Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-starfive.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 /*
23  * Hyper-V requires all of these, so mark them as supported even though
24  * they are just treated the same as all-context.
25  */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
27         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
28         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
29         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
30         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33
34 enum {
35         VMX_VMREAD_BITMAP,
36         VMX_VMWRITE_BITMAP,
37         VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40
41 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
43
44 static u16 shadow_read_only_fields[] = {
45 #define SHADOW_FIELD_RO(x) x,
46 #include "vmcs_shadow_fields.h"
47 };
48 static int max_shadow_read_only_fields =
49         ARRAY_SIZE(shadow_read_only_fields);
50
51 static u16 shadow_read_write_fields[] = {
52 #define SHADOW_FIELD_RW(x) x,
53 #include "vmcs_shadow_fields.h"
54 };
55 static int max_shadow_read_write_fields =
56         ARRAY_SIZE(shadow_read_write_fields);
57
58 static void init_vmcs_shadow_fields(void)
59 {
60         int i, j;
61
62         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
63         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
64
65         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
66                 u16 field = shadow_read_only_fields[i];
67
68                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
69                     (i + 1 == max_shadow_read_only_fields ||
70                      shadow_read_only_fields[i + 1] != field + 1))
71                         pr_err("Missing field from shadow_read_only_field %x\n",
72                                field + 1);
73
74                 clear_bit(field, vmx_vmread_bitmap);
75 #ifdef CONFIG_X86_64
76                 if (field & 1)
77                         continue;
78 #endif
79                 if (j < i)
80                         shadow_read_only_fields[j] = field;
81                 j++;
82         }
83         max_shadow_read_only_fields = j;
84
85         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
86                 u16 field = shadow_read_write_fields[i];
87
88                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
89                     (i + 1 == max_shadow_read_write_fields ||
90                      shadow_read_write_fields[i + 1] != field + 1))
91                         pr_err("Missing field from shadow_read_write_field %x\n",
92                                field + 1);
93
94                 /*
95                  * PML and the preemption timer can be emulated, but the
96                  * processor cannot vmwrite to fields that don't exist
97                  * on bare metal.
98                  */
99                 switch (field) {
100                 case GUEST_PML_INDEX:
101                         if (!cpu_has_vmx_pml())
102                                 continue;
103                         break;
104                 case VMX_PREEMPTION_TIMER_VALUE:
105                         if (!cpu_has_vmx_preemption_timer())
106                                 continue;
107                         break;
108                 case GUEST_INTR_STATUS:
109                         if (!cpu_has_vmx_apicv())
110                                 continue;
111                         break;
112                 default:
113                         break;
114                 }
115
116                 clear_bit(field, vmx_vmwrite_bitmap);
117                 clear_bit(field, vmx_vmread_bitmap);
118 #ifdef CONFIG_X86_64
119                 if (field & 1)
120                         continue;
121 #endif
122                 if (j < i)
123                         shadow_read_write_fields[j] = field;
124                 j++;
125         }
126         max_shadow_read_write_fields = j;
127 }
128
129 /*
130  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
131  * set the success or error code of an emulated VMX instruction (as specified
132  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
133  * instruction.
134  */
135 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
136 {
137         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
138                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
139                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
140         return kvm_skip_emulated_instruction(vcpu);
141 }
142
143 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
144 {
145         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
146                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
147                             X86_EFLAGS_SF | X86_EFLAGS_OF))
148                         | X86_EFLAGS_CF);
149         return kvm_skip_emulated_instruction(vcpu);
150 }
151
152 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
153                                 u32 vm_instruction_error)
154 {
155         struct vcpu_vmx *vmx = to_vmx(vcpu);
156
157         /*
158          * failValid writes the error number to the current VMCS, which
159          * can't be done if there isn't a current VMCS.
160          */
161         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
162                 return nested_vmx_failInvalid(vcpu);
163
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_ZF);
168         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
169         /*
170          * We don't need to force a shadow sync because
171          * VM_INSTRUCTION_ERROR is not shadowed
172          */
173         return kvm_skip_emulated_instruction(vcpu);
174 }
175
176 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
177 {
178         /* TODO: not to reset guest simply here. */
179         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
180         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
181 }
182
183 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
184 {
185         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
186         vmcs_write64(VMCS_LINK_POINTER, -1ull);
187 }
188
189 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
190 {
191         struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193         if (!vmx->nested.hv_evmcs)
194                 return;
195
196         kunmap(vmx->nested.hv_evmcs_page);
197         kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
198         vmx->nested.hv_evmcs_vmptr = -1ull;
199         vmx->nested.hv_evmcs_page = NULL;
200         vmx->nested.hv_evmcs = NULL;
201 }
202
203 /*
204  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
205  * just stops using VMX.
206  */
207 static void free_nested(struct kvm_vcpu *vcpu)
208 {
209         struct vcpu_vmx *vmx = to_vmx(vcpu);
210
211         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
212                 return;
213
214         vmx->nested.vmxon = false;
215         vmx->nested.smm.vmxon = false;
216         free_vpid(vmx->nested.vpid02);
217         vmx->nested.posted_intr_nv = -1;
218         vmx->nested.current_vmptr = -1ull;
219         if (enable_shadow_vmcs) {
220                 vmx_disable_shadow_vmcs(vmx);
221                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
222                 free_vmcs(vmx->vmcs01.shadow_vmcs);
223                 vmx->vmcs01.shadow_vmcs = NULL;
224         }
225         kfree(vmx->nested.cached_vmcs12);
226         kfree(vmx->nested.cached_shadow_vmcs12);
227         /* Unpin physical memory we referred to in the vmcs02 */
228         if (vmx->nested.apic_access_page) {
229                 kvm_release_page_dirty(vmx->nested.apic_access_page);
230                 vmx->nested.apic_access_page = NULL;
231         }
232         if (vmx->nested.virtual_apic_page) {
233                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
234                 vmx->nested.virtual_apic_page = NULL;
235         }
236         if (vmx->nested.pi_desc_page) {
237                 kunmap(vmx->nested.pi_desc_page);
238                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
239                 vmx->nested.pi_desc_page = NULL;
240                 vmx->nested.pi_desc = NULL;
241         }
242
243         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
244
245         nested_release_evmcs(vcpu);
246
247         free_loaded_vmcs(&vmx->nested.vmcs02);
248 }
249
250 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
251 {
252         struct vcpu_vmx *vmx = to_vmx(vcpu);
253         int cpu;
254
255         if (vmx->loaded_vmcs == vmcs)
256                 return;
257
258         cpu = get_cpu();
259         vmx_vcpu_put(vcpu);
260         vmx->loaded_vmcs = vmcs;
261         vmx_vcpu_load(vcpu, cpu);
262         put_cpu();
263
264         vm_entry_controls_reset_shadow(vmx);
265         vm_exit_controls_reset_shadow(vmx);
266         vmx_segment_cache_clear(vmx);
267 }
268
269 /*
270  * Ensure that the current vmcs of the logical processor is the
271  * vmcs01 of the vcpu before calling free_nested().
272  */
273 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
274 {
275         vcpu_load(vcpu);
276         vmx_leave_nested(vcpu);
277         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
278         free_nested(vcpu);
279         vcpu_put(vcpu);
280 }
281
282 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
283                 struct x86_exception *fault)
284 {
285         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
286         struct vcpu_vmx *vmx = to_vmx(vcpu);
287         u32 exit_reason;
288         unsigned long exit_qualification = vcpu->arch.exit_qualification;
289
290         if (vmx->nested.pml_full) {
291                 exit_reason = EXIT_REASON_PML_FULL;
292                 vmx->nested.pml_full = false;
293                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
294         } else if (fault->error_code & PFERR_RSVD_MASK)
295                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
296         else
297                 exit_reason = EXIT_REASON_EPT_VIOLATION;
298
299         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
300         vmcs12->guest_physical_address = fault->address;
301 }
302
303 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
304 {
305         WARN_ON(mmu_is_nested(vcpu));
306
307         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
308         kvm_init_shadow_ept_mmu(vcpu,
309                         to_vmx(vcpu)->nested.msrs.ept_caps &
310                         VMX_EPT_EXECUTE_ONLY_BIT,
311                         nested_ept_ad_enabled(vcpu),
312                         nested_ept_get_cr3(vcpu));
313         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
314         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
315         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
316         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
317
318         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
319 }
320
321 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
322 {
323         vcpu->arch.mmu = &vcpu->arch.root_mmu;
324         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
325 }
326
327 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
328                                             u16 error_code)
329 {
330         bool inequality, bit;
331
332         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
333         inequality =
334                 (error_code & vmcs12->page_fault_error_code_mask) !=
335                  vmcs12->page_fault_error_code_match;
336         return inequality ^ bit;
337 }
338
339
340 /*
341  * KVM wants to inject page-faults which it got to the guest. This function
342  * checks whether in a nested guest, we need to inject them to L1 or L2.
343  */
344 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
345 {
346         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
347         unsigned int nr = vcpu->arch.exception.nr;
348         bool has_payload = vcpu->arch.exception.has_payload;
349         unsigned long payload = vcpu->arch.exception.payload;
350
351         if (nr == PF_VECTOR) {
352                 if (vcpu->arch.exception.nested_apf) {
353                         *exit_qual = vcpu->arch.apf.nested_apf_token;
354                         return 1;
355                 }
356                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
357                                                     vcpu->arch.exception.error_code)) {
358                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
359                         return 1;
360                 }
361         } else if (vmcs12->exception_bitmap & (1u << nr)) {
362                 if (nr == DB_VECTOR) {
363                         if (!has_payload) {
364                                 payload = vcpu->arch.dr6;
365                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
366                                 payload ^= DR6_RTM;
367                         }
368                         *exit_qual = payload;
369                 } else
370                         *exit_qual = 0;
371                 return 1;
372         }
373
374         return 0;
375 }
376
377
378 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
379                 struct x86_exception *fault)
380 {
381         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
382
383         WARN_ON(!is_guest_mode(vcpu));
384
385         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
386                 !to_vmx(vcpu)->nested.nested_run_pending) {
387                 vmcs12->vm_exit_intr_error_code = fault->error_code;
388                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
389                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
390                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
391                                   fault->address);
392         } else {
393                 kvm_inject_page_fault(vcpu, fault);
394         }
395 }
396
397 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
398 {
399         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
400 }
401
402 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
403                                                struct vmcs12 *vmcs12)
404 {
405         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
406                 return 0;
407
408         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
409             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
410                 return -EINVAL;
411
412         return 0;
413 }
414
415 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
416                                                 struct vmcs12 *vmcs12)
417 {
418         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
419                 return 0;
420
421         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
422                 return -EINVAL;
423
424         return 0;
425 }
426
427 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
428                                                 struct vmcs12 *vmcs12)
429 {
430         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
431                 return 0;
432
433         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
434                 return -EINVAL;
435
436         return 0;
437 }
438
439 /*
440  * Check if MSR is intercepted for L01 MSR bitmap.
441  */
442 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
443 {
444         unsigned long *msr_bitmap;
445         int f = sizeof(unsigned long);
446
447         if (!cpu_has_vmx_msr_bitmap())
448                 return true;
449
450         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
451
452         if (msr <= 0x1fff) {
453                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
454         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
455                 msr &= 0x1fff;
456                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
457         }
458
459         return true;
460 }
461
462 /*
463  * If a msr is allowed by L0, we should check whether it is allowed by L1.
464  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
465  */
466 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
467                                                unsigned long *msr_bitmap_nested,
468                                                u32 msr, int type)
469 {
470         int f = sizeof(unsigned long);
471
472         /*
473          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
474          * have the write-low and read-high bitmap offsets the wrong way round.
475          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
476          */
477         if (msr <= 0x1fff) {
478                 if (type & MSR_TYPE_R &&
479                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
480                         /* read-low */
481                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
482
483                 if (type & MSR_TYPE_W &&
484                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
485                         /* write-low */
486                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
487
488         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
489                 msr &= 0x1fff;
490                 if (type & MSR_TYPE_R &&
491                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
492                         /* read-high */
493                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
494
495                 if (type & MSR_TYPE_W &&
496                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
497                         /* write-high */
498                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
499
500         }
501 }
502
503 /*
504  * Merge L0's and L1's MSR bitmap, return false to indicate that
505  * we do not use the hardware.
506  */
507 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
508                                                  struct vmcs12 *vmcs12)
509 {
510         int msr;
511         struct page *page;
512         unsigned long *msr_bitmap_l1;
513         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
514         /*
515          * pred_cmd & spec_ctrl are trying to verify two things:
516          *
517          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
518          *    ensures that we do not accidentally generate an L02 MSR bitmap
519          *    from the L12 MSR bitmap that is too permissive.
520          * 2. That L1 or L2s have actually used the MSR. This avoids
521          *    unnecessarily merging of the bitmap if the MSR is unused. This
522          *    works properly because we only update the L01 MSR bitmap lazily.
523          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
524          *    updated to reflect this when L1 (or its L2s) actually write to
525          *    the MSR.
526          */
527         bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
528         bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
529
530         /* Nothing to do if the MSR bitmap is not in use.  */
531         if (!cpu_has_vmx_msr_bitmap() ||
532             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
533                 return false;
534
535         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
536             !pred_cmd && !spec_ctrl)
537                 return false;
538
539         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
540         if (is_error_page(page))
541                 return false;
542
543         msr_bitmap_l1 = (unsigned long *)kmap(page);
544         if (nested_cpu_has_apic_reg_virt(vmcs12)) {
545                 /*
546                  * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
547                  * just lets the processor take the value from the virtual-APIC page;
548                  * take those 256 bits directly from the L1 bitmap.
549                  */
550                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551                         unsigned word = msr / BITS_PER_LONG;
552                         msr_bitmap_l0[word] = msr_bitmap_l1[word];
553                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
554                 }
555         } else {
556                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
557                         unsigned word = msr / BITS_PER_LONG;
558                         msr_bitmap_l0[word] = ~0;
559                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
560                 }
561         }
562
563         nested_vmx_disable_intercept_for_msr(
564                 msr_bitmap_l1, msr_bitmap_l0,
565                 X2APIC_MSR(APIC_TASKPRI),
566                 MSR_TYPE_W);
567
568         if (nested_cpu_has_vid(vmcs12)) {
569                 nested_vmx_disable_intercept_for_msr(
570                         msr_bitmap_l1, msr_bitmap_l0,
571                         X2APIC_MSR(APIC_EOI),
572                         MSR_TYPE_W);
573                 nested_vmx_disable_intercept_for_msr(
574                         msr_bitmap_l1, msr_bitmap_l0,
575                         X2APIC_MSR(APIC_SELF_IPI),
576                         MSR_TYPE_W);
577         }
578
579         if (spec_ctrl)
580                 nested_vmx_disable_intercept_for_msr(
581                                         msr_bitmap_l1, msr_bitmap_l0,
582                                         MSR_IA32_SPEC_CTRL,
583                                         MSR_TYPE_R | MSR_TYPE_W);
584
585         if (pred_cmd)
586                 nested_vmx_disable_intercept_for_msr(
587                                         msr_bitmap_l1, msr_bitmap_l0,
588                                         MSR_IA32_PRED_CMD,
589                                         MSR_TYPE_W);
590
591         kunmap(page);
592         kvm_release_page_clean(page);
593
594         return true;
595 }
596
597 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
598                                        struct vmcs12 *vmcs12)
599 {
600         struct vmcs12 *shadow;
601         struct page *page;
602
603         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
604             vmcs12->vmcs_link_pointer == -1ull)
605                 return;
606
607         shadow = get_shadow_vmcs12(vcpu);
608         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
609
610         memcpy(shadow, kmap(page), VMCS12_SIZE);
611
612         kunmap(page);
613         kvm_release_page_clean(page);
614 }
615
616 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
617                                               struct vmcs12 *vmcs12)
618 {
619         struct vcpu_vmx *vmx = to_vmx(vcpu);
620
621         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
622             vmcs12->vmcs_link_pointer == -1ull)
623                 return;
624
625         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
626                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
627 }
628
629 /*
630  * In nested virtualization, check if L1 has set
631  * VM_EXIT_ACK_INTR_ON_EXIT
632  */
633 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
634 {
635         return get_vmcs12(vcpu)->vm_exit_controls &
636                 VM_EXIT_ACK_INTR_ON_EXIT;
637 }
638
639 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
640 {
641         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
642 }
643
644 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
645                                           struct vmcs12 *vmcs12)
646 {
647         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
648             !page_address_valid(vcpu, vmcs12->apic_access_addr))
649                 return -EINVAL;
650         else
651                 return 0;
652 }
653
654 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
655                                            struct vmcs12 *vmcs12)
656 {
657         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
658             !nested_cpu_has_apic_reg_virt(vmcs12) &&
659             !nested_cpu_has_vid(vmcs12) &&
660             !nested_cpu_has_posted_intr(vmcs12))
661                 return 0;
662
663         /*
664          * If virtualize x2apic mode is enabled,
665          * virtualize apic access must be disabled.
666          */
667         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
668             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
669                 return -EINVAL;
670
671         /*
672          * If virtual interrupt delivery is enabled,
673          * we must exit on external interrupts.
674          */
675         if (nested_cpu_has_vid(vmcs12) &&
676            !nested_exit_on_intr(vcpu))
677                 return -EINVAL;
678
679         /*
680          * bits 15:8 should be zero in posted_intr_nv,
681          * the descriptor address has been already checked
682          * in nested_get_vmcs12_pages.
683          *
684          * bits 5:0 of posted_intr_desc_addr should be zero.
685          */
686         if (nested_cpu_has_posted_intr(vmcs12) &&
687            (!nested_cpu_has_vid(vmcs12) ||
688             !nested_exit_intr_ack_set(vcpu) ||
689             (vmcs12->posted_intr_nv & 0xff00) ||
690             (vmcs12->posted_intr_desc_addr & 0x3f) ||
691             (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
692                 return -EINVAL;
693
694         /* tpr shadow is needed by all apicv features. */
695         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
696                 return -EINVAL;
697
698         return 0;
699 }
700
701 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
702                                        u32 count, u64 addr)
703 {
704         int maxphyaddr;
705
706         if (count == 0)
707                 return 0;
708         maxphyaddr = cpuid_maxphyaddr(vcpu);
709         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
710             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
711                 return -EINVAL;
712
713         return 0;
714 }
715
716 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
717                                                      struct vmcs12 *vmcs12)
718 {
719         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
720                                         vmcs12->vm_exit_msr_load_addr) ||
721             nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
722                                         vmcs12->vm_exit_msr_store_addr))
723                 return -EINVAL;
724
725         return 0;
726 }
727
728 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
729                                                       struct vmcs12 *vmcs12)
730 {
731         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
732                                         vmcs12->vm_entry_msr_load_addr))
733                 return -EINVAL;
734
735         return 0;
736 }
737
738 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
739                                          struct vmcs12 *vmcs12)
740 {
741         if (!nested_cpu_has_pml(vmcs12))
742                 return 0;
743
744         if (!nested_cpu_has_ept(vmcs12) ||
745             !page_address_valid(vcpu, vmcs12->pml_address))
746                 return -EINVAL;
747
748         return 0;
749 }
750
751 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
752                                                         struct vmcs12 *vmcs12)
753 {
754         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
755             !nested_cpu_has_ept(vmcs12))
756                 return -EINVAL;
757         return 0;
758 }
759
760 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
761                                                          struct vmcs12 *vmcs12)
762 {
763         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
764             !nested_cpu_has_ept(vmcs12))
765                 return -EINVAL;
766         return 0;
767 }
768
769 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
770                                                  struct vmcs12 *vmcs12)
771 {
772         if (!nested_cpu_has_shadow_vmcs(vmcs12))
773                 return 0;
774
775         if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
776             !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
777                 return -EINVAL;
778
779         return 0;
780 }
781
782 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
783                                        struct vmx_msr_entry *e)
784 {
785         /* x2APIC MSR accesses are not allowed */
786         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
787                 return -EINVAL;
788         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
789             e->index == MSR_IA32_UCODE_REV)
790                 return -EINVAL;
791         if (e->reserved != 0)
792                 return -EINVAL;
793         return 0;
794 }
795
796 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
797                                      struct vmx_msr_entry *e)
798 {
799         if (e->index == MSR_FS_BASE ||
800             e->index == MSR_GS_BASE ||
801             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
802             nested_vmx_msr_check_common(vcpu, e))
803                 return -EINVAL;
804         return 0;
805 }
806
807 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
808                                       struct vmx_msr_entry *e)
809 {
810         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
811             nested_vmx_msr_check_common(vcpu, e))
812                 return -EINVAL;
813         return 0;
814 }
815
816 /*
817  * Load guest's/host's msr at nested entry/exit.
818  * return 0 for success, entry index for failure.
819  */
820 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
821 {
822         u32 i;
823         struct vmx_msr_entry e;
824         struct msr_data msr;
825
826         msr.host_initiated = false;
827         for (i = 0; i < count; i++) {
828                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
829                                         &e, sizeof(e))) {
830                         pr_debug_ratelimited(
831                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
832                                 __func__, i, gpa + i * sizeof(e));
833                         goto fail;
834                 }
835                 if (nested_vmx_load_msr_check(vcpu, &e)) {
836                         pr_debug_ratelimited(
837                                 "%s check failed (%u, 0x%x, 0x%x)\n",
838                                 __func__, i, e.index, e.reserved);
839                         goto fail;
840                 }
841                 msr.index = e.index;
842                 msr.data = e.value;
843                 if (kvm_set_msr(vcpu, &msr)) {
844                         pr_debug_ratelimited(
845                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
846                                 __func__, i, e.index, e.value);
847                         goto fail;
848                 }
849         }
850         return 0;
851 fail:
852         return i + 1;
853 }
854
855 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
856 {
857         u32 i;
858         struct vmx_msr_entry e;
859
860         for (i = 0; i < count; i++) {
861                 struct msr_data msr_info;
862                 if (kvm_vcpu_read_guest(vcpu,
863                                         gpa + i * sizeof(e),
864                                         &e, 2 * sizeof(u32))) {
865                         pr_debug_ratelimited(
866                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
867                                 __func__, i, gpa + i * sizeof(e));
868                         return -EINVAL;
869                 }
870                 if (nested_vmx_store_msr_check(vcpu, &e)) {
871                         pr_debug_ratelimited(
872                                 "%s check failed (%u, 0x%x, 0x%x)\n",
873                                 __func__, i, e.index, e.reserved);
874                         return -EINVAL;
875                 }
876                 msr_info.host_initiated = false;
877                 msr_info.index = e.index;
878                 if (kvm_get_msr(vcpu, &msr_info)) {
879                         pr_debug_ratelimited(
880                                 "%s cannot read MSR (%u, 0x%x)\n",
881                                 __func__, i, e.index);
882                         return -EINVAL;
883                 }
884                 if (kvm_vcpu_write_guest(vcpu,
885                                          gpa + i * sizeof(e) +
886                                              offsetof(struct vmx_msr_entry, value),
887                                          &msr_info.data, sizeof(msr_info.data))) {
888                         pr_debug_ratelimited(
889                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
890                                 __func__, i, e.index, msr_info.data);
891                         return -EINVAL;
892                 }
893         }
894         return 0;
895 }
896
897 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
898 {
899         unsigned long invalid_mask;
900
901         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
902         return (val & invalid_mask) == 0;
903 }
904
905 /*
906  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
907  * emulating VM entry into a guest with EPT enabled.
908  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
909  * is assigned to entry_failure_code on failure.
910  */
911 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
912                                u32 *entry_failure_code)
913 {
914         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
915                 if (!nested_cr3_valid(vcpu, cr3)) {
916                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
917                         return 1;
918                 }
919
920                 /*
921                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
922                  * must not be dereferenced.
923                  */
924                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
925                     !nested_ept) {
926                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
927                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
928                                 return 1;
929                         }
930                 }
931         }
932
933         if (!nested_ept)
934                 kvm_mmu_new_cr3(vcpu, cr3, false);
935
936         vcpu->arch.cr3 = cr3;
937         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
938
939         kvm_init_mmu(vcpu, false);
940
941         return 0;
942 }
943
944 /*
945  * Returns if KVM is able to config CPU to tag TLB entries
946  * populated by L2 differently than TLB entries populated
947  * by L1.
948  *
949  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
950  *
951  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
952  * with different VPID (L1 entries are tagged with vmx->vpid
953  * while L2 entries are tagged with vmx->nested.vpid02).
954  */
955 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
956 {
957         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
958
959         return nested_cpu_has_ept(vmcs12) ||
960                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
961 }
962
963 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
964 {
965         struct vcpu_vmx *vmx = to_vmx(vcpu);
966
967         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
968 }
969
970
971 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
972 {
973         return fixed_bits_valid(control, low, high);
974 }
975
976 static inline u64 vmx_control_msr(u32 low, u32 high)
977 {
978         return low | ((u64)high << 32);
979 }
980
981 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
982 {
983         superset &= mask;
984         subset &= mask;
985
986         return (superset | subset) == superset;
987 }
988
989 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
990 {
991         const u64 feature_and_reserved =
992                 /* feature (except bit 48; see below) */
993                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
994                 /* reserved */
995                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
996         u64 vmx_basic = vmx->nested.msrs.basic;
997
998         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
999                 return -EINVAL;
1000
1001         /*
1002          * KVM does not emulate a version of VMX that constrains physical
1003          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1004          */
1005         if (data & BIT_ULL(48))
1006                 return -EINVAL;
1007
1008         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1009             vmx_basic_vmcs_revision_id(data))
1010                 return -EINVAL;
1011
1012         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1013                 return -EINVAL;
1014
1015         vmx->nested.msrs.basic = data;
1016         return 0;
1017 }
1018
1019 static int
1020 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1021 {
1022         u64 supported;
1023         u32 *lowp, *highp;
1024
1025         switch (msr_index) {
1026         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1027                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1028                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1029                 break;
1030         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1031                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1032                 highp = &vmx->nested.msrs.procbased_ctls_high;
1033                 break;
1034         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1035                 lowp = &vmx->nested.msrs.exit_ctls_low;
1036                 highp = &vmx->nested.msrs.exit_ctls_high;
1037                 break;
1038         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1039                 lowp = &vmx->nested.msrs.entry_ctls_low;
1040                 highp = &vmx->nested.msrs.entry_ctls_high;
1041                 break;
1042         case MSR_IA32_VMX_PROCBASED_CTLS2:
1043                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1044                 highp = &vmx->nested.msrs.secondary_ctls_high;
1045                 break;
1046         default:
1047                 BUG();
1048         }
1049
1050         supported = vmx_control_msr(*lowp, *highp);
1051
1052         /* Check must-be-1 bits are still 1. */
1053         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1054                 return -EINVAL;
1055
1056         /* Check must-be-0 bits are still 0. */
1057         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1058                 return -EINVAL;
1059
1060         *lowp = data;
1061         *highp = data >> 32;
1062         return 0;
1063 }
1064
1065 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1066 {
1067         const u64 feature_and_reserved_bits =
1068                 /* feature */
1069                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1070                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1071                 /* reserved */
1072                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1073         u64 vmx_misc;
1074
1075         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1076                                    vmx->nested.msrs.misc_high);
1077
1078         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1079                 return -EINVAL;
1080
1081         if ((vmx->nested.msrs.pinbased_ctls_high &
1082              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1083             vmx_misc_preemption_timer_rate(data) !=
1084             vmx_misc_preemption_timer_rate(vmx_misc))
1085                 return -EINVAL;
1086
1087         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1088                 return -EINVAL;
1089
1090         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1091                 return -EINVAL;
1092
1093         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1094                 return -EINVAL;
1095
1096         vmx->nested.msrs.misc_low = data;
1097         vmx->nested.msrs.misc_high = data >> 32;
1098
1099         /*
1100          * If L1 has read-only VM-exit information fields, use the
1101          * less permissive vmx_vmwrite_bitmap to specify write
1102          * permissions for the shadow VMCS.
1103          */
1104         if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1105                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
1106
1107         return 0;
1108 }
1109
1110 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1111 {
1112         u64 vmx_ept_vpid_cap;
1113
1114         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1115                                            vmx->nested.msrs.vpid_caps);
1116
1117         /* Every bit is either reserved or a feature bit. */
1118         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1119                 return -EINVAL;
1120
1121         vmx->nested.msrs.ept_caps = data;
1122         vmx->nested.msrs.vpid_caps = data >> 32;
1123         return 0;
1124 }
1125
1126 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1127 {
1128         u64 *msr;
1129
1130         switch (msr_index) {
1131         case MSR_IA32_VMX_CR0_FIXED0:
1132                 msr = &vmx->nested.msrs.cr0_fixed0;
1133                 break;
1134         case MSR_IA32_VMX_CR4_FIXED0:
1135                 msr = &vmx->nested.msrs.cr4_fixed0;
1136                 break;
1137         default:
1138                 BUG();
1139         }
1140
1141         /*
1142          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1143          * must be 1 in the restored value.
1144          */
1145         if (!is_bitwise_subset(data, *msr, -1ULL))
1146                 return -EINVAL;
1147
1148         *msr = data;
1149         return 0;
1150 }
1151
1152 /*
1153  * Called when userspace is restoring VMX MSRs.
1154  *
1155  * Returns 0 on success, non-0 otherwise.
1156  */
1157 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1158 {
1159         struct vcpu_vmx *vmx = to_vmx(vcpu);
1160
1161         /*
1162          * Don't allow changes to the VMX capability MSRs while the vCPU
1163          * is in VMX operation.
1164          */
1165         if (vmx->nested.vmxon)
1166                 return -EBUSY;
1167
1168         switch (msr_index) {
1169         case MSR_IA32_VMX_BASIC:
1170                 return vmx_restore_vmx_basic(vmx, data);
1171         case MSR_IA32_VMX_PINBASED_CTLS:
1172         case MSR_IA32_VMX_PROCBASED_CTLS:
1173         case MSR_IA32_VMX_EXIT_CTLS:
1174         case MSR_IA32_VMX_ENTRY_CTLS:
1175                 /*
1176                  * The "non-true" VMX capability MSRs are generated from the
1177                  * "true" MSRs, so we do not support restoring them directly.
1178                  *
1179                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1180                  * should restore the "true" MSRs with the must-be-1 bits
1181                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1182                  * DEFAULT SETTINGS".
1183                  */
1184                 return -EINVAL;
1185         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1186         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1187         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1188         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1189         case MSR_IA32_VMX_PROCBASED_CTLS2:
1190                 return vmx_restore_control_msr(vmx, msr_index, data);
1191         case MSR_IA32_VMX_MISC:
1192                 return vmx_restore_vmx_misc(vmx, data);
1193         case MSR_IA32_VMX_CR0_FIXED0:
1194         case MSR_IA32_VMX_CR4_FIXED0:
1195                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1196         case MSR_IA32_VMX_CR0_FIXED1:
1197         case MSR_IA32_VMX_CR4_FIXED1:
1198                 /*
1199                  * These MSRs are generated based on the vCPU's CPUID, so we
1200                  * do not support restoring them directly.
1201                  */
1202                 return -EINVAL;
1203         case MSR_IA32_VMX_EPT_VPID_CAP:
1204                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1205         case MSR_IA32_VMX_VMCS_ENUM:
1206                 vmx->nested.msrs.vmcs_enum = data;
1207                 return 0;
1208         default:
1209                 /*
1210                  * The rest of the VMX capability MSRs do not support restore.
1211                  */
1212                 return -EINVAL;
1213         }
1214 }
1215
1216 /* Returns 0 on success, non-0 otherwise. */
1217 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1218 {
1219         switch (msr_index) {
1220         case MSR_IA32_VMX_BASIC:
1221                 *pdata = msrs->basic;
1222                 break;
1223         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1224         case MSR_IA32_VMX_PINBASED_CTLS:
1225                 *pdata = vmx_control_msr(
1226                         msrs->pinbased_ctls_low,
1227                         msrs->pinbased_ctls_high);
1228                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1229                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1230                 break;
1231         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1232         case MSR_IA32_VMX_PROCBASED_CTLS:
1233                 *pdata = vmx_control_msr(
1234                         msrs->procbased_ctls_low,
1235                         msrs->procbased_ctls_high);
1236                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1237                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1238                 break;
1239         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1240         case MSR_IA32_VMX_EXIT_CTLS:
1241                 *pdata = vmx_control_msr(
1242                         msrs->exit_ctls_low,
1243                         msrs->exit_ctls_high);
1244                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1245                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1246                 break;
1247         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248         case MSR_IA32_VMX_ENTRY_CTLS:
1249                 *pdata = vmx_control_msr(
1250                         msrs->entry_ctls_low,
1251                         msrs->entry_ctls_high);
1252                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1253                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1254                 break;
1255         case MSR_IA32_VMX_MISC:
1256                 *pdata = vmx_control_msr(
1257                         msrs->misc_low,
1258                         msrs->misc_high);
1259                 break;
1260         case MSR_IA32_VMX_CR0_FIXED0:
1261                 *pdata = msrs->cr0_fixed0;
1262                 break;
1263         case MSR_IA32_VMX_CR0_FIXED1:
1264                 *pdata = msrs->cr0_fixed1;
1265                 break;
1266         case MSR_IA32_VMX_CR4_FIXED0:
1267                 *pdata = msrs->cr4_fixed0;
1268                 break;
1269         case MSR_IA32_VMX_CR4_FIXED1:
1270                 *pdata = msrs->cr4_fixed1;
1271                 break;
1272         case MSR_IA32_VMX_VMCS_ENUM:
1273                 *pdata = msrs->vmcs_enum;
1274                 break;
1275         case MSR_IA32_VMX_PROCBASED_CTLS2:
1276                 *pdata = vmx_control_msr(
1277                         msrs->secondary_ctls_low,
1278                         msrs->secondary_ctls_high);
1279                 break;
1280         case MSR_IA32_VMX_EPT_VPID_CAP:
1281                 *pdata = msrs->ept_caps |
1282                         ((u64)msrs->vpid_caps << 32);
1283                 break;
1284         case MSR_IA32_VMX_VMFUNC:
1285                 *pdata = msrs->vmfunc_controls;
1286                 break;
1287         default:
1288                 return 1;
1289         }
1290
1291         return 0;
1292 }
1293
1294 /*
1295  * Copy the writable VMCS shadow fields back to the VMCS12, in case
1296  * they have been modified by the L1 guest. Note that the "read-only"
1297  * VM-exit information fields are actually writable if the vCPU is
1298  * configured to support "VMWRITE to any supported field in the VMCS."
1299  */
1300 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1301 {
1302         const u16 *fields[] = {
1303                 shadow_read_write_fields,
1304                 shadow_read_only_fields
1305         };
1306         const int max_fields[] = {
1307                 max_shadow_read_write_fields,
1308                 max_shadow_read_only_fields
1309         };
1310         int i, q;
1311         unsigned long field;
1312         u64 field_value;
1313         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1314
1315         preempt_disable();
1316
1317         vmcs_load(shadow_vmcs);
1318
1319         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1320                 for (i = 0; i < max_fields[q]; i++) {
1321                         field = fields[q][i];
1322                         field_value = __vmcs_readl(field);
1323                         vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
1324                 }
1325                 /*
1326                  * Skip the VM-exit information fields if they are read-only.
1327                  */
1328                 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1329                         break;
1330         }
1331
1332         vmcs_clear(shadow_vmcs);
1333         vmcs_load(vmx->loaded_vmcs->vmcs);
1334
1335         preempt_enable();
1336 }
1337
1338 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1339 {
1340         const u16 *fields[] = {
1341                 shadow_read_write_fields,
1342                 shadow_read_only_fields
1343         };
1344         const int max_fields[] = {
1345                 max_shadow_read_write_fields,
1346                 max_shadow_read_only_fields
1347         };
1348         int i, q;
1349         unsigned long field;
1350         u64 field_value = 0;
1351         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1352
1353         vmcs_load(shadow_vmcs);
1354
1355         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1356                 for (i = 0; i < max_fields[q]; i++) {
1357                         field = fields[q][i];
1358                         vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
1359                         __vmcs_writel(field, field_value);
1360                 }
1361         }
1362
1363         vmcs_clear(shadow_vmcs);
1364         vmcs_load(vmx->loaded_vmcs->vmcs);
1365 }
1366
1367 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1368 {
1369         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1370         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1371
1372         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1373         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1374         vmcs12->guest_rip = evmcs->guest_rip;
1375
1376         if (unlikely(!(evmcs->hv_clean_fields &
1377                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1378                 vmcs12->guest_rsp = evmcs->guest_rsp;
1379                 vmcs12->guest_rflags = evmcs->guest_rflags;
1380                 vmcs12->guest_interruptibility_info =
1381                         evmcs->guest_interruptibility_info;
1382         }
1383
1384         if (unlikely(!(evmcs->hv_clean_fields &
1385                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1386                 vmcs12->cpu_based_vm_exec_control =
1387                         evmcs->cpu_based_vm_exec_control;
1388         }
1389
1390         if (unlikely(!(evmcs->hv_clean_fields &
1391                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1392                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1393         }
1394
1395         if (unlikely(!(evmcs->hv_clean_fields &
1396                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1397                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1398         }
1399
1400         if (unlikely(!(evmcs->hv_clean_fields &
1401                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1402                 vmcs12->vm_entry_intr_info_field =
1403                         evmcs->vm_entry_intr_info_field;
1404                 vmcs12->vm_entry_exception_error_code =
1405                         evmcs->vm_entry_exception_error_code;
1406                 vmcs12->vm_entry_instruction_len =
1407                         evmcs->vm_entry_instruction_len;
1408         }
1409
1410         if (unlikely(!(evmcs->hv_clean_fields &
1411                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1412                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1413                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1414                 vmcs12->host_cr0 = evmcs->host_cr0;
1415                 vmcs12->host_cr3 = evmcs->host_cr3;
1416                 vmcs12->host_cr4 = evmcs->host_cr4;
1417                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1418                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1419                 vmcs12->host_rip = evmcs->host_rip;
1420                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1421                 vmcs12->host_es_selector = evmcs->host_es_selector;
1422                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1423                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1424                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1425                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1426                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1427                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1428         }
1429
1430         if (unlikely(!(evmcs->hv_clean_fields &
1431                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1432                 vmcs12->pin_based_vm_exec_control =
1433                         evmcs->pin_based_vm_exec_control;
1434                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1435                 vmcs12->secondary_vm_exec_control =
1436                         evmcs->secondary_vm_exec_control;
1437         }
1438
1439         if (unlikely(!(evmcs->hv_clean_fields &
1440                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1441                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1442                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1443         }
1444
1445         if (unlikely(!(evmcs->hv_clean_fields &
1446                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1447                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1448         }
1449
1450         if (unlikely(!(evmcs->hv_clean_fields &
1451                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1452                 vmcs12->guest_es_base = evmcs->guest_es_base;
1453                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1454                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1455                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1456                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1457                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1458                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1459                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1460                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1461                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1462                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1463                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1464                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1465                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1466                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1467                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1468                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1469                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1470                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1471                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1472                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1473                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1474                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1475                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1476                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1477                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1478                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1479                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1480                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1481                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1482                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1483                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1484                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1485                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1486                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1487                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1488         }
1489
1490         if (unlikely(!(evmcs->hv_clean_fields &
1491                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1492                 vmcs12->tsc_offset = evmcs->tsc_offset;
1493                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1494                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1495         }
1496
1497         if (unlikely(!(evmcs->hv_clean_fields &
1498                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1499                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1500                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1501                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1502                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1503                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1504                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1505                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1506                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1507         }
1508
1509         if (unlikely(!(evmcs->hv_clean_fields &
1510                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1511                 vmcs12->host_fs_base = evmcs->host_fs_base;
1512                 vmcs12->host_gs_base = evmcs->host_gs_base;
1513                 vmcs12->host_tr_base = evmcs->host_tr_base;
1514                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1515                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1516                 vmcs12->host_rsp = evmcs->host_rsp;
1517         }
1518
1519         if (unlikely(!(evmcs->hv_clean_fields &
1520                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1521                 vmcs12->ept_pointer = evmcs->ept_pointer;
1522                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1523         }
1524
1525         if (unlikely(!(evmcs->hv_clean_fields &
1526                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1527                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1528                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1529                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1530                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1531                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1532                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1533                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1534                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1535                 vmcs12->guest_pending_dbg_exceptions =
1536                         evmcs->guest_pending_dbg_exceptions;
1537                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1538                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1539                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1540                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1541                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1542         }
1543
1544         /*
1545          * Not used?
1546          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1547          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1548          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1549          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1550          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1551          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1552          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1553          * vmcs12->page_fault_error_code_mask =
1554          *              evmcs->page_fault_error_code_mask;
1555          * vmcs12->page_fault_error_code_match =
1556          *              evmcs->page_fault_error_code_match;
1557          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1558          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1559          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1560          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1561          */
1562
1563         /*
1564          * Read only fields:
1565          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1566          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1567          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1568          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1569          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1570          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1571          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1572          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1573          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1574          * vmcs12->exit_qualification = evmcs->exit_qualification;
1575          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1576          *
1577          * Not present in struct vmcs12:
1578          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1579          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1580          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1581          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1582          */
1583
1584         return 0;
1585 }
1586
1587 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1588 {
1589         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1590         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1591
1592         /*
1593          * Should not be changed by KVM:
1594          *
1595          * evmcs->host_es_selector = vmcs12->host_es_selector;
1596          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1597          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1598          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1599          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1600          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1601          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1602          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1603          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1604          * evmcs->host_cr0 = vmcs12->host_cr0;
1605          * evmcs->host_cr3 = vmcs12->host_cr3;
1606          * evmcs->host_cr4 = vmcs12->host_cr4;
1607          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1608          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1609          * evmcs->host_rip = vmcs12->host_rip;
1610          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1611          * evmcs->host_fs_base = vmcs12->host_fs_base;
1612          * evmcs->host_gs_base = vmcs12->host_gs_base;
1613          * evmcs->host_tr_base = vmcs12->host_tr_base;
1614          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1615          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1616          * evmcs->host_rsp = vmcs12->host_rsp;
1617          * sync_vmcs12() doesn't read these:
1618          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1619          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1620          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1621          * evmcs->ept_pointer = vmcs12->ept_pointer;
1622          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1623          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1624          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1625          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1626          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1627          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1628          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1629          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1630          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1631          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1632          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1633          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1634          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1635          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1636          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1637          * evmcs->page_fault_error_code_mask =
1638          *              vmcs12->page_fault_error_code_mask;
1639          * evmcs->page_fault_error_code_match =
1640          *              vmcs12->page_fault_error_code_match;
1641          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1642          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1643          * evmcs->tsc_offset = vmcs12->tsc_offset;
1644          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1645          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1646          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1647          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1648          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1649          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1650          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1651          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1652          *
1653          * Not present in struct vmcs12:
1654          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1655          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1656          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1657          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1658          */
1659
1660         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1661         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1662         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1663         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1664         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1665         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1666         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1667         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1668
1669         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1670         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1671         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1672         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1673         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1674         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1675         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1676         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1677         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1678         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1679
1680         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1681         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1682         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1683         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1684         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1685         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1686         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1687         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1688
1689         evmcs->guest_es_base = vmcs12->guest_es_base;
1690         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1691         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1692         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1693         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1694         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1695         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1696         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1697         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1698         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1699
1700         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1701         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1702
1703         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1704         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1705         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1706         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1707
1708         evmcs->guest_pending_dbg_exceptions =
1709                 vmcs12->guest_pending_dbg_exceptions;
1710         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1711         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1712
1713         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1714         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1715
1716         evmcs->guest_cr0 = vmcs12->guest_cr0;
1717         evmcs->guest_cr3 = vmcs12->guest_cr3;
1718         evmcs->guest_cr4 = vmcs12->guest_cr4;
1719         evmcs->guest_dr7 = vmcs12->guest_dr7;
1720
1721         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1722
1723         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1724         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1725         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1726         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1727         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1728         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1729         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1730         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1731
1732         evmcs->exit_qualification = vmcs12->exit_qualification;
1733
1734         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1735         evmcs->guest_rsp = vmcs12->guest_rsp;
1736         evmcs->guest_rflags = vmcs12->guest_rflags;
1737
1738         evmcs->guest_interruptibility_info =
1739                 vmcs12->guest_interruptibility_info;
1740         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1741         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1742         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1743         evmcs->vm_entry_exception_error_code =
1744                 vmcs12->vm_entry_exception_error_code;
1745         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1746
1747         evmcs->guest_rip = vmcs12->guest_rip;
1748
1749         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1750
1751         return 0;
1752 }
1753
1754 /*
1755  * This is an equivalent of the nested hypervisor executing the vmptrld
1756  * instruction.
1757  */
1758 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1759                                                  bool from_launch)
1760 {
1761         struct vcpu_vmx *vmx = to_vmx(vcpu);
1762         struct hv_vp_assist_page assist_page;
1763
1764         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1765                 return 1;
1766
1767         if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
1768                 return 1;
1769
1770         if (unlikely(!assist_page.enlighten_vmentry))
1771                 return 1;
1772
1773         if (unlikely(assist_page.current_nested_vmcs !=
1774                      vmx->nested.hv_evmcs_vmptr)) {
1775
1776                 if (!vmx->nested.hv_evmcs)
1777                         vmx->nested.current_vmptr = -1ull;
1778
1779                 nested_release_evmcs(vcpu);
1780
1781                 vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
1782                         vcpu, assist_page.current_nested_vmcs);
1783
1784                 if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
1785                         return 0;
1786
1787                 vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
1788
1789                 /*
1790                  * Currently, KVM only supports eVMCS version 1
1791                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1792                  * value to first u32 field of eVMCS which should specify eVMCS
1793                  * VersionNumber.
1794                  *
1795                  * Guest should be aware of supported eVMCS versions by host by
1796                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1797                  * expected to set this CPUID leaf according to the value
1798                  * returned in vmcs_version from nested_enable_evmcs().
1799                  *
1800                  * However, it turns out that Microsoft Hyper-V fails to comply
1801                  * to their own invented interface: When Hyper-V use eVMCS, it
1802                  * just sets first u32 field of eVMCS to revision_id specified
1803                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1804                  * which is one of the supported versions specified in
1805                  * CPUID.0x4000000A.EAX[0:15].
1806                  *
1807                  * To overcome Hyper-V bug, we accept here either a supported
1808                  * eVMCS version or VMCS12 revision_id as valid values for first
1809                  * u32 field of eVMCS.
1810                  */
1811                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1812                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1813                         nested_release_evmcs(vcpu);
1814                         return 0;
1815                 }
1816
1817                 vmx->nested.dirty_vmcs12 = true;
1818                 /*
1819                  * As we keep L2 state for one guest only 'hv_clean_fields' mask
1820                  * can't be used when we switch between them. Reset it here for
1821                  * simplicity.
1822                  */
1823                 vmx->nested.hv_evmcs->hv_clean_fields &=
1824                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1825                 vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
1826
1827                 /*
1828                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1829                  * reloaded from guest's memory (read only fields, fields not
1830                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1831                  * are no leftovers.
1832                  */
1833                 if (from_launch) {
1834                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1835                         memset(vmcs12, 0, sizeof(*vmcs12));
1836                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1837                 }
1838
1839         }
1840         return 1;
1841 }
1842
1843 void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
1844 {
1845         struct vcpu_vmx *vmx = to_vmx(vcpu);
1846
1847         /*
1848          * hv_evmcs may end up being not mapped after migration (when
1849          * L2 was running), map it here to make sure vmcs12 changes are
1850          * properly reflected.
1851          */
1852         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1853                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1854
1855         if (vmx->nested.hv_evmcs) {
1856                 copy_vmcs12_to_enlightened(vmx);
1857                 /* All fields are clean */
1858                 vmx->nested.hv_evmcs->hv_clean_fields |=
1859                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1860         } else {
1861                 copy_vmcs12_to_shadow(vmx);
1862         }
1863
1864         vmx->nested.need_vmcs12_sync = false;
1865 }
1866
1867 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1868 {
1869         struct vcpu_vmx *vmx =
1870                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1871
1872         vmx->nested.preemption_timer_expired = true;
1873         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1874         kvm_vcpu_kick(&vmx->vcpu);
1875
1876         return HRTIMER_NORESTART;
1877 }
1878
1879 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1880 {
1881         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1882         struct vcpu_vmx *vmx = to_vmx(vcpu);
1883
1884         /*
1885          * A timer value of zero is architecturally guaranteed to cause
1886          * a VMExit prior to executing any instructions in the guest.
1887          */
1888         if (preemption_timeout == 0) {
1889                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1890                 return;
1891         }
1892
1893         if (vcpu->arch.virtual_tsc_khz == 0)
1894                 return;
1895
1896         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1897         preemption_timeout *= 1000000;
1898         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1899         hrtimer_start(&vmx->nested.preemption_timer,
1900                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1901 }
1902
1903 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1904 {
1905         if (vmx->nested.nested_run_pending &&
1906             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1907                 return vmcs12->guest_ia32_efer;
1908         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1909                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1910         else
1911                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1912 }
1913
1914 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1915 {
1916         /*
1917          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1918          * according to L0's settings (vmcs12 is irrelevant here).  Host
1919          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1920          * will be set as needed prior to VMLAUNCH/VMRESUME.
1921          */
1922         if (vmx->nested.vmcs02_initialized)
1923                 return;
1924         vmx->nested.vmcs02_initialized = true;
1925
1926         /*
1927          * We don't care what the EPTP value is we just need to guarantee
1928          * it's valid so we don't get a false positive when doing early
1929          * consistency checks.
1930          */
1931         if (enable_ept && nested_early_check)
1932                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1933
1934         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1935         if (cpu_has_vmx_vmfunc())
1936                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1937
1938         if (cpu_has_vmx_posted_intr())
1939                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1940
1941         if (cpu_has_vmx_msr_bitmap())
1942                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1943
1944         if (enable_pml)
1945                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1946
1947         /*
1948          * Set the MSR load/store lists to match L0's settings.  Only the
1949          * addresses are constant (for vmcs02), the counts can change based
1950          * on L2's behavior, e.g. switching to/from long mode.
1951          */
1952         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1953         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1954         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1955
1956         vmx_set_constant_host_state(vmx);
1957 }
1958
1959 static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
1960                                       struct vmcs12 *vmcs12)
1961 {
1962         prepare_vmcs02_constant_state(vmx);
1963
1964         vmcs_write64(VMCS_LINK_POINTER, -1ull);
1965
1966         if (enable_vpid) {
1967                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
1968                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
1969                 else
1970                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1971         }
1972 }
1973
1974 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1975 {
1976         u32 exec_control, vmcs12_exec_ctrl;
1977         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
1978
1979         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
1980                 prepare_vmcs02_early_full(vmx, vmcs12);
1981
1982         /*
1983          * PIN CONTROLS
1984          */
1985         exec_control = vmcs12->pin_based_vm_exec_control;
1986
1987         /* Preemption timer setting is computed directly in vmx_vcpu_run.  */
1988         exec_control |= vmcs_config.pin_based_exec_ctrl;
1989         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
1990         vmx->loaded_vmcs->hv_timer_armed = false;
1991
1992         /* Posted interrupts setting is only taken from vmcs12.  */
1993         if (nested_cpu_has_posted_intr(vmcs12)) {
1994                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
1995                 vmx->nested.pi_pending = false;
1996         } else {
1997                 exec_control &= ~PIN_BASED_POSTED_INTR;
1998         }
1999         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
2000
2001         /*
2002          * EXEC CONTROLS
2003          */
2004         exec_control = vmx_exec_control(vmx); /* L0's desires */
2005         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2006         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2007         exec_control &= ~CPU_BASED_TPR_SHADOW;
2008         exec_control |= vmcs12->cpu_based_vm_exec_control;
2009
2010         /*
2011          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
2012          * nested_get_vmcs12_pages can't fix it up, the illegal value
2013          * will result in a VM entry failure.
2014          */
2015         if (exec_control & CPU_BASED_TPR_SHADOW) {
2016                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2017                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2018         } else {
2019 #ifdef CONFIG_X86_64
2020                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2021                                 CPU_BASED_CR8_STORE_EXITING;
2022 #endif
2023         }
2024
2025         /*
2026          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2027          * for I/O port accesses.
2028          */
2029         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2030         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2031         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2032
2033         /*
2034          * SECONDARY EXEC CONTROLS
2035          */
2036         if (cpu_has_secondary_exec_ctrls()) {
2037                 exec_control = vmx->secondary_exec_control;
2038
2039                 /* Take the following fields only from vmcs12 */
2040                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2041                                   SECONDARY_EXEC_ENABLE_INVPCID |
2042                                   SECONDARY_EXEC_RDTSCP |
2043                                   SECONDARY_EXEC_XSAVES |
2044                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2045                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2046                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2047                 if (nested_cpu_has(vmcs12,
2048                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2049                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2050                                 ~SECONDARY_EXEC_ENABLE_PML;
2051                         exec_control |= vmcs12_exec_ctrl;
2052                 }
2053
2054                 /* VMCS shadowing for L2 is emulated for now */
2055                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2056
2057                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2058                         vmcs_write16(GUEST_INTR_STATUS,
2059                                 vmcs12->guest_intr_status);
2060
2061                 /*
2062                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
2063                  * nested_get_vmcs12_pages will either fix it up or
2064                  * remove the VM execution control.
2065                  */
2066                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
2067                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
2068
2069                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2070                         vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2071
2072                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2073         }
2074
2075         /*
2076          * ENTRY CONTROLS
2077          *
2078          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2079          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2080          * on the related bits (if supported by the CPU) in the hope that
2081          * we can avoid VMWrites during vmx_set_efer().
2082          */
2083         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2084                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2085         if (cpu_has_load_ia32_efer()) {
2086                 if (guest_efer & EFER_LMA)
2087                         exec_control |= VM_ENTRY_IA32E_MODE;
2088                 if (guest_efer != host_efer)
2089                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2090         }
2091         vm_entry_controls_init(vmx, exec_control);
2092
2093         /*
2094          * EXIT CONTROLS
2095          *
2096          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2097          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2098          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2099          */
2100         exec_control = vmx_vmexit_ctrl();
2101         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2102                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2103         vm_exit_controls_init(vmx, exec_control);
2104
2105         /*
2106          * Conceptually we want to copy the PML address and index from
2107          * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
2108          * since we always flush the log on each vmexit and never change
2109          * the PML address (once set), this happens to be equivalent to
2110          * simply resetting the index in vmcs02.
2111          */
2112         if (enable_pml)
2113                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2114
2115         /*
2116          * Interrupt/Exception Fields
2117          */
2118         if (vmx->nested.nested_run_pending) {
2119                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2120                              vmcs12->vm_entry_intr_info_field);
2121                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2122                              vmcs12->vm_entry_exception_error_code);
2123                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2124                              vmcs12->vm_entry_instruction_len);
2125                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2126                              vmcs12->guest_interruptibility_info);
2127                 vmx->loaded_vmcs->nmi_known_unmasked =
2128                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2129         } else {
2130                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2131         }
2132 }
2133
2134 static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2135 {
2136         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2137
2138         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2139                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2140                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2141                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2142                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2143                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2144                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2145                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2146                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2147                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2148                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2149                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2150                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2151                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2152                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2153                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2154                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2155                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2156                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2157                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2158                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2159                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2160                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2161                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2162                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2163                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2164                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2165                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2166                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2167                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2168                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2169                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2170                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2171                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2172                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2173                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2174         }
2175
2176         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2177                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2178                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2179                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2180                             vmcs12->guest_pending_dbg_exceptions);
2181                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2182                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2183
2184                 /*
2185                  * L1 may access the L2's PDPTR, so save them to construct
2186                  * vmcs12
2187                  */
2188                 if (enable_ept) {
2189                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2190                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2191                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2192                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2193                 }
2194         }
2195
2196         if (nested_cpu_has_xsaves(vmcs12))
2197                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2198
2199         /*
2200          * Whether page-faults are trapped is determined by a combination of
2201          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2202          * If enable_ept, L0 doesn't care about page faults and we should
2203          * set all of these to L1's desires. However, if !enable_ept, L0 does
2204          * care about (at least some) page faults, and because it is not easy
2205          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2206          * to exit on each and every L2 page fault. This is done by setting
2207          * MASK=MATCH=0 and (see below) EB.PF=1.
2208          * Note that below we don't need special code to set EB.PF beyond the
2209          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2210          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2211          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2212          */
2213         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2214                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2215         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2216                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2217
2218         if (cpu_has_vmx_apicv()) {
2219                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2220                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2221                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2222                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2223         }
2224
2225         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2226         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2227
2228         set_cr4_guest_host_mask(vmx);
2229
2230         if (kvm_mpx_supported()) {
2231                 if (vmx->nested.nested_run_pending &&
2232                         (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2233                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2234                 else
2235                         vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2236         }
2237 }
2238
2239 /*
2240  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2241  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2242  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2243  * guest in a way that will both be appropriate to L1's requests, and our
2244  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2245  * function also has additional necessary side-effects, like setting various
2246  * vcpu->arch fields.
2247  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2248  * is assigned to entry_failure_code on failure.
2249  */
2250 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2251                           u32 *entry_failure_code)
2252 {
2253         struct vcpu_vmx *vmx = to_vmx(vcpu);
2254         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2255
2256         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
2257                 prepare_vmcs02_full(vmx, vmcs12);
2258                 vmx->nested.dirty_vmcs12 = false;
2259         }
2260
2261         /*
2262          * First, the fields that are shadowed.  This must be kept in sync
2263          * with vmcs_shadow_fields.h.
2264          */
2265         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2266                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2267                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2268                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2269         }
2270
2271         if (vmx->nested.nested_run_pending &&
2272             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2273                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2274                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2275         } else {
2276                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2277                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2278         }
2279         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2280
2281         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2282          * bitwise-or of what L1 wants to trap for L2, and what we want to
2283          * trap. Note that CR0.TS also needs updating - we do this later.
2284          */
2285         update_exception_bitmap(vcpu);
2286         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2287         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2288
2289         if (vmx->nested.nested_run_pending &&
2290             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2291                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2292                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2293         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2294                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2295         }
2296
2297         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2298
2299         if (kvm_has_tsc_control)
2300                 decache_tsc_multiplier(vmx);
2301
2302         if (enable_vpid) {
2303                 /*
2304                  * There is no direct mapping between vpid02 and vpid12, the
2305                  * vpid02 is per-vCPU for L0 and reused while the value of
2306                  * vpid12 is changed w/ one invvpid during nested vmentry.
2307                  * The vpid12 is allocated by L1 for L2, so it will not
2308                  * influence global bitmap(for vpid01 and vpid02 allocation)
2309                  * even if spawn a lot of nested vCPUs.
2310                  */
2311                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2312                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2313                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2314                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2315                         }
2316                 } else {
2317                         /*
2318                          * If L1 use EPT, then L0 needs to execute INVEPT on
2319                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2320                          * flush until vmcs02->eptp is fully updated by
2321                          * KVM_REQ_LOAD_CR3. Note that this assumes
2322                          * KVM_REQ_TLB_FLUSH is evaluated after
2323                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2324                          */
2325                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2326                 }
2327         }
2328
2329         if (nested_cpu_has_ept(vmcs12))
2330                 nested_ept_init_mmu_context(vcpu);
2331         else if (nested_cpu_has2(vmcs12,
2332                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2333                 vmx_flush_tlb(vcpu, true);
2334
2335         /*
2336          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2337          * bits which we consider mandatory enabled.
2338          * The CR0_READ_SHADOW is what L2 should have expected to read given
2339          * the specifications by L1; It's not enough to take
2340          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2341          * have more bits than L1 expected.
2342          */
2343         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2344         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2345
2346         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2347         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2348
2349         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2350         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2351         vmx_set_efer(vcpu, vcpu->arch.efer);
2352
2353         /*
2354          * Guest state is invalid and unrestricted guest is disabled,
2355          * which means L1 attempted VMEntry to L2 with invalid state.
2356          * Fail the VMEntry.
2357          */
2358         if (vmx->emulation_required) {
2359                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2360                 return 1;
2361         }
2362
2363         /* Shadow page tables on either EPT or shadow page tables. */
2364         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2365                                 entry_failure_code))
2366                 return 1;
2367
2368         if (!enable_ept)
2369                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2370
2371         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
2372         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
2373         return 0;
2374 }
2375
2376 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2377 {
2378         if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2379             nested_cpu_has_virtual_nmis(vmcs12))
2380                 return -EINVAL;
2381
2382         if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2383             nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2384                 return -EINVAL;
2385
2386         return 0;
2387 }
2388
2389 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2390 {
2391         struct vcpu_vmx *vmx = to_vmx(vcpu);
2392         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2393
2394         /* Check for memory type validity */
2395         switch (address & VMX_EPTP_MT_MASK) {
2396         case VMX_EPTP_MT_UC:
2397                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2398                         return false;
2399                 break;
2400         case VMX_EPTP_MT_WB:
2401                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2402                         return false;
2403                 break;
2404         default:
2405                 return false;
2406         }
2407
2408         /* only 4 levels page-walk length are valid */
2409         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2410                 return false;
2411
2412         /* Reserved bits should not be set */
2413         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2414                 return false;
2415
2416         /* AD, if set, should be supported */
2417         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2418                 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2419                         return false;
2420         }
2421
2422         return true;
2423 }
2424
2425 /*
2426  * Checks related to VM-Execution Control Fields
2427  */
2428 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2429                                               struct vmcs12 *vmcs12)
2430 {
2431         struct vcpu_vmx *vmx = to_vmx(vcpu);
2432
2433         if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2434                                 vmx->nested.msrs.pinbased_ctls_low,
2435                                 vmx->nested.msrs.pinbased_ctls_high) ||
2436             !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2437                                 vmx->nested.msrs.procbased_ctls_low,
2438                                 vmx->nested.msrs.procbased_ctls_high))
2439                 return -EINVAL;
2440
2441         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2442             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2443                                  vmx->nested.msrs.secondary_ctls_low,
2444                                  vmx->nested.msrs.secondary_ctls_high))
2445                 return -EINVAL;
2446
2447         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2448             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2449             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2450             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2451             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2452             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2453             nested_vmx_check_nmi_controls(vmcs12) ||
2454             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2455             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2456             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2457             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2458             (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2459                 return -EINVAL;
2460
2461         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2462             nested_cpu_has_save_preemption_timer(vmcs12))
2463                 return -EINVAL;
2464
2465         if (nested_cpu_has_ept(vmcs12) &&
2466             !valid_ept_address(vcpu, vmcs12->ept_pointer))
2467                 return -EINVAL;
2468
2469         if (nested_cpu_has_vmfunc(vmcs12)) {
2470                 if (vmcs12->vm_function_control &
2471                     ~vmx->nested.msrs.vmfunc_controls)
2472                         return -EINVAL;
2473
2474                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2475                         if (!nested_cpu_has_ept(vmcs12) ||
2476                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
2477                                 return -EINVAL;
2478                 }
2479         }
2480
2481         return 0;
2482 }
2483
2484 /*
2485  * Checks related to VM-Exit Control Fields
2486  */
2487 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2488                                          struct vmcs12 *vmcs12)
2489 {
2490         struct vcpu_vmx *vmx = to_vmx(vcpu);
2491
2492         if (!vmx_control_verify(vmcs12->vm_exit_controls,
2493                                 vmx->nested.msrs.exit_ctls_low,
2494                                 vmx->nested.msrs.exit_ctls_high) ||
2495             nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2496                 return -EINVAL;
2497
2498         return 0;
2499 }
2500
2501 /*
2502  * Checks related to VM-Entry Control Fields
2503  */
2504 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2505                                           struct vmcs12 *vmcs12)
2506 {
2507         struct vcpu_vmx *vmx = to_vmx(vcpu);
2508
2509         if (!vmx_control_verify(vmcs12->vm_entry_controls,
2510                                 vmx->nested.msrs.entry_ctls_low,
2511                                 vmx->nested.msrs.entry_ctls_high))
2512                 return -EINVAL;
2513
2514         /*
2515          * From the Intel SDM, volume 3:
2516          * Fields relevant to VM-entry event injection must be set properly.
2517          * These fields are the VM-entry interruption-information field, the
2518          * VM-entry exception error code, and the VM-entry instruction length.
2519          */
2520         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2521                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2522                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2523                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2524                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2525                 bool should_have_error_code;
2526                 bool urg = nested_cpu_has2(vmcs12,
2527                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2528                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2529
2530                 /* VM-entry interruption-info field: interruption type */
2531                 if (intr_type == INTR_TYPE_RESERVED ||
2532                     (intr_type == INTR_TYPE_OTHER_EVENT &&
2533                      !nested_cpu_supports_monitor_trap_flag(vcpu)))
2534                         return -EINVAL;
2535
2536                 /* VM-entry interruption-info field: vector */
2537                 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2538                     (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2539                     (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2540                         return -EINVAL;
2541
2542                 /* VM-entry interruption-info field: deliver error code */
2543                 should_have_error_code =
2544                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2545                         x86_exception_has_error_code(vector);
2546                 if (has_error_code != should_have_error_code)
2547                         return -EINVAL;
2548
2549                 /* VM-entry exception error code */
2550                 if (has_error_code &&
2551                     vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2552                         return -EINVAL;
2553
2554                 /* VM-entry interruption-info field: reserved bits */
2555                 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2556                         return -EINVAL;
2557
2558                 /* VM-entry instruction length */
2559                 switch (intr_type) {
2560                 case INTR_TYPE_SOFT_EXCEPTION:
2561                 case INTR_TYPE_SOFT_INTR:
2562                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2563                         if ((vmcs12->vm_entry_instruction_len > 15) ||
2564                             (vmcs12->vm_entry_instruction_len == 0 &&
2565                              !nested_cpu_has_zero_length_injection(vcpu)))
2566                                 return -EINVAL;
2567                 }
2568         }
2569
2570         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2571                 return -EINVAL;
2572
2573         return 0;
2574 }
2575
2576 /*
2577  * Checks related to Host Control Registers and MSRs
2578  */
2579 static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
2580                                           struct vmcs12 *vmcs12)
2581 {
2582         bool ia32e;
2583
2584         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2585             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2586             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2587                 return -EINVAL;
2588         /*
2589          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2590          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2591          * the values of the LMA and LME bits in the field must each be that of
2592          * the host address-space size VM-exit control.
2593          */
2594         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2595                 ia32e = (vmcs12->vm_exit_controls &
2596                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2597                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2598                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2599                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2600                         return -EINVAL;
2601         }
2602
2603         return 0;
2604 }
2605
2606 /*
2607  * Checks related to Guest Non-register State
2608  */
2609 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2610 {
2611         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2612             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2613                 return -EINVAL;
2614
2615         return 0;
2616 }
2617
2618 static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
2619                                             struct vmcs12 *vmcs12)
2620 {
2621         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2622             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2623             nested_check_vm_entry_controls(vcpu, vmcs12))
2624                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2625
2626         if (nested_check_host_control_regs(vcpu, vmcs12))
2627                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
2628
2629         if (nested_check_guest_non_reg_state(vmcs12))
2630                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2631
2632         return 0;
2633 }
2634
2635 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2636                                           struct vmcs12 *vmcs12)
2637 {
2638         int r;
2639         struct page *page;
2640         struct vmcs12 *shadow;
2641
2642         if (vmcs12->vmcs_link_pointer == -1ull)
2643                 return 0;
2644
2645         if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2646                 return -EINVAL;
2647
2648         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
2649         if (is_error_page(page))
2650                 return -EINVAL;
2651
2652         r = 0;
2653         shadow = kmap(page);
2654         if (shadow->hdr.revision_id != VMCS12_REVISION ||
2655             shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2656                 r = -EINVAL;
2657         kunmap(page);
2658         kvm_release_page_clean(page);
2659         return r;
2660 }
2661
2662 static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
2663                                              struct vmcs12 *vmcs12,
2664                                              u32 *exit_qual)
2665 {
2666         bool ia32e;
2667
2668         *exit_qual = ENTRY_FAIL_DEFAULT;
2669
2670         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2671             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2672                 return 1;
2673
2674         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2675                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2676                 return 1;
2677         }
2678
2679         /*
2680          * If the load IA32_EFER VM-entry control is 1, the following checks
2681          * are performed on the field for the IA32_EFER MSR:
2682          * - Bits reserved in the IA32_EFER MSR must be 0.
2683          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2684          *   the IA-32e mode guest VM-exit control. It must also be identical
2685          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2686          *   CR0.PG) is 1.
2687          */
2688         if (to_vmx(vcpu)->nested.nested_run_pending &&
2689             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2690                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2691                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2692                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2693                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2694                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2695                         return 1;
2696         }
2697
2698         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2699                 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2700                 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2701                         return 1;
2702
2703         return 0;
2704 }
2705
2706 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2707 {
2708         struct vcpu_vmx *vmx = to_vmx(vcpu);
2709         unsigned long cr3, cr4;
2710         bool vm_fail;
2711
2712         if (!nested_early_check)
2713                 return 0;
2714
2715         if (vmx->msr_autoload.host.nr)
2716                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2717         if (vmx->msr_autoload.guest.nr)
2718                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2719
2720         preempt_disable();
2721
2722         vmx_prepare_switch_to_guest(vcpu);
2723
2724         /*
2725          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2726          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2727          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2728          * there is no need to preserve other bits or save/restore the field.
2729          */
2730         vmcs_writel(GUEST_RFLAGS, 0);
2731
2732         cr3 = __get_current_cr3_fast();
2733         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2734                 vmcs_writel(HOST_CR3, cr3);
2735                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2736         }
2737
2738         cr4 = cr4_read_shadow();
2739         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2740                 vmcs_writel(HOST_CR4, cr4);
2741                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2742         }
2743
2744         asm(
2745                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2746                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2747                 "je 1f \n\t"
2748                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2749                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2750                 "1: \n\t"
2751                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2752
2753                 /* Check if vmlaunch or vmresume is needed */
2754                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2755
2756                 /*
2757                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2758                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2759                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2760                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2761                  */
2762                 "call vmx_vmenter\n\t"
2763
2764                 CC_SET(be)
2765               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2766               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2767                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2768                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
2769                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2770                 [wordsize]"i"(sizeof(ulong))
2771               : "cc", "memory"
2772         );
2773
2774         preempt_enable();
2775
2776         if (vmx->msr_autoload.host.nr)
2777                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2778         if (vmx->msr_autoload.guest.nr)
2779                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2780
2781         if (vm_fail) {
2782                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2783                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2784                 return 1;
2785         }
2786
2787         /*
2788          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2789          */
2790         local_irq_enable();
2791         if (hw_breakpoint_active())
2792                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2793
2794         /*
2795          * A non-failing VMEntry means we somehow entered guest mode with
2796          * an illegal RIP, and that's just the tip of the iceberg.  There
2797          * is no telling what memory has been modified or what state has
2798          * been exposed to unknown code.  Hitting this all but guarantees
2799          * a (very critical) hardware issue.
2800          */
2801         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2802                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2803
2804         return 0;
2805 }
2806
2807 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2808                                                  struct vmcs12 *vmcs12);
2809
2810 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2811 {
2812         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2813         struct vcpu_vmx *vmx = to_vmx(vcpu);
2814         struct page *page;
2815         u64 hpa;
2816
2817         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2818                 /*
2819                  * Translate L1 physical address to host physical
2820                  * address for vmcs02. Keep the page pinned, so this
2821                  * physical address remains valid. We keep a reference
2822                  * to it so we can release it later.
2823                  */
2824                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2825                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2826                         vmx->nested.apic_access_page = NULL;
2827                 }
2828                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2829                 /*
2830                  * If translation failed, no matter: This feature asks
2831                  * to exit when accessing the given address, and if it
2832                  * can never be accessed, this feature won't do
2833                  * anything anyway.
2834                  */
2835                 if (!is_error_page(page)) {
2836                         vmx->nested.apic_access_page = page;
2837                         hpa = page_to_phys(vmx->nested.apic_access_page);
2838                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2839                 } else {
2840                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2841                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2842                 }
2843         }
2844
2845         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2846                 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
2847                         kvm_release_page_dirty(vmx->nested.virtual_apic_page);
2848                         vmx->nested.virtual_apic_page = NULL;
2849                 }
2850                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
2851
2852                 /*
2853                  * If translation failed, VM entry will fail because
2854                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
2855                  * Failing the vm entry is _not_ what the processor
2856                  * does but it's basically the only possibility we
2857                  * have.  We could still enter the guest if CR8 load
2858                  * exits are enabled, CR8 store exits are enabled, and
2859                  * virtualize APIC access is disabled; in this case
2860                  * the processor would never use the TPR shadow and we
2861                  * could simply clear the bit from the execution
2862                  * control.  But such a configuration is useless, so
2863                  * let's keep the code simple.
2864                  */
2865                 if (!is_error_page(page)) {
2866                         vmx->nested.virtual_apic_page = page;
2867                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
2868                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
2869                 }
2870         }
2871
2872         if (nested_cpu_has_posted_intr(vmcs12)) {
2873                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
2874                         kunmap(vmx->nested.pi_desc_page);
2875                         kvm_release_page_dirty(vmx->nested.pi_desc_page);
2876                         vmx->nested.pi_desc_page = NULL;
2877                         vmx->nested.pi_desc = NULL;
2878                         vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
2879                 }
2880                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
2881                 if (is_error_page(page))
2882                         return;
2883                 vmx->nested.pi_desc_page = page;
2884                 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
2885                 vmx->nested.pi_desc =
2886                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
2887                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2888                         (PAGE_SIZE - 1)));
2889                 vmcs_write64(POSTED_INTR_DESC_ADDR,
2890                         page_to_phys(vmx->nested.pi_desc_page) +
2891                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2892                         (PAGE_SIZE - 1)));
2893         }
2894         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2895                 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
2896                               CPU_BASED_USE_MSR_BITMAPS);
2897         else
2898                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2899                                 CPU_BASED_USE_MSR_BITMAPS);
2900 }
2901
2902 /*
2903  * Intel's VMX Instruction Reference specifies a common set of prerequisites
2904  * for running VMX instructions (except VMXON, whose prerequisites are
2905  * slightly different). It also specifies what exception to inject otherwise.
2906  * Note that many of these exceptions have priority over VM exits, so they
2907  * don't have to be checked again here.
2908  */
2909 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2910 {
2911         if (!to_vmx(vcpu)->nested.vmxon) {
2912                 kvm_queue_exception(vcpu, UD_VECTOR);
2913                 return 0;
2914         }
2915
2916         if (vmx_get_cpl(vcpu)) {
2917                 kvm_inject_gp(vcpu, 0);
2918                 return 0;
2919         }
2920
2921         return 1;
2922 }
2923
2924 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2925 {
2926         u8 rvi = vmx_get_rvi();
2927         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2928
2929         return ((rvi & 0xf0) > (vppr & 0xf0));
2930 }
2931
2932 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2933                                    struct vmcs12 *vmcs12);
2934
2935 /*
2936  * If from_vmentry is false, this is being called from state restore (either RSM
2937  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
2938 + *
2939 + * Returns:
2940 + *   0 - success, i.e. proceed with actual VMEnter
2941 + *   1 - consistency check VMExit
2942 + *  -1 - consistency check VMFail
2943  */
2944 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2945 {
2946         struct vcpu_vmx *vmx = to_vmx(vcpu);
2947         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2948         bool evaluate_pending_interrupts;
2949         u32 exit_reason = EXIT_REASON_INVALID_STATE;
2950         u32 exit_qual;
2951
2952         evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2953                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2954         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2955                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2956
2957         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2958                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2959         if (kvm_mpx_supported() &&
2960                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2961                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
2962
2963         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
2964
2965         prepare_vmcs02_early(vmx, vmcs12);
2966
2967         if (from_vmentry) {
2968                 nested_get_vmcs12_pages(vcpu);
2969
2970                 if (nested_vmx_check_vmentry_hw(vcpu)) {
2971                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2972                         return -1;
2973                 }
2974
2975                 if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
2976                         goto vmentry_fail_vmexit;
2977         }
2978
2979         enter_guest_mode(vcpu);
2980         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
2981                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
2982
2983         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
2984                 goto vmentry_fail_vmexit_guest_mode;
2985
2986         if (from_vmentry) {
2987                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
2988                 exit_qual = nested_vmx_load_msr(vcpu,
2989                                                 vmcs12->vm_entry_msr_load_addr,
2990                                                 vmcs12->vm_entry_msr_load_count);
2991                 if (exit_qual)
2992                         goto vmentry_fail_vmexit_guest_mode;
2993         } else {
2994                 /*
2995                  * The MMU is not initialized to point at the right entities yet and
2996                  * "get pages" would need to read data from the guest (i.e. we will
2997                  * need to perform gpa to hpa translation). Request a call
2998                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
2999                  * have already been set at vmentry time and should not be reset.
3000                  */
3001                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3002         }
3003
3004         /*
3005          * If L1 had a pending IRQ/NMI until it executed
3006          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3007          * disallowed (e.g. interrupts disabled), L0 needs to
3008          * evaluate if this pending event should cause an exit from L2
3009          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3010          * intercept EXTERNAL_INTERRUPT).
3011          *
3012          * Usually this would be handled by the processor noticing an
3013          * IRQ/NMI window request, or checking RVI during evaluation of
3014          * pending virtual interrupts.  However, this setting was done
3015          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3016          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3017          */
3018         if (unlikely(evaluate_pending_interrupts))
3019                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3020
3021         /*
3022          * Do not start the preemption timer hrtimer until after we know
3023          * we are successful, so that only nested_vmx_vmexit needs to cancel
3024          * the timer.
3025          */
3026         vmx->nested.preemption_timer_expired = false;
3027         if (nested_cpu_has_preemption_timer(vmcs12))
3028                 vmx_start_preemption_timer(vcpu);
3029
3030         /*
3031          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3032          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3033          * returned as far as L1 is concerned. It will only return (and set
3034          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3035          */
3036         return 0;
3037
3038         /*
3039          * A failed consistency check that leads to a VMExit during L1's
3040          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3041          * 26.7 "VM-entry failures during or after loading guest state".
3042          */
3043 vmentry_fail_vmexit_guest_mode:
3044         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3045                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3046         leave_guest_mode(vcpu);
3047
3048 vmentry_fail_vmexit:
3049         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3050
3051         if (!from_vmentry)
3052                 return 1;
3053
3054         load_vmcs12_host_state(vcpu, vmcs12);
3055         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3056         vmcs12->exit_qualification = exit_qual;
3057         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3058                 vmx->nested.need_vmcs12_sync = true;
3059         return 1;
3060 }
3061
3062 /*
3063  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3064  * for running an L2 nested guest.
3065  */
3066 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3067 {
3068         struct vmcs12 *vmcs12;
3069         struct vcpu_vmx *vmx = to_vmx(vcpu);
3070         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3071         int ret;
3072
3073         if (!nested_vmx_check_permission(vcpu))
3074                 return 1;
3075
3076         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
3077                 return 1;
3078
3079         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3080                 return nested_vmx_failInvalid(vcpu);
3081
3082         vmcs12 = get_vmcs12(vcpu);
3083
3084         /*
3085          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3086          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3087          * rather than RFLAGS.ZF, and no error number is stored to the
3088          * VM-instruction error field.
3089          */
3090         if (vmcs12->hdr.shadow_vmcs)
3091                 return nested_vmx_failInvalid(vcpu);
3092
3093         if (vmx->nested.hv_evmcs) {
3094                 copy_enlightened_to_vmcs12(vmx);
3095                 /* Enlightened VMCS doesn't have launch state */
3096                 vmcs12->launch_state = !launch;
3097         } else if (enable_shadow_vmcs) {
3098                 copy_shadow_to_vmcs12(vmx);
3099         }
3100
3101         /*
3102          * The nested entry process starts with enforcing various prerequisites
3103          * on vmcs12 as required by the Intel SDM, and act appropriately when
3104          * they fail: As the SDM explains, some conditions should cause the
3105          * instruction to fail, while others will cause the instruction to seem
3106          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3107          * To speed up the normal (success) code path, we should avoid checking
3108          * for misconfigurations which will anyway be caught by the processor
3109          * when using the merged vmcs02.
3110          */
3111         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3112                 return nested_vmx_failValid(vcpu,
3113                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3114
3115         if (vmcs12->launch_state == launch)
3116                 return nested_vmx_failValid(vcpu,
3117                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3118                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3119
3120         ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
3121         if (ret)
3122                 return nested_vmx_failValid(vcpu, ret);
3123
3124         /*
3125          * We're finally done with prerequisite checking, and can start with
3126          * the nested entry.
3127          */
3128         vmx->nested.nested_run_pending = 1;
3129         ret = nested_vmx_enter_non_root_mode(vcpu, true);
3130         vmx->nested.nested_run_pending = !ret;
3131         if (ret > 0)
3132                 return 1;
3133         else if (ret)
3134                 return nested_vmx_failValid(vcpu,
3135                         VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3136
3137         /* Hide L1D cache contents from the nested guest.  */
3138         vmx->vcpu.arch.l1tf_flush_l1d = true;
3139
3140         /*
3141          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3142          * also be used as part of restoring nVMX state for
3143          * snapshot restore (migration).
3144          *
3145          * In this flow, it is assumed that vmcs12 cache was
3146          * trasferred as part of captured nVMX state and should
3147          * therefore not be read from guest memory (which may not
3148          * exist on destination host yet).
3149          */
3150         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3151
3152         /*
3153          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3154          * awakened by event injection or by an NMI-window VM-exit or
3155          * by an interrupt-window VM-exit, halt the vcpu.
3156          */
3157         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3158             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3159             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3160             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3161               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3162                 vmx->nested.nested_run_pending = 0;
3163                 return kvm_vcpu_halt(vcpu);
3164         }
3165         return 1;
3166 }
3167
3168 /*
3169  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3170  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3171  * This function returns the new value we should put in vmcs12.guest_cr0.
3172  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3173  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3174  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3175  *     didn't trap the bit, because if L1 did, so would L0).
3176  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3177  *     been modified by L2, and L1 knows it. So just leave the old value of
3178  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3179  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3180  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3181  *     changed these bits, and therefore they need to be updated, but L0
3182  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3183  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3184  */
3185 static inline unsigned long
3186 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3187 {
3188         return
3189         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3190         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3191         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3192                         vcpu->arch.cr0_guest_owned_bits));
3193 }
3194
3195 static inline unsigned long
3196 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3197 {
3198         return
3199         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3200         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3201         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3202                         vcpu->arch.cr4_guest_owned_bits));
3203 }
3204
3205 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3206                                       struct vmcs12 *vmcs12)
3207 {
3208         u32 idt_vectoring;
3209         unsigned int nr;
3210
3211         if (vcpu->arch.exception.injected) {
3212                 nr = vcpu->arch.exception.nr;
3213                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3214
3215                 if (kvm_exception_is_soft(nr)) {
3216                         vmcs12->vm_exit_instruction_len =
3217                                 vcpu->arch.event_exit_inst_len;
3218                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3219                 } else
3220                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3221
3222                 if (vcpu->arch.exception.has_error_code) {
3223                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3224                         vmcs12->idt_vectoring_error_code =
3225                                 vcpu->arch.exception.error_code;
3226                 }
3227
3228                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3229         } else if (vcpu->arch.nmi_injected) {
3230                 vmcs12->idt_vectoring_info_field =
3231                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3232         } else if (vcpu->arch.interrupt.injected) {
3233                 nr = vcpu->arch.interrupt.nr;
3234                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3235
3236                 if (vcpu->arch.interrupt.soft) {
3237                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3238                         vmcs12->vm_entry_instruction_len =
3239                                 vcpu->arch.event_exit_inst_len;
3240                 } else
3241                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3242
3243                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3244         }
3245 }
3246
3247
3248 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3249 {
3250         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3251         gfn_t gfn;
3252
3253         /*
3254          * Don't need to mark the APIC access page dirty; it is never
3255          * written to by the CPU during APIC virtualization.
3256          */
3257
3258         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3259                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3260                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3261         }
3262
3263         if (nested_cpu_has_posted_intr(vmcs12)) {
3264                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3265                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3266         }
3267 }
3268
3269 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3270 {
3271         struct vcpu_vmx *vmx = to_vmx(vcpu);
3272         int max_irr;
3273         void *vapic_page;
3274         u16 status;
3275
3276         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3277                 return;
3278
3279         vmx->nested.pi_pending = false;
3280         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3281                 return;
3282
3283         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3284         if (max_irr != 256) {
3285                 vapic_page = kmap(vmx->nested.virtual_apic_page);
3286                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3287                         vapic_page, &max_irr);
3288                 kunmap(vmx->nested.virtual_apic_page);
3289
3290                 status = vmcs_read16(GUEST_INTR_STATUS);
3291                 if ((u8)max_irr > ((u8)status & 0xff)) {
3292                         status &= ~0xff;
3293                         status |= (u8)max_irr;
3294                         vmcs_write16(GUEST_INTR_STATUS, status);
3295                 }
3296         }
3297
3298         nested_mark_vmcs12_pages_dirty(vcpu);
3299 }
3300
3301 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3302                                                unsigned long exit_qual)
3303 {
3304         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3305         unsigned int nr = vcpu->arch.exception.nr;
3306         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3307
3308         if (vcpu->arch.exception.has_error_code) {
3309                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3310                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3311         }
3312
3313         if (kvm_exception_is_soft(nr))
3314                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3315         else
3316                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3317
3318         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3319             vmx_get_nmi_mask(vcpu))
3320                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3321
3322         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3323 }
3324
3325 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3326 {
3327         struct vcpu_vmx *vmx = to_vmx(vcpu);
3328         unsigned long exit_qual;
3329         bool block_nested_events =
3330             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3331
3332         if (vcpu->arch.exception.pending &&
3333                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3334                 if (block_nested_events)
3335                         return -EBUSY;
3336                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3337                 return 0;
3338         }
3339
3340         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3341             vmx->nested.preemption_timer_expired) {
3342                 if (block_nested_events)
3343                         return -EBUSY;
3344                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3345                 return 0;
3346         }
3347
3348         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3349                 if (block_nested_events)
3350                         return -EBUSY;
3351                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3352                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3353                                   INTR_INFO_VALID_MASK, 0);
3354                 /*
3355                  * The NMI-triggered VM exit counts as injection:
3356                  * clear this one and block further NMIs.
3357                  */
3358                 vcpu->arch.nmi_pending = 0;
3359                 vmx_set_nmi_mask(vcpu, true);
3360                 return 0;
3361         }
3362
3363         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3364             nested_exit_on_intr(vcpu)) {
3365                 if (block_nested_events)
3366                         return -EBUSY;
3367                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3368                 return 0;
3369         }
3370
3371         vmx_complete_nested_posted_interrupt(vcpu);
3372         return 0;
3373 }
3374
3375 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3376 {
3377         ktime_t remaining =
3378                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3379         u64 value;
3380
3381         if (ktime_to_ns(remaining) <= 0)
3382                 return 0;
3383
3384         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3385         do_div(value, 1000000);
3386         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3387 }
3388
3389 /*
3390  * Update the guest state fields of vmcs12 to reflect changes that
3391  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3392  * VM-entry controls is also updated, since this is really a guest
3393  * state bit.)
3394  */
3395 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3396 {
3397         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3398         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3399
3400         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3401         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
3402         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3403
3404         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3405         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3406         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3407         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3408         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3409         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3410         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3411         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3412         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3413         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3414         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3415         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3416         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3417         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3418         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3419         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3420         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3421         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3422         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3423         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3424         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3425         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3426         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3427         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3428         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3429         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3430         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3431         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3432         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3433         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3434         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3435         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3436         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3437         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3438         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3439         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3440
3441         vmcs12->guest_interruptibility_info =
3442                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3443         vmcs12->guest_pending_dbg_exceptions =
3444                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3445         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3446                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3447         else
3448                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3449
3450         if (nested_cpu_has_preemption_timer(vmcs12) &&
3451             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3452                         vmcs12->vmx_preemption_timer_value =
3453                                 vmx_get_preemption_timer_value(vcpu);
3454
3455         /*
3456          * In some cases (usually, nested EPT), L2 is allowed to change its
3457          * own CR3 without exiting. If it has changed it, we must keep it.
3458          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3459          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3460          *
3461          * Additionally, restore L2's PDPTR to vmcs12.
3462          */
3463         if (enable_ept) {
3464                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3465                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3466                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3467                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3468                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3469         }
3470
3471         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3472
3473         if (nested_cpu_has_vid(vmcs12))
3474                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3475
3476         vmcs12->vm_entry_controls =
3477                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3478                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3479
3480         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
3481                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3482                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3483         }
3484
3485         /* TODO: These cannot have changed unless we have MSR bitmaps and
3486          * the relevant bit asks not to trap the change */
3487         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
3488                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
3489         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3490                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3491         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3492         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3493         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3494         if (kvm_mpx_supported())
3495                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3496 }
3497
3498 /*
3499  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3500  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3501  * and this function updates it to reflect the changes to the guest state while
3502  * L2 was running (and perhaps made some exits which were handled directly by L0
3503  * without going back to L1), and to reflect the exit reason.
3504  * Note that we do not have to copy here all VMCS fields, just those that
3505  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3506  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3507  * which already writes to vmcs12 directly.
3508  */
3509 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3510                            u32 exit_reason, u32 exit_intr_info,
3511                            unsigned long exit_qualification)
3512 {
3513         /* update guest state fields: */
3514         sync_vmcs12(vcpu, vmcs12);
3515
3516         /* update exit information fields: */
3517
3518         vmcs12->vm_exit_reason = exit_reason;
3519         vmcs12->exit_qualification = exit_qualification;
3520         vmcs12->vm_exit_intr_info = exit_intr_info;
3521
3522         vmcs12->idt_vectoring_info_field = 0;
3523         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3524         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3525
3526         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3527                 vmcs12->launch_state = 1;
3528
3529                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3530                  * instead of reading the real value. */
3531                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3532
3533                 /*
3534                  * Transfer the event that L0 or L1 may wanted to inject into
3535                  * L2 to IDT_VECTORING_INFO_FIELD.
3536                  */
3537                 vmcs12_save_pending_event(vcpu, vmcs12);
3538
3539                 /*
3540                  * According to spec, there's no need to store the guest's
3541                  * MSRs if the exit is due to a VM-entry failure that occurs
3542                  * during or after loading the guest state. Since this exit
3543                  * does not fall in that category, we need to save the MSRs.
3544                  */
3545                 if (nested_vmx_store_msr(vcpu,
3546                                          vmcs12->vm_exit_msr_store_addr,
3547                                          vmcs12->vm_exit_msr_store_count))
3548                         nested_vmx_abort(vcpu,
3549                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3550         }
3551
3552         /*
3553          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3554          * preserved above and would only end up incorrectly in L1.
3555          */
3556         vcpu->arch.nmi_injected = false;
3557         kvm_clear_exception_queue(vcpu);
3558         kvm_clear_interrupt_queue(vcpu);
3559 }
3560
3561 /*
3562  * A part of what we need to when the nested L2 guest exits and we want to
3563  * run its L1 parent, is to reset L1's guest state to the host state specified
3564  * in vmcs12.
3565  * This function is to be called not only on normal nested exit, but also on
3566  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3567  * Failures During or After Loading Guest State").
3568  * This function should be called when the active VMCS is L1's (vmcs01).
3569  */
3570 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3571                                    struct vmcs12 *vmcs12)
3572 {
3573         struct kvm_segment seg;
3574         u32 entry_failure_code;
3575
3576         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3577                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3578         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3579                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3580         else
3581                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3582         vmx_set_efer(vcpu, vcpu->arch.efer);
3583
3584         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
3585         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
3586         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3587         vmx_set_interrupt_shadow(vcpu, 0);
3588
3589         /*
3590          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3591          * actually changed, because vmx_set_cr0 refers to efer set above.
3592          *
3593          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3594          * (KVM doesn't change it);
3595          */
3596         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3597         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3598
3599         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3600         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3601         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3602
3603         nested_ept_uninit_mmu_context(vcpu);
3604
3605         /*
3606          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3607          * couldn't have changed.
3608          */
3609         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3610                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3611
3612         if (!enable_ept)
3613                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3614
3615         /*
3616          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3617          * VMEntry/VMExit. Thus, no need to flush TLB.
3618          *
3619          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3620          * flushed on every VMEntry/VMExit.
3621          *
3622          * Otherwise, we can preserve TLB entries as long as we are
3623          * able to tag L1 TLB entries differently than L2 TLB entries.
3624          *
3625          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3626          * and therefore we request the TLB flush to happen only after VMCS EPTP
3627          * has been set by KVM_REQ_LOAD_CR3.
3628          */
3629         if (enable_vpid &&
3630             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3631                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3632         }
3633
3634         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3635         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3636         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3637         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3638         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3639         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3640         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3641
3642         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3643         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3644                 vmcs_write64(GUEST_BNDCFGS, 0);
3645
3646         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3647                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3648                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3649         }
3650         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3651                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3652                         vmcs12->host_ia32_perf_global_ctrl);
3653
3654         /* Set L1 segment info according to Intel SDM
3655             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3656         seg = (struct kvm_segment) {
3657                 .base = 0,
3658                 .limit = 0xFFFFFFFF,
3659                 .selector = vmcs12->host_cs_selector,
3660                 .type = 11,
3661                 .present = 1,
3662                 .s = 1,
3663                 .g = 1
3664         };
3665         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3666                 seg.l = 1;
3667         else
3668                 seg.db = 1;
3669         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3670         seg = (struct kvm_segment) {
3671                 .base = 0,
3672                 .limit = 0xFFFFFFFF,
3673                 .type = 3,
3674                 .present = 1,
3675                 .s = 1,
3676                 .db = 1,
3677                 .g = 1
3678         };
3679         seg.selector = vmcs12->host_ds_selector;
3680         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3681         seg.selector = vmcs12->host_es_selector;
3682         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3683         seg.selector = vmcs12->host_ss_selector;
3684         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3685         seg.selector = vmcs12->host_fs_selector;
3686         seg.base = vmcs12->host_fs_base;
3687         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3688         seg.selector = vmcs12->host_gs_selector;
3689         seg.base = vmcs12->host_gs_base;
3690         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3691         seg = (struct kvm_segment) {
3692                 .base = vmcs12->host_tr_base,
3693                 .limit = 0x67,
3694                 .selector = vmcs12->host_tr_selector,
3695                 .type = 11,
3696                 .present = 1
3697         };
3698         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3699
3700         kvm_set_dr(vcpu, 7, 0x400);
3701         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3702
3703         if (cpu_has_vmx_msr_bitmap())
3704                 vmx_update_msr_bitmap(vcpu);
3705
3706         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3707                                 vmcs12->vm_exit_msr_load_count))
3708                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3709 }
3710
3711 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3712 {
3713         struct shared_msr_entry *efer_msr;
3714         unsigned int i;
3715
3716         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3717                 return vmcs_read64(GUEST_IA32_EFER);
3718
3719         if (cpu_has_load_ia32_efer())
3720                 return host_efer;
3721
3722         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3723                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3724                         return vmx->msr_autoload.guest.val[i].value;
3725         }
3726
3727         efer_msr = find_msr_entry(vmx, MSR_EFER);
3728         if (efer_msr)
3729                 return efer_msr->data;
3730
3731         return host_efer;
3732 }
3733
3734 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3735 {
3736         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3737         struct vcpu_vmx *vmx = to_vmx(vcpu);
3738         struct vmx_msr_entry g, h;
3739         struct msr_data msr;
3740         gpa_t gpa;
3741         u32 i, j;
3742
3743         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3744
3745         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3746                 /*
3747                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3748                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3749                  * and vcpu->arch.dr7 is not squirreled away before the
3750                  * nested VMENTER (not worth adding a variable in nested_vmx).
3751                  */
3752                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3753                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3754                 else
3755                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3756         }
3757
3758         /*
3759          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3760          * handle a variety of side effects to KVM's software model.
3761          */
3762         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3763
3764         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3765         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3766
3767         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3768         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3769
3770         nested_ept_uninit_mmu_context(vcpu);
3771         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3772         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3773
3774         /*
3775          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3776          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3777          * VMFail, like everything else we just need to ensure our
3778          * software model is up-to-date.
3779          */
3780         ept_save_pdptrs(vcpu);
3781
3782         kvm_mmu_reset_context(vcpu);
3783
3784         if (cpu_has_vmx_msr_bitmap())
3785                 vmx_update_msr_bitmap(vcpu);
3786
3787         /*
3788          * This nasty bit of open coding is a compromise between blindly
3789          * loading L1's MSRs using the exit load lists (incorrect emulation
3790          * of VMFail), leaving the nested VM's MSRs in the software model
3791          * (incorrect behavior) and snapshotting the modified MSRs (too
3792          * expensive since the lists are unbound by hardware).  For each
3793          * MSR that was (prematurely) loaded from the nested VMEntry load
3794          * list, reload it from the exit load list if it exists and differs
3795          * from the guest value.  The intent is to stuff host state as
3796          * silently as possible, not to fully process the exit load list.
3797          */
3798         msr.host_initiated = false;
3799         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3800                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3801                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3802                         pr_debug_ratelimited(
3803                                 "%s read MSR index failed (%u, 0x%08llx)\n",
3804                                 __func__, i, gpa);
3805                         goto vmabort;
3806                 }
3807
3808                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3809                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3810                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3811                                 pr_debug_ratelimited(
3812                                         "%s read MSR failed (%u, 0x%08llx)\n",
3813                                         __func__, j, gpa);
3814                                 goto vmabort;
3815                         }
3816                         if (h.index != g.index)
3817                                 continue;
3818                         if (h.value == g.value)
3819                                 break;
3820
3821                         if (nested_vmx_load_msr_check(vcpu, &h)) {
3822                                 pr_debug_ratelimited(
3823                                         "%s check failed (%u, 0x%x, 0x%x)\n",
3824                                         __func__, j, h.index, h.reserved);
3825                                 goto vmabort;
3826                         }
3827
3828                         msr.index = h.index;
3829                         msr.data = h.value;
3830                         if (kvm_set_msr(vcpu, &msr)) {
3831                                 pr_debug_ratelimited(
3832                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3833                                         __func__, j, h.index, h.value);
3834                                 goto vmabort;
3835                         }
3836                 }
3837         }
3838
3839         return;
3840
3841 vmabort:
3842         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3843 }
3844
3845 /*
3846  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3847  * and modify vmcs12 to make it see what it would expect to see there if
3848  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3849  */
3850 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3851                        u32 exit_intr_info, unsigned long exit_qualification)
3852 {
3853         struct vcpu_vmx *vmx = to_vmx(vcpu);
3854         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3855
3856         /* trying to cancel vmlaunch/vmresume is a bug */
3857         WARN_ON_ONCE(vmx->nested.nested_run_pending);
3858
3859         leave_guest_mode(vcpu);
3860
3861         if (nested_cpu_has_preemption_timer(vmcs12))
3862                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
3863
3864         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3865                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3866
3867         if (likely(!vmx->fail)) {
3868                 if (exit_reason == -1)
3869                         sync_vmcs12(vcpu, vmcs12);
3870                 else
3871                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
3872                                        exit_qualification);
3873
3874                 /*
3875                  * Must happen outside of sync_vmcs12() as it will
3876                  * also be used to capture vmcs12 cache as part of
3877                  * capturing nVMX state for snapshot (migration).
3878                  *
3879                  * Otherwise, this flush will dirty guest memory at a
3880                  * point it is already assumed by user-space to be
3881                  * immutable.
3882                  */
3883                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
3884         } else {
3885                 /*
3886                  * The only expected VM-instruction error is "VM entry with
3887                  * invalid control field(s)." Anything else indicates a
3888                  * problem with L0.  And we should never get here with a
3889                  * VMFail of any type if early consistency checks are enabled.
3890                  */
3891                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
3892                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3893                 WARN_ON_ONCE(nested_early_check);
3894         }
3895
3896         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3897
3898         /* Update any VMCS fields that might have changed while L2 ran */
3899         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3900         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3901         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
3902
3903         if (kvm_has_tsc_control)
3904                 decache_tsc_multiplier(vmx);
3905
3906         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
3907                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
3908                 vmx_set_virtual_apic_mode(vcpu);
3909         } else if (!nested_cpu_has_ept(vmcs12) &&
3910                    nested_cpu_has2(vmcs12,
3911                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3912                 vmx_flush_tlb(vcpu, true);
3913         }
3914
3915         /* Unpin physical memory we referred to in vmcs02 */
3916         if (vmx->nested.apic_access_page) {
3917                 kvm_release_page_dirty(vmx->nested.apic_access_page);
3918                 vmx->nested.apic_access_page = NULL;
3919         }
3920         if (vmx->nested.virtual_apic_page) {
3921                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
3922                 vmx->nested.virtual_apic_page = NULL;
3923         }
3924         if (vmx->nested.pi_desc_page) {
3925                 kunmap(vmx->nested.pi_desc_page);
3926                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
3927                 vmx->nested.pi_desc_page = NULL;
3928                 vmx->nested.pi_desc = NULL;
3929         }
3930
3931         /*
3932          * We are now running in L2, mmu_notifier will force to reload the
3933          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
3934          */
3935         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
3936
3937         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3938                 vmx->nested.need_vmcs12_sync = true;
3939
3940         /* in case we halted in L2 */
3941         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3942
3943         if (likely(!vmx->fail)) {
3944                 /*
3945                  * TODO: SDM says that with acknowledge interrupt on
3946                  * exit, bit 31 of the VM-exit interrupt information
3947                  * (valid interrupt) is always set to 1 on
3948                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
3949                  * need kvm_cpu_has_interrupt().  See the commit
3950                  * message for details.
3951                  */
3952                 if (nested_exit_intr_ack_set(vcpu) &&
3953                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
3954                     kvm_cpu_has_interrupt(vcpu)) {
3955                         int irq = kvm_cpu_get_interrupt(vcpu);
3956                         WARN_ON(irq < 0);
3957                         vmcs12->vm_exit_intr_info = irq |
3958                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
3959                 }
3960
3961                 if (exit_reason != -1)
3962                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
3963                                                        vmcs12->exit_qualification,
3964                                                        vmcs12->idt_vectoring_info_field,
3965                                                        vmcs12->vm_exit_intr_info,
3966                                                        vmcs12->vm_exit_intr_error_code,
3967                                                        KVM_ISA_VMX);
3968
3969                 load_vmcs12_host_state(vcpu, vmcs12);
3970
3971                 return;
3972         }
3973
3974         /*
3975          * After an early L2 VM-entry failure, we're now back
3976          * in L1 which thinks it just finished a VMLAUNCH or
3977          * VMRESUME instruction, so we need to set the failure
3978          * flag and the VM-instruction error field of the VMCS
3979          * accordingly, and skip the emulated instruction.
3980          */
3981         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3982
3983         /*
3984          * Restore L1's host state to KVM's software model.  We're here
3985          * because a consistency check was caught by hardware, which
3986          * means some amount of guest state has been propagated to KVM's
3987          * model and needs to be unwound to the host's state.
3988          */
3989         nested_vmx_restore_host_state(vcpu);
3990
3991         vmx->fail = 0;
3992 }
3993
3994 /*
3995  * Decode the memory-address operand of a vmx instruction, as recorded on an
3996  * exit caused by such an instruction (run by a guest hypervisor).
3997  * On success, returns 0. When the operand is invalid, returns 1 and throws
3998  * #UD or #GP.
3999  */
4000 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4001                         u32 vmx_instruction_info, bool wr, gva_t *ret)
4002 {
4003         gva_t off;
4004         bool exn;
4005         struct kvm_segment s;
4006
4007         /*
4008          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4009          * Execution", on an exit, vmx_instruction_info holds most of the
4010          * addressing components of the operand. Only the displacement part
4011          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4012          * For how an actual address is calculated from all these components,
4013          * refer to Vol. 1, "Operand Addressing".
4014          */
4015         int  scaling = vmx_instruction_info & 3;
4016         int  addr_size = (vmx_instruction_info >> 7) & 7;
4017         bool is_reg = vmx_instruction_info & (1u << 10);
4018         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4019         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4020         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4021         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4022         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4023
4024         if (is_reg) {
4025                 kvm_queue_exception(vcpu, UD_VECTOR);
4026                 return 1;
4027         }
4028
4029         /* Addr = segment_base + offset */
4030         /* offset = base + [index * scale] + displacement */
4031         off = exit_qualification; /* holds the displacement */
4032         if (addr_size == 1)
4033                 off = (gva_t)sign_extend64(off, 31);
4034         else if (addr_size == 0)
4035                 off = (gva_t)sign_extend64(off, 15);
4036         if (base_is_valid)
4037                 off += kvm_register_read(vcpu, base_reg);
4038         if (index_is_valid)
4039                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4040         vmx_get_segment(vcpu, &s, seg_reg);
4041
4042         /*
4043          * The effective address, i.e. @off, of a memory operand is truncated
4044          * based on the address size of the instruction.  Note that this is
4045          * the *effective address*, i.e. the address prior to accounting for
4046          * the segment's base.
4047          */
4048         if (addr_size == 1) /* 32 bit */
4049                 off &= 0xffffffff;
4050         else if (addr_size == 0) /* 16 bit */
4051                 off &= 0xffff;
4052
4053         /* Checks for #GP/#SS exceptions. */
4054         exn = false;
4055         if (is_long_mode(vcpu)) {
4056                 /*
4057                  * The virtual/linear address is never truncated in 64-bit
4058                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4059                  * address when using FS/GS with a non-zero base.
4060                  */
4061                 *ret = s.base + off;
4062
4063                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4064                  * non-canonical form. This is the only check on the memory
4065                  * destination for long mode!
4066                  */
4067                 exn = is_noncanonical_address(*ret, vcpu);
4068         } else {
4069                 /*
4070                  * When not in long mode, the virtual/linear address is
4071                  * unconditionally truncated to 32 bits regardless of the
4072                  * address size.
4073                  */
4074                 *ret = (s.base + off) & 0xffffffff;
4075
4076                 /* Protected mode: apply checks for segment validity in the
4077                  * following order:
4078                  * - segment type check (#GP(0) may be thrown)
4079                  * - usability check (#GP(0)/#SS(0))
4080                  * - limit check (#GP(0)/#SS(0))
4081                  */
4082                 if (wr)
4083                         /* #GP(0) if the destination operand is located in a
4084                          * read-only data segment or any code segment.
4085                          */
4086                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4087                 else
4088                         /* #GP(0) if the source operand is located in an
4089                          * execute-only code segment
4090                          */
4091                         exn = ((s.type & 0xa) == 8);
4092                 if (exn) {
4093                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4094                         return 1;
4095                 }
4096                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4097                  */
4098                 exn = (s.unusable != 0);
4099
4100                 /*
4101                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4102                  * outside the segment limit.  All CPUs that support VMX ignore
4103                  * limit checks for flat segments, i.e. segments with base==0,
4104                  * limit==0xffffffff and of type expand-up data or code.
4105                  */
4106                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4107                      ((s.type & 8) || !(s.type & 4))))
4108                         exn = exn || (off + sizeof(u64) > s.limit);
4109         }
4110         if (exn) {
4111                 kvm_queue_exception_e(vcpu,
4112                                       seg_reg == VCPU_SREG_SS ?
4113                                                 SS_VECTOR : GP_VECTOR,
4114                                       0);
4115                 return 1;
4116         }
4117
4118         return 0;
4119 }
4120
4121 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4122 {
4123         gva_t gva;
4124         struct x86_exception e;
4125
4126         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4127                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
4128                 return 1;
4129
4130         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4131                 kvm_inject_page_fault(vcpu, &e);
4132                 return 1;
4133         }
4134
4135         return 0;
4136 }
4137
4138 /*
4139  * Allocate a shadow VMCS and associate it with the currently loaded
4140  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4141  * VMCS is also VMCLEARed, so that it is ready for use.
4142  */
4143 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4144 {
4145         struct vcpu_vmx *vmx = to_vmx(vcpu);
4146         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4147
4148         /*
4149          * We should allocate a shadow vmcs for vmcs01 only when L1
4150          * executes VMXON and free it when L1 executes VMXOFF.
4151          * As it is invalid to execute VMXON twice, we shouldn't reach
4152          * here when vmcs01 already have an allocated shadow vmcs.
4153          */
4154         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4155
4156         if (!loaded_vmcs->shadow_vmcs) {
4157                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4158                 if (loaded_vmcs->shadow_vmcs)
4159                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4160         }
4161         return loaded_vmcs->shadow_vmcs;
4162 }
4163
4164 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4165 {
4166         struct vcpu_vmx *vmx = to_vmx(vcpu);
4167         int r;
4168
4169         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4170         if (r < 0)
4171                 goto out_vmcs02;
4172
4173         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4174         if (!vmx->nested.cached_vmcs12)
4175                 goto out_cached_vmcs12;
4176
4177         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4178         if (!vmx->nested.cached_shadow_vmcs12)
4179                 goto out_cached_shadow_vmcs12;
4180
4181         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4182                 goto out_shadow_vmcs;
4183
4184         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4185                      HRTIMER_MODE_REL_PINNED);
4186         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4187
4188         vmx->nested.vpid02 = allocate_vpid();
4189
4190         vmx->nested.vmcs02_initialized = false;
4191         vmx->nested.vmxon = true;
4192
4193         if (pt_mode == PT_MODE_HOST_GUEST) {
4194                 vmx->pt_desc.guest.ctl = 0;
4195                 pt_update_intercept_for_msr(vmx);
4196         }
4197
4198         return 0;
4199
4200 out_shadow_vmcs:
4201         kfree(vmx->nested.cached_shadow_vmcs12);
4202
4203 out_cached_shadow_vmcs12:
4204         kfree(vmx->nested.cached_vmcs12);
4205
4206 out_cached_vmcs12:
4207         free_loaded_vmcs(&vmx->nested.vmcs02);
4208
4209 out_vmcs02:
4210         return -ENOMEM;
4211 }
4212
4213 /*
4214  * Emulate the VMXON instruction.
4215  * Currently, we just remember that VMX is active, and do not save or even
4216  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4217  * do not currently need to store anything in that guest-allocated memory
4218  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4219  * argument is different from the VMXON pointer (which the spec says they do).
4220  */
4221 static int handle_vmon(struct kvm_vcpu *vcpu)
4222 {
4223         int ret;
4224         gpa_t vmptr;
4225         struct page *page;
4226         struct vcpu_vmx *vmx = to_vmx(vcpu);
4227         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4228                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4229
4230         /*
4231          * The Intel VMX Instruction Reference lists a bunch of bits that are
4232          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4233          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4234          * Otherwise, we should fail with #UD.  But most faulting conditions
4235          * have already been checked by hardware, prior to the VM-exit for
4236          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4237          * that bit set to 1 in non-root mode.
4238          */
4239         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4240                 kvm_queue_exception(vcpu, UD_VECTOR);
4241                 return 1;
4242         }
4243
4244         /* CPL=0 must be checked manually. */
4245         if (vmx_get_cpl(vcpu)) {
4246                 kvm_inject_gp(vcpu, 0);
4247                 return 1;
4248         }
4249
4250         if (vmx->nested.vmxon)
4251                 return nested_vmx_failValid(vcpu,
4252                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4253
4254         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4255                         != VMXON_NEEDED_FEATURES) {
4256                 kvm_inject_gp(vcpu, 0);
4257                 return 1;
4258         }
4259
4260         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4261                 return 1;
4262
4263         /*
4264          * SDM 3: 24.11.5
4265          * The first 4 bytes of VMXON region contain the supported
4266          * VMCS revision identifier
4267          *
4268          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4269          * which replaces physical address width with 32
4270          */
4271         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4272                 return nested_vmx_failInvalid(vcpu);
4273
4274         page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4275         if (is_error_page(page))
4276                 return nested_vmx_failInvalid(vcpu);
4277
4278         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
4279                 kunmap(page);
4280                 kvm_release_page_clean(page);
4281                 return nested_vmx_failInvalid(vcpu);
4282         }
4283         kunmap(page);
4284         kvm_release_page_clean(page);
4285
4286         vmx->nested.vmxon_ptr = vmptr;
4287         ret = enter_vmx_operation(vcpu);
4288         if (ret)
4289                 return ret;
4290
4291         return nested_vmx_succeed(vcpu);
4292 }
4293
4294 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4295 {
4296         struct vcpu_vmx *vmx = to_vmx(vcpu);
4297
4298         if (vmx->nested.current_vmptr == -1ull)
4299                 return;
4300
4301         if (enable_shadow_vmcs) {
4302                 /* copy to memory all shadowed fields in case
4303                    they were modified */
4304                 copy_shadow_to_vmcs12(vmx);
4305                 vmx->nested.need_vmcs12_sync = false;
4306                 vmx_disable_shadow_vmcs(vmx);
4307         }
4308         vmx->nested.posted_intr_nv = -1;
4309
4310         /* Flush VMCS12 to guest memory */
4311         kvm_vcpu_write_guest_page(vcpu,
4312                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4313                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4314
4315         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4316
4317         vmx->nested.current_vmptr = -1ull;
4318 }
4319
4320 /* Emulate the VMXOFF instruction */
4321 static int handle_vmoff(struct kvm_vcpu *vcpu)
4322 {
4323         if (!nested_vmx_check_permission(vcpu))
4324                 return 1;
4325         free_nested(vcpu);
4326         return nested_vmx_succeed(vcpu);
4327 }
4328
4329 /* Emulate the VMCLEAR instruction */
4330 static int handle_vmclear(struct kvm_vcpu *vcpu)
4331 {
4332         struct vcpu_vmx *vmx = to_vmx(vcpu);
4333         u32 zero = 0;
4334         gpa_t vmptr;
4335
4336         if (!nested_vmx_check_permission(vcpu))
4337                 return 1;
4338
4339         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4340                 return 1;
4341
4342         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4343                 return nested_vmx_failValid(vcpu,
4344                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4345
4346         if (vmptr == vmx->nested.vmxon_ptr)
4347                 return nested_vmx_failValid(vcpu,
4348                         VMXERR_VMCLEAR_VMXON_POINTER);
4349
4350         if (vmx->nested.hv_evmcs_page) {
4351                 if (vmptr == vmx->nested.hv_evmcs_vmptr)
4352                         nested_release_evmcs(vcpu);
4353         } else {
4354                 if (vmptr == vmx->nested.current_vmptr)
4355                         nested_release_vmcs12(vcpu);
4356
4357                 kvm_vcpu_write_guest(vcpu,
4358                                      vmptr + offsetof(struct vmcs12,
4359                                                       launch_state),
4360                                      &zero, sizeof(zero));
4361         }
4362
4363         return nested_vmx_succeed(vcpu);
4364 }
4365
4366 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4367
4368 /* Emulate the VMLAUNCH instruction */
4369 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4370 {
4371         return nested_vmx_run(vcpu, true);
4372 }
4373
4374 /* Emulate the VMRESUME instruction */
4375 static int handle_vmresume(struct kvm_vcpu *vcpu)
4376 {
4377
4378         return nested_vmx_run(vcpu, false);
4379 }
4380
4381 static int handle_vmread(struct kvm_vcpu *vcpu)
4382 {
4383         unsigned long field;
4384         u64 field_value;
4385         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4386         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4387         gva_t gva = 0;
4388         struct vmcs12 *vmcs12;
4389
4390         if (!nested_vmx_check_permission(vcpu))
4391                 return 1;
4392
4393         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4394                 return nested_vmx_failInvalid(vcpu);
4395
4396         if (!is_guest_mode(vcpu))
4397                 vmcs12 = get_vmcs12(vcpu);
4398         else {
4399                 /*
4400                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4401                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4402                  */
4403                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4404                         return nested_vmx_failInvalid(vcpu);
4405                 vmcs12 = get_shadow_vmcs12(vcpu);
4406         }
4407
4408         /* Decode instruction info and find the field to read */
4409         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4410         /* Read the field, zero-extended to a u64 field_value */
4411         if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
4412                 return nested_vmx_failValid(vcpu,
4413                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4414
4415         /*
4416          * Now copy part of this value to register or memory, as requested.
4417          * Note that the number of bits actually copied is 32 or 64 depending
4418          * on the guest's mode (32 or 64 bit), not on the given field's length.
4419          */
4420         if (vmx_instruction_info & (1u << 10)) {
4421                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4422                         field_value);
4423         } else {
4424                 if (get_vmx_mem_address(vcpu, exit_qualification,
4425                                 vmx_instruction_info, true, &gva))
4426                         return 1;
4427                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4428                 kvm_write_guest_virt_system(vcpu, gva, &field_value,
4429                                             (is_long_mode(vcpu) ? 8 : 4), NULL);
4430         }
4431
4432         return nested_vmx_succeed(vcpu);
4433 }
4434
4435
4436 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4437 {
4438         unsigned long field;
4439         gva_t gva;
4440         struct vcpu_vmx *vmx = to_vmx(vcpu);
4441         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4442         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4443
4444         /* The value to write might be 32 or 64 bits, depending on L1's long
4445          * mode, and eventually we need to write that into a field of several
4446          * possible lengths. The code below first zero-extends the value to 64
4447          * bit (field_value), and then copies only the appropriate number of
4448          * bits into the vmcs12 field.
4449          */
4450         u64 field_value = 0;
4451         struct x86_exception e;
4452         struct vmcs12 *vmcs12;
4453
4454         if (!nested_vmx_check_permission(vcpu))
4455                 return 1;
4456
4457         if (vmx->nested.current_vmptr == -1ull)
4458                 return nested_vmx_failInvalid(vcpu);
4459
4460         if (vmx_instruction_info & (1u << 10))
4461                 field_value = kvm_register_readl(vcpu,
4462                         (((vmx_instruction_info) >> 3) & 0xf));
4463         else {
4464                 if (get_vmx_mem_address(vcpu, exit_qualification,
4465                                 vmx_instruction_info, false, &gva))
4466                         return 1;
4467                 if (kvm_read_guest_virt(vcpu, gva, &field_value,
4468                                         (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
4469                         kvm_inject_page_fault(vcpu, &e);
4470                         return 1;
4471                 }
4472         }
4473
4474
4475         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4476         /*
4477          * If the vCPU supports "VMWRITE to any supported field in the
4478          * VMCS," then the "read-only" fields are actually read/write.
4479          */
4480         if (vmcs_field_readonly(field) &&
4481             !nested_cpu_has_vmwrite_any_field(vcpu))
4482                 return nested_vmx_failValid(vcpu,
4483                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4484
4485         if (!is_guest_mode(vcpu))
4486                 vmcs12 = get_vmcs12(vcpu);
4487         else {
4488                 /*
4489                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4490                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4491                  */
4492                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4493                         return nested_vmx_failInvalid(vcpu);
4494                 vmcs12 = get_shadow_vmcs12(vcpu);
4495         }
4496
4497         if (vmcs12_write_any(vmcs12, field, field_value) < 0)
4498                 return nested_vmx_failValid(vcpu,
4499                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4500
4501         /*
4502          * Do not track vmcs12 dirty-state if in guest-mode
4503          * as we actually dirty shadow vmcs12 instead of vmcs12.
4504          */
4505         if (!is_guest_mode(vcpu)) {
4506                 switch (field) {
4507 #define SHADOW_FIELD_RW(x) case x:
4508 #include "vmcs_shadow_fields.h"
4509                         /*
4510                          * The fields that can be updated by L1 without a vmexit are
4511                          * always updated in the vmcs02, the others go down the slow
4512                          * path of prepare_vmcs02.
4513                          */
4514                         break;
4515                 default:
4516                         vmx->nested.dirty_vmcs12 = true;
4517                         break;
4518                 }
4519         }
4520
4521         return nested_vmx_succeed(vcpu);
4522 }
4523
4524 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4525 {
4526         vmx->nested.current_vmptr = vmptr;
4527         if (enable_shadow_vmcs) {
4528                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4529                               SECONDARY_EXEC_SHADOW_VMCS);
4530                 vmcs_write64(VMCS_LINK_POINTER,
4531                              __pa(vmx->vmcs01.shadow_vmcs));
4532                 vmx->nested.need_vmcs12_sync = true;
4533         }
4534         vmx->nested.dirty_vmcs12 = true;
4535 }
4536
4537 /* Emulate the VMPTRLD instruction */
4538 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4539 {
4540         struct vcpu_vmx *vmx = to_vmx(vcpu);
4541         gpa_t vmptr;
4542
4543         if (!nested_vmx_check_permission(vcpu))
4544                 return 1;
4545
4546         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4547                 return 1;
4548
4549         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4550                 return nested_vmx_failValid(vcpu,
4551                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4552
4553         if (vmptr == vmx->nested.vmxon_ptr)
4554                 return nested_vmx_failValid(vcpu,
4555                         VMXERR_VMPTRLD_VMXON_POINTER);
4556
4557         /* Forbid normal VMPTRLD if Enlightened version was used */
4558         if (vmx->nested.hv_evmcs)
4559                 return 1;
4560
4561         if (vmx->nested.current_vmptr != vmptr) {
4562                 struct vmcs12 *new_vmcs12;
4563                 struct page *page;
4564
4565                 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4566                 if (is_error_page(page)) {
4567                         /*
4568                          * Reads from an unbacked page return all 1s,
4569                          * which means that the 32 bits located at the
4570                          * given physical address won't match the required
4571                          * VMCS12_REVISION identifier.
4572                          */
4573                         return nested_vmx_failValid(vcpu,
4574                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4575                 }
4576                 new_vmcs12 = kmap(page);
4577                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4578                     (new_vmcs12->hdr.shadow_vmcs &&
4579                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4580                         kunmap(page);
4581                         kvm_release_page_clean(page);
4582                         return nested_vmx_failValid(vcpu,
4583                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4584                 }
4585
4586                 nested_release_vmcs12(vcpu);
4587
4588                 /*
4589                  * Load VMCS12 from guest memory since it is not already
4590                  * cached.
4591                  */
4592                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4593                 kunmap(page);
4594                 kvm_release_page_clean(page);
4595
4596                 set_current_vmptr(vmx, vmptr);
4597         }
4598
4599         return nested_vmx_succeed(vcpu);
4600 }
4601
4602 /* Emulate the VMPTRST instruction */
4603 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4604 {
4605         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4606         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4607         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4608         struct x86_exception e;
4609         gva_t gva;
4610
4611         if (!nested_vmx_check_permission(vcpu))
4612                 return 1;
4613
4614         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4615                 return 1;
4616
4617         if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
4618                 return 1;
4619         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4620         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4621                                         sizeof(gpa_t), &e)) {
4622                 kvm_inject_page_fault(vcpu, &e);
4623                 return 1;
4624         }
4625         return nested_vmx_succeed(vcpu);
4626 }
4627
4628 /* Emulate the INVEPT instruction */
4629 static int handle_invept(struct kvm_vcpu *vcpu)
4630 {
4631         struct vcpu_vmx *vmx = to_vmx(vcpu);
4632         u32 vmx_instruction_info, types;
4633         unsigned long type;
4634         gva_t gva;
4635         struct x86_exception e;
4636         struct {
4637                 u64 eptp, gpa;
4638         } operand;
4639
4640         if (!(vmx->nested.msrs.secondary_ctls_high &
4641               SECONDARY_EXEC_ENABLE_EPT) ||
4642             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4643                 kvm_queue_exception(vcpu, UD_VECTOR);
4644                 return 1;
4645         }
4646
4647         if (!nested_vmx_check_permission(vcpu))
4648                 return 1;
4649
4650         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4651         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4652
4653         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4654
4655         if (type >= 32 || !(types & (1 << type)))
4656                 return nested_vmx_failValid(vcpu,
4657                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4658
4659         /* According to the Intel VMX instruction reference, the memory
4660          * operand is read even if it isn't needed (e.g., for type==global)
4661          */
4662         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4663                         vmx_instruction_info, false, &gva))
4664                 return 1;
4665         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4666                 kvm_inject_page_fault(vcpu, &e);
4667                 return 1;
4668         }
4669
4670         switch (type) {
4671         case VMX_EPT_EXTENT_GLOBAL:
4672         /*
4673          * TODO: track mappings and invalidate
4674          * single context requests appropriately
4675          */
4676         case VMX_EPT_EXTENT_CONTEXT:
4677                 kvm_mmu_sync_roots(vcpu);
4678                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4679                 break;
4680         default:
4681                 BUG_ON(1);
4682                 break;
4683         }
4684
4685         return nested_vmx_succeed(vcpu);
4686 }
4687
4688 static int handle_invvpid(struct kvm_vcpu *vcpu)
4689 {
4690         struct vcpu_vmx *vmx = to_vmx(vcpu);
4691         u32 vmx_instruction_info;
4692         unsigned long type, types;
4693         gva_t gva;
4694         struct x86_exception e;
4695         struct {
4696                 u64 vpid;
4697                 u64 gla;
4698         } operand;
4699         u16 vpid02;
4700
4701         if (!(vmx->nested.msrs.secondary_ctls_high &
4702               SECONDARY_EXEC_ENABLE_VPID) ||
4703                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4704                 kvm_queue_exception(vcpu, UD_VECTOR);
4705                 return 1;
4706         }
4707
4708         if (!nested_vmx_check_permission(vcpu))
4709                 return 1;
4710
4711         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4712         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4713
4714         types = (vmx->nested.msrs.vpid_caps &
4715                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4716
4717         if (type >= 32 || !(types & (1 << type)))
4718                 return nested_vmx_failValid(vcpu,
4719                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4720
4721         /* according to the intel vmx instruction reference, the memory
4722          * operand is read even if it isn't needed (e.g., for type==global)
4723          */
4724         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4725                         vmx_instruction_info, false, &gva))
4726                 return 1;
4727         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4728                 kvm_inject_page_fault(vcpu, &e);
4729                 return 1;
4730         }
4731         if (operand.vpid >> 16)
4732                 return nested_vmx_failValid(vcpu,
4733                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4734
4735         vpid02 = nested_get_vpid02(vcpu);
4736         switch (type) {
4737         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4738                 if (!operand.vpid ||
4739                     is_noncanonical_address(operand.gla, vcpu))
4740                         return nested_vmx_failValid(vcpu,
4741                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4742                 if (cpu_has_vmx_invvpid_individual_addr()) {
4743                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4744                                 vpid02, operand.gla);
4745                 } else
4746                         __vmx_flush_tlb(vcpu, vpid02, false);
4747                 break;
4748         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4749         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4750                 if (!operand.vpid)
4751                         return nested_vmx_failValid(vcpu,
4752                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4753                 __vmx_flush_tlb(vcpu, vpid02, false);
4754                 break;
4755         case VMX_VPID_EXTENT_ALL_CONTEXT:
4756                 __vmx_flush_tlb(vcpu, vpid02, false);
4757                 break;
4758         default:
4759                 WARN_ON_ONCE(1);
4760                 return kvm_skip_emulated_instruction(vcpu);
4761         }
4762
4763         return nested_vmx_succeed(vcpu);
4764 }
4765
4766 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4767                                      struct vmcs12 *vmcs12)
4768 {
4769         u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
4770         u64 address;
4771         bool accessed_dirty;
4772         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4773
4774         if (!nested_cpu_has_eptp_switching(vmcs12) ||
4775             !nested_cpu_has_ept(vmcs12))
4776                 return 1;
4777
4778         if (index >= VMFUNC_EPTP_ENTRIES)
4779                 return 1;
4780
4781
4782         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4783                                      &address, index * 8, 8))
4784                 return 1;
4785
4786         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4787
4788         /*
4789          * If the (L2) guest does a vmfunc to the currently
4790          * active ept pointer, we don't have to do anything else
4791          */
4792         if (vmcs12->ept_pointer != address) {
4793                 if (!valid_ept_address(vcpu, address))
4794                         return 1;
4795
4796                 kvm_mmu_unload(vcpu);
4797                 mmu->ept_ad = accessed_dirty;
4798                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4799                 vmcs12->ept_pointer = address;
4800                 /*
4801                  * TODO: Check what's the correct approach in case
4802                  * mmu reload fails. Currently, we just let the next
4803                  * reload potentially fail
4804                  */
4805                 kvm_mmu_reload(vcpu);
4806         }
4807
4808         return 0;
4809 }
4810
4811 static int handle_vmfunc(struct kvm_vcpu *vcpu)
4812 {
4813         struct vcpu_vmx *vmx = to_vmx(vcpu);
4814         struct vmcs12 *vmcs12;
4815         u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
4816
4817         /*
4818          * VMFUNC is only supported for nested guests, but we always enable the
4819          * secondary control for simplicity; for non-nested mode, fake that we
4820          * didn't by injecting #UD.
4821          */
4822         if (!is_guest_mode(vcpu)) {
4823                 kvm_queue_exception(vcpu, UD_VECTOR);
4824                 return 1;
4825         }
4826
4827         vmcs12 = get_vmcs12(vcpu);
4828         if ((vmcs12->vm_function_control & (1 << function)) == 0)
4829                 goto fail;
4830
4831         switch (function) {
4832         case 0:
4833                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
4834                         goto fail;
4835                 break;
4836         default:
4837                 goto fail;
4838         }
4839         return kvm_skip_emulated_instruction(vcpu);
4840
4841 fail:
4842         nested_vmx_vmexit(vcpu, vmx->exit_reason,
4843                           vmcs_read32(VM_EXIT_INTR_INFO),
4844                           vmcs_readl(EXIT_QUALIFICATION));
4845         return 1;
4846 }
4847
4848
4849 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4850                                        struct vmcs12 *vmcs12)
4851 {
4852         unsigned long exit_qualification;
4853         gpa_t bitmap, last_bitmap;
4854         unsigned int port;
4855         int size;
4856         u8 b;
4857
4858         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4859                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4860
4861         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4862
4863         port = exit_qualification >> 16;
4864         size = (exit_qualification & 7) + 1;
4865
4866         last_bitmap = (gpa_t)-1;
4867         b = -1;
4868
4869         while (size > 0) {
4870                 if (port < 0x8000)
4871                         bitmap = vmcs12->io_bitmap_a;
4872                 else if (port < 0x10000)
4873                         bitmap = vmcs12->io_bitmap_b;
4874                 else
4875                         return true;
4876                 bitmap += (port & 0x7fff) / 8;
4877
4878                 if (last_bitmap != bitmap)
4879                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
4880                                 return true;
4881                 if (b & (1 << (port & 7)))
4882                         return true;
4883
4884                 port++;
4885                 size--;
4886                 last_bitmap = bitmap;
4887         }
4888
4889         return false;
4890 }
4891
4892 /*
4893  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
4894  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
4895  * disinterest in the current event (read or write a specific MSR) by using an
4896  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
4897  */
4898 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
4899         struct vmcs12 *vmcs12, u32 exit_reason)
4900 {
4901         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
4902         gpa_t bitmap;
4903
4904         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
4905                 return true;
4906
4907         /*
4908          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
4909          * for the four combinations of read/write and low/high MSR numbers.
4910          * First we need to figure out which of the four to use:
4911          */
4912         bitmap = vmcs12->msr_bitmap;
4913         if (exit_reason == EXIT_REASON_MSR_WRITE)
4914                 bitmap += 2048;
4915         if (msr_index >= 0xc0000000) {
4916                 msr_index -= 0xc0000000;
4917                 bitmap += 1024;
4918         }
4919
4920         /* Then read the msr_index'th bit from this bitmap: */
4921         if (msr_index < 1024*8) {
4922                 unsigned char b;
4923                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
4924                         return true;
4925                 return 1 & (b >> (msr_index & 7));
4926         } else
4927                 return true; /* let L1 handle the wrong parameter */
4928 }
4929
4930 /*
4931  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
4932  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
4933  * intercept (via guest_host_mask etc.) the current event.
4934  */
4935 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
4936         struct vmcs12 *vmcs12)
4937 {
4938         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4939         int cr = exit_qualification & 15;
4940         int reg;
4941         unsigned long val;
4942
4943         switch ((exit_qualification >> 4) & 3) {
4944         case 0: /* mov to cr */
4945                 reg = (exit_qualification >> 8) & 15;
4946                 val = kvm_register_readl(vcpu, reg);
4947                 switch (cr) {
4948                 case 0:
4949                         if (vmcs12->cr0_guest_host_mask &
4950                             (val ^ vmcs12->cr0_read_shadow))
4951                                 return true;
4952                         break;
4953                 case 3:
4954                         if ((vmcs12->cr3_target_count >= 1 &&
4955                                         vmcs12->cr3_target_value0 == val) ||
4956                                 (vmcs12->cr3_target_count >= 2 &&
4957                                         vmcs12->cr3_target_value1 == val) ||
4958                                 (vmcs12->cr3_target_count >= 3 &&
4959                                         vmcs12->cr3_target_value2 == val) ||
4960                                 (vmcs12->cr3_target_count >= 4 &&
4961                                         vmcs12->cr3_target_value3 == val))
4962                                 return false;
4963                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
4964                                 return true;
4965                         break;
4966                 case 4:
4967                         if (vmcs12->cr4_guest_host_mask &
4968                             (vmcs12->cr4_read_shadow ^ val))
4969                                 return true;
4970                         break;
4971                 case 8:
4972                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
4973                                 return true;
4974                         break;
4975                 }
4976                 break;
4977         case 2: /* clts */
4978                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
4979                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
4980                         return true;
4981                 break;
4982         case 1: /* mov from cr */
4983                 switch (cr) {
4984                 case 3:
4985                         if (vmcs12->cpu_based_vm_exec_control &
4986                             CPU_BASED_CR3_STORE_EXITING)
4987                                 return true;
4988                         break;
4989                 case 8:
4990                         if (vmcs12->cpu_based_vm_exec_control &
4991                             CPU_BASED_CR8_STORE_EXITING)
4992                                 return true;
4993                         break;
4994                 }
4995                 break;
4996         case 3: /* lmsw */
4997                 /*
4998                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
4999                  * cr0. Other attempted changes are ignored, with no exit.
5000                  */
5001                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5002                 if (vmcs12->cr0_guest_host_mask & 0xe &
5003                     (val ^ vmcs12->cr0_read_shadow))
5004                         return true;
5005                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5006                     !(vmcs12->cr0_read_shadow & 0x1) &&
5007                     (val & 0x1))
5008                         return true;
5009                 break;
5010         }
5011         return false;
5012 }
5013
5014 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5015         struct vmcs12 *vmcs12, gpa_t bitmap)
5016 {
5017         u32 vmx_instruction_info;
5018         unsigned long field;
5019         u8 b;
5020
5021         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5022                 return true;
5023
5024         /* Decode instruction info and find the field to access */
5025         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5026         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5027
5028         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5029         if (field >> 15)
5030                 return true;
5031
5032         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5033                 return true;
5034
5035         return 1 & (b >> (field & 7));
5036 }
5037
5038 /*
5039  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5040  * should handle it ourselves in L0 (and then continue L2). Only call this
5041  * when in is_guest_mode (L2).
5042  */
5043 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5044 {
5045         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5046         struct vcpu_vmx *vmx = to_vmx(vcpu);
5047         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5048
5049         if (vmx->nested.nested_run_pending)
5050                 return false;
5051
5052         if (unlikely(vmx->fail)) {
5053                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5054                                     vmcs_read32(VM_INSTRUCTION_ERROR));
5055                 return true;
5056         }
5057
5058         /*
5059          * The host physical addresses of some pages of guest memory
5060          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5061          * Page). The CPU may write to these pages via their host
5062          * physical address while L2 is running, bypassing any
5063          * address-translation-based dirty tracking (e.g. EPT write
5064          * protection).
5065          *
5066          * Mark them dirty on every exit from L2 to prevent them from
5067          * getting out of sync with dirty tracking.
5068          */
5069         nested_mark_vmcs12_pages_dirty(vcpu);
5070
5071         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5072                                 vmcs_readl(EXIT_QUALIFICATION),
5073                                 vmx->idt_vectoring_info,
5074                                 intr_info,
5075                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5076                                 KVM_ISA_VMX);
5077
5078         switch (exit_reason) {
5079         case EXIT_REASON_EXCEPTION_NMI:
5080                 if (is_nmi(intr_info))
5081                         return false;
5082                 else if (is_page_fault(intr_info))
5083                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5084                 else if (is_debug(intr_info) &&
5085                          vcpu->guest_debug &
5086                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5087                         return false;
5088                 else if (is_breakpoint(intr_info) &&
5089                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5090                         return false;
5091                 return vmcs12->exception_bitmap &
5092                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5093         case EXIT_REASON_EXTERNAL_INTERRUPT:
5094                 return false;
5095         case EXIT_REASON_TRIPLE_FAULT:
5096                 return true;
5097         case EXIT_REASON_PENDING_INTERRUPT:
5098                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5099         case EXIT_REASON_NMI_WINDOW:
5100                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5101         case EXIT_REASON_TASK_SWITCH:
5102                 return true;
5103         case EXIT_REASON_CPUID:
5104                 return true;
5105         case EXIT_REASON_HLT:
5106                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5107         case EXIT_REASON_INVD:
5108                 return true;
5109         case EXIT_REASON_INVLPG:
5110                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5111         case EXIT_REASON_RDPMC:
5112                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5113         case EXIT_REASON_RDRAND:
5114                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5115         case EXIT_REASON_RDSEED:
5116                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5117         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5118                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5119         case EXIT_REASON_VMREAD:
5120                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5121                         vmcs12->vmread_bitmap);
5122         case EXIT_REASON_VMWRITE:
5123                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5124                         vmcs12->vmwrite_bitmap);
5125         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5126         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5127         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5128         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5129         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5130                 /*
5131                  * VMX instructions trap unconditionally. This allows L1 to
5132                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5133                  */
5134                 return true;
5135         case EXIT_REASON_CR_ACCESS:
5136                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5137         case EXIT_REASON_DR_ACCESS:
5138                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5139         case EXIT_REASON_IO_INSTRUCTION:
5140                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5141         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5142                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5143         case EXIT_REASON_MSR_READ:
5144         case EXIT_REASON_MSR_WRITE:
5145                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5146         case EXIT_REASON_INVALID_STATE:
5147                 return true;
5148         case EXIT_REASON_MWAIT_INSTRUCTION:
5149                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5150         case EXIT_REASON_MONITOR_TRAP_FLAG:
5151                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5152         case EXIT_REASON_MONITOR_INSTRUCTION:
5153                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5154         case EXIT_REASON_PAUSE_INSTRUCTION:
5155                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5156                         nested_cpu_has2(vmcs12,
5157                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5158         case EXIT_REASON_MCE_DURING_VMENTRY:
5159                 return false;
5160         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5161                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5162         case EXIT_REASON_APIC_ACCESS:
5163         case EXIT_REASON_APIC_WRITE:
5164         case EXIT_REASON_EOI_INDUCED:
5165                 /*
5166                  * The controls for "virtualize APIC accesses," "APIC-
5167                  * register virtualization," and "virtual-interrupt
5168                  * delivery" only come from vmcs12.
5169                  */
5170                 return true;
5171         case EXIT_REASON_EPT_VIOLATION:
5172                 /*
5173                  * L0 always deals with the EPT violation. If nested EPT is
5174                  * used, and the nested mmu code discovers that the address is
5175                  * missing in the guest EPT table (EPT12), the EPT violation
5176                  * will be injected with nested_ept_inject_page_fault()
5177                  */
5178                 return false;
5179         case EXIT_REASON_EPT_MISCONFIG:
5180                 /*
5181                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5182                  * table (shadow on EPT) or a merged EPT table that L0 built
5183                  * (EPT on EPT). So any problems with the structure of the
5184                  * table is L0's fault.
5185                  */
5186                 return false;
5187         case EXIT_REASON_INVPCID:
5188                 return
5189                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5190                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5191         case EXIT_REASON_WBINVD:
5192                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5193         case EXIT_REASON_XSETBV:
5194                 return true;
5195         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5196                 /*
5197                  * This should never happen, since it is not possible to
5198                  * set XSS to a non-zero value---neither in L1 nor in L2.
5199                  * If if it were, XSS would have to be checked against
5200                  * the XSS exit bitmap in vmcs12.
5201                  */
5202                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5203         case EXIT_REASON_PREEMPTION_TIMER:
5204                 return false;
5205         case EXIT_REASON_PML_FULL:
5206                 /* We emulate PML support to L1. */
5207                 return false;
5208         case EXIT_REASON_VMFUNC:
5209                 /* VM functions are emulated through L2->L0 vmexits. */
5210                 return false;
5211         case EXIT_REASON_ENCLS:
5212                 /* SGX is never exposed to L1 */
5213                 return false;
5214         default:
5215                 return true;
5216         }
5217 }
5218
5219
5220 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5221                                 struct kvm_nested_state __user *user_kvm_nested_state,
5222                                 u32 user_data_size)
5223 {
5224         struct vcpu_vmx *vmx;
5225         struct vmcs12 *vmcs12;
5226         struct kvm_nested_state kvm_state = {
5227                 .flags = 0,
5228                 .format = 0,
5229                 .size = sizeof(kvm_state),
5230                 .vmx.vmxon_pa = -1ull,
5231                 .vmx.vmcs_pa = -1ull,
5232         };
5233
5234         if (!vcpu)
5235                 return kvm_state.size + 2 * VMCS12_SIZE;
5236
5237         vmx = to_vmx(vcpu);
5238         vmcs12 = get_vmcs12(vcpu);
5239
5240         if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
5241                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5242
5243         if (nested_vmx_allowed(vcpu) &&
5244             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5245                 kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5246                 kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
5247
5248                 if (vmx_has_valid_vmcs12(vcpu)) {
5249                         kvm_state.size += VMCS12_SIZE;
5250
5251                         if (is_guest_mode(vcpu) &&
5252                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5253                             vmcs12->vmcs_link_pointer != -1ull)
5254                                 kvm_state.size += VMCS12_SIZE;
5255                 }
5256
5257                 if (vmx->nested.smm.vmxon)
5258                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5259
5260                 if (vmx->nested.smm.guest_mode)
5261                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5262
5263                 if (is_guest_mode(vcpu)) {
5264                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5265
5266                         if (vmx->nested.nested_run_pending)
5267                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5268                 }
5269         }
5270
5271         if (user_data_size < kvm_state.size)
5272                 goto out;
5273
5274         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5275                 return -EFAULT;
5276
5277         if (!vmx_has_valid_vmcs12(vcpu))
5278                 goto out;
5279
5280         /*
5281          * When running L2, the authoritative vmcs12 state is in the
5282          * vmcs02. When running L1, the authoritative vmcs12 state is
5283          * in the shadow or enlightened vmcs linked to vmcs01, unless
5284          * need_vmcs12_sync is set, in which case, the authoritative
5285          * vmcs12 state is in the vmcs12 already.
5286          */
5287         if (is_guest_mode(vcpu)) {
5288                 sync_vmcs12(vcpu, vmcs12);
5289         } else if (!vmx->nested.need_vmcs12_sync) {
5290                 if (vmx->nested.hv_evmcs)
5291                         copy_enlightened_to_vmcs12(vmx);
5292                 else if (enable_shadow_vmcs)
5293                         copy_shadow_to_vmcs12(vmx);
5294         }
5295
5296         /*
5297          * Copy over the full allocated size of vmcs12 rather than just the size
5298          * of the struct.
5299          */
5300         if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
5301                 return -EFAULT;
5302
5303         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5304             vmcs12->vmcs_link_pointer != -1ull) {
5305                 if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
5306                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5307                         return -EFAULT;
5308         }
5309
5310 out:
5311         return kvm_state.size;
5312 }
5313
5314 /*
5315  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5316  */
5317 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5318 {
5319         if (is_guest_mode(vcpu)) {
5320                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5321                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5322         }
5323         free_nested(vcpu);
5324 }
5325
5326 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5327                                 struct kvm_nested_state __user *user_kvm_nested_state,
5328                                 struct kvm_nested_state *kvm_state)
5329 {
5330         struct vcpu_vmx *vmx = to_vmx(vcpu);
5331         struct vmcs12 *vmcs12;
5332         u32 exit_qual;
5333         int ret;
5334
5335         if (kvm_state->format != 0)
5336                 return -EINVAL;
5337
5338         if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
5339                 nested_enable_evmcs(vcpu, NULL);
5340
5341         if (!nested_vmx_allowed(vcpu))
5342                 return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
5343
5344         if (kvm_state->vmx.vmxon_pa == -1ull) {
5345                 if (kvm_state->vmx.smm.flags)
5346                         return -EINVAL;
5347
5348                 if (kvm_state->vmx.vmcs_pa != -1ull)
5349                         return -EINVAL;
5350
5351                 vmx_leave_nested(vcpu);
5352                 return 0;
5353         }
5354
5355         if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
5356                 return -EINVAL;
5357
5358         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5359             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5360                 return -EINVAL;
5361
5362         if (kvm_state->vmx.smm.flags &
5363             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5364                 return -EINVAL;
5365
5366         /*
5367          * SMM temporarily disables VMX, so we cannot be in guest mode,
5368          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5369          * must be zero.
5370          */
5371         if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
5372                 return -EINVAL;
5373
5374         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5375             !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5376                 return -EINVAL;
5377
5378         vmx_leave_nested(vcpu);
5379         if (kvm_state->vmx.vmxon_pa == -1ull)
5380                 return 0;
5381
5382         vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
5383         ret = enter_vmx_operation(vcpu);
5384         if (ret)
5385                 return ret;
5386
5387         /* Empty 'VMXON' state is permitted */
5388         if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
5389                 return 0;
5390
5391         if (kvm_state->vmx.vmcs_pa != -1ull) {
5392                 if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
5393                     !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
5394                         return -EINVAL;
5395
5396                 set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
5397         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5398                 /*
5399                  * Sync eVMCS upon entry as we may not have
5400                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5401                  */
5402                 vmx->nested.need_vmcs12_sync = true;
5403         } else {
5404                 return -EINVAL;
5405         }
5406
5407         if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5408                 vmx->nested.smm.vmxon = true;
5409                 vmx->nested.vmxon = false;
5410
5411                 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5412                         vmx->nested.smm.guest_mode = true;
5413         }
5414
5415         vmcs12 = get_vmcs12(vcpu);
5416         if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
5417                 return -EFAULT;
5418
5419         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5420                 return -EINVAL;
5421
5422         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5423                 return 0;
5424
5425         vmx->nested.nested_run_pending =
5426                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5427
5428         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5429             vmcs12->vmcs_link_pointer != -1ull) {
5430                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5431
5432                 if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
5433                         return -EINVAL;
5434
5435                 if (copy_from_user(shadow_vmcs12,
5436                                    user_kvm_nested_state->data + VMCS12_SIZE,
5437                                    sizeof(*vmcs12)))
5438                         return -EFAULT;
5439
5440                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5441                     !shadow_vmcs12->hdr.shadow_vmcs)
5442                         return -EINVAL;
5443         }
5444
5445         if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
5446             nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
5447                 return -EINVAL;
5448
5449         vmx->nested.dirty_vmcs12 = true;
5450         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5451         if (ret)
5452                 return -EINVAL;
5453
5454         return 0;
5455 }
5456
5457 void nested_vmx_vcpu_setup(void)
5458 {
5459         if (enable_shadow_vmcs) {
5460                 /*
5461                  * At vCPU creation, "VMWRITE to any supported field
5462                  * in the VMCS" is supported, so use the more
5463                  * permissive vmx_vmread_bitmap to specify both read
5464                  * and write permissions for the shadow VMCS.
5465                  */
5466                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5467                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
5468         }
5469 }
5470
5471 /*
5472  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5473  * returned for the various VMX controls MSRs when nested VMX is enabled.
5474  * The same values should also be used to verify that vmcs12 control fields are
5475  * valid during nested entry from L1 to L2.
5476  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5477  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5478  * bit in the high half is on if the corresponding bit in the control field
5479  * may be on. See also vmx_control_verify().
5480  */
5481 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5482                                 bool apicv)
5483 {
5484         /*
5485          * Note that as a general rule, the high half of the MSRs (bits in
5486          * the control fields which may be 1) should be initialized by the
5487          * intersection of the underlying hardware's MSR (i.e., features which
5488          * can be supported) and the list of features we want to expose -
5489          * because they are known to be properly supported in our code.
5490          * Also, usually, the low half of the MSRs (bits which must be 1) can
5491          * be set to 0, meaning that L1 may turn off any of these bits. The
5492          * reason is that if one of these bits is necessary, it will appear
5493          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5494          * fields of vmcs01 and vmcs02, will turn these bits off - and
5495          * nested_vmx_exit_reflected() will not pass related exits to L1.
5496          * These rules have exceptions below.
5497          */
5498
5499         /* pin-based controls */
5500         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5501                 msrs->pinbased_ctls_low,
5502                 msrs->pinbased_ctls_high);
5503         msrs->pinbased_ctls_low |=
5504                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5505         msrs->pinbased_ctls_high &=
5506                 PIN_BASED_EXT_INTR_MASK |
5507                 PIN_BASED_NMI_EXITING |
5508                 PIN_BASED_VIRTUAL_NMIS |
5509                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5510         msrs->pinbased_ctls_high |=
5511                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5512                 PIN_BASED_VMX_PREEMPTION_TIMER;
5513
5514         /* exit controls */
5515         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5516                 msrs->exit_ctls_low,
5517                 msrs->exit_ctls_high);
5518         msrs->exit_ctls_low =
5519                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5520
5521         msrs->exit_ctls_high &=
5522 #ifdef CONFIG_X86_64
5523                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5524 #endif
5525                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5526         msrs->exit_ctls_high |=
5527                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5528                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5529                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5530
5531         /* We support free control of debug control saving. */
5532         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5533
5534         /* entry controls */
5535         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5536                 msrs->entry_ctls_low,
5537                 msrs->entry_ctls_high);
5538         msrs->entry_ctls_low =
5539                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5540         msrs->entry_ctls_high &=
5541 #ifdef CONFIG_X86_64
5542                 VM_ENTRY_IA32E_MODE |
5543 #endif
5544                 VM_ENTRY_LOAD_IA32_PAT;
5545         msrs->entry_ctls_high |=
5546                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5547
5548         /* We support free control of debug control loading. */
5549         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5550
5551         /* cpu-based controls */
5552         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5553                 msrs->procbased_ctls_low,
5554                 msrs->procbased_ctls_high);
5555         msrs->procbased_ctls_low =
5556                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5557         msrs->procbased_ctls_high &=
5558                 CPU_BASED_VIRTUAL_INTR_PENDING |
5559                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5560                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5561                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5562                 CPU_BASED_CR3_STORE_EXITING |
5563 #ifdef CONFIG_X86_64
5564                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5565 #endif
5566                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5567                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5568                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5569                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5570                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5571         /*
5572          * We can allow some features even when not supported by the
5573          * hardware. For example, L1 can specify an MSR bitmap - and we
5574          * can use it to avoid exits to L1 - even when L0 runs L2
5575          * without MSR bitmaps.
5576          */
5577         msrs->procbased_ctls_high |=
5578                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5579                 CPU_BASED_USE_MSR_BITMAPS;
5580
5581         /* We support free control of CR3 access interception. */
5582         msrs->procbased_ctls_low &=
5583                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5584
5585         /*
5586          * secondary cpu-based controls.  Do not include those that
5587          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5588          */
5589         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5590                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5591                       msrs->secondary_ctls_low,
5592                       msrs->secondary_ctls_high);
5593
5594         msrs->secondary_ctls_low = 0;
5595         msrs->secondary_ctls_high &=
5596                 SECONDARY_EXEC_DESC |
5597                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5598                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5599                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5600                 SECONDARY_EXEC_WBINVD_EXITING;
5601
5602         /*
5603          * We can emulate "VMCS shadowing," even if the hardware
5604          * doesn't support it.
5605          */
5606         msrs->secondary_ctls_high |=
5607                 SECONDARY_EXEC_SHADOW_VMCS;
5608
5609         if (enable_ept) {
5610                 /* nested EPT: emulate EPT also to L1 */
5611                 msrs->secondary_ctls_high |=
5612                         SECONDARY_EXEC_ENABLE_EPT;
5613                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5614                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5615                 if (cpu_has_vmx_ept_execute_only())
5616                         msrs->ept_caps |=
5617                                 VMX_EPT_EXECUTE_ONLY_BIT;
5618                 msrs->ept_caps &= ept_caps;
5619                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5620                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5621                         VMX_EPT_1GB_PAGE_BIT;
5622                 if (enable_ept_ad_bits) {
5623                         msrs->secondary_ctls_high |=
5624                                 SECONDARY_EXEC_ENABLE_PML;
5625                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5626                 }
5627         }
5628
5629         if (cpu_has_vmx_vmfunc()) {
5630                 msrs->secondary_ctls_high |=
5631                         SECONDARY_EXEC_ENABLE_VMFUNC;
5632                 /*
5633                  * Advertise EPTP switching unconditionally
5634                  * since we emulate it
5635                  */
5636                 if (enable_ept)
5637                         msrs->vmfunc_controls =
5638                                 VMX_VMFUNC_EPTP_SWITCHING;
5639         }
5640
5641         /*
5642          * Old versions of KVM use the single-context version without
5643          * checking for support, so declare that it is supported even
5644          * though it is treated as global context.  The alternative is
5645          * not failing the single-context invvpid, and it is worse.
5646          */
5647         if (enable_vpid) {
5648                 msrs->secondary_ctls_high |=
5649                         SECONDARY_EXEC_ENABLE_VPID;
5650                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5651                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5652         }
5653
5654         if (enable_unrestricted_guest)
5655                 msrs->secondary_ctls_high |=
5656                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5657
5658         if (flexpriority_enabled)
5659                 msrs->secondary_ctls_high |=
5660                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5661
5662         /* miscellaneous data */
5663         rdmsr(MSR_IA32_VMX_MISC,
5664                 msrs->misc_low,
5665                 msrs->misc_high);
5666         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5667         msrs->misc_low |=
5668                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5669                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5670                 VMX_MISC_ACTIVITY_HLT;
5671         msrs->misc_high = 0;
5672
5673         /*
5674          * This MSR reports some information about VMX support. We
5675          * should return information about the VMX we emulate for the
5676          * guest, and the VMCS structure we give it - not about the
5677          * VMX support of the underlying hardware.
5678          */
5679         msrs->basic =
5680                 VMCS12_REVISION |
5681                 VMX_BASIC_TRUE_CTLS |
5682                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5683                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5684
5685         if (cpu_has_vmx_basic_inout())
5686                 msrs->basic |= VMX_BASIC_INOUT;
5687
5688         /*
5689          * These MSRs specify bits which the guest must keep fixed on
5690          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5691          * We picked the standard core2 setting.
5692          */
5693 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5694 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5695         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5696         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5697
5698         /* These MSRs specify bits which the guest must keep fixed off. */
5699         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5700         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5701
5702         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5703         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5704 }
5705
5706 void nested_vmx_hardware_unsetup(void)
5707 {
5708         int i;
5709
5710         if (enable_shadow_vmcs) {
5711                 for (i = 0; i < VMX_BITMAP_NR; i++)
5712                         free_page((unsigned long)vmx_bitmap[i]);
5713         }
5714 }
5715
5716 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5717 {
5718         int i;
5719
5720         if (!cpu_has_vmx_shadow_vmcs())
5721                 enable_shadow_vmcs = 0;
5722         if (enable_shadow_vmcs) {
5723                 for (i = 0; i < VMX_BITMAP_NR; i++) {
5724                         /*
5725                          * The vmx_bitmap is not tied to a VM and so should
5726                          * not be charged to a memcg.
5727                          */
5728                         vmx_bitmap[i] = (unsigned long *)
5729                                 __get_free_page(GFP_KERNEL);
5730                         if (!vmx_bitmap[i]) {
5731                                 nested_vmx_hardware_unsetup();
5732                                 return -ENOMEM;
5733                         }
5734                 }
5735
5736                 init_vmcs_shadow_fields();
5737         }
5738
5739         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
5740         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
5741         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
5742         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
5743         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
5744         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
5745         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
5746         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
5747         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
5748         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
5749         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
5750         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
5751
5752         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5753         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5754         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5755         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5756         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5757         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5758
5759         return 0;
5760 }