIGATION_FULL_FORCE:
281 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
285 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
288 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
289 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
291 * This allocation for vmx_l1d_flush_pages is not tied to a VM
292 * lifetime and so should not be charged to a memcg.
294 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
297 vmx_l1d_flush_pages = page_address(page);
300 * Initialize each page with a different pattern in
301 * order to protect against KSM in the nested
302 * virtualization case.
304 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
305 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
310 l1tf_vmx_mitigation = l1tf;
312 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
313 static_branch_enable(&vmx_l1d_should_flush);
315 static_branch_disable(&vmx_l1d_should_flush);
317 if (l1tf == VMENTER_L1D_FLUSH_COND)
318 static_branch_enable(&vmx_l1d_flush_cond);
320 static_branch_disable(&vmx_l1d_flush_cond);
324 static int vmentry_l1d_flush_parse(const char *s)
329 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
330 if (vmentry_l1d_param[i].for_parse &&
331 sysfs_streq(s, vmentry_l1d_param[i].option))
338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
342 l1tf = vmentry_l1d_flush_parse(s);
346 if (!boot_cpu_has(X86_BUG_L1TF))
350 * Has vmx_init() run already? If not then this is the pre init
351 * parameter parsing. In that case just store the value and let
352 * vmx_init() do the proper setup after enable_ept has been
355 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
356 vmentry_l1d_flush_param = l1tf;
360 mutex_lock(&vmx_l1d_flush_mutex);
361 ret = vmx_setup_l1d_flush(l1tf);
362 mutex_unlock(&vmx_l1d_flush_mutex);
366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
368 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
369 return sprintf(s, "???\n");
371 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
374 static void vmx_setup_fb_clear_ctrl(void)
378 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
379 !boot_cpu_has_bug(X86_BUG_MDS) &&
380 !boot_cpu_has_bug(X86_BUG_TAA)) {
381 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
382 if (msr & ARCH_CAP_FB_CLEAR_CTRL)
383 vmx_fb_clear_ctrl_available = true;
387 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
391 if (!vmx->disable_fb_clear)
394 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
396 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
397 /* Cache the MSR value to avoid reading it later */
398 vmx->msr_ia32_mcu_opt_ctrl = msr;
401 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
403 if (!vmx->disable_fb_clear)
406 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
407 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
410 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
412 vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
415 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
416 * at VMEntry. Skip the MSR read/write when a guest has no use case to
419 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
420 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
421 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
422 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
423 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
424 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
425 vmx->disable_fb_clear = false;
428 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
429 .set = vmentry_l1d_flush_set,
430 .get = vmentry_l1d_flush_get,
432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
434 static u32 vmx_segment_access_rights(struct kvm_segment *var);
436 void vmx_vmexit(void);
438 #define vmx_insn_failed(fmt...) \
441 pr_warn_ratelimited(fmt); \
444 void vmread_error(unsigned long field, bool fault)
447 kvm_spurious_fault();
449 vmx_insn_failed("vmread failed: field=%lx\n", field);
452 noinline void vmwrite_error(unsigned long field, unsigned long value)
454 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
455 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
458 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
460 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
461 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
464 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
466 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
467 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
470 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
472 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
476 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
478 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
482 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
483 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
485 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
486 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
488 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
490 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
491 static DEFINE_SPINLOCK(vmx_vpid_lock);
493 struct vmcs_config vmcs_config __ro_after_init;
494 struct vmx_capability vmx_capability __ro_after_init;
496 #define VMX_SEGMENT_FIELD(seg) \
497 [VCPU_SREG_##seg] = { \
498 .selector = GUEST_##seg##_SELECTOR, \
499 .base = GUEST_##seg##_BASE, \
500 .limit = GUEST_##seg##_LIMIT, \
501 .ar_bytes = GUEST_##seg##_AR_BYTES, \
504 static const struct kvm_vmx_segment_field {
509 } kvm_vmx_segment_fields[] = {
510 VMX_SEGMENT_FIELD(CS),
511 VMX_SEGMENT_FIELD(DS),
512 VMX_SEGMENT_FIELD(ES),
513 VMX_SEGMENT_FIELD(FS),
514 VMX_SEGMENT_FIELD(GS),
515 VMX_SEGMENT_FIELD(SS),
516 VMX_SEGMENT_FIELD(TR),
517 VMX_SEGMENT_FIELD(LDTR),
520 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
522 vmx->segment_cache.bitmask = 0;
525 static unsigned long host_idt_base;
527 #if IS_ENABLED(CONFIG_HYPERV)
528 static struct kvm_x86_ops vmx_x86_ops __initdata;
530 static bool __read_mostly enlightened_vmcs = true;
531 module_param(enlightened_vmcs, bool, 0444);
533 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
535 struct hv_enlightened_vmcs *evmcs;
536 struct hv_partition_assist_pg **p_hv_pa_pg =
537 &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
539 * Synthetic VM-Exit is not enabled in current code and so All
540 * evmcs in singe VM shares same assist page.
543 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
548 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
550 evmcs->partition_assist_page =
552 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
553 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
558 static __init void hv_init_evmcs(void)
562 if (!enlightened_vmcs)
566 * Enlightened VMCS usage should be recommended and the host needs
567 * to support eVMCS v1 or above.
569 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
570 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
573 /* Check that we have assist pages on all online CPUs */
574 for_each_online_cpu(cpu) {
575 if (!hv_get_vp_assist_page(cpu)) {
576 enlightened_vmcs = false;
581 if (enlightened_vmcs) {
582 pr_info("Using Hyper-V Enlightened VMCS\n");
583 static_branch_enable(&__kvm_is_using_evmcs);
586 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
587 vmx_x86_ops.enable_l2_tlb_flush
588 = hv_enable_l2_tlb_flush;
591 enlightened_vmcs = false;
595 static void hv_reset_evmcs(void)
597 struct hv_vp_assist_page *vp_ap;
599 if (!kvm_is_using_evmcs())
603 * KVM should enable eVMCS if and only if all CPUs have a VP assist
604 * page, and should reject CPU onlining if eVMCS is enabled the CPU
605 * doesn't have a VP assist page allocated.
607 vp_ap = hv_get_vp_assist_page(smp_processor_id());
608 if (WARN_ON_ONCE(!vp_ap))
612 * Reset everything to support using non-enlightened VMCS access later
613 * (e.g. when we reload the module with enlightened_vmcs=0)
615 vp_ap->nested_control.features.directhypercall = 0;
616 vp_ap->current_nested_vmcs = 0;
617 vp_ap->enlighten_vmentry = 0;
620 #else /* IS_ENABLED(CONFIG_HYPERV) */
621 static void hv_init_evmcs(void) {}
622 static void hv_reset_evmcs(void) {}
623 #endif /* IS_ENABLED(CONFIG_HYPERV) */
626 * Comment's format: document - errata name - stepping - processor name.
628 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
630 static u32 vmx_preemption_cpu_tfms[] = {
631 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
633 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
634 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
635 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
637 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
639 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
640 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
642 * 320767.pdf - AAP86 - B1 -
643 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
646 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
648 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
650 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
652 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
653 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
654 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
656 /* Xeon E3-1220 V2 */
660 static inline bool cpu_has_broken_vmx_preemption_timer(void)
662 u32 eax = cpuid_eax(0x00000001), i;
664 /* Clear the reserved bits */
665 eax &= ~(0x3U << 14 | 0xfU << 28);
666 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
667 if (eax == vmx_preemption_cpu_tfms[i])
673 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
675 return flexpriority_enabled && lapic_in_kernel(vcpu);
678 static int possible_passthrough_msr_slot(u32 msr)
682 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
683 if (vmx_possible_passthrough_msrs[i] == msr)
689 static bool is_valid_passthrough_msr(u32 msr)
694 case 0x800 ... 0x8ff:
695 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
697 case MSR_IA32_RTIT_STATUS:
698 case MSR_IA32_RTIT_OUTPUT_BASE:
699 case MSR_IA32_RTIT_OUTPUT_MASK:
700 case MSR_IA32_RTIT_CR3_MATCH:
701 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
702 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
705 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
706 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
707 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
708 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
709 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
710 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
714 r = possible_passthrough_msr_slot(msr) != -ENOENT;
716 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
721 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
725 i = kvm_find_user_return_msr(msr);
727 return &vmx->guest_uret_msrs[i];
731 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
732 struct vmx_uret_msr *msr, u64 data)
734 unsigned int slot = msr - vmx->guest_uret_msrs;
737 if (msr->load_into_hardware) {
739 ret = kvm_set_user_return_msr(slot, data, msr->mask);
747 #ifdef CONFIG_KEXEC_CORE
748 static void crash_vmclear_local_loaded_vmcss(void)
750 int cpu = raw_smp_processor_id();
751 struct loaded_vmcs *v;
753 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
754 loaded_vmcss_on_cpu_link)
757 #endif /* CONFIG_KEXEC_CORE */
759 static void __loaded_vmcs_clear(void *arg)
761 struct loaded_vmcs *loaded_vmcs = arg;
762 int cpu = raw_smp_processor_id();
764 if (loaded_vmcs->cpu != cpu)
765 return; /* vcpu migration can race with cpu offline */
766 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
767 per_cpu(current_vmcs, cpu) = NULL;
769 vmcs_clear(loaded_vmcs->vmcs);
770 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
771 vmcs_clear(loaded_vmcs->shadow_vmcs);
773 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
776 * Ensure all writes to loaded_vmcs, including deleting it from its
777 * current percpu list, complete before setting loaded_vmcs->cpu to
778 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
779 * and add loaded_vmcs to its percpu list before it's deleted from this
780 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
784 loaded_vmcs->cpu = -1;
785 loaded_vmcs->launched = 0;
788 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
790 int cpu = loaded_vmcs->cpu;
793 smp_call_function_single(cpu,
794 __loaded_vmcs_clear, loaded_vmcs, 1);
797 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
801 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
803 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
804 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
805 vmx->segment_cache.bitmask = 0;
807 ret = vmx->segment_cache.bitmask & mask;
808 vmx->segment_cache.bitmask |= mask;
812 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
814 u16 *p = &vmx->segment_cache.seg[seg].selector;
816 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
817 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
821 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
823 ulong *p = &vmx->segment_cache.seg[seg].base;
825 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
826 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
830 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
832 u32 *p = &vmx->segment_cache.seg[seg].limit;
834 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
835 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
839 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
841 u32 *p = &vmx->segment_cache.seg[seg].ar;
843 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
844 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
848 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
852 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
853 (1u << DB_VECTOR) | (1u << AC_VECTOR);
855 * Guest access to VMware backdoor ports could legitimately
856 * trigger #GP because of TSS I/O permission bitmap.
857 * We intercept those #GP and allow access to them anyway
860 if (enable_vmware_backdoor)
861 eb |= (1u << GP_VECTOR);
862 if ((vcpu->guest_debug &
863 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
864 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
865 eb |= 1u << BP_VECTOR;
866 if (to_vmx(vcpu)->rmode.vm86_active)
868 if (!vmx_need_pf_intercept(vcpu))
869 eb &= ~(1u << PF_VECTOR);
871 /* When we are running a nested L2 guest and L1 specified for it a
872 * certain exception bitmap, we must trap the same exceptions and pass
873 * them to L1. When running L2, we will only handle the exceptions
874 * specified above if L1 did not want them.
876 if (is_guest_mode(vcpu))
877 eb |= get_vmcs12(vcpu)->exception_bitmap;
879 int mask = 0, match = 0;
881 if (enable_ept && (eb & (1u << PF_VECTOR))) {
883 * If EPT is enabled, #PF is currently only intercepted
884 * if MAXPHYADDR is smaller on the guest than on the
885 * host. In that case we only care about present,
886 * non-reserved faults. For vmcs02, however, PFEC_MASK
887 * and PFEC_MATCH are set in prepare_vmcs02_rare.
889 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
890 match = PFERR_PRESENT_MASK;
892 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
893 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
897 * Disabling xfd interception indicates that dynamic xfeatures
898 * might be used in the guest. Always trap #NM in this case
899 * to save guest xfd_err timely.
901 if (vcpu->arch.xfd_no_write_intercept)
902 eb |= (1u << NM_VECTOR);
904 vmcs_write32(EXCEPTION_BITMAP, eb);
908 * Check if MSR is intercepted for currently loaded MSR bitmap.
910 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
912 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
915 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
918 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
920 unsigned int flags = 0;
922 if (vmx->loaded_vmcs->launched)
923 flags |= VMX_RUN_VMRESUME;
926 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
927 * to change it directly without causing a vmexit. In that case read
928 * it after vmexit and store it in vmx->spec_ctrl.
930 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
931 flags |= VMX_RUN_SAVE_SPEC_CTRL;
936 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
937 unsigned long entry, unsigned long exit)
939 vm_entry_controls_clearbit(vmx, entry);
940 vm_exit_controls_clearbit(vmx, exit);
943 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
947 for (i = 0; i < m->nr; ++i) {
948 if (m->val[i].index == msr)
954 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
957 struct msr_autoload *m = &vmx->msr_autoload;
961 if (cpu_has_load_ia32_efer()) {
962 clear_atomic_switch_msr_special(vmx,
963 VM_ENTRY_LOAD_IA32_EFER,
964 VM_EXIT_LOAD_IA32_EFER);
968 case MSR_CORE_PERF_GLOBAL_CTRL:
969 if (cpu_has_load_perf_global_ctrl()) {
970 clear_atomic_switch_msr_special(vmx,
971 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
972 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
977 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
981 m->guest.val[i] = m->guest.val[m->guest.nr];
982 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
985 i = vmx_find_loadstore_msr_slot(&m->host, msr);
990 m->host.val[i] = m->host.val[m->host.nr];
991 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
994 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
995 unsigned long entry, unsigned long exit,
996 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
997 u64 guest_val, u64 host_val)
999 vmcs_write64(guest_val_vmcs, guest_val);
1000 if (host_val_vmcs != HOST_IA32_EFER)
1001 vmcs_write64(host_val_vmcs, host_val);
1002 vm_entry_controls_setbit(vmx, entry);
1003 vm_exit_controls_setbit(vmx, exit);
1006 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1007 u64 guest_val, u64 host_val, bool entry_only)
1010 struct msr_autoload *m = &vmx->msr_autoload;
1014 if (cpu_has_load_ia32_efer()) {
1015 add_atomic_switch_msr_special(vmx,
1016 VM_ENTRY_LOAD_IA32_EFER,
1017 VM_EXIT_LOAD_IA32_EFER,
1020 guest_val, host_val);
1024 case MSR_CORE_PERF_GLOBAL_CTRL:
1025 if (cpu_has_load_perf_global_ctrl()) {
1026 add_atomic_switch_msr_special(vmx,
1027 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1028 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1029 GUEST_IA32_PERF_GLOBAL_CTRL,
1030 HOST_IA32_PERF_GLOBAL_CTRL,
1031 guest_val, host_val);
1035 case MSR_IA32_PEBS_ENABLE:
1036 /* PEBS needs a quiescent period after being disabled (to write
1037 * a record). Disabling PEBS through VMX MSR swapping doesn't
1038 * provide that period, so a CPU could write host's record into
1041 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1044 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1046 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1048 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1049 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1050 printk_once(KERN_WARNING "Not enough msr switch entries. "
1051 "Can't add msr %x\n", msr);
1056 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1058 m->guest.val[i].index = msr;
1059 m->guest.val[i].value = guest_val;
1066 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1068 m->host.val[j].index = msr;
1069 m->host.val[j].value = host_val;
1072 static bool update_transition_efer(struct vcpu_vmx *vmx)
1074 u64 guest_efer = vmx->vcpu.arch.efer;
1075 u64 ignore_bits = 0;
1078 /* Shadow paging assumes NX to be available. */
1080 guest_efer |= EFER_NX;
1083 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1085 ignore_bits |= EFER_SCE;
1086 #ifdef CONFIG_X86_64
1087 ignore_bits |= EFER_LMA | EFER_LME;
1088 /* SCE is meaningful only in long mode on Intel */
1089 if (guest_efer & EFER_LMA)
1090 ignore_bits &= ~(u64)EFER_SCE;
1094 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1095 * On CPUs that support "load IA32_EFER", always switch EFER
1096 * atomically, since it's faster than switching it manually.
1098 if (cpu_has_load_ia32_efer() ||
1099 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1100 if (!(guest_efer & EFER_LMA))
1101 guest_efer &= ~EFER_LME;
1102 if (guest_efer != host_efer)
1103 add_atomic_switch_msr(vmx, MSR_EFER,
1104 guest_efer, host_efer, false);
1106 clear_atomic_switch_msr(vmx, MSR_EFER);
1110 i = kvm_find_user_return_msr(MSR_EFER);
1114 clear_atomic_switch_msr(vmx, MSR_EFER);
1116 guest_efer &= ~ignore_bits;
1117 guest_efer |= host_efer & ignore_bits;
1119 vmx->guest_uret_msrs[i].data = guest_efer;
1120 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1125 #ifdef CONFIG_X86_32
1127 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1128 * VMCS rather than the segment table. KVM uses this helper to figure
1129 * out the current bases to poke them into the VMCS before entry.
1131 static unsigned long segment_base(u16 selector)
1133 struct desc_struct *table;
1136 if (!(selector & ~SEGMENT_RPL_MASK))
1139 table = get_current_gdt_ro();
1141 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1142 u16 ldt_selector = kvm_read_ldt();
1144 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1147 table = (struct desc_struct *)segment_base(ldt_selector);
1149 v = get_desc_base(&table[selector >> 3]);
1154 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1156 return vmx_pt_mode_is_host_guest() &&
1157 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1160 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1162 /* The base must be 128-byte aligned and a legal physical address. */
1163 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1166 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1170 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1171 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1172 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1173 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1174 for (i = 0; i < addr_range; i++) {
1175 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1176 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1180 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1184 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1185 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1186 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1187 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1188 for (i = 0; i < addr_range; i++) {
1189 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1190 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1194 static void pt_guest_enter(struct vcpu_vmx *vmx)
1196 if (vmx_pt_mode_is_system())
1200 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1201 * Save host state before VM entry.
1203 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1204 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1205 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1206 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1207 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1211 static void pt_guest_exit(struct vcpu_vmx *vmx)
1213 if (vmx_pt_mode_is_system())
1216 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1217 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1218 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1222 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1223 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1225 if (vmx->pt_desc.host.ctl)
1226 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1229 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1230 unsigned long fs_base, unsigned long gs_base)
1232 if (unlikely(fs_sel != host->fs_sel)) {
1234 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1236 vmcs_write16(HOST_FS_SELECTOR, 0);
1237 host->fs_sel = fs_sel;
1239 if (unlikely(gs_sel != host->gs_sel)) {
1241 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1243 vmcs_write16(HOST_GS_SELECTOR, 0);
1244 host->gs_sel = gs_sel;
1246 if (unlikely(fs_base != host->fs_base)) {
1247 vmcs_writel(HOST_FS_BASE, fs_base);
1248 host->fs_base = fs_base;
1250 if (unlikely(gs_base != host->gs_base)) {
1251 vmcs_writel(HOST_GS_BASE, gs_base);
1252 host->gs_base = gs_base;
1256 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1258 struct vcpu_vmx *vmx = to_vmx(vcpu);
1259 struct vmcs_host_state *host_state;
1260 #ifdef CONFIG_X86_64
1261 int cpu = raw_smp_processor_id();
1263 unsigned long fs_base, gs_base;
1267 vmx->req_immediate_exit = false;
1270 * Note that guest MSRs to be saved/restored can also be changed
1271 * when guest state is loaded. This happens when guest transitions
1272 * to/from long-mode by setting MSR_EFER.LMA.
1274 if (!vmx->guest_uret_msrs_loaded) {
1275 vmx->guest_uret_msrs_loaded = true;
1276 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1277 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1280 kvm_set_user_return_msr(i,
1281 vmx->guest_uret_msrs[i].data,
1282 vmx->guest_uret_msrs[i].mask);
1286 if (vmx->nested.need_vmcs12_to_shadow_sync)
1287 nested_sync_vmcs12_to_shadow(vcpu);
1289 if (vmx->guest_state_loaded)
1292 host_state = &vmx->loaded_vmcs->host_state;
1295 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1296 * allow segment selectors with cpl > 0 or ti == 1.
1298 host_state->ldt_sel = kvm_read_ldt();
1300 #ifdef CONFIG_X86_64
1301 savesegment(ds, host_state->ds_sel);
1302 savesegment(es, host_state->es_sel);
1304 gs_base = cpu_kernelmode_gs_base(cpu);
1305 if (likely(is_64bit_mm(current->mm))) {
1306 current_save_fsgs();
1307 fs_sel = current->thread.fsindex;
1308 gs_sel = current->thread.gsindex;
1309 fs_base = current->thread.fsbase;
1310 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1312 savesegment(fs, fs_sel);
1313 savesegment(gs, gs_sel);
1314 fs_base = read_msr(MSR_FS_BASE);
1315 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1318 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1320 savesegment(fs, fs_sel);
1321 savesegment(gs, gs_sel);
1322 fs_base = segment_base(fs_sel);
1323 gs_base = segment_base(gs_sel);
1326 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1327 vmx->guest_state_loaded = true;
1330 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1332 struct vmcs_host_state *host_state;
1334 if (!vmx->guest_state_loaded)
1337 host_state = &vmx->loaded_vmcs->host_state;
1339 ++vmx->vcpu.stat.host_state_reload;
1341 #ifdef CONFIG_X86_64
1342 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1344 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1345 kvm_load_ldt(host_state->ldt_sel);
1346 #ifdef CONFIG_X86_64
1347 load_gs_index(host_state->gs_sel);
1349 loadsegment(gs, host_state->gs_sel);
1352 if (host_state->fs_sel & 7)
1353 loadsegment(fs, host_state->fs_sel);
1354 #ifdef CONFIG_X86_64
1355 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1356 loadsegment(ds, host_state->ds_sel);
1357 loadsegment(es, host_state->es_sel);
1360 invalidate_tss_limit();
1361 #ifdef CONFIG_X86_64
1362 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1364 load_fixmap_gdt(raw_smp_processor_id());
1365 vmx->guest_state_loaded = false;
1366 vmx->guest_uret_msrs_loaded = false;
1369 #ifdef CONFIG_X86_64
1370 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1373 if (vmx->guest_state_loaded)
1374 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1376 return vmx->msr_guest_kernel_gs_base;
1379 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1382 if (vmx->guest_state_loaded)
1383 wrmsrl(MSR_KERNEL_GS_BASE, data);
1385 vmx->msr_guest_kernel_gs_base = data;
1389 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1390 struct loaded_vmcs *buddy)
1392 struct vcpu_vmx *vmx = to_vmx(vcpu);
1393 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1396 if (!already_loaded) {
1397 loaded_vmcs_clear(vmx->loaded_vmcs);
1398 local_irq_disable();
1401 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1402 * this cpu's percpu list, otherwise it may not yet be deleted
1403 * from its previous cpu's percpu list. Pairs with the
1404 * smb_wmb() in __loaded_vmcs_clear().
1408 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1409 &per_cpu(loaded_vmcss_on_cpu, cpu));
1413 prev = per_cpu(current_vmcs, cpu);
1414 if (prev != vmx->loaded_vmcs->vmcs) {
1415 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1416 vmcs_load(vmx->loaded_vmcs->vmcs);
1419 * No indirect branch prediction barrier needed when switching
1420 * the active VMCS within a vCPU, unless IBRS is advertised to
1421 * the vCPU. To minimize the number of IBPBs executed, KVM
1422 * performs IBPB on nested VM-Exit (a single nested transition
1423 * may switch the active VMCS multiple times).
1425 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1426 indirect_branch_prediction_barrier();
1429 if (!already_loaded) {
1430 void *gdt = get_current_gdt_ro();
1433 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1434 * TLB entries from its previous association with the vCPU.
1436 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1439 * Linux uses per-cpu TSS and GDT, so set these when switching
1440 * processors. See 22.2.4.
1442 vmcs_writel(HOST_TR_BASE,
1443 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1444 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1446 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1448 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1449 (unsigned long)(cpu_entry_stack(cpu) + 1));
1452 vmx->loaded_vmcs->cpu = cpu;
1457 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1458 * vcpu mutex is already taken.
1460 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1462 struct vcpu_vmx *vmx = to_vmx(vcpu);
1464 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1466 vmx_vcpu_pi_load(vcpu, cpu);
1468 vmx->host_debugctlmsr = get_debugctlmsr();
1471 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1473 vmx_vcpu_pi_put(vcpu);
1475 vmx_prepare_switch_to_host(to_vmx(vcpu));
1478 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1480 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1483 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1485 struct vcpu_vmx *vmx = to_vmx(vcpu);
1486 unsigned long rflags, save_rflags;
1488 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1489 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1490 rflags = vmcs_readl(GUEST_RFLAGS);
1491 if (vmx->rmode.vm86_active) {
1492 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1493 save_rflags = vmx->rmode.save_rflags;
1494 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1496 vmx->rflags = rflags;
1501 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1503 struct vcpu_vmx *vmx = to_vmx(vcpu);
1504 unsigned long old_rflags;
1506 if (is_unrestricted_guest(vcpu)) {
1507 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1508 vmx->rflags = rflags;
1509 vmcs_writel(GUEST_RFLAGS, rflags);
1513 old_rflags = vmx_get_rflags(vcpu);
1514 vmx->rflags = rflags;
1515 if (vmx->rmode.vm86_active) {
1516 vmx->rmode.save_rflags = rflags;
1517 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1519 vmcs_writel(GUEST_RFLAGS, rflags);
1521 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1522 vmx->emulation_required = vmx_emulation_required(vcpu);
1525 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1527 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1530 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1532 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1535 if (interruptibility & GUEST_INTR_STATE_STI)
1536 ret |= KVM_X86_SHADOW_INT_STI;
1537 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1538 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1543 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1545 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1546 u32 interruptibility = interruptibility_old;
1548 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1550 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1551 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1552 else if (mask & KVM_X86_SHADOW_INT_STI)
1553 interruptibility |= GUEST_INTR_STATE_STI;
1555 if ((interruptibility != interruptibility_old))
1556 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1559 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1561 struct vcpu_vmx *vmx = to_vmx(vcpu);
1562 unsigned long value;
1565 * Any MSR write that attempts to change bits marked reserved will
1568 if (data & vmx->pt_desc.ctl_bitmask)
1572 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1573 * result in a #GP unless the same write also clears TraceEn.
1575 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1576 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1580 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1581 * and FabricEn would cause #GP, if
1582 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1584 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1585 !(data & RTIT_CTL_FABRIC_EN) &&
1586 !intel_pt_validate_cap(vmx->pt_desc.caps,
1587 PT_CAP_single_range_output))
1591 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1592 * utilize encodings marked reserved will cause a #GP fault.
1594 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1595 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1596 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1597 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1599 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1600 PT_CAP_cycle_thresholds);
1601 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1602 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1603 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1605 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1606 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1607 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1608 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1612 * If ADDRx_CFG is reserved or the encodings is >2 will
1613 * cause a #GP fault.
1615 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1616 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1618 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1619 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1621 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1622 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1624 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1625 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1631 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1632 void *insn, int insn_len)
1635 * Emulation of instructions in SGX enclaves is impossible as RIP does
1636 * not point at the failing instruction, and even if it did, the code
1637 * stream is inaccessible. Inject #UD instead of exiting to userspace
1638 * so that guest userspace can't DoS the guest simply by triggering
1639 * emulation (enclaves are CPL3 only).
1641 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1642 kvm_queue_exception(vcpu, UD_VECTOR);
1648 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1650 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1651 unsigned long rip, orig_rip;
1655 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1656 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1657 * set when EPT misconfig occurs. In practice, real hardware updates
1658 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1659 * (namely Hyper-V) don't set it due to it being undefined behavior,
1660 * i.e. we end up advancing IP with some random value.
1662 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1663 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1664 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1667 * Emulating an enclave's instructions isn't supported as KVM
1668 * cannot access the enclave's memory or its true RIP, e.g. the
1669 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1670 * the RIP that actually triggered the VM-Exit. But, because
1671 * most instructions that cause VM-Exit will #UD in an enclave,
1672 * most instruction-based VM-Exits simply do not occur.
1674 * There are a few exceptions, notably the debug instructions
1675 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1676 * and generate #DB/#BP as expected, which KVM might intercept.
1677 * But again, the CPU does the dirty work and saves an instr
1678 * length of zero so VMMs don't shoot themselves in the foot.
1679 * WARN if KVM tries to skip a non-zero length instruction on
1680 * a VM-Exit from an enclave.
1685 WARN_ONCE(exit_reason.enclave_mode,
1686 "skipping instruction after SGX enclave VM-Exit");
1688 orig_rip = kvm_rip_read(vcpu);
1689 rip = orig_rip + instr_len;
1690 #ifdef CONFIG_X86_64
1692 * We need to mask out the high 32 bits of RIP if not in 64-bit
1693 * mode, but just finding out that we are in 64-bit mode is
1694 * quite expensive. Only do it if there was a carry.
1696 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1699 kvm_rip_write(vcpu, rip);
1701 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1706 /* skipping an emulated instruction also counts */
1707 vmx_set_interrupt_shadow(vcpu, 0);
1713 * Recognizes a pending MTF VM-exit and records the nested state for later
1716 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1718 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1719 struct vcpu_vmx *vmx = to_vmx(vcpu);
1721 if (!is_guest_mode(vcpu))
1725 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1726 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1727 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1728 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1729 * as ICEBP is higher priority than both. As instruction emulation is
1730 * completed at this point (i.e. KVM is at the instruction boundary),
1731 * any #DB exception pending delivery must be a debug-trap of lower
1732 * priority than MTF. Record the pending MTF state to be delivered in
1733 * vmx_check_nested_events().
1735 if (nested_cpu_has_mtf(vmcs12) &&
1736 (!vcpu->arch.exception.pending ||
1737 vcpu->arch.exception.vector == DB_VECTOR) &&
1738 (!vcpu->arch.exception_vmexit.pending ||
1739 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1740 vmx->nested.mtf_pending = true;
1741 kvm_make_request(KVM_REQ_EVENT, vcpu);
1743 vmx->nested.mtf_pending = false;
1747 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1749 vmx_update_emulated_instruction(vcpu);
1750 return skip_emulated_instruction(vcpu);
1753 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1756 * Ensure that we clear the HLT state in the VMCS. We don't need to
1757 * explicitly skip the instruction because if the HLT state is set,
1758 * then the instruction is already executing and RIP has already been
1761 if (kvm_hlt_in_guest(vcpu->kvm) &&
1762 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1763 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1766 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1768 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1769 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1770 struct vcpu_vmx *vmx = to_vmx(vcpu);
1772 kvm_deliver_exception_payload(vcpu, ex);
1774 if (ex->has_error_code) {
1776 * Despite the error code being architecturally defined as 32
1777 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1778 * VMX don't actually supporting setting bits 31:16. Hardware
1779 * will (should) never provide a bogus error code, but AMD CPUs
1780 * do generate error codes with bits 31:16 set, and so KVM's
1781 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1782 * the upper bits to avoid VM-Fail, losing information that
1783 * does't really exist is preferable to killing the VM.
1785 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1786 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1789 if (vmx->rmode.vm86_active) {
1791 if (kvm_exception_is_soft(ex->vector))
1792 inc_eip = vcpu->arch.event_exit_inst_len;
1793 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1797 WARN_ON_ONCE(vmx->emulation_required);
1799 if (kvm_exception_is_soft(ex->vector)) {
1800 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1801 vmx->vcpu.arch.event_exit_inst_len);
1802 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1804 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1806 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1808 vmx_clear_hlt(vcpu);
1811 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1812 bool load_into_hardware)
1814 struct vmx_uret_msr *uret_msr;
1816 uret_msr = vmx_find_uret_msr(vmx, msr);
1820 uret_msr->load_into_hardware = load_into_hardware;
1824 * Configuring user return MSRs to automatically save, load, and restore MSRs
1825 * that need to be shoved into hardware when running the guest. Note, omitting
1826 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1827 * loaded into hardware when running the guest.
1829 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1831 #ifdef CONFIG_X86_64
1832 bool load_syscall_msrs;
1835 * The SYSCALL MSRs are only needed on long mode guests, and only
1836 * when EFER.SCE is set.
1838 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1839 (vmx->vcpu.arch.efer & EFER_SCE);
1841 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1842 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1843 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1845 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1847 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1848 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1849 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1852 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1853 * kernel and old userspace. If those guests run on a tsx=off host, do
1854 * allow guests to use TSX_CTRL, but don't change the value in hardware
1855 * so that TSX remains always disabled.
1857 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1860 * The set of MSRs to load may have changed, reload MSRs before the
1863 vmx->guest_uret_msrs_loaded = false;
1866 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1868 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1870 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1871 return vmcs12->tsc_offset;
1876 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1878 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1880 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1881 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1882 return vmcs12->tsc_multiplier;
1884 return kvm_caps.default_tsc_scaling_ratio;
1887 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1889 vmcs_write64(TSC_OFFSET, offset);
1892 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1894 vmcs_write64(TSC_MULTIPLIER, multiplier);
1898 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1899 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1900 * all guests if the "nested" module option is off, and can also be disabled
1901 * for a single guest by disabling its VMX cpuid bit.
1903 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1905 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1909 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1910 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1911 * backwards compatibility even though KVM doesn't support emulating SMX. And
1912 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1913 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1915 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1916 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1917 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1918 FEAT_CTL_SGX_LC_ENABLED | \
1919 FEAT_CTL_SGX_ENABLED | \
1920 FEAT_CTL_LMCE_ENABLED)
1922 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1923 struct msr_data *msr)
1925 uint64_t valid_bits;
1928 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1929 * exposed to the guest.
1931 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1932 ~KVM_SUPPORTED_FEATURE_CONTROL);
1934 if (!msr->host_initiated &&
1935 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1938 if (msr->host_initiated)
1939 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1941 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1943 return !(msr->data & ~valid_bits);
1946 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1948 switch (msr->index) {
1949 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1952 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1954 return KVM_MSR_RET_INVALID;
1959 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1960 * Returns 0 on success, non-0 otherwise.
1961 * Assumes vcpu_load() was already called.
1963 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1965 struct vcpu_vmx *vmx = to_vmx(vcpu);
1966 struct vmx_uret_msr *msr;
1969 switch (msr_info->index) {
1970 #ifdef CONFIG_X86_64
1972 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1975 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1977 case MSR_KERNEL_GS_BASE:
1978 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1982 return kvm_get_msr_common(vcpu, msr_info);
1983 case MSR_IA32_TSX_CTRL:
1984 if (!msr_info->host_initiated &&
1985 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1988 case MSR_IA32_UMWAIT_CONTROL:
1989 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1992 msr_info->data = vmx->msr_ia32_umwait_control;
1994 case MSR_IA32_SPEC_CTRL:
1995 if (!msr_info->host_initiated &&
1996 !guest_has_spec_ctrl_msr(vcpu))
1999 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2001 case MSR_IA32_SYSENTER_CS:
2002 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2004 case MSR_IA32_SYSENTER_EIP:
2005 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2007 case MSR_IA32_SYSENTER_ESP:
2008 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2010 case MSR_IA32_BNDCFGS:
2011 if (!kvm_mpx_supported() ||
2012 (!msr_info->host_initiated &&
2013 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2015 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2017 case MSR_IA32_MCG_EXT_CTL:
2018 if (!msr_info->host_initiated &&
2019 !(vmx->msr_ia32_feature_control &
2020 FEAT_CTL_LMCE_ENABLED))
2022 msr_info->data = vcpu->arch.mcg_ext_ctl;
2024 case MSR_IA32_FEAT_CTL:
2025 msr_info->data = vmx->msr_ia32_feature_control;
2027 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2028 if (!msr_info->host_initiated &&
2029 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2031 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2032 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2034 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2035 if (!nested_vmx_allowed(vcpu))
2037 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2041 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2042 * instead of just ignoring the features, different Hyper-V
2043 * versions are either trying to use them and fail or do some
2044 * sanity checking and refuse to boot. Filter all unsupported
2047 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2048 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2051 case MSR_IA32_RTIT_CTL:
2052 if (!vmx_pt_mode_is_host_guest())
2054 msr_info->data = vmx->pt_desc.guest.ctl;
2056 case MSR_IA32_RTIT_STATUS:
2057 if (!vmx_pt_mode_is_host_guest())
2059 msr_info->data = vmx->pt_desc.guest.status;
2061 case MSR_IA32_RTIT_CR3_MATCH:
2062 if (!vmx_pt_mode_is_host_guest() ||
2063 !intel_pt_validate_cap(vmx->pt_desc.caps,
2064 PT_CAP_cr3_filtering))
2066 msr_info->data = vmx->pt_desc.guest.cr3_match;
2068 case MSR_IA32_RTIT_OUTPUT_BASE:
2069 if (!vmx_pt_mode_is_host_guest() ||
2070 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2071 PT_CAP_topa_output) &&
2072 !intel_pt_validate_cap(vmx->pt_desc.caps,
2073 PT_CAP_single_range_output)))
2075 msr_info->data = vmx->pt_desc.guest.output_base;
2077 case MSR_IA32_RTIT_OUTPUT_MASK:
2078 if (!vmx_pt_mode_is_host_guest() ||
2079 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2080 PT_CAP_topa_output) &&
2081 !intel_pt_validate_cap(vmx->pt_desc.caps,
2082 PT_CAP_single_range_output)))
2084 msr_info->data = vmx->pt_desc.guest.output_mask;
2086 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2087 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2088 if (!vmx_pt_mode_is_host_guest() ||
2089 (index >= 2 * vmx->pt_desc.num_address_ranges))
2092 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2094 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2096 case MSR_IA32_DEBUGCTLMSR:
2097 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2101 msr = vmx_find_uret_msr(vmx, msr_info->index);
2103 msr_info->data = msr->data;
2106 return kvm_get_msr_common(vcpu, msr_info);
2112 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2115 #ifdef CONFIG_X86_64
2116 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2119 return (unsigned long)data;
2122 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2126 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2127 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2128 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2130 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2131 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2132 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2138 * Writes msr value into the appropriate "register".
2139 * Returns 0 on success, non-0 otherwise.
2140 * Assumes vcpu_load() was already called.
2142 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2144 struct vcpu_vmx *vmx = to_vmx(vcpu);
2145 struct vmx_uret_msr *msr;
2147 u32 msr_index = msr_info->index;
2148 u64 data = msr_info->data;
2151 switch (msr_index) {
2153 ret = kvm_set_msr_common(vcpu, msr_info);
2155 #ifdef CONFIG_X86_64
2157 vmx_segment_cache_clear(vmx);
2158 vmcs_writel(GUEST_FS_BASE, data);
2161 vmx_segment_cache_clear(vmx);
2162 vmcs_writel(GUEST_GS_BASE, data);
2164 case MSR_KERNEL_GS_BASE:
2165 vmx_write_guest_kernel_gs_base(vmx, data);
2168 ret = kvm_set_msr_common(vcpu, msr_info);
2170 * Always intercepting WRMSR could incur non-negligible
2171 * overhead given xfd might be changed frequently in
2172 * guest context switch. Disable write interception
2173 * upon the first write with a non-zero value (indicating
2174 * potential usage on dynamic xfeatures). Also update
2175 * exception bitmap to trap #NM for proper virtualization
2179 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2181 vcpu->arch.xfd_no_write_intercept = true;
2182 vmx_update_exception_bitmap(vcpu);
2186 case MSR_IA32_SYSENTER_CS:
2187 if (is_guest_mode(vcpu))
2188 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2189 vmcs_write32(GUEST_SYSENTER_CS, data);
2191 case MSR_IA32_SYSENTER_EIP:
2192 if (is_guest_mode(vcpu)) {
2193 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2194 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2196 vmcs_writel(GUEST_SYSENTER_EIP, data);
2198 case MSR_IA32_SYSENTER_ESP:
2199 if (is_guest_mode(vcpu)) {
2200 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2201 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2203 vmcs_writel(GUEST_SYSENTER_ESP, data);
2205 case MSR_IA32_DEBUGCTLMSR: {
2208 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2209 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2210 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2211 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2212 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2218 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2219 VM_EXIT_SAVE_DEBUG_CONTROLS)
2220 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2222 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2223 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2224 (data & DEBUGCTLMSR_LBR))
2225 intel_pmu_create_guest_lbr_event(vcpu);
2228 case MSR_IA32_BNDCFGS:
2229 if (!kvm_mpx_supported() ||
2230 (!msr_info->host_initiated &&
2231 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2233 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2234 (data & MSR_IA32_BNDCFGS_RSVD))
2237 if (is_guest_mode(vcpu) &&
2238 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2239 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2240 get_vmcs12(vcpu)->guest_bndcfgs = data;
2242 vmcs_write64(GUEST_BNDCFGS, data);
2244 case MSR_IA32_UMWAIT_CONTROL:
2245 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2248 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2249 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2252 vmx->msr_ia32_umwait_control = data;
2254 case MSR_IA32_SPEC_CTRL:
2255 if (!msr_info->host_initiated &&
2256 !guest_has_spec_ctrl_msr(vcpu))
2259 if (kvm_spec_ctrl_test_value(data))
2262 vmx->spec_ctrl = data;
2268 * When it's written (to non-zero) for the first time, pass
2272 * The handling of the MSR bitmap for L2 guests is done in
2273 * nested_vmx_prepare_msr_bitmap. We should not touch the
2274 * vmcs02.msr_bitmap here since it gets completely overwritten
2275 * in the merging. We update the vmcs01 here for L1 as well
2276 * since it will end up touching the MSR anyway now.
2278 vmx_disable_intercept_for_msr(vcpu,
2282 case MSR_IA32_TSX_CTRL:
2283 if (!msr_info->host_initiated &&
2284 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2286 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2289 case MSR_IA32_CR_PAT:
2290 ret = kvm_set_msr_common(vcpu, msr_info);
2294 if (is_guest_mode(vcpu) &&
2295 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2296 get_vmcs12(vcpu)->guest_ia32_pat = data;
2298 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2299 vmcs_write64(GUEST_IA32_PAT, data);
2301 case MSR_IA32_MCG_EXT_CTL:
2302 if ((!msr_info->host_initiated &&
2303 !(to_vmx(vcpu)->msr_ia32_feature_control &
2304 FEAT_CTL_LMCE_ENABLED)) ||
2305 (data & ~MCG_EXT_CTL_LMCE_EN))
2307 vcpu->arch.mcg_ext_ctl = data;
2309 case MSR_IA32_FEAT_CTL:
2310 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2313 vmx->msr_ia32_feature_control = data;
2314 if (msr_info->host_initiated && data == 0)
2315 vmx_leave_nested(vcpu);
2317 /* SGX may be enabled/disabled by guest's firmware */
2318 vmx_write_encls_bitmap(vcpu, NULL);
2320 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2322 * On real hardware, the LE hash MSRs are writable before
2323 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2324 * at which point SGX related bits in IA32_FEATURE_CONTROL
2327 * KVM does not emulate SGX activation for simplicity, so
2328 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2329 * is unlocked. This is technically not architectural
2330 * behavior, but it's close enough.
2332 if (!msr_info->host_initiated &&
2333 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2334 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2335 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2337 vmx->msr_ia32_sgxlepubkeyhash
2338 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2340 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2341 if (!msr_info->host_initiated)
2342 return 1; /* they are read-only */
2343 if (!nested_vmx_allowed(vcpu))
2345 return vmx_set_vmx_msr(vcpu, msr_index, data);
2346 case MSR_IA32_RTIT_CTL:
2347 if (!vmx_pt_mode_is_host_guest() ||
2348 vmx_rtit_ctl_check(vcpu, data) ||
2351 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2352 vmx->pt_desc.guest.ctl = data;
2353 pt_update_intercept_for_msr(vcpu);
2355 case MSR_IA32_RTIT_STATUS:
2356 if (!pt_can_write_msr(vmx))
2358 if (data & MSR_IA32_RTIT_STATUS_MASK)
2360 vmx->pt_desc.guest.status = data;
2362 case MSR_IA32_RTIT_CR3_MATCH:
2363 if (!pt_can_write_msr(vmx))
2365 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2366 PT_CAP_cr3_filtering))
2368 vmx->pt_desc.guest.cr3_match = data;
2370 case MSR_IA32_RTIT_OUTPUT_BASE:
2371 if (!pt_can_write_msr(vmx))
2373 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2374 PT_CAP_topa_output) &&
2375 !intel_pt_validate_cap(vmx->pt_desc.caps,
2376 PT_CAP_single_range_output))
2378 if (!pt_output_base_valid(vcpu, data))
2380 vmx->pt_desc.guest.output_base = data;
2382 case MSR_IA32_RTIT_OUTPUT_MASK:
2383 if (!pt_can_write_msr(vmx))
2385 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2386 PT_CAP_topa_output) &&
2387 !intel_pt_validate_cap(vmx->pt_desc.caps,
2388 PT_CAP_single_range_output))
2390 vmx->pt_desc.guest.output_mask = data;
2392 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2393 if (!pt_can_write_msr(vmx))
2395 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2396 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2398 if (is_noncanonical_address(data, vcpu))
2401 vmx->pt_desc.guest.addr_b[index / 2] = data;
2403 vmx->pt_desc.guest.addr_a[index / 2] = data;
2405 case MSR_IA32_PERF_CAPABILITIES:
2406 if (data && !vcpu_to_pmu(vcpu)->version)
2408 if (data & PMU_CAP_LBR_FMT) {
2409 if ((data & PMU_CAP_LBR_FMT) !=
2410 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2412 if (!cpuid_model_is_consistent(vcpu))
2415 if (data & PERF_CAP_PEBS_FORMAT) {
2416 if ((data & PERF_CAP_PEBS_MASK) !=
2417 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2419 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2421 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2423 if (!cpuid_model_is_consistent(vcpu))
2426 ret = kvm_set_msr_common(vcpu, msr_info);
2431 msr = vmx_find_uret_msr(vmx, msr_index);
2433 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2435 ret = kvm_set_msr_common(vcpu, msr_info);
2438 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2439 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2440 vmx_update_fb_clear_dis(vcpu, vmx);
2445 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2447 unsigned long guest_owned_bits;
2449 kvm_register_mark_available(vcpu, reg);
2453 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2456 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2458 case VCPU_EXREG_PDPTR:
2460 ept_save_pdptrs(vcpu);
2462 case VCPU_EXREG_CR0:
2463 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2465 vcpu->arch.cr0 &= ~guest_owned_bits;
2466 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2468 case VCPU_EXREG_CR3:
2470 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2471 * CR3 is loaded into hardware, not the guest's CR3.
2473 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2474 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2476 case VCPU_EXREG_CR4:
2477 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2479 vcpu->arch.cr4 &= ~guest_owned_bits;
2480 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2483 KVM_BUG_ON(1, vcpu->kvm);
2489 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2490 * directly instead of going through cpu_has(), to ensure KVM is trapping
2491 * ENCLS whenever it's supported in hardware. It does not matter whether
2492 * the host OS supports or has enabled SGX.
2494 static bool cpu_has_sgx(void)
2496 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2500 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2501 * can't be used due to errata where VM Exit may incorrectly clear
2502 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2503 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2505 static bool cpu_has_perf_global_ctrl_bug(void)
2507 if (boot_cpu_data.x86 == 0x6) {
2508 switch (boot_cpu_data.x86_model) {
2509 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */
2510 case INTEL_FAM6_NEHALEM: /* AAP115 */
2511 case INTEL_FAM6_WESTMERE: /* AAT100 */
2512 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */
2513 case INTEL_FAM6_NEHALEM_EX: /* BA97 */
2523 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2525 u32 vmx_msr_low, vmx_msr_high;
2526 u32 ctl = ctl_min | ctl_opt;
2528 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2530 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2531 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2533 /* Ensure minimum (required) set of control bits are supported. */
2541 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2545 rdmsrl(msr, allowed);
2547 return ctl_opt & allowed;
2550 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2551 struct vmx_capability *vmx_cap)
2553 u32 vmx_msr_low, vmx_msr_high;
2554 u32 _pin_based_exec_control = 0;
2555 u32 _cpu_based_exec_control = 0;
2556 u32 _cpu_based_2nd_exec_control = 0;
2557 u64 _cpu_based_3rd_exec_control = 0;
2558 u32 _vmexit_control = 0;
2559 u32 _vmentry_control = 0;
2564 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2565 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2566 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2571 } const vmcs_entry_exit_pairs[] = {
2572 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2573 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2574 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2575 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2576 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2579 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2581 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2582 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2583 MSR_IA32_VMX_PROCBASED_CTLS,
2584 &_cpu_based_exec_control))
2586 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2587 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2588 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2589 MSR_IA32_VMX_PROCBASED_CTLS2,
2590 &_cpu_based_2nd_exec_control))
2593 #ifndef CONFIG_X86_64
2594 if (!(_cpu_based_2nd_exec_control &
2595 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2596 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2599 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2600 _cpu_based_2nd_exec_control &= ~(
2601 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2602 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2603 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2605 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2606 &vmx_cap->ept, &vmx_cap->vpid);
2608 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2610 pr_warn_once("EPT CAP should not exist if not support "
2611 "1-setting enable EPT VM-execution control\n");
2613 if (error_on_inconsistent_vmcs_config)
2618 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2620 pr_warn_once("VPID CAP should not exist if not support "
2621 "1-setting enable VPID VM-execution control\n");
2623 if (error_on_inconsistent_vmcs_config)
2630 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2632 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2633 _cpu_based_3rd_exec_control =
2634 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2635 MSR_IA32_VMX_PROCBASED_CTLS3);
2637 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2638 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2639 MSR_IA32_VMX_EXIT_CTLS,
2643 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2644 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2645 MSR_IA32_VMX_PINBASED_CTLS,
2646 &_pin_based_exec_control))
2649 if (cpu_has_broken_vmx_preemption_timer())
2650 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2651 if (!(_cpu_based_2nd_exec_control &
2652 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2653 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2655 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2656 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2657 MSR_IA32_VMX_ENTRY_CTLS,
2661 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2662 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2663 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2665 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2668 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2669 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2671 if (error_on_inconsistent_vmcs_config)
2674 _vmentry_control &= ~n_ctrl;
2675 _vmexit_control &= ~x_ctrl;
2678 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2680 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2681 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2684 #ifdef CONFIG_X86_64
2685 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2686 if (vmx_msr_high & (1u<<16))
2690 /* Require Write-Back (WB) memory type for VMCS accesses. */
2691 if (((vmx_msr_high >> 18) & 15) != 6)
2694 rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2696 vmcs_conf->size = vmx_msr_high & 0x1fff;
2697 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2699 vmcs_conf->revision_id = vmx_msr_low;
2701 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2702 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2703 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2704 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2705 vmcs_conf->vmexit_ctrl = _vmexit_control;
2706 vmcs_conf->vmentry_ctrl = _vmentry_control;
2707 vmcs_conf->misc = misc_msr;
2709 #if IS_ENABLED(CONFIG_HYPERV)
2710 if (enlightened_vmcs)
2711 evmcs_sanitize_exec_ctrls(vmcs_conf);
2717 static bool kvm_is_vmx_supported(void)
2719 int cpu = raw_smp_processor_id();
2721 if (!cpu_has_vmx()) {
2722 pr_err("VMX not supported by CPU %d\n", cpu);
2726 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2727 !this_cpu_has(X86_FEATURE_VMX)) {
2728 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2735 static int vmx_check_processor_compat(void)
2737 int cpu = raw_smp_processor_id();
2738 struct vmcs_config vmcs_conf;
2739 struct vmx_capability vmx_cap;
2741 if (!kvm_is_vmx_supported())
2744 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2745 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2749 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2750 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2751 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2757 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2761 cr4_set_bits(X86_CR4_VMXE);
2763 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2764 _ASM_EXTABLE(1b, %l[fault])
2765 : : [vmxon_pointer] "m"(vmxon_pointer)
2770 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2771 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2772 cr4_clear_bits(X86_CR4_VMXE);
2777 static int vmx_hardware_enable(void)
2779 int cpu = raw_smp_processor_id();
2780 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2783 if (cr4_read_shadow() & X86_CR4_VMXE)
2787 * This can happen if we hot-added a CPU but failed to allocate
2788 * VP assist page for it.
2790 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2793 intel_pt_handle_vmx(1);
2795 r = kvm_cpu_vmxon(phys_addr);
2797 intel_pt_handle_vmx(0);
2807 static void vmclear_local_loaded_vmcss(void)
2809 int cpu = raw_smp_processor_id();
2810 struct loaded_vmcs *v, *n;
2812 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2813 loaded_vmcss_on_cpu_link)
2814 __loaded_vmcs_clear(v);
2817 static void vmx_hardware_disable(void)
2819 vmclear_local_loaded_vmcss();
2822 kvm_spurious_fault();
2826 intel_pt_handle_vmx(0);
2829 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2831 int node = cpu_to_node(cpu);
2835 pages = __alloc_pages_node(node, flags, 0);
2838 vmcs = page_address(pages);
2839 memset(vmcs, 0, vmcs_config.size);
2841 /* KVM supports Enlightened VMCS v1 only */
2842 if (kvm_is_using_evmcs())
2843 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2845 vmcs->hdr.revision_id = vmcs_config.revision_id;
2848 vmcs->hdr.shadow_vmcs = 1;
2852 void free_vmcs(struct vmcs *vmcs)
2854 free_page((unsigned long)vmcs);
2858 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2860 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2862 if (!loaded_vmcs->vmcs)
2864 loaded_vmcs_clear(loaded_vmcs);
2865 free_vmcs(loaded_vmcs->vmcs);
2866 loaded_vmcs->vmcs = NULL;
2867 if (loaded_vmcs->msr_bitmap)
2868 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2869 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2872 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2874 loaded_vmcs->vmcs = alloc_vmcs(false);
2875 if (!loaded_vmcs->vmcs)
2878 vmcs_clear(loaded_vmcs->vmcs);
2880 loaded_vmcs->shadow_vmcs = NULL;
2881 loaded_vmcs->hv_timer_soft_disabled = false;
2882 loaded_vmcs->cpu = -1;
2883 loaded_vmcs->launched = 0;
2885 if (cpu_has_vmx_msr_bitmap()) {
2886 loaded_vmcs->msr_bitmap = (unsigned long *)
2887 __get_free_page(GFP_KERNEL_ACCOUNT);
2888 if (!loaded_vmcs->msr_bitmap)
2890 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2893 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2894 memset(&loaded_vmcs->controls_shadow, 0,
2895 sizeof(struct vmcs_controls_shadow));
2900 free_loaded_vmcs(loaded_vmcs);
2904 static void free_kvm_area(void)
2908 for_each_possible_cpu(cpu) {
2909 free_vmcs(per_cpu(vmxarea, cpu));
2910 per_cpu(vmxarea, cpu) = NULL;
2914 static __init int alloc_kvm_area(void)
2918 for_each_possible_cpu(cpu) {
2921 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2928 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2929 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2930 * revision_id reported by MSR_IA32_VMX_BASIC.
2932 * However, even though not explicitly documented by
2933 * TLFS, VMXArea passed as VMXON argument should
2934 * still be marked with revision_id reported by
2937 if (kvm_is_using_evmcs())
2938 vmcs->hdr.revision_id = vmcs_config.revision_id;
2940 per_cpu(vmxarea, cpu) = vmcs;
2945 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2946 struct kvm_segment *save)
2948 if (!emulate_invalid_guest_state) {
2950 * CS and SS RPL should be equal during guest entry according
2951 * to VMX spec, but in reality it is not always so. Since vcpu
2952 * is in the middle of the transition from real mode to
2953 * protected mode it is safe to assume that RPL 0 is a good
2956 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2957 save->selector &= ~SEGMENT_RPL_MASK;
2958 save->dpl = save->selector & SEGMENT_RPL_MASK;
2961 __vmx_set_segment(vcpu, save, seg);
2964 static void enter_pmode(struct kvm_vcpu *vcpu)
2966 unsigned long flags;
2967 struct vcpu_vmx *vmx = to_vmx(vcpu);
2970 * Update real mode segment cache. It may be not up-to-date if segment
2971 * register was written while vcpu was in a guest mode.
2973 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2974 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2975 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2976 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2977 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2978 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2980 vmx->rmode.vm86_active = 0;
2982 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2984 flags = vmcs_readl(GUEST_RFLAGS);
2985 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2986 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2987 vmcs_writel(GUEST_RFLAGS, flags);
2989 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2990 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2992 vmx_update_exception_bitmap(vcpu);
2994 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2995 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2996 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2997 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2998 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2999 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3002 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3004 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3005 struct kvm_segment var = *save;
3008 if (seg == VCPU_SREG_CS)
3011 if (!emulate_invalid_guest_state) {
3012 var.selector = var.base >> 4;
3013 var.base = var.base & 0xffff0;
3023 if (save->base & 0xf)
3024 pr_warn_once("segment base is not paragraph aligned "
3025 "when entering protected mode (seg=%d)", seg);
3028 vmcs_write16(sf->selector, var.selector);
3029 vmcs_writel(sf->base, var.base);
3030 vmcs_write32(sf->limit, var.limit);
3031 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3034 static void enter_rmode(struct kvm_vcpu *vcpu)
3036 unsigned long flags;
3037 struct vcpu_vmx *vmx = to_vmx(vcpu);
3038 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3040 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3041 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3042 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3043 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3044 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3045 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3046 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3048 vmx->rmode.vm86_active = 1;
3051 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3052 * vcpu. Warn the user that an update is overdue.
3054 if (!kvm_vmx->tss_addr)
3055 pr_warn_once("KVM_SET_TSS_ADDR needs to be called before running vCPU\n");
3057 vmx_segment_cache_clear(vmx);
3059 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3060 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3061 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3063 flags = vmcs_readl(GUEST_RFLAGS);
3064 vmx->rmode.save_rflags = flags;
3066 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3068 vmcs_writel(GUEST_RFLAGS, flags);
3069 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3070 vmx_update_exception_bitmap(vcpu);
3072 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3073 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3074 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3075 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3076 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3077 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3080 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3082 struct vcpu_vmx *vmx = to_vmx(vcpu);
3084 /* Nothing to do if hardware doesn't support EFER. */
3085 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3088 vcpu->arch.efer = efer;
3089 #ifdef CONFIG_X86_64
3090 if (efer & EFER_LMA)
3091 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3093 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3095 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3099 vmx_setup_uret_msrs(vmx);
3103 #ifdef CONFIG_X86_64
3105 static void enter_lmode(struct kvm_vcpu *vcpu)
3109 vmx_segment_cache_clear(to_vmx(vcpu));
3111 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3112 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3113 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3115 vmcs_write32(GUEST_TR_AR_BYTES,
3116 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3117 | VMX_AR_TYPE_BUSY_64_TSS);
3119 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3122 static void exit_lmode(struct kvm_vcpu *vcpu)
3124 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3129 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3131 struct vcpu_vmx *vmx = to_vmx(vcpu);
3134 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3135 * the CPU is not required to invalidate guest-physical mappings on
3136 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3137 * associated with the root EPT structure and not any particular VPID
3138 * (INVVPID also isn't required to invalidate guest-physical mappings).
3142 } else if (enable_vpid) {
3143 if (cpu_has_vmx_invvpid_global()) {
3144 vpid_sync_vcpu_global();
3146 vpid_sync_vcpu_single(vmx->vpid);
3147 vpid_sync_vcpu_single(vmx->nested.vpid02);
3152 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3154 if (is_guest_mode(vcpu))
3155 return nested_get_vpid02(vcpu);
3156 return to_vmx(vcpu)->vpid;
3159 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3161 struct kvm_mmu *mmu = vcpu->arch.mmu;
3162 u64 root_hpa = mmu->root.hpa;
3164 /* No flush required if the current context is invalid. */
3165 if (!VALID_PAGE(root_hpa))
3169 ept_sync_context(construct_eptp(vcpu, root_hpa,
3170 mmu->root_role.level));
3172 vpid_sync_context(vmx_get_current_vpid(vcpu));
3175 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3178 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3179 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3181 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3184 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3187 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3188 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3189 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3190 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3191 * i.e. no explicit INVVPID is necessary.
3193 vpid_sync_context(vmx_get_current_vpid(vcpu));
3196 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3198 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3200 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3203 if (is_pae_paging(vcpu)) {
3204 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3205 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3206 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3207 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3211 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3213 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3215 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3218 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3219 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3220 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3221 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3223 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3226 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3227 CPU_BASED_CR3_STORE_EXITING)
3229 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3231 struct vcpu_vmx *vmx = to_vmx(vcpu);
3232 unsigned long hw_cr0, old_cr0_pg;
3235 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3237 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3238 if (is_unrestricted_guest(vcpu))
3239 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3241 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3243 hw_cr0 |= X86_CR0_WP;
3245 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3248 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3252 vmcs_writel(CR0_READ_SHADOW, cr0);
3253 vmcs_writel(GUEST_CR0, hw_cr0);
3254 vcpu->arch.cr0 = cr0;
3255 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3257 #ifdef CONFIG_X86_64
3258 if (vcpu->arch.efer & EFER_LME) {
3259 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3261 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3266 if (enable_ept && !is_unrestricted_guest(vcpu)) {
3268 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3269 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3270 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3271 * KVM's CR3 is installed.
3273 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3274 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3277 * When running with EPT but not unrestricted guest, KVM must
3278 * intercept CR3 accesses when paging is _disabled_. This is
3279 * necessary because restricted guests can't actually run with
3280 * paging disabled, and so KVM stuffs its own CR3 in order to
3281 * run the guest when identity mapped page tables.
3283 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3284 * update, it may be stale with respect to CR3 interception,
3285 * e.g. after nested VM-Enter.
3287 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3288 * stores to forward them to L1, even if KVM does not need to
3289 * intercept them to preserve its identity mapped page tables.
3291 if (!(cr0 & X86_CR0_PG)) {
3292 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3293 } else if (!is_guest_mode(vcpu)) {
3294 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3296 tmp = exec_controls_get(vmx);
3297 tmp &= ~CR3_EXITING_BITS;
3298 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3299 exec_controls_set(vmx, tmp);
3302 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3303 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3304 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3307 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3308 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3310 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3311 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3314 /* depends on vcpu->arch.cr0 to be set to a new value */
3315 vmx->emulation_required = vmx_emulation_required(vcpu);
3318 static int vmx_get_max_tdp_level(void)
3320 if (cpu_has_vmx_ept_5levels())
3325 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3327 u64 eptp = VMX_EPTP_MT_WB;
3329 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3331 if (enable_ept_ad_bits &&
3332 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3333 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3339 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3342 struct kvm *kvm = vcpu->kvm;
3343 bool update_guest_cr3 = true;
3344 unsigned long guest_cr3;
3348 eptp = construct_eptp(vcpu, root_hpa, root_level);
3349 vmcs_write64(EPT_POINTER, eptp);
3351 hv_track_root_tdp(vcpu, root_hpa);
3353 if (!enable_unrestricted_guest && !is_paging(vcpu))
3354 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3355 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3356 guest_cr3 = vcpu->arch.cr3;
3357 else /* vmcs.GUEST_CR3 is already up-to-date. */
3358 update_guest_cr3 = false;
3359 vmx_ept_load_pdptrs(vcpu);
3361 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3364 if (update_guest_cr3)
3365 vmcs_writel(GUEST_CR3, guest_cr3);
3369 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3372 * We operate under the default treatment of SMM, so VMX cannot be
3373 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3374 * i.e. is a reserved bit, is handled by common x86 code.
3376 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3379 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3385 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3387 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3388 struct vcpu_vmx *vmx = to_vmx(vcpu);
3389 unsigned long hw_cr4;
3392 * Pass through host's Machine Check Enable value to hw_cr4, which
3393 * is in force while we are in guest mode. Do not let guests control
3394 * this bit, even if host CR4.MCE == 0.
3396 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3397 if (is_unrestricted_guest(vcpu))
3398 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3399 else if (vmx->rmode.vm86_active)
3400 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3402 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3404 if (vmx_umip_emulated()) {
3405 if (cr4 & X86_CR4_UMIP) {
3406 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3407 hw_cr4 &= ~X86_CR4_UMIP;
3408 } else if (!is_guest_mode(vcpu) ||
3409 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3410 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3414 vcpu->arch.cr4 = cr4;
3415 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3417 if (!is_unrestricted_guest(vcpu)) {
3419 if (!is_paging(vcpu)) {
3420 hw_cr4 &= ~X86_CR4_PAE;
3421 hw_cr4 |= X86_CR4_PSE;
3422 } else if (!(cr4 & X86_CR4_PAE)) {
3423 hw_cr4 &= ~X86_CR4_PAE;
3428 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3429 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3430 * to be manually disabled when guest switches to non-paging
3433 * If !enable_unrestricted_guest, the CPU is always running
3434 * with CR0.PG=1 and CR4 needs to be modified.
3435 * If enable_unrestricted_guest, the CPU automatically
3436 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3438 if (!is_paging(vcpu))
3439 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3442 vmcs_writel(CR4_READ_SHADOW, cr4);
3443 vmcs_writel(GUEST_CR4, hw_cr4);
3445 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3446 kvm_update_cpuid_runtime(vcpu);
3449 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3451 struct vcpu_vmx *vmx = to_vmx(vcpu);
3454 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3455 *var = vmx->rmode.segs[seg];
3456 if (seg == VCPU_SREG_TR
3457 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3459 var->base = vmx_read_guest_seg_base(vmx, seg);
3460 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3463 var->base = vmx_read_guest_seg_base(vmx, seg);
3464 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3465 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3466 ar = vmx_read_guest_seg_ar(vmx, seg);
3467 var->unusable = (ar >> 16) & 1;
3468 var->type = ar & 15;
3469 var->s = (ar >> 4) & 1;
3470 var->dpl = (ar >> 5) & 3;
3472 * Some userspaces do not preserve unusable property. Since usable
3473 * segment has to be present according to VMX spec we can use present
3474 * property to amend userspace bug by making unusable segment always
3475 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3476 * segment as unusable.
3478 var->present = !var->unusable;
3479 var->avl = (ar >> 12) & 1;
3480 var->l = (ar >> 13) & 1;
3481 var->db = (ar >> 14) & 1;
3482 var->g = (ar >> 15) & 1;
3485 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3487 struct kvm_segment s;
3489 if (to_vmx(vcpu)->rmode.vm86_active) {
3490 vmx_get_segment(vcpu, &s, seg);
3493 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3496 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3498 struct vcpu_vmx *vmx = to_vmx(vcpu);
3500 if (unlikely(vmx->rmode.vm86_active))
3503 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3504 return VMX_AR_DPL(ar);
3508 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3512 ar = var->type & 15;
3513 ar |= (var->s & 1) << 4;
3514 ar |= (var->dpl & 3) << 5;
3515 ar |= (var->present & 1) << 7;
3516 ar |= (var->avl & 1) << 12;
3517 ar |= (var->l & 1) << 13;
3518 ar |= (var->db & 1) << 14;
3519 ar |= (var->g & 1) << 15;
3520 ar |= (var->unusable || !var->present) << 16;
3525 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3527 struct vcpu_vmx *vmx = to_vmx(vcpu);
3528 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3530 vmx_segment_cache_clear(vmx);
3532 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3533 vmx->rmode.segs[seg] = *var;
3534 if (seg == VCPU_SREG_TR)
3535 vmcs_write16(sf->selector, var->selector);
3537 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3541 vmcs_writel(sf->base, var->base);
3542 vmcs_write32(sf->limit, var->limit);
3543 vmcs_write16(sf->selector, var->selector);
3546 * Fix the "Accessed" bit in AR field of segment registers for older
3548 * IA32 arch specifies that at the time of processor reset the
3549 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3550 * is setting it to 0 in the userland code. This causes invalid guest
3551 * state vmexit when "unrestricted guest" mode is turned on.
3552 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3553 * tree. Newer qemu binaries with that qemu fix would not need this
3556 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3557 var->type |= 0x1; /* Accessed */
3559 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3562 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3564 __vmx_set_segment(vcpu, var, seg);
3566 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3569 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3571 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3573 *db = (ar >> 14) & 1;
3574 *l = (ar >> 13) & 1;
3577 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3579 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3580 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3583 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3585 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3586 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3589 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3591 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3592 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3595 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3597 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3598 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3601 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3603 struct kvm_segment var;
3606 vmx_get_segment(vcpu, &var, seg);
3608 if (seg == VCPU_SREG_CS)
3610 ar = vmx_segment_access_rights(&var);
3612 if (var.base != (var.selector << 4))
3614 if (var.limit != 0xffff)
3622 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3624 struct kvm_segment cs;
3625 unsigned int cs_rpl;
3627 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3628 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3632 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3636 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3637 if (cs.dpl > cs_rpl)
3640 if (cs.dpl != cs_rpl)
3646 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3650 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3652 struct kvm_segment ss;
3653 unsigned int ss_rpl;
3655 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3656 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3660 if (ss.type != 3 && ss.type != 7)
3664 if (ss.dpl != ss_rpl) /* DPL != RPL */
3672 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3674 struct kvm_segment var;
3677 vmx_get_segment(vcpu, &var, seg);
3678 rpl = var.selector & SEGMENT_RPL_MASK;
3686 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3687 if (var.dpl < rpl) /* DPL < RPL */
3691 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3697 static bool tr_valid(struct kvm_vcpu *vcpu)
3699 struct kvm_segment tr;
3701 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3705 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3707 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3715 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3717 struct kvm_segment ldtr;
3719 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3723 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3733 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3735 struct kvm_segment cs, ss;
3737 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3738 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3740 return ((cs.selector & SEGMENT_RPL_MASK) ==
3741 (ss.selector & SEGMENT_RPL_MASK));
3745 * Check if guest state is valid. Returns true if valid, false if
3747 * We assume that registers are always usable
3749 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3751 /* real mode guest state checks */
3752 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3753 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3755 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3757 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3759 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3761 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3763 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3766 /* protected mode guest state checks */
3767 if (!cs_ss_rpl_check(vcpu))
3769 if (!code_segment_valid(vcpu))
3771 if (!stack_segment_valid(vcpu))
3773 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3775 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3777 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3779 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3781 if (!tr_valid(vcpu))
3783 if (!ldtr_valid(vcpu))
3787 * - Add checks on RIP
3788 * - Add checks on RFLAGS
3794 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3796 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3800 for (i = 0; i < 3; i++) {
3801 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3805 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3806 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3810 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3816 static int init_rmode_identity_map(struct kvm *kvm)
3818 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3823 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3824 mutex_lock(&kvm->slots_lock);
3826 if (likely(kvm_vmx->ept_identity_pagetable_done))
3829 if (!kvm_vmx->ept_identity_map_addr)
3830 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3832 uaddr = __x86_set_memory_region(kvm,
3833 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3834 kvm_vmx->ept_identity_map_addr,
3836 if (IS_ERR(uaddr)) {
3841 /* Set up identity-mapping pagetable for EPT in real mode */
3842 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3843 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3844 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3845 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3850 kvm_vmx->ept_identity_pagetable_done = true;
3853 mutex_unlock(&kvm->slots_lock);
3857 static void seg_setup(int seg)
3859 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3862 vmcs_write16(sf->selector, 0);
3863 vmcs_writel(sf->base, 0);
3864 vmcs_write32(sf->limit, 0xffff);
3866 if (seg == VCPU_SREG_CS)
3867 ar |= 0x08; /* code segment */
3869 vmcs_write32(sf->ar_bytes, ar);
3872 int allocate_vpid(void)
3878 spin_lock(&vmx_vpid_lock);
3879 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3880 if (vpid < VMX_NR_VPIDS)
3881 __set_bit(vpid, vmx_vpid_bitmap);
3884 spin_unlock(&vmx_vpid_lock);
3888 void free_vpid(int vpid)
3890 if (!enable_vpid || vpid == 0)
3892 spin_lock(&vmx_vpid_lock);
3893 __clear_bit(vpid, vmx_vpid_bitmap);
3894 spin_unlock(&vmx_vpid_lock);
3897 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3900 * When KVM is a nested hypervisor on top of Hyper-V and uses
3901 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3902 * bitmap has changed.
3904 if (kvm_is_using_evmcs()) {
3905 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3907 if (evmcs->hv_enlightenments_control.msr_bitmap)
3908 evmcs->hv_clean_fields &=
3909 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3912 vmx->nested.force_msr_bitmap_recalc = true;
3915 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3917 struct vcpu_vmx *vmx = to_vmx(vcpu);
3918 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3920 if (!cpu_has_vmx_msr_bitmap())
3923 vmx_msr_bitmap_l01_changed(vmx);
3926 * Mark the desired intercept state in shadow bitmap, this is needed
3927 * for resync when the MSR filters change.
3929 if (is_valid_passthrough_msr(msr)) {
3930 int idx = possible_passthrough_msr_slot(msr);
3932 if (idx != -ENOENT) {
3933 if (type & MSR_TYPE_R)
3934 clear_bit(idx, vmx->shadow_msr_intercept.read);
3935 if (type & MSR_TYPE_W)
3936 clear_bit(idx, vmx->shadow_msr_intercept.write);
3940 if ((type & MSR_TYPE_R) &&
3941 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3942 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3943 type &= ~MSR_TYPE_R;
3946 if ((type & MSR_TYPE_W) &&
3947 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3948 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3949 type &= ~MSR_TYPE_W;
3952 if (type & MSR_TYPE_R)
3953 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3955 if (type & MSR_TYPE_W)
3956 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3959 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3961 struct vcpu_vmx *vmx = to_vmx(vcpu);
3962 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3964 if (!cpu_has_vmx_msr_bitmap())
3967 vmx_msr_bitmap_l01_changed(vmx);
3970 * Mark the desired intercept state in shadow bitmap, this is needed
3971 * for resync when the MSR filter changes.
3973 if (is_valid_passthrough_msr(msr)) {
3974 int idx = possible_passthrough_msr_slot(msr);
3976 if (idx != -ENOENT) {
3977 if (type & MSR_TYPE_R)
3978 set_bit(idx, vmx->shadow_msr_intercept.read);
3979 if (type & MSR_TYPE_W)
3980 set_bit(idx, vmx->shadow_msr_intercept.write);
3984 if (type & MSR_TYPE_R)
3985 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3987 if (type & MSR_TYPE_W)
3988 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3991 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3994 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
3995 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
3996 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
3998 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
3999 const int write_idx = read_idx + (0x800 / sizeof(u64));
4000 struct vcpu_vmx *vmx = to_vmx(vcpu);
4001 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4004 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4007 if (cpu_has_secondary_exec_ctrls() &&
4008 (secondary_exec_controls_get(vmx) &
4009 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4010 mode = MSR_BITMAP_MODE_X2APIC;
4011 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4012 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4017 if (mode == vmx->x2apic_msr_bitmap_mode)
4020 vmx->x2apic_msr_bitmap_mode = mode;
4023 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4024 * registers (0x840 and above) intercepted, KVM doesn't support them.
4025 * Intercept all writes by default and poke holes as needed. Pass
4026 * through reads for all valid registers by default in x2APIC+APICv
4027 * mode, only the current timer count needs on-demand emulation by KVM.
4029 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4030 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4032 msr_bitmap[read_idx] = ~0ull;
4033 msr_bitmap[write_idx] = ~0ull;
4036 * TPR reads and writes can be virtualized even if virtual interrupt
4037 * delivery is not in use.
4039 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4040 !(mode & MSR_BITMAP_MODE_X2APIC));
4042 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4043 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4044 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4045 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4047 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4051 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4053 struct vcpu_vmx *vmx = to_vmx(vcpu);
4054 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4057 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4058 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4059 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4060 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4061 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4062 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4063 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4067 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4069 struct vcpu_vmx *vmx = to_vmx(vcpu);
4074 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4075 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4076 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4079 rvi = vmx_get_rvi();
4081 vapic_page = vmx->nested.virtual_apic_map.hva;
4082 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4084 return ((rvi & 0xf0) > (vppr & 0xf0));
4087 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4089 struct vcpu_vmx *vmx = to_vmx(vcpu);
4093 * Redo intercept permissions for MSRs that KVM is passing through to
4094 * the guest. Disabling interception will check the new MSR filter and
4095 * ensure that KVM enables interception if usersepace wants to filter
4096 * the MSR. MSRs that KVM is already intercepting don't need to be
4097 * refreshed since KVM is going to intercept them regardless of what
4100 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4101 u32 msr = vmx_possible_passthrough_msrs[i];
4103 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4104 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4106 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4107 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4110 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4111 if (vmx_pt_mode_is_host_guest())
4112 pt_update_intercept_for_msr(vcpu);
4115 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4119 if (vcpu->mode == IN_GUEST_MODE) {
4121 * The vector of the virtual has already been set in the PIR.
4122 * Send a notification event to deliver the virtual interrupt
4123 * unless the vCPU is the currently running vCPU, i.e. the
4124 * event is being sent from a fastpath VM-Exit handler, in
4125 * which case the PIR will be synced to the vIRR before
4126 * re-entering the guest.
4128 * When the target is not the running vCPU, the following
4129 * possibilities emerge:
4131 * Case 1: vCPU stays in non-root mode. Sending a notification
4132 * event posts the interrupt to the vCPU.
4134 * Case 2: vCPU exits to root mode and is still runnable. The
4135 * PIR will be synced to the vIRR before re-entering the guest.
4136 * Sending a notification event is ok as the host IRQ handler
4137 * will ignore the spurious event.
4139 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4140 * has already synced PIR to vIRR and never blocks the vCPU if
4141 * the vIRR is not empty. Therefore, a blocked vCPU here does
4142 * not wait for any requested interrupts in PIR, and sending a
4143 * notification event also results in a benign, spurious event.
4146 if (vcpu != kvm_get_running_vcpu())
4147 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4152 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4153 * otherwise do nothing as KVM will grab the highest priority pending
4154 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4156 kvm_vcpu_wake_up(vcpu);
4159 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4162 struct vcpu_vmx *vmx = to_vmx(vcpu);
4164 if (is_guest_mode(vcpu) &&
4165 vector == vmx->nested.posted_intr_nv) {
4167 * If a posted intr is not recognized by hardware,
4168 * we will accomplish it in the next vmentry.
4170 vmx->nested.pi_pending = true;
4171 kvm_make_request(KVM_REQ_EVENT, vcpu);
4174 * This pairs with the smp_mb_*() after setting vcpu->mode in
4175 * vcpu_enter_guest() to guarantee the vCPU sees the event
4176 * request if triggering a posted interrupt "fails" because
4177 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4178 * the smb_wmb() in kvm_make_request() only ensures everything
4179 * done before making the request is visible when the request
4180 * is visible, it doesn't ensure ordering between the store to
4181 * vcpu->requests and the load from vcpu->mode.
4183 smp_mb__after_atomic();
4185 /* the PIR and ON have been set by L1. */
4186 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4192 * Send interrupt to vcpu via posted interrupt way.
4193 * 1. If target vcpu is running(non-root mode), send posted interrupt
4194 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4195 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4196 * interrupt from PIR in next vmentry.
4198 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4200 struct vcpu_vmx *vmx = to_vmx(vcpu);
4203 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4207 /* Note, this is called iff the local APIC is in-kernel. */
4208 if (!vcpu->arch.apic->apicv_active)
4211 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4214 /* If a previous notification has sent the IPI, nothing to do. */
4215 if (pi_test_and_set_on(&vmx->pi_desc))
4219 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4220 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4221 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4222 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4224 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4228 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4229 int trig_mode, int vector)
4231 struct kvm_vcpu *vcpu = apic->vcpu;
4233 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4234 kvm_lapic_set_irr(vector, apic);
4235 kvm_make_request(KVM_REQ_EVENT, vcpu);
4236 kvm_vcpu_kick(vcpu);
4238 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4244 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4245 * will not change in the lifetime of the guest.
4246 * Note that host-state that does change is set elsewhere. E.g., host-state
4247 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4249 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4253 unsigned long cr0, cr3, cr4;
4256 WARN_ON(cr0 & X86_CR0_TS);
4257 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4260 * Save the most likely value for this task's CR3 in the VMCS.
4261 * We can't use __get_current_cr3_fast() because we're not atomic.
4264 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4265 vmx->loaded_vmcs->host_state.cr3 = cr3;
4267 /* Save the most likely value for this task's CR4 in the VMCS. */
4268 cr4 = cr4_read_shadow();
4269 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4270 vmx->loaded_vmcs->host_state.cr4 = cr4;
4272 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4273 #ifdef CONFIG_X86_64
4275 * Load null selectors, so we can avoid reloading them in
4276 * vmx_prepare_switch_to_host(), in case userspace uses
4277 * the null selectors too (the expected case).
4279 vmcs_write16(HOST_DS_SELECTOR, 0);
4280 vmcs_write16(HOST_ES_SELECTOR, 0);
4282 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4283 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4285 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4286 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4288 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4290 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4292 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4293 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4296 * SYSENTER is used for 32-bit system calls on either 32-bit or
4297 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4298 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4299 * have already done so!).
4301 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4302 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4304 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4305 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4307 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4308 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4309 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4312 if (cpu_has_load_ia32_efer())
4313 vmcs_write64(HOST_IA32_EFER, host_efer);
4316 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4318 struct kvm_vcpu *vcpu = &vmx->vcpu;
4320 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4321 ~vcpu->arch.cr4_guest_rsvd_bits;
4323 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4324 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4326 if (is_guest_mode(&vmx->vcpu))
4327 vcpu->arch.cr4_guest_owned_bits &=
4328 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4329 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4332 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4334 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4336 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4337 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4340 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4342 if (!enable_preemption_timer)
4343 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4345 return pin_based_exec_ctrl;
4348 static u32 vmx_vmentry_ctrl(void)
4350 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4352 if (vmx_pt_mode_is_system())
4353 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4354 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4356 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4358 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4359 VM_ENTRY_LOAD_IA32_EFER |
4360 VM_ENTRY_IA32E_MODE);
4362 if (cpu_has_perf_global_ctrl_bug())
4363 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4365 return vmentry_ctrl;
4368 static u32 vmx_vmexit_ctrl(void)
4370 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4373 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4374 * nested virtualization and thus allowed to be set in vmcs12.
4376 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4377 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4379 if (vmx_pt_mode_is_system())
4380 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4381 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4383 if (cpu_has_perf_global_ctrl_bug())
4384 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4386 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4387 return vmexit_ctrl &
4388 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4391 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4393 struct vcpu_vmx *vmx = to_vmx(vcpu);
4395 if (is_guest_mode(vcpu)) {
4396 vmx->nested.update_vmcs01_apicv_status = true;
4400 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4402 if (kvm_vcpu_apicv_active(vcpu)) {
4403 secondary_exec_controls_setbit(vmx,
4404 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4405 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4407 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4409 secondary_exec_controls_clearbit(vmx,
4410 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4411 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4413 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4416 vmx_update_msr_bitmap_x2apic(vcpu);
4419 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4421 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4424 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4425 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4427 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4428 CPU_BASED_USE_IO_BITMAPS |
4429 CPU_BASED_MONITOR_TRAP_FLAG |
4430 CPU_BASED_PAUSE_EXITING);
4432 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4433 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4434 CPU_BASED_NMI_WINDOW_EXITING);
4436 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4437 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4439 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4440 exec_control &= ~CPU_BASED_TPR_SHADOW;
4442 #ifdef CONFIG_X86_64
4443 if (exec_control & CPU_BASED_TPR_SHADOW)
4444 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4445 CPU_BASED_CR8_STORE_EXITING);
4447 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4448 CPU_BASED_CR8_LOAD_EXITING;
4450 /* No need to intercept CR3 access or INVPLG when using EPT. */
4452 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4453 CPU_BASED_CR3_STORE_EXITING |
4454 CPU_BASED_INVLPG_EXITING);
4455 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4456 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4457 CPU_BASED_MONITOR_EXITING);
4458 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4459 exec_control &= ~CPU_BASED_HLT_EXITING;
4460 return exec_control;
4463 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4465 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4468 * IPI virtualization relies on APICv. Disable IPI virtualization if
4469 * APICv is inhibited.
4471 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4472 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4474 return exec_control;
4478 * Adjust a single secondary execution control bit to intercept/allow an
4479 * instruction in the guest. This is usually done based on whether or not a
4480 * feature has been exposed to the guest in order to correctly emulate faults.
4483 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4484 u32 control, bool enabled, bool exiting)
4487 * If the control is for an opt-in feature, clear the control if the
4488 * feature is not exposed to the guest, i.e. not enabled. If the
4489 * control is opt-out, i.e. an exiting control, clear the control if
4490 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4491 * disabled for the associated instruction. Note, the caller is
4492 * responsible presetting exec_control to set all supported bits.
4494 if (enabled == exiting)
4495 *exec_control &= ~control;
4498 * Update the nested MSR settings so that a nested VMM can/can't set
4499 * controls for features that are/aren't exposed to the guest.
4503 * All features that can be added or removed to VMX MSRs must
4504 * be supported in the first place for nested virtualization.
4506 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4510 vmx->nested.msrs.secondary_ctls_high |= control;
4512 vmx->nested.msrs.secondary_ctls_high &= ~control;
4517 * Wrapper macro for the common case of adjusting a secondary execution control
4518 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4519 * verifies that the control is actually supported by KVM and hardware.
4521 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4525 if (cpu_has_vmx_##name()) { \
4526 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4527 X86_FEATURE_##feat_name); \
4528 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4529 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4533 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4534 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4535 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4537 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4538 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4540 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4542 struct kvm_vcpu *vcpu = &vmx->vcpu;
4544 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4546 if (vmx_pt_mode_is_system())
4547 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4548 if (!cpu_need_virtualize_apic_accesses(vcpu))
4549 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4551 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4553 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4554 enable_unrestricted_guest = 0;
4556 if (!enable_unrestricted_guest)
4557 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4558 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4559 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4560 if (!kvm_vcpu_apicv_active(vcpu))
4561 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4562 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4563 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4566 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4567 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4569 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4571 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4572 * in vmx_set_cr4. */
4573 exec_control &= ~SECONDARY_EXEC_DESC;
4575 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4577 We can NOT enable shadow_vmcs here because we don't have yet
4580 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4583 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4584 * it needs to be set here when dirty logging is already active, e.g.
4585 * if this vCPU was created after dirty logging was enabled.
4587 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4588 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4590 if (cpu_has_vmx_xsaves()) {
4591 /* Exposing XSAVES only when XSAVE is exposed */
4592 bool xsaves_enabled =
4593 boot_cpu_has(X86_FEATURE_XSAVE) &&
4594 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4595 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4597 vcpu->arch.xsaves_enabled = xsaves_enabled;
4599 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4600 SECONDARY_EXEC_XSAVES,
4601 xsaves_enabled, false);
4605 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4606 * feature is exposed to the guest. This creates a virtualization hole
4607 * if both are supported in hardware but only one is exposed to the
4608 * guest, but letting the guest execute RDTSCP or RDPID when either one
4609 * is advertised is preferable to emulating the advertised instruction
4610 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4612 if (cpu_has_vmx_rdtscp()) {
4613 bool rdpid_or_rdtscp_enabled =
4614 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4615 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4617 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4618 SECONDARY_EXEC_ENABLE_RDTSCP,
4619 rdpid_or_rdtscp_enabled, false);
4621 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4623 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4624 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4626 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4627 ENABLE_USR_WAIT_PAUSE, false);
4629 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4630 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4632 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4633 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4635 return exec_control;
4638 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4640 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4643 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4646 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4648 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4651 if (kvm_vmx->pid_table)
4654 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4658 kvm_vmx->pid_table = (void *)page_address(pages);
4662 static int vmx_vcpu_precreate(struct kvm *kvm)
4664 return vmx_alloc_ipiv_pid_table(kvm);
4667 #define VMX_XSS_EXIT_BITMAP 0
4669 static void init_vmcs(struct vcpu_vmx *vmx)
4671 struct kvm *kvm = vmx->vcpu.kvm;
4672 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4675 nested_vmx_set_vmcs_shadowing_bitmap();
4677 if (cpu_has_vmx_msr_bitmap())
4678 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4680 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4683 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4685 exec_controls_set(vmx, vmx_exec_control(vmx));
4687 if (cpu_has_secondary_exec_ctrls())
4688 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4690 if (cpu_has_tertiary_exec_ctrls())
4691 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4693 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4694 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4695 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4696 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4697 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4699 vmcs_write16(GUEST_INTR_STATUS, 0);
4701 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4702 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4705 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4706 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4707 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4710 if (!kvm_pause_in_guest(kvm)) {
4711 vmcs_write32(PLE_GAP, ple_gap);
4712 vmx->ple_window = ple_window;
4713 vmx->ple_window_dirty = true;
4716 if (kvm_notify_vmexit_enabled(kvm))
4717 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4719 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4720 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4721 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4723 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4724 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4725 vmx_set_constant_host_state(vmx);
4726 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4727 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4729 if (cpu_has_vmx_vmfunc())
4730 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4732 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4733 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4734 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4735 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4736 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4738 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4739 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4741 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4743 /* 22.2.1, 20.8.1 */
4744 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4746 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4747 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4749 set_cr4_guest_host_mask(vmx);
4752 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4754 if (cpu_has_vmx_xsaves())
4755 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4758 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4759 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4762 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4764 if (vmx_pt_mode_is_host_guest()) {
4765 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4766 /* Bit[6~0] are forced to 1, writes are ignored. */
4767 vmx->pt_desc.guest.output_mask = 0x7F;
4768 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4771 vmcs_write32(GUEST_SYSENTER_CS, 0);
4772 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4773 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4774 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4776 if (cpu_has_vmx_tpr_shadow()) {
4777 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4778 if (cpu_need_tpr_shadow(&vmx->vcpu))
4779 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4780 __pa(vmx->vcpu.arch.apic->regs));
4781 vmcs_write32(TPR_THRESHOLD, 0);
4784 vmx_setup_uret_msrs(vmx);
4787 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4789 struct vcpu_vmx *vmx = to_vmx(vcpu);
4794 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4796 vcpu_setup_sgx_lepubkeyhash(vcpu);
4798 vmx->nested.posted_intr_nv = -1;
4799 vmx->nested.vmxon_ptr = INVALID_GPA;
4800 vmx->nested.current_vmptr = INVALID_GPA;
4801 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4803 vcpu->arch.microcode_version = 0x100000000ULL;
4804 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4807 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4808 * or POSTED_INTR_WAKEUP_VECTOR.
4810 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4811 vmx->pi_desc.sn = 1;
4814 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4816 struct vcpu_vmx *vmx = to_vmx(vcpu);
4819 __vmx_vcpu_reset(vcpu);
4821 vmx->rmode.vm86_active = 0;
4824 vmx->msr_ia32_umwait_control = 0;
4826 vmx->hv_deadline_tsc = -1;
4827 kvm_set_cr8(vcpu, 0);
4829 vmx_segment_cache_clear(vmx);
4830 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4832 seg_setup(VCPU_SREG_CS);
4833 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4834 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4836 seg_setup(VCPU_SREG_DS);
4837 seg_setup(VCPU_SREG_ES);
4838 seg_setup(VCPU_SREG_FS);
4839 seg_setup(VCPU_SREG_GS);
4840 seg_setup(VCPU_SREG_SS);
4842 vmcs_write16(GUEST_TR_SELECTOR, 0);
4843 vmcs_writel(GUEST_TR_BASE, 0);
4844 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4845 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4847 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4848 vmcs_writel(GUEST_LDTR_BASE, 0);
4849 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4850 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4852 vmcs_writel(GUEST_GDTR_BASE, 0);
4853 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4855 vmcs_writel(GUEST_IDTR_BASE, 0);
4856 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4858 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4859 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4860 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4861 if (kvm_mpx_supported())
4862 vmcs_write64(GUEST_BNDCFGS, 0);
4864 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4866 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4868 vpid_sync_context(vmx->vpid);
4870 vmx_update_fb_clear_dis(vcpu, vmx);
4873 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4875 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4878 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4881 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4882 vmx_enable_irq_window(vcpu);
4886 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4889 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4891 struct vcpu_vmx *vmx = to_vmx(vcpu);
4893 int irq = vcpu->arch.interrupt.nr;
4895 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4897 ++vcpu->stat.irq_injections;
4898 if (vmx->rmode.vm86_active) {
4900 if (vcpu->arch.interrupt.soft)
4901 inc_eip = vcpu->arch.event_exit_inst_len;
4902 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4905 intr = irq | INTR_INFO_VALID_MASK;
4906 if (vcpu->arch.interrupt.soft) {
4907 intr |= INTR_TYPE_SOFT_INTR;
4908 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4909 vmx->vcpu.arch.event_exit_inst_len);
4911 intr |= INTR_TYPE_EXT_INTR;
4912 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4914 vmx_clear_hlt(vcpu);
4917 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4919 struct vcpu_vmx *vmx = to_vmx(vcpu);
4923 * Tracking the NMI-blocked state in software is built upon
4924 * finding the next open IRQ window. This, in turn, depends on
4925 * well-behaving guests: They have to keep IRQs disabled at
4926 * least as long as the NMI handler runs. Otherwise we may
4927 * cause NMI nesting, maybe breaking the guest. But as this is
4928 * highly unlikely, we can live with the residual risk.
4930 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4931 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4934 ++vcpu->stat.nmi_injections;
4935 vmx->loaded_vmcs->nmi_known_unmasked = false;
4937 if (vmx->rmode.vm86_active) {
4938 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4942 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4943 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4945 vmx_clear_hlt(vcpu);
4948 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4950 struct vcpu_vmx *vmx = to_vmx(vcpu);
4954 return vmx->loaded_vmcs->soft_vnmi_blocked;
4955 if (vmx->loaded_vmcs->nmi_known_unmasked)
4957 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4958 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4962 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4964 struct vcpu_vmx *vmx = to_vmx(vcpu);
4967 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4968 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4969 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4972 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4974 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4975 GUEST_INTR_STATE_NMI);
4977 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4978 GUEST_INTR_STATE_NMI);
4982 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4984 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4987 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4990 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4991 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4992 GUEST_INTR_STATE_NMI));
4995 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4997 if (to_vmx(vcpu)->nested.nested_run_pending)
5000 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5001 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5004 return !vmx_nmi_blocked(vcpu);
5007 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5009 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5012 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5013 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5014 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5017 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5019 if (to_vmx(vcpu)->nested.nested_run_pending)
5023 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5024 * e.g. if the IRQ arrived asynchronously after checking nested events.
5026 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5029 return !vmx_interrupt_blocked(vcpu);
5032 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5036 if (enable_unrestricted_guest)
5039 mutex_lock(&kvm->slots_lock);
5040 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5042 mutex_unlock(&kvm->slots_lock);
5045 return PTR_ERR(ret);
5047 to_kvm_vmx(kvm)->tss_addr = addr;
5049 return init_rmode_tss(kvm, ret);
5052 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5054 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5058 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5063 * Update instruction length as we may reinject the exception
5064 * from user space while in guest debugging mode.
5066 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5067 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5068 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5072 return !(vcpu->guest_debug &
5073 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5087 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5088 int vec, u32 err_code)
5091 * Instruction with address size override prefix opcode 0x67
5092 * Cause the #SS fault with 0 error code in VM86 mode.
5094 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5095 if (kvm_emulate_instruction(vcpu, 0)) {
5096 if (vcpu->arch.halt_request) {
5097 vcpu->arch.halt_request = 0;
5098 return kvm_emulate_halt_noskip(vcpu);
5106 * Forward all other exceptions that are valid in real mode.
5107 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5108 * the required debugging infrastructure rework.
5110 kvm_queue_exception(vcpu, vec);
5114 static int handle_machine_check(struct kvm_vcpu *vcpu)
5116 /* handled by vmx_vcpu_run() */
5121 * If the host has split lock detection disabled, then #AC is
5122 * unconditionally injected into the guest, which is the pre split lock
5123 * detection behaviour.
5125 * If the host has split lock detection enabled then #AC is
5126 * only injected into the guest when:
5127 * - Guest CPL == 3 (user mode)
5128 * - Guest has #AC detection enabled in CR0
5129 * - Guest EFLAGS has AC bit set
5131 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5133 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5136 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5137 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5140 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5142 struct vcpu_vmx *vmx = to_vmx(vcpu);
5143 struct kvm_run *kvm_run = vcpu->run;
5144 u32 intr_info, ex_no, error_code;
5145 unsigned long cr2, dr6;
5148 vect_info = vmx->idt_vectoring_info;
5149 intr_info = vmx_get_intr_info(vcpu);
5152 * Machine checks are handled by handle_exception_irqoff(), or by
5153 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5154 * vmx_vcpu_enter_exit().
5156 if (is_machine_check(intr_info) || is_nmi(intr_info))
5160 * Queue the exception here instead of in handle_nm_fault_irqoff().
5161 * This ensures the nested_vmx check is not skipped so vmexit can
5162 * be reflected to L1 (when it intercepts #NM) before reaching this
5165 if (is_nm_fault(intr_info)) {
5166 kvm_queue_exception(vcpu, NM_VECTOR);
5170 if (is_invalid_opcode(intr_info))
5171 return handle_ud(vcpu);
5174 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5175 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5177 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5178 WARN_ON_ONCE(!enable_vmware_backdoor);
5181 * VMware backdoor emulation on #GP interception only handles
5182 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5183 * error code on #GP.
5186 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5189 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5193 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5194 * MMIO, it is better to report an internal error.
5195 * See the comments in vmx_handle_exit.
5197 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5198 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5199 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5200 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5201 vcpu->run->internal.ndata = 4;
5202 vcpu->run->internal.data[0] = vect_info;
5203 vcpu->run->internal.data[1] = intr_info;
5204 vcpu->run->internal.data[2] = error_code;
5205 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5209 if (is_page_fault(intr_info)) {
5210 cr2 = vmx_get_exit_qual(vcpu);
5211 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5213 * EPT will cause page fault only if we need to
5214 * detect illegal GPAs.
5216 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5217 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5220 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5223 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5225 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5226 return handle_rmode_exception(vcpu, ex_no, error_code);
5230 dr6 = vmx_get_exit_qual(vcpu);
5231 if (!(vcpu->guest_debug &
5232 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5234 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5235 * instruction. ICEBP generates a trap-like #DB, but
5236 * despite its interception control being tied to #DB,
5237 * is an instruction intercept, i.e. the VM-Exit occurs
5238 * on the ICEBP itself. Use the inner "skip" helper to
5239 * avoid single-step #DB and MTF updates, as ICEBP is
5240 * higher priority. Note, skipping ICEBP still clears
5241 * STI and MOVSS blocking.
5243 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5244 * if single-step is enabled in RFLAGS and STI or MOVSS
5245 * blocking is active, as the CPU doesn't set the bit
5246 * on VM-Exit due to #DB interception. VM-Entry has a
5247 * consistency check that a single-step #DB is pending
5248 * in this scenario as the previous instruction cannot
5249 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5250 * don't modify RFLAGS), therefore the one instruction
5251 * delay when activating single-step breakpoints must
5252 * have already expired. Note, the CPU sets/clears BS
5253 * as appropriate for all other VM-Exits types.
5255 if (is_icebp(intr_info))
5256 WARN_ON(!skip_emulated_instruction(vcpu));
5257 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5258 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5259 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5260 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5261 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5263 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5266 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5267 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5271 * Update instruction length as we may reinject #BP from
5272 * user space while in guest debugging mode. Reading it for
5273 * #DB as well causes no harm, it is not used in that case.
5275 vmx->vcpu.arch.event_exit_inst_len =
5276 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5277 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5278 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5279 kvm_run->debug.arch.exception = ex_no;
5282 if (vmx_guest_inject_ac(vcpu)) {
5283 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5288 * Handle split lock. Depending on detection mode this will
5289 * either warn and disable split lock detection for this
5290 * task or force SIGBUS on it.
5292 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5296 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5297 kvm_run->ex.exception = ex_no;
5298 kvm_run->ex.error_code = error_code;
5304 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5306 ++vcpu->stat.irq_exits;
5310 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5312 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5313 vcpu->mmio_needed = 0;
5317 static int handle_io(struct kvm_vcpu *vcpu)
5319 unsigned long exit_qualification;
5320 int size, in, string;
5323 exit_qualification = vmx_get_exit_qual(vcpu);
5324 string = (exit_qualification & 16) != 0;
5326 ++vcpu->stat.io_exits;
5329 return kvm_emulate_instruction(vcpu, 0);
5331 port = exit_qualification >> 16;
5332 size = (exit_qualification & 7) + 1;
5333 in = (exit_qualification & 8) != 0;
5335 return kvm_fast_pio(vcpu, size, port, in);
5339 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5342 * Patch in the VMCALL instruction:
5344 hypercall[0] = 0x0f;
5345 hypercall[1] = 0x01;
5346 hypercall[2] = 0xc1;
5349 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5350 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5352 if (is_guest_mode(vcpu)) {
5353 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5354 unsigned long orig_val = val;
5357 * We get here when L2 changed cr0 in a way that did not change
5358 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5359 * but did change L0 shadowed bits. So we first calculate the
5360 * effective cr0 value that L1 would like to write into the
5361 * hardware. It consists of the L2-owned bits from the new
5362 * value combined with the L1-owned bits from L1's guest_cr0.
5364 val = (val & ~vmcs12->cr0_guest_host_mask) |
5365 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5367 if (!nested_guest_cr0_valid(vcpu, val))
5370 if (kvm_set_cr0(vcpu, val))
5372 vmcs_writel(CR0_READ_SHADOW, orig_val);
5375 if (to_vmx(vcpu)->nested.vmxon &&
5376 !nested_host_cr0_valid(vcpu, val))
5379 return kvm_set_cr0(vcpu, val);
5383 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5385 if (is_guest_mode(vcpu)) {
5386 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5387 unsigned long orig_val = val;
5389 /* analogously to handle_set_cr0 */
5390 val = (val & ~vmcs12->cr4_guest_host_mask) |
5391 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5392 if (kvm_set_cr4(vcpu, val))
5394 vmcs_writel(CR4_READ_SHADOW, orig_val);
5397 return kvm_set_cr4(vcpu, val);
5400 static int handle_desc(struct kvm_vcpu *vcpu)
5403 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5404 * and other code needs to be updated if UMIP can be guest owned.
5406 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5408 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5409 return kvm_emulate_instruction(vcpu, 0);
5412 static int handle_cr(struct kvm_vcpu *vcpu)
5414 unsigned long exit_qualification, val;
5420 exit_qualification = vmx_get_exit_qual(vcpu);
5421 cr = exit_qualification & 15;
5422 reg = (exit_qualification >> 8) & 15;
5423 switch ((exit_qualification >> 4) & 3) {
5424 case 0: /* mov to cr */
5425 val = kvm_register_read(vcpu, reg);
5426 trace_kvm_cr_write(cr, val);
5429 err = handle_set_cr0(vcpu, val);
5430 return kvm_complete_insn_gp(vcpu, err);
5432 WARN_ON_ONCE(enable_unrestricted_guest);
5434 err = kvm_set_cr3(vcpu, val);
5435 return kvm_complete_insn_gp(vcpu, err);
5437 err = handle_set_cr4(vcpu, val);
5438 return kvm_complete_insn_gp(vcpu, err);
5440 u8 cr8_prev = kvm_get_cr8(vcpu);
5442 err = kvm_set_cr8(vcpu, cr8);
5443 ret = kvm_complete_insn_gp(vcpu, err);
5444 if (lapic_in_kernel(vcpu))
5446 if (cr8_prev <= cr8)
5449 * TODO: we might be squashing a
5450 * KVM_GUESTDBG_SINGLESTEP-triggered
5451 * KVM_EXIT_DEBUG here.
5453 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5459 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5461 case 1: /*mov from cr*/
5464 WARN_ON_ONCE(enable_unrestricted_guest);
5466 val = kvm_read_cr3(vcpu);
5467 kvm_register_write(vcpu, reg, val);
5468 trace_kvm_cr_read(cr, val);
5469 return kvm_skip_emulated_instruction(vcpu);
5471 val = kvm_get_cr8(vcpu);
5472 kvm_register_write(vcpu, reg, val);
5473 trace_kvm_cr_read(cr, val);
5474 return kvm_skip_emulated_instruction(vcpu);
5478 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5479 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5480 kvm_lmsw(vcpu, val);
5482 return kvm_skip_emulated_instruction(vcpu);
5486 vcpu->run->exit_reason = 0;
5487 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5488 (int)(exit_qualification >> 4) & 3, cr);
5492 static int handle_dr(struct kvm_vcpu *vcpu)
5494 unsigned long exit_qualification;
5498 exit_qualification = vmx_get_exit_qual(vcpu);
5499 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5501 /* First, if DR does not exist, trigger UD */
5502 if (!kvm_require_dr(vcpu, dr))
5505 if (vmx_get_cpl(vcpu) > 0)
5508 dr7 = vmcs_readl(GUEST_DR7);
5511 * As the vm-exit takes precedence over the debug trap, we
5512 * need to emulate the latter, either for the host or the
5513 * guest debugging itself.
5515 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5516 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5517 vcpu->run->debug.arch.dr7 = dr7;
5518 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5519 vcpu->run->debug.arch.exception = DB_VECTOR;
5520 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5523 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5528 if (vcpu->guest_debug == 0) {
5529 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5532 * No more DR vmexits; force a reload of the debug registers
5533 * and reenter on this instruction. The next vmexit will
5534 * retrieve the full state of the debug registers.
5536 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5540 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5541 if (exit_qualification & TYPE_MOV_FROM_DR) {
5544 kvm_get_dr(vcpu, dr, &val);
5545 kvm_register_write(vcpu, reg, val);
5548 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5552 return kvm_complete_insn_gp(vcpu, err);
5555 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5557 get_debugreg(vcpu->arch.db[0], 0);
5558 get_debugreg(vcpu->arch.db[1], 1);
5559 get_debugreg(vcpu->arch.db[2], 2);
5560 get_debugreg(vcpu->arch.db[3], 3);
5561 get_debugreg(vcpu->arch.dr6, 6);
5562 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5564 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5565 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5568 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5569 * a stale dr6 from the guest.
5571 set_debugreg(DR6_RESERVED, 6);
5574 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5576 vmcs_writel(GUEST_DR7, val);
5579 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5581 kvm_apic_update_ppr(vcpu);
5585 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5587 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5589 kvm_make_request(KVM_REQ_EVENT, vcpu);
5591 ++vcpu->stat.irq_window_exits;
5595 static int handle_invlpg(struct kvm_vcpu *vcpu)
5597 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5599 kvm_mmu_invlpg(vcpu, exit_qualification);
5600 return kvm_skip_emulated_instruction(vcpu);
5603 static int handle_apic_access(struct kvm_vcpu *vcpu)
5605 if (likely(fasteoi)) {
5606 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5607 int access_type, offset;
5609 access_type = exit_qualification & APIC_ACCESS_TYPE;
5610 offset = exit_qualification & APIC_ACCESS_OFFSET;
5612 * Sane guest uses MOV to write EOI, with written value
5613 * not cared. So make a short-circuit here by avoiding
5614 * heavy instruction emulation.
5616 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5617 (offset == APIC_EOI)) {
5618 kvm_lapic_set_eoi(vcpu);
5619 return kvm_skip_emulated_instruction(vcpu);
5622 return kvm_emulate_instruction(vcpu, 0);
5625 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5627 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5628 int vector = exit_qualification & 0xff;
5630 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5631 kvm_apic_set_eoi_accelerated(vcpu, vector);
5635 static int handle_apic_write(struct kvm_vcpu *vcpu)
5637 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5640 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5641 * hardware has done any necessary aliasing, offset adjustments, etc...
5642 * for the access. I.e. the correct value has already been written to
5643 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5644 * retrieve the register value and emulate the access.
5646 u32 offset = exit_qualification & 0xff0;
5648 kvm_apic_write_nodecode(vcpu, offset);
5652 static int handle_task_switch(struct kvm_vcpu *vcpu)
5654 struct vcpu_vmx *vmx = to_vmx(vcpu);
5655 unsigned long exit_qualification;
5656 bool has_error_code = false;
5659 int reason, type, idt_v, idt_index;
5661 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5662 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5663 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5665 exit_qualification = vmx_get_exit_qual(vcpu);
5667 reason = (u32)exit_qualification >> 30;
5668 if (reason == TASK_SWITCH_GATE && idt_v) {
5670 case INTR_TYPE_NMI_INTR:
5671 vcpu->arch.nmi_injected = false;
5672 vmx_set_nmi_mask(vcpu, true);
5674 case INTR_TYPE_EXT_INTR:
5675 case INTR_TYPE_SOFT_INTR:
5676 kvm_clear_interrupt_queue(vcpu);
5678 case INTR_TYPE_HARD_EXCEPTION:
5679 if (vmx->idt_vectoring_info &
5680 VECTORING_INFO_DELIVER_CODE_MASK) {
5681 has_error_code = true;
5683 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5686 case INTR_TYPE_SOFT_EXCEPTION:
5687 kvm_clear_exception_queue(vcpu);
5693 tss_selector = exit_qualification;
5695 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5696 type != INTR_TYPE_EXT_INTR &&
5697 type != INTR_TYPE_NMI_INTR))
5698 WARN_ON(!skip_emulated_instruction(vcpu));
5701 * TODO: What about debug traps on tss switch?
5702 * Are we supposed to inject them and update dr6?
5704 return kvm_task_switch(vcpu, tss_selector,
5705 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5706 reason, has_error_code, error_code);
5709 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5711 unsigned long exit_qualification;
5715 exit_qualification = vmx_get_exit_qual(vcpu);
5718 * EPT violation happened while executing iret from NMI,
5719 * "blocked by NMI" bit has to be set before next VM entry.
5720 * There are errata that may cause this bit to not be set:
5723 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5725 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5726 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5728 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5729 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5731 /* Is it a read fault? */
5732 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5733 ? PFERR_USER_MASK : 0;
5734 /* Is it a write fault? */
5735 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5736 ? PFERR_WRITE_MASK : 0;
5737 /* Is it a fetch fault? */
5738 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5739 ? PFERR_FETCH_MASK : 0;
5740 /* ept page table entry is present? */
5741 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5742 ? PFERR_PRESENT_MASK : 0;
5744 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5745 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5747 vcpu->arch.exit_qualification = exit_qualification;
5750 * Check that the GPA doesn't exceed physical memory limits, as that is
5751 * a guest page fault. We have to emulate the instruction here, because
5752 * if the illegal address is that of a paging structure, then
5753 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5754 * would also use advanced VM-exit information for EPT violations to
5755 * reconstruct the page fault error code.
5757 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5758 return kvm_emulate_instruction(vcpu, 0);
5760 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5763 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5767 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5771 * A nested guest cannot optimize MMIO vmexits, because we have an
5772 * nGPA here instead of the required GPA.
5774 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5775 if (!is_guest_mode(vcpu) &&
5776 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5777 trace_kvm_fast_mmio(gpa);
5778 return kvm_skip_emulated_instruction(vcpu);
5781 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5784 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5786 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5789 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5790 ++vcpu->stat.nmi_window_exits;
5791 kvm_make_request(KVM_REQ_EVENT, vcpu);
5796 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5798 struct vcpu_vmx *vmx = to_vmx(vcpu);
5800 return vmx->emulation_required && !vmx->rmode.vm86_active &&
5801 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5804 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5806 struct vcpu_vmx *vmx = to_vmx(vcpu);
5807 bool intr_window_requested;
5808 unsigned count = 130;
5810 intr_window_requested = exec_controls_get(vmx) &
5811 CPU_BASED_INTR_WINDOW_EXITING;
5813 while (vmx->emulation_required && count-- != 0) {
5814 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5815 return handle_interrupt_window(&vmx->vcpu);
5817 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5820 if (!kvm_emulate_instruction(vcpu, 0))
5823 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5824 kvm_prepare_emulation_failure_exit(vcpu);
5828 if (vcpu->arch.halt_request) {
5829 vcpu->arch.halt_request = 0;
5830 return kvm_emulate_halt_noskip(vcpu);
5834 * Note, return 1 and not 0, vcpu_run() will invoke
5835 * xfer_to_guest_mode() which will create a proper return
5838 if (__xfer_to_guest_mode_work_pending())
5845 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5847 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5848 kvm_prepare_emulation_failure_exit(vcpu);
5855 static void grow_ple_window(struct kvm_vcpu *vcpu)
5857 struct vcpu_vmx *vmx = to_vmx(vcpu);
5858 unsigned int old = vmx->ple_window;
5860 vmx->ple_window = __grow_ple_window(old, ple_window,
5864 if (vmx->ple_window != old) {
5865 vmx->ple_window_dirty = true;
5866 trace_kvm_ple_window_update(vcpu->vcpu_id,
5867 vmx->ple_window, old);
5871 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5873 struct vcpu_vmx *vmx = to_vmx(vcpu);
5874 unsigned int old = vmx->ple_window;
5876 vmx->ple_window = __shrink_ple_window(old, ple_window,
5880 if (vmx->ple_window != old) {
5881 vmx->ple_window_dirty = true;
5882 trace_kvm_ple_window_update(vcpu->vcpu_id,
5883 vmx->ple_window, old);
5888 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5889 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5891 static int handle_pause(struct kvm_vcpu *vcpu)
5893 if (!kvm_pause_in_guest(vcpu->kvm))
5894 grow_ple_window(vcpu);
5897 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5898 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5899 * never set PAUSE_EXITING and just set PLE if supported,
5900 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5902 kvm_vcpu_on_spin(vcpu, true);
5903 return kvm_skip_emulated_instruction(vcpu);
5906 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5911 static int handle_invpcid(struct kvm_vcpu *vcpu)
5913 u32 vmx_instruction_info;
5922 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5923 kvm_queue_exception(vcpu, UD_VECTOR);
5927 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5928 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5929 type = kvm_register_read(vcpu, gpr_index);
5931 /* According to the Intel instruction reference, the memory operand
5932 * is read even if it isn't needed (e.g., for type==all)
5934 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5935 vmx_instruction_info, false,
5936 sizeof(operand), &gva))
5939 return kvm_handle_invpcid(vcpu, type, gva);
5942 static int handle_pml_full(struct kvm_vcpu *vcpu)
5944 unsigned long exit_qualification;
5946 trace_kvm_pml_full(vcpu->vcpu_id);
5948 exit_qualification = vmx_get_exit_qual(vcpu);
5951 * PML buffer FULL happened while executing iret from NMI,
5952 * "blocked by NMI" bit has to be set before next VM entry.
5954 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5956 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5957 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5958 GUEST_INTR_STATE_NMI);
5961 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5962 * here.., and there's no userspace involvement needed for PML.
5967 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5969 struct vcpu_vmx *vmx = to_vmx(vcpu);
5971 if (!vmx->req_immediate_exit &&
5972 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5973 kvm_lapic_expired_hv_timer(vcpu);
5974 return EXIT_FASTPATH_REENTER_GUEST;
5977 return EXIT_FASTPATH_NONE;
5980 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5982 handle_fastpath_preemption_timer(vcpu);
5987 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5988 * are overwritten by nested_vmx_setup() when nested=1.
5990 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5992 kvm_queue_exception(vcpu, UD_VECTOR);
5996 #ifndef CONFIG_X86_SGX_KVM
5997 static int handle_encls(struct kvm_vcpu *vcpu)
6000 * SGX virtualization is disabled. There is no software enable bit for
6001 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6002 * the guest from executing ENCLS (when SGX is supported by hardware).
6004 kvm_queue_exception(vcpu, UD_VECTOR);
6007 #endif /* CONFIG_X86_SGX_KVM */
6009 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6012 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6013 * VM-Exits. Unconditionally set the flag here and leave the handling to
6014 * vmx_handle_exit().
6016 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6020 static int handle_notify(struct kvm_vcpu *vcpu)
6022 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6023 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6025 ++vcpu->stat.notify_window_exits;
6028 * Notify VM exit happened while executing iret from NMI,
6029 * "blocked by NMI" bit has to be set before next VM entry.
6031 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6032 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6033 GUEST_INTR_STATE_NMI);
6035 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6037 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6038 vcpu->run->notify.flags = context_invalid ?
6039 KVM_NOTIFY_CONTEXT_INVALID : 0;
6047 * The exit handlers return 1 if the exit was handled fully and guest execution
6048 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6049 * to be done to userspace and return 0.
6051 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6052 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6053 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6054 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6055 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6056 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6057 [EXIT_REASON_CR_ACCESS] = handle_cr,
6058 [EXIT_REASON_DR_ACCESS] = handle_dr,
6059 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6060 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6061 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6062 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6063 [EXIT_REASON_HLT] = kvm_emulate_halt,
6064 [EXIT_REASON_INVD] = kvm_emulate_invd,
6065 [EXIT_REASON_INVLPG] = handle_invlpg,
6066 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6067 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6068 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6069 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6070 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6071 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6072 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6073 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6074 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6075 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6076 [EXIT_REASON_VMON] = handle_vmx_instruction,
6077 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6078 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6079 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6080 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6081 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6082 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6083 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6084 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6085 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6086 [EXIT_REASON_LDTR_TR] = handle_desc,
6087 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6088 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6089 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6090 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6091 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6092 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6093 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6094 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6095 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6096 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6097 [EXIT_REASON_PML_FULL] = handle_pml_full,
6098 [EXIT_REASON_INVPCID] = handle_invpcid,
6099 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6100 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6101 [EXIT_REASON_ENCLS] = handle_encls,
6102 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6103 [EXIT_REASON_NOTIFY] = handle_notify,
6106 static const int kvm_vmx_max_exit_handlers =
6107 ARRAY_SIZE(kvm_vmx_exit_handlers);
6109 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6110 u64 *info1, u64 *info2,
6111 u32 *intr_info, u32 *error_code)
6113 struct vcpu_vmx *vmx = to_vmx(vcpu);
6115 *reason = vmx->exit_reason.full;
6116 *info1 = vmx_get_exit_qual(vcpu);
6117 if (!(vmx->exit_reason.failed_vmentry)) {
6118 *info2 = vmx->idt_vectoring_info;
6119 *intr_info = vmx_get_intr_info(vcpu);
6120 if (is_exception_with_error_code(*intr_info))
6121 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6131 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6134 __free_page(vmx->pml_pg);
6139 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6141 struct vcpu_vmx *vmx = to_vmx(vcpu);
6145 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6147 /* Do nothing if PML buffer is empty */
6148 if (pml_idx == (PML_ENTITY_NUM - 1))
6151 /* PML index always points to next available PML buffer entity */
6152 if (pml_idx >= PML_ENTITY_NUM)
6157 pml_buf = page_address(vmx->pml_pg);
6158 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6161 gpa = pml_buf[pml_idx];
6162 WARN_ON(gpa & (PAGE_SIZE - 1));
6163 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6166 /* reset PML index */
6167 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6170 static void vmx_dump_sel(char *name, uint32_t sel)
6172 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6173 name, vmcs_read16(sel),
6174 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6175 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6176 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6179 static void vmx_dump_dtsel(char *name, uint32_t limit)
6181 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6182 name, vmcs_read32(limit),
6183 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6186 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6189 struct vmx_msr_entry *e;
6191 pr_err("MSR %s:\n", name);
6192 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6193 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6196 void dump_vmcs(struct kvm_vcpu *vcpu)
6198 struct vcpu_vmx *vmx = to_vmx(vcpu);
6199 u32 vmentry_ctl, vmexit_ctl;
6200 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6201 u64 tertiary_exec_control;
6205 if (!dump_invalid_vmcs) {
6206 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6210 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6211 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6212 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6213 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6214 cr4 = vmcs_readl(GUEST_CR4);
6216 if (cpu_has_secondary_exec_ctrls())
6217 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6219 secondary_exec_control = 0;
6221 if (cpu_has_tertiary_exec_ctrls())
6222 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6224 tertiary_exec_control = 0;
6226 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6227 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6228 pr_err("*** Guest State ***\n");
6229 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6230 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6231 vmcs_readl(CR0_GUEST_HOST_MASK));
6232 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6233 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6234 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6235 if (cpu_has_vmx_ept()) {
6236 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6237 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6238 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6239 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6241 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6242 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6243 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6244 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6245 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6246 vmcs_readl(GUEST_SYSENTER_ESP),
6247 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6248 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6249 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6250 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6251 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6252 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6253 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6254 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6255 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6256 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6257 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6258 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6259 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6260 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6261 else if (efer_slot >= 0)
6262 pr_err("EFER= 0x%016llx (autoload)\n",
6263 vmx->msr_autoload.guest.val[efer_slot].value);
6264 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6265 pr_err("EFER= 0x%016llx (effective)\n",
6266 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6268 pr_err("EFER= 0x%016llx (effective)\n",
6269 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6270 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6271 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6272 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6273 vmcs_read64(GUEST_IA32_DEBUGCTL),
6274 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6275 if (cpu_has_load_perf_global_ctrl() &&
6276 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6277 pr_err("PerfGlobCtl = 0x%016llx\n",
6278 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6279 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6280 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6281 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6282 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6283 vmcs_read32(GUEST_ACTIVITY_STATE));
6284 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6285 pr_err("InterruptStatus = %04x\n",
6286 vmcs_read16(GUEST_INTR_STATUS));
6287 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6288 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6289 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6290 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6292 pr_err("*** Host State ***\n");
6293 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6294 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6295 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6296 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6297 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6298 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6299 vmcs_read16(HOST_TR_SELECTOR));
6300 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6301 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6302 vmcs_readl(HOST_TR_BASE));
6303 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6304 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6305 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6306 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6307 vmcs_readl(HOST_CR4));
6308 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6309 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6310 vmcs_read32(HOST_IA32_SYSENTER_CS),
6311 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6312 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6313 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6314 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6315 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6316 if (cpu_has_load_perf_global_ctrl() &&
6317 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6318 pr_err("PerfGlobCtl = 0x%016llx\n",
6319 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6320 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6321 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6323 pr_err("*** Control State ***\n");
6324 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6325 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6326 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6327 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6328 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6329 vmcs_read32(EXCEPTION_BITMAP),
6330 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6331 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6332 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6333 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6334 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6335 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6336 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6337 vmcs_read32(VM_EXIT_INTR_INFO),
6338 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6339 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6340 pr_err(" reason=%08x qualification=%016lx\n",
6341 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6342 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6343 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6344 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6345 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6346 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6347 pr_err("TSC Multiplier = 0x%016llx\n",
6348 vmcs_read64(TSC_MULTIPLIER));
6349 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6350 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6351 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6352 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6354 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6355 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6356 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6357 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6359 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6360 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6361 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6362 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6363 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6364 pr_err("PLE Gap=%08x Window=%08x\n",
6365 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6366 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6367 pr_err("Virtual processor ID = 0x%04x\n",
6368 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6372 * The guest has exited. See if we can fix it or if we need userspace
6375 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6377 struct vcpu_vmx *vmx = to_vmx(vcpu);
6378 union vmx_exit_reason exit_reason = vmx->exit_reason;
6379 u32 vectoring_info = vmx->idt_vectoring_info;
6380 u16 exit_handler_index;
6383 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6384 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6385 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6386 * mode as if vcpus is in root mode, the PML buffer must has been
6387 * flushed already. Note, PML is never enabled in hardware while
6390 if (enable_pml && !is_guest_mode(vcpu))
6391 vmx_flush_pml_buffer(vcpu);
6394 * KVM should never reach this point with a pending nested VM-Enter.
6395 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6396 * invalid guest state should never happen as that means KVM knowingly
6397 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6399 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6402 if (is_guest_mode(vcpu)) {
6404 * PML is never enabled when running L2, bail immediately if a
6405 * PML full exit occurs as something is horribly wrong.
6407 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6408 goto unexpected_vmexit;
6411 * The host physical addresses of some pages of guest memory
6412 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6413 * Page). The CPU may write to these pages via their host
6414 * physical address while L2 is running, bypassing any
6415 * address-translation-based dirty tracking (e.g. EPT write
6418 * Mark them dirty on every exit from L2 to prevent them from
6419 * getting out of sync with dirty tracking.
6421 nested_mark_vmcs12_pages_dirty(vcpu);
6424 * Synthesize a triple fault if L2 state is invalid. In normal
6425 * operation, nested VM-Enter rejects any attempt to enter L2
6426 * with invalid state. However, those checks are skipped if
6427 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6428 * L2 state is invalid, it means either L1 modified SMRAM state
6429 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6430 * doing so is architecturally allowed in the RSM case, and is
6431 * the least awful solution for the userspace case without
6432 * risking false positives.
6434 if (vmx->emulation_required) {
6435 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6439 if (nested_vmx_reflect_vmexit(vcpu))
6443 /* If guest state is invalid, start emulating. L2 is handled above. */
6444 if (vmx->emulation_required)
6445 return handle_invalid_guest_state(vcpu);
6447 if (exit_reason.failed_vmentry) {
6449 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6450 vcpu->run->fail_entry.hardware_entry_failure_reason
6452 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6456 if (unlikely(vmx->fail)) {
6458 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6459 vcpu->run->fail_entry.hardware_entry_failure_reason
6460 = vmcs_read32(VM_INSTRUCTION_ERROR);
6461 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6467 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6468 * delivery event since it indicates guest is accessing MMIO.
6469 * The vm-exit can be triggered again after return to guest that
6470 * will cause infinite loop.
6472 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6473 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6474 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6475 exit_reason.basic != EXIT_REASON_PML_FULL &&
6476 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6477 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6478 exit_reason.basic != EXIT_REASON_NOTIFY)) {
6481 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6482 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6483 vcpu->run->internal.data[0] = vectoring_info;
6484 vcpu->run->internal.data[1] = exit_reason.full;
6485 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6486 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6487 vcpu->run->internal.data[ndata++] =
6488 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6490 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6491 vcpu->run->internal.ndata = ndata;
6495 if (unlikely(!enable_vnmi &&
6496 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6497 if (!vmx_interrupt_blocked(vcpu)) {
6498 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6499 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6500 vcpu->arch.nmi_pending) {
6502 * This CPU don't support us in finding the end of an
6503 * NMI-blocked window if the guest runs with IRQs
6504 * disabled. So we pull the trigger after 1 s of
6505 * futile waiting, but inform the user about this.
6507 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6508 "state on VCPU %d after 1 s timeout\n",
6509 __func__, vcpu->vcpu_id);
6510 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6514 if (exit_fastpath != EXIT_FASTPATH_NONE)
6517 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6518 goto unexpected_vmexit;
6519 #ifdef CONFIG_RETPOLINE
6520 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6521 return kvm_emulate_wrmsr(vcpu);
6522 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6523 return handle_preemption_timer(vcpu);
6524 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6525 return handle_interrupt_window(vcpu);
6526 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6527 return handle_external_interrupt(vcpu);
6528 else if (exit_reason.basic == EXIT_REASON_HLT)
6529 return kvm_emulate_halt(vcpu);
6530 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6531 return handle_ept_misconfig(vcpu);
6534 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6535 kvm_vmx_max_exit_handlers);
6536 if (!kvm_vmx_exit_handlers[exit_handler_index])
6537 goto unexpected_vmexit;
6539 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6542 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6545 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6546 vcpu->run->internal.suberror =
6547 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6548 vcpu->run->internal.ndata = 2;
6549 vcpu->run->internal.data[0] = exit_reason.full;
6550 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6554 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6556 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6559 * Exit to user space when bus lock detected to inform that there is
6560 * a bus lock in guest.
6562 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6564 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6566 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6573 * Software based L1D cache flush which is used when microcode providing
6574 * the cache control MSR is not loaded.
6576 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6577 * flush it is required to read in 64 KiB because the replacement algorithm
6578 * is not exactly LRU. This could be sized at runtime via topology
6579 * information but as all relevant affected CPUs have 32KiB L1D cache size
6580 * there is no point in doing so.
6582 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6584 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6587 * This code is only executed when the flush mode is 'cond' or
6590 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6594 * Clear the per-vcpu flush bit, it gets set again
6595 * either from vcpu_run() or from one of the unsafe
6598 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6599 vcpu->arch.l1tf_flush_l1d = false;
6602 * Clear the per-cpu flush bit, it gets set again from
6603 * the interrupt handlers.
6605 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6606 kvm_clear_cpu_l1tf_flush_l1d();
6612 vcpu->stat.l1d_flush++;
6614 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6615 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6620 /* First ensure the pages are in the TLB */
6621 "xorl %%eax, %%eax\n"
6622 ".Lpopulate_tlb:\n\t"
6623 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6624 "addl $4096, %%eax\n\t"
6625 "cmpl %%eax, %[size]\n\t"
6626 "jne .Lpopulate_tlb\n\t"
6627 "xorl %%eax, %%eax\n\t"
6629 /* Now fill the cache */
6630 "xorl %%eax, %%eax\n"
6632 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6633 "addl $64, %%eax\n\t"
6634 "cmpl %%eax, %[size]\n\t"
6635 "jne .Lfill_cache\n\t"
6637 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6639 : "eax", "ebx", "ecx", "edx");
6642 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6644 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6647 if (is_guest_mode(vcpu) &&
6648 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6651 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6652 if (is_guest_mode(vcpu))
6653 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6655 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6658 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6660 struct vcpu_vmx *vmx = to_vmx(vcpu);
6661 u32 sec_exec_control;
6663 if (!lapic_in_kernel(vcpu))
6666 if (!flexpriority_enabled &&
6667 !cpu_has_vmx_virtualize_x2apic_mode())
6670 /* Postpone execution until vmcs01 is the current VMCS. */
6671 if (is_guest_mode(vcpu)) {
6672 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6676 sec_exec_control = secondary_exec_controls_get(vmx);
6677 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6678 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6680 switch (kvm_get_apic_mode(vcpu)) {
6681 case LAPIC_MODE_INVALID:
6682 WARN_ONCE(true, "Invalid local APIC state");
6684 case LAPIC_MODE_DISABLED:
6686 case LAPIC_MODE_XAPIC:
6687 if (flexpriority_enabled) {
6689 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6690 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6693 * Flush the TLB, reloading the APIC access page will
6694 * only do so if its physical address has changed, but
6695 * the guest may have inserted a non-APIC mapping into
6696 * the TLB while the APIC access page was disabled.
6698 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6701 case LAPIC_MODE_X2APIC:
6702 if (cpu_has_vmx_virtualize_x2apic_mode())
6704 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6707 secondary_exec_controls_set(vmx, sec_exec_control);
6709 vmx_update_msr_bitmap_x2apic(vcpu);
6712 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6714 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6715 struct kvm *kvm = vcpu->kvm;
6716 struct kvm_memslots *slots = kvm_memslots(kvm);
6717 struct kvm_memory_slot *slot;
6718 unsigned long mmu_seq;
6721 /* Defer reload until vmcs01 is the current VMCS. */
6722 if (is_guest_mode(vcpu)) {
6723 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6727 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6728 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6732 * Grab the memslot so that the hva lookup for the mmu_notifier retry
6733 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely
6734 * on the pfn lookup's validation of the memslot to ensure a valid hva
6735 * is used for the retry check.
6737 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6738 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6742 * Ensure that the mmu_notifier sequence count is read before KVM
6743 * retrieves the pfn from the primary MMU. Note, the memslot is
6744 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6745 * in kvm_mmu_invalidate_end().
6747 mmu_seq = kvm->mmu_invalidate_seq;
6751 * No need to retry if the memslot does not exist or is invalid. KVM
6752 * controls the APIC-access page memslot, and only deletes the memslot
6753 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6755 pfn = gfn_to_pfn_memslot(slot, gfn);
6756 if (is_error_noslot_pfn(pfn))
6759 read_lock(&vcpu->kvm->mmu_lock);
6760 if (mmu_invalidate_retry_hva(kvm, mmu_seq,
6761 gfn_to_hva_memslot(slot, gfn))) {
6762 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6763 read_unlock(&vcpu->kvm->mmu_lock);
6767 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6768 read_unlock(&vcpu->kvm->mmu_lock);
6770 vmx_flush_tlb_current(vcpu);
6774 * Do not pin apic access page in memory, the MMU notifier
6775 * will call us again if it is migrated or swapped out.
6777 kvm_release_pfn_clean(pfn);
6780 static void vmx_hwapic_isr_update(int max_isr)
6788 status = vmcs_read16(GUEST_INTR_STATUS);
6790 if (max_isr != old) {
6792 status |= max_isr << 8;
6793 vmcs_write16(GUEST_INTR_STATUS, status);
6797 static void vmx_set_rvi(int vector)
6805 status = vmcs_read16(GUEST_INTR_STATUS);
6806 old = (u8)status & 0xff;
6807 if ((u8)vector != old) {
6809 status |= (u8)vector;
6810 vmcs_write16(GUEST_INTR_STATUS, status);
6814 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6817 * When running L2, updating RVI is only relevant when
6818 * vmcs12 virtual-interrupt-delivery enabled.
6819 * However, it can be enabled only when L1 also
6820 * intercepts external-interrupts and in that case
6821 * we should not update vmcs02 RVI but instead intercept
6822 * interrupt. Therefore, do nothing when running L2.
6824 if (!is_guest_mode(vcpu))
6825 vmx_set_rvi(max_irr);
6828 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6830 struct vcpu_vmx *vmx = to_vmx(vcpu);
6832 bool got_posted_interrupt;
6834 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6837 if (pi_test_on(&vmx->pi_desc)) {
6838 pi_clear_on(&vmx->pi_desc);
6840 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6841 * But on x86 this is just a compiler barrier anyway.
6843 smp_mb__after_atomic();
6844 got_posted_interrupt =
6845 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6847 max_irr = kvm_lapic_find_highest_irr(vcpu);
6848 got_posted_interrupt = false;
6852 * Newly recognized interrupts are injected via either virtual interrupt
6853 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6854 * disabled in two cases:
6856 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6857 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6858 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6859 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6860 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6862 * 2) If APICv is disabled for this vCPU, assigned devices may still
6863 * attempt to post interrupts. The posted interrupt vector will cause
6864 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6866 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6867 vmx_set_rvi(max_irr);
6868 else if (got_posted_interrupt)
6869 kvm_make_request(KVM_REQ_EVENT, vcpu);
6874 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6876 if (!kvm_vcpu_apicv_active(vcpu))
6879 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6880 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6881 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6882 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6885 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6887 struct vcpu_vmx *vmx = to_vmx(vcpu);
6889 pi_clear_on(&vmx->pi_desc);
6890 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6893 void vmx_do_interrupt_irqoff(unsigned long entry);
6894 void vmx_do_nmi_irqoff(void);
6896 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6899 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6900 * MSR value is not clobbered by the host activity before the guest
6901 * has chance to consume it.
6903 * Do not blindly read xfd_err here, since this exception might
6904 * be caused by L1 interception on a platform which doesn't
6905 * support xfd at all.
6907 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6908 * only when xfd contains a non-zero value.
6910 * Queuing exception is done in vmx_handle_exit. See comment there.
6912 if (vcpu->arch.guest_fpu.fpstate->xfd)
6913 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6916 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6918 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6920 /* if exit due to PF check for async PF */
6921 if (is_page_fault(intr_info))
6922 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6923 /* if exit due to NM, handle before interrupts are enabled */
6924 else if (is_nm_fault(intr_info))
6925 handle_nm_fault_irqoff(&vmx->vcpu);
6926 /* Handle machine checks before interrupts are enabled */
6927 else if (is_machine_check(intr_info))
6928 kvm_machine_check();
6931 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6933 u32 intr_info = vmx_get_intr_info(vcpu);
6934 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6935 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6937 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6938 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6941 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6942 vmx_do_interrupt_irqoff(gate_offset(desc));
6943 kvm_after_interrupt(vcpu);
6945 vcpu->arch.at_instruction_boundary = true;
6948 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6950 struct vcpu_vmx *vmx = to_vmx(vcpu);
6952 if (vmx->emulation_required)
6955 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6956 handle_external_interrupt_irqoff(vcpu);
6957 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6958 handle_exception_irqoff(vmx);
6962 * The kvm parameter can be NULL (module initialization, or invocation before
6963 * VM creation). Be sure to check the kvm parameter before using it.
6965 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6968 case MSR_IA32_SMBASE:
6969 if (!IS_ENABLED(CONFIG_KVM_SMM))
6972 * We cannot do SMM unless we can run the guest in big
6975 return enable_unrestricted_guest || emulate_invalid_guest_state;
6976 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
6978 case MSR_AMD64_VIRT_SPEC_CTRL:
6979 case MSR_AMD64_TSC_RATIO:
6980 /* This is AMD only. */
6987 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6992 bool idtv_info_valid;
6994 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6997 if (vmx->loaded_vmcs->nmi_known_unmasked)
7000 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7001 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7002 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7004 * SDM 3: 27.7.1.2 (September 2008)
7005 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7006 * a guest IRET fault.
7007 * SDM 3: 23.2.2 (September 2008)
7008 * Bit 12 is undefined in any of the following cases:
7009 * If the VM exit sets the valid bit in the IDT-vectoring
7010 * information field.
7011 * If the VM exit is due to a double fault.
7013 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7014 vector != DF_VECTOR && !idtv_info_valid)
7015 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7016 GUEST_INTR_STATE_NMI);
7018 vmx->loaded_vmcs->nmi_known_unmasked =
7019 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7020 & GUEST_INTR_STATE_NMI);
7021 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7022 vmx->loaded_vmcs->vnmi_blocked_time +=
7023 ktime_to_ns(ktime_sub(ktime_get(),
7024 vmx->loaded_vmcs->entry_time));
7027 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7028 u32 idt_vectoring_info,
7029 int instr_len_field,
7030 int error_code_field)
7034 bool idtv_info_valid;
7036 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7038 vcpu->arch.nmi_injected = false;
7039 kvm_clear_exception_queue(vcpu);
7040 kvm_clear_interrupt_queue(vcpu);
7042 if (!idtv_info_valid)
7045 kvm_make_request(KVM_REQ_EVENT, vcpu);
7047 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7048 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7051 case INTR_TYPE_NMI_INTR:
7052 vcpu->arch.nmi_injected = true;
7054 * SDM 3: 27.7.1.2 (September 2008)
7055 * Clear bit "block by NMI" before VM entry if a NMI
7058 vmx_set_nmi_mask(vcpu, false);
7060 case INTR_TYPE_SOFT_EXCEPTION:
7061 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7063 case INTR_TYPE_HARD_EXCEPTION:
7064 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7065 u32 err = vmcs_read32(error_code_field);
7066 kvm_requeue_exception_e(vcpu, vector, err);
7068 kvm_requeue_exception(vcpu, vector);
7070 case INTR_TYPE_SOFT_INTR:
7071 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7073 case INTR_TYPE_EXT_INTR:
7074 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7081 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7083 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7084 VM_EXIT_INSTRUCTION_LEN,
7085 IDT_VECTORING_ERROR_CODE);
7088 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7090 __vmx_complete_interrupts(vcpu,
7091 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7092 VM_ENTRY_INSTRUCTION_LEN,
7093 VM_ENTRY_EXCEPTION_ERROR_CODE);
7095 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7098 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7101 struct perf_guest_switch_msr *msrs;
7102 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7104 pmu->host_cross_mapped_mask = 0;
7105 if (pmu->pebs_enable & pmu->global_ctrl)
7106 intel_pmu_cross_mapped_check(pmu);
7108 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7109 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7113 for (i = 0; i < nr_msrs; i++)
7114 if (msrs[i].host == msrs[i].guest)
7115 clear_atomic_switch_msr(vmx, msrs[i].msr);
7117 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7118 msrs[i].host, false);
7121 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7123 struct vcpu_vmx *vmx = to_vmx(vcpu);
7127 if (vmx->req_immediate_exit) {
7128 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7129 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7130 } else if (vmx->hv_deadline_tsc != -1) {
7132 if (vmx->hv_deadline_tsc > tscl)
7133 /* set_hv_timer ensures the delta fits in 32-bits */
7134 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7135 cpu_preemption_timer_multi);
7139 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7140 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7141 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7142 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7143 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7147 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7149 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7150 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7151 vmcs_writel(HOST_RSP, host_rsp);
7155 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7158 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7160 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7163 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7164 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7167 * If the guest/host SPEC_CTRL values differ, restore the host value.
7169 * For legacy IBRS, the IBRS bit always needs to be written after
7170 * transitioning from a less privileged predictor mode, regardless of
7171 * whether the guest/host values differ.
7173 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7174 vmx->spec_ctrl != hostval)
7175 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7180 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7182 switch (to_vmx(vcpu)->exit_reason.basic) {
7183 case EXIT_REASON_MSR_WRITE:
7184 return handle_fastpath_set_msr_irqoff(vcpu);
7185 case EXIT_REASON_PREEMPTION_TIMER:
7186 return handle_fastpath_preemption_timer(vcpu);
7188 return EXIT_FASTPATH_NONE;
7192 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7195 struct vcpu_vmx *vmx = to_vmx(vcpu);
7197 guest_state_enter_irqoff();
7199 /* L1D Flush includes CPU buffer clear to mitigate MDS */
7200 if (static_branch_unlikely(&vmx_l1d_should_flush))
7201 vmx_l1d_flush(vcpu);
7202 else if (static_branch_unlikely(&mds_user_clear))
7203 mds_clear_cpu_buffers();
7204 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7205 kvm_arch_has_assigned_device(vcpu->kvm))
7206 mds_clear_cpu_buffers();
7208 vmx_disable_fb_clear(vmx);
7210 if (vcpu->arch.cr2 != native_read_cr2())
7211 native_write_cr2(vcpu->arch.cr2);
7213 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7216 vcpu->arch.cr2 = native_read_cr2();
7218 vmx_enable_fb_clear(vmx);
7220 if (unlikely(vmx->fail))
7221 vmx->exit_reason.full = 0xdead;
7223 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7225 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7226 is_nmi(vmx_get_intr_info(vcpu))) {
7227 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7228 vmx_do_nmi_irqoff();
7229 kvm_after_interrupt(vcpu);
7232 guest_state_exit_irqoff();
7235 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7237 struct vcpu_vmx *vmx = to_vmx(vcpu);
7238 unsigned long cr3, cr4;
7240 /* Record the guest's net vcpu time for enforced NMI injections. */
7241 if (unlikely(!enable_vnmi &&
7242 vmx->loaded_vmcs->soft_vnmi_blocked))
7243 vmx->loaded_vmcs->entry_time = ktime_get();
7246 * Don't enter VMX if guest state is invalid, let the exit handler
7247 * start emulation until we arrive back to a valid state. Synthesize a
7248 * consistency check VM-Exit due to invalid guest state and bail.
7250 if (unlikely(vmx->emulation_required)) {
7253 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7254 vmx->exit_reason.failed_vmentry = 1;
7255 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7256 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7257 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7258 vmx->exit_intr_info = 0;
7259 return EXIT_FASTPATH_NONE;
7262 trace_kvm_entry(vcpu);
7264 if (vmx->ple_window_dirty) {
7265 vmx->ple_window_dirty = false;
7266 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7270 * We did this in prepare_switch_to_guest, because it needs to
7271 * be within srcu_read_lock.
7273 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7275 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7276 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7277 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7278 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7279 vcpu->arch.regs_dirty = 0;
7282 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7283 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7284 * it switches back to the current->mm, which can occur in KVM context
7285 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7286 * toggles a static key while handling a VM-Exit.
7288 cr3 = __get_current_cr3_fast();
7289 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7290 vmcs_writel(HOST_CR3, cr3);
7291 vmx->loaded_vmcs->host_state.cr3 = cr3;
7294 cr4 = cr4_read_shadow();
7295 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7296 vmcs_writel(HOST_CR4, cr4);
7297 vmx->loaded_vmcs->host_state.cr4 = cr4;
7300 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7301 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7302 set_debugreg(vcpu->arch.dr6, 6);
7304 /* When single-stepping over STI and MOV SS, we must clear the
7305 * corresponding interruptibility bits in the guest state. Otherwise
7306 * vmentry fails as it then expects bit 14 (BS) in pending debug
7307 * exceptions being set, but that's not correct for the guest debugging
7309 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7310 vmx_set_interrupt_shadow(vcpu, 0);
7312 kvm_load_guest_xsave_state(vcpu);
7314 pt_guest_enter(vmx);
7316 atomic_switch_perf_msrs(vmx);
7317 if (intel_pmu_lbr_is_enabled(vcpu))
7318 vmx_passthrough_lbr_msrs(vcpu);
7320 if (enable_preemption_timer)
7321 vmx_update_hv_timer(vcpu);
7323 kvm_wait_lapic_expire(vcpu);
7325 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7326 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7328 /* All fields are clean at this point */
7329 if (kvm_is_using_evmcs()) {
7330 current_evmcs->hv_clean_fields |=
7331 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7333 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7336 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7337 if (vmx->host_debugctlmsr)
7338 update_debugctlmsr(vmx->host_debugctlmsr);
7340 #ifndef CONFIG_X86_64
7342 * The sysexit path does not restore ds/es, so we must set them to
7343 * a reasonable value ourselves.
7345 * We can't defer this to vmx_prepare_switch_to_host() since that
7346 * function may be executed in interrupt context, which saves and
7347 * restore segments around it, nullifying its effect.
7349 loadsegment(ds, __USER_DS);
7350 loadsegment(es, __USER_DS);
7353 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7357 kvm_load_host_xsave_state(vcpu);
7359 if (is_guest_mode(vcpu)) {
7361 * Track VMLAUNCH/VMRESUME that have made past guest state
7364 if (vmx->nested.nested_run_pending &&
7365 !vmx->exit_reason.failed_vmentry)
7366 ++vcpu->stat.nested_run;
7368 vmx->nested.nested_run_pending = 0;
7371 vmx->idt_vectoring_info = 0;
7373 if (unlikely(vmx->fail))
7374 return EXIT_FASTPATH_NONE;
7376 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7377 kvm_machine_check();
7379 if (likely(!vmx->exit_reason.failed_vmentry))
7380 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7382 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7384 if (unlikely(vmx->exit_reason.failed_vmentry))
7385 return EXIT_FASTPATH_NONE;
7387 vmx->loaded_vmcs->launched = 1;
7389 vmx_recover_nmi_blocking(vmx);
7390 vmx_complete_interrupts(vmx);
7392 if (is_guest_mode(vcpu))
7393 return EXIT_FASTPATH_NONE;
7395 return vmx_exit_handlers_fastpath(vcpu);
7398 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7400 struct vcpu_vmx *vmx = to_vmx(vcpu);
7403 vmx_destroy_pml_buffer(vmx);
7404 free_vpid(vmx->vpid);
7405 nested_vmx_free_vcpu(vcpu);
7406 free_loaded_vmcs(vmx->loaded_vmcs);
7409 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7411 struct vmx_uret_msr *tsx_ctrl;
7412 struct vcpu_vmx *vmx;
7415 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7418 INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7422 vmx->vpid = allocate_vpid();
7425 * If PML is turned on, failure on enabling PML just results in failure
7426 * of creating the vcpu, therefore we can simplify PML logic (by
7427 * avoiding dealing with cases, such as enabling PML partially on vcpus
7428 * for the guest), etc.
7431 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7436 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7437 vmx->guest_uret_msrs[i].mask = -1ull;
7438 if (boot_cpu_has(X86_FEATURE_RTM)) {
7440 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7441 * Keep the host value unchanged to avoid changing CPUID bits
7442 * under the host kernel's feet.
7444 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7446 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7449 err = alloc_loaded_vmcs(&vmx->vmcs01);
7454 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7455 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7456 * feature only for vmcs01, KVM currently isn't equipped to realize any
7457 * performance benefits from enabling it for vmcs02.
7459 if (kvm_is_using_evmcs() &&
7460 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7461 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7463 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7466 /* The MSR bitmap starts with all ones */
7467 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7468 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7470 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7471 #ifdef CONFIG_X86_64
7472 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7473 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7474 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7476 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7477 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7478 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7479 if (kvm_cstate_in_guest(vcpu->kvm)) {
7480 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7481 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7482 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7483 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7486 vmx->loaded_vmcs = &vmx->vmcs01;
7488 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7489 err = kvm_alloc_apic_access_page(vcpu->kvm);
7494 if (enable_ept && !enable_unrestricted_guest) {
7495 err = init_rmode_identity_map(vcpu->kvm);
7500 if (vmx_can_use_ipiv(vcpu))
7501 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7502 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7507 free_loaded_vmcs(vmx->loaded_vmcs);
7509 vmx_destroy_pml_buffer(vmx);
7511 free_vpid(vmx->vpid);
7515 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7516 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7518 static int vmx_vm_init(struct kvm *kvm)
7521 kvm->arch.pause_in_guest = true;
7523 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7524 switch (l1tf_mitigation) {
7525 case L1TF_MITIGATION_OFF:
7526 case L1TF_MITIGATION_FLUSH_NOWARN:
7527 /* 'I explicitly don't care' is set */
7529 case L1TF_MITIGATION_FLUSH:
7530 case L1TF_MITIGATION_FLUSH_NOSMT:
7531 case L1TF_MITIGATION_FULL:
7533 * Warn upon starting the first VM in a potentially
7534 * insecure environment.
7536 if (sched_smt_active())
7537 pr_warn_once(L1TF_MSG_SMT);
7538 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7539 pr_warn_once(L1TF_MSG_L1D);
7541 case L1TF_MITIGATION_FULL_FORCE:
7542 /* Flush is enforced */
7549 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7553 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7554 * memory aliases with conflicting memory types and sometimes MCEs.
7555 * We have to be careful as to what are honored and when.
7557 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7558 * UC. The effective memory type is UC or WC depending on guest PAT.
7559 * This was historically the source of MCEs and we want to be
7562 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7563 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7564 * EPT memory type is set to WB. The effective memory type is forced
7567 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7568 * EPT memory type is used to emulate guest CD/MTRR.
7572 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7574 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7575 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7577 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7578 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7579 cache = MTRR_TYPE_WRBACK;
7581 cache = MTRR_TYPE_UNCACHABLE;
7583 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7586 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7589 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7592 * These bits in the secondary execution controls field
7593 * are dynamic, the others are mostly based on the hypervisor
7594 * architecture and the guest's CPUID. Do not touch the
7598 SECONDARY_EXEC_SHADOW_VMCS |
7599 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7600 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7601 SECONDARY_EXEC_DESC;
7603 u32 cur_ctl = secondary_exec_controls_get(vmx);
7605 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7609 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7610 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7612 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7614 struct vcpu_vmx *vmx = to_vmx(vcpu);
7615 struct kvm_cpuid_entry2 *entry;
7617 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7618 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7620 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7621 if (entry && (entry->_reg & (_cpuid_mask))) \
7622 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7625 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7626 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7627 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7628 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7629 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7630 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7631 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7632 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7633 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7634 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7635 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7636 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7637 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7638 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7639 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7641 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7642 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7643 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7644 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7645 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7646 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7647 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7649 #undef cr4_fixed1_update
7652 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7654 struct vcpu_vmx *vmx = to_vmx(vcpu);
7655 struct kvm_cpuid_entry2 *best = NULL;
7658 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7659 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7662 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7663 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7664 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7665 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7668 /* Get the number of configurable Address Ranges for filtering */
7669 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7670 PT_CAP_num_address_ranges);
7672 /* Initialize and clear the no dependency bits */
7673 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7674 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7675 RTIT_CTL_BRANCH_EN);
7678 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7679 * will inject an #GP
7681 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7682 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7685 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7686 * PSBFreq can be set
7688 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7689 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7690 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7693 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7695 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7696 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7697 RTIT_CTL_MTC_RANGE);
7699 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7700 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7701 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7704 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7705 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7706 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7708 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7709 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7710 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7712 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7713 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7714 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7716 /* unmask address range configure area */
7717 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7718 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7721 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7723 struct vcpu_vmx *vmx = to_vmx(vcpu);
7725 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7726 vcpu->arch.xsaves_enabled = false;
7728 vmx_setup_uret_msrs(vmx);
7730 if (cpu_has_secondary_exec_ctrls())
7731 vmcs_set_secondary_exec_control(vmx,
7732 vmx_secondary_exec_control(vmx));
7734 if (nested_vmx_allowed(vcpu))
7735 vmx->msr_ia32_feature_control_valid_bits |=
7736 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7737 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7739 vmx->msr_ia32_feature_control_valid_bits &=
7740 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7741 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7743 if (nested_vmx_allowed(vcpu))
7744 nested_vmx_cr_fixed1_bits_update(vcpu);
7746 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7747 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7748 update_intel_pt_cfg(vcpu);
7750 if (boot_cpu_has(X86_FEATURE_RTM)) {
7751 struct vmx_uret_msr *msr;
7752 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7754 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7755 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7759 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7760 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7761 !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7763 if (boot_cpu_has(X86_FEATURE_IBPB))
7764 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7765 !guest_has_pred_cmd_msr(vcpu));
7767 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7768 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7769 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7771 set_cr4_guest_host_mask(vmx);
7773 vmx_write_encls_bitmap(vcpu, NULL);
7774 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7775 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7777 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7779 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7780 vmx->msr_ia32_feature_control_valid_bits |=
7781 FEAT_CTL_SGX_LC_ENABLED;
7783 vmx->msr_ia32_feature_control_valid_bits &=
7784 ~FEAT_CTL_SGX_LC_ENABLED;
7786 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7787 vmx_update_exception_bitmap(vcpu);
7790 static u64 vmx_get_perf_capabilities(void)
7792 u64 perf_cap = PMU_CAP_FW_WRITES;
7793 struct x86_pmu_lbr lbr;
7794 u64 host_perf_cap = 0;
7799 if (boot_cpu_has(X86_FEATURE_PDCM))
7800 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7802 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7803 x86_perf_get_lbr(&lbr);
7805 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7808 if (vmx_pebs_supported()) {
7809 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7810 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7811 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7817 static __init void vmx_set_cpu_caps(void)
7823 kvm_cpu_cap_set(X86_FEATURE_VMX);
7826 if (kvm_mpx_supported())
7827 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7828 if (!cpu_has_vmx_invpcid())
7829 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7830 if (vmx_pt_mode_is_host_guest())
7831 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7832 if (vmx_pebs_supported()) {
7833 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7834 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7838 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7839 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7842 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7843 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7844 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7845 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7848 if (vmx_umip_emulated())
7849 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7852 kvm_caps.supported_xss = 0;
7853 if (!cpu_has_vmx_xsaves())
7854 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7856 /* CPUID 0x80000001 and 0x7 (RDPID) */
7857 if (!cpu_has_vmx_rdtscp()) {
7858 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7859 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7862 if (cpu_has_vmx_waitpkg())
7863 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7866 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7868 to_vmx(vcpu)->req_immediate_exit = true;
7871 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7872 struct x86_instruction_info *info)
7874 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7875 unsigned short port;
7879 if (info->intercept == x86_intercept_in ||
7880 info->intercept == x86_intercept_ins) {
7881 port = info->src_val;
7882 size = info->dst_bytes;
7884 port = info->dst_val;
7885 size = info->src_bytes;
7889 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7890 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7893 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7895 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7896 intercept = nested_cpu_has(vmcs12,
7897 CPU_BASED_UNCOND_IO_EXITING);
7899 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7901 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7902 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7905 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7906 struct x86_instruction_info *info,
7907 enum x86_intercept_stage stage,
7908 struct x86_exception *exception)
7910 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7912 switch (info->intercept) {
7914 * RDPID causes #UD if disabled through secondary execution controls.
7915 * Because it is marked as EmulateOnUD, we need to intercept it here.
7916 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7918 case x86_intercept_rdpid:
7919 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7920 exception->vector = UD_VECTOR;
7921 exception->error_code_valid = false;
7922 return X86EMUL_PROPAGATE_FAULT;
7926 case x86_intercept_in:
7927 case x86_intercept_ins:
7928 case x86_intercept_out:
7929 case x86_intercept_outs:
7930 return vmx_check_intercept_io(vcpu, info);
7932 case x86_intercept_lgdt:
7933 case x86_intercept_lidt:
7934 case x86_intercept_lldt:
7935 case x86_intercept_ltr:
7936 case x86_intercept_sgdt:
7937 case x86_intercept_sidt:
7938 case x86_intercept_sldt:
7939 case x86_intercept_str:
7940 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7941 return X86EMUL_CONTINUE;
7943 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7946 case x86_intercept_pause:
7948 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
7949 * with vanilla NOPs in the emulator. Apply the interception
7950 * check only to actual PAUSE instructions. Don't check
7951 * PAUSE-loop-exiting, software can't expect a given PAUSE to
7952 * exit, i.e. KVM is within its rights to allow L2 to execute
7955 if ((info->rep_prefix != REPE_PREFIX) ||
7956 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
7957 return X86EMUL_CONTINUE;
7961 /* TODO: check more intercepts... */
7966 return X86EMUL_UNHANDLEABLE;
7969 #ifdef CONFIG_X86_64
7970 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7971 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7972 u64 divisor, u64 *result)
7974 u64 low = a << shift, high = a >> (64 - shift);
7976 /* To avoid the overflow on divq */
7977 if (high >= divisor)
7980 /* Low hold the result, high hold rem which is discarded */
7981 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7982 "rm" (divisor), "0" (low), "1" (high));
7988 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7991 struct vcpu_vmx *vmx;
7992 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7993 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7997 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7998 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7999 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8000 ktimer->timer_advance_ns);
8002 if (delta_tsc > lapic_timer_advance_cycles)
8003 delta_tsc -= lapic_timer_advance_cycles;
8007 /* Convert to host delta tsc if tsc scaling is enabled */
8008 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8009 delta_tsc && u64_shl_div_u64(delta_tsc,
8010 kvm_caps.tsc_scaling_ratio_frac_bits,
8011 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8015 * If the delta tsc can't fit in the 32 bit after the multi shift,
8016 * we can't use the preemption timer.
8017 * It's possible that it fits on later vmentries, but checking
8018 * on every vmentry is costly so we just use an hrtimer.
8020 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8023 vmx->hv_deadline_tsc = tscl + delta_tsc;
8024 *expired = !delta_tsc;
8028 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8030 to_vmx(vcpu)->hv_deadline_tsc = -1;
8034 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8036 if (!kvm_pause_in_guest(vcpu->kvm))
8037 shrink_ple_window(vcpu);
8040 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8042 struct vcpu_vmx *vmx = to_vmx(vcpu);
8044 if (WARN_ON_ONCE(!enable_pml))
8047 if (is_guest_mode(vcpu)) {
8048 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8053 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8054 * code, but in that case another update request will be made and so
8055 * the guest will never run with a stale PML value.
8057 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8058 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8060 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8063 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8065 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8066 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8067 FEAT_CTL_LMCE_ENABLED;
8069 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8070 ~FEAT_CTL_LMCE_ENABLED;
8073 #ifdef CONFIG_KVM_SMM
8074 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8076 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8077 if (to_vmx(vcpu)->nested.nested_run_pending)
8079 return !is_smm(vcpu);
8082 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8084 struct vcpu_vmx *vmx = to_vmx(vcpu);
8087 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8088 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8089 * SMI and RSM only modify state that is saved and restored via SMRAM.
8090 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8091 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8093 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8094 if (vmx->nested.smm.guest_mode)
8095 nested_vmx_vmexit(vcpu, -1, 0, 0);
8097 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8098 vmx->nested.vmxon = false;
8099 vmx_clear_hlt(vcpu);
8103 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8105 struct vcpu_vmx *vmx = to_vmx(vcpu);
8108 if (vmx->nested.smm.vmxon) {
8109 vmx->nested.vmxon = true;
8110 vmx->nested.smm.vmxon = false;
8113 if (vmx->nested.smm.guest_mode) {
8114 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8118 vmx->nested.nested_run_pending = 1;
8119 vmx->nested.smm.guest_mode = false;
8124 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8126 /* RSM will cause a vmexit anyway. */
8130 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8132 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8135 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8137 if (is_guest_mode(vcpu)) {
8138 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8140 if (hrtimer_try_to_cancel(timer) == 1)
8141 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8145 static void vmx_hardware_unsetup(void)
8147 kvm_set_posted_intr_wakeup_handler(NULL);
8150 nested_vmx_hardware_unsetup();
8155 #define VMX_REQUIRED_APICV_INHIBITS \
8157 BIT(APICV_INHIBIT_REASON_DISABLE)| \
8158 BIT(APICV_INHIBIT_REASON_ABSENT) | \
8159 BIT(APICV_INHIBIT_REASON_HYPERV) | \
8160 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
8161 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
8162 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
8163 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \
8166 static void vmx_vm_destroy(struct kvm *kvm)
8168 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8170 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8173 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8174 .name = KBUILD_MODNAME,
8176 .check_processor_compatibility = vmx_check_processor_compat,
8178 .hardware_unsetup = vmx_hardware_unsetup,
8180 .hardware_enable = vmx_hardware_enable,
8181 .hardware_disable = vmx_hardware_disable,
8182 .has_emulated_msr = vmx_has_emulated_msr,
8184 .vm_size = sizeof(struct kvm_vmx),
8185 .vm_init = vmx_vm_init,
8186 .vm_destroy = vmx_vm_destroy,
8188 .vcpu_precreate = vmx_vcpu_precreate,
8189 .vcpu_create = vmx_vcpu_create,
8190 .vcpu_free = vmx_vcpu_free,
8191 .vcpu_reset = vmx_vcpu_reset,
8193 .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8194 .vcpu_load = vmx_vcpu_load,
8195 .vcpu_put = vmx_vcpu_put,
8197 .update_exception_bitmap = vmx_update_exception_bitmap,
8198 .get_msr_feature = vmx_get_msr_feature,
8199 .get_msr = vmx_get_msr,
8200 .set_msr = vmx_set_msr,
8201 .get_segment_base = vmx_get_segment_base,
8202 .get_segment = vmx_get_segment,
8203 .set_segment = vmx_set_segment,
8204 .get_cpl = vmx_get_cpl,
8205 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8206 .set_cr0 = vmx_set_cr0,
8207 .is_valid_cr4 = vmx_is_valid_cr4,
8208 .set_cr4 = vmx_set_cr4,
8209 .set_efer = vmx_set_efer,
8210 .get_idt = vmx_get_idt,
8211 .set_idt = vmx_set_idt,
8212 .get_gdt = vmx_get_gdt,
8213 .set_gdt = vmx_set_gdt,
8214 .set_dr7 = vmx_set_dr7,
8215 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8216 .cache_reg = vmx_cache_reg,
8217 .get_rflags = vmx_get_rflags,
8218 .set_rflags = vmx_set_rflags,
8219 .get_if_flag = vmx_get_if_flag,
8221 .flush_tlb_all = vmx_flush_tlb_all,
8222 .flush_tlb_current = vmx_flush_tlb_current,
8223 .flush_tlb_gva = vmx_flush_tlb_gva,
8224 .flush_tlb_guest = vmx_flush_tlb_guest,
8226 .vcpu_pre_run = vmx_vcpu_pre_run,
8227 .vcpu_run = vmx_vcpu_run,
8228 .handle_exit = vmx_handle_exit,
8229 .skip_emulated_instruction = vmx_skip_emulated_instruction,
8230 .update_emulated_instruction = vmx_update_emulated_instruction,
8231 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8232 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8233 .patch_hypercall = vmx_patch_hypercall,
8234 .inject_irq = vmx_inject_irq,
8235 .inject_nmi = vmx_inject_nmi,
8236 .inject_exception = vmx_inject_exception,
8237 .cancel_injection = vmx_cancel_injection,
8238 .interrupt_allowed = vmx_interrupt_allowed,
8239 .nmi_allowed = vmx_nmi_allowed,
8240 .get_nmi_mask = vmx_get_nmi_mask,
8241 .set_nmi_mask = vmx_set_nmi_mask,
8242 .enable_nmi_window = vmx_enable_nmi_window,
8243 .enable_irq_window = vmx_enable_irq_window,
8244 .update_cr8_intercept = vmx_update_cr8_intercept,
8245 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8246 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8247 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8248 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8249 .apicv_post_state_restore = vmx_apicv_post_state_restore,
8250 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8251 .hwapic_irr_update = vmx_hwapic_irr_update,
8252 .hwapic_isr_update = vmx_hwapic_isr_update,
8253 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8254 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8255 .deliver_interrupt = vmx_deliver_interrupt,
8256 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8258 .set_tss_addr = vmx_set_tss_addr,
8259 .set_identity_map_addr = vmx_set_identity_map_addr,
8260 .get_mt_mask = vmx_get_mt_mask,
8262 .get_exit_info = vmx_get_exit_info,
8264 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8266 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8268 .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8269 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8270 .write_tsc_offset = vmx_write_tsc_offset,
8271 .write_tsc_multiplier = vmx_write_tsc_multiplier,
8273 .load_mmu_pgd = vmx_load_mmu_pgd,
8275 .check_intercept = vmx_check_intercept,
8276 .handle_exit_irqoff = vmx_handle_exit_irqoff,
8278 .request_immediate_exit = vmx_request_immediate_exit,
8280 .sched_in = vmx_sched_in,
8282 .cpu_dirty_log_size = PML_ENTITY_NUM,
8283 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8285 .nested_ops = &vmx_nested_ops,
8287 .pi_update_irte = vmx_pi_update_irte,
8288 .pi_start_assignment = vmx_pi_start_assignment,
8290 #ifdef CONFIG_X86_64
8291 .set_hv_timer = vmx_set_hv_timer,
8292 .cancel_hv_timer = vmx_cancel_hv_timer,
8295 .setup_mce = vmx_setup_mce,
8297 #ifdef CONFIG_KVM_SMM
8298 .smi_allowed = vmx_smi_allowed,
8299 .enter_smm = vmx_enter_smm,
8300 .leave_smm = vmx_leave_smm,
8301 .enable_smi_window = vmx_enable_smi_window,
8304 .can_emulate_instruction = vmx_can_emulate_instruction,
8305 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8306 .migrate_timers = vmx_migrate_timers,
8308 .msr_filter_changed = vmx_msr_filter_changed,
8309 .complete_emulated_msr = kvm_complete_insn_gp,
8311 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8314 static unsigned int vmx_handle_intel_pt_intr(void)
8316 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8318 /* '0' on failure so that the !PT case can use a RET0 static call. */
8319 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8322 kvm_make_request(KVM_REQ_PMI, vcpu);
8323 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8324 (unsigned long *)&vcpu->arch.pmu.global_status);
8328 static __init void vmx_setup_user_return_msrs(void)
8332 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8333 * will emulate SYSCALL in legacy mode if the vendor string in guest
8334 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8335 * support this emulation, MSR_STAR is included in the list for i386,
8336 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8337 * into hardware and is here purely for emulation purposes.
8339 const u32 vmx_uret_msrs_list[] = {
8340 #ifdef CONFIG_X86_64
8341 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8343 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8348 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8350 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8351 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8354 static void __init vmx_setup_me_spte_mask(void)
8359 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use
8360 * the former to avoid exposing shadow_phys_bits.
8362 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8363 * shadow_phys_bits. On MKTME and/or TDX capable systems,
8364 * boot_cpu_data.x86_phys_bits holds the actual physical address
8365 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8366 * reported by CPUID. Those bits between are KeyID bits.
8368 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8369 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8370 kvm_get_shadow_phys_bits() - 1);
8372 * Unlike SME, host kernel doesn't support setting up any
8373 * MKTME KeyID on Intel platforms. No memory encryption
8374 * bits should be included into the SPTE.
8376 kvm_mmu_set_me_spte_mask(0, me_mask);
8379 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8381 static __init int hardware_setup(void)
8383 unsigned long host_bndcfgs;
8388 host_idt_base = dt.address;
8390 vmx_setup_user_return_msrs();
8392 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8395 if (cpu_has_perf_global_ctrl_bug())
8396 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8397 "does not work properly. Using workaround\n");
8399 if (boot_cpu_has(X86_FEATURE_NX))
8400 kvm_enable_efer_bits(EFER_NX);
8402 if (boot_cpu_has(X86_FEATURE_MPX)) {
8403 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8404 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8407 if (!cpu_has_vmx_mpx())
8408 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8409 XFEATURE_MASK_BNDCSR);
8411 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8412 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8415 if (!cpu_has_vmx_ept() ||
8416 !cpu_has_vmx_ept_4levels() ||
8417 !cpu_has_vmx_ept_mt_wb() ||
8418 !cpu_has_vmx_invept_global())
8421 /* NX support is required for shadow paging. */
8422 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8423 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8427 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8428 enable_ept_ad_bits = 0;
8430 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8431 enable_unrestricted_guest = 0;
8433 if (!cpu_has_vmx_flexpriority())
8434 flexpriority_enabled = 0;
8436 if (!cpu_has_virtual_nmis())
8439 #ifdef CONFIG_X86_SGX_KVM
8440 if (!cpu_has_vmx_encls_vmexit())
8445 * set_apic_access_page_addr() is used to reload apic access
8446 * page upon invalidation. No need to do anything if not
8447 * using the APIC_ACCESS_ADDR VMCS field.
8449 if (!flexpriority_enabled)
8450 vmx_x86_ops.set_apic_access_page_addr = NULL;
8452 if (!cpu_has_vmx_tpr_shadow())
8453 vmx_x86_ops.update_cr8_intercept = NULL;
8455 #if IS_ENABLED(CONFIG_HYPERV)
8456 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8458 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8459 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8463 if (!cpu_has_vmx_ple()) {
8466 ple_window_grow = 0;
8468 ple_window_shrink = 0;
8471 if (!cpu_has_vmx_apicv())
8474 vmx_x86_ops.sync_pir_to_irr = NULL;
8476 if (!enable_apicv || !cpu_has_vmx_ipiv())
8477 enable_ipiv = false;
8479 if (cpu_has_vmx_tsc_scaling())
8480 kvm_caps.has_tsc_control = true;
8482 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8483 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8484 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8485 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8487 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8490 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8491 cpu_has_vmx_ept_execute_only());
8494 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8495 * bits to shadow_zero_check.
8497 vmx_setup_me_spte_mask();
8499 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8500 ept_caps_to_lpage_level(vmx_capability.ept));
8503 * Only enable PML when hardware supports PML feature, and both EPT
8504 * and EPT A/D bit features are enabled -- PML depends on them to work.
8506 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8510 vmx_x86_ops.cpu_dirty_log_size = 0;
8512 if (!cpu_has_vmx_preemption_timer())
8513 enable_preemption_timer = false;
8515 if (enable_preemption_timer) {
8516 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8518 cpu_preemption_timer_multi =
8519 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8522 use_timer_freq = (u64)tsc_khz * 1000;
8523 use_timer_freq >>= cpu_preemption_timer_multi;
8526 * KVM "disables" the preemption timer by setting it to its max
8527 * value. Don't use the timer if it might cause spurious exits
8528 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8530 if (use_timer_freq > 0xffffffffu / 10)
8531 enable_preemption_timer = false;
8534 if (!enable_preemption_timer) {
8535 vmx_x86_ops.set_hv_timer = NULL;
8536 vmx_x86_ops.cancel_hv_timer = NULL;
8537 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8540 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8541 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8543 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8545 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8546 pt_mode = PT_MODE_SYSTEM;
8547 if (pt_mode == PT_MODE_HOST_GUEST)
8548 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8550 vmx_init_ops.handle_intel_pt_intr = NULL;
8552 setup_default_sgx_lepubkeyhash();
8555 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8557 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8564 r = alloc_kvm_area();
8566 nested_vmx_hardware_unsetup();
8568 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8573 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8574 .hardware_setup = hardware_setup,
8575 .handle_intel_pt_intr = NULL,
8577 .runtime_ops = &vmx_x86_ops,
8578 .pmu_ops = &intel_pmu_ops,
8581 static void vmx_cleanup_l1d_flush(void)
8583 if (vmx_l1d_flush_pages) {
8584 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8585 vmx_l1d_flush_pages = NULL;
8587 /* Restore state so sysfs ignores VMX */
8588 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8591 static void __vmx_exit(void)
8593 allow_smaller_maxphyaddr = false;
8595 #ifdef CONFIG_KEXEC_CORE
8596 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8599 vmx_cleanup_l1d_flush();
8602 static void vmx_exit(void)
8605 kvm_x86_vendor_exit();
8609 module_exit(vmx_exit);
8611 static int __init vmx_init(void)
8615 if (!kvm_is_vmx_supported())
8619 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8620 * to unwind if a later step fails.
8624 r = kvm_x86_vendor_init(&vmx_init_ops);
8629 * Must be called after common x86 init so enable_ept is properly set
8630 * up. Hand the parameter mitigation value in which was stored in
8631 * the pre module init parser. If no parameter was given, it will
8632 * contain 'auto' which will be turned into the default 'cond'
8635 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8639 vmx_setup_fb_clear_ctrl();
8641 for_each_possible_cpu(cpu) {
8642 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8647 #ifdef CONFIG_KEXEC_CORE
8648 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8649 crash_vmclear_local_loaded_vmcss);
8651 vmx_check_vmcs12_offsets();
8654 * Shadow paging doesn't have a (further) performance penalty
8655 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8659 allow_smaller_maxphyaddr = true;
8662 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8663 * exposed to userspace!
8665 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8675 kvm_x86_vendor_exit();
8678 module_init(vmx_init);