1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
21 static bool __read_mostly enable_shadow_vmcs = 1;
22 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
24 static bool __read_mostly nested_early_check = 0;
25 module_param(nested_early_check, bool, S_IRUGO);
27 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
30 * Hyper-V requires all of these, so mark them as supported even though
31 * they are just treated the same as all-context.
33 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
34 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
35 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
36 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
37 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
46 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
49 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
51 struct shadow_vmcs_field {
55 static struct shadow_vmcs_field shadow_read_only_fields[] = {
56 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
57 #include "vmcs_shadow_fields.h"
59 static int max_shadow_read_only_fields =
60 ARRAY_SIZE(shadow_read_only_fields);
62 static struct shadow_vmcs_field shadow_read_write_fields[] = {
63 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
64 #include "vmcs_shadow_fields.h"
66 static int max_shadow_read_write_fields =
67 ARRAY_SIZE(shadow_read_write_fields);
69 static void init_vmcs_shadow_fields(void)
73 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
74 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
77 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
78 u16 field = entry.encoding;
80 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
81 (i + 1 == max_shadow_read_only_fields ||
82 shadow_read_only_fields[i + 1].encoding != field + 1))
83 pr_err("Missing field from shadow_read_only_field %x\n",
86 clear_bit(field, vmx_vmread_bitmap);
91 entry.offset += sizeof(u32);
93 shadow_read_only_fields[j++] = entry;
95 max_shadow_read_only_fields = j;
97 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
98 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
99 u16 field = entry.encoding;
101 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
102 (i + 1 == max_shadow_read_write_fields ||
103 shadow_read_write_fields[i + 1].encoding != field + 1))
104 pr_err("Missing field from shadow_read_write_field %x\n",
107 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
108 field <= GUEST_TR_AR_BYTES,
109 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112 * PML and the preemption timer can be emulated, but the
113 * processor cannot vmwrite to fields that don't exist
117 case GUEST_PML_INDEX:
118 if (!cpu_has_vmx_pml())
121 case VMX_PREEMPTION_TIMER_VALUE:
122 if (!cpu_has_vmx_preemption_timer())
125 case GUEST_INTR_STATUS:
126 if (!cpu_has_vmx_apicv())
133 clear_bit(field, vmx_vmwrite_bitmap);
134 clear_bit(field, vmx_vmread_bitmap);
139 entry.offset += sizeof(u32);
141 shadow_read_write_fields[j++] = entry;
143 max_shadow_read_write_fields = j;
147 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
148 * set the success or error code of an emulated VMX instruction (as specified
149 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
155 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
156 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
157 return kvm_skip_emulated_instruction(vcpu);
160 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
163 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
164 X86_EFLAGS_SF | X86_EFLAGS_OF))
166 return kvm_skip_emulated_instruction(vcpu);
169 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
170 u32 vm_instruction_error)
172 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
173 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
174 X86_EFLAGS_SF | X86_EFLAGS_OF))
176 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178 * We don't need to force sync to shadow VMCS because
179 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
180 * fields and thus must be synced.
182 if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
183 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185 return kvm_skip_emulated_instruction(vcpu);
188 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190 struct vcpu_vmx *vmx = to_vmx(vcpu);
193 * failValid writes the error number to the current VMCS, which
194 * can't be done if there isn't a current VMCS.
196 if (vmx->nested.current_vmptr == INVALID_GPA &&
197 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
198 return nested_vmx_failInvalid(vcpu);
200 return nested_vmx_failValid(vcpu, vm_instruction_error);
203 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205 /* TODO: not to reset guest simply here. */
206 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
207 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
210 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212 return fixed_bits_valid(control, low, high);
215 static inline u64 vmx_control_msr(u32 low, u32 high)
217 return low | ((u64)high << 32);
220 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
223 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
224 vmx->nested.need_vmcs12_to_shadow_sync = false;
227 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
230 struct vcpu_vmx *vmx = to_vmx(vcpu);
232 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
233 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
234 vmx->nested.hv_evmcs = NULL;
237 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
240 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
241 hv_vcpu->nested.vm_id = 0;
242 hv_vcpu->nested.vp_id = 0;
246 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
247 struct loaded_vmcs *prev)
249 struct vmcs_host_state *dest, *src;
251 if (unlikely(!vmx->guest_state_loaded))
254 src = &prev->host_state;
255 dest = &vmx->loaded_vmcs->host_state;
257 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
258 dest->ldt_sel = src->ldt_sel;
260 dest->ds_sel = src->ds_sel;
261 dest->es_sel = src->es_sel;
265 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
267 struct vcpu_vmx *vmx = to_vmx(vcpu);
268 struct loaded_vmcs *prev;
271 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
275 prev = vmx->loaded_vmcs;
276 vmx->loaded_vmcs = vmcs;
277 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
278 vmx_sync_vmcs_host_state(vmx, prev);
281 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
284 * All lazily updated registers will be reloaded from VMCS12 on both
285 * vmentry and vmexit.
287 vcpu->arch.regs_dirty = 0;
291 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
292 * just stops using VMX.
294 static void free_nested(struct kvm_vcpu *vcpu)
296 struct vcpu_vmx *vmx = to_vmx(vcpu);
298 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
299 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
301 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
304 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
306 vmx->nested.vmxon = false;
307 vmx->nested.smm.vmxon = false;
308 vmx->nested.vmxon_ptr = INVALID_GPA;
309 free_vpid(vmx->nested.vpid02);
310 vmx->nested.posted_intr_nv = -1;
311 vmx->nested.current_vmptr = INVALID_GPA;
312 if (enable_shadow_vmcs) {
313 vmx_disable_shadow_vmcs(vmx);
314 vmcs_clear(vmx->vmcs01.shadow_vmcs);
315 free_vmcs(vmx->vmcs01.shadow_vmcs);
316 vmx->vmcs01.shadow_vmcs = NULL;
318 kfree(vmx->nested.cached_vmcs12);
319 vmx->nested.cached_vmcs12 = NULL;
320 kfree(vmx->nested.cached_shadow_vmcs12);
321 vmx->nested.cached_shadow_vmcs12 = NULL;
323 * Unpin physical memory we referred to in the vmcs02. The APIC access
324 * page's backing page (yeah, confusing) shouldn't actually be accessed,
325 * and if it is written, the contents are irrelevant.
327 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
328 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
329 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
330 vmx->nested.pi_desc = NULL;
332 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
334 nested_release_evmcs(vcpu);
336 free_loaded_vmcs(&vmx->nested.vmcs02);
340 * Ensure that the current vmcs of the logical processor is the
341 * vmcs01 of the vcpu before calling free_nested().
343 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
346 vmx_leave_nested(vcpu);
350 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
352 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
354 return VALID_PAGE(root_hpa) &&
355 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
358 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
361 unsigned long roots = 0;
363 struct kvm_mmu_root_info *cached_root;
365 WARN_ON_ONCE(!mmu_is_nested(vcpu));
367 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
368 cached_root = &vcpu->arch.mmu->prev_roots[i];
370 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
372 roots |= KVM_MMU_ROOT_PREVIOUS(i);
375 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
378 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
379 struct x86_exception *fault)
381 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
382 struct vcpu_vmx *vmx = to_vmx(vcpu);
384 unsigned long exit_qualification = vcpu->arch.exit_qualification;
386 if (vmx->nested.pml_full) {
387 vm_exit_reason = EXIT_REASON_PML_FULL;
388 vmx->nested.pml_full = false;
389 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
391 if (fault->error_code & PFERR_RSVD_MASK)
392 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
394 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
397 * Although the caller (kvm_inject_emulated_page_fault) would
398 * have already synced the faulting address in the shadow EPT
399 * tables for the current EPTP12, we also need to sync it for
400 * any other cached EPTP02s based on the same EP4TA, since the
401 * TLB associates mappings to the EP4TA rather than the full EPTP.
403 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
407 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
408 vmcs12->guest_physical_address = fault->address;
411 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
413 struct vcpu_vmx *vmx = to_vmx(vcpu);
414 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
415 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
417 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
418 nested_ept_ad_enabled(vcpu),
419 nested_ept_get_eptp(vcpu));
422 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
424 WARN_ON(mmu_is_nested(vcpu));
426 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
427 nested_ept_new_eptp(vcpu);
428 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
429 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
430 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
432 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
435 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
437 vcpu->arch.mmu = &vcpu->arch.root_mmu;
438 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
441 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
444 bool inequality, bit;
446 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
448 (error_code & vmcs12->page_fault_error_code_mask) !=
449 vmcs12->page_fault_error_code_match;
450 return inequality ^ bit;
453 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
456 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
459 * Drop bits 31:16 of the error code when performing the #PF mask+match
460 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
461 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
462 * error code. Including the to-be-dropped bits in the check might
463 * result in an "impossible" or missed exit from L1's perspective.
465 if (vector == PF_VECTOR)
466 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
468 return (vmcs12->exception_bitmap & (1u << vector));
471 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
472 struct vmcs12 *vmcs12)
474 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
477 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
478 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
484 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
485 struct vmcs12 *vmcs12)
487 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
490 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
496 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
497 struct vmcs12 *vmcs12)
499 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
502 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
509 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
510 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
511 * only the "disable intercept" case needs to be handled.
513 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
514 unsigned long *msr_bitmap_l0,
517 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
518 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
520 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
521 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
524 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
528 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
529 unsigned word = msr / BITS_PER_LONG;
531 msr_bitmap[word] = ~0;
532 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
536 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
538 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
539 unsigned long *msr_bitmap_l1, \
540 unsigned long *msr_bitmap_l0, u32 msr) \
542 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
543 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
544 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
546 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
548 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
549 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
551 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
552 unsigned long *msr_bitmap_l1,
553 unsigned long *msr_bitmap_l0,
556 if (types & MSR_TYPE_R)
557 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
559 if (types & MSR_TYPE_W)
560 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
565 * Merge L0's and L1's MSR bitmap, return false to indicate that
566 * we do not use the hardware.
568 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
569 struct vmcs12 *vmcs12)
571 struct vcpu_vmx *vmx = to_vmx(vcpu);
573 unsigned long *msr_bitmap_l1;
574 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
575 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
576 struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
578 /* Nothing to do if the MSR bitmap is not in use. */
579 if (!cpu_has_vmx_msr_bitmap() ||
580 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
584 * MSR bitmap update can be skipped when:
585 * - MSR bitmap for L1 hasn't changed.
586 * - Nested hypervisor (L1) is attempting to launch the same L2 as
588 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
589 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
591 if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
592 evmcs->hv_enlightenments_control.msr_bitmap &&
593 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
596 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
599 msr_bitmap_l1 = (unsigned long *)map->hva;
602 * To keep the control flow simple, pay eight 8-byte writes (sixteen
603 * 4-byte writes on 32-bit systems) up front to enable intercepts for
604 * the x2APIC MSR range and selectively toggle those relevant to L2.
606 enable_x2apic_msr_intercepts(msr_bitmap_l0);
608 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
609 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
611 * L0 need not intercept reads for MSRs between 0x800
612 * and 0x8ff, it just lets the processor take the value
613 * from the virtual-APIC page; take those 256 bits
614 * directly from the L1 bitmap.
616 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
617 unsigned word = msr / BITS_PER_LONG;
619 msr_bitmap_l0[word] = msr_bitmap_l1[word];
623 nested_vmx_disable_intercept_for_x2apic_msr(
624 msr_bitmap_l1, msr_bitmap_l0,
625 X2APIC_MSR(APIC_TASKPRI),
626 MSR_TYPE_R | MSR_TYPE_W);
628 if (nested_cpu_has_vid(vmcs12)) {
629 nested_vmx_disable_intercept_for_x2apic_msr(
630 msr_bitmap_l1, msr_bitmap_l0,
631 X2APIC_MSR(APIC_EOI),
633 nested_vmx_disable_intercept_for_x2apic_msr(
634 msr_bitmap_l1, msr_bitmap_l0,
635 X2APIC_MSR(APIC_SELF_IPI),
641 * Always check vmcs01's bitmap to honor userspace MSR filters and any
642 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
645 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
646 MSR_FS_BASE, MSR_TYPE_RW);
648 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
649 MSR_GS_BASE, MSR_TYPE_RW);
651 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
652 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
654 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
655 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
657 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
658 MSR_IA32_PRED_CMD, MSR_TYPE_W);
660 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
661 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
663 kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
665 vmx->nested.force_msr_bitmap_recalc = false;
670 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
671 struct vmcs12 *vmcs12)
673 struct vcpu_vmx *vmx = to_vmx(vcpu);
674 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
676 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
677 vmcs12->vmcs_link_pointer == INVALID_GPA)
680 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
681 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
682 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
685 kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
689 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
690 struct vmcs12 *vmcs12)
692 struct vcpu_vmx *vmx = to_vmx(vcpu);
693 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
695 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
696 vmcs12->vmcs_link_pointer == INVALID_GPA)
699 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
700 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
701 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
704 kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
709 * In nested virtualization, check if L1 has set
710 * VM_EXIT_ACK_INTR_ON_EXIT
712 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
714 return get_vmcs12(vcpu)->vm_exit_controls &
715 VM_EXIT_ACK_INTR_ON_EXIT;
718 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
719 struct vmcs12 *vmcs12)
721 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
722 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
728 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
729 struct vmcs12 *vmcs12)
731 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
732 !nested_cpu_has_apic_reg_virt(vmcs12) &&
733 !nested_cpu_has_vid(vmcs12) &&
734 !nested_cpu_has_posted_intr(vmcs12))
738 * If virtualize x2apic mode is enabled,
739 * virtualize apic access must be disabled.
741 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
742 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
746 * If virtual interrupt delivery is enabled,
747 * we must exit on external interrupts.
749 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
753 * bits 15:8 should be zero in posted_intr_nv,
754 * the descriptor address has been already checked
755 * in nested_get_vmcs12_pages.
757 * bits 5:0 of posted_intr_desc_addr should be zero.
759 if (nested_cpu_has_posted_intr(vmcs12) &&
760 (CC(!nested_cpu_has_vid(vmcs12)) ||
761 CC(!nested_exit_intr_ack_set(vcpu)) ||
762 CC((vmcs12->posted_intr_nv & 0xff00)) ||
763 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
766 /* tpr shadow is needed by all apicv features. */
767 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
773 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
779 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
780 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
786 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
787 struct vmcs12 *vmcs12)
789 if (CC(nested_vmx_check_msr_switch(vcpu,
790 vmcs12->vm_exit_msr_load_count,
791 vmcs12->vm_exit_msr_load_addr)) ||
792 CC(nested_vmx_check_msr_switch(vcpu,
793 vmcs12->vm_exit_msr_store_count,
794 vmcs12->vm_exit_msr_store_addr)))
800 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
801 struct vmcs12 *vmcs12)
803 if (CC(nested_vmx_check_msr_switch(vcpu,
804 vmcs12->vm_entry_msr_load_count,
805 vmcs12->vm_entry_msr_load_addr)))
811 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
812 struct vmcs12 *vmcs12)
814 if (!nested_cpu_has_pml(vmcs12))
817 if (CC(!nested_cpu_has_ept(vmcs12)) ||
818 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
824 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
825 struct vmcs12 *vmcs12)
827 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
828 !nested_cpu_has_ept(vmcs12)))
833 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
834 struct vmcs12 *vmcs12)
836 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
837 !nested_cpu_has_ept(vmcs12)))
842 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
843 struct vmcs12 *vmcs12)
845 if (!nested_cpu_has_shadow_vmcs(vmcs12))
848 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
849 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
855 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
856 struct vmx_msr_entry *e)
858 /* x2APIC MSR accesses are not allowed */
859 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
861 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
862 CC(e->index == MSR_IA32_UCODE_REV))
864 if (CC(e->reserved != 0))
869 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
870 struct vmx_msr_entry *e)
872 if (CC(e->index == MSR_FS_BASE) ||
873 CC(e->index == MSR_GS_BASE) ||
874 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
875 nested_vmx_msr_check_common(vcpu, e))
880 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
881 struct vmx_msr_entry *e)
883 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
884 nested_vmx_msr_check_common(vcpu, e))
889 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
891 struct vcpu_vmx *vmx = to_vmx(vcpu);
892 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
893 vmx->nested.msrs.misc_high);
895 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
899 * Load guest's/host's msr at nested entry/exit.
900 * return 0 for success, entry index for failure.
902 * One of the failure modes for MSR load/store is when a list exceeds the
903 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
904 * as possible, process all valid entries before failing rather than precheck
905 * for a capacity violation.
907 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
910 struct vmx_msr_entry e;
911 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
913 for (i = 0; i < count; i++) {
914 if (unlikely(i >= max_msr_list_size))
917 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
919 pr_debug_ratelimited(
920 "%s cannot read MSR entry (%u, 0x%08llx)\n",
921 __func__, i, gpa + i * sizeof(e));
924 if (nested_vmx_load_msr_check(vcpu, &e)) {
925 pr_debug_ratelimited(
926 "%s check failed (%u, 0x%x, 0x%x)\n",
927 __func__, i, e.index, e.reserved);
930 if (kvm_set_msr(vcpu, e.index, e.value)) {
931 pr_debug_ratelimited(
932 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
933 __func__, i, e.index, e.value);
939 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
943 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
947 struct vcpu_vmx *vmx = to_vmx(vcpu);
950 * If the L0 hypervisor stored a more accurate value for the TSC that
951 * does not include the time taken for emulation of the L2->L1
952 * VM-exit in L0, use the more accurate value.
954 if (msr_index == MSR_IA32_TSC) {
955 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
959 u64 val = vmx->msr_autostore.guest.val[i].value;
961 *data = kvm_read_l1_tsc(vcpu, val);
966 if (kvm_get_msr(vcpu, msr_index, data)) {
967 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
974 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
975 struct vmx_msr_entry *e)
977 if (kvm_vcpu_read_guest(vcpu,
978 gpa + i * sizeof(*e),
979 e, 2 * sizeof(u32))) {
980 pr_debug_ratelimited(
981 "%s cannot read MSR entry (%u, 0x%08llx)\n",
982 __func__, i, gpa + i * sizeof(*e));
985 if (nested_vmx_store_msr_check(vcpu, e)) {
986 pr_debug_ratelimited(
987 "%s check failed (%u, 0x%x, 0x%x)\n",
988 __func__, i, e->index, e->reserved);
994 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
998 struct vmx_msr_entry e;
999 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1001 for (i = 0; i < count; i++) {
1002 if (unlikely(i >= max_msr_list_size))
1005 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1008 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1011 if (kvm_vcpu_write_guest(vcpu,
1012 gpa + i * sizeof(e) +
1013 offsetof(struct vmx_msr_entry, value),
1014 &data, sizeof(data))) {
1015 pr_debug_ratelimited(
1016 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1017 __func__, i, e.index, data);
1024 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1026 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1027 u32 count = vmcs12->vm_exit_msr_store_count;
1028 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1029 struct vmx_msr_entry e;
1032 for (i = 0; i < count; i++) {
1033 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1036 if (e.index == msr_index)
1042 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1045 struct vcpu_vmx *vmx = to_vmx(vcpu);
1046 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1047 bool in_vmcs12_store_list;
1048 int msr_autostore_slot;
1049 bool in_autostore_list;
1052 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1053 in_autostore_list = msr_autostore_slot >= 0;
1054 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1056 if (in_vmcs12_store_list && !in_autostore_list) {
1057 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1059 * Emulated VMEntry does not fail here. Instead a less
1060 * accurate value will be returned by
1061 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1062 * instead of reading the value from the vmcs02 VMExit
1065 pr_warn_ratelimited(
1066 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1070 last = autostore->nr++;
1071 autostore->val[last].index = msr_index;
1072 } else if (!in_vmcs12_store_list && in_autostore_list) {
1073 last = --autostore->nr;
1074 autostore->val[msr_autostore_slot] = autostore->val[last];
1079 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1080 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1081 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1082 * @entry_failure_code.
1084 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1085 bool nested_ept, bool reload_pdptrs,
1086 enum vm_entry_failure_code *entry_failure_code)
1088 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1089 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1094 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1095 * must not be dereferenced.
1097 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1098 CC(!load_pdptrs(vcpu, cr3))) {
1099 *entry_failure_code = ENTRY_FAIL_PDPTE;
1103 vcpu->arch.cr3 = cr3;
1104 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1106 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1110 kvm_mmu_new_pgd(vcpu, cr3);
1116 * Returns if KVM is able to config CPU to tag TLB entries
1117 * populated by L2 differently than TLB entries populated
1120 * If L0 uses EPT, L1 and L2 run with different EPTP because
1121 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1122 * are tagged with different EPTP.
1124 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1125 * with different VPID (L1 entries are tagged with vmx->vpid
1126 * while L2 entries are tagged with vmx->nested.vpid02).
1128 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1130 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1132 return enable_ept ||
1133 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1136 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1137 struct vmcs12 *vmcs12,
1140 struct vcpu_vmx *vmx = to_vmx(vcpu);
1143 * KVM_REQ_HV_TLB_FLUSH flushes entries from either L1's VP_ID or
1144 * L2's VP_ID upon request from the guest. Make sure we check for
1145 * pending entries in the right FIFO upon L1/L2 transition as these
1146 * requests are put by other vCPUs asynchronously.
1148 if (to_hv_vcpu(vcpu) && enable_ept)
1149 kvm_make_request(KVM_REQ_HV_TLB_FLUSH, vcpu);
1152 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1153 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1154 * full TLB flush from the guest's perspective. This is required even
1155 * if VPID is disabled in the host as KVM may need to synchronize the
1156 * MMU in response to the guest TLB flush.
1158 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1159 * EPT is a special snowflake, as guest-physical mappings aren't
1160 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1161 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1162 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1165 if (!nested_cpu_has_vpid(vmcs12)) {
1166 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1170 /* L2 should never have a VPID if VPID is disabled. */
1171 WARN_ON(!enable_vpid);
1174 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1175 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1176 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1177 * that the new vpid12 has never been used and thus represents a new
1178 * guest ASID that cannot have entries in the TLB.
1180 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1181 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1182 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1187 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1188 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1189 * KVM was unable to allocate a VPID for L2, flush the current context
1190 * as the effective ASID is common to both L1 and L2.
1192 if (!nested_has_guest_tlb_tag(vcpu))
1193 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1196 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1201 return (superset | subset) == superset;
1204 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1206 const u64 feature_and_reserved =
1207 /* feature (except bit 48; see below) */
1208 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1210 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1211 u64 vmx_basic = vmcs_config.nested.basic;
1213 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1217 * KVM does not emulate a version of VMX that constrains physical
1218 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1220 if (data & BIT_ULL(48))
1223 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1224 vmx_basic_vmcs_revision_id(data))
1227 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1230 vmx->nested.msrs.basic = data;
1234 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1235 u32 **low, u32 **high)
1237 switch (msr_index) {
1238 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1239 *low = &msrs->pinbased_ctls_low;
1240 *high = &msrs->pinbased_ctls_high;
1242 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1243 *low = &msrs->procbased_ctls_low;
1244 *high = &msrs->procbased_ctls_high;
1246 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1247 *low = &msrs->exit_ctls_low;
1248 *high = &msrs->exit_ctls_high;
1250 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1251 *low = &msrs->entry_ctls_low;
1252 *high = &msrs->entry_ctls_high;
1254 case MSR_IA32_VMX_PROCBASED_CTLS2:
1255 *low = &msrs->secondary_ctls_low;
1256 *high = &msrs->secondary_ctls_high;
1264 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1269 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1271 supported = vmx_control_msr(*lowp, *highp);
1273 /* Check must-be-1 bits are still 1. */
1274 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1277 /* Check must-be-0 bits are still 0. */
1278 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1281 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1283 *highp = data >> 32;
1287 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1289 const u64 feature_and_reserved_bits =
1291 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1292 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1294 GENMASK_ULL(13, 9) | BIT_ULL(31);
1295 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1296 vmcs_config.nested.misc_high);
1298 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1301 if ((vmx->nested.msrs.pinbased_ctls_high &
1302 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1303 vmx_misc_preemption_timer_rate(data) !=
1304 vmx_misc_preemption_timer_rate(vmx_misc))
1307 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1310 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1313 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1316 vmx->nested.msrs.misc_low = data;
1317 vmx->nested.msrs.misc_high = data >> 32;
1322 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1324 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1325 vmcs_config.nested.vpid_caps);
1327 /* Every bit is either reserved or a feature bit. */
1328 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1331 vmx->nested.msrs.ept_caps = data;
1332 vmx->nested.msrs.vpid_caps = data >> 32;
1336 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1338 switch (msr_index) {
1339 case MSR_IA32_VMX_CR0_FIXED0:
1340 return &msrs->cr0_fixed0;
1341 case MSR_IA32_VMX_CR4_FIXED0:
1342 return &msrs->cr4_fixed0;
1348 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1350 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1353 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1354 * must be 1 in the restored value.
1356 if (!is_bitwise_subset(data, *msr, -1ULL))
1359 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1364 * Called when userspace is restoring VMX MSRs.
1366 * Returns 0 on success, non-0 otherwise.
1368 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1370 struct vcpu_vmx *vmx = to_vmx(vcpu);
1373 * Don't allow changes to the VMX capability MSRs while the vCPU
1374 * is in VMX operation.
1376 if (vmx->nested.vmxon)
1379 switch (msr_index) {
1380 case MSR_IA32_VMX_BASIC:
1381 return vmx_restore_vmx_basic(vmx, data);
1382 case MSR_IA32_VMX_PINBASED_CTLS:
1383 case MSR_IA32_VMX_PROCBASED_CTLS:
1384 case MSR_IA32_VMX_EXIT_CTLS:
1385 case MSR_IA32_VMX_ENTRY_CTLS:
1387 * The "non-true" VMX capability MSRs are generated from the
1388 * "true" MSRs, so we do not support restoring them directly.
1390 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1391 * should restore the "true" MSRs with the must-be-1 bits
1392 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1393 * DEFAULT SETTINGS".
1396 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1397 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1398 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1399 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1400 case MSR_IA32_VMX_PROCBASED_CTLS2:
1401 return vmx_restore_control_msr(vmx, msr_index, data);
1402 case MSR_IA32_VMX_MISC:
1403 return vmx_restore_vmx_misc(vmx, data);
1404 case MSR_IA32_VMX_CR0_FIXED0:
1405 case MSR_IA32_VMX_CR4_FIXED0:
1406 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1407 case MSR_IA32_VMX_CR0_FIXED1:
1408 case MSR_IA32_VMX_CR4_FIXED1:
1410 * These MSRs are generated based on the vCPU's CPUID, so we
1411 * do not support restoring them directly.
1414 case MSR_IA32_VMX_EPT_VPID_CAP:
1415 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1416 case MSR_IA32_VMX_VMCS_ENUM:
1417 vmx->nested.msrs.vmcs_enum = data;
1419 case MSR_IA32_VMX_VMFUNC:
1420 if (data & ~vmcs_config.nested.vmfunc_controls)
1422 vmx->nested.msrs.vmfunc_controls = data;
1426 * The rest of the VMX capability MSRs do not support restore.
1432 /* Returns 0 on success, non-0 otherwise. */
1433 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1435 switch (msr_index) {
1436 case MSR_IA32_VMX_BASIC:
1437 *pdata = msrs->basic;
1439 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1440 case MSR_IA32_VMX_PINBASED_CTLS:
1441 *pdata = vmx_control_msr(
1442 msrs->pinbased_ctls_low,
1443 msrs->pinbased_ctls_high);
1444 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1445 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1447 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1448 case MSR_IA32_VMX_PROCBASED_CTLS:
1449 *pdata = vmx_control_msr(
1450 msrs->procbased_ctls_low,
1451 msrs->procbased_ctls_high);
1452 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1453 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1455 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1456 case MSR_IA32_VMX_EXIT_CTLS:
1457 *pdata = vmx_control_msr(
1458 msrs->exit_ctls_low,
1459 msrs->exit_ctls_high);
1460 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1461 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1463 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1464 case MSR_IA32_VMX_ENTRY_CTLS:
1465 *pdata = vmx_control_msr(
1466 msrs->entry_ctls_low,
1467 msrs->entry_ctls_high);
1468 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1469 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1471 case MSR_IA32_VMX_MISC:
1472 *pdata = vmx_control_msr(
1476 case MSR_IA32_VMX_CR0_FIXED0:
1477 *pdata = msrs->cr0_fixed0;
1479 case MSR_IA32_VMX_CR0_FIXED1:
1480 *pdata = msrs->cr0_fixed1;
1482 case MSR_IA32_VMX_CR4_FIXED0:
1483 *pdata = msrs->cr4_fixed0;
1485 case MSR_IA32_VMX_CR4_FIXED1:
1486 *pdata = msrs->cr4_fixed1;
1488 case MSR_IA32_VMX_VMCS_ENUM:
1489 *pdata = msrs->vmcs_enum;
1491 case MSR_IA32_VMX_PROCBASED_CTLS2:
1492 *pdata = vmx_control_msr(
1493 msrs->secondary_ctls_low,
1494 msrs->secondary_ctls_high);
1496 case MSR_IA32_VMX_EPT_VPID_CAP:
1497 *pdata = msrs->ept_caps |
1498 ((u64)msrs->vpid_caps << 32);
1500 case MSR_IA32_VMX_VMFUNC:
1501 *pdata = msrs->vmfunc_controls;
1511 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1512 * been modified by the L1 guest. Note, "writable" in this context means
1513 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1514 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1515 * VM-exit information fields (which are actually writable if the vCPU is
1516 * configured to support "VMWRITE to any supported field in the VMCS").
1518 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1520 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1521 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1522 struct shadow_vmcs_field field;
1526 if (WARN_ON(!shadow_vmcs))
1531 vmcs_load(shadow_vmcs);
1533 for (i = 0; i < max_shadow_read_write_fields; i++) {
1534 field = shadow_read_write_fields[i];
1535 val = __vmcs_readl(field.encoding);
1536 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1539 vmcs_clear(shadow_vmcs);
1540 vmcs_load(vmx->loaded_vmcs->vmcs);
1545 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1547 const struct shadow_vmcs_field *fields[] = {
1548 shadow_read_write_fields,
1549 shadow_read_only_fields
1551 const int max_fields[] = {
1552 max_shadow_read_write_fields,
1553 max_shadow_read_only_fields
1555 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1556 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1557 struct shadow_vmcs_field field;
1561 if (WARN_ON(!shadow_vmcs))
1564 vmcs_load(shadow_vmcs);
1566 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1567 for (i = 0; i < max_fields[q]; i++) {
1568 field = fields[q][i];
1569 val = vmcs12_read_any(vmcs12, field.encoding,
1571 __vmcs_writel(field.encoding, val);
1575 vmcs_clear(shadow_vmcs);
1576 vmcs_load(vmx->loaded_vmcs->vmcs);
1579 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1581 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1582 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1583 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1585 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1586 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1587 vmcs12->guest_rip = evmcs->guest_rip;
1589 if (unlikely(!(hv_clean_fields &
1590 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1591 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1592 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1593 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1596 if (unlikely(!(hv_clean_fields &
1597 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1598 vmcs12->guest_rsp = evmcs->guest_rsp;
1599 vmcs12->guest_rflags = evmcs->guest_rflags;
1600 vmcs12->guest_interruptibility_info =
1601 evmcs->guest_interruptibility_info;
1603 * Not present in struct vmcs12:
1604 * vmcs12->guest_ssp = evmcs->guest_ssp;
1608 if (unlikely(!(hv_clean_fields &
1609 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1610 vmcs12->cpu_based_vm_exec_control =
1611 evmcs->cpu_based_vm_exec_control;
1614 if (unlikely(!(hv_clean_fields &
1615 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1616 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1619 if (unlikely(!(hv_clean_fields &
1620 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1621 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1624 if (unlikely(!(hv_clean_fields &
1625 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1626 vmcs12->vm_entry_intr_info_field =
1627 evmcs->vm_entry_intr_info_field;
1628 vmcs12->vm_entry_exception_error_code =
1629 evmcs->vm_entry_exception_error_code;
1630 vmcs12->vm_entry_instruction_len =
1631 evmcs->vm_entry_instruction_len;
1634 if (unlikely(!(hv_clean_fields &
1635 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1636 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1637 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1638 vmcs12->host_cr0 = evmcs->host_cr0;
1639 vmcs12->host_cr3 = evmcs->host_cr3;
1640 vmcs12->host_cr4 = evmcs->host_cr4;
1641 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1642 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1643 vmcs12->host_rip = evmcs->host_rip;
1644 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1645 vmcs12->host_es_selector = evmcs->host_es_selector;
1646 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1647 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1648 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1649 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1650 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1651 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1652 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1654 * Not present in struct vmcs12:
1655 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1656 * vmcs12->host_ssp = evmcs->host_ssp;
1657 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1661 if (unlikely(!(hv_clean_fields &
1662 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1663 vmcs12->pin_based_vm_exec_control =
1664 evmcs->pin_based_vm_exec_control;
1665 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1666 vmcs12->secondary_vm_exec_control =
1667 evmcs->secondary_vm_exec_control;
1670 if (unlikely(!(hv_clean_fields &
1671 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1672 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1673 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1676 if (unlikely(!(hv_clean_fields &
1677 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1678 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1681 if (unlikely(!(hv_clean_fields &
1682 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1683 vmcs12->guest_es_base = evmcs->guest_es_base;
1684 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1685 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1686 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1687 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1688 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1689 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1690 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1691 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1692 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1693 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1694 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1695 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1696 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1697 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1698 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1699 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1700 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1701 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1702 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1703 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1704 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1705 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1706 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1707 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1708 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1709 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1710 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1711 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1712 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1713 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1714 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1715 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1716 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1717 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1718 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1721 if (unlikely(!(hv_clean_fields &
1722 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1723 vmcs12->tsc_offset = evmcs->tsc_offset;
1724 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1725 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1726 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1727 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1730 if (unlikely(!(hv_clean_fields &
1731 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1732 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1733 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1734 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1735 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1736 vmcs12->guest_cr0 = evmcs->guest_cr0;
1737 vmcs12->guest_cr3 = evmcs->guest_cr3;
1738 vmcs12->guest_cr4 = evmcs->guest_cr4;
1739 vmcs12->guest_dr7 = evmcs->guest_dr7;
1742 if (unlikely(!(hv_clean_fields &
1743 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1744 vmcs12->host_fs_base = evmcs->host_fs_base;
1745 vmcs12->host_gs_base = evmcs->host_gs_base;
1746 vmcs12->host_tr_base = evmcs->host_tr_base;
1747 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1748 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1749 vmcs12->host_rsp = evmcs->host_rsp;
1752 if (unlikely(!(hv_clean_fields &
1753 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1754 vmcs12->ept_pointer = evmcs->ept_pointer;
1755 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1758 if (unlikely(!(hv_clean_fields &
1759 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1760 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1761 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1762 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1763 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1764 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1765 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1766 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1767 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1768 vmcs12->guest_pending_dbg_exceptions =
1769 evmcs->guest_pending_dbg_exceptions;
1770 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1771 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1772 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1773 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1774 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1775 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1777 * Not present in struct vmcs12:
1778 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1779 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1780 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1786 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1787 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1788 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1789 * vmcs12->page_fault_error_code_mask =
1790 * evmcs->page_fault_error_code_mask;
1791 * vmcs12->page_fault_error_code_match =
1792 * evmcs->page_fault_error_code_match;
1793 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1794 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1795 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1796 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1801 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1802 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1803 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1804 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1805 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1806 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1807 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1808 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1809 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1810 * vmcs12->exit_qualification = evmcs->exit_qualification;
1811 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1813 * Not present in struct vmcs12:
1814 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1815 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1816 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1817 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1823 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1825 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1826 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1829 * Should not be changed by KVM:
1831 * evmcs->host_es_selector = vmcs12->host_es_selector;
1832 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1833 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1834 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1835 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1836 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1837 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1838 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1839 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1840 * evmcs->host_cr0 = vmcs12->host_cr0;
1841 * evmcs->host_cr3 = vmcs12->host_cr3;
1842 * evmcs->host_cr4 = vmcs12->host_cr4;
1843 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1844 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1845 * evmcs->host_rip = vmcs12->host_rip;
1846 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1847 * evmcs->host_fs_base = vmcs12->host_fs_base;
1848 * evmcs->host_gs_base = vmcs12->host_gs_base;
1849 * evmcs->host_tr_base = vmcs12->host_tr_base;
1850 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1851 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1852 * evmcs->host_rsp = vmcs12->host_rsp;
1853 * sync_vmcs02_to_vmcs12() doesn't read these:
1854 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1855 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1856 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1857 * evmcs->ept_pointer = vmcs12->ept_pointer;
1858 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1859 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1860 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1861 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1862 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1863 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1864 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1865 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1866 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1867 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1868 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1869 * evmcs->page_fault_error_code_mask =
1870 * vmcs12->page_fault_error_code_mask;
1871 * evmcs->page_fault_error_code_match =
1872 * vmcs12->page_fault_error_code_match;
1873 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1874 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1875 * evmcs->tsc_offset = vmcs12->tsc_offset;
1876 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1877 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1878 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1879 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1880 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1881 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1882 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1883 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1884 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1885 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1886 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1887 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1889 * Not present in struct vmcs12:
1890 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1891 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1892 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1893 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1894 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1895 * evmcs->host_ssp = vmcs12->host_ssp;
1896 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1897 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1898 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1899 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1900 * evmcs->guest_ssp = vmcs12->guest_ssp;
1903 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1904 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1905 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1906 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1907 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1908 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1909 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1910 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1912 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1913 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1914 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1915 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1916 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1917 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1918 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1919 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1920 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1921 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1923 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1924 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1925 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1926 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1927 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1928 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1929 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1930 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1932 evmcs->guest_es_base = vmcs12->guest_es_base;
1933 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1934 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1935 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1936 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1937 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1938 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1939 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1940 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1941 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1943 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1944 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1946 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1947 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1948 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1949 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1951 evmcs->guest_pending_dbg_exceptions =
1952 vmcs12->guest_pending_dbg_exceptions;
1953 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1954 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1956 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1957 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1959 evmcs->guest_cr0 = vmcs12->guest_cr0;
1960 evmcs->guest_cr3 = vmcs12->guest_cr3;
1961 evmcs->guest_cr4 = vmcs12->guest_cr4;
1962 evmcs->guest_dr7 = vmcs12->guest_dr7;
1964 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1966 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1967 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1968 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1969 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1970 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1971 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1972 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1973 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1975 evmcs->exit_qualification = vmcs12->exit_qualification;
1977 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1978 evmcs->guest_rsp = vmcs12->guest_rsp;
1979 evmcs->guest_rflags = vmcs12->guest_rflags;
1981 evmcs->guest_interruptibility_info =
1982 vmcs12->guest_interruptibility_info;
1983 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1984 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1985 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1986 evmcs->vm_entry_exception_error_code =
1987 vmcs12->vm_entry_exception_error_code;
1988 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1990 evmcs->guest_rip = vmcs12->guest_rip;
1992 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1998 * This is an equivalent of the nested hypervisor executing the vmptrld
2001 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2002 struct kvm_vcpu *vcpu, bool from_launch)
2004 struct vcpu_vmx *vmx = to_vmx(vcpu);
2005 bool evmcs_gpa_changed = false;
2008 if (likely(!guest_cpuid_has_evmcs(vcpu)))
2009 return EVMPTRLD_DISABLED;
2011 evmcs_gpa = nested_get_evmptr(vcpu);
2012 if (!evmptr_is_valid(evmcs_gpa)) {
2013 nested_release_evmcs(vcpu);
2014 return EVMPTRLD_DISABLED;
2017 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2018 vmx->nested.current_vmptr = INVALID_GPA;
2020 nested_release_evmcs(vcpu);
2022 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2023 &vmx->nested.hv_evmcs_map))
2024 return EVMPTRLD_ERROR;
2026 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2029 * Currently, KVM only supports eVMCS version 1
2030 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2031 * value to first u32 field of eVMCS which should specify eVMCS
2034 * Guest should be aware of supported eVMCS versions by host by
2035 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2036 * expected to set this CPUID leaf according to the value
2037 * returned in vmcs_version from nested_enable_evmcs().
2039 * However, it turns out that Microsoft Hyper-V fails to comply
2040 * to their own invented interface: When Hyper-V use eVMCS, it
2041 * just sets first u32 field of eVMCS to revision_id specified
2042 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2043 * which is one of the supported versions specified in
2044 * CPUID.0x4000000A.EAX[0:15].
2046 * To overcome Hyper-V bug, we accept here either a supported
2047 * eVMCS version or VMCS12 revision_id as valid values for first
2048 * u32 field of eVMCS.
2050 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2051 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2052 nested_release_evmcs(vcpu);
2053 return EVMPTRLD_VMFAIL;
2056 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2058 evmcs_gpa_changed = true;
2060 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2061 * reloaded from guest's memory (read only fields, fields not
2062 * present in struct hv_enlightened_vmcs, ...). Make sure there
2066 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2067 memset(vmcs12, 0, sizeof(*vmcs12));
2068 vmcs12->hdr.revision_id = VMCS12_REVISION;
2074 * Clean fields data can't be used on VMLAUNCH and when we switch
2075 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2077 if (from_launch || evmcs_gpa_changed) {
2078 vmx->nested.hv_evmcs->hv_clean_fields &=
2079 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2081 vmx->nested.force_msr_bitmap_recalc = true;
2084 return EVMPTRLD_SUCCEEDED;
2087 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2089 struct vcpu_vmx *vmx = to_vmx(vcpu);
2091 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2092 copy_vmcs12_to_enlightened(vmx);
2094 copy_vmcs12_to_shadow(vmx);
2096 vmx->nested.need_vmcs12_to_shadow_sync = false;
2099 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2101 struct vcpu_vmx *vmx =
2102 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2104 vmx->nested.preemption_timer_expired = true;
2105 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2106 kvm_vcpu_kick(&vmx->vcpu);
2108 return HRTIMER_NORESTART;
2111 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2113 struct vcpu_vmx *vmx = to_vmx(vcpu);
2114 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2116 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2117 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2119 if (!vmx->nested.has_preemption_timer_deadline) {
2120 vmx->nested.preemption_timer_deadline =
2121 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2122 vmx->nested.has_preemption_timer_deadline = true;
2124 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2127 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2128 u64 preemption_timeout)
2130 struct vcpu_vmx *vmx = to_vmx(vcpu);
2133 * A timer value of zero is architecturally guaranteed to cause
2134 * a VMExit prior to executing any instructions in the guest.
2136 if (preemption_timeout == 0) {
2137 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2141 if (vcpu->arch.virtual_tsc_khz == 0)
2144 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2145 preemption_timeout *= 1000000;
2146 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2147 hrtimer_start(&vmx->nested.preemption_timer,
2148 ktime_add_ns(ktime_get(), preemption_timeout),
2149 HRTIMER_MODE_ABS_PINNED);
2152 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2154 if (vmx->nested.nested_run_pending &&
2155 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2156 return vmcs12->guest_ia32_efer;
2157 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2158 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2160 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2163 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2165 struct kvm *kvm = vmx->vcpu.kvm;
2168 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2169 * according to L0's settings (vmcs12 is irrelevant here). Host
2170 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2171 * will be set as needed prior to VMLAUNCH/VMRESUME.
2173 if (vmx->nested.vmcs02_initialized)
2175 vmx->nested.vmcs02_initialized = true;
2178 * We don't care what the EPTP value is we just need to guarantee
2179 * it's valid so we don't get a false positive when doing early
2180 * consistency checks.
2182 if (enable_ept && nested_early_check)
2183 vmcs_write64(EPT_POINTER,
2184 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2186 /* All VMFUNCs are currently emulated through L0 vmexits. */
2187 if (cpu_has_vmx_vmfunc())
2188 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2190 if (cpu_has_vmx_posted_intr())
2191 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2193 if (cpu_has_vmx_msr_bitmap())
2194 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2197 * PML is emulated for L2, but never enabled in hardware as the MMU
2198 * handles A/D emulation. Disabling PML for L2 also avoids having to
2199 * deal with filtering out L2 GPAs from the buffer.
2202 vmcs_write64(PML_ADDRESS, 0);
2203 vmcs_write16(GUEST_PML_INDEX, -1);
2206 if (cpu_has_vmx_encls_vmexit())
2207 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2209 if (kvm_notify_vmexit_enabled(kvm))
2210 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2213 * Set the MSR load/store lists to match L0's settings. Only the
2214 * addresses are constant (for vmcs02), the counts can change based
2215 * on L2's behavior, e.g. switching to/from long mode.
2217 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2218 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2219 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2221 vmx_set_constant_host_state(vmx);
2224 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2225 struct vmcs12 *vmcs12)
2227 prepare_vmcs02_constant_state(vmx);
2229 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2232 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2233 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2235 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2239 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2240 struct vmcs12 *vmcs12)
2243 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2245 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2246 prepare_vmcs02_early_rare(vmx, vmcs12);
2251 exec_control = __pin_controls_get(vmcs01);
2252 exec_control |= (vmcs12->pin_based_vm_exec_control &
2253 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2255 /* Posted interrupts setting is only taken from vmcs12. */
2256 vmx->nested.pi_pending = false;
2257 if (nested_cpu_has_posted_intr(vmcs12))
2258 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2260 exec_control &= ~PIN_BASED_POSTED_INTR;
2261 pin_controls_set(vmx, exec_control);
2266 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2267 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2268 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2269 exec_control &= ~CPU_BASED_TPR_SHADOW;
2270 exec_control |= vmcs12->cpu_based_vm_exec_control;
2272 vmx->nested.l1_tpr_threshold = -1;
2273 if (exec_control & CPU_BASED_TPR_SHADOW)
2274 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2275 #ifdef CONFIG_X86_64
2277 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2278 CPU_BASED_CR8_STORE_EXITING;
2282 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2283 * for I/O port accesses.
2285 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2286 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2289 * This bit will be computed in nested_get_vmcs12_pages, because
2290 * we do not have access to L1's MSR bitmap yet. For now, keep
2291 * the same bit as before, hoping to avoid multiple VMWRITEs that
2292 * only set/clear this bit.
2294 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2295 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2297 exec_controls_set(vmx, exec_control);
2300 * SECONDARY EXEC CONTROLS
2302 if (cpu_has_secondary_exec_ctrls()) {
2303 exec_control = __secondary_exec_controls_get(vmcs01);
2305 /* Take the following fields only from vmcs12 */
2306 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2307 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2308 SECONDARY_EXEC_ENABLE_INVPCID |
2309 SECONDARY_EXEC_ENABLE_RDTSCP |
2310 SECONDARY_EXEC_XSAVES |
2311 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2312 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2313 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2314 SECONDARY_EXEC_ENABLE_VMFUNC |
2315 SECONDARY_EXEC_DESC);
2317 if (nested_cpu_has(vmcs12,
2318 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2319 exec_control |= vmcs12->secondary_vm_exec_control;
2321 /* PML is emulated and never enabled in hardware for L2. */
2322 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2324 /* VMCS shadowing for L2 is emulated for now */
2325 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2328 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2329 * will not have to rewrite the controls just for this bit.
2331 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2332 (vmcs12->guest_cr4 & X86_CR4_UMIP))
2333 exec_control |= SECONDARY_EXEC_DESC;
2335 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2336 vmcs_write16(GUEST_INTR_STATUS,
2337 vmcs12->guest_intr_status);
2339 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2340 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2342 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2343 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2345 secondary_exec_controls_set(vmx, exec_control);
2351 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2352 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2353 * on the related bits (if supported by the CPU) in the hope that
2354 * we can avoid VMWrites during vmx_set_efer().
2356 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2357 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2358 * do the same for L2.
2360 exec_control = __vm_entry_controls_get(vmcs01);
2361 exec_control |= (vmcs12->vm_entry_controls &
2362 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2363 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2364 if (cpu_has_load_ia32_efer()) {
2365 if (guest_efer & EFER_LMA)
2366 exec_control |= VM_ENTRY_IA32E_MODE;
2367 if (guest_efer != host_efer)
2368 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2370 vm_entry_controls_set(vmx, exec_control);
2375 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2376 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2377 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2379 exec_control = __vm_exit_controls_get(vmcs01);
2380 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2381 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2383 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2384 vm_exit_controls_set(vmx, exec_control);
2387 * Interrupt/Exception Fields
2389 if (vmx->nested.nested_run_pending) {
2390 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2391 vmcs12->vm_entry_intr_info_field);
2392 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2393 vmcs12->vm_entry_exception_error_code);
2394 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2395 vmcs12->vm_entry_instruction_len);
2396 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2397 vmcs12->guest_interruptibility_info);
2398 vmx->loaded_vmcs->nmi_known_unmasked =
2399 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2401 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2405 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2407 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2409 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2410 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2411 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2412 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2413 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2414 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2415 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2416 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2417 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2418 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2419 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2420 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2421 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2422 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2423 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2424 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2425 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2426 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2427 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2428 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2429 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2430 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2431 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2432 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2433 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2434 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2435 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2436 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2437 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2438 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2439 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2440 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2441 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2442 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2443 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2444 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2445 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2446 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2448 vmx->segment_cache.bitmask = 0;
2451 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2452 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2453 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2454 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2455 vmcs12->guest_pending_dbg_exceptions);
2456 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2457 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2460 * L1 may access the L2's PDPTR, so save them to construct
2464 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2465 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2466 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2467 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2470 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2471 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2472 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2475 if (nested_cpu_has_xsaves(vmcs12))
2476 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2479 * Whether page-faults are trapped is determined by a combination of
2480 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2481 * doesn't care about page faults then we should set all of these to
2482 * L1's desires. However, if L0 does care about (some) page faults, it
2483 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2484 * simply ask to exit on each and every L2 page fault. This is done by
2485 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2486 * Note that below we don't need special code to set EB.PF beyond the
2487 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2488 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2489 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2491 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2493 * TODO: if both L0 and L1 need the same MASK and MATCH,
2494 * go ahead and use it?
2496 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2497 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2499 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2500 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2503 if (cpu_has_vmx_apicv()) {
2504 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2505 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2506 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2507 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2511 * Make sure the msr_autostore list is up to date before we set the
2512 * count in the vmcs02.
2514 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2516 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2517 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2518 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2520 set_cr4_guest_host_mask(vmx);
2524 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2525 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2526 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2527 * guest in a way that will both be appropriate to L1's requests, and our
2528 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2529 * function also has additional necessary side-effects, like setting various
2530 * vcpu->arch fields.
2531 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2532 * is assigned to entry_failure_code on failure.
2534 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2536 enum vm_entry_failure_code *entry_failure_code)
2538 struct vcpu_vmx *vmx = to_vmx(vcpu);
2539 bool load_guest_pdptrs_vmcs12 = false;
2541 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2542 prepare_vmcs02_rare(vmx, vmcs12);
2543 vmx->nested.dirty_vmcs12 = false;
2545 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2546 !(vmx->nested.hv_evmcs->hv_clean_fields &
2547 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2550 if (vmx->nested.nested_run_pending &&
2551 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2552 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2553 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2555 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2556 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2558 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2559 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2560 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2561 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2563 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2564 * bitwise-or of what L1 wants to trap for L2, and what we want to
2565 * trap. Note that CR0.TS also needs updating - we do this later.
2567 vmx_update_exception_bitmap(vcpu);
2568 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2569 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2571 if (vmx->nested.nested_run_pending &&
2572 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2573 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2574 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2575 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2576 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2579 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2580 vcpu->arch.l1_tsc_offset,
2581 vmx_get_l2_tsc_offset(vcpu),
2582 vmx_get_l2_tsc_multiplier(vcpu));
2584 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2585 vcpu->arch.l1_tsc_scaling_ratio,
2586 vmx_get_l2_tsc_multiplier(vcpu));
2588 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2589 if (kvm_caps.has_tsc_control)
2590 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2592 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2594 if (nested_cpu_has_ept(vmcs12))
2595 nested_ept_init_mmu_context(vcpu);
2598 * Override the CR0/CR4 read shadows after setting the effective guest
2599 * CR0/CR4. The common helpers also set the shadows, but they don't
2600 * account for vmcs12's cr0/4_guest_host_mask.
2602 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2603 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2605 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2606 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2608 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2609 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2610 vmx_set_efer(vcpu, vcpu->arch.efer);
2613 * Guest state is invalid and unrestricted guest is disabled,
2614 * which means L1 attempted VMEntry to L2 with invalid state.
2617 * However when force loading the guest state (SMM exit or
2618 * loading nested state after migration, it is possible to
2619 * have invalid guest state now, which will be later fixed by
2620 * restoring L2 register state
2622 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2623 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2627 /* Shadow page tables on either EPT or shadow page tables. */
2628 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2629 from_vmentry, entry_failure_code))
2633 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2634 * on nested VM-Exit, which can occur without actually running L2 and
2635 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2636 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2637 * transition to HLT instead of running L2.
2640 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2642 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2643 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2644 is_pae_paging(vcpu)) {
2645 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2646 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2647 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2648 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2651 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2652 intel_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2653 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2654 vmcs12->guest_ia32_perf_global_ctrl))) {
2655 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2659 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2660 kvm_rip_write(vcpu, vmcs12->guest_rip);
2663 * It was observed that genuine Hyper-V running in L1 doesn't reset
2664 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2665 * bits when it changes a field in eVMCS. Mark all fields as clean
2668 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2669 vmx->nested.hv_evmcs->hv_clean_fields |=
2670 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2675 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2677 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2678 nested_cpu_has_virtual_nmis(vmcs12)))
2681 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2682 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2688 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2690 struct vcpu_vmx *vmx = to_vmx(vcpu);
2692 /* Check for memory type validity */
2693 switch (new_eptp & VMX_EPTP_MT_MASK) {
2694 case VMX_EPTP_MT_UC:
2695 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2698 case VMX_EPTP_MT_WB:
2699 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2706 /* Page-walk levels validity. */
2707 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2708 case VMX_EPTP_PWL_5:
2709 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2712 case VMX_EPTP_PWL_4:
2713 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2720 /* Reserved bits should not be set */
2721 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2724 /* AD, if set, should be supported */
2725 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2726 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2734 * Checks related to VM-Execution Control Fields
2736 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2737 struct vmcs12 *vmcs12)
2739 struct vcpu_vmx *vmx = to_vmx(vcpu);
2741 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2742 vmx->nested.msrs.pinbased_ctls_low,
2743 vmx->nested.msrs.pinbased_ctls_high)) ||
2744 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2745 vmx->nested.msrs.procbased_ctls_low,
2746 vmx->nested.msrs.procbased_ctls_high)))
2749 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2750 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2751 vmx->nested.msrs.secondary_ctls_low,
2752 vmx->nested.msrs.secondary_ctls_high)))
2755 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2756 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2757 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2758 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2759 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2760 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2761 nested_vmx_check_nmi_controls(vmcs12) ||
2762 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2763 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2764 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2765 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2766 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2769 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2770 nested_cpu_has_save_preemption_timer(vmcs12))
2773 if (nested_cpu_has_ept(vmcs12) &&
2774 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2777 if (nested_cpu_has_vmfunc(vmcs12)) {
2778 if (CC(vmcs12->vm_function_control &
2779 ~vmx->nested.msrs.vmfunc_controls))
2782 if (nested_cpu_has_eptp_switching(vmcs12)) {
2783 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2784 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2793 * Checks related to VM-Exit Control Fields
2795 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2796 struct vmcs12 *vmcs12)
2798 struct vcpu_vmx *vmx = to_vmx(vcpu);
2800 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2801 vmx->nested.msrs.exit_ctls_low,
2802 vmx->nested.msrs.exit_ctls_high)) ||
2803 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2810 * Checks related to VM-Entry Control Fields
2812 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2813 struct vmcs12 *vmcs12)
2815 struct vcpu_vmx *vmx = to_vmx(vcpu);
2817 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2818 vmx->nested.msrs.entry_ctls_low,
2819 vmx->nested.msrs.entry_ctls_high)))
2823 * From the Intel SDM, volume 3:
2824 * Fields relevant to VM-entry event injection must be set properly.
2825 * These fields are the VM-entry interruption-information field, the
2826 * VM-entry exception error code, and the VM-entry instruction length.
2828 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2829 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2830 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2831 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2832 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2833 bool should_have_error_code;
2834 bool urg = nested_cpu_has2(vmcs12,
2835 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2836 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2838 /* VM-entry interruption-info field: interruption type */
2839 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2840 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2841 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2844 /* VM-entry interruption-info field: vector */
2845 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2846 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2847 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2850 /* VM-entry interruption-info field: deliver error code */
2851 should_have_error_code =
2852 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2853 x86_exception_has_error_code(vector);
2854 if (CC(has_error_code != should_have_error_code))
2857 /* VM-entry exception error code */
2858 if (CC(has_error_code &&
2859 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2862 /* VM-entry interruption-info field: reserved bits */
2863 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2866 /* VM-entry instruction length */
2867 switch (intr_type) {
2868 case INTR_TYPE_SOFT_EXCEPTION:
2869 case INTR_TYPE_SOFT_INTR:
2870 case INTR_TYPE_PRIV_SW_EXCEPTION:
2871 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2872 CC(vmcs12->vm_entry_instruction_len == 0 &&
2873 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2878 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2884 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2885 struct vmcs12 *vmcs12)
2887 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2888 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2889 nested_check_vm_entry_controls(vcpu, vmcs12))
2892 if (guest_cpuid_has_evmcs(vcpu))
2893 return nested_evmcs_check_controls(vmcs12);
2898 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2899 struct vmcs12 *vmcs12)
2901 #ifdef CONFIG_X86_64
2902 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2903 !!(vcpu->arch.efer & EFER_LMA)))
2909 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2910 struct vmcs12 *vmcs12)
2912 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2914 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2915 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2916 CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2919 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2920 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2923 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2924 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2927 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2928 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2929 vmcs12->host_ia32_perf_global_ctrl)))
2933 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2936 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2937 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2938 CC((vmcs12->host_rip) >> 32))
2942 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2943 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2944 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2945 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2946 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2947 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2948 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2949 CC(vmcs12->host_cs_selector == 0) ||
2950 CC(vmcs12->host_tr_selector == 0) ||
2951 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2954 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2955 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2956 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2957 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2958 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2959 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2963 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2964 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2965 * the values of the LMA and LME bits in the field must each be that of
2966 * the host address-space size VM-exit control.
2968 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2969 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2970 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2971 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2978 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2979 struct vmcs12 *vmcs12)
2981 struct vcpu_vmx *vmx = to_vmx(vcpu);
2982 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2983 struct vmcs_hdr hdr;
2985 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2988 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2991 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2992 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2993 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2996 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2997 offsetof(struct vmcs12, hdr),
3001 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3002 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3009 * Checks related to Guest Non-register State
3011 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3013 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3014 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3015 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3021 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3022 struct vmcs12 *vmcs12,
3023 enum vm_entry_failure_code *entry_failure_code)
3025 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3027 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3029 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3030 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3033 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3034 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3037 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3038 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3041 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3042 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3046 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3047 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3048 vmcs12->guest_ia32_perf_global_ctrl)))
3051 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3054 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3055 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3059 * If the load IA32_EFER VM-entry control is 1, the following checks
3060 * are performed on the field for the IA32_EFER MSR:
3061 * - Bits reserved in the IA32_EFER MSR must be 0.
3062 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3063 * the IA-32e mode guest VM-exit control. It must also be identical
3064 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3067 if (to_vmx(vcpu)->nested.nested_run_pending &&
3068 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3069 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3070 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3071 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3072 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3076 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3077 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3078 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3081 if (nested_check_guest_non_reg_state(vmcs12))
3087 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3089 struct vcpu_vmx *vmx = to_vmx(vcpu);
3090 unsigned long cr3, cr4;
3093 if (!nested_early_check)
3096 if (vmx->msr_autoload.host.nr)
3097 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3098 if (vmx->msr_autoload.guest.nr)
3099 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3103 vmx_prepare_switch_to_guest(vcpu);
3106 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3107 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3108 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3109 * there is no need to preserve other bits or save/restore the field.
3111 vmcs_writel(GUEST_RFLAGS, 0);
3113 cr3 = __get_current_cr3_fast();
3114 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3115 vmcs_writel(HOST_CR3, cr3);
3116 vmx->loaded_vmcs->host_state.cr3 = cr3;
3119 cr4 = cr4_read_shadow();
3120 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3121 vmcs_writel(HOST_CR4, cr4);
3122 vmx->loaded_vmcs->host_state.cr4 = cr4;
3125 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3126 __vmx_vcpu_run_flags(vmx));
3128 if (vmx->msr_autoload.host.nr)
3129 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3130 if (vmx->msr_autoload.guest.nr)
3131 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3134 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3138 trace_kvm_nested_vmenter_failed(
3139 "early hardware check VM-instruction error: ", error);
3140 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3145 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3147 if (hw_breakpoint_active())
3148 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3153 * A non-failing VMEntry means we somehow entered guest mode with
3154 * an illegal RIP, and that's just the tip of the iceberg. There
3155 * is no telling what memory has been modified or what state has
3156 * been exposed to unknown code. Hitting this all but guarantees
3157 * a (very critical) hardware issue.
3159 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3160 VMX_EXIT_REASONS_FAILED_VMENTRY));
3165 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3167 struct vcpu_vmx *vmx = to_vmx(vcpu);
3170 * hv_evmcs may end up being not mapped after migration (when
3171 * L2 was running), map it here to make sure vmcs12 changes are
3172 * properly reflected.
3174 if (guest_cpuid_has_evmcs(vcpu) &&
3175 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3176 enum nested_evmptrld_status evmptrld_status =
3177 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3179 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3180 evmptrld_status == EVMPTRLD_ERROR)
3184 * Post migration VMCS12 always provides the most actual
3185 * information, copy it to eVMCS upon entry.
3187 vmx->nested.need_vmcs12_to_shadow_sync = true;
3193 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3195 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3196 struct vcpu_vmx *vmx = to_vmx(vcpu);
3197 struct kvm_host_map *map;
3199 if (!vcpu->arch.pdptrs_from_userspace &&
3200 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3202 * Reload the guest's PDPTRs since after a migration
3203 * the guest CR3 might be restored prior to setting the nested
3204 * state which can lead to a load of wrong PDPTRs.
3206 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3211 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3212 map = &vmx->nested.apic_access_page_map;
3214 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3215 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3217 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3219 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3220 vcpu->run->internal.suberror =
3221 KVM_INTERNAL_ERROR_EMULATION;
3222 vcpu->run->internal.ndata = 0;
3227 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3228 map = &vmx->nested.virtual_apic_map;
3230 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3231 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3232 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3233 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3234 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3236 * The processor will never use the TPR shadow, simply
3237 * clear the bit from the execution control. Such a
3238 * configuration is useless, but it happens in tests.
3239 * For any other configuration, failing the vm entry is
3240 * _not_ what the processor does but it's basically the
3241 * only possibility we have.
3243 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3246 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3247 * force VM-Entry to fail.
3249 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3253 if (nested_cpu_has_posted_intr(vmcs12)) {
3254 map = &vmx->nested.pi_desc_map;
3256 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3257 vmx->nested.pi_desc =
3258 (struct pi_desc *)(((void *)map->hva) +
3259 offset_in_page(vmcs12->posted_intr_desc_addr));
3260 vmcs_write64(POSTED_INTR_DESC_ADDR,
3261 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3264 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3265 * access the contents of the VMCS12 posted interrupt
3266 * descriptor. (Note that KVM may do this when it
3267 * should not, per the architectural specification.)
3269 vmx->nested.pi_desc = NULL;
3270 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3273 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3274 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3276 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3281 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3284 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3285 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3286 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3289 if (!nested_get_evmcs_page(vcpu)) {
3290 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3292 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3293 vcpu->run->internal.suberror =
3294 KVM_INTERNAL_ERROR_EMULATION;
3295 vcpu->run->internal.ndata = 0;
3300 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3306 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3308 struct vmcs12 *vmcs12;
3309 struct vcpu_vmx *vmx = to_vmx(vcpu);
3312 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3315 if (WARN_ON_ONCE(vmx->nested.pml_full))
3319 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3320 * set is already checked as part of A/D emulation.
3322 vmcs12 = get_vmcs12(vcpu);
3323 if (!nested_cpu_has_pml(vmcs12))
3326 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3327 vmx->nested.pml_full = true;
3332 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3334 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3335 offset_in_page(dst), sizeof(gpa)))
3338 vmcs12->guest_pml_index--;
3344 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3345 * for running VMX instructions (except VMXON, whose prerequisites are
3346 * slightly different). It also specifies what exception to inject otherwise.
3347 * Note that many of these exceptions have priority over VM exits, so they
3348 * don't have to be checked again here.
3350 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3352 if (!to_vmx(vcpu)->nested.vmxon) {
3353 kvm_queue_exception(vcpu, UD_VECTOR);
3357 if (vmx_get_cpl(vcpu)) {
3358 kvm_inject_gp(vcpu, 0);
3365 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3367 u8 rvi = vmx_get_rvi();
3368 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3370 return ((rvi & 0xf0) > (vppr & 0xf0));
3373 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3374 struct vmcs12 *vmcs12);
3377 * If from_vmentry is false, this is being called from state restore (either RSM
3378 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3381 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3382 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3383 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3384 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3386 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3389 struct vcpu_vmx *vmx = to_vmx(vcpu);
3390 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3391 enum vm_entry_failure_code entry_failure_code;
3392 bool evaluate_pending_interrupts;
3393 union vmx_exit_reason exit_reason = {
3394 .basic = EXIT_REASON_INVALID_STATE,
3395 .failed_vmentry = 1,
3399 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3400 vmx->nested.current_vmptr,
3402 vmcs12->guest_intr_status,
3403 vmcs12->vm_entry_intr_info_field,
3404 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3405 vmcs12->ept_pointer,
3409 kvm_service_local_tlb_flush_requests(vcpu);
3411 evaluate_pending_interrupts = exec_controls_get(vmx) &
3412 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3413 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3414 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3415 if (!evaluate_pending_interrupts)
3416 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3418 if (!vmx->nested.nested_run_pending ||
3419 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3420 vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3421 if (kvm_mpx_supported() &&
3422 (!vmx->nested.nested_run_pending ||
3423 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3424 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3427 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3428 * nested early checks are disabled. In the event of a "late" VM-Fail,
3429 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3430 * software model to the pre-VMEntry host state. When EPT is disabled,
3431 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3432 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3433 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3434 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3435 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3436 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3437 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3438 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3439 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3440 * path would need to manually save/restore vmcs01.GUEST_CR3.
3442 if (!enable_ept && !nested_early_check)
3443 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3445 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3447 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3450 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3451 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3452 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3455 if (nested_vmx_check_vmentry_hw(vcpu)) {
3456 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3457 return NVMX_VMENTRY_VMFAIL;
3460 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3461 &entry_failure_code)) {
3462 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3463 vmcs12->exit_qualification = entry_failure_code;
3464 goto vmentry_fail_vmexit;
3468 enter_guest_mode(vcpu);
3470 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3471 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3472 vmcs12->exit_qualification = entry_failure_code;
3473 goto vmentry_fail_vmexit_guest_mode;
3477 failed_index = nested_vmx_load_msr(vcpu,
3478 vmcs12->vm_entry_msr_load_addr,
3479 vmcs12->vm_entry_msr_load_count);
3481 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3482 vmcs12->exit_qualification = failed_index;
3483 goto vmentry_fail_vmexit_guest_mode;
3487 * The MMU is not initialized to point at the right entities yet and
3488 * "get pages" would need to read data from the guest (i.e. we will
3489 * need to perform gpa to hpa translation). Request a call
3490 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3491 * have already been set at vmentry time and should not be reset.
3493 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3497 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3498 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3499 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3502 if (unlikely(evaluate_pending_interrupts))
3503 kvm_make_request(KVM_REQ_EVENT, vcpu);
3506 * Do not start the preemption timer hrtimer until after we know
3507 * we are successful, so that only nested_vmx_vmexit needs to cancel
3510 vmx->nested.preemption_timer_expired = false;
3511 if (nested_cpu_has_preemption_timer(vmcs12)) {
3512 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3513 vmx_start_preemption_timer(vcpu, timer_value);
3517 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3518 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3519 * returned as far as L1 is concerned. It will only return (and set
3520 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3522 return NVMX_VMENTRY_SUCCESS;
3525 * A failed consistency check that leads to a VMExit during L1's
3526 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3527 * 26.7 "VM-entry failures during or after loading guest state".
3529 vmentry_fail_vmexit_guest_mode:
3530 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3531 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3532 leave_guest_mode(vcpu);
3534 vmentry_fail_vmexit:
3535 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3538 return NVMX_VMENTRY_VMEXIT;
3540 load_vmcs12_host_state(vcpu, vmcs12);
3541 vmcs12->vm_exit_reason = exit_reason.full;
3542 if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3543 vmx->nested.need_vmcs12_to_shadow_sync = true;
3544 return NVMX_VMENTRY_VMEXIT;
3548 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3549 * for running an L2 nested guest.
3551 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3553 struct vmcs12 *vmcs12;
3554 enum nvmx_vmentry_status status;
3555 struct vcpu_vmx *vmx = to_vmx(vcpu);
3556 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3557 enum nested_evmptrld_status evmptrld_status;
3559 if (!nested_vmx_check_permission(vcpu))
3562 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3563 if (evmptrld_status == EVMPTRLD_ERROR) {
3564 kvm_queue_exception(vcpu, UD_VECTOR);
3568 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3570 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3571 return nested_vmx_failInvalid(vcpu);
3573 if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3574 vmx->nested.current_vmptr == INVALID_GPA))
3575 return nested_vmx_failInvalid(vcpu);
3577 vmcs12 = get_vmcs12(vcpu);
3580 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3581 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3582 * rather than RFLAGS.ZF, and no error number is stored to the
3583 * VM-instruction error field.
3585 if (CC(vmcs12->hdr.shadow_vmcs))
3586 return nested_vmx_failInvalid(vcpu);
3588 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3589 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3590 /* Enlightened VMCS doesn't have launch state */
3591 vmcs12->launch_state = !launch;
3592 } else if (enable_shadow_vmcs) {
3593 copy_shadow_to_vmcs12(vmx);
3597 * The nested entry process starts with enforcing various prerequisites
3598 * on vmcs12 as required by the Intel SDM, and act appropriately when
3599 * they fail: As the SDM explains, some conditions should cause the
3600 * instruction to fail, while others will cause the instruction to seem
3601 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3602 * To speed up the normal (success) code path, we should avoid checking
3603 * for misconfigurations which will anyway be caught by the processor
3604 * when using the merged vmcs02.
3606 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3607 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3609 if (CC(vmcs12->launch_state == launch))
3610 return nested_vmx_fail(vcpu,
3611 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3612 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3614 if (nested_vmx_check_controls(vcpu, vmcs12))
3615 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3617 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3618 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3620 if (nested_vmx_check_host_state(vcpu, vmcs12))
3621 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3624 * We're finally done with prerequisite checking, and can start with
3627 vmx->nested.nested_run_pending = 1;
3628 vmx->nested.has_preemption_timer_deadline = false;
3629 status = nested_vmx_enter_non_root_mode(vcpu, true);
3630 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3631 goto vmentry_failed;
3633 /* Emulate processing of posted interrupts on VM-Enter. */
3634 if (nested_cpu_has_posted_intr(vmcs12) &&
3635 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3636 vmx->nested.pi_pending = true;
3637 kvm_make_request(KVM_REQ_EVENT, vcpu);
3638 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3641 /* Hide L1D cache contents from the nested guest. */
3642 vmx->vcpu.arch.l1tf_flush_l1d = true;
3645 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3646 * also be used as part of restoring nVMX state for
3647 * snapshot restore (migration).
3649 * In this flow, it is assumed that vmcs12 cache was
3650 * transferred as part of captured nVMX state and should
3651 * therefore not be read from guest memory (which may not
3652 * exist on destination host yet).
3654 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3656 switch (vmcs12->guest_activity_state) {
3657 case GUEST_ACTIVITY_HLT:
3659 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3660 * awakened by event injection or by an NMI-window VM-exit or
3661 * by an interrupt-window VM-exit, halt the vcpu.
3663 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3664 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3665 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3666 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3667 vmx->nested.nested_run_pending = 0;
3668 return kvm_emulate_halt_noskip(vcpu);
3671 case GUEST_ACTIVITY_WAIT_SIPI:
3672 vmx->nested.nested_run_pending = 0;
3673 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3682 vmx->nested.nested_run_pending = 0;
3683 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3685 if (status == NVMX_VMENTRY_VMEXIT)
3687 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3688 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3692 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3693 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3694 * This function returns the new value we should put in vmcs12.guest_cr0.
3695 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3696 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3697 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3698 * didn't trap the bit, because if L1 did, so would L0).
3699 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3700 * been modified by L2, and L1 knows it. So just leave the old value of
3701 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3702 * isn't relevant, because if L0 traps this bit it can set it to anything.
3703 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3704 * changed these bits, and therefore they need to be updated, but L0
3705 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3706 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3708 static inline unsigned long
3709 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3712 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3713 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3714 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3715 vcpu->arch.cr0_guest_owned_bits));
3718 static inline unsigned long
3719 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3722 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3723 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3724 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3725 vcpu->arch.cr4_guest_owned_bits));
3728 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3729 struct vmcs12 *vmcs12,
3730 u32 vm_exit_reason, u32 exit_intr_info)
3736 * Per the SDM, VM-Exits due to double and triple faults are never
3737 * considered to occur during event delivery, even if the double/triple
3738 * fault is the result of an escalating vectoring issue.
3740 * Note, the SDM qualifies the double fault behavior with "The original
3741 * event results in a double-fault exception". It's unclear why the
3742 * qualification exists since exits due to double fault can occur only
3743 * while vectoring a different exception (injected events are never
3744 * subject to interception), i.e. there's _always_ an original event.
3746 * The SDM also uses NMI as a confusing example for the "original event
3747 * causes the VM exit directly" clause. NMI isn't special in any way,
3748 * the same rule applies to all events that cause an exit directly.
3749 * NMI is an odd choice for the example because NMIs can only occur on
3750 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3752 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3753 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3754 is_double_fault(exit_intr_info))) {
3755 vmcs12->idt_vectoring_info_field = 0;
3756 } else if (vcpu->arch.exception.injected) {
3757 nr = vcpu->arch.exception.vector;
3758 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3760 if (kvm_exception_is_soft(nr)) {
3761 vmcs12->vm_exit_instruction_len =
3762 vcpu->arch.event_exit_inst_len;
3763 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3765 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3767 if (vcpu->arch.exception.has_error_code) {
3768 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3769 vmcs12->idt_vectoring_error_code =
3770 vcpu->arch.exception.error_code;
3773 vmcs12->idt_vectoring_info_field = idt_vectoring;
3774 } else if (vcpu->arch.nmi_injected) {
3775 vmcs12->idt_vectoring_info_field =
3776 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3777 } else if (vcpu->arch.interrupt.injected) {
3778 nr = vcpu->arch.interrupt.nr;
3779 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3781 if (vcpu->arch.interrupt.soft) {
3782 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3783 vmcs12->vm_entry_instruction_len =
3784 vcpu->arch.event_exit_inst_len;
3786 idt_vectoring |= INTR_TYPE_EXT_INTR;
3788 vmcs12->idt_vectoring_info_field = idt_vectoring;
3790 vmcs12->idt_vectoring_info_field = 0;
3795 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3797 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3801 * Don't need to mark the APIC access page dirty; it is never
3802 * written to by the CPU during APIC virtualization.
3805 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3806 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3807 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3810 if (nested_cpu_has_posted_intr(vmcs12)) {
3811 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3812 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3816 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3818 struct vcpu_vmx *vmx = to_vmx(vcpu);
3823 if (!vmx->nested.pi_pending)
3826 if (!vmx->nested.pi_desc)
3829 vmx->nested.pi_pending = false;
3831 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3834 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3835 if (max_irr != 256) {
3836 vapic_page = vmx->nested.virtual_apic_map.hva;
3840 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3841 vapic_page, &max_irr);
3842 status = vmcs_read16(GUEST_INTR_STATUS);
3843 if ((u8)max_irr > ((u8)status & 0xff)) {
3845 status |= (u8)max_irr;
3846 vmcs_write16(GUEST_INTR_STATUS, status);
3850 nested_mark_vmcs12_pages_dirty(vcpu);
3854 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3858 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3860 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3861 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3862 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3863 unsigned long exit_qual;
3865 if (ex->has_payload) {
3866 exit_qual = ex->payload;
3867 } else if (ex->vector == PF_VECTOR) {
3868 exit_qual = vcpu->arch.cr2;
3869 } else if (ex->vector == DB_VECTOR) {
3870 exit_qual = vcpu->arch.dr6;
3871 exit_qual &= ~DR6_BT;
3872 exit_qual ^= DR6_ACTIVE_LOW;
3877 if (ex->has_error_code) {
3879 * Intel CPUs do not generate error codes with bits 31:16 set,
3880 * and more importantly VMX disallows setting bits 31:16 in the
3881 * injected error code for VM-Entry. Drop the bits to mimic
3882 * hardware and avoid inducing failure on nested VM-Entry if L1
3883 * chooses to inject the exception back to L2. AMD CPUs _do_
3884 * generate "full" 32-bit error codes, so KVM allows userspace
3885 * to inject exception error codes with bits 31:16 set.
3887 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3888 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3891 if (kvm_exception_is_soft(ex->vector))
3892 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3894 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3896 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3897 vmx_get_nmi_mask(vcpu))
3898 intr_info |= INTR_INFO_UNBLOCK_NMI;
3900 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3904 * Returns true if a debug trap is (likely) pending delivery. Infer the class
3905 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3906 * Using the payload is flawed because code breakpoints (fault-like) and data
3907 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3908 * this will return false positives if a to-be-injected code breakpoint #DB is
3909 * pending (from KVM's perspective, but not "pending" across an instruction
3910 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
3913 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3914 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3915 * #DB has already happened), and MTF isn't marked pending on code breakpoints
3916 * from the emulator (because such #DBs are fault-like and thus don't trigger
3917 * actions that fire on instruction retire).
3919 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3921 if (!ex->pending || ex->vector != DB_VECTOR)
3924 /* General Detect #DBs are always fault-like. */
3925 return ex->payload & ~DR6_BD;
3929 * Returns true if there's a pending #DB exception that is lower priority than
3930 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
3931 * KVM, but could theoretically be injected by userspace. Note, this code is
3932 * imperfect, see above.
3934 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
3936 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
3940 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3941 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3942 * represents these debug traps with a payload that is said to be compatible
3943 * with the 'pending debug exceptions' field, write the payload to the VMCS
3944 * field if a VM-exit is delivered before the debug trap.
3946 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3948 unsigned long pending_dbg;
3950 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
3952 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
3955 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3957 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3958 to_vmx(vcpu)->nested.preemption_timer_expired;
3961 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu)
3963 return nested_vmx_preemption_timer_pending(vcpu) ||
3964 to_vmx(vcpu)->nested.mtf_pending;
3968 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
3969 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
3970 * and less minor edits to splice in the priority of VMX Non-Root specific
3971 * events, e.g. MTF and NMI/INTR-window exiting.
3973 * 1 Hardware Reset and Machine Checks
3977 * 2 Trap on Task Switch
3978 * - T flag in TSS is set (on task switch)
3980 * 3 External Hardware Interventions
3986 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
3988 * 4 Traps on Previous Instruction
3990 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
3991 * breakpoint, or #DB due to a split-lock access)
3993 * 4.3 VMX-preemption timer expired VM-exit
3995 * 4.6 NMI-window exiting VM-exit[2]
3997 * 5 Nonmaskable Interrupts (NMI)
3999 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4001 * 6 Maskable Hardware Interrupts
4003 * 7 Code Breakpoint Fault
4005 * 8 Faults from Fetching Next Instruction
4006 * - Code-Segment Limit Violation
4008 * - Control protection exception (missing ENDBRANCH at target of indirect
4011 * 9 Faults from Decoding Next Instruction
4012 * - Instruction length > 15 bytes
4014 * - Coprocessor Not Available
4016 *10 Faults on Executing Instruction
4020 * - Segment Not Present
4022 * - General Protection
4025 * - x86 FPU Floating-point exception
4026 * - SIMD floating-point exception
4027 * - Virtualization exception
4028 * - Control protection exception
4030 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4031 * INIT signals, and higher priority events take priority over MTF VM exits.
4032 * MTF VM exits take priority over debug-trap exceptions and lower priority
4035 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4036 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4037 * timer take priority over VM exits caused by the "NMI-window exiting"
4038 * VM-execution control and lower priority events.
4040 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4041 * caused by "NMI-window exiting". VM exits caused by this control take
4042 * priority over non-maskable interrupts (NMIs) and lower priority events.
4044 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4045 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4046 * non-maskable interrupts (NMIs) and higher priority events take priority over
4047 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4048 * priority over external interrupts and lower priority events.
4050 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4052 struct kvm_lapic *apic = vcpu->arch.apic;
4053 struct vcpu_vmx *vmx = to_vmx(vcpu);
4055 * Only a pending nested run blocks a pending exception. If there is a
4056 * previously injected event, the pending exception occurred while said
4057 * event was being delivered and thus needs to be handled.
4059 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4061 * New events (not exceptions) are only recognized at instruction
4062 * boundaries. If an event needs reinjection, then KVM is handling a
4063 * VM-Exit that occurred _during_ instruction execution; new events are
4064 * blocked until the instruction completes.
4066 bool block_nested_events = block_nested_exceptions ||
4067 kvm_event_needs_reinjection(vcpu);
4069 if (lapic_in_kernel(vcpu) &&
4070 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4071 if (block_nested_events)
4073 nested_vmx_update_pending_dbg(vcpu);
4074 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4075 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4076 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4078 /* MTF is discarded if the vCPU is in WFS. */
4079 vmx->nested.mtf_pending = false;
4083 if (lapic_in_kernel(vcpu) &&
4084 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4085 if (block_nested_events)
4088 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4089 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4090 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4091 apic->sipi_vector & 0xFFUL);
4094 /* Fallthrough, the SIPI is completely ignored. */
4098 * Process exceptions that are higher priority than Monitor Trap Flag:
4099 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4100 * could theoretically come in from userspace), and ICEBP (INT1).
4102 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4103 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4104 * across SMI/RSM as it should; that needs to be addressed in order to
4105 * prioritize SMI over MTF and trap-like #DBs.
4107 if (vcpu->arch.exception_vmexit.pending &&
4108 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4109 if (block_nested_exceptions)
4112 nested_vmx_inject_exception_vmexit(vcpu);
4116 if (vcpu->arch.exception.pending &&
4117 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4118 if (block_nested_exceptions)
4123 if (vmx->nested.mtf_pending) {
4124 if (block_nested_events)
4126 nested_vmx_update_pending_dbg(vcpu);
4127 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4131 if (vcpu->arch.exception_vmexit.pending) {
4132 if (block_nested_exceptions)
4135 nested_vmx_inject_exception_vmexit(vcpu);
4139 if (vcpu->arch.exception.pending) {
4140 if (block_nested_exceptions)
4145 if (nested_vmx_preemption_timer_pending(vcpu)) {
4146 if (block_nested_events)
4148 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4152 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4153 if (block_nested_events)
4158 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4159 if (block_nested_events)
4161 if (!nested_exit_on_nmi(vcpu))
4164 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4165 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4166 INTR_INFO_VALID_MASK, 0);
4168 * The NMI-triggered VM exit counts as injection:
4169 * clear this one and block further NMIs.
4171 vcpu->arch.nmi_pending = 0;
4172 vmx_set_nmi_mask(vcpu, true);
4176 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4177 if (block_nested_events)
4179 if (!nested_exit_on_intr(vcpu))
4181 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4186 return vmx_complete_nested_posted_interrupt(vcpu);
4189 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4192 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4195 if (ktime_to_ns(remaining) <= 0)
4198 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4199 do_div(value, 1000000);
4200 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4203 static bool is_vmcs12_ext_field(unsigned long field)
4206 case GUEST_ES_SELECTOR:
4207 case GUEST_CS_SELECTOR:
4208 case GUEST_SS_SELECTOR:
4209 case GUEST_DS_SELECTOR:
4210 case GUEST_FS_SELECTOR:
4211 case GUEST_GS_SELECTOR:
4212 case GUEST_LDTR_SELECTOR:
4213 case GUEST_TR_SELECTOR:
4214 case GUEST_ES_LIMIT:
4215 case GUEST_CS_LIMIT:
4216 case GUEST_SS_LIMIT:
4217 case GUEST_DS_LIMIT:
4218 case GUEST_FS_LIMIT:
4219 case GUEST_GS_LIMIT:
4220 case GUEST_LDTR_LIMIT:
4221 case GUEST_TR_LIMIT:
4222 case GUEST_GDTR_LIMIT:
4223 case GUEST_IDTR_LIMIT:
4224 case GUEST_ES_AR_BYTES:
4225 case GUEST_DS_AR_BYTES:
4226 case GUEST_FS_AR_BYTES:
4227 case GUEST_GS_AR_BYTES:
4228 case GUEST_LDTR_AR_BYTES:
4229 case GUEST_TR_AR_BYTES:
4236 case GUEST_LDTR_BASE:
4238 case GUEST_GDTR_BASE:
4239 case GUEST_IDTR_BASE:
4240 case GUEST_PENDING_DBG_EXCEPTIONS:
4250 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4251 struct vmcs12 *vmcs12)
4253 struct vcpu_vmx *vmx = to_vmx(vcpu);
4255 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4256 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4257 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4258 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4259 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4260 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4261 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4262 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4263 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4264 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4265 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4266 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4267 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4268 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4269 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4270 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4271 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4272 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4273 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4274 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4275 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4276 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4277 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4278 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4279 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4280 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4281 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4282 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4283 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4284 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4285 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4286 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4287 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4288 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4289 vmcs12->guest_pending_dbg_exceptions =
4290 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4292 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4295 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4296 struct vmcs12 *vmcs12)
4298 struct vcpu_vmx *vmx = to_vmx(vcpu);
4301 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4305 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4308 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4309 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4311 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4313 vmx->loaded_vmcs = &vmx->vmcs01;
4314 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4319 * Update the guest state fields of vmcs12 to reflect changes that
4320 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4321 * VM-entry controls is also updated, since this is really a guest
4324 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4326 struct vcpu_vmx *vmx = to_vmx(vcpu);
4328 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4329 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4331 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4332 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4334 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4335 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4337 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4338 vmcs12->guest_rip = kvm_rip_read(vcpu);
4339 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4341 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4342 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4344 vmcs12->guest_interruptibility_info =
4345 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4347 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4348 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4349 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4350 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4352 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4354 if (nested_cpu_has_preemption_timer(vmcs12) &&
4355 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4356 !vmx->nested.nested_run_pending)
4357 vmcs12->vmx_preemption_timer_value =
4358 vmx_get_preemption_timer_value(vcpu);
4361 * In some cases (usually, nested EPT), L2 is allowed to change its
4362 * own CR3 without exiting. If it has changed it, we must keep it.
4363 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4364 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4366 * Additionally, restore L2's PDPTR to vmcs12.
4369 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4370 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4371 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4372 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4373 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4374 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4378 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4380 if (nested_cpu_has_vid(vmcs12))
4381 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4383 vmcs12->vm_entry_controls =
4384 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4385 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4387 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4388 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4390 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4391 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4395 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4396 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4397 * and this function updates it to reflect the changes to the guest state while
4398 * L2 was running (and perhaps made some exits which were handled directly by L0
4399 * without going back to L1), and to reflect the exit reason.
4400 * Note that we do not have to copy here all VMCS fields, just those that
4401 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4402 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4403 * which already writes to vmcs12 directly.
4405 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4406 u32 vm_exit_reason, u32 exit_intr_info,
4407 unsigned long exit_qualification)
4409 /* update exit information fields: */
4410 vmcs12->vm_exit_reason = vm_exit_reason;
4411 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4412 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4413 vmcs12->exit_qualification = exit_qualification;
4416 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4417 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4418 * exit info fields are unmodified.
4420 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4421 vmcs12->launch_state = 1;
4423 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4424 * instead of reading the real value. */
4425 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4428 * Transfer the event that L0 or L1 may wanted to inject into
4429 * L2 to IDT_VECTORING_INFO_FIELD.
4431 vmcs12_save_pending_event(vcpu, vmcs12,
4432 vm_exit_reason, exit_intr_info);
4434 vmcs12->vm_exit_intr_info = exit_intr_info;
4435 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4436 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4439 * According to spec, there's no need to store the guest's
4440 * MSRs if the exit is due to a VM-entry failure that occurs
4441 * during or after loading the guest state. Since this exit
4442 * does not fall in that category, we need to save the MSRs.
4444 if (nested_vmx_store_msr(vcpu,
4445 vmcs12->vm_exit_msr_store_addr,
4446 vmcs12->vm_exit_msr_store_count))
4447 nested_vmx_abort(vcpu,
4448 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4453 * A part of what we need to when the nested L2 guest exits and we want to
4454 * run its L1 parent, is to reset L1's guest state to the host state specified
4456 * This function is to be called not only on normal nested exit, but also on
4457 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4458 * Failures During or After Loading Guest State").
4459 * This function should be called when the active VMCS is L1's (vmcs01).
4461 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4462 struct vmcs12 *vmcs12)
4464 enum vm_entry_failure_code ignored;
4465 struct kvm_segment seg;
4467 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4468 vcpu->arch.efer = vmcs12->host_ia32_efer;
4469 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4470 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4472 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4473 vmx_set_efer(vcpu, vcpu->arch.efer);
4475 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4476 kvm_rip_write(vcpu, vmcs12->host_rip);
4477 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4478 vmx_set_interrupt_shadow(vcpu, 0);
4481 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4482 * actually changed, because vmx_set_cr0 refers to efer set above.
4484 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4485 * (KVM doesn't change it);
4487 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4488 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4490 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4491 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4492 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4494 nested_ept_uninit_mmu_context(vcpu);
4497 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4498 * couldn't have changed.
4500 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4501 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4503 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4505 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4506 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4507 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4508 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4509 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4510 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4511 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4513 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4514 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4515 vmcs_write64(GUEST_BNDCFGS, 0);
4517 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4518 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4519 vcpu->arch.pat = vmcs12->host_ia32_pat;
4521 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4522 intel_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4523 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4524 vmcs12->host_ia32_perf_global_ctrl));
4526 /* Set L1 segment info according to Intel SDM
4527 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4528 seg = (struct kvm_segment) {
4530 .limit = 0xFFFFFFFF,
4531 .selector = vmcs12->host_cs_selector,
4537 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4541 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4542 seg = (struct kvm_segment) {
4544 .limit = 0xFFFFFFFF,
4551 seg.selector = vmcs12->host_ds_selector;
4552 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4553 seg.selector = vmcs12->host_es_selector;
4554 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4555 seg.selector = vmcs12->host_ss_selector;
4556 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4557 seg.selector = vmcs12->host_fs_selector;
4558 seg.base = vmcs12->host_fs_base;
4559 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4560 seg.selector = vmcs12->host_gs_selector;
4561 seg.base = vmcs12->host_gs_base;
4562 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4563 seg = (struct kvm_segment) {
4564 .base = vmcs12->host_tr_base,
4566 .selector = vmcs12->host_tr_selector,
4570 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4572 memset(&seg, 0, sizeof(seg));
4574 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4576 kvm_set_dr(vcpu, 7, 0x400);
4577 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4579 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4580 vmcs12->vm_exit_msr_load_count))
4581 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4583 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4586 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4588 struct vmx_uret_msr *efer_msr;
4591 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4592 return vmcs_read64(GUEST_IA32_EFER);
4594 if (cpu_has_load_ia32_efer())
4597 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4598 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4599 return vmx->msr_autoload.guest.val[i].value;
4602 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4604 return efer_msr->data;
4609 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4611 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4612 struct vcpu_vmx *vmx = to_vmx(vcpu);
4613 struct vmx_msr_entry g, h;
4617 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4619 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4621 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4622 * as vmcs01.GUEST_DR7 contains a userspace defined value
4623 * and vcpu->arch.dr7 is not squirreled away before the
4624 * nested VMENTER (not worth adding a variable in nested_vmx).
4626 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4627 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4629 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4633 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4634 * handle a variety of side effects to KVM's software model.
4636 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4638 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4639 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4641 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4642 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4644 nested_ept_uninit_mmu_context(vcpu);
4645 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4646 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4649 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4650 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4651 * VMFail, like everything else we just need to ensure our
4652 * software model is up-to-date.
4654 if (enable_ept && is_pae_paging(vcpu))
4655 ept_save_pdptrs(vcpu);
4657 kvm_mmu_reset_context(vcpu);
4660 * This nasty bit of open coding is a compromise between blindly
4661 * loading L1's MSRs using the exit load lists (incorrect emulation
4662 * of VMFail), leaving the nested VM's MSRs in the software model
4663 * (incorrect behavior) and snapshotting the modified MSRs (too
4664 * expensive since the lists are unbound by hardware). For each
4665 * MSR that was (prematurely) loaded from the nested VMEntry load
4666 * list, reload it from the exit load list if it exists and differs
4667 * from the guest value. The intent is to stuff host state as
4668 * silently as possible, not to fully process the exit load list.
4670 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4671 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4672 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4673 pr_debug_ratelimited(
4674 "%s read MSR index failed (%u, 0x%08llx)\n",
4679 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4680 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4681 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4682 pr_debug_ratelimited(
4683 "%s read MSR failed (%u, 0x%08llx)\n",
4687 if (h.index != g.index)
4689 if (h.value == g.value)
4692 if (nested_vmx_load_msr_check(vcpu, &h)) {
4693 pr_debug_ratelimited(
4694 "%s check failed (%u, 0x%x, 0x%x)\n",
4695 __func__, j, h.index, h.reserved);
4699 if (kvm_set_msr(vcpu, h.index, h.value)) {
4700 pr_debug_ratelimited(
4701 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4702 __func__, j, h.index, h.value);
4711 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4715 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4716 * and modify vmcs12 to make it see what it would expect to see there if
4717 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4719 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4720 u32 exit_intr_info, unsigned long exit_qualification)
4722 struct vcpu_vmx *vmx = to_vmx(vcpu);
4723 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4725 /* Pending MTF traps are discarded on VM-Exit. */
4726 vmx->nested.mtf_pending = false;
4728 /* trying to cancel vmlaunch/vmresume is a bug */
4729 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4731 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4733 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4734 * Enlightened VMCS after migration and we still need to
4735 * do that when something is forcing L2->L1 exit prior to
4738 (void)nested_get_evmcs_page(vcpu);
4741 /* Service pending TLB flush requests for L2 before switching to L1. */
4742 kvm_service_local_tlb_flush_requests(vcpu);
4745 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4746 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4747 * up-to-date before switching to L1.
4749 if (enable_ept && is_pae_paging(vcpu))
4750 vmx_ept_load_pdptrs(vcpu);
4752 leave_guest_mode(vcpu);
4754 if (nested_cpu_has_preemption_timer(vmcs12))
4755 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4757 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4758 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4759 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4760 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4763 if (likely(!vmx->fail)) {
4764 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4766 if (vm_exit_reason != -1)
4767 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4768 exit_intr_info, exit_qualification);
4771 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4772 * also be used to capture vmcs12 cache as part of
4773 * capturing nVMX state for snapshot (migration).
4775 * Otherwise, this flush will dirty guest memory at a
4776 * point it is already assumed by user-space to be
4779 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4782 * The only expected VM-instruction error is "VM entry with
4783 * invalid control field(s)." Anything else indicates a
4784 * problem with L0. And we should never get here with a
4785 * VMFail of any type if early consistency checks are enabled.
4787 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4788 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4789 WARN_ON_ONCE(nested_early_check);
4793 * Drop events/exceptions that were queued for re-injection to L2
4794 * (picked up via vmx_complete_interrupts()), as well as exceptions
4795 * that were pending for L2. Note, this must NOT be hoisted above
4796 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4797 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4799 vcpu->arch.nmi_injected = false;
4800 kvm_clear_exception_queue(vcpu);
4801 kvm_clear_interrupt_queue(vcpu);
4803 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4806 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4807 * branch predictors when transitioning from L2 to L1, as L1 expects
4808 * hardware (KVM in this case) to provide separate predictor modes.
4809 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4810 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4811 * separate modes for L2 vs L1.
4813 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4814 indirect_branch_prediction_barrier();
4816 /* Update any VMCS fields that might have changed while L2 ran */
4817 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4818 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4819 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4820 if (kvm_caps.has_tsc_control)
4821 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4823 if (vmx->nested.l1_tpr_threshold != -1)
4824 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4826 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4827 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4828 vmx_set_virtual_apic_mode(vcpu);
4831 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4832 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4833 vmx_update_cpu_dirty_logging(vcpu);
4836 /* Unpin physical memory we referred to in vmcs02 */
4837 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4838 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4839 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4840 vmx->nested.pi_desc = NULL;
4842 if (vmx->nested.reload_vmcs01_apic_access_page) {
4843 vmx->nested.reload_vmcs01_apic_access_page = false;
4844 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4847 if (vmx->nested.update_vmcs01_apicv_status) {
4848 vmx->nested.update_vmcs01_apicv_status = false;
4849 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4852 if ((vm_exit_reason != -1) &&
4853 (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4854 vmx->nested.need_vmcs12_to_shadow_sync = true;
4856 /* in case we halted in L2 */
4857 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4859 if (likely(!vmx->fail)) {
4860 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4861 nested_exit_intr_ack_set(vcpu)) {
4862 int irq = kvm_cpu_get_interrupt(vcpu);
4864 vmcs12->vm_exit_intr_info = irq |
4865 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4868 if (vm_exit_reason != -1)
4869 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4870 vmcs12->exit_qualification,
4871 vmcs12->idt_vectoring_info_field,
4872 vmcs12->vm_exit_intr_info,
4873 vmcs12->vm_exit_intr_error_code,
4876 load_vmcs12_host_state(vcpu, vmcs12);
4882 * After an early L2 VM-entry failure, we're now back
4883 * in L1 which thinks it just finished a VMLAUNCH or
4884 * VMRESUME instruction, so we need to set the failure
4885 * flag and the VM-instruction error field of the VMCS
4886 * accordingly, and skip the emulated instruction.
4888 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4891 * Restore L1's host state to KVM's software model. We're here
4892 * because a consistency check was caught by hardware, which
4893 * means some amount of guest state has been propagated to KVM's
4894 * model and needs to be unwound to the host's state.
4896 nested_vmx_restore_host_state(vcpu);
4901 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4903 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4904 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4908 * Decode the memory-address operand of a vmx instruction, as recorded on an
4909 * exit caused by such an instruction (run by a guest hypervisor).
4910 * On success, returns 0. When the operand is invalid, returns 1 and throws
4913 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4914 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4918 struct kvm_segment s;
4921 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4922 * Execution", on an exit, vmx_instruction_info holds most of the
4923 * addressing components of the operand. Only the displacement part
4924 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4925 * For how an actual address is calculated from all these components,
4926 * refer to Vol. 1, "Operand Addressing".
4928 int scaling = vmx_instruction_info & 3;
4929 int addr_size = (vmx_instruction_info >> 7) & 7;
4930 bool is_reg = vmx_instruction_info & (1u << 10);
4931 int seg_reg = (vmx_instruction_info >> 15) & 7;
4932 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4933 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4934 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4935 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4938 kvm_queue_exception(vcpu, UD_VECTOR);
4942 /* Addr = segment_base + offset */
4943 /* offset = base + [index * scale] + displacement */
4944 off = exit_qualification; /* holds the displacement */
4946 off = (gva_t)sign_extend64(off, 31);
4947 else if (addr_size == 0)
4948 off = (gva_t)sign_extend64(off, 15);
4950 off += kvm_register_read(vcpu, base_reg);
4952 off += kvm_register_read(vcpu, index_reg) << scaling;
4953 vmx_get_segment(vcpu, &s, seg_reg);
4956 * The effective address, i.e. @off, of a memory operand is truncated
4957 * based on the address size of the instruction. Note that this is
4958 * the *effective address*, i.e. the address prior to accounting for
4959 * the segment's base.
4961 if (addr_size == 1) /* 32 bit */
4963 else if (addr_size == 0) /* 16 bit */
4966 /* Checks for #GP/#SS exceptions. */
4968 if (is_long_mode(vcpu)) {
4970 * The virtual/linear address is never truncated in 64-bit
4971 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4972 * address when using FS/GS with a non-zero base.
4974 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4975 *ret = s.base + off;
4979 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4980 * non-canonical form. This is the only check on the memory
4981 * destination for long mode!
4983 exn = is_noncanonical_address(*ret, vcpu);
4986 * When not in long mode, the virtual/linear address is
4987 * unconditionally truncated to 32 bits regardless of the
4990 *ret = (s.base + off) & 0xffffffff;
4992 /* Protected mode: apply checks for segment validity in the
4994 * - segment type check (#GP(0) may be thrown)
4995 * - usability check (#GP(0)/#SS(0))
4996 * - limit check (#GP(0)/#SS(0))
4999 /* #GP(0) if the destination operand is located in a
5000 * read-only data segment or any code segment.
5002 exn = ((s.type & 0xa) == 0 || (s.type & 8));
5004 /* #GP(0) if the source operand is located in an
5005 * execute-only code segment
5007 exn = ((s.type & 0xa) == 8);
5009 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5012 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5014 exn = (s.unusable != 0);
5017 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5018 * outside the segment limit. All CPUs that support VMX ignore
5019 * limit checks for flat segments, i.e. segments with base==0,
5020 * limit==0xffffffff and of type expand-up data or code.
5022 if (!(s.base == 0 && s.limit == 0xffffffff &&
5023 ((s.type & 8) || !(s.type & 4))))
5024 exn = exn || ((u64)off + len - 1 > s.limit);
5027 kvm_queue_exception_e(vcpu,
5028 seg_reg == VCPU_SREG_SS ?
5029 SS_VECTOR : GP_VECTOR,
5037 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5041 struct x86_exception e;
5044 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5045 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5046 sizeof(*vmpointer), &gva)) {
5051 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5052 if (r != X86EMUL_CONTINUE) {
5053 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5061 * Allocate a shadow VMCS and associate it with the currently loaded
5062 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5063 * VMCS is also VMCLEARed, so that it is ready for use.
5065 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5067 struct vcpu_vmx *vmx = to_vmx(vcpu);
5068 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5071 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5072 * when L1 executes VMXOFF or the vCPU is forced out of nested
5073 * operation. VMXON faults if the CPU is already post-VMXON, so it
5074 * should be impossible to already have an allocated shadow VMCS. KVM
5075 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5076 * always be the loaded VMCS.
5078 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5079 return loaded_vmcs->shadow_vmcs;
5081 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5082 if (loaded_vmcs->shadow_vmcs)
5083 vmcs_clear(loaded_vmcs->shadow_vmcs);
5085 return loaded_vmcs->shadow_vmcs;
5088 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5090 struct vcpu_vmx *vmx = to_vmx(vcpu);
5093 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5097 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5098 if (!vmx->nested.cached_vmcs12)
5099 goto out_cached_vmcs12;
5101 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5102 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5103 if (!vmx->nested.cached_shadow_vmcs12)
5104 goto out_cached_shadow_vmcs12;
5106 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5107 goto out_shadow_vmcs;
5109 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5110 HRTIMER_MODE_ABS_PINNED);
5111 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5113 vmx->nested.vpid02 = allocate_vpid();
5115 vmx->nested.vmcs02_initialized = false;
5116 vmx->nested.vmxon = true;
5118 if (vmx_pt_mode_is_host_guest()) {
5119 vmx->pt_desc.guest.ctl = 0;
5120 pt_update_intercept_for_msr(vcpu);
5126 kfree(vmx->nested.cached_shadow_vmcs12);
5128 out_cached_shadow_vmcs12:
5129 kfree(vmx->nested.cached_vmcs12);
5132 free_loaded_vmcs(&vmx->nested.vmcs02);
5138 /* Emulate the VMXON instruction. */
5139 static int handle_vmxon(struct kvm_vcpu *vcpu)
5144 struct vcpu_vmx *vmx = to_vmx(vcpu);
5145 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5146 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5149 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5150 * the guest and so cannot rely on hardware to perform the check,
5151 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5154 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5155 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5156 * force any of the relevant guest state. For a restricted guest, KVM
5157 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5158 * Real Mode, and so there's no need to check CR0.PE manually.
5160 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5161 kvm_queue_exception(vcpu, UD_VECTOR);
5166 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5167 * and has higher priority than the VM-Fail due to being post-VMXON,
5168 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5169 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5170 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5173 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5174 * #UD checks (see above), is functionally ok because KVM doesn't allow
5175 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5176 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5177 * missed by hardware due to shadowing CR0 and/or CR4.
5179 if (vmx_get_cpl(vcpu)) {
5180 kvm_inject_gp(vcpu, 0);
5184 if (vmx->nested.vmxon)
5185 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5188 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5189 * only if the vCPU isn't already in VMX operation, i.e. effectively
5190 * have lower priority than the VM-Fail above.
5192 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5193 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5194 kvm_inject_gp(vcpu, 0);
5198 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5199 != VMXON_NEEDED_FEATURES) {
5200 kvm_inject_gp(vcpu, 0);
5204 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5209 * The first 4 bytes of VMXON region contain the supported
5210 * VMCS revision identifier
5212 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5213 * which replaces physical address width with 32
5215 if (!page_address_valid(vcpu, vmptr))
5216 return nested_vmx_failInvalid(vcpu);
5218 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5219 revision != VMCS12_REVISION)
5220 return nested_vmx_failInvalid(vcpu);
5222 vmx->nested.vmxon_ptr = vmptr;
5223 ret = enter_vmx_operation(vcpu);
5227 return nested_vmx_succeed(vcpu);
5230 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5232 struct vcpu_vmx *vmx = to_vmx(vcpu);
5234 if (vmx->nested.current_vmptr == INVALID_GPA)
5237 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5239 if (enable_shadow_vmcs) {
5240 /* copy to memory all shadowed fields in case
5241 they were modified */
5242 copy_shadow_to_vmcs12(vmx);
5243 vmx_disable_shadow_vmcs(vmx);
5245 vmx->nested.posted_intr_nv = -1;
5247 /* Flush VMCS12 to guest memory */
5248 kvm_vcpu_write_guest_page(vcpu,
5249 vmx->nested.current_vmptr >> PAGE_SHIFT,
5250 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5252 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5254 vmx->nested.current_vmptr = INVALID_GPA;
5257 /* Emulate the VMXOFF instruction */
5258 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5260 if (!nested_vmx_check_permission(vcpu))
5265 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5266 kvm_make_request(KVM_REQ_EVENT, vcpu);
5268 return nested_vmx_succeed(vcpu);
5271 /* Emulate the VMCLEAR instruction */
5272 static int handle_vmclear(struct kvm_vcpu *vcpu)
5274 struct vcpu_vmx *vmx = to_vmx(vcpu);
5279 if (!nested_vmx_check_permission(vcpu))
5282 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5285 if (!page_address_valid(vcpu, vmptr))
5286 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5288 if (vmptr == vmx->nested.vmxon_ptr)
5289 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5292 * When Enlightened VMEntry is enabled on the calling CPU we treat
5293 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5294 * way to distinguish it from VMCS12) and we must not corrupt it by
5295 * writing to the non-existent 'launch_state' field. The area doesn't
5296 * have to be the currently active EVMCS on the calling CPU and there's
5297 * nothing KVM has to do to transition it from 'active' to 'non-active'
5298 * state. It is possible that the area will stay mapped as
5299 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5301 if (likely(!guest_cpuid_has_evmcs(vcpu) ||
5302 !evmptr_is_valid(nested_get_evmptr(vcpu)))) {
5303 if (vmptr == vmx->nested.current_vmptr)
5304 nested_release_vmcs12(vcpu);
5307 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5308 * for VMCLEAR includes a "ensure that data for VMCS referenced
5309 * by the operand is in memory" clause that guards writes to
5310 * memory, i.e. doing nothing for I/O is architecturally valid.
5312 * FIXME: Suppress failures if and only if no memslot is found,
5313 * i.e. exit to userspace if __copy_to_user() fails.
5315 (void)kvm_vcpu_write_guest(vcpu,
5316 vmptr + offsetof(struct vmcs12,
5318 &zero, sizeof(zero));
5319 } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5320 nested_release_evmcs(vcpu);
5323 return nested_vmx_succeed(vcpu);
5326 /* Emulate the VMLAUNCH instruction */
5327 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5329 return nested_vmx_run(vcpu, true);
5332 /* Emulate the VMRESUME instruction */
5333 static int handle_vmresume(struct kvm_vcpu *vcpu)
5336 return nested_vmx_run(vcpu, false);
5339 static int handle_vmread(struct kvm_vcpu *vcpu)
5341 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5343 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5344 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5345 struct vcpu_vmx *vmx = to_vmx(vcpu);
5346 struct x86_exception e;
5347 unsigned long field;
5353 if (!nested_vmx_check_permission(vcpu))
5356 /* Decode instruction info and find the field to read */
5357 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5359 if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5361 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5362 * any VMREAD sets the ALU flags for VMfailInvalid.
5364 if (vmx->nested.current_vmptr == INVALID_GPA ||
5365 (is_guest_mode(vcpu) &&
5366 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5367 return nested_vmx_failInvalid(vcpu);
5369 offset = get_vmcs12_field_offset(field);
5371 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5373 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5374 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5376 /* Read the field, zero-extended to a u64 value */
5377 value = vmcs12_read_any(vmcs12, field, offset);
5380 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5381 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5382 * unsupported. Unfortunately, certain versions of Windows 11
5383 * don't comply with this requirement which is not enforced in
5384 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5385 * workaround, as misbehaving guests will panic on VM-Fail.
5386 * Note, enlightened VMCS is incompatible with shadow VMCS so
5387 * all VMREADs from L2 should go to L1.
5389 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5390 return nested_vmx_failInvalid(vcpu);
5392 offset = evmcs_field_offset(field, NULL);
5394 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5396 /* Read the field, zero-extended to a u64 value */
5397 value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5401 * Now copy part of this value to register or memory, as requested.
5402 * Note that the number of bits actually copied is 32 or 64 depending
5403 * on the guest's mode (32 or 64 bit), not on the given field's length.
5405 if (instr_info & BIT(10)) {
5406 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5408 len = is_64_bit_mode(vcpu) ? 8 : 4;
5409 if (get_vmx_mem_address(vcpu, exit_qualification,
5410 instr_info, true, len, &gva))
5412 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5413 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5414 if (r != X86EMUL_CONTINUE)
5415 return kvm_handle_memory_failure(vcpu, r, &e);
5418 return nested_vmx_succeed(vcpu);
5421 static bool is_shadow_field_rw(unsigned long field)
5424 #define SHADOW_FIELD_RW(x, y) case x:
5425 #include "vmcs_shadow_fields.h"
5433 static bool is_shadow_field_ro(unsigned long field)
5436 #define SHADOW_FIELD_RO(x, y) case x:
5437 #include "vmcs_shadow_fields.h"
5445 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5447 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5449 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5450 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5451 struct vcpu_vmx *vmx = to_vmx(vcpu);
5452 struct x86_exception e;
5453 unsigned long field;
5459 * The value to write might be 32 or 64 bits, depending on L1's long
5460 * mode, and eventually we need to write that into a field of several
5461 * possible lengths. The code below first zero-extends the value to 64
5462 * bit (value), and then copies only the appropriate number of
5463 * bits into the vmcs12 field.
5467 if (!nested_vmx_check_permission(vcpu))
5471 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5472 * any VMWRITE sets the ALU flags for VMfailInvalid.
5474 if (vmx->nested.current_vmptr == INVALID_GPA ||
5475 (is_guest_mode(vcpu) &&
5476 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5477 return nested_vmx_failInvalid(vcpu);
5479 if (instr_info & BIT(10))
5480 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5482 len = is_64_bit_mode(vcpu) ? 8 : 4;
5483 if (get_vmx_mem_address(vcpu, exit_qualification,
5484 instr_info, false, len, &gva))
5486 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5487 if (r != X86EMUL_CONTINUE)
5488 return kvm_handle_memory_failure(vcpu, r, &e);
5491 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5493 offset = get_vmcs12_field_offset(field);
5495 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5498 * If the vCPU supports "VMWRITE to any supported field in the
5499 * VMCS," then the "read-only" fields are actually read/write.
5501 if (vmcs_field_readonly(field) &&
5502 !nested_cpu_has_vmwrite_any_field(vcpu))
5503 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5506 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5507 * vmcs12, else we may crush a field or consume a stale value.
5509 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5510 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5513 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5514 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5515 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5516 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5517 * from L1 will return a different value than VMREAD from L2 (L1 sees
5518 * the stripped down value, L2 sees the full value as stored by KVM).
5520 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5523 vmcs12_write_any(vmcs12, field, offset, value);
5526 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5527 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5528 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5529 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5531 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5533 * L1 can read these fields without exiting, ensure the
5534 * shadow VMCS is up-to-date.
5536 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5538 vmcs_load(vmx->vmcs01.shadow_vmcs);
5540 __vmcs_writel(field, value);
5542 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5543 vmcs_load(vmx->loaded_vmcs->vmcs);
5546 vmx->nested.dirty_vmcs12 = true;
5549 return nested_vmx_succeed(vcpu);
5552 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5554 vmx->nested.current_vmptr = vmptr;
5555 if (enable_shadow_vmcs) {
5556 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5557 vmcs_write64(VMCS_LINK_POINTER,
5558 __pa(vmx->vmcs01.shadow_vmcs));
5559 vmx->nested.need_vmcs12_to_shadow_sync = true;
5561 vmx->nested.dirty_vmcs12 = true;
5562 vmx->nested.force_msr_bitmap_recalc = true;
5565 /* Emulate the VMPTRLD instruction */
5566 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5568 struct vcpu_vmx *vmx = to_vmx(vcpu);
5572 if (!nested_vmx_check_permission(vcpu))
5575 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5578 if (!page_address_valid(vcpu, vmptr))
5579 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5581 if (vmptr == vmx->nested.vmxon_ptr)
5582 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5584 /* Forbid normal VMPTRLD if Enlightened version was used */
5585 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5588 if (vmx->nested.current_vmptr != vmptr) {
5589 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5590 struct vmcs_hdr hdr;
5592 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5594 * Reads from an unbacked page return all 1s,
5595 * which means that the 32 bits located at the
5596 * given physical address won't match the required
5597 * VMCS12_REVISION identifier.
5599 return nested_vmx_fail(vcpu,
5600 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5603 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5604 offsetof(struct vmcs12, hdr),
5606 return nested_vmx_fail(vcpu,
5607 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5610 if (hdr.revision_id != VMCS12_REVISION ||
5612 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5613 return nested_vmx_fail(vcpu,
5614 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5617 nested_release_vmcs12(vcpu);
5620 * Load VMCS12 from guest memory since it is not already
5623 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5625 return nested_vmx_fail(vcpu,
5626 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5629 set_current_vmptr(vmx, vmptr);
5632 return nested_vmx_succeed(vcpu);
5635 /* Emulate the VMPTRST instruction */
5636 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5638 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5639 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5640 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5641 struct x86_exception e;
5645 if (!nested_vmx_check_permission(vcpu))
5648 if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5651 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5652 true, sizeof(gpa_t), &gva))
5654 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5655 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5657 if (r != X86EMUL_CONTINUE)
5658 return kvm_handle_memory_failure(vcpu, r, &e);
5660 return nested_vmx_succeed(vcpu);
5663 /* Emulate the INVEPT instruction */
5664 static int handle_invept(struct kvm_vcpu *vcpu)
5666 struct vcpu_vmx *vmx = to_vmx(vcpu);
5667 u32 vmx_instruction_info, types;
5668 unsigned long type, roots_to_free;
5669 struct kvm_mmu *mmu;
5671 struct x86_exception e;
5675 int i, r, gpr_index;
5677 if (!(vmx->nested.msrs.secondary_ctls_high &
5678 SECONDARY_EXEC_ENABLE_EPT) ||
5679 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5680 kvm_queue_exception(vcpu, UD_VECTOR);
5684 if (!nested_vmx_check_permission(vcpu))
5687 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5688 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5689 type = kvm_register_read(vcpu, gpr_index);
5691 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5693 if (type >= 32 || !(types & (1 << type)))
5694 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5696 /* According to the Intel VMX instruction reference, the memory
5697 * operand is read even if it isn't needed (e.g., for type==global)
5699 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5700 vmx_instruction_info, false, sizeof(operand), &gva))
5702 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5703 if (r != X86EMUL_CONTINUE)
5704 return kvm_handle_memory_failure(vcpu, r, &e);
5707 * Nested EPT roots are always held through guest_mmu,
5710 mmu = &vcpu->arch.guest_mmu;
5713 case VMX_EPT_EXTENT_CONTEXT:
5714 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5715 return nested_vmx_fail(vcpu,
5716 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5719 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5721 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5723 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5724 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5725 mmu->prev_roots[i].pgd,
5727 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5730 case VMX_EPT_EXTENT_GLOBAL:
5731 roots_to_free = KVM_MMU_ROOTS_ALL;
5739 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5741 return nested_vmx_succeed(vcpu);
5744 static int handle_invvpid(struct kvm_vcpu *vcpu)
5746 struct vcpu_vmx *vmx = to_vmx(vcpu);
5747 u32 vmx_instruction_info;
5748 unsigned long type, types;
5750 struct x86_exception e;
5758 if (!(vmx->nested.msrs.secondary_ctls_high &
5759 SECONDARY_EXEC_ENABLE_VPID) ||
5760 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5761 kvm_queue_exception(vcpu, UD_VECTOR);
5765 if (!nested_vmx_check_permission(vcpu))
5768 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5769 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5770 type = kvm_register_read(vcpu, gpr_index);
5772 types = (vmx->nested.msrs.vpid_caps &
5773 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5775 if (type >= 32 || !(types & (1 << type)))
5776 return nested_vmx_fail(vcpu,
5777 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5779 /* according to the intel vmx instruction reference, the memory
5780 * operand is read even if it isn't needed (e.g., for type==global)
5782 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5783 vmx_instruction_info, false, sizeof(operand), &gva))
5785 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5786 if (r != X86EMUL_CONTINUE)
5787 return kvm_handle_memory_failure(vcpu, r, &e);
5789 if (operand.vpid >> 16)
5790 return nested_vmx_fail(vcpu,
5791 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5793 vpid02 = nested_get_vpid02(vcpu);
5795 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5796 if (!operand.vpid ||
5797 is_noncanonical_address(operand.gla, vcpu))
5798 return nested_vmx_fail(vcpu,
5799 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5800 vpid_sync_vcpu_addr(vpid02, operand.gla);
5802 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5803 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5805 return nested_vmx_fail(vcpu,
5806 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5807 vpid_sync_context(vpid02);
5809 case VMX_VPID_EXTENT_ALL_CONTEXT:
5810 vpid_sync_context(vpid02);
5814 return kvm_skip_emulated_instruction(vcpu);
5818 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5819 * linear mappings for L2 (tagged with L2's VPID). Free all guest
5820 * roots as VPIDs are not tracked in the MMU role.
5822 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5823 * an MMU when EPT is disabled.
5825 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5828 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5830 return nested_vmx_succeed(vcpu);
5833 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5834 struct vmcs12 *vmcs12)
5836 u32 index = kvm_rcx_read(vcpu);
5839 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5841 if (index >= VMFUNC_EPTP_ENTRIES)
5844 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5845 &new_eptp, index * 8, 8))
5849 * If the (L2) guest does a vmfunc to the currently
5850 * active ept pointer, we don't have to do anything else
5852 if (vmcs12->ept_pointer != new_eptp) {
5853 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5856 vmcs12->ept_pointer = new_eptp;
5857 nested_ept_new_eptp(vcpu);
5859 if (!nested_cpu_has_vpid(vmcs12))
5860 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5866 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5868 struct vcpu_vmx *vmx = to_vmx(vcpu);
5869 struct vmcs12 *vmcs12;
5870 u32 function = kvm_rax_read(vcpu);
5873 * VMFUNC should never execute cleanly while L1 is active; KVM supports
5874 * VMFUNC for nested VMs, but not for L1.
5876 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5877 kvm_queue_exception(vcpu, UD_VECTOR);
5881 vmcs12 = get_vmcs12(vcpu);
5884 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5885 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5887 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5888 kvm_queue_exception(vcpu, UD_VECTOR);
5892 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5897 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5903 return kvm_skip_emulated_instruction(vcpu);
5907 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5908 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5909 * EXIT_REASON_VMFUNC as the exit reason.
5911 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5912 vmx_get_intr_info(vcpu),
5913 vmx_get_exit_qual(vcpu));
5918 * Return true if an IO instruction with the specified port and size should cause
5919 * a VM-exit into L1.
5921 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5924 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5925 gpa_t bitmap, last_bitmap;
5928 last_bitmap = INVALID_GPA;
5933 bitmap = vmcs12->io_bitmap_a;
5934 else if (port < 0x10000)
5935 bitmap = vmcs12->io_bitmap_b;
5938 bitmap += (port & 0x7fff) / 8;
5940 if (last_bitmap != bitmap)
5941 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5943 if (b & (1 << (port & 7)))
5948 last_bitmap = bitmap;
5954 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5955 struct vmcs12 *vmcs12)
5957 unsigned long exit_qualification;
5958 unsigned short port;
5961 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5962 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5964 exit_qualification = vmx_get_exit_qual(vcpu);
5966 port = exit_qualification >> 16;
5967 size = (exit_qualification & 7) + 1;
5969 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5973 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5974 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5975 * disinterest in the current event (read or write a specific MSR) by using an
5976 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5978 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5979 struct vmcs12 *vmcs12,
5980 union vmx_exit_reason exit_reason)
5982 u32 msr_index = kvm_rcx_read(vcpu);
5985 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5989 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5990 * for the four combinations of read/write and low/high MSR numbers.
5991 * First we need to figure out which of the four to use:
5993 bitmap = vmcs12->msr_bitmap;
5994 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5996 if (msr_index >= 0xc0000000) {
5997 msr_index -= 0xc0000000;
6001 /* Then read the msr_index'th bit from this bitmap: */
6002 if (msr_index < 1024*8) {
6004 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6006 return 1 & (b >> (msr_index & 7));
6008 return true; /* let L1 handle the wrong parameter */
6012 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6013 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6014 * intercept (via guest_host_mask etc.) the current event.
6016 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6017 struct vmcs12 *vmcs12)
6019 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6020 int cr = exit_qualification & 15;
6024 switch ((exit_qualification >> 4) & 3) {
6025 case 0: /* mov to cr */
6026 reg = (exit_qualification >> 8) & 15;
6027 val = kvm_register_read(vcpu, reg);
6030 if (vmcs12->cr0_guest_host_mask &
6031 (val ^ vmcs12->cr0_read_shadow))
6035 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6039 if (vmcs12->cr4_guest_host_mask &
6040 (vmcs12->cr4_read_shadow ^ val))
6044 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6050 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6051 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6054 case 1: /* mov from cr */
6057 if (vmcs12->cpu_based_vm_exec_control &
6058 CPU_BASED_CR3_STORE_EXITING)
6062 if (vmcs12->cpu_based_vm_exec_control &
6063 CPU_BASED_CR8_STORE_EXITING)
6070 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6071 * cr0. Other attempted changes are ignored, with no exit.
6073 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6074 if (vmcs12->cr0_guest_host_mask & 0xe &
6075 (val ^ vmcs12->cr0_read_shadow))
6077 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6078 !(vmcs12->cr0_read_shadow & 0x1) &&
6086 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6087 struct vmcs12 *vmcs12)
6091 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6092 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6095 encls_leaf = kvm_rax_read(vcpu);
6096 if (encls_leaf > 62)
6098 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6101 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6102 struct vmcs12 *vmcs12, gpa_t bitmap)
6104 u32 vmx_instruction_info;
6105 unsigned long field;
6108 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6111 /* Decode instruction info and find the field to access */
6112 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6113 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6115 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6119 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6122 return 1 & (b >> (field & 7));
6125 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6127 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6129 if (nested_cpu_has_mtf(vmcs12))
6133 * An MTF VM-exit may be injected into the guest by setting the
6134 * interruption-type to 7 (other event) and the vector field to 0. Such
6135 * is the case regardless of the 'monitor trap flag' VM-execution
6138 return entry_intr_info == (INTR_INFO_VALID_MASK
6139 | INTR_TYPE_OTHER_EVENT);
6143 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6144 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6146 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6147 union vmx_exit_reason exit_reason)
6151 switch ((u16)exit_reason.basic) {
6152 case EXIT_REASON_EXCEPTION_NMI:
6153 intr_info = vmx_get_intr_info(vcpu);
6154 if (is_nmi(intr_info))
6156 else if (is_page_fault(intr_info))
6157 return vcpu->arch.apf.host_apf_flags ||
6158 vmx_need_pf_intercept(vcpu);
6159 else if (is_debug(intr_info) &&
6161 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6163 else if (is_breakpoint(intr_info) &&
6164 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6166 else if (is_alignment_check(intr_info) &&
6167 !vmx_guest_inject_ac(vcpu))
6170 case EXIT_REASON_EXTERNAL_INTERRUPT:
6172 case EXIT_REASON_MCE_DURING_VMENTRY:
6174 case EXIT_REASON_EPT_VIOLATION:
6176 * L0 always deals with the EPT violation. If nested EPT is
6177 * used, and the nested mmu code discovers that the address is
6178 * missing in the guest EPT table (EPT12), the EPT violation
6179 * will be injected with nested_ept_inject_page_fault()
6182 case EXIT_REASON_EPT_MISCONFIG:
6184 * L2 never uses directly L1's EPT, but rather L0's own EPT
6185 * table (shadow on EPT) or a merged EPT table that L0 built
6186 * (EPT on EPT). So any problems with the structure of the
6187 * table is L0's fault.
6190 case EXIT_REASON_PREEMPTION_TIMER:
6192 case EXIT_REASON_PML_FULL:
6194 * PML is emulated for an L1 VMM and should never be enabled in
6195 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6198 case EXIT_REASON_VMFUNC:
6199 /* VM functions are emulated through L2->L0 vmexits. */
6201 case EXIT_REASON_BUS_LOCK:
6203 * At present, bus lock VM exit is never exposed to L1.
6204 * Handle L2's bus locks in L0 directly.
6207 case EXIT_REASON_VMCALL:
6208 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6209 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6210 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6211 kvm_hv_is_tlb_flush_hcall(vcpu);
6219 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6220 * is_guest_mode (L2).
6222 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6223 union vmx_exit_reason exit_reason)
6225 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6228 switch ((u16)exit_reason.basic) {
6229 case EXIT_REASON_EXCEPTION_NMI:
6230 intr_info = vmx_get_intr_info(vcpu);
6231 if (is_nmi(intr_info))
6233 else if (is_page_fault(intr_info))
6235 return vmcs12->exception_bitmap &
6236 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6237 case EXIT_REASON_EXTERNAL_INTERRUPT:
6238 return nested_exit_on_intr(vcpu);
6239 case EXIT_REASON_TRIPLE_FAULT:
6241 case EXIT_REASON_INTERRUPT_WINDOW:
6242 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6243 case EXIT_REASON_NMI_WINDOW:
6244 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6245 case EXIT_REASON_TASK_SWITCH:
6247 case EXIT_REASON_CPUID:
6249 case EXIT_REASON_HLT:
6250 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6251 case EXIT_REASON_INVD:
6253 case EXIT_REASON_INVLPG:
6254 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6255 case EXIT_REASON_RDPMC:
6256 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6257 case EXIT_REASON_RDRAND:
6258 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6259 case EXIT_REASON_RDSEED:
6260 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6261 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6262 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6263 case EXIT_REASON_VMREAD:
6264 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6265 vmcs12->vmread_bitmap);
6266 case EXIT_REASON_VMWRITE:
6267 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6268 vmcs12->vmwrite_bitmap);
6269 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6270 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6271 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6272 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6273 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6275 * VMX instructions trap unconditionally. This allows L1 to
6276 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6279 case EXIT_REASON_CR_ACCESS:
6280 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6281 case EXIT_REASON_DR_ACCESS:
6282 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6283 case EXIT_REASON_IO_INSTRUCTION:
6284 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6285 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6286 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6287 case EXIT_REASON_MSR_READ:
6288 case EXIT_REASON_MSR_WRITE:
6289 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6290 case EXIT_REASON_INVALID_STATE:
6292 case EXIT_REASON_MWAIT_INSTRUCTION:
6293 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6294 case EXIT_REASON_MONITOR_TRAP_FLAG:
6295 return nested_vmx_exit_handled_mtf(vmcs12);
6296 case EXIT_REASON_MONITOR_INSTRUCTION:
6297 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6298 case EXIT_REASON_PAUSE_INSTRUCTION:
6299 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6300 nested_cpu_has2(vmcs12,
6301 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6302 case EXIT_REASON_MCE_DURING_VMENTRY:
6304 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6305 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6306 case EXIT_REASON_APIC_ACCESS:
6307 case EXIT_REASON_APIC_WRITE:
6308 case EXIT_REASON_EOI_INDUCED:
6310 * The controls for "virtualize APIC accesses," "APIC-
6311 * register virtualization," and "virtual-interrupt
6312 * delivery" only come from vmcs12.
6315 case EXIT_REASON_INVPCID:
6317 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6318 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6319 case EXIT_REASON_WBINVD:
6320 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6321 case EXIT_REASON_XSETBV:
6323 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6325 * This should never happen, since it is not possible to
6326 * set XSS to a non-zero value---neither in L1 nor in L2.
6327 * If if it were, XSS would have to be checked against
6328 * the XSS exit bitmap in vmcs12.
6330 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6331 case EXIT_REASON_UMWAIT:
6332 case EXIT_REASON_TPAUSE:
6333 return nested_cpu_has2(vmcs12,
6334 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6335 case EXIT_REASON_ENCLS:
6336 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6337 case EXIT_REASON_NOTIFY:
6338 /* Notify VM exit is not exposed to L1 */
6346 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6347 * reflected into L1.
6349 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6351 struct vcpu_vmx *vmx = to_vmx(vcpu);
6352 union vmx_exit_reason exit_reason = vmx->exit_reason;
6353 unsigned long exit_qual;
6356 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6359 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6360 * has already loaded L2's state.
6362 if (unlikely(vmx->fail)) {
6363 trace_kvm_nested_vmenter_failed(
6364 "hardware VM-instruction error: ",
6365 vmcs_read32(VM_INSTRUCTION_ERROR));
6368 goto reflect_vmexit;
6371 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6373 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6374 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6377 /* If L1 doesn't want the exit, handle it in L0. */
6378 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6382 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6383 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6384 * need to be synthesized by querying the in-kernel LAPIC, but external
6385 * interrupts are never reflected to L1 so it's a non-issue.
6387 exit_intr_info = vmx_get_intr_info(vcpu);
6388 if (is_exception_with_error_code(exit_intr_info)) {
6389 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6391 vmcs12->vm_exit_intr_error_code =
6392 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6394 exit_qual = vmx_get_exit_qual(vcpu);
6397 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6401 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6402 struct kvm_nested_state __user *user_kvm_nested_state,
6405 struct vcpu_vmx *vmx;
6406 struct vmcs12 *vmcs12;
6407 struct kvm_nested_state kvm_state = {
6409 .format = KVM_STATE_NESTED_FORMAT_VMX,
6410 .size = sizeof(kvm_state),
6412 .hdr.vmx.vmxon_pa = INVALID_GPA,
6413 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6414 .hdr.vmx.preemption_timer_deadline = 0,
6416 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6417 &user_kvm_nested_state->data.vmx[0];
6420 return kvm_state.size + sizeof(*user_vmx_nested_state);
6423 vmcs12 = get_vmcs12(vcpu);
6425 if (nested_vmx_allowed(vcpu) &&
6426 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6427 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6428 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6430 if (vmx_has_valid_vmcs12(vcpu)) {
6431 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6433 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6434 if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6435 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6437 if (is_guest_mode(vcpu) &&
6438 nested_cpu_has_shadow_vmcs(vmcs12) &&
6439 vmcs12->vmcs_link_pointer != INVALID_GPA)
6440 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6443 if (vmx->nested.smm.vmxon)
6444 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6446 if (vmx->nested.smm.guest_mode)
6447 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6449 if (is_guest_mode(vcpu)) {
6450 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6452 if (vmx->nested.nested_run_pending)
6453 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6455 if (vmx->nested.mtf_pending)
6456 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6458 if (nested_cpu_has_preemption_timer(vmcs12) &&
6459 vmx->nested.has_preemption_timer_deadline) {
6460 kvm_state.hdr.vmx.flags |=
6461 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6462 kvm_state.hdr.vmx.preemption_timer_deadline =
6463 vmx->nested.preemption_timer_deadline;
6468 if (user_data_size < kvm_state.size)
6471 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6474 if (!vmx_has_valid_vmcs12(vcpu))
6478 * When running L2, the authoritative vmcs12 state is in the
6479 * vmcs02. When running L1, the authoritative vmcs12 state is
6480 * in the shadow or enlightened vmcs linked to vmcs01, unless
6481 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6482 * vmcs12 state is in the vmcs12 already.
6484 if (is_guest_mode(vcpu)) {
6485 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6486 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6488 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6489 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6490 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6492 * L1 hypervisor is not obliged to keep eVMCS
6493 * clean fields data always up-to-date while
6494 * not in guest mode, 'hv_clean_fields' is only
6495 * supposed to be actual upon vmentry so we need
6496 * to ignore it here and do full copy.
6498 copy_enlightened_to_vmcs12(vmx, 0);
6499 else if (enable_shadow_vmcs)
6500 copy_shadow_to_vmcs12(vmx);
6504 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6505 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6508 * Copy over the full allocated size of vmcs12 rather than just the size
6511 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6514 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6515 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6516 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6517 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6521 return kvm_state.size;
6524 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6526 if (is_guest_mode(vcpu)) {
6527 to_vmx(vcpu)->nested.nested_run_pending = 0;
6528 nested_vmx_vmexit(vcpu, -1, 0, 0);
6533 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6534 struct kvm_nested_state __user *user_kvm_nested_state,
6535 struct kvm_nested_state *kvm_state)
6537 struct vcpu_vmx *vmx = to_vmx(vcpu);
6538 struct vmcs12 *vmcs12;
6539 enum vm_entry_failure_code ignored;
6540 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6541 &user_kvm_nested_state->data.vmx[0];
6544 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6547 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6548 if (kvm_state->hdr.vmx.smm.flags)
6551 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6555 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6556 * enable eVMCS capability on vCPU. However, since then
6557 * code was changed such that flag signals vmcs12 should
6558 * be copied into eVMCS in guest memory.
6560 * To preserve backwards compatability, allow user
6561 * to set this flag even when there is no VMXON region.
6563 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6566 if (!nested_vmx_allowed(vcpu))
6569 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6573 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6574 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6577 if (kvm_state->hdr.vmx.smm.flags &
6578 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6581 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6585 * SMM temporarily disables VMX, so we cannot be in guest mode,
6586 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6591 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6592 : kvm_state->hdr.vmx.smm.flags)
6595 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6596 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6599 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6600 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6603 vmx_leave_nested(vcpu);
6605 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6608 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6609 ret = enter_vmx_operation(vcpu);
6613 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6614 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6615 /* See vmx_has_valid_vmcs12. */
6616 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6617 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6618 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6624 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6625 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6626 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6629 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6630 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6632 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6633 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6634 * restored yet. EVMCS will be mapped from
6635 * nested_get_vmcs12_pages().
6637 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6638 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6643 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6644 vmx->nested.smm.vmxon = true;
6645 vmx->nested.vmxon = false;
6647 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6648 vmx->nested.smm.guest_mode = true;
6651 vmcs12 = get_vmcs12(vcpu);
6652 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6655 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6658 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6661 vmx->nested.nested_run_pending =
6662 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6664 vmx->nested.mtf_pending =
6665 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6668 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6669 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6670 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6672 if (kvm_state->size <
6673 sizeof(*kvm_state) +
6674 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6675 goto error_guest_mode;
6677 if (copy_from_user(shadow_vmcs12,
6678 user_vmx_nested_state->shadow_vmcs12,
6679 sizeof(*shadow_vmcs12))) {
6681 goto error_guest_mode;
6684 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6685 !shadow_vmcs12->hdr.shadow_vmcs)
6686 goto error_guest_mode;
6689 vmx->nested.has_preemption_timer_deadline = false;
6690 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6691 vmx->nested.has_preemption_timer_deadline = true;
6692 vmx->nested.preemption_timer_deadline =
6693 kvm_state->hdr.vmx.preemption_timer_deadline;
6696 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6697 nested_vmx_check_host_state(vcpu, vmcs12) ||
6698 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6699 goto error_guest_mode;
6701 vmx->nested.dirty_vmcs12 = true;
6702 vmx->nested.force_msr_bitmap_recalc = true;
6703 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6705 goto error_guest_mode;
6707 if (vmx->nested.mtf_pending)
6708 kvm_make_request(KVM_REQ_EVENT, vcpu);
6713 vmx->nested.nested_run_pending = 0;
6717 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6719 if (enable_shadow_vmcs) {
6720 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6721 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6726 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6727 * that madness to get the encoding for comparison.
6729 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6731 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6734 * Note these are the so called "index" of the VMCS field encoding, not
6735 * the index into vmcs12.
6737 unsigned int max_idx, idx;
6741 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6742 * vmcs12, regardless of whether or not the associated feature is
6743 * exposed to L1. Simply find the field with the highest index.
6746 for (i = 0; i < nr_vmcs12_fields; i++) {
6747 /* The vmcs12 table is very, very sparsely populated. */
6748 if (!vmcs12_field_offsets[i])
6751 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6756 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6760 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6761 * returned for the various VMX controls MSRs when nested VMX is enabled.
6762 * The same values should also be used to verify that vmcs12 control fields are
6763 * valid during nested entry from L1 to L2.
6764 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6765 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6766 * bit in the high half is on if the corresponding bit in the control field
6767 * may be on. See also vmx_control_verify().
6769 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
6771 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
6774 * Note that as a general rule, the high half of the MSRs (bits in
6775 * the control fields which may be 1) should be initialized by the
6776 * intersection of the underlying hardware's MSR (i.e., features which
6777 * can be supported) and the list of features we want to expose -
6778 * because they are known to be properly supported in our code.
6779 * Also, usually, the low half of the MSRs (bits which must be 1) can
6780 * be set to 0, meaning that L1 may turn off any of these bits. The
6781 * reason is that if one of these bits is necessary, it will appear
6782 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6783 * fields of vmcs01 and vmcs02, will turn these bits off - and
6784 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6785 * These rules have exceptions below.
6788 /* pin-based controls */
6789 msrs->pinbased_ctls_low =
6790 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6792 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6793 msrs->pinbased_ctls_high &=
6794 PIN_BASED_EXT_INTR_MASK |
6795 PIN_BASED_NMI_EXITING |
6796 PIN_BASED_VIRTUAL_NMIS |
6797 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6798 msrs->pinbased_ctls_high |=
6799 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6800 PIN_BASED_VMX_PREEMPTION_TIMER;
6803 msrs->exit_ctls_low =
6804 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6806 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6807 msrs->exit_ctls_high &=
6808 #ifdef CONFIG_X86_64
6809 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6811 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6812 VM_EXIT_CLEAR_BNDCFGS;
6813 msrs->exit_ctls_high |=
6814 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6815 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6816 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6817 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6819 /* We support free control of debug control saving. */
6820 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6822 /* entry controls */
6823 msrs->entry_ctls_low =
6824 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6826 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6827 msrs->entry_ctls_high &=
6828 #ifdef CONFIG_X86_64
6829 VM_ENTRY_IA32E_MODE |
6831 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6832 msrs->entry_ctls_high |=
6833 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6834 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6836 /* We support free control of debug control loading. */
6837 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6839 /* cpu-based controls */
6840 msrs->procbased_ctls_low =
6841 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6843 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6844 msrs->procbased_ctls_high &=
6845 CPU_BASED_INTR_WINDOW_EXITING |
6846 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6847 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6848 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6849 CPU_BASED_CR3_STORE_EXITING |
6850 #ifdef CONFIG_X86_64
6851 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6853 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6854 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6855 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6856 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6857 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6859 * We can allow some features even when not supported by the
6860 * hardware. For example, L1 can specify an MSR bitmap - and we
6861 * can use it to avoid exits to L1 - even when L0 runs L2
6862 * without MSR bitmaps.
6864 msrs->procbased_ctls_high |=
6865 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6866 CPU_BASED_USE_MSR_BITMAPS;
6868 /* We support free control of CR3 access interception. */
6869 msrs->procbased_ctls_low &=
6870 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6873 * secondary cpu-based controls. Do not include those that
6874 * depend on CPUID bits, they are added later by
6875 * vmx_vcpu_after_set_cpuid.
6877 msrs->secondary_ctls_low = 0;
6879 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6880 msrs->secondary_ctls_high &=
6881 SECONDARY_EXEC_DESC |
6882 SECONDARY_EXEC_ENABLE_RDTSCP |
6883 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6884 SECONDARY_EXEC_WBINVD_EXITING |
6885 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6886 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6887 SECONDARY_EXEC_RDRAND_EXITING |
6888 SECONDARY_EXEC_ENABLE_INVPCID |
6889 SECONDARY_EXEC_ENABLE_VMFUNC |
6890 SECONDARY_EXEC_RDSEED_EXITING |
6891 SECONDARY_EXEC_XSAVES |
6892 SECONDARY_EXEC_TSC_SCALING |
6893 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6896 * We can emulate "VMCS shadowing," even if the hardware
6897 * doesn't support it.
6899 msrs->secondary_ctls_high |=
6900 SECONDARY_EXEC_SHADOW_VMCS;
6903 /* nested EPT: emulate EPT also to L1 */
6904 msrs->secondary_ctls_high |=
6905 SECONDARY_EXEC_ENABLE_EPT;
6907 VMX_EPT_PAGE_WALK_4_BIT |
6908 VMX_EPT_PAGE_WALK_5_BIT |
6910 VMX_EPT_INVEPT_BIT |
6911 VMX_EPT_EXECUTE_ONLY_BIT;
6913 msrs->ept_caps &= ept_caps;
6914 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6915 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6916 VMX_EPT_1GB_PAGE_BIT;
6917 if (enable_ept_ad_bits) {
6918 msrs->secondary_ctls_high |=
6919 SECONDARY_EXEC_ENABLE_PML;
6920 msrs->ept_caps |= VMX_EPT_AD_BIT;
6924 * Advertise EPTP switching irrespective of hardware support,
6925 * KVM emulates it in software so long as VMFUNC is supported.
6927 if (cpu_has_vmx_vmfunc())
6928 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
6932 * Old versions of KVM use the single-context version without
6933 * checking for support, so declare that it is supported even
6934 * though it is treated as global context. The alternative is
6935 * not failing the single-context invvpid, and it is worse.
6938 msrs->secondary_ctls_high |=
6939 SECONDARY_EXEC_ENABLE_VPID;
6940 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6941 VMX_VPID_EXTENT_SUPPORTED_MASK;
6944 if (enable_unrestricted_guest)
6945 msrs->secondary_ctls_high |=
6946 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6948 if (flexpriority_enabled)
6949 msrs->secondary_ctls_high |=
6950 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6953 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6955 /* miscellaneous data */
6956 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
6958 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6959 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6960 VMX_MISC_ACTIVITY_HLT |
6961 VMX_MISC_ACTIVITY_WAIT_SIPI;
6962 msrs->misc_high = 0;
6965 * This MSR reports some information about VMX support. We
6966 * should return information about the VMX we emulate for the
6967 * guest, and the VMCS structure we give it - not about the
6968 * VMX support of the underlying hardware.
6972 VMX_BASIC_TRUE_CTLS |
6973 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6974 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6976 if (cpu_has_vmx_basic_inout())
6977 msrs->basic |= VMX_BASIC_INOUT;
6980 * These MSRs specify bits which the guest must keep fixed on
6981 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6982 * We picked the standard core2 setting.
6984 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6985 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6986 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6987 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6989 /* These MSRs specify bits which the guest must keep fixed off. */
6990 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6991 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6993 if (vmx_umip_emulated())
6994 msrs->cr4_fixed1 |= X86_CR4_UMIP;
6996 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6999 void nested_vmx_hardware_unsetup(void)
7003 if (enable_shadow_vmcs) {
7004 for (i = 0; i < VMX_BITMAP_NR; i++)
7005 free_page((unsigned long)vmx_bitmap[i]);
7009 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7013 if (!cpu_has_vmx_shadow_vmcs())
7014 enable_shadow_vmcs = 0;
7015 if (enable_shadow_vmcs) {
7016 for (i = 0; i < VMX_BITMAP_NR; i++) {
7018 * The vmx_bitmap is not tied to a VM and so should
7019 * not be charged to a memcg.
7021 vmx_bitmap[i] = (unsigned long *)
7022 __get_free_page(GFP_KERNEL);
7023 if (!vmx_bitmap[i]) {
7024 nested_vmx_hardware_unsetup();
7029 init_vmcs_shadow_fields();
7032 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7033 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7034 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7035 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7036 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7037 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7038 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7039 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7040 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7041 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7042 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7043 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7048 struct kvm_x86_nested_ops vmx_nested_ops = {
7049 .leave_nested = vmx_leave_nested,
7050 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7051 .check_events = vmx_check_nested_events,
7052 .has_events = vmx_has_nested_events,
7053 .triple_fault = nested_vmx_triple_fault,
7054 .get_state = vmx_get_nested_state,
7055 .set_state = vmx_set_nested_state,
7056 .get_nested_state_pages = vmx_get_nested_state_pages,
7057 .write_log_dirty = nested_vmx_write_pml_buffer,
7058 .enable_evmcs = nested_enable_evmcs,
7059 .get_evmcs_version = nested_get_evmcs_version,
7060 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,