Merge tag 'linux-kselftest-fixes-5.15-rc5' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "sgx.h"
15 #include "trace.h"
16 #include "vmx.h"
17 #include "x86.h"
18
19 static bool __read_mostly enable_shadow_vmcs = 1;
20 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
21
22 static bool __read_mostly nested_early_check = 0;
23 module_param(nested_early_check, bool, S_IRUGO);
24
25 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
26
27 /*
28  * Hyper-V requires all of these, so mark them as supported even though
29  * they are just treated the same as all-context.
30  */
31 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
32         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
33         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
34         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
35         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
36
37 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
38
39 enum {
40         VMX_VMREAD_BITMAP,
41         VMX_VMWRITE_BITMAP,
42         VMX_BITMAP_NR
43 };
44 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
45
46 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
47 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
48
49 struct shadow_vmcs_field {
50         u16     encoding;
51         u16     offset;
52 };
53 static struct shadow_vmcs_field shadow_read_only_fields[] = {
54 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 #include "vmcs_shadow_fields.h"
56 };
57 static int max_shadow_read_only_fields =
58         ARRAY_SIZE(shadow_read_only_fields);
59
60 static struct shadow_vmcs_field shadow_read_write_fields[] = {
61 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 #include "vmcs_shadow_fields.h"
63 };
64 static int max_shadow_read_write_fields =
65         ARRAY_SIZE(shadow_read_write_fields);
66
67 static void init_vmcs_shadow_fields(void)
68 {
69         int i, j;
70
71         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
72         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
73
74         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
76                 u16 field = entry.encoding;
77
78                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
79                     (i + 1 == max_shadow_read_only_fields ||
80                      shadow_read_only_fields[i + 1].encoding != field + 1))
81                         pr_err("Missing field from shadow_read_only_field %x\n",
82                                field + 1);
83
84                 clear_bit(field, vmx_vmread_bitmap);
85                 if (field & 1)
86 #ifdef CONFIG_X86_64
87                         continue;
88 #else
89                         entry.offset += sizeof(u32);
90 #endif
91                 shadow_read_only_fields[j++] = entry;
92         }
93         max_shadow_read_only_fields = j;
94
95         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
97                 u16 field = entry.encoding;
98
99                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
100                     (i + 1 == max_shadow_read_write_fields ||
101                      shadow_read_write_fields[i + 1].encoding != field + 1))
102                         pr_err("Missing field from shadow_read_write_field %x\n",
103                                field + 1);
104
105                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
106                           field <= GUEST_TR_AR_BYTES,
107                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
108
109                 /*
110                  * PML and the preemption timer can be emulated, but the
111                  * processor cannot vmwrite to fields that don't exist
112                  * on bare metal.
113                  */
114                 switch (field) {
115                 case GUEST_PML_INDEX:
116                         if (!cpu_has_vmx_pml())
117                                 continue;
118                         break;
119                 case VMX_PREEMPTION_TIMER_VALUE:
120                         if (!cpu_has_vmx_preemption_timer())
121                                 continue;
122                         break;
123                 case GUEST_INTR_STATUS:
124                         if (!cpu_has_vmx_apicv())
125                                 continue;
126                         break;
127                 default:
128                         break;
129                 }
130
131                 clear_bit(field, vmx_vmwrite_bitmap);
132                 clear_bit(field, vmx_vmread_bitmap);
133                 if (field & 1)
134 #ifdef CONFIG_X86_64
135                         continue;
136 #else
137                         entry.offset += sizeof(u32);
138 #endif
139                 shadow_read_write_fields[j++] = entry;
140         }
141         max_shadow_read_write_fields = j;
142 }
143
144 /*
145  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
146  * set the success or error code of an emulated VMX instruction (as specified
147  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
148  * instruction.
149  */
150 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
151 {
152         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
153                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
154                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
155         return kvm_skip_emulated_instruction(vcpu);
156 }
157
158 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
159 {
160         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
161                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
162                             X86_EFLAGS_SF | X86_EFLAGS_OF))
163                         | X86_EFLAGS_CF);
164         return kvm_skip_emulated_instruction(vcpu);
165 }
166
167 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
168                                 u32 vm_instruction_error)
169 {
170         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
171                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
172                             X86_EFLAGS_SF | X86_EFLAGS_OF))
173                         | X86_EFLAGS_ZF);
174         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
175         /*
176          * We don't need to force sync to shadow VMCS because
177          * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
178          * fields and thus must be synced.
179          */
180         if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
181                 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
182
183         return kvm_skip_emulated_instruction(vcpu);
184 }
185
186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
187 {
188         struct vcpu_vmx *vmx = to_vmx(vcpu);
189
190         /*
191          * failValid writes the error number to the current VMCS, which
192          * can't be done if there isn't a current VMCS.
193          */
194         if (vmx->nested.current_vmptr == -1ull &&
195             !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
196                 return nested_vmx_failInvalid(vcpu);
197
198         return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200
201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203         /* TODO: not to reset guest simply here. */
204         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207
208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210         return fixed_bits_valid(control, low, high);
211 }
212
213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215         return low | ((u64)high << 32);
216 }
217
218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221         vmcs_write64(VMCS_LINK_POINTER, -1ull);
222         vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224
225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227         struct vcpu_vmx *vmx = to_vmx(vcpu);
228
229         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
230                 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
231                 vmx->nested.hv_evmcs = NULL;
232         }
233
234         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
235 }
236
237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238                                      struct loaded_vmcs *prev)
239 {
240         struct vmcs_host_state *dest, *src;
241
242         if (unlikely(!vmx->guest_state_loaded))
243                 return;
244
245         src = &prev->host_state;
246         dest = &vmx->loaded_vmcs->host_state;
247
248         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249         dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251         dest->ds_sel = src->ds_sel;
252         dest->es_sel = src->es_sel;
253 #endif
254 }
255
256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258         struct vcpu_vmx *vmx = to_vmx(vcpu);
259         struct loaded_vmcs *prev;
260         int cpu;
261
262         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263                 return;
264
265         cpu = get_cpu();
266         prev = vmx->loaded_vmcs;
267         vmx->loaded_vmcs = vmcs;
268         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269         vmx_sync_vmcs_host_state(vmx, prev);
270         put_cpu();
271
272         vmx_register_cache_reset(vcpu);
273 }
274
275 /*
276  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277  * just stops using VMX.
278  */
279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281         struct vcpu_vmx *vmx = to_vmx(vcpu);
282
283         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285
286         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287                 return;
288
289         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290
291         vmx->nested.vmxon = false;
292         vmx->nested.smm.vmxon = false;
293         free_vpid(vmx->nested.vpid02);
294         vmx->nested.posted_intr_nv = -1;
295         vmx->nested.current_vmptr = -1ull;
296         if (enable_shadow_vmcs) {
297                 vmx_disable_shadow_vmcs(vmx);
298                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
299                 free_vmcs(vmx->vmcs01.shadow_vmcs);
300                 vmx->vmcs01.shadow_vmcs = NULL;
301         }
302         kfree(vmx->nested.cached_vmcs12);
303         vmx->nested.cached_vmcs12 = NULL;
304         kfree(vmx->nested.cached_shadow_vmcs12);
305         vmx->nested.cached_shadow_vmcs12 = NULL;
306         /* Unpin physical memory we referred to in the vmcs02 */
307         if (vmx->nested.apic_access_page) {
308                 kvm_release_page_clean(vmx->nested.apic_access_page);
309                 vmx->nested.apic_access_page = NULL;
310         }
311         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313         vmx->nested.pi_desc = NULL;
314
315         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316
317         nested_release_evmcs(vcpu);
318
319         free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321
322 /*
323  * Ensure that the current vmcs of the logical processor is the
324  * vmcs01 of the vcpu before calling free_nested().
325  */
326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328         vcpu_load(vcpu);
329         vmx_leave_nested(vcpu);
330         vcpu_put(vcpu);
331 }
332
333 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
334
335 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
336 {
337         return VALID_PAGE(root_hpa) &&
338                ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
339 }
340
341 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
342                                        gpa_t addr)
343 {
344         uint i;
345         struct kvm_mmu_root_info *cached_root;
346
347         WARN_ON_ONCE(!mmu_is_nested(vcpu));
348
349         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
350                 cached_root = &vcpu->arch.mmu->prev_roots[i];
351
352                 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
353                                             eptp))
354                         vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
355         }
356 }
357
358 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
359                 struct x86_exception *fault)
360 {
361         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
362         struct vcpu_vmx *vmx = to_vmx(vcpu);
363         u32 vm_exit_reason;
364         unsigned long exit_qualification = vcpu->arch.exit_qualification;
365
366         if (vmx->nested.pml_full) {
367                 vm_exit_reason = EXIT_REASON_PML_FULL;
368                 vmx->nested.pml_full = false;
369                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
370         } else {
371                 if (fault->error_code & PFERR_RSVD_MASK)
372                         vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
373                 else
374                         vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
375
376                 /*
377                  * Although the caller (kvm_inject_emulated_page_fault) would
378                  * have already synced the faulting address in the shadow EPT
379                  * tables for the current EPTP12, we also need to sync it for
380                  * any other cached EPTP02s based on the same EP4TA, since the
381                  * TLB associates mappings to the EP4TA rather than the full EPTP.
382                  */
383                 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
384                                            fault->address);
385         }
386
387         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
388         vmcs12->guest_physical_address = fault->address;
389 }
390
391 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
392 {
393         kvm_init_shadow_ept_mmu(vcpu,
394                                 to_vmx(vcpu)->nested.msrs.ept_caps &
395                                 VMX_EPT_EXECUTE_ONLY_BIT,
396                                 nested_ept_ad_enabled(vcpu),
397                                 nested_ept_get_eptp(vcpu));
398 }
399
400 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
401 {
402         WARN_ON(mmu_is_nested(vcpu));
403
404         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
405         nested_ept_new_eptp(vcpu);
406         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
407         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
408         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
409
410         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
411 }
412
413 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
414 {
415         vcpu->arch.mmu = &vcpu->arch.root_mmu;
416         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
417 }
418
419 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
420                                             u16 error_code)
421 {
422         bool inequality, bit;
423
424         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
425         inequality =
426                 (error_code & vmcs12->page_fault_error_code_mask) !=
427                  vmcs12->page_fault_error_code_match;
428         return inequality ^ bit;
429 }
430
431
432 /*
433  * KVM wants to inject page-faults which it got to the guest. This function
434  * checks whether in a nested guest, we need to inject them to L1 or L2.
435  */
436 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
437 {
438         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
439         unsigned int nr = vcpu->arch.exception.nr;
440         bool has_payload = vcpu->arch.exception.has_payload;
441         unsigned long payload = vcpu->arch.exception.payload;
442
443         if (nr == PF_VECTOR) {
444                 if (vcpu->arch.exception.nested_apf) {
445                         *exit_qual = vcpu->arch.apf.nested_apf_token;
446                         return 1;
447                 }
448                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
449                                                     vcpu->arch.exception.error_code)) {
450                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
451                         return 1;
452                 }
453         } else if (vmcs12->exception_bitmap & (1u << nr)) {
454                 if (nr == DB_VECTOR) {
455                         if (!has_payload) {
456                                 payload = vcpu->arch.dr6;
457                                 payload &= ~DR6_BT;
458                                 payload ^= DR6_ACTIVE_LOW;
459                         }
460                         *exit_qual = payload;
461                 } else
462                         *exit_qual = 0;
463                 return 1;
464         }
465
466         return 0;
467 }
468
469
470 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
471                 struct x86_exception *fault)
472 {
473         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
474
475         WARN_ON(!is_guest_mode(vcpu));
476
477         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
478                 !to_vmx(vcpu)->nested.nested_run_pending) {
479                 vmcs12->vm_exit_intr_error_code = fault->error_code;
480                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
481                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
482                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
483                                   fault->address);
484         } else {
485                 kvm_inject_page_fault(vcpu, fault);
486         }
487 }
488
489 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
490                                                struct vmcs12 *vmcs12)
491 {
492         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
493                 return 0;
494
495         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
496             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
497                 return -EINVAL;
498
499         return 0;
500 }
501
502 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
503                                                 struct vmcs12 *vmcs12)
504 {
505         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
506                 return 0;
507
508         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
509                 return -EINVAL;
510
511         return 0;
512 }
513
514 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
515                                                 struct vmcs12 *vmcs12)
516 {
517         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
518                 return 0;
519
520         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
521                 return -EINVAL;
522
523         return 0;
524 }
525
526 /*
527  * Check if MSR is intercepted for L01 MSR bitmap.
528  */
529 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
530 {
531         unsigned long *msr_bitmap;
532         int f = sizeof(unsigned long);
533
534         if (!cpu_has_vmx_msr_bitmap())
535                 return true;
536
537         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
538
539         if (msr <= 0x1fff) {
540                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
541         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
542                 msr &= 0x1fff;
543                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
544         }
545
546         return true;
547 }
548
549 /*
550  * If a msr is allowed by L0, we should check whether it is allowed by L1.
551  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
552  */
553 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
554                                                unsigned long *msr_bitmap_nested,
555                                                u32 msr, int type)
556 {
557         int f = sizeof(unsigned long);
558
559         /*
560          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
561          * have the write-low and read-high bitmap offsets the wrong way round.
562          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
563          */
564         if (msr <= 0x1fff) {
565                 if (type & MSR_TYPE_R &&
566                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
567                         /* read-low */
568                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
569
570                 if (type & MSR_TYPE_W &&
571                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
572                         /* write-low */
573                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
574
575         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
576                 msr &= 0x1fff;
577                 if (type & MSR_TYPE_R &&
578                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
579                         /* read-high */
580                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
581
582                 if (type & MSR_TYPE_W &&
583                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
584                         /* write-high */
585                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
586
587         }
588 }
589
590 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
591 {
592         int msr;
593
594         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595                 unsigned word = msr / BITS_PER_LONG;
596
597                 msr_bitmap[word] = ~0;
598                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
599         }
600 }
601
602 /*
603  * Merge L0's and L1's MSR bitmap, return false to indicate that
604  * we do not use the hardware.
605  */
606 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
607                                                  struct vmcs12 *vmcs12)
608 {
609         int msr;
610         unsigned long *msr_bitmap_l1;
611         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
612         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
613
614         /* Nothing to do if the MSR bitmap is not in use.  */
615         if (!cpu_has_vmx_msr_bitmap() ||
616             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
617                 return false;
618
619         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
620                 return false;
621
622         msr_bitmap_l1 = (unsigned long *)map->hva;
623
624         /*
625          * To keep the control flow simple, pay eight 8-byte writes (sixteen
626          * 4-byte writes on 32-bit systems) up front to enable intercepts for
627          * the x2APIC MSR range and selectively disable them below.
628          */
629         enable_x2apic_msr_intercepts(msr_bitmap_l0);
630
631         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
632                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
633                         /*
634                          * L0 need not intercept reads for MSRs between 0x800
635                          * and 0x8ff, it just lets the processor take the value
636                          * from the virtual-APIC page; take those 256 bits
637                          * directly from the L1 bitmap.
638                          */
639                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
640                                 unsigned word = msr / BITS_PER_LONG;
641
642                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
643                         }
644                 }
645
646                 nested_vmx_disable_intercept_for_msr(
647                         msr_bitmap_l1, msr_bitmap_l0,
648                         X2APIC_MSR(APIC_TASKPRI),
649                         MSR_TYPE_R | MSR_TYPE_W);
650
651                 if (nested_cpu_has_vid(vmcs12)) {
652                         nested_vmx_disable_intercept_for_msr(
653                                 msr_bitmap_l1, msr_bitmap_l0,
654                                 X2APIC_MSR(APIC_EOI),
655                                 MSR_TYPE_W);
656                         nested_vmx_disable_intercept_for_msr(
657                                 msr_bitmap_l1, msr_bitmap_l0,
658                                 X2APIC_MSR(APIC_SELF_IPI),
659                                 MSR_TYPE_W);
660                 }
661         }
662
663         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
664 #ifdef CONFIG_X86_64
665         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
666                                              MSR_FS_BASE, MSR_TYPE_RW);
667
668         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
669                                              MSR_GS_BASE, MSR_TYPE_RW);
670
671         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
672                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
673 #endif
674
675         /*
676          * Checking the L0->L1 bitmap is trying to verify two things:
677          *
678          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
679          *    ensures that we do not accidentally generate an L02 MSR bitmap
680          *    from the L12 MSR bitmap that is too permissive.
681          * 2. That L1 or L2s have actually used the MSR. This avoids
682          *    unnecessarily merging of the bitmap if the MSR is unused. This
683          *    works properly because we only update the L01 MSR bitmap lazily.
684          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
685          *    updated to reflect this when L1 (or its L2s) actually write to
686          *    the MSR.
687          */
688         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
689                 nested_vmx_disable_intercept_for_msr(
690                                         msr_bitmap_l1, msr_bitmap_l0,
691                                         MSR_IA32_SPEC_CTRL,
692                                         MSR_TYPE_R | MSR_TYPE_W);
693
694         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
695                 nested_vmx_disable_intercept_for_msr(
696                                         msr_bitmap_l1, msr_bitmap_l0,
697                                         MSR_IA32_PRED_CMD,
698                                         MSR_TYPE_W);
699
700         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
701
702         return true;
703 }
704
705 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
706                                        struct vmcs12 *vmcs12)
707 {
708         struct kvm_host_map map;
709         struct vmcs12 *shadow;
710
711         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
712             vmcs12->vmcs_link_pointer == -1ull)
713                 return;
714
715         shadow = get_shadow_vmcs12(vcpu);
716
717         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
718                 return;
719
720         memcpy(shadow, map.hva, VMCS12_SIZE);
721         kvm_vcpu_unmap(vcpu, &map, false);
722 }
723
724 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
725                                               struct vmcs12 *vmcs12)
726 {
727         struct vcpu_vmx *vmx = to_vmx(vcpu);
728
729         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
730             vmcs12->vmcs_link_pointer == -1ull)
731                 return;
732
733         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
734                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
735 }
736
737 /*
738  * In nested virtualization, check if L1 has set
739  * VM_EXIT_ACK_INTR_ON_EXIT
740  */
741 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
742 {
743         return get_vmcs12(vcpu)->vm_exit_controls &
744                 VM_EXIT_ACK_INTR_ON_EXIT;
745 }
746
747 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
748                                           struct vmcs12 *vmcs12)
749 {
750         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
751             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
752                 return -EINVAL;
753         else
754                 return 0;
755 }
756
757 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
758                                            struct vmcs12 *vmcs12)
759 {
760         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
761             !nested_cpu_has_apic_reg_virt(vmcs12) &&
762             !nested_cpu_has_vid(vmcs12) &&
763             !nested_cpu_has_posted_intr(vmcs12))
764                 return 0;
765
766         /*
767          * If virtualize x2apic mode is enabled,
768          * virtualize apic access must be disabled.
769          */
770         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
771                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
772                 return -EINVAL;
773
774         /*
775          * If virtual interrupt delivery is enabled,
776          * we must exit on external interrupts.
777          */
778         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
779                 return -EINVAL;
780
781         /*
782          * bits 15:8 should be zero in posted_intr_nv,
783          * the descriptor address has been already checked
784          * in nested_get_vmcs12_pages.
785          *
786          * bits 5:0 of posted_intr_desc_addr should be zero.
787          */
788         if (nested_cpu_has_posted_intr(vmcs12) &&
789            (CC(!nested_cpu_has_vid(vmcs12)) ||
790             CC(!nested_exit_intr_ack_set(vcpu)) ||
791             CC((vmcs12->posted_intr_nv & 0xff00)) ||
792             CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
793                 return -EINVAL;
794
795         /* tpr shadow is needed by all apicv features. */
796         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
797                 return -EINVAL;
798
799         return 0;
800 }
801
802 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
803                                        u32 count, u64 addr)
804 {
805         if (count == 0)
806                 return 0;
807
808         if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
809             !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
810                 return -EINVAL;
811
812         return 0;
813 }
814
815 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
816                                                      struct vmcs12 *vmcs12)
817 {
818         if (CC(nested_vmx_check_msr_switch(vcpu,
819                                            vmcs12->vm_exit_msr_load_count,
820                                            vmcs12->vm_exit_msr_load_addr)) ||
821             CC(nested_vmx_check_msr_switch(vcpu,
822                                            vmcs12->vm_exit_msr_store_count,
823                                            vmcs12->vm_exit_msr_store_addr)))
824                 return -EINVAL;
825
826         return 0;
827 }
828
829 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
830                                                       struct vmcs12 *vmcs12)
831 {
832         if (CC(nested_vmx_check_msr_switch(vcpu,
833                                            vmcs12->vm_entry_msr_load_count,
834                                            vmcs12->vm_entry_msr_load_addr)))
835                 return -EINVAL;
836
837         return 0;
838 }
839
840 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
841                                          struct vmcs12 *vmcs12)
842 {
843         if (!nested_cpu_has_pml(vmcs12))
844                 return 0;
845
846         if (CC(!nested_cpu_has_ept(vmcs12)) ||
847             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
848                 return -EINVAL;
849
850         return 0;
851 }
852
853 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
854                                                         struct vmcs12 *vmcs12)
855 {
856         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
857                !nested_cpu_has_ept(vmcs12)))
858                 return -EINVAL;
859         return 0;
860 }
861
862 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
863                                                          struct vmcs12 *vmcs12)
864 {
865         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
866                !nested_cpu_has_ept(vmcs12)))
867                 return -EINVAL;
868         return 0;
869 }
870
871 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
872                                                  struct vmcs12 *vmcs12)
873 {
874         if (!nested_cpu_has_shadow_vmcs(vmcs12))
875                 return 0;
876
877         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
878             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
879                 return -EINVAL;
880
881         return 0;
882 }
883
884 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
885                                        struct vmx_msr_entry *e)
886 {
887         /* x2APIC MSR accesses are not allowed */
888         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
889                 return -EINVAL;
890         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
891             CC(e->index == MSR_IA32_UCODE_REV))
892                 return -EINVAL;
893         if (CC(e->reserved != 0))
894                 return -EINVAL;
895         return 0;
896 }
897
898 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
899                                      struct vmx_msr_entry *e)
900 {
901         if (CC(e->index == MSR_FS_BASE) ||
902             CC(e->index == MSR_GS_BASE) ||
903             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
904             nested_vmx_msr_check_common(vcpu, e))
905                 return -EINVAL;
906         return 0;
907 }
908
909 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
910                                       struct vmx_msr_entry *e)
911 {
912         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
913             nested_vmx_msr_check_common(vcpu, e))
914                 return -EINVAL;
915         return 0;
916 }
917
918 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
919 {
920         struct vcpu_vmx *vmx = to_vmx(vcpu);
921         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
922                                        vmx->nested.msrs.misc_high);
923
924         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
925 }
926
927 /*
928  * Load guest's/host's msr at nested entry/exit.
929  * return 0 for success, entry index for failure.
930  *
931  * One of the failure modes for MSR load/store is when a list exceeds the
932  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
933  * as possible, process all valid entries before failing rather than precheck
934  * for a capacity violation.
935  */
936 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
937 {
938         u32 i;
939         struct vmx_msr_entry e;
940         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
941
942         for (i = 0; i < count; i++) {
943                 if (unlikely(i >= max_msr_list_size))
944                         goto fail;
945
946                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
947                                         &e, sizeof(e))) {
948                         pr_debug_ratelimited(
949                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
950                                 __func__, i, gpa + i * sizeof(e));
951                         goto fail;
952                 }
953                 if (nested_vmx_load_msr_check(vcpu, &e)) {
954                         pr_debug_ratelimited(
955                                 "%s check failed (%u, 0x%x, 0x%x)\n",
956                                 __func__, i, e.index, e.reserved);
957                         goto fail;
958                 }
959                 if (kvm_set_msr(vcpu, e.index, e.value)) {
960                         pr_debug_ratelimited(
961                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
962                                 __func__, i, e.index, e.value);
963                         goto fail;
964                 }
965         }
966         return 0;
967 fail:
968         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
969         return i + 1;
970 }
971
972 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
973                                             u32 msr_index,
974                                             u64 *data)
975 {
976         struct vcpu_vmx *vmx = to_vmx(vcpu);
977
978         /*
979          * If the L0 hypervisor stored a more accurate value for the TSC that
980          * does not include the time taken for emulation of the L2->L1
981          * VM-exit in L0, use the more accurate value.
982          */
983         if (msr_index == MSR_IA32_TSC) {
984                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
985                                                     MSR_IA32_TSC);
986
987                 if (i >= 0) {
988                         u64 val = vmx->msr_autostore.guest.val[i].value;
989
990                         *data = kvm_read_l1_tsc(vcpu, val);
991                         return true;
992                 }
993         }
994
995         if (kvm_get_msr(vcpu, msr_index, data)) {
996                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
997                         msr_index);
998                 return false;
999         }
1000         return true;
1001 }
1002
1003 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1004                                      struct vmx_msr_entry *e)
1005 {
1006         if (kvm_vcpu_read_guest(vcpu,
1007                                 gpa + i * sizeof(*e),
1008                                 e, 2 * sizeof(u32))) {
1009                 pr_debug_ratelimited(
1010                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
1011                         __func__, i, gpa + i * sizeof(*e));
1012                 return false;
1013         }
1014         if (nested_vmx_store_msr_check(vcpu, e)) {
1015                 pr_debug_ratelimited(
1016                         "%s check failed (%u, 0x%x, 0x%x)\n",
1017                         __func__, i, e->index, e->reserved);
1018                 return false;
1019         }
1020         return true;
1021 }
1022
1023 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1024 {
1025         u64 data;
1026         u32 i;
1027         struct vmx_msr_entry e;
1028         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1029
1030         for (i = 0; i < count; i++) {
1031                 if (unlikely(i >= max_msr_list_size))
1032                         return -EINVAL;
1033
1034                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1035                         return -EINVAL;
1036
1037                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1038                         return -EINVAL;
1039
1040                 if (kvm_vcpu_write_guest(vcpu,
1041                                          gpa + i * sizeof(e) +
1042                                              offsetof(struct vmx_msr_entry, value),
1043                                          &data, sizeof(data))) {
1044                         pr_debug_ratelimited(
1045                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1046                                 __func__, i, e.index, data);
1047                         return -EINVAL;
1048                 }
1049         }
1050         return 0;
1051 }
1052
1053 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1054 {
1055         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1056         u32 count = vmcs12->vm_exit_msr_store_count;
1057         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1058         struct vmx_msr_entry e;
1059         u32 i;
1060
1061         for (i = 0; i < count; i++) {
1062                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1063                         return false;
1064
1065                 if (e.index == msr_index)
1066                         return true;
1067         }
1068         return false;
1069 }
1070
1071 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1072                                            u32 msr_index)
1073 {
1074         struct vcpu_vmx *vmx = to_vmx(vcpu);
1075         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1076         bool in_vmcs12_store_list;
1077         int msr_autostore_slot;
1078         bool in_autostore_list;
1079         int last;
1080
1081         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1082         in_autostore_list = msr_autostore_slot >= 0;
1083         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1084
1085         if (in_vmcs12_store_list && !in_autostore_list) {
1086                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1087                         /*
1088                          * Emulated VMEntry does not fail here.  Instead a less
1089                          * accurate value will be returned by
1090                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1091                          * instead of reading the value from the vmcs02 VMExit
1092                          * MSR-store area.
1093                          */
1094                         pr_warn_ratelimited(
1095                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1096                                 msr_index);
1097                         return;
1098                 }
1099                 last = autostore->nr++;
1100                 autostore->val[last].index = msr_index;
1101         } else if (!in_vmcs12_store_list && in_autostore_list) {
1102                 last = --autostore->nr;
1103                 autostore->val[msr_autostore_slot] = autostore->val[last];
1104         }
1105 }
1106
1107 /*
1108  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1109  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1110  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1111  * @entry_failure_code.
1112  */
1113 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1114                                bool nested_ept, bool reload_pdptrs,
1115                                enum vm_entry_failure_code *entry_failure_code)
1116 {
1117         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1118                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1119                 return -EINVAL;
1120         }
1121
1122         /*
1123          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1124          * must not be dereferenced.
1125          */
1126         if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1127             CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1128                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1129                 return -EINVAL;
1130         }
1131
1132         if (!nested_ept)
1133                 kvm_mmu_new_pgd(vcpu, cr3);
1134
1135         vcpu->arch.cr3 = cr3;
1136         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1137
1138         /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1139         kvm_init_mmu(vcpu);
1140
1141         return 0;
1142 }
1143
1144 /*
1145  * Returns if KVM is able to config CPU to tag TLB entries
1146  * populated by L2 differently than TLB entries populated
1147  * by L1.
1148  *
1149  * If L0 uses EPT, L1 and L2 run with different EPTP because
1150  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1151  * are tagged with different EPTP.
1152  *
1153  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1154  * with different VPID (L1 entries are tagged with vmx->vpid
1155  * while L2 entries are tagged with vmx->nested.vpid02).
1156  */
1157 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1158 {
1159         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1160
1161         return enable_ept ||
1162                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1163 }
1164
1165 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1166                                             struct vmcs12 *vmcs12,
1167                                             bool is_vmenter)
1168 {
1169         struct vcpu_vmx *vmx = to_vmx(vcpu);
1170
1171         /*
1172          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1173          * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1174          * full TLB flush from the guest's perspective.  This is required even
1175          * if VPID is disabled in the host as KVM may need to synchronize the
1176          * MMU in response to the guest TLB flush.
1177          *
1178          * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1179          * EPT is a special snowflake, as guest-physical mappings aren't
1180          * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1181          * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1182          * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1183          * those mappings.
1184          */
1185         if (!nested_cpu_has_vpid(vmcs12)) {
1186                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1187                 return;
1188         }
1189
1190         /* L2 should never have a VPID if VPID is disabled. */
1191         WARN_ON(!enable_vpid);
1192
1193         /*
1194          * If VPID is enabled and used by vmc12, but L2 does not have a unique
1195          * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1196          * a VPID for L2, flush the current context as the effective ASID is
1197          * common to both L1 and L2.
1198          *
1199          * Defer the flush so that it runs after vmcs02.EPTP has been set by
1200          * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1201          * redundant flushes further down the nested pipeline.
1202          *
1203          * If a TLB flush isn't required due to any of the above, and vpid12 is
1204          * changing then the new "virtual" VPID (vpid12) will reuse the same
1205          * "real" VPID (vpid02), and so needs to be flushed.  There's no direct
1206          * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1207          * all nested vCPUs.  Remember, a flush on VM-Enter does not invalidate
1208          * guest-physical mappings, so there is no need to sync the nEPT MMU.
1209          */
1210         if (!nested_has_guest_tlb_tag(vcpu)) {
1211                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1212         } else if (is_vmenter &&
1213                    vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1214                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1215                 vpid_sync_context(nested_get_vpid02(vcpu));
1216         }
1217 }
1218
1219 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1220 {
1221         superset &= mask;
1222         subset &= mask;
1223
1224         return (superset | subset) == superset;
1225 }
1226
1227 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1228 {
1229         const u64 feature_and_reserved =
1230                 /* feature (except bit 48; see below) */
1231                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1232                 /* reserved */
1233                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1234         u64 vmx_basic = vmx->nested.msrs.basic;
1235
1236         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1237                 return -EINVAL;
1238
1239         /*
1240          * KVM does not emulate a version of VMX that constrains physical
1241          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1242          */
1243         if (data & BIT_ULL(48))
1244                 return -EINVAL;
1245
1246         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1247             vmx_basic_vmcs_revision_id(data))
1248                 return -EINVAL;
1249
1250         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1251                 return -EINVAL;
1252
1253         vmx->nested.msrs.basic = data;
1254         return 0;
1255 }
1256
1257 static int
1258 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1259 {
1260         u64 supported;
1261         u32 *lowp, *highp;
1262
1263         switch (msr_index) {
1264         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1265                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1266                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1267                 break;
1268         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1269                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1270                 highp = &vmx->nested.msrs.procbased_ctls_high;
1271                 break;
1272         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1273                 lowp = &vmx->nested.msrs.exit_ctls_low;
1274                 highp = &vmx->nested.msrs.exit_ctls_high;
1275                 break;
1276         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1277                 lowp = &vmx->nested.msrs.entry_ctls_low;
1278                 highp = &vmx->nested.msrs.entry_ctls_high;
1279                 break;
1280         case MSR_IA32_VMX_PROCBASED_CTLS2:
1281                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1282                 highp = &vmx->nested.msrs.secondary_ctls_high;
1283                 break;
1284         default:
1285                 BUG();
1286         }
1287
1288         supported = vmx_control_msr(*lowp, *highp);
1289
1290         /* Check must-be-1 bits are still 1. */
1291         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1292                 return -EINVAL;
1293
1294         /* Check must-be-0 bits are still 0. */
1295         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1296                 return -EINVAL;
1297
1298         *lowp = data;
1299         *highp = data >> 32;
1300         return 0;
1301 }
1302
1303 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1304 {
1305         const u64 feature_and_reserved_bits =
1306                 /* feature */
1307                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1308                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1309                 /* reserved */
1310                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1311         u64 vmx_misc;
1312
1313         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1314                                    vmx->nested.msrs.misc_high);
1315
1316         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1317                 return -EINVAL;
1318
1319         if ((vmx->nested.msrs.pinbased_ctls_high &
1320              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1321             vmx_misc_preemption_timer_rate(data) !=
1322             vmx_misc_preemption_timer_rate(vmx_misc))
1323                 return -EINVAL;
1324
1325         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1326                 return -EINVAL;
1327
1328         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1329                 return -EINVAL;
1330
1331         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1332                 return -EINVAL;
1333
1334         vmx->nested.msrs.misc_low = data;
1335         vmx->nested.msrs.misc_high = data >> 32;
1336
1337         return 0;
1338 }
1339
1340 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1341 {
1342         u64 vmx_ept_vpid_cap;
1343
1344         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1345                                            vmx->nested.msrs.vpid_caps);
1346
1347         /* Every bit is either reserved or a feature bit. */
1348         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1349                 return -EINVAL;
1350
1351         vmx->nested.msrs.ept_caps = data;
1352         vmx->nested.msrs.vpid_caps = data >> 32;
1353         return 0;
1354 }
1355
1356 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1357 {
1358         u64 *msr;
1359
1360         switch (msr_index) {
1361         case MSR_IA32_VMX_CR0_FIXED0:
1362                 msr = &vmx->nested.msrs.cr0_fixed0;
1363                 break;
1364         case MSR_IA32_VMX_CR4_FIXED0:
1365                 msr = &vmx->nested.msrs.cr4_fixed0;
1366                 break;
1367         default:
1368                 BUG();
1369         }
1370
1371         /*
1372          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1373          * must be 1 in the restored value.
1374          */
1375         if (!is_bitwise_subset(data, *msr, -1ULL))
1376                 return -EINVAL;
1377
1378         *msr = data;
1379         return 0;
1380 }
1381
1382 /*
1383  * Called when userspace is restoring VMX MSRs.
1384  *
1385  * Returns 0 on success, non-0 otherwise.
1386  */
1387 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1388 {
1389         struct vcpu_vmx *vmx = to_vmx(vcpu);
1390
1391         /*
1392          * Don't allow changes to the VMX capability MSRs while the vCPU
1393          * is in VMX operation.
1394          */
1395         if (vmx->nested.vmxon)
1396                 return -EBUSY;
1397
1398         switch (msr_index) {
1399         case MSR_IA32_VMX_BASIC:
1400                 return vmx_restore_vmx_basic(vmx, data);
1401         case MSR_IA32_VMX_PINBASED_CTLS:
1402         case MSR_IA32_VMX_PROCBASED_CTLS:
1403         case MSR_IA32_VMX_EXIT_CTLS:
1404         case MSR_IA32_VMX_ENTRY_CTLS:
1405                 /*
1406                  * The "non-true" VMX capability MSRs are generated from the
1407                  * "true" MSRs, so we do not support restoring them directly.
1408                  *
1409                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1410                  * should restore the "true" MSRs with the must-be-1 bits
1411                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1412                  * DEFAULT SETTINGS".
1413                  */
1414                 return -EINVAL;
1415         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1416         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1417         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1418         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1419         case MSR_IA32_VMX_PROCBASED_CTLS2:
1420                 return vmx_restore_control_msr(vmx, msr_index, data);
1421         case MSR_IA32_VMX_MISC:
1422                 return vmx_restore_vmx_misc(vmx, data);
1423         case MSR_IA32_VMX_CR0_FIXED0:
1424         case MSR_IA32_VMX_CR4_FIXED0:
1425                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1426         case MSR_IA32_VMX_CR0_FIXED1:
1427         case MSR_IA32_VMX_CR4_FIXED1:
1428                 /*
1429                  * These MSRs are generated based on the vCPU's CPUID, so we
1430                  * do not support restoring them directly.
1431                  */
1432                 return -EINVAL;
1433         case MSR_IA32_VMX_EPT_VPID_CAP:
1434                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1435         case MSR_IA32_VMX_VMCS_ENUM:
1436                 vmx->nested.msrs.vmcs_enum = data;
1437                 return 0;
1438         case MSR_IA32_VMX_VMFUNC:
1439                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1440                         return -EINVAL;
1441                 vmx->nested.msrs.vmfunc_controls = data;
1442                 return 0;
1443         default:
1444                 /*
1445                  * The rest of the VMX capability MSRs do not support restore.
1446                  */
1447                 return -EINVAL;
1448         }
1449 }
1450
1451 /* Returns 0 on success, non-0 otherwise. */
1452 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1453 {
1454         switch (msr_index) {
1455         case MSR_IA32_VMX_BASIC:
1456                 *pdata = msrs->basic;
1457                 break;
1458         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1459         case MSR_IA32_VMX_PINBASED_CTLS:
1460                 *pdata = vmx_control_msr(
1461                         msrs->pinbased_ctls_low,
1462                         msrs->pinbased_ctls_high);
1463                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1464                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1465                 break;
1466         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1467         case MSR_IA32_VMX_PROCBASED_CTLS:
1468                 *pdata = vmx_control_msr(
1469                         msrs->procbased_ctls_low,
1470                         msrs->procbased_ctls_high);
1471                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1472                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1473                 break;
1474         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1475         case MSR_IA32_VMX_EXIT_CTLS:
1476                 *pdata = vmx_control_msr(
1477                         msrs->exit_ctls_low,
1478                         msrs->exit_ctls_high);
1479                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1480                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1481                 break;
1482         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1483         case MSR_IA32_VMX_ENTRY_CTLS:
1484                 *pdata = vmx_control_msr(
1485                         msrs->entry_ctls_low,
1486                         msrs->entry_ctls_high);
1487                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1488                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1489                 break;
1490         case MSR_IA32_VMX_MISC:
1491                 *pdata = vmx_control_msr(
1492                         msrs->misc_low,
1493                         msrs->misc_high);
1494                 break;
1495         case MSR_IA32_VMX_CR0_FIXED0:
1496                 *pdata = msrs->cr0_fixed0;
1497                 break;
1498         case MSR_IA32_VMX_CR0_FIXED1:
1499                 *pdata = msrs->cr0_fixed1;
1500                 break;
1501         case MSR_IA32_VMX_CR4_FIXED0:
1502                 *pdata = msrs->cr4_fixed0;
1503                 break;
1504         case MSR_IA32_VMX_CR4_FIXED1:
1505                 *pdata = msrs->cr4_fixed1;
1506                 break;
1507         case MSR_IA32_VMX_VMCS_ENUM:
1508                 *pdata = msrs->vmcs_enum;
1509                 break;
1510         case MSR_IA32_VMX_PROCBASED_CTLS2:
1511                 *pdata = vmx_control_msr(
1512                         msrs->secondary_ctls_low,
1513                         msrs->secondary_ctls_high);
1514                 break;
1515         case MSR_IA32_VMX_EPT_VPID_CAP:
1516                 *pdata = msrs->ept_caps |
1517                         ((u64)msrs->vpid_caps << 32);
1518                 break;
1519         case MSR_IA32_VMX_VMFUNC:
1520                 *pdata = msrs->vmfunc_controls;
1521                 break;
1522         default:
1523                 return 1;
1524         }
1525
1526         return 0;
1527 }
1528
1529 /*
1530  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1531  * been modified by the L1 guest.  Note, "writable" in this context means
1532  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1533  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1534  * VM-exit information fields (which are actually writable if the vCPU is
1535  * configured to support "VMWRITE to any supported field in the VMCS").
1536  */
1537 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1538 {
1539         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1540         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1541         struct shadow_vmcs_field field;
1542         unsigned long val;
1543         int i;
1544
1545         if (WARN_ON(!shadow_vmcs))
1546                 return;
1547
1548         preempt_disable();
1549
1550         vmcs_load(shadow_vmcs);
1551
1552         for (i = 0; i < max_shadow_read_write_fields; i++) {
1553                 field = shadow_read_write_fields[i];
1554                 val = __vmcs_readl(field.encoding);
1555                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1556         }
1557
1558         vmcs_clear(shadow_vmcs);
1559         vmcs_load(vmx->loaded_vmcs->vmcs);
1560
1561         preempt_enable();
1562 }
1563
1564 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1565 {
1566         const struct shadow_vmcs_field *fields[] = {
1567                 shadow_read_write_fields,
1568                 shadow_read_only_fields
1569         };
1570         const int max_fields[] = {
1571                 max_shadow_read_write_fields,
1572                 max_shadow_read_only_fields
1573         };
1574         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1575         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1576         struct shadow_vmcs_field field;
1577         unsigned long val;
1578         int i, q;
1579
1580         if (WARN_ON(!shadow_vmcs))
1581                 return;
1582
1583         vmcs_load(shadow_vmcs);
1584
1585         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1586                 for (i = 0; i < max_fields[q]; i++) {
1587                         field = fields[q][i];
1588                         val = vmcs12_read_any(vmcs12, field.encoding,
1589                                               field.offset);
1590                         __vmcs_writel(field.encoding, val);
1591                 }
1592         }
1593
1594         vmcs_clear(shadow_vmcs);
1595         vmcs_load(vmx->loaded_vmcs->vmcs);
1596 }
1597
1598 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1599 {
1600         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1601         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1602
1603         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1604         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1605         vmcs12->guest_rip = evmcs->guest_rip;
1606
1607         if (unlikely(!(hv_clean_fields &
1608                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1609                 vmcs12->guest_rsp = evmcs->guest_rsp;
1610                 vmcs12->guest_rflags = evmcs->guest_rflags;
1611                 vmcs12->guest_interruptibility_info =
1612                         evmcs->guest_interruptibility_info;
1613         }
1614
1615         if (unlikely(!(hv_clean_fields &
1616                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1617                 vmcs12->cpu_based_vm_exec_control =
1618                         evmcs->cpu_based_vm_exec_control;
1619         }
1620
1621         if (unlikely(!(hv_clean_fields &
1622                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1623                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1624         }
1625
1626         if (unlikely(!(hv_clean_fields &
1627                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1628                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1629         }
1630
1631         if (unlikely(!(hv_clean_fields &
1632                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1633                 vmcs12->vm_entry_intr_info_field =
1634                         evmcs->vm_entry_intr_info_field;
1635                 vmcs12->vm_entry_exception_error_code =
1636                         evmcs->vm_entry_exception_error_code;
1637                 vmcs12->vm_entry_instruction_len =
1638                         evmcs->vm_entry_instruction_len;
1639         }
1640
1641         if (unlikely(!(hv_clean_fields &
1642                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1643                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1644                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1645                 vmcs12->host_cr0 = evmcs->host_cr0;
1646                 vmcs12->host_cr3 = evmcs->host_cr3;
1647                 vmcs12->host_cr4 = evmcs->host_cr4;
1648                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1649                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1650                 vmcs12->host_rip = evmcs->host_rip;
1651                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1652                 vmcs12->host_es_selector = evmcs->host_es_selector;
1653                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1654                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1655                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1656                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1657                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1658                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1659         }
1660
1661         if (unlikely(!(hv_clean_fields &
1662                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1663                 vmcs12->pin_based_vm_exec_control =
1664                         evmcs->pin_based_vm_exec_control;
1665                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1666                 vmcs12->secondary_vm_exec_control =
1667                         evmcs->secondary_vm_exec_control;
1668         }
1669
1670         if (unlikely(!(hv_clean_fields &
1671                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1672                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1673                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1674         }
1675
1676         if (unlikely(!(hv_clean_fields &
1677                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1678                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1679         }
1680
1681         if (unlikely(!(hv_clean_fields &
1682                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1683                 vmcs12->guest_es_base = evmcs->guest_es_base;
1684                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1685                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1686                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1687                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1688                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1689                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1690                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1691                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1692                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1693                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1694                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1695                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1696                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1697                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1698                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1699                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1700                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1701                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1702                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1703                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1704                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1705                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1706                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1707                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1708                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1709                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1710                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1711                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1712                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1713                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1714                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1715                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1716                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1717                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1718                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1719         }
1720
1721         if (unlikely(!(hv_clean_fields &
1722                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1723                 vmcs12->tsc_offset = evmcs->tsc_offset;
1724                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1725                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1726         }
1727
1728         if (unlikely(!(hv_clean_fields &
1729                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1730                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1731                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1732                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1733                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1734                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1735                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1736                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1737                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1738         }
1739
1740         if (unlikely(!(hv_clean_fields &
1741                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1742                 vmcs12->host_fs_base = evmcs->host_fs_base;
1743                 vmcs12->host_gs_base = evmcs->host_gs_base;
1744                 vmcs12->host_tr_base = evmcs->host_tr_base;
1745                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1746                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1747                 vmcs12->host_rsp = evmcs->host_rsp;
1748         }
1749
1750         if (unlikely(!(hv_clean_fields &
1751                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1752                 vmcs12->ept_pointer = evmcs->ept_pointer;
1753                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1754         }
1755
1756         if (unlikely(!(hv_clean_fields &
1757                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1758                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1759                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1760                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1761                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1762                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1763                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1764                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1765                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1766                 vmcs12->guest_pending_dbg_exceptions =
1767                         evmcs->guest_pending_dbg_exceptions;
1768                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1769                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1770                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1771                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1772                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1773         }
1774
1775         /*
1776          * Not used?
1777          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1778          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1779          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1780          * vmcs12->page_fault_error_code_mask =
1781          *              evmcs->page_fault_error_code_mask;
1782          * vmcs12->page_fault_error_code_match =
1783          *              evmcs->page_fault_error_code_match;
1784          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1785          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1786          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1787          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1788          */
1789
1790         /*
1791          * Read only fields:
1792          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1793          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1794          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1795          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1796          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1797          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1798          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1799          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1800          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1801          * vmcs12->exit_qualification = evmcs->exit_qualification;
1802          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1803          *
1804          * Not present in struct vmcs12:
1805          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1806          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1807          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1808          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1809          */
1810
1811         return;
1812 }
1813
1814 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1815 {
1816         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1817         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1818
1819         /*
1820          * Should not be changed by KVM:
1821          *
1822          * evmcs->host_es_selector = vmcs12->host_es_selector;
1823          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1824          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1825          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1826          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1827          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1828          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1829          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1830          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1831          * evmcs->host_cr0 = vmcs12->host_cr0;
1832          * evmcs->host_cr3 = vmcs12->host_cr3;
1833          * evmcs->host_cr4 = vmcs12->host_cr4;
1834          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1835          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1836          * evmcs->host_rip = vmcs12->host_rip;
1837          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1838          * evmcs->host_fs_base = vmcs12->host_fs_base;
1839          * evmcs->host_gs_base = vmcs12->host_gs_base;
1840          * evmcs->host_tr_base = vmcs12->host_tr_base;
1841          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1842          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1843          * evmcs->host_rsp = vmcs12->host_rsp;
1844          * sync_vmcs02_to_vmcs12() doesn't read these:
1845          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1846          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1847          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1848          * evmcs->ept_pointer = vmcs12->ept_pointer;
1849          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1850          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1851          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1852          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1853          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1854          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1855          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1856          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1857          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1858          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1859          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1860          * evmcs->page_fault_error_code_mask =
1861          *              vmcs12->page_fault_error_code_mask;
1862          * evmcs->page_fault_error_code_match =
1863          *              vmcs12->page_fault_error_code_match;
1864          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1865          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1866          * evmcs->tsc_offset = vmcs12->tsc_offset;
1867          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1868          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1869          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1870          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1871          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1872          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1873          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1874          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1875          *
1876          * Not present in struct vmcs12:
1877          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1878          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1879          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1880          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1881          */
1882
1883         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1884         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1885         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1886         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1887         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1888         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1889         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1890         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1891
1892         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1893         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1894         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1895         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1896         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1897         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1898         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1899         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1900         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1901         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1902
1903         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1904         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1905         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1906         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1907         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1908         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1909         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1910         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1911
1912         evmcs->guest_es_base = vmcs12->guest_es_base;
1913         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1914         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1915         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1916         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1917         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1918         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1919         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1920         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1921         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1922
1923         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1924         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1925
1926         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1927         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1928         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1929         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1930
1931         evmcs->guest_pending_dbg_exceptions =
1932                 vmcs12->guest_pending_dbg_exceptions;
1933         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1934         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1935
1936         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1937         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1938
1939         evmcs->guest_cr0 = vmcs12->guest_cr0;
1940         evmcs->guest_cr3 = vmcs12->guest_cr3;
1941         evmcs->guest_cr4 = vmcs12->guest_cr4;
1942         evmcs->guest_dr7 = vmcs12->guest_dr7;
1943
1944         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1945
1946         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1947         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1948         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1949         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1950         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1951         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1952         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1953         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1954
1955         evmcs->exit_qualification = vmcs12->exit_qualification;
1956
1957         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1958         evmcs->guest_rsp = vmcs12->guest_rsp;
1959         evmcs->guest_rflags = vmcs12->guest_rflags;
1960
1961         evmcs->guest_interruptibility_info =
1962                 vmcs12->guest_interruptibility_info;
1963         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1964         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1965         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1966         evmcs->vm_entry_exception_error_code =
1967                 vmcs12->vm_entry_exception_error_code;
1968         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1969
1970         evmcs->guest_rip = vmcs12->guest_rip;
1971
1972         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1973
1974         return;
1975 }
1976
1977 /*
1978  * This is an equivalent of the nested hypervisor executing the vmptrld
1979  * instruction.
1980  */
1981 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1982         struct kvm_vcpu *vcpu, bool from_launch)
1983 {
1984         struct vcpu_vmx *vmx = to_vmx(vcpu);
1985         bool evmcs_gpa_changed = false;
1986         u64 evmcs_gpa;
1987
1988         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1989                 return EVMPTRLD_DISABLED;
1990
1991         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1992                 nested_release_evmcs(vcpu);
1993                 return EVMPTRLD_DISABLED;
1994         }
1995
1996         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1997                 vmx->nested.current_vmptr = -1ull;
1998
1999                 nested_release_evmcs(vcpu);
2000
2001                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2002                                  &vmx->nested.hv_evmcs_map))
2003                         return EVMPTRLD_ERROR;
2004
2005                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2006
2007                 /*
2008                  * Currently, KVM only supports eVMCS version 1
2009                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2010                  * value to first u32 field of eVMCS which should specify eVMCS
2011                  * VersionNumber.
2012                  *
2013                  * Guest should be aware of supported eVMCS versions by host by
2014                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2015                  * expected to set this CPUID leaf according to the value
2016                  * returned in vmcs_version from nested_enable_evmcs().
2017                  *
2018                  * However, it turns out that Microsoft Hyper-V fails to comply
2019                  * to their own invented interface: When Hyper-V use eVMCS, it
2020                  * just sets first u32 field of eVMCS to revision_id specified
2021                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2022                  * which is one of the supported versions specified in
2023                  * CPUID.0x4000000A.EAX[0:15].
2024                  *
2025                  * To overcome Hyper-V bug, we accept here either a supported
2026                  * eVMCS version or VMCS12 revision_id as valid values for first
2027                  * u32 field of eVMCS.
2028                  */
2029                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2030                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2031                         nested_release_evmcs(vcpu);
2032                         return EVMPTRLD_VMFAIL;
2033                 }
2034
2035                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2036
2037                 evmcs_gpa_changed = true;
2038                 /*
2039                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2040                  * reloaded from guest's memory (read only fields, fields not
2041                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2042                  * are no leftovers.
2043                  */
2044                 if (from_launch) {
2045                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2046                         memset(vmcs12, 0, sizeof(*vmcs12));
2047                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2048                 }
2049
2050         }
2051
2052         /*
2053          * Clean fields data can't be used on VMLAUNCH and when we switch
2054          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2055          */
2056         if (from_launch || evmcs_gpa_changed)
2057                 vmx->nested.hv_evmcs->hv_clean_fields &=
2058                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2059
2060         return EVMPTRLD_SUCCEEDED;
2061 }
2062
2063 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2064 {
2065         struct vcpu_vmx *vmx = to_vmx(vcpu);
2066
2067         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2068                 copy_vmcs12_to_enlightened(vmx);
2069         else
2070                 copy_vmcs12_to_shadow(vmx);
2071
2072         vmx->nested.need_vmcs12_to_shadow_sync = false;
2073 }
2074
2075 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2076 {
2077         struct vcpu_vmx *vmx =
2078                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2079
2080         vmx->nested.preemption_timer_expired = true;
2081         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2082         kvm_vcpu_kick(&vmx->vcpu);
2083
2084         return HRTIMER_NORESTART;
2085 }
2086
2087 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2088 {
2089         struct vcpu_vmx *vmx = to_vmx(vcpu);
2090         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2091
2092         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2093                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2094
2095         if (!vmx->nested.has_preemption_timer_deadline) {
2096                 vmx->nested.preemption_timer_deadline =
2097                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2098                 vmx->nested.has_preemption_timer_deadline = true;
2099         }
2100         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2101 }
2102
2103 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2104                                         u64 preemption_timeout)
2105 {
2106         struct vcpu_vmx *vmx = to_vmx(vcpu);
2107
2108         /*
2109          * A timer value of zero is architecturally guaranteed to cause
2110          * a VMExit prior to executing any instructions in the guest.
2111          */
2112         if (preemption_timeout == 0) {
2113                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2114                 return;
2115         }
2116
2117         if (vcpu->arch.virtual_tsc_khz == 0)
2118                 return;
2119
2120         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2121         preemption_timeout *= 1000000;
2122         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2123         hrtimer_start(&vmx->nested.preemption_timer,
2124                       ktime_add_ns(ktime_get(), preemption_timeout),
2125                       HRTIMER_MODE_ABS_PINNED);
2126 }
2127
2128 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2129 {
2130         if (vmx->nested.nested_run_pending &&
2131             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2132                 return vmcs12->guest_ia32_efer;
2133         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2134                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2135         else
2136                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2137 }
2138
2139 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2140 {
2141         /*
2142          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2143          * according to L0's settings (vmcs12 is irrelevant here).  Host
2144          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2145          * will be set as needed prior to VMLAUNCH/VMRESUME.
2146          */
2147         if (vmx->nested.vmcs02_initialized)
2148                 return;
2149         vmx->nested.vmcs02_initialized = true;
2150
2151         /*
2152          * We don't care what the EPTP value is we just need to guarantee
2153          * it's valid so we don't get a false positive when doing early
2154          * consistency checks.
2155          */
2156         if (enable_ept && nested_early_check)
2157                 vmcs_write64(EPT_POINTER,
2158                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2159
2160         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2161         if (cpu_has_vmx_vmfunc())
2162                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2163
2164         if (cpu_has_vmx_posted_intr())
2165                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2166
2167         if (cpu_has_vmx_msr_bitmap())
2168                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2169
2170         /*
2171          * PML is emulated for L2, but never enabled in hardware as the MMU
2172          * handles A/D emulation.  Disabling PML for L2 also avoids having to
2173          * deal with filtering out L2 GPAs from the buffer.
2174          */
2175         if (enable_pml) {
2176                 vmcs_write64(PML_ADDRESS, 0);
2177                 vmcs_write16(GUEST_PML_INDEX, -1);
2178         }
2179
2180         if (cpu_has_vmx_encls_vmexit())
2181                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2182
2183         /*
2184          * Set the MSR load/store lists to match L0's settings.  Only the
2185          * addresses are constant (for vmcs02), the counts can change based
2186          * on L2's behavior, e.g. switching to/from long mode.
2187          */
2188         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2189         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2190         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2191
2192         vmx_set_constant_host_state(vmx);
2193 }
2194
2195 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2196                                       struct vmcs12 *vmcs12)
2197 {
2198         prepare_vmcs02_constant_state(vmx);
2199
2200         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2201
2202         if (enable_vpid) {
2203                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2204                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2205                 else
2206                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2207         }
2208 }
2209
2210 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2211                                  struct vmcs12 *vmcs12)
2212 {
2213         u32 exec_control;
2214         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2215
2216         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2217                 prepare_vmcs02_early_rare(vmx, vmcs12);
2218
2219         /*
2220          * PIN CONTROLS
2221          */
2222         exec_control = __pin_controls_get(vmcs01);
2223         exec_control |= (vmcs12->pin_based_vm_exec_control &
2224                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2225
2226         /* Posted interrupts setting is only taken from vmcs12.  */
2227         vmx->nested.pi_pending = false;
2228         if (nested_cpu_has_posted_intr(vmcs12))
2229                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2230         else
2231                 exec_control &= ~PIN_BASED_POSTED_INTR;
2232         pin_controls_set(vmx, exec_control);
2233
2234         /*
2235          * EXEC CONTROLS
2236          */
2237         exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2238         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2239         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2240         exec_control &= ~CPU_BASED_TPR_SHADOW;
2241         exec_control |= vmcs12->cpu_based_vm_exec_control;
2242
2243         vmx->nested.l1_tpr_threshold = -1;
2244         if (exec_control & CPU_BASED_TPR_SHADOW)
2245                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2246 #ifdef CONFIG_X86_64
2247         else
2248                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2249                                 CPU_BASED_CR8_STORE_EXITING;
2250 #endif
2251
2252         /*
2253          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2254          * for I/O port accesses.
2255          */
2256         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2257         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2258
2259         /*
2260          * This bit will be computed in nested_get_vmcs12_pages, because
2261          * we do not have access to L1's MSR bitmap yet.  For now, keep
2262          * the same bit as before, hoping to avoid multiple VMWRITEs that
2263          * only set/clear this bit.
2264          */
2265         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2266         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2267
2268         exec_controls_set(vmx, exec_control);
2269
2270         /*
2271          * SECONDARY EXEC CONTROLS
2272          */
2273         if (cpu_has_secondary_exec_ctrls()) {
2274                 exec_control = __secondary_exec_controls_get(vmcs01);
2275
2276                 /* Take the following fields only from vmcs12 */
2277                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2278                                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2279                                   SECONDARY_EXEC_ENABLE_INVPCID |
2280                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2281                                   SECONDARY_EXEC_XSAVES |
2282                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2283                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2284                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2285                                   SECONDARY_EXEC_ENABLE_VMFUNC |
2286                                   SECONDARY_EXEC_TSC_SCALING |
2287                                   SECONDARY_EXEC_DESC);
2288
2289                 if (nested_cpu_has(vmcs12,
2290                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2291                         exec_control |= vmcs12->secondary_vm_exec_control;
2292
2293                 /* PML is emulated and never enabled in hardware for L2. */
2294                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2295
2296                 /* VMCS shadowing for L2 is emulated for now */
2297                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2298
2299                 /*
2300                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2301                  * will not have to rewrite the controls just for this bit.
2302                  */
2303                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2304                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2305                         exec_control |= SECONDARY_EXEC_DESC;
2306
2307                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2308                         vmcs_write16(GUEST_INTR_STATUS,
2309                                 vmcs12->guest_intr_status);
2310
2311                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2312                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2313
2314                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2315                         vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2316
2317                 secondary_exec_controls_set(vmx, exec_control);
2318         }
2319
2320         /*
2321          * ENTRY CONTROLS
2322          *
2323          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2324          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2325          * on the related bits (if supported by the CPU) in the hope that
2326          * we can avoid VMWrites during vmx_set_efer().
2327          */
2328         exec_control = __vm_entry_controls_get(vmcs01);
2329         exec_control |= vmcs12->vm_entry_controls;
2330         exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2331         if (cpu_has_load_ia32_efer()) {
2332                 if (guest_efer & EFER_LMA)
2333                         exec_control |= VM_ENTRY_IA32E_MODE;
2334                 if (guest_efer != host_efer)
2335                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2336         }
2337         vm_entry_controls_set(vmx, exec_control);
2338
2339         /*
2340          * EXIT CONTROLS
2341          *
2342          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2343          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2344          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2345          */
2346         exec_control = __vm_exit_controls_get(vmcs01);
2347         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2348                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2349         else
2350                 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2351         vm_exit_controls_set(vmx, exec_control);
2352
2353         /*
2354          * Interrupt/Exception Fields
2355          */
2356         if (vmx->nested.nested_run_pending) {
2357                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2358                              vmcs12->vm_entry_intr_info_field);
2359                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2360                              vmcs12->vm_entry_exception_error_code);
2361                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2362                              vmcs12->vm_entry_instruction_len);
2363                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2364                              vmcs12->guest_interruptibility_info);
2365                 vmx->loaded_vmcs->nmi_known_unmasked =
2366                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2367         } else {
2368                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2369         }
2370 }
2371
2372 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2373 {
2374         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2375
2376         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2377                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2378                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2379                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2380                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2381                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2382                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2383                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2384                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2385                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2386                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2387                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2388                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2389                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2390                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2391                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2392                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2393                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2394                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2395                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2396                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2397                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2398                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2399                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2400                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2401                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2402                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2403                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2404                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2405                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2406                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2407                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2408                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2409                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2410                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2411                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2412                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2413                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2414
2415                 vmx->segment_cache.bitmask = 0;
2416         }
2417
2418         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2419                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2420                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2421                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2422                             vmcs12->guest_pending_dbg_exceptions);
2423                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2424                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2425
2426                 /*
2427                  * L1 may access the L2's PDPTR, so save them to construct
2428                  * vmcs12
2429                  */
2430                 if (enable_ept) {
2431                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2432                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2433                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2434                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2435                 }
2436
2437                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2438                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2439                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2440         }
2441
2442         if (nested_cpu_has_xsaves(vmcs12))
2443                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2444
2445         /*
2446          * Whether page-faults are trapped is determined by a combination of
2447          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2448          * doesn't care about page faults then we should set all of these to
2449          * L1's desires. However, if L0 does care about (some) page faults, it
2450          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2451          * simply ask to exit on each and every L2 page fault. This is done by
2452          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2453          * Note that below we don't need special code to set EB.PF beyond the
2454          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2455          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2456          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2457          */
2458         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2459                 /*
2460                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2461                  * go ahead and use it?
2462                  */
2463                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2464                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2465         } else {
2466                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2467                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2468         }
2469
2470         if (cpu_has_vmx_apicv()) {
2471                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2472                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2473                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2474                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2475         }
2476
2477         /*
2478          * Make sure the msr_autostore list is up to date before we set the
2479          * count in the vmcs02.
2480          */
2481         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2482
2483         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2484         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2485         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2486
2487         set_cr4_guest_host_mask(vmx);
2488 }
2489
2490 /*
2491  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2492  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2493  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2494  * guest in a way that will both be appropriate to L1's requests, and our
2495  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2496  * function also has additional necessary side-effects, like setting various
2497  * vcpu->arch fields.
2498  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2499  * is assigned to entry_failure_code on failure.
2500  */
2501 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2502                           bool from_vmentry,
2503                           enum vm_entry_failure_code *entry_failure_code)
2504 {
2505         struct vcpu_vmx *vmx = to_vmx(vcpu);
2506         bool load_guest_pdptrs_vmcs12 = false;
2507
2508         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2509                 prepare_vmcs02_rare(vmx, vmcs12);
2510                 vmx->nested.dirty_vmcs12 = false;
2511
2512                 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2513                         !(vmx->nested.hv_evmcs->hv_clean_fields &
2514                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2515         }
2516
2517         if (vmx->nested.nested_run_pending &&
2518             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2519                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2520                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2521         } else {
2522                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2523                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2524         }
2525         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2526             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2527                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2528         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2529
2530         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2531          * bitwise-or of what L1 wants to trap for L2, and what we want to
2532          * trap. Note that CR0.TS also needs updating - we do this later.
2533          */
2534         vmx_update_exception_bitmap(vcpu);
2535         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2536         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2537
2538         if (vmx->nested.nested_run_pending &&
2539             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2540                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2541                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2542         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2543                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2544         }
2545
2546         vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2547                         vcpu->arch.l1_tsc_offset,
2548                         vmx_get_l2_tsc_offset(vcpu),
2549                         vmx_get_l2_tsc_multiplier(vcpu));
2550
2551         vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2552                         vcpu->arch.l1_tsc_scaling_ratio,
2553                         vmx_get_l2_tsc_multiplier(vcpu));
2554
2555         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2556         if (kvm_has_tsc_control)
2557                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2558
2559         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2560
2561         if (nested_cpu_has_ept(vmcs12))
2562                 nested_ept_init_mmu_context(vcpu);
2563
2564         /*
2565          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2566          * bits which we consider mandatory enabled.
2567          * The CR0_READ_SHADOW is what L2 should have expected to read given
2568          * the specifications by L1; It's not enough to take
2569          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2570          * have more bits than L1 expected.
2571          */
2572         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2573         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2574
2575         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2576         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2577
2578         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2579         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2580         vmx_set_efer(vcpu, vcpu->arch.efer);
2581
2582         /*
2583          * Guest state is invalid and unrestricted guest is disabled,
2584          * which means L1 attempted VMEntry to L2 with invalid state.
2585          * Fail the VMEntry.
2586          *
2587          * However when force loading the guest state (SMM exit or
2588          * loading nested state after migration, it is possible to
2589          * have invalid guest state now, which will be later fixed by
2590          * restoring L2 register state
2591          */
2592         if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2593                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2594                 return -EINVAL;
2595         }
2596
2597         /* Shadow page tables on either EPT or shadow page tables. */
2598         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2599                                 from_vmentry, entry_failure_code))
2600                 return -EINVAL;
2601
2602         /*
2603          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2604          * on nested VM-Exit, which can occur without actually running L2 and
2605          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2606          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2607          * transition to HLT instead of running L2.
2608          */
2609         if (enable_ept)
2610                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2611
2612         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2613         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2614             is_pae_paging(vcpu)) {
2615                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2616                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2617                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2618                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2619         }
2620
2621         if (!enable_ept)
2622                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2623
2624         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2625             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2626                                      vmcs12->guest_ia32_perf_global_ctrl)))
2627                 return -EINVAL;
2628
2629         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2630         kvm_rip_write(vcpu, vmcs12->guest_rip);
2631
2632         /*
2633          * It was observed that genuine Hyper-V running in L1 doesn't reset
2634          * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2635          * bits when it changes a field in eVMCS. Mark all fields as clean
2636          * here.
2637          */
2638         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2639                 vmx->nested.hv_evmcs->hv_clean_fields |=
2640                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2641
2642         return 0;
2643 }
2644
2645 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2646 {
2647         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2648                nested_cpu_has_virtual_nmis(vmcs12)))
2649                 return -EINVAL;
2650
2651         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2652                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2653                 return -EINVAL;
2654
2655         return 0;
2656 }
2657
2658 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2659 {
2660         struct vcpu_vmx *vmx = to_vmx(vcpu);
2661
2662         /* Check for memory type validity */
2663         switch (new_eptp & VMX_EPTP_MT_MASK) {
2664         case VMX_EPTP_MT_UC:
2665                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2666                         return false;
2667                 break;
2668         case VMX_EPTP_MT_WB:
2669                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2670                         return false;
2671                 break;
2672         default:
2673                 return false;
2674         }
2675
2676         /* Page-walk levels validity. */
2677         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2678         case VMX_EPTP_PWL_5:
2679                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2680                         return false;
2681                 break;
2682         case VMX_EPTP_PWL_4:
2683                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2684                         return false;
2685                 break;
2686         default:
2687                 return false;
2688         }
2689
2690         /* Reserved bits should not be set */
2691         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2692                 return false;
2693
2694         /* AD, if set, should be supported */
2695         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2696                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2697                         return false;
2698         }
2699
2700         return true;
2701 }
2702
2703 /*
2704  * Checks related to VM-Execution Control Fields
2705  */
2706 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2707                                               struct vmcs12 *vmcs12)
2708 {
2709         struct vcpu_vmx *vmx = to_vmx(vcpu);
2710
2711         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2712                                    vmx->nested.msrs.pinbased_ctls_low,
2713                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2714             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2715                                    vmx->nested.msrs.procbased_ctls_low,
2716                                    vmx->nested.msrs.procbased_ctls_high)))
2717                 return -EINVAL;
2718
2719         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2720             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2721                                    vmx->nested.msrs.secondary_ctls_low,
2722                                    vmx->nested.msrs.secondary_ctls_high)))
2723                 return -EINVAL;
2724
2725         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2726             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2727             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2728             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2729             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2730             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2731             nested_vmx_check_nmi_controls(vmcs12) ||
2732             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2733             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2734             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2735             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2736             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2737                 return -EINVAL;
2738
2739         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2740             nested_cpu_has_save_preemption_timer(vmcs12))
2741                 return -EINVAL;
2742
2743         if (nested_cpu_has_ept(vmcs12) &&
2744             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2745                 return -EINVAL;
2746
2747         if (nested_cpu_has_vmfunc(vmcs12)) {
2748                 if (CC(vmcs12->vm_function_control &
2749                        ~vmx->nested.msrs.vmfunc_controls))
2750                         return -EINVAL;
2751
2752                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2753                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2754                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2755                                 return -EINVAL;
2756                 }
2757         }
2758
2759         return 0;
2760 }
2761
2762 /*
2763  * Checks related to VM-Exit Control Fields
2764  */
2765 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2766                                          struct vmcs12 *vmcs12)
2767 {
2768         struct vcpu_vmx *vmx = to_vmx(vcpu);
2769
2770         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2771                                     vmx->nested.msrs.exit_ctls_low,
2772                                     vmx->nested.msrs.exit_ctls_high)) ||
2773             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2774                 return -EINVAL;
2775
2776         return 0;
2777 }
2778
2779 /*
2780  * Checks related to VM-Entry Control Fields
2781  */
2782 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2783                                           struct vmcs12 *vmcs12)
2784 {
2785         struct vcpu_vmx *vmx = to_vmx(vcpu);
2786
2787         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2788                                     vmx->nested.msrs.entry_ctls_low,
2789                                     vmx->nested.msrs.entry_ctls_high)))
2790                 return -EINVAL;
2791
2792         /*
2793          * From the Intel SDM, volume 3:
2794          * Fields relevant to VM-entry event injection must be set properly.
2795          * These fields are the VM-entry interruption-information field, the
2796          * VM-entry exception error code, and the VM-entry instruction length.
2797          */
2798         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2799                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2800                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2801                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2802                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2803                 bool should_have_error_code;
2804                 bool urg = nested_cpu_has2(vmcs12,
2805                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2806                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2807
2808                 /* VM-entry interruption-info field: interruption type */
2809                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2810                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2811                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2812                         return -EINVAL;
2813
2814                 /* VM-entry interruption-info field: vector */
2815                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2816                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2817                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2818                         return -EINVAL;
2819
2820                 /* VM-entry interruption-info field: deliver error code */
2821                 should_have_error_code =
2822                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2823                         x86_exception_has_error_code(vector);
2824                 if (CC(has_error_code != should_have_error_code))
2825                         return -EINVAL;
2826
2827                 /* VM-entry exception error code */
2828                 if (CC(has_error_code &&
2829                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2830                         return -EINVAL;
2831
2832                 /* VM-entry interruption-info field: reserved bits */
2833                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2834                         return -EINVAL;
2835
2836                 /* VM-entry instruction length */
2837                 switch (intr_type) {
2838                 case INTR_TYPE_SOFT_EXCEPTION:
2839                 case INTR_TYPE_SOFT_INTR:
2840                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2841                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2842                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2843                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2844                                 return -EINVAL;
2845                 }
2846         }
2847
2848         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2849                 return -EINVAL;
2850
2851         return 0;
2852 }
2853
2854 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2855                                      struct vmcs12 *vmcs12)
2856 {
2857         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2858             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2859             nested_check_vm_entry_controls(vcpu, vmcs12))
2860                 return -EINVAL;
2861
2862         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2863                 return nested_evmcs_check_controls(vmcs12);
2864
2865         return 0;
2866 }
2867
2868 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2869                                        struct vmcs12 *vmcs12)
2870 {
2871         bool ia32e;
2872
2873         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2874             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2875             CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2876                 return -EINVAL;
2877
2878         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2879             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2880                 return -EINVAL;
2881
2882         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2883             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2884                 return -EINVAL;
2885
2886         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2887             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2888                                            vmcs12->host_ia32_perf_global_ctrl)))
2889                 return -EINVAL;
2890
2891 #ifdef CONFIG_X86_64
2892         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2893 #else
2894         ia32e = false;
2895 #endif
2896
2897         if (ia32e) {
2898                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2899                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2900                         return -EINVAL;
2901         } else {
2902                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2903                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2904                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2905                     CC((vmcs12->host_rip) >> 32))
2906                         return -EINVAL;
2907         }
2908
2909         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2910             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2911             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2912             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2913             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2914             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2915             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2916             CC(vmcs12->host_cs_selector == 0) ||
2917             CC(vmcs12->host_tr_selector == 0) ||
2918             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2919                 return -EINVAL;
2920
2921         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2922             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2923             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2924             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2925             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2926             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2927                 return -EINVAL;
2928
2929         /*
2930          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2931          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2932          * the values of the LMA and LME bits in the field must each be that of
2933          * the host address-space size VM-exit control.
2934          */
2935         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2936                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2937                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2938                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2939                         return -EINVAL;
2940         }
2941
2942         return 0;
2943 }
2944
2945 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2946                                           struct vmcs12 *vmcs12)
2947 {
2948         int r = 0;
2949         struct vmcs12 *shadow;
2950         struct kvm_host_map map;
2951
2952         if (vmcs12->vmcs_link_pointer == -1ull)
2953                 return 0;
2954
2955         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2956                 return -EINVAL;
2957
2958         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2959                 return -EINVAL;
2960
2961         shadow = map.hva;
2962
2963         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2964             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2965                 r = -EINVAL;
2966
2967         kvm_vcpu_unmap(vcpu, &map, false);
2968         return r;
2969 }
2970
2971 /*
2972  * Checks related to Guest Non-register State
2973  */
2974 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2975 {
2976         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2977                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2978                vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2979                 return -EINVAL;
2980
2981         return 0;
2982 }
2983
2984 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2985                                         struct vmcs12 *vmcs12,
2986                                         enum vm_entry_failure_code *entry_failure_code)
2987 {
2988         bool ia32e;
2989
2990         *entry_failure_code = ENTRY_FAIL_DEFAULT;
2991
2992         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2993             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2994                 return -EINVAL;
2995
2996         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2997             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2998                 return -EINVAL;
2999
3000         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3001             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3002                 return -EINVAL;
3003
3004         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3005                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3006                 return -EINVAL;
3007         }
3008
3009         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3010             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3011                                            vmcs12->guest_ia32_perf_global_ctrl)))
3012                 return -EINVAL;
3013
3014         /*
3015          * If the load IA32_EFER VM-entry control is 1, the following checks
3016          * are performed on the field for the IA32_EFER MSR:
3017          * - Bits reserved in the IA32_EFER MSR must be 0.
3018          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3019          *   the IA-32e mode guest VM-exit control. It must also be identical
3020          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3021          *   CR0.PG) is 1.
3022          */
3023         if (to_vmx(vcpu)->nested.nested_run_pending &&
3024             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3025                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3026                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3027                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3028                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3029                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3030                         return -EINVAL;
3031         }
3032
3033         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3034             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3035              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3036                 return -EINVAL;
3037
3038         if (nested_check_guest_non_reg_state(vmcs12))
3039                 return -EINVAL;
3040
3041         return 0;
3042 }
3043
3044 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3045 {
3046         struct vcpu_vmx *vmx = to_vmx(vcpu);
3047         unsigned long cr3, cr4;
3048         bool vm_fail;
3049
3050         if (!nested_early_check)
3051                 return 0;
3052
3053         if (vmx->msr_autoload.host.nr)
3054                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3055         if (vmx->msr_autoload.guest.nr)
3056                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3057
3058         preempt_disable();
3059
3060         vmx_prepare_switch_to_guest(vcpu);
3061
3062         /*
3063          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3064          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3065          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3066          * there is no need to preserve other bits or save/restore the field.
3067          */
3068         vmcs_writel(GUEST_RFLAGS, 0);
3069
3070         cr3 = __get_current_cr3_fast();
3071         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3072                 vmcs_writel(HOST_CR3, cr3);
3073                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3074         }
3075
3076         cr4 = cr4_read_shadow();
3077         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3078                 vmcs_writel(HOST_CR4, cr4);
3079                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3080         }
3081
3082         vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3083                                  vmx->loaded_vmcs->launched);
3084
3085         if (vmx->msr_autoload.host.nr)
3086                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3087         if (vmx->msr_autoload.guest.nr)
3088                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3089
3090         if (vm_fail) {
3091                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3092
3093                 preempt_enable();
3094
3095                 trace_kvm_nested_vmenter_failed(
3096                         "early hardware check VM-instruction error: ", error);
3097                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3098                 return 1;
3099         }
3100
3101         /*
3102          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3103          */
3104         if (hw_breakpoint_active())
3105                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3106         local_irq_enable();
3107         preempt_enable();
3108
3109         /*
3110          * A non-failing VMEntry means we somehow entered guest mode with
3111          * an illegal RIP, and that's just the tip of the iceberg.  There
3112          * is no telling what memory has been modified or what state has
3113          * been exposed to unknown code.  Hitting this all but guarantees
3114          * a (very critical) hardware issue.
3115          */
3116         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3117                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3118
3119         return 0;
3120 }
3121
3122 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3123 {
3124         struct vcpu_vmx *vmx = to_vmx(vcpu);
3125
3126         /*
3127          * hv_evmcs may end up being not mapped after migration (when
3128          * L2 was running), map it here to make sure vmcs12 changes are
3129          * properly reflected.
3130          */
3131         if (vmx->nested.enlightened_vmcs_enabled &&
3132             vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3133                 enum nested_evmptrld_status evmptrld_status =
3134                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3135
3136                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3137                     evmptrld_status == EVMPTRLD_ERROR)
3138                         return false;
3139
3140                 /*
3141                  * Post migration VMCS12 always provides the most actual
3142                  * information, copy it to eVMCS upon entry.
3143                  */
3144                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3145         }
3146
3147         return true;
3148 }
3149
3150 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3151 {
3152         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3153         struct vcpu_vmx *vmx = to_vmx(vcpu);
3154         struct kvm_host_map *map;
3155         struct page *page;
3156         u64 hpa;
3157
3158         if (!vcpu->arch.pdptrs_from_userspace &&
3159             !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3160                 /*
3161                  * Reload the guest's PDPTRs since after a migration
3162                  * the guest CR3 might be restored prior to setting the nested
3163                  * state which can lead to a load of wrong PDPTRs.
3164                  */
3165                 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
3166                         return false;
3167         }
3168
3169
3170         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3171                 /*
3172                  * Translate L1 physical address to host physical
3173                  * address for vmcs02. Keep the page pinned, so this
3174                  * physical address remains valid. We keep a reference
3175                  * to it so we can release it later.
3176                  */
3177                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3178                         kvm_release_page_clean(vmx->nested.apic_access_page);
3179                         vmx->nested.apic_access_page = NULL;
3180                 }
3181                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3182                 if (!is_error_page(page)) {
3183                         vmx->nested.apic_access_page = page;
3184                         hpa = page_to_phys(vmx->nested.apic_access_page);
3185                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3186                 } else {
3187                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3188                                              __func__);
3189                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3190                         vcpu->run->internal.suberror =
3191                                 KVM_INTERNAL_ERROR_EMULATION;
3192                         vcpu->run->internal.ndata = 0;
3193                         return false;
3194                 }
3195         }
3196
3197         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3198                 map = &vmx->nested.virtual_apic_map;
3199
3200                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3201                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3202                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3203                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3204                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3205                         /*
3206                          * The processor will never use the TPR shadow, simply
3207                          * clear the bit from the execution control.  Such a
3208                          * configuration is useless, but it happens in tests.
3209                          * For any other configuration, failing the vm entry is
3210                          * _not_ what the processor does but it's basically the
3211                          * only possibility we have.
3212                          */
3213                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3214                 } else {
3215                         /*
3216                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3217                          * force VM-Entry to fail.
3218                          */
3219                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3220                 }
3221         }
3222
3223         if (nested_cpu_has_posted_intr(vmcs12)) {
3224                 map = &vmx->nested.pi_desc_map;
3225
3226                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3227                         vmx->nested.pi_desc =
3228                                 (struct pi_desc *)(((void *)map->hva) +
3229                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3230                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3231                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3232                 } else {
3233                         /*
3234                          * Defer the KVM_INTERNAL_EXIT until KVM tries to
3235                          * access the contents of the VMCS12 posted interrupt
3236                          * descriptor. (Note that KVM may do this when it
3237                          * should not, per the architectural specification.)
3238                          */
3239                         vmx->nested.pi_desc = NULL;
3240                         pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3241                 }
3242         }
3243         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3244                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3245         else
3246                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3247
3248         return true;
3249 }
3250
3251 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3252 {
3253         if (!nested_get_evmcs_page(vcpu)) {
3254                 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3255                                      __func__);
3256                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3257                 vcpu->run->internal.suberror =
3258                         KVM_INTERNAL_ERROR_EMULATION;
3259                 vcpu->run->internal.ndata = 0;
3260
3261                 return false;
3262         }
3263
3264         if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3265                 return false;
3266
3267         return true;
3268 }
3269
3270 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3271 {
3272         struct vmcs12 *vmcs12;
3273         struct vcpu_vmx *vmx = to_vmx(vcpu);
3274         gpa_t dst;
3275
3276         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3277                 return 0;
3278
3279         if (WARN_ON_ONCE(vmx->nested.pml_full))
3280                 return 1;
3281
3282         /*
3283          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3284          * set is already checked as part of A/D emulation.
3285          */
3286         vmcs12 = get_vmcs12(vcpu);
3287         if (!nested_cpu_has_pml(vmcs12))
3288                 return 0;
3289
3290         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3291                 vmx->nested.pml_full = true;
3292                 return 1;
3293         }
3294
3295         gpa &= ~0xFFFull;
3296         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3297
3298         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3299                                  offset_in_page(dst), sizeof(gpa)))
3300                 return 0;
3301
3302         vmcs12->guest_pml_index--;
3303
3304         return 0;
3305 }
3306
3307 /*
3308  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3309  * for running VMX instructions (except VMXON, whose prerequisites are
3310  * slightly different). It also specifies what exception to inject otherwise.
3311  * Note that many of these exceptions have priority over VM exits, so they
3312  * don't have to be checked again here.
3313  */
3314 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3315 {
3316         if (!to_vmx(vcpu)->nested.vmxon) {
3317                 kvm_queue_exception(vcpu, UD_VECTOR);
3318                 return 0;
3319         }
3320
3321         if (vmx_get_cpl(vcpu)) {
3322                 kvm_inject_gp(vcpu, 0);
3323                 return 0;
3324         }
3325
3326         return 1;
3327 }
3328
3329 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3330 {
3331         u8 rvi = vmx_get_rvi();
3332         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3333
3334         return ((rvi & 0xf0) > (vppr & 0xf0));
3335 }
3336
3337 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3338                                    struct vmcs12 *vmcs12);
3339
3340 /*
3341  * If from_vmentry is false, this is being called from state restore (either RSM
3342  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3343  *
3344  * Returns:
3345  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3346  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3347  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3348  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3349  */
3350 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3351                                                         bool from_vmentry)
3352 {
3353         struct vcpu_vmx *vmx = to_vmx(vcpu);
3354         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3355         enum vm_entry_failure_code entry_failure_code;
3356         bool evaluate_pending_interrupts;
3357         union vmx_exit_reason exit_reason = {
3358                 .basic = EXIT_REASON_INVALID_STATE,
3359                 .failed_vmentry = 1,
3360         };
3361         u32 failed_index;
3362
3363         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3364                 kvm_vcpu_flush_tlb_current(vcpu);
3365
3366         evaluate_pending_interrupts = exec_controls_get(vmx) &
3367                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3368         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3369                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3370
3371         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3372                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3373         if (kvm_mpx_supported() &&
3374                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3375                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3376
3377         /*
3378          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3379          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3380          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3381          * software model to the pre-VMEntry host state.  When EPT is disabled,
3382          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3383          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3384          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3385          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3386          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3387          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3388          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3389          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3390          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3391          * path would need to manually save/restore vmcs01.GUEST_CR3.
3392          */
3393         if (!enable_ept && !nested_early_check)
3394                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3395
3396         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3397
3398         prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3399
3400         if (from_vmentry) {
3401                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3402                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3403                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3404                 }
3405
3406                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3407                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3408                         return NVMX_VMENTRY_VMFAIL;
3409                 }
3410
3411                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3412                                                  &entry_failure_code)) {
3413                         exit_reason.basic = EXIT_REASON_INVALID_STATE;
3414                         vmcs12->exit_qualification = entry_failure_code;
3415                         goto vmentry_fail_vmexit;
3416                 }
3417         }
3418
3419         enter_guest_mode(vcpu);
3420
3421         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3422                 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3423                 vmcs12->exit_qualification = entry_failure_code;
3424                 goto vmentry_fail_vmexit_guest_mode;
3425         }
3426
3427         if (from_vmentry) {
3428                 failed_index = nested_vmx_load_msr(vcpu,
3429                                                    vmcs12->vm_entry_msr_load_addr,
3430                                                    vmcs12->vm_entry_msr_load_count);
3431                 if (failed_index) {
3432                         exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3433                         vmcs12->exit_qualification = failed_index;
3434                         goto vmentry_fail_vmexit_guest_mode;
3435                 }
3436         } else {
3437                 /*
3438                  * The MMU is not initialized to point at the right entities yet and
3439                  * "get pages" would need to read data from the guest (i.e. we will
3440                  * need to perform gpa to hpa translation). Request a call
3441                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3442                  * have already been set at vmentry time and should not be reset.
3443                  */
3444                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3445         }
3446
3447         /*
3448          * If L1 had a pending IRQ/NMI until it executed
3449          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3450          * disallowed (e.g. interrupts disabled), L0 needs to
3451          * evaluate if this pending event should cause an exit from L2
3452          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3453          * intercept EXTERNAL_INTERRUPT).
3454          *
3455          * Usually this would be handled by the processor noticing an
3456          * IRQ/NMI window request, or checking RVI during evaluation of
3457          * pending virtual interrupts.  However, this setting was done
3458          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3459          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3460          */
3461         if (unlikely(evaluate_pending_interrupts))
3462                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3463
3464         /*
3465          * Do not start the preemption timer hrtimer until after we know
3466          * we are successful, so that only nested_vmx_vmexit needs to cancel
3467          * the timer.
3468          */
3469         vmx->nested.preemption_timer_expired = false;
3470         if (nested_cpu_has_preemption_timer(vmcs12)) {
3471                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3472                 vmx_start_preemption_timer(vcpu, timer_value);
3473         }
3474
3475         /*
3476          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3477          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3478          * returned as far as L1 is concerned. It will only return (and set
3479          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3480          */
3481         return NVMX_VMENTRY_SUCCESS;
3482
3483         /*
3484          * A failed consistency check that leads to a VMExit during L1's
3485          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3486          * 26.7 "VM-entry failures during or after loading guest state".
3487          */
3488 vmentry_fail_vmexit_guest_mode:
3489         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3490                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3491         leave_guest_mode(vcpu);
3492
3493 vmentry_fail_vmexit:
3494         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3495
3496         if (!from_vmentry)
3497                 return NVMX_VMENTRY_VMEXIT;
3498
3499         load_vmcs12_host_state(vcpu, vmcs12);
3500         vmcs12->vm_exit_reason = exit_reason.full;
3501         if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3502                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3503         return NVMX_VMENTRY_VMEXIT;
3504 }
3505
3506 /*
3507  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3508  * for running an L2 nested guest.
3509  */
3510 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3511 {
3512         struct vmcs12 *vmcs12;
3513         enum nvmx_vmentry_status status;
3514         struct vcpu_vmx *vmx = to_vmx(vcpu);
3515         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3516         enum nested_evmptrld_status evmptrld_status;
3517
3518         if (!nested_vmx_check_permission(vcpu))
3519                 return 1;
3520
3521         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3522         if (evmptrld_status == EVMPTRLD_ERROR) {
3523                 kvm_queue_exception(vcpu, UD_VECTOR);
3524                 return 1;
3525         } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3526                 return nested_vmx_failInvalid(vcpu);
3527         }
3528
3529         if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3530                vmx->nested.current_vmptr == -1ull))
3531                 return nested_vmx_failInvalid(vcpu);
3532
3533         vmcs12 = get_vmcs12(vcpu);
3534
3535         /*
3536          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3537          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3538          * rather than RFLAGS.ZF, and no error number is stored to the
3539          * VM-instruction error field.
3540          */
3541         if (CC(vmcs12->hdr.shadow_vmcs))
3542                 return nested_vmx_failInvalid(vcpu);
3543
3544         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3545                 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3546                 /* Enlightened VMCS doesn't have launch state */
3547                 vmcs12->launch_state = !launch;
3548         } else if (enable_shadow_vmcs) {
3549                 copy_shadow_to_vmcs12(vmx);
3550         }
3551
3552         /*
3553          * The nested entry process starts with enforcing various prerequisites
3554          * on vmcs12 as required by the Intel SDM, and act appropriately when
3555          * they fail: As the SDM explains, some conditions should cause the
3556          * instruction to fail, while others will cause the instruction to seem
3557          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3558          * To speed up the normal (success) code path, we should avoid checking
3559          * for misconfigurations which will anyway be caught by the processor
3560          * when using the merged vmcs02.
3561          */
3562         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3563                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3564
3565         if (CC(vmcs12->launch_state == launch))
3566                 return nested_vmx_fail(vcpu,
3567                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3568                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3569
3570         if (nested_vmx_check_controls(vcpu, vmcs12))
3571                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3572
3573         if (nested_vmx_check_host_state(vcpu, vmcs12))
3574                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3575
3576         /*
3577          * We're finally done with prerequisite checking, and can start with
3578          * the nested entry.
3579          */
3580         vmx->nested.nested_run_pending = 1;
3581         vmx->nested.has_preemption_timer_deadline = false;
3582         status = nested_vmx_enter_non_root_mode(vcpu, true);
3583         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3584                 goto vmentry_failed;
3585
3586         /* Emulate processing of posted interrupts on VM-Enter. */
3587         if (nested_cpu_has_posted_intr(vmcs12) &&
3588             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3589                 vmx->nested.pi_pending = true;
3590                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3591                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3592         }
3593
3594         /* Hide L1D cache contents from the nested guest.  */
3595         vmx->vcpu.arch.l1tf_flush_l1d = true;
3596
3597         /*
3598          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3599          * also be used as part of restoring nVMX state for
3600          * snapshot restore (migration).
3601          *
3602          * In this flow, it is assumed that vmcs12 cache was
3603          * transferred as part of captured nVMX state and should
3604          * therefore not be read from guest memory (which may not
3605          * exist on destination host yet).
3606          */
3607         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3608
3609         switch (vmcs12->guest_activity_state) {
3610         case GUEST_ACTIVITY_HLT:
3611                 /*
3612                  * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3613                  * awakened by event injection or by an NMI-window VM-exit or
3614                  * by an interrupt-window VM-exit, halt the vcpu.
3615                  */
3616                 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3617                     !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3618                     !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3619                       (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3620                         vmx->nested.nested_run_pending = 0;
3621                         return kvm_vcpu_halt(vcpu);
3622                 }
3623                 break;
3624         case GUEST_ACTIVITY_WAIT_SIPI:
3625                 vmx->nested.nested_run_pending = 0;
3626                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3627                 break;
3628         default:
3629                 break;
3630         }
3631
3632         return 1;
3633
3634 vmentry_failed:
3635         vmx->nested.nested_run_pending = 0;
3636         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3637                 return 0;
3638         if (status == NVMX_VMENTRY_VMEXIT)
3639                 return 1;
3640         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3641         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3642 }
3643
3644 /*
3645  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3646  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3647  * This function returns the new value we should put in vmcs12.guest_cr0.
3648  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3649  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3650  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3651  *     didn't trap the bit, because if L1 did, so would L0).
3652  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3653  *     been modified by L2, and L1 knows it. So just leave the old value of
3654  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3655  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3656  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3657  *     changed these bits, and therefore they need to be updated, but L0
3658  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3659  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3660  */
3661 static inline unsigned long
3662 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3663 {
3664         return
3665         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3666         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3667         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3668                         vcpu->arch.cr0_guest_owned_bits));
3669 }
3670
3671 static inline unsigned long
3672 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3673 {
3674         return
3675         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3676         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3677         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3678                         vcpu->arch.cr4_guest_owned_bits));
3679 }
3680
3681 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3682                                       struct vmcs12 *vmcs12)
3683 {
3684         u32 idt_vectoring;
3685         unsigned int nr;
3686
3687         if (vcpu->arch.exception.injected) {
3688                 nr = vcpu->arch.exception.nr;
3689                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3690
3691                 if (kvm_exception_is_soft(nr)) {
3692                         vmcs12->vm_exit_instruction_len =
3693                                 vcpu->arch.event_exit_inst_len;
3694                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3695                 } else
3696                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3697
3698                 if (vcpu->arch.exception.has_error_code) {
3699                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3700                         vmcs12->idt_vectoring_error_code =
3701                                 vcpu->arch.exception.error_code;
3702                 }
3703
3704                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3705         } else if (vcpu->arch.nmi_injected) {
3706                 vmcs12->idt_vectoring_info_field =
3707                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3708         } else if (vcpu->arch.interrupt.injected) {
3709                 nr = vcpu->arch.interrupt.nr;
3710                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3711
3712                 if (vcpu->arch.interrupt.soft) {
3713                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3714                         vmcs12->vm_entry_instruction_len =
3715                                 vcpu->arch.event_exit_inst_len;
3716                 } else
3717                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3718
3719                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3720         }
3721 }
3722
3723
3724 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3725 {
3726         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3727         gfn_t gfn;
3728
3729         /*
3730          * Don't need to mark the APIC access page dirty; it is never
3731          * written to by the CPU during APIC virtualization.
3732          */
3733
3734         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3735                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3736                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3737         }
3738
3739         if (nested_cpu_has_posted_intr(vmcs12)) {
3740                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3741                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3742         }
3743 }
3744
3745 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3746 {
3747         struct vcpu_vmx *vmx = to_vmx(vcpu);
3748         int max_irr;
3749         void *vapic_page;
3750         u16 status;
3751
3752         if (!vmx->nested.pi_pending)
3753                 return 0;
3754
3755         if (!vmx->nested.pi_desc)
3756                 goto mmio_needed;
3757
3758         vmx->nested.pi_pending = false;
3759
3760         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3761                 return 0;
3762
3763         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3764         if (max_irr != 256) {
3765                 vapic_page = vmx->nested.virtual_apic_map.hva;
3766                 if (!vapic_page)
3767                         goto mmio_needed;
3768
3769                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3770                         vapic_page, &max_irr);
3771                 status = vmcs_read16(GUEST_INTR_STATUS);
3772                 if ((u8)max_irr > ((u8)status & 0xff)) {
3773                         status &= ~0xff;
3774                         status |= (u8)max_irr;
3775                         vmcs_write16(GUEST_INTR_STATUS, status);
3776                 }
3777         }
3778
3779         nested_mark_vmcs12_pages_dirty(vcpu);
3780         return 0;
3781
3782 mmio_needed:
3783         kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3784         return -ENXIO;
3785 }
3786
3787 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3788                                                unsigned long exit_qual)
3789 {
3790         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3791         unsigned int nr = vcpu->arch.exception.nr;
3792         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3793
3794         if (vcpu->arch.exception.has_error_code) {
3795                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3796                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3797         }
3798
3799         if (kvm_exception_is_soft(nr))
3800                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3801         else
3802                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3803
3804         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3805             vmx_get_nmi_mask(vcpu))
3806                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3807
3808         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3809 }
3810
3811 /*
3812  * Returns true if a debug trap is pending delivery.
3813  *
3814  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3815  * exception may be inferred from the presence of an exception payload.
3816  */
3817 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3818 {
3819         return vcpu->arch.exception.pending &&
3820                         vcpu->arch.exception.nr == DB_VECTOR &&
3821                         vcpu->arch.exception.payload;
3822 }
3823
3824 /*
3825  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3826  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3827  * represents these debug traps with a payload that is said to be compatible
3828  * with the 'pending debug exceptions' field, write the payload to the VMCS
3829  * field if a VM-exit is delivered before the debug trap.
3830  */
3831 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3832 {
3833         if (vmx_pending_dbg_trap(vcpu))
3834                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3835                             vcpu->arch.exception.payload);
3836 }
3837
3838 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3839 {
3840         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3841                to_vmx(vcpu)->nested.preemption_timer_expired;
3842 }
3843
3844 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3845 {
3846         struct vcpu_vmx *vmx = to_vmx(vcpu);
3847         unsigned long exit_qual;
3848         bool block_nested_events =
3849             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3850         bool mtf_pending = vmx->nested.mtf_pending;
3851         struct kvm_lapic *apic = vcpu->arch.apic;
3852
3853         /*
3854          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3855          * this state is discarded.
3856          */
3857         if (!block_nested_events)
3858                 vmx->nested.mtf_pending = false;
3859
3860         if (lapic_in_kernel(vcpu) &&
3861                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3862                 if (block_nested_events)
3863                         return -EBUSY;
3864                 nested_vmx_update_pending_dbg(vcpu);
3865                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3866                 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3867                         nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3868                 return 0;
3869         }
3870
3871         if (lapic_in_kernel(vcpu) &&
3872             test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3873                 if (block_nested_events)
3874                         return -EBUSY;
3875
3876                 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3877                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3878                         nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3879                                                 apic->sipi_vector & 0xFFUL);
3880                 return 0;
3881         }
3882
3883         /*
3884          * Process any exceptions that are not debug traps before MTF.
3885          *
3886          * Note that only a pending nested run can block a pending exception.
3887          * Otherwise an injected NMI/interrupt should either be
3888          * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3889          * while delivering the pending exception.
3890          */
3891
3892         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3893                 if (vmx->nested.nested_run_pending)
3894                         return -EBUSY;
3895                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3896                         goto no_vmexit;
3897                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3898                 return 0;
3899         }
3900
3901         if (mtf_pending) {
3902                 if (block_nested_events)
3903                         return -EBUSY;
3904                 nested_vmx_update_pending_dbg(vcpu);
3905                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3906                 return 0;
3907         }
3908
3909         if (vcpu->arch.exception.pending) {
3910                 if (vmx->nested.nested_run_pending)
3911                         return -EBUSY;
3912                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3913                         goto no_vmexit;
3914                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3915                 return 0;
3916         }
3917
3918         if (nested_vmx_preemption_timer_pending(vcpu)) {
3919                 if (block_nested_events)
3920                         return -EBUSY;
3921                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3922                 return 0;
3923         }
3924
3925         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3926                 if (block_nested_events)
3927                         return -EBUSY;
3928                 goto no_vmexit;
3929         }
3930
3931         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3932                 if (block_nested_events)
3933                         return -EBUSY;
3934                 if (!nested_exit_on_nmi(vcpu))
3935                         goto no_vmexit;
3936
3937                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3938                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3939                                   INTR_INFO_VALID_MASK, 0);
3940                 /*
3941                  * The NMI-triggered VM exit counts as injection:
3942                  * clear this one and block further NMIs.
3943                  */
3944                 vcpu->arch.nmi_pending = 0;
3945                 vmx_set_nmi_mask(vcpu, true);
3946                 return 0;
3947         }
3948
3949         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3950                 if (block_nested_events)
3951                         return -EBUSY;
3952                 if (!nested_exit_on_intr(vcpu))
3953                         goto no_vmexit;
3954                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3955                 return 0;
3956         }
3957
3958 no_vmexit:
3959         return vmx_complete_nested_posted_interrupt(vcpu);
3960 }
3961
3962 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3963 {
3964         ktime_t remaining =
3965                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3966         u64 value;
3967
3968         if (ktime_to_ns(remaining) <= 0)
3969                 return 0;
3970
3971         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3972         do_div(value, 1000000);
3973         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3974 }
3975
3976 static bool is_vmcs12_ext_field(unsigned long field)
3977 {
3978         switch (field) {
3979         case GUEST_ES_SELECTOR:
3980         case GUEST_CS_SELECTOR:
3981         case GUEST_SS_SELECTOR:
3982         case GUEST_DS_SELECTOR:
3983         case GUEST_FS_SELECTOR:
3984         case GUEST_GS_SELECTOR:
3985         case GUEST_LDTR_SELECTOR:
3986         case GUEST_TR_SELECTOR:
3987         case GUEST_ES_LIMIT:
3988         case GUEST_CS_LIMIT:
3989         case GUEST_SS_LIMIT:
3990         case GUEST_DS_LIMIT:
3991         case GUEST_FS_LIMIT:
3992         case GUEST_GS_LIMIT:
3993         case GUEST_LDTR_LIMIT:
3994         case GUEST_TR_LIMIT:
3995         case GUEST_GDTR_LIMIT:
3996         case GUEST_IDTR_LIMIT:
3997         case GUEST_ES_AR_BYTES:
3998         case GUEST_DS_AR_BYTES:
3999         case GUEST_FS_AR_BYTES:
4000         case GUEST_GS_AR_BYTES:
4001         case GUEST_LDTR_AR_BYTES:
4002         case GUEST_TR_AR_BYTES:
4003         case GUEST_ES_BASE:
4004         case GUEST_CS_BASE:
4005         case GUEST_SS_BASE:
4006         case GUEST_DS_BASE:
4007         case GUEST_FS_BASE:
4008         case GUEST_GS_BASE:
4009         case GUEST_LDTR_BASE:
4010         case GUEST_TR_BASE:
4011         case GUEST_GDTR_BASE:
4012         case GUEST_IDTR_BASE:
4013         case GUEST_PENDING_DBG_EXCEPTIONS:
4014         case GUEST_BNDCFGS:
4015                 return true;
4016         default:
4017                 break;
4018         }
4019
4020         return false;
4021 }
4022
4023 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4024                                        struct vmcs12 *vmcs12)
4025 {
4026         struct vcpu_vmx *vmx = to_vmx(vcpu);
4027
4028         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4029         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4030         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4031         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4032         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4033         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4034         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4035         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4036         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4037         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4038         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4039         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4040         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4041         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4042         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4043         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4044         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4045         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4046         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4047         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4048         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4049         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4050         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4051         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4052         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4053         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4054         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4055         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4056         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4057         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4058         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4059         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4060         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4061         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4062         vmcs12->guest_pending_dbg_exceptions =
4063                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4064         if (kvm_mpx_supported())
4065                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4066
4067         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4068 }
4069
4070 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4071                                        struct vmcs12 *vmcs12)
4072 {
4073         struct vcpu_vmx *vmx = to_vmx(vcpu);
4074         int cpu;
4075
4076         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4077                 return;
4078
4079
4080         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4081
4082         cpu = get_cpu();
4083         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4084         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4085
4086         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4087
4088         vmx->loaded_vmcs = &vmx->vmcs01;
4089         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4090         put_cpu();
4091 }
4092
4093 /*
4094  * Update the guest state fields of vmcs12 to reflect changes that
4095  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4096  * VM-entry controls is also updated, since this is really a guest
4097  * state bit.)
4098  */
4099 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4100 {
4101         struct vcpu_vmx *vmx = to_vmx(vcpu);
4102
4103         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4104                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4105
4106         vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4107                 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4108
4109         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4110         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4111
4112         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4113         vmcs12->guest_rip = kvm_rip_read(vcpu);
4114         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4115
4116         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4117         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4118
4119         vmcs12->guest_interruptibility_info =
4120                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4121
4122         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4123                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4124         else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4125                 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4126         else
4127                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4128
4129         if (nested_cpu_has_preemption_timer(vmcs12) &&
4130             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4131             !vmx->nested.nested_run_pending)
4132                 vmcs12->vmx_preemption_timer_value =
4133                         vmx_get_preemption_timer_value(vcpu);
4134
4135         /*
4136          * In some cases (usually, nested EPT), L2 is allowed to change its
4137          * own CR3 without exiting. If it has changed it, we must keep it.
4138          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4139          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4140          *
4141          * Additionally, restore L2's PDPTR to vmcs12.
4142          */
4143         if (enable_ept) {
4144                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4145                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4146                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4147                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4148                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4149                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4150                 }
4151         }
4152
4153         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4154
4155         if (nested_cpu_has_vid(vmcs12))
4156                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4157
4158         vmcs12->vm_entry_controls =
4159                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4160                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4161
4162         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4163                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4164
4165         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4166                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4167 }
4168
4169 /*
4170  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4171  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4172  * and this function updates it to reflect the changes to the guest state while
4173  * L2 was running (and perhaps made some exits which were handled directly by L0
4174  * without going back to L1), and to reflect the exit reason.
4175  * Note that we do not have to copy here all VMCS fields, just those that
4176  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4177  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4178  * which already writes to vmcs12 directly.
4179  */
4180 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4181                            u32 vm_exit_reason, u32 exit_intr_info,
4182                            unsigned long exit_qualification)
4183 {
4184         /* update exit information fields: */
4185         vmcs12->vm_exit_reason = vm_exit_reason;
4186         if (to_vmx(vcpu)->exit_reason.enclave_mode)
4187                 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4188         vmcs12->exit_qualification = exit_qualification;
4189         vmcs12->vm_exit_intr_info = exit_intr_info;
4190
4191         vmcs12->idt_vectoring_info_field = 0;
4192         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4193         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4194
4195         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4196                 vmcs12->launch_state = 1;
4197
4198                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4199                  * instead of reading the real value. */
4200                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4201
4202                 /*
4203                  * Transfer the event that L0 or L1 may wanted to inject into
4204                  * L2 to IDT_VECTORING_INFO_FIELD.
4205                  */
4206                 vmcs12_save_pending_event(vcpu, vmcs12);
4207
4208                 /*
4209                  * According to spec, there's no need to store the guest's
4210                  * MSRs if the exit is due to a VM-entry failure that occurs
4211                  * during or after loading the guest state. Since this exit
4212                  * does not fall in that category, we need to save the MSRs.
4213                  */
4214                 if (nested_vmx_store_msr(vcpu,
4215                                          vmcs12->vm_exit_msr_store_addr,
4216                                          vmcs12->vm_exit_msr_store_count))
4217                         nested_vmx_abort(vcpu,
4218                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4219         }
4220
4221         /*
4222          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4223          * preserved above and would only end up incorrectly in L1.
4224          */
4225         vcpu->arch.nmi_injected = false;
4226         kvm_clear_exception_queue(vcpu);
4227         kvm_clear_interrupt_queue(vcpu);
4228 }
4229
4230 /*
4231  * A part of what we need to when the nested L2 guest exits and we want to
4232  * run its L1 parent, is to reset L1's guest state to the host state specified
4233  * in vmcs12.
4234  * This function is to be called not only on normal nested exit, but also on
4235  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4236  * Failures During or After Loading Guest State").
4237  * This function should be called when the active VMCS is L1's (vmcs01).
4238  */
4239 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4240                                    struct vmcs12 *vmcs12)
4241 {
4242         enum vm_entry_failure_code ignored;
4243         struct kvm_segment seg;
4244
4245         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4246                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4247         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4248                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4249         else
4250                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4251         vmx_set_efer(vcpu, vcpu->arch.efer);
4252
4253         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4254         kvm_rip_write(vcpu, vmcs12->host_rip);
4255         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4256         vmx_set_interrupt_shadow(vcpu, 0);
4257
4258         /*
4259          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4260          * actually changed, because vmx_set_cr0 refers to efer set above.
4261          *
4262          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4263          * (KVM doesn't change it);
4264          */
4265         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4266         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4267
4268         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4269         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4270         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4271
4272         nested_ept_uninit_mmu_context(vcpu);
4273
4274         /*
4275          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4276          * couldn't have changed.
4277          */
4278         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4279                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4280
4281         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4282
4283         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4284         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4285         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4286         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4287         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4288         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4289         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4290
4291         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4292         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4293                 vmcs_write64(GUEST_BNDCFGS, 0);
4294
4295         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4296                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4297                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4298         }
4299         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4300                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4301                                          vmcs12->host_ia32_perf_global_ctrl));
4302
4303         /* Set L1 segment info according to Intel SDM
4304             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4305         seg = (struct kvm_segment) {
4306                 .base = 0,
4307                 .limit = 0xFFFFFFFF,
4308                 .selector = vmcs12->host_cs_selector,
4309                 .type = 11,
4310                 .present = 1,
4311                 .s = 1,
4312                 .g = 1
4313         };
4314         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4315                 seg.l = 1;
4316         else
4317                 seg.db = 1;
4318         __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4319         seg = (struct kvm_segment) {
4320                 .base = 0,
4321                 .limit = 0xFFFFFFFF,
4322                 .type = 3,
4323                 .present = 1,
4324                 .s = 1,
4325                 .db = 1,
4326                 .g = 1
4327         };
4328         seg.selector = vmcs12->host_ds_selector;
4329         __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4330         seg.selector = vmcs12->host_es_selector;
4331         __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4332         seg.selector = vmcs12->host_ss_selector;
4333         __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4334         seg.selector = vmcs12->host_fs_selector;
4335         seg.base = vmcs12->host_fs_base;
4336         __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4337         seg.selector = vmcs12->host_gs_selector;
4338         seg.base = vmcs12->host_gs_base;
4339         __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4340         seg = (struct kvm_segment) {
4341                 .base = vmcs12->host_tr_base,
4342                 .limit = 0x67,
4343                 .selector = vmcs12->host_tr_selector,
4344                 .type = 11,
4345                 .present = 1
4346         };
4347         __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4348
4349         memset(&seg, 0, sizeof(seg));
4350         seg.unusable = 1;
4351         __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4352
4353         kvm_set_dr(vcpu, 7, 0x400);
4354         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4355
4356         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4357                                 vmcs12->vm_exit_msr_load_count))
4358                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4359
4360         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4361 }
4362
4363 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4364 {
4365         struct vmx_uret_msr *efer_msr;
4366         unsigned int i;
4367
4368         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4369                 return vmcs_read64(GUEST_IA32_EFER);
4370
4371         if (cpu_has_load_ia32_efer())
4372                 return host_efer;
4373
4374         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4375                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4376                         return vmx->msr_autoload.guest.val[i].value;
4377         }
4378
4379         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4380         if (efer_msr)
4381                 return efer_msr->data;
4382
4383         return host_efer;
4384 }
4385
4386 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4387 {
4388         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4389         struct vcpu_vmx *vmx = to_vmx(vcpu);
4390         struct vmx_msr_entry g, h;
4391         gpa_t gpa;
4392         u32 i, j;
4393
4394         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4395
4396         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4397                 /*
4398                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4399                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4400                  * and vcpu->arch.dr7 is not squirreled away before the
4401                  * nested VMENTER (not worth adding a variable in nested_vmx).
4402                  */
4403                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4404                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4405                 else
4406                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4407         }
4408
4409         /*
4410          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4411          * handle a variety of side effects to KVM's software model.
4412          */
4413         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4414
4415         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4416         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4417
4418         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4419         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4420
4421         nested_ept_uninit_mmu_context(vcpu);
4422         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4423         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4424
4425         /*
4426          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4427          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4428          * VMFail, like everything else we just need to ensure our
4429          * software model is up-to-date.
4430          */
4431         if (enable_ept && is_pae_paging(vcpu))
4432                 ept_save_pdptrs(vcpu);
4433
4434         kvm_mmu_reset_context(vcpu);
4435
4436         /*
4437          * This nasty bit of open coding is a compromise between blindly
4438          * loading L1's MSRs using the exit load lists (incorrect emulation
4439          * of VMFail), leaving the nested VM's MSRs in the software model
4440          * (incorrect behavior) and snapshotting the modified MSRs (too
4441          * expensive since the lists are unbound by hardware).  For each
4442          * MSR that was (prematurely) loaded from the nested VMEntry load
4443          * list, reload it from the exit load list if it exists and differs
4444          * from the guest value.  The intent is to stuff host state as
4445          * silently as possible, not to fully process the exit load list.
4446          */
4447         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4448                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4449                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4450                         pr_debug_ratelimited(
4451                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4452                                 __func__, i, gpa);
4453                         goto vmabort;
4454                 }
4455
4456                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4457                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4458                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4459                                 pr_debug_ratelimited(
4460                                         "%s read MSR failed (%u, 0x%08llx)\n",
4461                                         __func__, j, gpa);
4462                                 goto vmabort;
4463                         }
4464                         if (h.index != g.index)
4465                                 continue;
4466                         if (h.value == g.value)
4467                                 break;
4468
4469                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4470                                 pr_debug_ratelimited(
4471                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4472                                         __func__, j, h.index, h.reserved);
4473                                 goto vmabort;
4474                         }
4475
4476                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4477                                 pr_debug_ratelimited(
4478                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4479                                         __func__, j, h.index, h.value);
4480                                 goto vmabort;
4481                         }
4482                 }
4483         }
4484
4485         return;
4486
4487 vmabort:
4488         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4489 }
4490
4491 /*
4492  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4493  * and modify vmcs12 to make it see what it would expect to see there if
4494  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4495  */
4496 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4497                        u32 exit_intr_info, unsigned long exit_qualification)
4498 {
4499         struct vcpu_vmx *vmx = to_vmx(vcpu);
4500         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4501
4502         /* trying to cancel vmlaunch/vmresume is a bug */
4503         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4504
4505         /* Similarly, triple faults in L2 should never escape. */
4506         WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4507
4508         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4509                 /*
4510                  * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4511                  * Enlightened VMCS after migration and we still need to
4512                  * do that when something is forcing L2->L1 exit prior to
4513                  * the first L2 run.
4514                  */
4515                 (void)nested_get_evmcs_page(vcpu);
4516         }
4517
4518         /* Service the TLB flush request for L2 before switching to L1. */
4519         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4520                 kvm_vcpu_flush_tlb_current(vcpu);
4521
4522         /*
4523          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4524          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4525          * up-to-date before switching to L1.
4526          */
4527         if (enable_ept && is_pae_paging(vcpu))
4528                 vmx_ept_load_pdptrs(vcpu);
4529
4530         leave_guest_mode(vcpu);
4531
4532         if (nested_cpu_has_preemption_timer(vmcs12))
4533                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4534
4535         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4536                 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4537                 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4538                         vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4539         }
4540
4541         if (likely(!vmx->fail)) {
4542                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4543
4544                 if (vm_exit_reason != -1)
4545                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4546                                        exit_intr_info, exit_qualification);
4547
4548                 /*
4549                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4550                  * also be used to capture vmcs12 cache as part of
4551                  * capturing nVMX state for snapshot (migration).
4552                  *
4553                  * Otherwise, this flush will dirty guest memory at a
4554                  * point it is already assumed by user-space to be
4555                  * immutable.
4556                  */
4557                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4558         } else {
4559                 /*
4560                  * The only expected VM-instruction error is "VM entry with
4561                  * invalid control field(s)." Anything else indicates a
4562                  * problem with L0.  And we should never get here with a
4563                  * VMFail of any type if early consistency checks are enabled.
4564                  */
4565                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4566                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4567                 WARN_ON_ONCE(nested_early_check);
4568         }
4569
4570         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4571
4572         /* Update any VMCS fields that might have changed while L2 ran */
4573         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4574         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4575         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4576         if (kvm_has_tsc_control)
4577                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4578
4579         if (vmx->nested.l1_tpr_threshold != -1)
4580                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4581
4582         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4583                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4584                 vmx_set_virtual_apic_mode(vcpu);
4585         }
4586
4587         if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4588                 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4589                 vmx_update_cpu_dirty_logging(vcpu);
4590         }
4591
4592         /* Unpin physical memory we referred to in vmcs02 */
4593         if (vmx->nested.apic_access_page) {
4594                 kvm_release_page_clean(vmx->nested.apic_access_page);
4595                 vmx->nested.apic_access_page = NULL;
4596         }
4597         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4598         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4599         vmx->nested.pi_desc = NULL;
4600
4601         if (vmx->nested.reload_vmcs01_apic_access_page) {
4602                 vmx->nested.reload_vmcs01_apic_access_page = false;
4603                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4604         }
4605
4606         if ((vm_exit_reason != -1) &&
4607             (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4608                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4609
4610         /* in case we halted in L2 */
4611         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4612
4613         if (likely(!vmx->fail)) {
4614                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4615                     nested_exit_intr_ack_set(vcpu)) {
4616                         int irq = kvm_cpu_get_interrupt(vcpu);
4617                         WARN_ON(irq < 0);
4618                         vmcs12->vm_exit_intr_info = irq |
4619                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4620                 }
4621
4622                 if (vm_exit_reason != -1)
4623                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4624                                                        vmcs12->exit_qualification,
4625                                                        vmcs12->idt_vectoring_info_field,
4626                                                        vmcs12->vm_exit_intr_info,
4627                                                        vmcs12->vm_exit_intr_error_code,
4628                                                        KVM_ISA_VMX);
4629
4630                 load_vmcs12_host_state(vcpu, vmcs12);
4631
4632                 return;
4633         }
4634
4635         /*
4636          * After an early L2 VM-entry failure, we're now back
4637          * in L1 which thinks it just finished a VMLAUNCH or
4638          * VMRESUME instruction, so we need to set the failure
4639          * flag and the VM-instruction error field of the VMCS
4640          * accordingly, and skip the emulated instruction.
4641          */
4642         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4643
4644         /*
4645          * Restore L1's host state to KVM's software model.  We're here
4646          * because a consistency check was caught by hardware, which
4647          * means some amount of guest state has been propagated to KVM's
4648          * model and needs to be unwound to the host's state.
4649          */
4650         nested_vmx_restore_host_state(vcpu);
4651
4652         vmx->fail = 0;
4653 }
4654
4655 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4656 {
4657         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4658 }
4659
4660 /*
4661  * Decode the memory-address operand of a vmx instruction, as recorded on an
4662  * exit caused by such an instruction (run by a guest hypervisor).
4663  * On success, returns 0. When the operand is invalid, returns 1 and throws
4664  * #UD, #GP, or #SS.
4665  */
4666 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4667                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4668 {
4669         gva_t off;
4670         bool exn;
4671         struct kvm_segment s;
4672
4673         /*
4674          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4675          * Execution", on an exit, vmx_instruction_info holds most of the
4676          * addressing components of the operand. Only the displacement part
4677          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4678          * For how an actual address is calculated from all these components,
4679          * refer to Vol. 1, "Operand Addressing".
4680          */
4681         int  scaling = vmx_instruction_info & 3;
4682         int  addr_size = (vmx_instruction_info >> 7) & 7;
4683         bool is_reg = vmx_instruction_info & (1u << 10);
4684         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4685         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4686         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4687         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4688         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4689
4690         if (is_reg) {
4691                 kvm_queue_exception(vcpu, UD_VECTOR);
4692                 return 1;
4693         }
4694
4695         /* Addr = segment_base + offset */
4696         /* offset = base + [index * scale] + displacement */
4697         off = exit_qualification; /* holds the displacement */
4698         if (addr_size == 1)
4699                 off = (gva_t)sign_extend64(off, 31);
4700         else if (addr_size == 0)
4701                 off = (gva_t)sign_extend64(off, 15);
4702         if (base_is_valid)
4703                 off += kvm_register_read(vcpu, base_reg);
4704         if (index_is_valid)
4705                 off += kvm_register_read(vcpu, index_reg) << scaling;
4706         vmx_get_segment(vcpu, &s, seg_reg);
4707
4708         /*
4709          * The effective address, i.e. @off, of a memory operand is truncated
4710          * based on the address size of the instruction.  Note that this is
4711          * the *effective address*, i.e. the address prior to accounting for
4712          * the segment's base.
4713          */
4714         if (addr_size == 1) /* 32 bit */
4715                 off &= 0xffffffff;
4716         else if (addr_size == 0) /* 16 bit */
4717                 off &= 0xffff;
4718
4719         /* Checks for #GP/#SS exceptions. */
4720         exn = false;
4721         if (is_long_mode(vcpu)) {
4722                 /*
4723                  * The virtual/linear address is never truncated in 64-bit
4724                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4725                  * address when using FS/GS with a non-zero base.
4726                  */
4727                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4728                         *ret = s.base + off;
4729                 else
4730                         *ret = off;
4731
4732                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4733                  * non-canonical form. This is the only check on the memory
4734                  * destination for long mode!
4735                  */
4736                 exn = is_noncanonical_address(*ret, vcpu);
4737         } else {
4738                 /*
4739                  * When not in long mode, the virtual/linear address is
4740                  * unconditionally truncated to 32 bits regardless of the
4741                  * address size.
4742                  */
4743                 *ret = (s.base + off) & 0xffffffff;
4744
4745                 /* Protected mode: apply checks for segment validity in the
4746                  * following order:
4747                  * - segment type check (#GP(0) may be thrown)
4748                  * - usability check (#GP(0)/#SS(0))
4749                  * - limit check (#GP(0)/#SS(0))
4750                  */
4751                 if (wr)
4752                         /* #GP(0) if the destination operand is located in a
4753                          * read-only data segment or any code segment.
4754                          */
4755                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4756                 else
4757                         /* #GP(0) if the source operand is located in an
4758                          * execute-only code segment
4759                          */
4760                         exn = ((s.type & 0xa) == 8);
4761                 if (exn) {
4762                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4763                         return 1;
4764                 }
4765                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4766                  */
4767                 exn = (s.unusable != 0);
4768
4769                 /*
4770                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4771                  * outside the segment limit.  All CPUs that support VMX ignore
4772                  * limit checks for flat segments, i.e. segments with base==0,
4773                  * limit==0xffffffff and of type expand-up data or code.
4774                  */
4775                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4776                      ((s.type & 8) || !(s.type & 4))))
4777                         exn = exn || ((u64)off + len - 1 > s.limit);
4778         }
4779         if (exn) {
4780                 kvm_queue_exception_e(vcpu,
4781                                       seg_reg == VCPU_SREG_SS ?
4782                                                 SS_VECTOR : GP_VECTOR,
4783                                       0);
4784                 return 1;
4785         }
4786
4787         return 0;
4788 }
4789
4790 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4791 {
4792         struct vcpu_vmx *vmx;
4793
4794         if (!nested_vmx_allowed(vcpu))
4795                 return;
4796
4797         vmx = to_vmx(vcpu);
4798         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4799                 vmx->nested.msrs.entry_ctls_high |=
4800                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4801                 vmx->nested.msrs.exit_ctls_high |=
4802                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4803         } else {
4804                 vmx->nested.msrs.entry_ctls_high &=
4805                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4806                 vmx->nested.msrs.exit_ctls_high &=
4807                                 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4808         }
4809 }
4810
4811 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4812                                 int *ret)
4813 {
4814         gva_t gva;
4815         struct x86_exception e;
4816         int r;
4817
4818         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4819                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4820                                 sizeof(*vmpointer), &gva)) {
4821                 *ret = 1;
4822                 return -EINVAL;
4823         }
4824
4825         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4826         if (r != X86EMUL_CONTINUE) {
4827                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4828                 return -EINVAL;
4829         }
4830
4831         return 0;
4832 }
4833
4834 /*
4835  * Allocate a shadow VMCS and associate it with the currently loaded
4836  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4837  * VMCS is also VMCLEARed, so that it is ready for use.
4838  */
4839 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4840 {
4841         struct vcpu_vmx *vmx = to_vmx(vcpu);
4842         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4843
4844         /*
4845          * We should allocate a shadow vmcs for vmcs01 only when L1
4846          * executes VMXON and free it when L1 executes VMXOFF.
4847          * As it is invalid to execute VMXON twice, we shouldn't reach
4848          * here when vmcs01 already have an allocated shadow vmcs.
4849          */
4850         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4851
4852         if (!loaded_vmcs->shadow_vmcs) {
4853                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4854                 if (loaded_vmcs->shadow_vmcs)
4855                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4856         }
4857         return loaded_vmcs->shadow_vmcs;
4858 }
4859
4860 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4861 {
4862         struct vcpu_vmx *vmx = to_vmx(vcpu);
4863         int r;
4864
4865         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4866         if (r < 0)
4867                 goto out_vmcs02;
4868
4869         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4870         if (!vmx->nested.cached_vmcs12)
4871                 goto out_cached_vmcs12;
4872
4873         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4874         if (!vmx->nested.cached_shadow_vmcs12)
4875                 goto out_cached_shadow_vmcs12;
4876
4877         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4878                 goto out_shadow_vmcs;
4879
4880         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4881                      HRTIMER_MODE_ABS_PINNED);
4882         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4883
4884         vmx->nested.vpid02 = allocate_vpid();
4885
4886         vmx->nested.vmcs02_initialized = false;
4887         vmx->nested.vmxon = true;
4888
4889         if (vmx_pt_mode_is_host_guest()) {
4890                 vmx->pt_desc.guest.ctl = 0;
4891                 pt_update_intercept_for_msr(vcpu);
4892         }
4893
4894         return 0;
4895
4896 out_shadow_vmcs:
4897         kfree(vmx->nested.cached_shadow_vmcs12);
4898
4899 out_cached_shadow_vmcs12:
4900         kfree(vmx->nested.cached_vmcs12);
4901
4902 out_cached_vmcs12:
4903         free_loaded_vmcs(&vmx->nested.vmcs02);
4904
4905 out_vmcs02:
4906         return -ENOMEM;
4907 }
4908
4909 /* Emulate the VMXON instruction. */
4910 static int handle_vmon(struct kvm_vcpu *vcpu)
4911 {
4912         int ret;
4913         gpa_t vmptr;
4914         uint32_t revision;
4915         struct vcpu_vmx *vmx = to_vmx(vcpu);
4916         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4917                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4918
4919         /*
4920          * The Intel VMX Instruction Reference lists a bunch of bits that are
4921          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4922          * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4923          * Otherwise, we should fail with #UD.  But most faulting conditions
4924          * have already been checked by hardware, prior to the VM-exit for
4925          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4926          * that bit set to 1 in non-root mode.
4927          */
4928         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4929                 kvm_queue_exception(vcpu, UD_VECTOR);
4930                 return 1;
4931         }
4932
4933         /* CPL=0 must be checked manually. */
4934         if (vmx_get_cpl(vcpu)) {
4935                 kvm_inject_gp(vcpu, 0);
4936                 return 1;
4937         }
4938
4939         if (vmx->nested.vmxon)
4940                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4941
4942         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4943                         != VMXON_NEEDED_FEATURES) {
4944                 kvm_inject_gp(vcpu, 0);
4945                 return 1;
4946         }
4947
4948         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4949                 return ret;
4950
4951         /*
4952          * SDM 3: 24.11.5
4953          * The first 4 bytes of VMXON region contain the supported
4954          * VMCS revision identifier
4955          *
4956          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4957          * which replaces physical address width with 32
4958          */
4959         if (!page_address_valid(vcpu, vmptr))
4960                 return nested_vmx_failInvalid(vcpu);
4961
4962         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4963             revision != VMCS12_REVISION)
4964                 return nested_vmx_failInvalid(vcpu);
4965
4966         vmx->nested.vmxon_ptr = vmptr;
4967         ret = enter_vmx_operation(vcpu);
4968         if (ret)
4969                 return ret;
4970
4971         return nested_vmx_succeed(vcpu);
4972 }
4973
4974 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4975 {
4976         struct vcpu_vmx *vmx = to_vmx(vcpu);
4977
4978         if (vmx->nested.current_vmptr == -1ull)
4979                 return;
4980
4981         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4982
4983         if (enable_shadow_vmcs) {
4984                 /* copy to memory all shadowed fields in case
4985                    they were modified */
4986                 copy_shadow_to_vmcs12(vmx);
4987                 vmx_disable_shadow_vmcs(vmx);
4988         }
4989         vmx->nested.posted_intr_nv = -1;
4990
4991         /* Flush VMCS12 to guest memory */
4992         kvm_vcpu_write_guest_page(vcpu,
4993                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4994                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4995
4996         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4997
4998         vmx->nested.current_vmptr = -1ull;
4999 }
5000
5001 /* Emulate the VMXOFF instruction */
5002 static int handle_vmoff(struct kvm_vcpu *vcpu)
5003 {
5004         if (!nested_vmx_check_permission(vcpu))
5005                 return 1;
5006
5007         free_nested(vcpu);
5008
5009         /* Process a latched INIT during time CPU was in VMX operation */
5010         kvm_make_request(KVM_REQ_EVENT, vcpu);
5011
5012         return nested_vmx_succeed(vcpu);
5013 }
5014
5015 /* Emulate the VMCLEAR instruction */
5016 static int handle_vmclear(struct kvm_vcpu *vcpu)
5017 {
5018         struct vcpu_vmx *vmx = to_vmx(vcpu);
5019         u32 zero = 0;
5020         gpa_t vmptr;
5021         u64 evmcs_gpa;
5022         int r;
5023
5024         if (!nested_vmx_check_permission(vcpu))
5025                 return 1;
5026
5027         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5028                 return r;
5029
5030         if (!page_address_valid(vcpu, vmptr))
5031                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5032
5033         if (vmptr == vmx->nested.vmxon_ptr)
5034                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5035
5036         /*
5037          * When Enlightened VMEntry is enabled on the calling CPU we treat
5038          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5039          * way to distinguish it from VMCS12) and we must not corrupt it by
5040          * writing to the non-existent 'launch_state' field. The area doesn't
5041          * have to be the currently active EVMCS on the calling CPU and there's
5042          * nothing KVM has to do to transition it from 'active' to 'non-active'
5043          * state. It is possible that the area will stay mapped as
5044          * vmx->nested.hv_evmcs but this shouldn't be a problem.
5045          */
5046         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5047                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5048                 if (vmptr == vmx->nested.current_vmptr)
5049                         nested_release_vmcs12(vcpu);
5050
5051                 kvm_vcpu_write_guest(vcpu,
5052                                      vmptr + offsetof(struct vmcs12,
5053                                                       launch_state),
5054                                      &zero, sizeof(zero));
5055         } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5056                 nested_release_evmcs(vcpu);
5057         }
5058
5059         return nested_vmx_succeed(vcpu);
5060 }
5061
5062 /* Emulate the VMLAUNCH instruction */
5063 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5064 {
5065         return nested_vmx_run(vcpu, true);
5066 }
5067
5068 /* Emulate the VMRESUME instruction */
5069 static int handle_vmresume(struct kvm_vcpu *vcpu)
5070 {
5071
5072         return nested_vmx_run(vcpu, false);
5073 }
5074
5075 static int handle_vmread(struct kvm_vcpu *vcpu)
5076 {
5077         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5078                                                     : get_vmcs12(vcpu);
5079         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5080         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5081         struct vcpu_vmx *vmx = to_vmx(vcpu);
5082         struct x86_exception e;
5083         unsigned long field;
5084         u64 value;
5085         gva_t gva = 0;
5086         short offset;
5087         int len, r;
5088
5089         if (!nested_vmx_check_permission(vcpu))
5090                 return 1;
5091
5092         /*
5093          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5094          * any VMREAD sets the ALU flags for VMfailInvalid.
5095          */
5096         if (vmx->nested.current_vmptr == -1ull ||
5097             (is_guest_mode(vcpu) &&
5098              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5099                 return nested_vmx_failInvalid(vcpu);
5100
5101         /* Decode instruction info and find the field to read */
5102         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5103
5104         offset = vmcs_field_to_offset(field);
5105         if (offset < 0)
5106                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5107
5108         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5109                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5110
5111         /* Read the field, zero-extended to a u64 value */
5112         value = vmcs12_read_any(vmcs12, field, offset);
5113
5114         /*
5115          * Now copy part of this value to register or memory, as requested.
5116          * Note that the number of bits actually copied is 32 or 64 depending
5117          * on the guest's mode (32 or 64 bit), not on the given field's length.
5118          */
5119         if (instr_info & BIT(10)) {
5120                 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5121         } else {
5122                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5123                 if (get_vmx_mem_address(vcpu, exit_qualification,
5124                                         instr_info, true, len, &gva))
5125                         return 1;
5126                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5127                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5128                 if (r != X86EMUL_CONTINUE)
5129                         return kvm_handle_memory_failure(vcpu, r, &e);
5130         }
5131
5132         return nested_vmx_succeed(vcpu);
5133 }
5134
5135 static bool is_shadow_field_rw(unsigned long field)
5136 {
5137         switch (field) {
5138 #define SHADOW_FIELD_RW(x, y) case x:
5139 #include "vmcs_shadow_fields.h"
5140                 return true;
5141         default:
5142                 break;
5143         }
5144         return false;
5145 }
5146
5147 static bool is_shadow_field_ro(unsigned long field)
5148 {
5149         switch (field) {
5150 #define SHADOW_FIELD_RO(x, y) case x:
5151 #include "vmcs_shadow_fields.h"
5152                 return true;
5153         default:
5154                 break;
5155         }
5156         return false;
5157 }
5158
5159 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5160 {
5161         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5162                                                     : get_vmcs12(vcpu);
5163         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5164         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5165         struct vcpu_vmx *vmx = to_vmx(vcpu);
5166         struct x86_exception e;
5167         unsigned long field;
5168         short offset;
5169         gva_t gva;
5170         int len, r;
5171
5172         /*
5173          * The value to write might be 32 or 64 bits, depending on L1's long
5174          * mode, and eventually we need to write that into a field of several
5175          * possible lengths. The code below first zero-extends the value to 64
5176          * bit (value), and then copies only the appropriate number of
5177          * bits into the vmcs12 field.
5178          */
5179         u64 value = 0;
5180
5181         if (!nested_vmx_check_permission(vcpu))
5182                 return 1;
5183
5184         /*
5185          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5186          * any VMWRITE sets the ALU flags for VMfailInvalid.
5187          */
5188         if (vmx->nested.current_vmptr == -1ull ||
5189             (is_guest_mode(vcpu) &&
5190              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5191                 return nested_vmx_failInvalid(vcpu);
5192
5193         if (instr_info & BIT(10))
5194                 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5195         else {
5196                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5197                 if (get_vmx_mem_address(vcpu, exit_qualification,
5198                                         instr_info, false, len, &gva))
5199                         return 1;
5200                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5201                 if (r != X86EMUL_CONTINUE)
5202                         return kvm_handle_memory_failure(vcpu, r, &e);
5203         }
5204
5205         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5206
5207         offset = vmcs_field_to_offset(field);
5208         if (offset < 0)
5209                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5210
5211         /*
5212          * If the vCPU supports "VMWRITE to any supported field in the
5213          * VMCS," then the "read-only" fields are actually read/write.
5214          */
5215         if (vmcs_field_readonly(field) &&
5216             !nested_cpu_has_vmwrite_any_field(vcpu))
5217                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5218
5219         /*
5220          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5221          * vmcs12, else we may crush a field or consume a stale value.
5222          */
5223         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5224                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5225
5226         /*
5227          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5228          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5229          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5230          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5231          * from L1 will return a different value than VMREAD from L2 (L1 sees
5232          * the stripped down value, L2 sees the full value as stored by KVM).
5233          */
5234         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5235                 value &= 0x1f0ff;
5236
5237         vmcs12_write_any(vmcs12, field, offset, value);
5238
5239         /*
5240          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5241          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5242          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5243          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5244          */
5245         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5246                 /*
5247                  * L1 can read these fields without exiting, ensure the
5248                  * shadow VMCS is up-to-date.
5249                  */
5250                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5251                         preempt_disable();
5252                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5253
5254                         __vmcs_writel(field, value);
5255
5256                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5257                         vmcs_load(vmx->loaded_vmcs->vmcs);
5258                         preempt_enable();
5259                 }
5260                 vmx->nested.dirty_vmcs12 = true;
5261         }
5262
5263         return nested_vmx_succeed(vcpu);
5264 }
5265
5266 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5267 {
5268         vmx->nested.current_vmptr = vmptr;
5269         if (enable_shadow_vmcs) {
5270                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5271                 vmcs_write64(VMCS_LINK_POINTER,
5272                              __pa(vmx->vmcs01.shadow_vmcs));
5273                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5274         }
5275         vmx->nested.dirty_vmcs12 = true;
5276 }
5277
5278 /* Emulate the VMPTRLD instruction */
5279 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5280 {
5281         struct vcpu_vmx *vmx = to_vmx(vcpu);
5282         gpa_t vmptr;
5283         int r;
5284
5285         if (!nested_vmx_check_permission(vcpu))
5286                 return 1;
5287
5288         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5289                 return r;
5290
5291         if (!page_address_valid(vcpu, vmptr))
5292                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5293
5294         if (vmptr == vmx->nested.vmxon_ptr)
5295                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5296
5297         /* Forbid normal VMPTRLD if Enlightened version was used */
5298         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5299                 return 1;
5300
5301         if (vmx->nested.current_vmptr != vmptr) {
5302                 struct kvm_host_map map;
5303                 struct vmcs12 *new_vmcs12;
5304
5305                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5306                         /*
5307                          * Reads from an unbacked page return all 1s,
5308                          * which means that the 32 bits located at the
5309                          * given physical address won't match the required
5310                          * VMCS12_REVISION identifier.
5311                          */
5312                         return nested_vmx_fail(vcpu,
5313                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5314                 }
5315
5316                 new_vmcs12 = map.hva;
5317
5318                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5319                     (new_vmcs12->hdr.shadow_vmcs &&
5320                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5321                         kvm_vcpu_unmap(vcpu, &map, false);
5322                         return nested_vmx_fail(vcpu,
5323                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5324                 }
5325
5326                 nested_release_vmcs12(vcpu);
5327
5328                 /*
5329                  * Load VMCS12 from guest memory since it is not already
5330                  * cached.
5331                  */
5332                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5333                 kvm_vcpu_unmap(vcpu, &map, false);
5334
5335                 set_current_vmptr(vmx, vmptr);
5336         }
5337
5338         return nested_vmx_succeed(vcpu);
5339 }
5340
5341 /* Emulate the VMPTRST instruction */
5342 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5343 {
5344         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5345         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5346         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5347         struct x86_exception e;
5348         gva_t gva;
5349         int r;
5350
5351         if (!nested_vmx_check_permission(vcpu))
5352                 return 1;
5353
5354         if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5355                 return 1;
5356
5357         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5358                                 true, sizeof(gpa_t), &gva))
5359                 return 1;
5360         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5361         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5362                                         sizeof(gpa_t), &e);
5363         if (r != X86EMUL_CONTINUE)
5364                 return kvm_handle_memory_failure(vcpu, r, &e);
5365
5366         return nested_vmx_succeed(vcpu);
5367 }
5368
5369 /* Emulate the INVEPT instruction */
5370 static int handle_invept(struct kvm_vcpu *vcpu)
5371 {
5372         struct vcpu_vmx *vmx = to_vmx(vcpu);
5373         u32 vmx_instruction_info, types;
5374         unsigned long type, roots_to_free;
5375         struct kvm_mmu *mmu;
5376         gva_t gva;
5377         struct x86_exception e;
5378         struct {
5379                 u64 eptp, gpa;
5380         } operand;
5381         int i, r;
5382
5383         if (!(vmx->nested.msrs.secondary_ctls_high &
5384               SECONDARY_EXEC_ENABLE_EPT) ||
5385             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5386                 kvm_queue_exception(vcpu, UD_VECTOR);
5387                 return 1;
5388         }
5389
5390         if (!nested_vmx_check_permission(vcpu))
5391                 return 1;
5392
5393         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5394         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5395
5396         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5397
5398         if (type >= 32 || !(types & (1 << type)))
5399                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5400
5401         /* According to the Intel VMX instruction reference, the memory
5402          * operand is read even if it isn't needed (e.g., for type==global)
5403          */
5404         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5405                         vmx_instruction_info, false, sizeof(operand), &gva))
5406                 return 1;
5407         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5408         if (r != X86EMUL_CONTINUE)
5409                 return kvm_handle_memory_failure(vcpu, r, &e);
5410
5411         /*
5412          * Nested EPT roots are always held through guest_mmu,
5413          * not root_mmu.
5414          */
5415         mmu = &vcpu->arch.guest_mmu;
5416
5417         switch (type) {
5418         case VMX_EPT_EXTENT_CONTEXT:
5419                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5420                         return nested_vmx_fail(vcpu,
5421                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5422
5423                 roots_to_free = 0;
5424                 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5425                                             operand.eptp))
5426                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5427
5428                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5429                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5430                                                     mmu->prev_roots[i].pgd,
5431                                                     operand.eptp))
5432                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5433                 }
5434                 break;
5435         case VMX_EPT_EXTENT_GLOBAL:
5436                 roots_to_free = KVM_MMU_ROOTS_ALL;
5437                 break;
5438         default:
5439                 BUG();
5440                 break;
5441         }
5442
5443         if (roots_to_free)
5444                 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5445
5446         return nested_vmx_succeed(vcpu);
5447 }
5448
5449 static int handle_invvpid(struct kvm_vcpu *vcpu)
5450 {
5451         struct vcpu_vmx *vmx = to_vmx(vcpu);
5452         u32 vmx_instruction_info;
5453         unsigned long type, types;
5454         gva_t gva;
5455         struct x86_exception e;
5456         struct {
5457                 u64 vpid;
5458                 u64 gla;
5459         } operand;
5460         u16 vpid02;
5461         int r;
5462
5463         if (!(vmx->nested.msrs.secondary_ctls_high &
5464               SECONDARY_EXEC_ENABLE_VPID) ||
5465                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5466                 kvm_queue_exception(vcpu, UD_VECTOR);
5467                 return 1;
5468         }
5469
5470         if (!nested_vmx_check_permission(vcpu))
5471                 return 1;
5472
5473         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5474         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5475
5476         types = (vmx->nested.msrs.vpid_caps &
5477                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5478
5479         if (type >= 32 || !(types & (1 << type)))
5480                 return nested_vmx_fail(vcpu,
5481                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5482
5483         /* according to the intel vmx instruction reference, the memory
5484          * operand is read even if it isn't needed (e.g., for type==global)
5485          */
5486         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5487                         vmx_instruction_info, false, sizeof(operand), &gva))
5488                 return 1;
5489         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5490         if (r != X86EMUL_CONTINUE)
5491                 return kvm_handle_memory_failure(vcpu, r, &e);
5492
5493         if (operand.vpid >> 16)
5494                 return nested_vmx_fail(vcpu,
5495                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5496
5497         vpid02 = nested_get_vpid02(vcpu);
5498         switch (type) {
5499         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5500                 if (!operand.vpid ||
5501                     is_noncanonical_address(operand.gla, vcpu))
5502                         return nested_vmx_fail(vcpu,
5503                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5504                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5505                 break;
5506         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5507         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5508                 if (!operand.vpid)
5509                         return nested_vmx_fail(vcpu,
5510                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5511                 vpid_sync_context(vpid02);
5512                 break;
5513         case VMX_VPID_EXTENT_ALL_CONTEXT:
5514                 vpid_sync_context(vpid02);
5515                 break;
5516         default:
5517                 WARN_ON_ONCE(1);
5518                 return kvm_skip_emulated_instruction(vcpu);
5519         }
5520
5521         /*
5522          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5523          * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5524          * roots as VPIDs are not tracked in the MMU role.
5525          *
5526          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5527          * an MMU when EPT is disabled.
5528          *
5529          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5530          */
5531         if (!enable_ept)
5532                 kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5533
5534         return nested_vmx_succeed(vcpu);
5535 }
5536
5537 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5538                                      struct vmcs12 *vmcs12)
5539 {
5540         u32 index = kvm_rcx_read(vcpu);
5541         u64 new_eptp;
5542
5543         if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5544                 return 1;
5545         if (index >= VMFUNC_EPTP_ENTRIES)
5546                 return 1;
5547
5548         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5549                                      &new_eptp, index * 8, 8))
5550                 return 1;
5551
5552         /*
5553          * If the (L2) guest does a vmfunc to the currently
5554          * active ept pointer, we don't have to do anything else
5555          */
5556         if (vmcs12->ept_pointer != new_eptp) {
5557                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5558                         return 1;
5559
5560                 vmcs12->ept_pointer = new_eptp;
5561                 nested_ept_new_eptp(vcpu);
5562
5563                 if (!nested_cpu_has_vpid(vmcs12))
5564                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5565         }
5566
5567         return 0;
5568 }
5569
5570 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5571 {
5572         struct vcpu_vmx *vmx = to_vmx(vcpu);
5573         struct vmcs12 *vmcs12;
5574         u32 function = kvm_rax_read(vcpu);
5575
5576         /*
5577          * VMFUNC is only supported for nested guests, but we always enable the
5578          * secondary control for simplicity; for non-nested mode, fake that we
5579          * didn't by injecting #UD.
5580          */
5581         if (!is_guest_mode(vcpu)) {
5582                 kvm_queue_exception(vcpu, UD_VECTOR);
5583                 return 1;
5584         }
5585
5586         vmcs12 = get_vmcs12(vcpu);
5587
5588         /*
5589          * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5590          * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5591          */
5592         if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5593                 kvm_queue_exception(vcpu, UD_VECTOR);
5594                 return 1;
5595         }
5596
5597         if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5598                 goto fail;
5599
5600         switch (function) {
5601         case 0:
5602                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5603                         goto fail;
5604                 break;
5605         default:
5606                 goto fail;
5607         }
5608         return kvm_skip_emulated_instruction(vcpu);
5609
5610 fail:
5611         /*
5612          * This is effectively a reflected VM-Exit, as opposed to a synthesized
5613          * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5614          * EXIT_REASON_VMFUNC as the exit reason.
5615          */
5616         nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5617                           vmx_get_intr_info(vcpu),
5618                           vmx_get_exit_qual(vcpu));
5619         return 1;
5620 }
5621
5622 /*
5623  * Return true if an IO instruction with the specified port and size should cause
5624  * a VM-exit into L1.
5625  */
5626 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5627                                  int size)
5628 {
5629         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5630         gpa_t bitmap, last_bitmap;
5631         u8 b;
5632
5633         last_bitmap = (gpa_t)-1;
5634         b = -1;
5635
5636         while (size > 0) {
5637                 if (port < 0x8000)
5638                         bitmap = vmcs12->io_bitmap_a;
5639                 else if (port < 0x10000)
5640                         bitmap = vmcs12->io_bitmap_b;
5641                 else
5642                         return true;
5643                 bitmap += (port & 0x7fff) / 8;
5644
5645                 if (last_bitmap != bitmap)
5646                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5647                                 return true;
5648                 if (b & (1 << (port & 7)))
5649                         return true;
5650
5651                 port++;
5652                 size--;
5653                 last_bitmap = bitmap;
5654         }
5655
5656         return false;
5657 }
5658
5659 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5660                                        struct vmcs12 *vmcs12)
5661 {
5662         unsigned long exit_qualification;
5663         unsigned short port;
5664         int size;
5665
5666         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5667                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5668
5669         exit_qualification = vmx_get_exit_qual(vcpu);
5670
5671         port = exit_qualification >> 16;
5672         size = (exit_qualification & 7) + 1;
5673
5674         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5675 }
5676
5677 /*
5678  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5679  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5680  * disinterest in the current event (read or write a specific MSR) by using an
5681  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5682  */
5683 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5684                                         struct vmcs12 *vmcs12,
5685                                         union vmx_exit_reason exit_reason)
5686 {
5687         u32 msr_index = kvm_rcx_read(vcpu);
5688         gpa_t bitmap;
5689
5690         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5691                 return true;
5692
5693         /*
5694          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5695          * for the four combinations of read/write and low/high MSR numbers.
5696          * First we need to figure out which of the four to use:
5697          */
5698         bitmap = vmcs12->msr_bitmap;
5699         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5700                 bitmap += 2048;
5701         if (msr_index >= 0xc0000000) {
5702                 msr_index -= 0xc0000000;
5703                 bitmap += 1024;
5704         }
5705
5706         /* Then read the msr_index'th bit from this bitmap: */
5707         if (msr_index < 1024*8) {
5708                 unsigned char b;
5709                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5710                         return true;
5711                 return 1 & (b >> (msr_index & 7));
5712         } else
5713                 return true; /* let L1 handle the wrong parameter */
5714 }
5715
5716 /*
5717  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5718  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5719  * intercept (via guest_host_mask etc.) the current event.
5720  */
5721 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5722         struct vmcs12 *vmcs12)
5723 {
5724         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5725         int cr = exit_qualification & 15;
5726         int reg;
5727         unsigned long val;
5728
5729         switch ((exit_qualification >> 4) & 3) {
5730         case 0: /* mov to cr */
5731                 reg = (exit_qualification >> 8) & 15;
5732                 val = kvm_register_read(vcpu, reg);
5733                 switch (cr) {
5734                 case 0:
5735                         if (vmcs12->cr0_guest_host_mask &
5736                             (val ^ vmcs12->cr0_read_shadow))
5737                                 return true;
5738                         break;
5739                 case 3:
5740                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5741                                 return true;
5742                         break;
5743                 case 4:
5744                         if (vmcs12->cr4_guest_host_mask &
5745                             (vmcs12->cr4_read_shadow ^ val))
5746                                 return true;
5747                         break;
5748                 case 8:
5749                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5750                                 return true;
5751                         break;
5752                 }
5753                 break;
5754         case 2: /* clts */
5755                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5756                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5757                         return true;
5758                 break;
5759         case 1: /* mov from cr */
5760                 switch (cr) {
5761                 case 3:
5762                         if (vmcs12->cpu_based_vm_exec_control &
5763                             CPU_BASED_CR3_STORE_EXITING)
5764                                 return true;
5765                         break;
5766                 case 8:
5767                         if (vmcs12->cpu_based_vm_exec_control &
5768                             CPU_BASED_CR8_STORE_EXITING)
5769                                 return true;
5770                         break;
5771                 }
5772                 break;
5773         case 3: /* lmsw */
5774                 /*
5775                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5776                  * cr0. Other attempted changes are ignored, with no exit.
5777                  */
5778                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5779                 if (vmcs12->cr0_guest_host_mask & 0xe &
5780                     (val ^ vmcs12->cr0_read_shadow))
5781                         return true;
5782                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5783                     !(vmcs12->cr0_read_shadow & 0x1) &&
5784                     (val & 0x1))
5785                         return true;
5786                 break;
5787         }
5788         return false;
5789 }
5790
5791 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5792                                           struct vmcs12 *vmcs12)
5793 {
5794         u32 encls_leaf;
5795
5796         if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5797             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5798                 return false;
5799
5800         encls_leaf = kvm_rax_read(vcpu);
5801         if (encls_leaf > 62)
5802                 encls_leaf = 63;
5803         return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5804 }
5805
5806 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5807         struct vmcs12 *vmcs12, gpa_t bitmap)
5808 {
5809         u32 vmx_instruction_info;
5810         unsigned long field;
5811         u8 b;
5812
5813         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5814                 return true;
5815
5816         /* Decode instruction info and find the field to access */
5817         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5818         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5819
5820         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5821         if (field >> 15)
5822                 return true;
5823
5824         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5825                 return true;
5826
5827         return 1 & (b >> (field & 7));
5828 }
5829
5830 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5831 {
5832         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5833
5834         if (nested_cpu_has_mtf(vmcs12))
5835                 return true;
5836
5837         /*
5838          * An MTF VM-exit may be injected into the guest by setting the
5839          * interruption-type to 7 (other event) and the vector field to 0. Such
5840          * is the case regardless of the 'monitor trap flag' VM-execution
5841          * control.
5842          */
5843         return entry_intr_info == (INTR_INFO_VALID_MASK
5844                                    | INTR_TYPE_OTHER_EVENT);
5845 }
5846
5847 /*
5848  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5849  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5850  */
5851 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5852                                      union vmx_exit_reason exit_reason)
5853 {
5854         u32 intr_info;
5855
5856         switch ((u16)exit_reason.basic) {
5857         case EXIT_REASON_EXCEPTION_NMI:
5858                 intr_info = vmx_get_intr_info(vcpu);
5859                 if (is_nmi(intr_info))
5860                         return true;
5861                 else if (is_page_fault(intr_info))
5862                         return vcpu->arch.apf.host_apf_flags ||
5863                                vmx_need_pf_intercept(vcpu);
5864                 else if (is_debug(intr_info) &&
5865                          vcpu->guest_debug &
5866                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5867                         return true;
5868                 else if (is_breakpoint(intr_info) &&
5869                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5870                         return true;
5871                 else if (is_alignment_check(intr_info) &&
5872                          !vmx_guest_inject_ac(vcpu))
5873                         return true;
5874                 return false;
5875         case EXIT_REASON_EXTERNAL_INTERRUPT:
5876                 return true;
5877         case EXIT_REASON_MCE_DURING_VMENTRY:
5878                 return true;
5879         case EXIT_REASON_EPT_VIOLATION:
5880                 /*
5881                  * L0 always deals with the EPT violation. If nested EPT is
5882                  * used, and the nested mmu code discovers that the address is
5883                  * missing in the guest EPT table (EPT12), the EPT violation
5884                  * will be injected with nested_ept_inject_page_fault()
5885                  */
5886                 return true;
5887         case EXIT_REASON_EPT_MISCONFIG:
5888                 /*
5889                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5890                  * table (shadow on EPT) or a merged EPT table that L0 built
5891                  * (EPT on EPT). So any problems with the structure of the
5892                  * table is L0's fault.
5893                  */
5894                 return true;
5895         case EXIT_REASON_PREEMPTION_TIMER:
5896                 return true;
5897         case EXIT_REASON_PML_FULL:
5898                 /*
5899                  * PML is emulated for an L1 VMM and should never be enabled in
5900                  * vmcs02, always "handle" PML_FULL by exiting to userspace.
5901                  */
5902                 return true;
5903         case EXIT_REASON_VMFUNC:
5904                 /* VM functions are emulated through L2->L0 vmexits. */
5905                 return true;
5906         case EXIT_REASON_BUS_LOCK:
5907                 /*
5908                  * At present, bus lock VM exit is never exposed to L1.
5909                  * Handle L2's bus locks in L0 directly.
5910                  */
5911                 return true;
5912         default:
5913                 break;
5914         }
5915         return false;
5916 }
5917
5918 /*
5919  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5920  * is_guest_mode (L2).
5921  */
5922 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5923                                      union vmx_exit_reason exit_reason)
5924 {
5925         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5926         u32 intr_info;
5927
5928         switch ((u16)exit_reason.basic) {
5929         case EXIT_REASON_EXCEPTION_NMI:
5930                 intr_info = vmx_get_intr_info(vcpu);
5931                 if (is_nmi(intr_info))
5932                         return true;
5933                 else if (is_page_fault(intr_info))
5934                         return true;
5935                 return vmcs12->exception_bitmap &
5936                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5937         case EXIT_REASON_EXTERNAL_INTERRUPT:
5938                 return nested_exit_on_intr(vcpu);
5939         case EXIT_REASON_TRIPLE_FAULT:
5940                 return true;
5941         case EXIT_REASON_INTERRUPT_WINDOW:
5942                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5943         case EXIT_REASON_NMI_WINDOW:
5944                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5945         case EXIT_REASON_TASK_SWITCH:
5946                 return true;
5947         case EXIT_REASON_CPUID:
5948                 return true;
5949         case EXIT_REASON_HLT:
5950                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5951         case EXIT_REASON_INVD:
5952                 return true;
5953         case EXIT_REASON_INVLPG:
5954                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5955         case EXIT_REASON_RDPMC:
5956                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5957         case EXIT_REASON_RDRAND:
5958                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5959         case EXIT_REASON_RDSEED:
5960                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5961         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5962                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5963         case EXIT_REASON_VMREAD:
5964                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5965                         vmcs12->vmread_bitmap);
5966         case EXIT_REASON_VMWRITE:
5967                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5968                         vmcs12->vmwrite_bitmap);
5969         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5970         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5971         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5972         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5973         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5974                 /*
5975                  * VMX instructions trap unconditionally. This allows L1 to
5976                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5977                  */
5978                 return true;
5979         case EXIT_REASON_CR_ACCESS:
5980                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5981         case EXIT_REASON_DR_ACCESS:
5982                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5983         case EXIT_REASON_IO_INSTRUCTION:
5984                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5985         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5986                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5987         case EXIT_REASON_MSR_READ:
5988         case EXIT_REASON_MSR_WRITE:
5989                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5990         case EXIT_REASON_INVALID_STATE:
5991                 return true;
5992         case EXIT_REASON_MWAIT_INSTRUCTION:
5993                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5994         case EXIT_REASON_MONITOR_TRAP_FLAG:
5995                 return nested_vmx_exit_handled_mtf(vmcs12);
5996         case EXIT_REASON_MONITOR_INSTRUCTION:
5997                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5998         case EXIT_REASON_PAUSE_INSTRUCTION:
5999                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6000                         nested_cpu_has2(vmcs12,
6001                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6002         case EXIT_REASON_MCE_DURING_VMENTRY:
6003                 return true;
6004         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6005                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6006         case EXIT_REASON_APIC_ACCESS:
6007         case EXIT_REASON_APIC_WRITE:
6008         case EXIT_REASON_EOI_INDUCED:
6009                 /*
6010                  * The controls for "virtualize APIC accesses," "APIC-
6011                  * register virtualization," and "virtual-interrupt
6012                  * delivery" only come from vmcs12.
6013                  */
6014                 return true;
6015         case EXIT_REASON_INVPCID:
6016                 return
6017                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6018                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6019         case EXIT_REASON_WBINVD:
6020                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6021         case EXIT_REASON_XSETBV:
6022                 return true;
6023         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6024                 /*
6025                  * This should never happen, since it is not possible to
6026                  * set XSS to a non-zero value---neither in L1 nor in L2.
6027                  * If if it were, XSS would have to be checked against
6028                  * the XSS exit bitmap in vmcs12.
6029                  */
6030                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6031         case EXIT_REASON_UMWAIT:
6032         case EXIT_REASON_TPAUSE:
6033                 return nested_cpu_has2(vmcs12,
6034                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6035         case EXIT_REASON_ENCLS:
6036                 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6037         default:
6038                 return true;
6039         }
6040 }
6041
6042 /*
6043  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6044  * reflected into L1.
6045  */
6046 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6047 {
6048         struct vcpu_vmx *vmx = to_vmx(vcpu);
6049         union vmx_exit_reason exit_reason = vmx->exit_reason;
6050         unsigned long exit_qual;
6051         u32 exit_intr_info;
6052
6053         WARN_ON_ONCE(vmx->nested.nested_run_pending);
6054
6055         /*
6056          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6057          * has already loaded L2's state.
6058          */
6059         if (unlikely(vmx->fail)) {
6060                 trace_kvm_nested_vmenter_failed(
6061                         "hardware VM-instruction error: ",
6062                         vmcs_read32(VM_INSTRUCTION_ERROR));
6063                 exit_intr_info = 0;
6064                 exit_qual = 0;
6065                 goto reflect_vmexit;
6066         }
6067
6068         trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6069
6070         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6071         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6072                 return false;
6073
6074         /* If L1 doesn't want the exit, handle it in L0. */
6075         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6076                 return false;
6077
6078         /*
6079          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6080          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6081          * need to be synthesized by querying the in-kernel LAPIC, but external
6082          * interrupts are never reflected to L1 so it's a non-issue.
6083          */
6084         exit_intr_info = vmx_get_intr_info(vcpu);
6085         if (is_exception_with_error_code(exit_intr_info)) {
6086                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6087
6088                 vmcs12->vm_exit_intr_error_code =
6089                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6090         }
6091         exit_qual = vmx_get_exit_qual(vcpu);
6092
6093 reflect_vmexit:
6094         nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6095         return true;
6096 }
6097
6098 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6099                                 struct kvm_nested_state __user *user_kvm_nested_state,
6100                                 u32 user_data_size)
6101 {
6102         struct vcpu_vmx *vmx;
6103         struct vmcs12 *vmcs12;
6104         struct kvm_nested_state kvm_state = {
6105                 .flags = 0,
6106                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6107                 .size = sizeof(kvm_state),
6108                 .hdr.vmx.flags = 0,
6109                 .hdr.vmx.vmxon_pa = -1ull,
6110                 .hdr.vmx.vmcs12_pa = -1ull,
6111                 .hdr.vmx.preemption_timer_deadline = 0,
6112         };
6113         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6114                 &user_kvm_nested_state->data.vmx[0];
6115
6116         if (!vcpu)
6117                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6118
6119         vmx = to_vmx(vcpu);
6120         vmcs12 = get_vmcs12(vcpu);
6121
6122         if (nested_vmx_allowed(vcpu) &&
6123             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6124                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6125                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6126
6127                 if (vmx_has_valid_vmcs12(vcpu)) {
6128                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6129
6130                         /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6131                         if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6132                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6133
6134                         if (is_guest_mode(vcpu) &&
6135                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6136                             vmcs12->vmcs_link_pointer != -1ull)
6137                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6138                 }
6139
6140                 if (vmx->nested.smm.vmxon)
6141                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6142
6143                 if (vmx->nested.smm.guest_mode)
6144                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6145
6146                 if (is_guest_mode(vcpu)) {
6147                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6148
6149                         if (vmx->nested.nested_run_pending)
6150                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6151
6152                         if (vmx->nested.mtf_pending)
6153                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6154
6155                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6156                             vmx->nested.has_preemption_timer_deadline) {
6157                                 kvm_state.hdr.vmx.flags |=
6158                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6159                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6160                                         vmx->nested.preemption_timer_deadline;
6161                         }
6162                 }
6163         }
6164
6165         if (user_data_size < kvm_state.size)
6166                 goto out;
6167
6168         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6169                 return -EFAULT;
6170
6171         if (!vmx_has_valid_vmcs12(vcpu))
6172                 goto out;
6173
6174         /*
6175          * When running L2, the authoritative vmcs12 state is in the
6176          * vmcs02. When running L1, the authoritative vmcs12 state is
6177          * in the shadow or enlightened vmcs linked to vmcs01, unless
6178          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6179          * vmcs12 state is in the vmcs12 already.
6180          */
6181         if (is_guest_mode(vcpu)) {
6182                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6183                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6184         } else  {
6185                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6186                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6187                         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6188                                 /*
6189                                  * L1 hypervisor is not obliged to keep eVMCS
6190                                  * clean fields data always up-to-date while
6191                                  * not in guest mode, 'hv_clean_fields' is only
6192                                  * supposed to be actual upon vmentry so we need
6193                                  * to ignore it here and do full copy.
6194                                  */
6195                                 copy_enlightened_to_vmcs12(vmx, 0);
6196                         else if (enable_shadow_vmcs)
6197                                 copy_shadow_to_vmcs12(vmx);
6198                 }
6199         }
6200
6201         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6202         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6203
6204         /*
6205          * Copy over the full allocated size of vmcs12 rather than just the size
6206          * of the struct.
6207          */
6208         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6209                 return -EFAULT;
6210
6211         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6212             vmcs12->vmcs_link_pointer != -1ull) {
6213                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6214                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6215                         return -EFAULT;
6216         }
6217 out:
6218         return kvm_state.size;
6219 }
6220
6221 /*
6222  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6223  */
6224 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6225 {
6226         if (is_guest_mode(vcpu)) {
6227                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6228                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6229         }
6230         free_nested(vcpu);
6231 }
6232
6233 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6234                                 struct kvm_nested_state __user *user_kvm_nested_state,
6235                                 struct kvm_nested_state *kvm_state)
6236 {
6237         struct vcpu_vmx *vmx = to_vmx(vcpu);
6238         struct vmcs12 *vmcs12;
6239         enum vm_entry_failure_code ignored;
6240         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6241                 &user_kvm_nested_state->data.vmx[0];
6242         int ret;
6243
6244         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6245                 return -EINVAL;
6246
6247         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6248                 if (kvm_state->hdr.vmx.smm.flags)
6249                         return -EINVAL;
6250
6251                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6252                         return -EINVAL;
6253
6254                 /*
6255                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6256                  * enable eVMCS capability on vCPU. However, since then
6257                  * code was changed such that flag signals vmcs12 should
6258                  * be copied into eVMCS in guest memory.
6259                  *
6260                  * To preserve backwards compatability, allow user
6261                  * to set this flag even when there is no VMXON region.
6262                  */
6263                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6264                         return -EINVAL;
6265         } else {
6266                 if (!nested_vmx_allowed(vcpu))
6267                         return -EINVAL;
6268
6269                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6270                         return -EINVAL;
6271         }
6272
6273         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6274             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6275                 return -EINVAL;
6276
6277         if (kvm_state->hdr.vmx.smm.flags &
6278             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6279                 return -EINVAL;
6280
6281         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6282                 return -EINVAL;
6283
6284         /*
6285          * SMM temporarily disables VMX, so we cannot be in guest mode,
6286          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6287          * must be zero.
6288          */
6289         if (is_smm(vcpu) ?
6290                 (kvm_state->flags &
6291                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6292                 : kvm_state->hdr.vmx.smm.flags)
6293                 return -EINVAL;
6294
6295         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6296             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6297                 return -EINVAL;
6298
6299         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6300                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6301                         return -EINVAL;
6302
6303         vmx_leave_nested(vcpu);
6304
6305         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6306                 return 0;
6307
6308         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6309         ret = enter_vmx_operation(vcpu);
6310         if (ret)
6311                 return ret;
6312
6313         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6314         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6315                 /* See vmx_has_valid_vmcs12.  */
6316                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6317                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6318                     (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6319                         return -EINVAL;
6320                 else
6321                         return 0;
6322         }
6323
6324         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6325                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6326                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6327                         return -EINVAL;
6328
6329                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6330         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6331                 /*
6332                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6333                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6334                  * restored yet. EVMCS will be mapped from
6335                  * nested_get_vmcs12_pages().
6336                  */
6337                 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6338                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6339         } else {
6340                 return -EINVAL;
6341         }
6342
6343         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6344                 vmx->nested.smm.vmxon = true;
6345                 vmx->nested.vmxon = false;
6346
6347                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6348                         vmx->nested.smm.guest_mode = true;
6349         }
6350
6351         vmcs12 = get_vmcs12(vcpu);
6352         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6353                 return -EFAULT;
6354
6355         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6356                 return -EINVAL;
6357
6358         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6359                 return 0;
6360
6361         vmx->nested.nested_run_pending =
6362                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6363
6364         vmx->nested.mtf_pending =
6365                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6366
6367         ret = -EINVAL;
6368         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6369             vmcs12->vmcs_link_pointer != -1ull) {
6370                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6371
6372                 if (kvm_state->size <
6373                     sizeof(*kvm_state) +
6374                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6375                         goto error_guest_mode;
6376
6377                 if (copy_from_user(shadow_vmcs12,
6378                                    user_vmx_nested_state->shadow_vmcs12,
6379                                    sizeof(*shadow_vmcs12))) {
6380                         ret = -EFAULT;
6381                         goto error_guest_mode;
6382                 }
6383
6384                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6385                     !shadow_vmcs12->hdr.shadow_vmcs)
6386                         goto error_guest_mode;
6387         }
6388
6389         vmx->nested.has_preemption_timer_deadline = false;
6390         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6391                 vmx->nested.has_preemption_timer_deadline = true;
6392                 vmx->nested.preemption_timer_deadline =
6393                         kvm_state->hdr.vmx.preemption_timer_deadline;
6394         }
6395
6396         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6397             nested_vmx_check_host_state(vcpu, vmcs12) ||
6398             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6399                 goto error_guest_mode;
6400
6401         vmx->nested.dirty_vmcs12 = true;
6402         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6403         if (ret)
6404                 goto error_guest_mode;
6405
6406         return 0;
6407
6408 error_guest_mode:
6409         vmx->nested.nested_run_pending = 0;
6410         return ret;
6411 }
6412
6413 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6414 {
6415         if (enable_shadow_vmcs) {
6416                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6417                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6418         }
6419 }
6420
6421 /*
6422  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6423  * that madness to get the encoding for comparison.
6424  */
6425 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6426
6427 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6428 {
6429         /*
6430          * Note these are the so called "index" of the VMCS field encoding, not
6431          * the index into vmcs12.
6432          */
6433         unsigned int max_idx, idx;
6434         int i;
6435
6436         /*
6437          * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6438          * vmcs12, regardless of whether or not the associated feature is
6439          * exposed to L1.  Simply find the field with the highest index.
6440          */
6441         max_idx = 0;
6442         for (i = 0; i < nr_vmcs12_fields; i++) {
6443                 /* The vmcs12 table is very, very sparsely populated. */
6444                 if (!vmcs_field_to_offset_table[i])
6445                         continue;
6446
6447                 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6448                 if (idx > max_idx)
6449                         max_idx = idx;
6450         }
6451
6452         return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6453 }
6454
6455 /*
6456  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6457  * returned for the various VMX controls MSRs when nested VMX is enabled.
6458  * The same values should also be used to verify that vmcs12 control fields are
6459  * valid during nested entry from L1 to L2.
6460  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6461  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6462  * bit in the high half is on if the corresponding bit in the control field
6463  * may be on. See also vmx_control_verify().
6464  */
6465 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6466 {
6467         /*
6468          * Note that as a general rule, the high half of the MSRs (bits in
6469          * the control fields which may be 1) should be initialized by the
6470          * intersection of the underlying hardware's MSR (i.e., features which
6471          * can be supported) and the list of features we want to expose -
6472          * because they are known to be properly supported in our code.
6473          * Also, usually, the low half of the MSRs (bits which must be 1) can
6474          * be set to 0, meaning that L1 may turn off any of these bits. The
6475          * reason is that if one of these bits is necessary, it will appear
6476          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6477          * fields of vmcs01 and vmcs02, will turn these bits off - and
6478          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6479          * These rules have exceptions below.
6480          */
6481
6482         /* pin-based controls */
6483         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6484                 msrs->pinbased_ctls_low,
6485                 msrs->pinbased_ctls_high);
6486         msrs->pinbased_ctls_low |=
6487                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6488         msrs->pinbased_ctls_high &=
6489                 PIN_BASED_EXT_INTR_MASK |
6490                 PIN_BASED_NMI_EXITING |
6491                 PIN_BASED_VIRTUAL_NMIS |
6492                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6493         msrs->pinbased_ctls_high |=
6494                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6495                 PIN_BASED_VMX_PREEMPTION_TIMER;
6496
6497         /* exit controls */
6498         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6499                 msrs->exit_ctls_low,
6500                 msrs->exit_ctls_high);
6501         msrs->exit_ctls_low =
6502                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6503
6504         msrs->exit_ctls_high &=
6505 #ifdef CONFIG_X86_64
6506                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6507 #endif
6508                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6509                 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6510         msrs->exit_ctls_high |=
6511                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6512                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6513                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6514
6515         /* We support free control of debug control saving. */
6516         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6517
6518         /* entry controls */
6519         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6520                 msrs->entry_ctls_low,
6521                 msrs->entry_ctls_high);
6522         msrs->entry_ctls_low =
6523                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6524         msrs->entry_ctls_high &=
6525 #ifdef CONFIG_X86_64
6526                 VM_ENTRY_IA32E_MODE |
6527 #endif
6528                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6529                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6530         msrs->entry_ctls_high |=
6531                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6532
6533         /* We support free control of debug control loading. */
6534         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6535
6536         /* cpu-based controls */
6537         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6538                 msrs->procbased_ctls_low,
6539                 msrs->procbased_ctls_high);
6540         msrs->procbased_ctls_low =
6541                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6542         msrs->procbased_ctls_high &=
6543                 CPU_BASED_INTR_WINDOW_EXITING |
6544                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6545                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6546                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6547                 CPU_BASED_CR3_STORE_EXITING |
6548 #ifdef CONFIG_X86_64
6549                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6550 #endif
6551                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6552                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6553                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6554                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6555                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6556         /*
6557          * We can allow some features even when not supported by the
6558          * hardware. For example, L1 can specify an MSR bitmap - and we
6559          * can use it to avoid exits to L1 - even when L0 runs L2
6560          * without MSR bitmaps.
6561          */
6562         msrs->procbased_ctls_high |=
6563                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6564                 CPU_BASED_USE_MSR_BITMAPS;
6565
6566         /* We support free control of CR3 access interception. */
6567         msrs->procbased_ctls_low &=
6568                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6569
6570         /*
6571          * secondary cpu-based controls.  Do not include those that
6572          * depend on CPUID bits, they are added later by
6573          * vmx_vcpu_after_set_cpuid.
6574          */
6575         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6576                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6577                       msrs->secondary_ctls_low,
6578                       msrs->secondary_ctls_high);
6579
6580         msrs->secondary_ctls_low = 0;
6581         msrs->secondary_ctls_high &=
6582                 SECONDARY_EXEC_DESC |
6583                 SECONDARY_EXEC_ENABLE_RDTSCP |
6584                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6585                 SECONDARY_EXEC_WBINVD_EXITING |
6586                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6587                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6588                 SECONDARY_EXEC_RDRAND_EXITING |
6589                 SECONDARY_EXEC_ENABLE_INVPCID |
6590                 SECONDARY_EXEC_RDSEED_EXITING |
6591                 SECONDARY_EXEC_XSAVES |
6592                 SECONDARY_EXEC_TSC_SCALING;
6593
6594         /*
6595          * We can emulate "VMCS shadowing," even if the hardware
6596          * doesn't support it.
6597          */
6598         msrs->secondary_ctls_high |=
6599                 SECONDARY_EXEC_SHADOW_VMCS;
6600
6601         if (enable_ept) {
6602                 /* nested EPT: emulate EPT also to L1 */
6603                 msrs->secondary_ctls_high |=
6604                         SECONDARY_EXEC_ENABLE_EPT;
6605                 msrs->ept_caps =
6606                         VMX_EPT_PAGE_WALK_4_BIT |
6607                         VMX_EPT_PAGE_WALK_5_BIT |
6608                         VMX_EPTP_WB_BIT |
6609                         VMX_EPT_INVEPT_BIT |
6610                         VMX_EPT_EXECUTE_ONLY_BIT;
6611
6612                 msrs->ept_caps &= ept_caps;
6613                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6614                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6615                         VMX_EPT_1GB_PAGE_BIT;
6616                 if (enable_ept_ad_bits) {
6617                         msrs->secondary_ctls_high |=
6618                                 SECONDARY_EXEC_ENABLE_PML;
6619                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6620                 }
6621         }
6622
6623         if (cpu_has_vmx_vmfunc()) {
6624                 msrs->secondary_ctls_high |=
6625                         SECONDARY_EXEC_ENABLE_VMFUNC;
6626                 /*
6627                  * Advertise EPTP switching unconditionally
6628                  * since we emulate it
6629                  */
6630                 if (enable_ept)
6631                         msrs->vmfunc_controls =
6632                                 VMX_VMFUNC_EPTP_SWITCHING;
6633         }
6634
6635         /*
6636          * Old versions of KVM use the single-context version without
6637          * checking for support, so declare that it is supported even
6638          * though it is treated as global context.  The alternative is
6639          * not failing the single-context invvpid, and it is worse.
6640          */
6641         if (enable_vpid) {
6642                 msrs->secondary_ctls_high |=
6643                         SECONDARY_EXEC_ENABLE_VPID;
6644                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6645                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6646         }
6647
6648         if (enable_unrestricted_guest)
6649                 msrs->secondary_ctls_high |=
6650                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6651
6652         if (flexpriority_enabled)
6653                 msrs->secondary_ctls_high |=
6654                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6655
6656         if (enable_sgx)
6657                 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6658
6659         /* miscellaneous data */
6660         rdmsr(MSR_IA32_VMX_MISC,
6661                 msrs->misc_low,
6662                 msrs->misc_high);
6663         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6664         msrs->misc_low |=
6665                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6666                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6667                 VMX_MISC_ACTIVITY_HLT |
6668                 VMX_MISC_ACTIVITY_WAIT_SIPI;
6669         msrs->misc_high = 0;
6670
6671         /*
6672          * This MSR reports some information about VMX support. We
6673          * should return information about the VMX we emulate for the
6674          * guest, and the VMCS structure we give it - not about the
6675          * VMX support of the underlying hardware.
6676          */
6677         msrs->basic =
6678                 VMCS12_REVISION |
6679                 VMX_BASIC_TRUE_CTLS |
6680                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6681                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6682
6683         if (cpu_has_vmx_basic_inout())
6684                 msrs->basic |= VMX_BASIC_INOUT;
6685
6686         /*
6687          * These MSRs specify bits which the guest must keep fixed on
6688          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6689          * We picked the standard core2 setting.
6690          */
6691 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6692 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6693         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6694         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6695
6696         /* These MSRs specify bits which the guest must keep fixed off. */
6697         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6698         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6699
6700         msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6701 }
6702
6703 void nested_vmx_hardware_unsetup(void)
6704 {
6705         int i;
6706
6707         if (enable_shadow_vmcs) {
6708                 for (i = 0; i < VMX_BITMAP_NR; i++)
6709                         free_page((unsigned long)vmx_bitmap[i]);
6710         }
6711 }
6712
6713 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6714 {
6715         int i;
6716
6717         if (!cpu_has_vmx_shadow_vmcs())
6718                 enable_shadow_vmcs = 0;
6719         if (enable_shadow_vmcs) {
6720                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6721                         /*
6722                          * The vmx_bitmap is not tied to a VM and so should
6723                          * not be charged to a memcg.
6724                          */
6725                         vmx_bitmap[i] = (unsigned long *)
6726                                 __get_free_page(GFP_KERNEL);
6727                         if (!vmx_bitmap[i]) {
6728                                 nested_vmx_hardware_unsetup();
6729                                 return -ENOMEM;
6730                         }
6731                 }
6732
6733                 init_vmcs_shadow_fields();
6734         }
6735
6736         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6737         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6738         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6739         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6740         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6741         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6742         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6743         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6744         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6745         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6746         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6747         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6748
6749         return 0;
6750 }
6751
6752 struct kvm_x86_nested_ops vmx_nested_ops = {
6753         .check_events = vmx_check_nested_events,
6754         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6755         .triple_fault = nested_vmx_triple_fault,
6756         .get_state = vmx_get_nested_state,
6757         .set_state = vmx_set_nested_state,
6758         .get_nested_state_pages = vmx_get_nested_state_pages,
6759         .write_log_dirty = nested_vmx_write_pml_buffer,
6760         .enable_evmcs = nested_enable_evmcs,
6761         .get_evmcs_version = nested_get_evmcs_version,
6762 };