1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
19 static bool __read_mostly enable_shadow_vmcs = 1;
20 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
22 static bool __read_mostly nested_early_check = 0;
23 module_param(nested_early_check, bool, S_IRUGO);
25 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
28 * Hyper-V requires all of these, so mark them as supported even though
29 * they are just treated the same as all-context.
31 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
32 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
33 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
34 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
35 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
37 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
44 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
46 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
47 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
49 struct shadow_vmcs_field {
53 static struct shadow_vmcs_field shadow_read_only_fields[] = {
54 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 #include "vmcs_shadow_fields.h"
57 static int max_shadow_read_only_fields =
58 ARRAY_SIZE(shadow_read_only_fields);
60 static struct shadow_vmcs_field shadow_read_write_fields[] = {
61 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 #include "vmcs_shadow_fields.h"
64 static int max_shadow_read_write_fields =
65 ARRAY_SIZE(shadow_read_write_fields);
67 static void init_vmcs_shadow_fields(void)
71 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
72 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
74 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
76 u16 field = entry.encoding;
78 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
79 (i + 1 == max_shadow_read_only_fields ||
80 shadow_read_only_fields[i + 1].encoding != field + 1))
81 pr_err("Missing field from shadow_read_only_field %x\n",
84 clear_bit(field, vmx_vmread_bitmap);
89 entry.offset += sizeof(u32);
91 shadow_read_only_fields[j++] = entry;
93 max_shadow_read_only_fields = j;
95 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
97 u16 field = entry.encoding;
99 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
100 (i + 1 == max_shadow_read_write_fields ||
101 shadow_read_write_fields[i + 1].encoding != field + 1))
102 pr_err("Missing field from shadow_read_write_field %x\n",
105 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
106 field <= GUEST_TR_AR_BYTES,
107 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
110 * PML and the preemption timer can be emulated, but the
111 * processor cannot vmwrite to fields that don't exist
115 case GUEST_PML_INDEX:
116 if (!cpu_has_vmx_pml())
119 case VMX_PREEMPTION_TIMER_VALUE:
120 if (!cpu_has_vmx_preemption_timer())
123 case GUEST_INTR_STATUS:
124 if (!cpu_has_vmx_apicv())
131 clear_bit(field, vmx_vmwrite_bitmap);
132 clear_bit(field, vmx_vmread_bitmap);
137 entry.offset += sizeof(u32);
139 shadow_read_write_fields[j++] = entry;
141 max_shadow_read_write_fields = j;
145 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
146 * set the success or error code of an emulated VMX instruction (as specified
147 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
150 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
152 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
153 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
154 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
155 return kvm_skip_emulated_instruction(vcpu);
158 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
160 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
161 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
162 X86_EFLAGS_SF | X86_EFLAGS_OF))
164 return kvm_skip_emulated_instruction(vcpu);
167 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
168 u32 vm_instruction_error)
170 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
171 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
172 X86_EFLAGS_SF | X86_EFLAGS_OF))
174 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
176 * We don't need to force sync to shadow VMCS because
177 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
178 * fields and thus must be synced.
180 if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
181 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
183 return kvm_skip_emulated_instruction(vcpu);
186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 struct vcpu_vmx *vmx = to_vmx(vcpu);
191 * failValid writes the error number to the current VMCS, which
192 * can't be done if there isn't a current VMCS.
194 if (vmx->nested.current_vmptr == -1ull &&
195 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
196 return nested_vmx_failInvalid(vcpu);
198 return nested_vmx_failValid(vcpu, vm_instruction_error);
201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
203 /* TODO: not to reset guest simply here. */
204 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
210 return fixed_bits_valid(control, low, high);
213 static inline u64 vmx_control_msr(u32 low, u32 high)
215 return low | ((u64)high << 32);
218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
220 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221 vmcs_write64(VMCS_LINK_POINTER, -1ull);
222 vmx->nested.need_vmcs12_to_shadow_sync = false;
225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
227 struct vcpu_vmx *vmx = to_vmx(vcpu);
229 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
230 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
231 vmx->nested.hv_evmcs = NULL;
234 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238 struct loaded_vmcs *prev)
240 struct vmcs_host_state *dest, *src;
242 if (unlikely(!vmx->guest_state_loaded))
245 src = &prev->host_state;
246 dest = &vmx->loaded_vmcs->host_state;
248 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249 dest->ldt_sel = src->ldt_sel;
251 dest->ds_sel = src->ds_sel;
252 dest->es_sel = src->es_sel;
256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
258 struct vcpu_vmx *vmx = to_vmx(vcpu);
259 struct loaded_vmcs *prev;
262 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
266 prev = vmx->loaded_vmcs;
267 vmx->loaded_vmcs = vmcs;
268 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269 vmx_sync_vmcs_host_state(vmx, prev);
272 vmx_register_cache_reset(vcpu);
276 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277 * just stops using VMX.
279 static void free_nested(struct kvm_vcpu *vcpu)
281 struct vcpu_vmx *vmx = to_vmx(vcpu);
283 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
286 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
289 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
291 vmx->nested.vmxon = false;
292 vmx->nested.smm.vmxon = false;
293 free_vpid(vmx->nested.vpid02);
294 vmx->nested.posted_intr_nv = -1;
295 vmx->nested.current_vmptr = -1ull;
296 if (enable_shadow_vmcs) {
297 vmx_disable_shadow_vmcs(vmx);
298 vmcs_clear(vmx->vmcs01.shadow_vmcs);
299 free_vmcs(vmx->vmcs01.shadow_vmcs);
300 vmx->vmcs01.shadow_vmcs = NULL;
302 kfree(vmx->nested.cached_vmcs12);
303 vmx->nested.cached_vmcs12 = NULL;
304 kfree(vmx->nested.cached_shadow_vmcs12);
305 vmx->nested.cached_shadow_vmcs12 = NULL;
306 /* Unpin physical memory we referred to in the vmcs02 */
307 if (vmx->nested.apic_access_page) {
308 kvm_release_page_clean(vmx->nested.apic_access_page);
309 vmx->nested.apic_access_page = NULL;
311 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313 vmx->nested.pi_desc = NULL;
315 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
317 nested_release_evmcs(vcpu);
319 free_loaded_vmcs(&vmx->nested.vmcs02);
323 * Ensure that the current vmcs of the logical processor is the
324 * vmcs01 of the vcpu before calling free_nested().
326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
329 vmx_leave_nested(vcpu);
333 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
335 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
337 return VALID_PAGE(root_hpa) &&
338 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
341 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
345 struct kvm_mmu_root_info *cached_root;
347 WARN_ON_ONCE(!mmu_is_nested(vcpu));
349 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
350 cached_root = &vcpu->arch.mmu->prev_roots[i];
352 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
354 vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
358 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
359 struct x86_exception *fault)
361 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
362 struct vcpu_vmx *vmx = to_vmx(vcpu);
364 unsigned long exit_qualification = vcpu->arch.exit_qualification;
366 if (vmx->nested.pml_full) {
367 vm_exit_reason = EXIT_REASON_PML_FULL;
368 vmx->nested.pml_full = false;
369 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
371 if (fault->error_code & PFERR_RSVD_MASK)
372 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
374 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
377 * Although the caller (kvm_inject_emulated_page_fault) would
378 * have already synced the faulting address in the shadow EPT
379 * tables for the current EPTP12, we also need to sync it for
380 * any other cached EPTP02s based on the same EP4TA, since the
381 * TLB associates mappings to the EP4TA rather than the full EPTP.
383 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
387 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
388 vmcs12->guest_physical_address = fault->address;
391 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
393 kvm_init_shadow_ept_mmu(vcpu,
394 to_vmx(vcpu)->nested.msrs.ept_caps &
395 VMX_EPT_EXECUTE_ONLY_BIT,
396 nested_ept_ad_enabled(vcpu),
397 nested_ept_get_eptp(vcpu));
400 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
402 WARN_ON(mmu_is_nested(vcpu));
404 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
405 nested_ept_new_eptp(vcpu);
406 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
407 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
408 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
410 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
413 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
415 vcpu->arch.mmu = &vcpu->arch.root_mmu;
416 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
419 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
422 bool inequality, bit;
424 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
426 (error_code & vmcs12->page_fault_error_code_mask) !=
427 vmcs12->page_fault_error_code_match;
428 return inequality ^ bit;
433 * KVM wants to inject page-faults which it got to the guest. This function
434 * checks whether in a nested guest, we need to inject them to L1 or L2.
436 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
438 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
439 unsigned int nr = vcpu->arch.exception.nr;
440 bool has_payload = vcpu->arch.exception.has_payload;
441 unsigned long payload = vcpu->arch.exception.payload;
443 if (nr == PF_VECTOR) {
444 if (vcpu->arch.exception.nested_apf) {
445 *exit_qual = vcpu->arch.apf.nested_apf_token;
448 if (nested_vmx_is_page_fault_vmexit(vmcs12,
449 vcpu->arch.exception.error_code)) {
450 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
453 } else if (vmcs12->exception_bitmap & (1u << nr)) {
454 if (nr == DB_VECTOR) {
456 payload = vcpu->arch.dr6;
458 payload ^= DR6_ACTIVE_LOW;
460 *exit_qual = payload;
470 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
471 struct x86_exception *fault)
473 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
475 WARN_ON(!is_guest_mode(vcpu));
477 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
478 !to_vmx(vcpu)->nested.nested_run_pending) {
479 vmcs12->vm_exit_intr_error_code = fault->error_code;
480 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
481 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
482 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
485 kvm_inject_page_fault(vcpu, fault);
489 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
490 struct vmcs12 *vmcs12)
492 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
495 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
496 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
502 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
503 struct vmcs12 *vmcs12)
505 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
508 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
514 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
515 struct vmcs12 *vmcs12)
517 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
520 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
527 * Check if MSR is intercepted for L01 MSR bitmap.
529 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
531 unsigned long *msr_bitmap;
532 int f = sizeof(unsigned long);
534 if (!cpu_has_vmx_msr_bitmap())
537 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
540 return !!test_bit(msr, msr_bitmap + 0x800 / f);
541 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
543 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
550 * If a msr is allowed by L0, we should check whether it is allowed by L1.
551 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
553 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
554 unsigned long *msr_bitmap_nested,
557 int f = sizeof(unsigned long);
560 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
561 * have the write-low and read-high bitmap offsets the wrong way round.
562 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
565 if (type & MSR_TYPE_R &&
566 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
568 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
570 if (type & MSR_TYPE_W &&
571 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
573 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
575 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
577 if (type & MSR_TYPE_R &&
578 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
580 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
582 if (type & MSR_TYPE_W &&
583 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
585 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
590 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
594 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595 unsigned word = msr / BITS_PER_LONG;
597 msr_bitmap[word] = ~0;
598 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
603 * Merge L0's and L1's MSR bitmap, return false to indicate that
604 * we do not use the hardware.
606 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
607 struct vmcs12 *vmcs12)
610 unsigned long *msr_bitmap_l1;
611 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
612 struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
614 /* Nothing to do if the MSR bitmap is not in use. */
615 if (!cpu_has_vmx_msr_bitmap() ||
616 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
619 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
622 msr_bitmap_l1 = (unsigned long *)map->hva;
625 * To keep the control flow simple, pay eight 8-byte writes (sixteen
626 * 4-byte writes on 32-bit systems) up front to enable intercepts for
627 * the x2APIC MSR range and selectively disable them below.
629 enable_x2apic_msr_intercepts(msr_bitmap_l0);
631 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
632 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
634 * L0 need not intercept reads for MSRs between 0x800
635 * and 0x8ff, it just lets the processor take the value
636 * from the virtual-APIC page; take those 256 bits
637 * directly from the L1 bitmap.
639 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
640 unsigned word = msr / BITS_PER_LONG;
642 msr_bitmap_l0[word] = msr_bitmap_l1[word];
646 nested_vmx_disable_intercept_for_msr(
647 msr_bitmap_l1, msr_bitmap_l0,
648 X2APIC_MSR(APIC_TASKPRI),
649 MSR_TYPE_R | MSR_TYPE_W);
651 if (nested_cpu_has_vid(vmcs12)) {
652 nested_vmx_disable_intercept_for_msr(
653 msr_bitmap_l1, msr_bitmap_l0,
654 X2APIC_MSR(APIC_EOI),
656 nested_vmx_disable_intercept_for_msr(
657 msr_bitmap_l1, msr_bitmap_l0,
658 X2APIC_MSR(APIC_SELF_IPI),
663 /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
665 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
666 MSR_FS_BASE, MSR_TYPE_RW);
668 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
669 MSR_GS_BASE, MSR_TYPE_RW);
671 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
672 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
676 * Checking the L0->L1 bitmap is trying to verify two things:
678 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
679 * ensures that we do not accidentally generate an L02 MSR bitmap
680 * from the L12 MSR bitmap that is too permissive.
681 * 2. That L1 or L2s have actually used the MSR. This avoids
682 * unnecessarily merging of the bitmap if the MSR is unused. This
683 * works properly because we only update the L01 MSR bitmap lazily.
684 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
685 * updated to reflect this when L1 (or its L2s) actually write to
688 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
689 nested_vmx_disable_intercept_for_msr(
690 msr_bitmap_l1, msr_bitmap_l0,
692 MSR_TYPE_R | MSR_TYPE_W);
694 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
695 nested_vmx_disable_intercept_for_msr(
696 msr_bitmap_l1, msr_bitmap_l0,
700 kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
705 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
706 struct vmcs12 *vmcs12)
708 struct kvm_host_map map;
709 struct vmcs12 *shadow;
711 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
712 vmcs12->vmcs_link_pointer == -1ull)
715 shadow = get_shadow_vmcs12(vcpu);
717 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
720 memcpy(shadow, map.hva, VMCS12_SIZE);
721 kvm_vcpu_unmap(vcpu, &map, false);
724 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
725 struct vmcs12 *vmcs12)
727 struct vcpu_vmx *vmx = to_vmx(vcpu);
729 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
730 vmcs12->vmcs_link_pointer == -1ull)
733 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
734 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
738 * In nested virtualization, check if L1 has set
739 * VM_EXIT_ACK_INTR_ON_EXIT
741 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
743 return get_vmcs12(vcpu)->vm_exit_controls &
744 VM_EXIT_ACK_INTR_ON_EXIT;
747 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
748 struct vmcs12 *vmcs12)
750 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
751 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
757 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
758 struct vmcs12 *vmcs12)
760 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
761 !nested_cpu_has_apic_reg_virt(vmcs12) &&
762 !nested_cpu_has_vid(vmcs12) &&
763 !nested_cpu_has_posted_intr(vmcs12))
767 * If virtualize x2apic mode is enabled,
768 * virtualize apic access must be disabled.
770 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
771 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
775 * If virtual interrupt delivery is enabled,
776 * we must exit on external interrupts.
778 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
782 * bits 15:8 should be zero in posted_intr_nv,
783 * the descriptor address has been already checked
784 * in nested_get_vmcs12_pages.
786 * bits 5:0 of posted_intr_desc_addr should be zero.
788 if (nested_cpu_has_posted_intr(vmcs12) &&
789 (CC(!nested_cpu_has_vid(vmcs12)) ||
790 CC(!nested_exit_intr_ack_set(vcpu)) ||
791 CC((vmcs12->posted_intr_nv & 0xff00)) ||
792 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
795 /* tpr shadow is needed by all apicv features. */
796 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
802 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
808 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
809 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
815 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
816 struct vmcs12 *vmcs12)
818 if (CC(nested_vmx_check_msr_switch(vcpu,
819 vmcs12->vm_exit_msr_load_count,
820 vmcs12->vm_exit_msr_load_addr)) ||
821 CC(nested_vmx_check_msr_switch(vcpu,
822 vmcs12->vm_exit_msr_store_count,
823 vmcs12->vm_exit_msr_store_addr)))
829 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
830 struct vmcs12 *vmcs12)
832 if (CC(nested_vmx_check_msr_switch(vcpu,
833 vmcs12->vm_entry_msr_load_count,
834 vmcs12->vm_entry_msr_load_addr)))
840 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
841 struct vmcs12 *vmcs12)
843 if (!nested_cpu_has_pml(vmcs12))
846 if (CC(!nested_cpu_has_ept(vmcs12)) ||
847 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
853 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
854 struct vmcs12 *vmcs12)
856 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
857 !nested_cpu_has_ept(vmcs12)))
862 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
863 struct vmcs12 *vmcs12)
865 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
866 !nested_cpu_has_ept(vmcs12)))
871 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
872 struct vmcs12 *vmcs12)
874 if (!nested_cpu_has_shadow_vmcs(vmcs12))
877 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
878 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
884 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
885 struct vmx_msr_entry *e)
887 /* x2APIC MSR accesses are not allowed */
888 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
890 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
891 CC(e->index == MSR_IA32_UCODE_REV))
893 if (CC(e->reserved != 0))
898 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
899 struct vmx_msr_entry *e)
901 if (CC(e->index == MSR_FS_BASE) ||
902 CC(e->index == MSR_GS_BASE) ||
903 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
904 nested_vmx_msr_check_common(vcpu, e))
909 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
910 struct vmx_msr_entry *e)
912 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
913 nested_vmx_msr_check_common(vcpu, e))
918 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
920 struct vcpu_vmx *vmx = to_vmx(vcpu);
921 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
922 vmx->nested.msrs.misc_high);
924 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
928 * Load guest's/host's msr at nested entry/exit.
929 * return 0 for success, entry index for failure.
931 * One of the failure modes for MSR load/store is when a list exceeds the
932 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
933 * as possible, process all valid entries before failing rather than precheck
934 * for a capacity violation.
936 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
939 struct vmx_msr_entry e;
940 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
942 for (i = 0; i < count; i++) {
943 if (unlikely(i >= max_msr_list_size))
946 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
948 pr_debug_ratelimited(
949 "%s cannot read MSR entry (%u, 0x%08llx)\n",
950 __func__, i, gpa + i * sizeof(e));
953 if (nested_vmx_load_msr_check(vcpu, &e)) {
954 pr_debug_ratelimited(
955 "%s check failed (%u, 0x%x, 0x%x)\n",
956 __func__, i, e.index, e.reserved);
959 if (kvm_set_msr(vcpu, e.index, e.value)) {
960 pr_debug_ratelimited(
961 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
962 __func__, i, e.index, e.value);
968 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
972 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
976 struct vcpu_vmx *vmx = to_vmx(vcpu);
979 * If the L0 hypervisor stored a more accurate value for the TSC that
980 * does not include the time taken for emulation of the L2->L1
981 * VM-exit in L0, use the more accurate value.
983 if (msr_index == MSR_IA32_TSC) {
984 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
988 u64 val = vmx->msr_autostore.guest.val[i].value;
990 *data = kvm_read_l1_tsc(vcpu, val);
995 if (kvm_get_msr(vcpu, msr_index, data)) {
996 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1003 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1004 struct vmx_msr_entry *e)
1006 if (kvm_vcpu_read_guest(vcpu,
1007 gpa + i * sizeof(*e),
1008 e, 2 * sizeof(u32))) {
1009 pr_debug_ratelimited(
1010 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1011 __func__, i, gpa + i * sizeof(*e));
1014 if (nested_vmx_store_msr_check(vcpu, e)) {
1015 pr_debug_ratelimited(
1016 "%s check failed (%u, 0x%x, 0x%x)\n",
1017 __func__, i, e->index, e->reserved);
1023 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1027 struct vmx_msr_entry e;
1028 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1030 for (i = 0; i < count; i++) {
1031 if (unlikely(i >= max_msr_list_size))
1034 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1037 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1040 if (kvm_vcpu_write_guest(vcpu,
1041 gpa + i * sizeof(e) +
1042 offsetof(struct vmx_msr_entry, value),
1043 &data, sizeof(data))) {
1044 pr_debug_ratelimited(
1045 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1046 __func__, i, e.index, data);
1053 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1055 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1056 u32 count = vmcs12->vm_exit_msr_store_count;
1057 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1058 struct vmx_msr_entry e;
1061 for (i = 0; i < count; i++) {
1062 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1065 if (e.index == msr_index)
1071 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1074 struct vcpu_vmx *vmx = to_vmx(vcpu);
1075 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1076 bool in_vmcs12_store_list;
1077 int msr_autostore_slot;
1078 bool in_autostore_list;
1081 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1082 in_autostore_list = msr_autostore_slot >= 0;
1083 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1085 if (in_vmcs12_store_list && !in_autostore_list) {
1086 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1088 * Emulated VMEntry does not fail here. Instead a less
1089 * accurate value will be returned by
1090 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1091 * instead of reading the value from the vmcs02 VMExit
1094 pr_warn_ratelimited(
1095 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1099 last = autostore->nr++;
1100 autostore->val[last].index = msr_index;
1101 } else if (!in_vmcs12_store_list && in_autostore_list) {
1102 last = --autostore->nr;
1103 autostore->val[msr_autostore_slot] = autostore->val[last];
1108 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1109 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1110 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1111 * @entry_failure_code.
1113 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1114 bool nested_ept, bool reload_pdptrs,
1115 enum vm_entry_failure_code *entry_failure_code)
1117 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1118 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1123 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1124 * must not be dereferenced.
1126 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1127 CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1128 *entry_failure_code = ENTRY_FAIL_PDPTE;
1133 kvm_mmu_new_pgd(vcpu, cr3);
1135 vcpu->arch.cr3 = cr3;
1136 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1138 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1145 * Returns if KVM is able to config CPU to tag TLB entries
1146 * populated by L2 differently than TLB entries populated
1149 * If L0 uses EPT, L1 and L2 run with different EPTP because
1150 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1151 * are tagged with different EPTP.
1153 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1154 * with different VPID (L1 entries are tagged with vmx->vpid
1155 * while L2 entries are tagged with vmx->nested.vpid02).
1157 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1159 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1161 return enable_ept ||
1162 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1165 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1166 struct vmcs12 *vmcs12,
1169 struct vcpu_vmx *vmx = to_vmx(vcpu);
1172 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1173 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1174 * full TLB flush from the guest's perspective. This is required even
1175 * if VPID is disabled in the host as KVM may need to synchronize the
1176 * MMU in response to the guest TLB flush.
1178 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1179 * EPT is a special snowflake, as guest-physical mappings aren't
1180 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1181 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1182 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1185 if (!nested_cpu_has_vpid(vmcs12)) {
1186 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1190 /* L2 should never have a VPID if VPID is disabled. */
1191 WARN_ON(!enable_vpid);
1194 * If VPID is enabled and used by vmc12, but L2 does not have a unique
1195 * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1196 * a VPID for L2, flush the current context as the effective ASID is
1197 * common to both L1 and L2.
1199 * Defer the flush so that it runs after vmcs02.EPTP has been set by
1200 * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1201 * redundant flushes further down the nested pipeline.
1203 * If a TLB flush isn't required due to any of the above, and vpid12 is
1204 * changing then the new "virtual" VPID (vpid12) will reuse the same
1205 * "real" VPID (vpid02), and so needs to be flushed. There's no direct
1206 * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1207 * all nested vCPUs. Remember, a flush on VM-Enter does not invalidate
1208 * guest-physical mappings, so there is no need to sync the nEPT MMU.
1210 if (!nested_has_guest_tlb_tag(vcpu)) {
1211 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1212 } else if (is_vmenter &&
1213 vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1214 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1215 vpid_sync_context(nested_get_vpid02(vcpu));
1219 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1224 return (superset | subset) == superset;
1227 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1229 const u64 feature_and_reserved =
1230 /* feature (except bit 48; see below) */
1231 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1233 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1234 u64 vmx_basic = vmx->nested.msrs.basic;
1236 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1240 * KVM does not emulate a version of VMX that constrains physical
1241 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1243 if (data & BIT_ULL(48))
1246 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1247 vmx_basic_vmcs_revision_id(data))
1250 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1253 vmx->nested.msrs.basic = data;
1258 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1263 switch (msr_index) {
1264 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1265 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1266 highp = &vmx->nested.msrs.pinbased_ctls_high;
1268 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1269 lowp = &vmx->nested.msrs.procbased_ctls_low;
1270 highp = &vmx->nested.msrs.procbased_ctls_high;
1272 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1273 lowp = &vmx->nested.msrs.exit_ctls_low;
1274 highp = &vmx->nested.msrs.exit_ctls_high;
1276 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1277 lowp = &vmx->nested.msrs.entry_ctls_low;
1278 highp = &vmx->nested.msrs.entry_ctls_high;
1280 case MSR_IA32_VMX_PROCBASED_CTLS2:
1281 lowp = &vmx->nested.msrs.secondary_ctls_low;
1282 highp = &vmx->nested.msrs.secondary_ctls_high;
1288 supported = vmx_control_msr(*lowp, *highp);
1290 /* Check must-be-1 bits are still 1. */
1291 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1294 /* Check must-be-0 bits are still 0. */
1295 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1299 *highp = data >> 32;
1303 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1305 const u64 feature_and_reserved_bits =
1307 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1308 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1310 GENMASK_ULL(13, 9) | BIT_ULL(31);
1313 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1314 vmx->nested.msrs.misc_high);
1316 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1319 if ((vmx->nested.msrs.pinbased_ctls_high &
1320 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1321 vmx_misc_preemption_timer_rate(data) !=
1322 vmx_misc_preemption_timer_rate(vmx_misc))
1325 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1328 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1331 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1334 vmx->nested.msrs.misc_low = data;
1335 vmx->nested.msrs.misc_high = data >> 32;
1340 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1342 u64 vmx_ept_vpid_cap;
1344 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1345 vmx->nested.msrs.vpid_caps);
1347 /* Every bit is either reserved or a feature bit. */
1348 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1351 vmx->nested.msrs.ept_caps = data;
1352 vmx->nested.msrs.vpid_caps = data >> 32;
1356 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1360 switch (msr_index) {
1361 case MSR_IA32_VMX_CR0_FIXED0:
1362 msr = &vmx->nested.msrs.cr0_fixed0;
1364 case MSR_IA32_VMX_CR4_FIXED0:
1365 msr = &vmx->nested.msrs.cr4_fixed0;
1372 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1373 * must be 1 in the restored value.
1375 if (!is_bitwise_subset(data, *msr, -1ULL))
1383 * Called when userspace is restoring VMX MSRs.
1385 * Returns 0 on success, non-0 otherwise.
1387 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1389 struct vcpu_vmx *vmx = to_vmx(vcpu);
1392 * Don't allow changes to the VMX capability MSRs while the vCPU
1393 * is in VMX operation.
1395 if (vmx->nested.vmxon)
1398 switch (msr_index) {
1399 case MSR_IA32_VMX_BASIC:
1400 return vmx_restore_vmx_basic(vmx, data);
1401 case MSR_IA32_VMX_PINBASED_CTLS:
1402 case MSR_IA32_VMX_PROCBASED_CTLS:
1403 case MSR_IA32_VMX_EXIT_CTLS:
1404 case MSR_IA32_VMX_ENTRY_CTLS:
1406 * The "non-true" VMX capability MSRs are generated from the
1407 * "true" MSRs, so we do not support restoring them directly.
1409 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1410 * should restore the "true" MSRs with the must-be-1 bits
1411 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1412 * DEFAULT SETTINGS".
1415 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1416 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1417 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1418 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1419 case MSR_IA32_VMX_PROCBASED_CTLS2:
1420 return vmx_restore_control_msr(vmx, msr_index, data);
1421 case MSR_IA32_VMX_MISC:
1422 return vmx_restore_vmx_misc(vmx, data);
1423 case MSR_IA32_VMX_CR0_FIXED0:
1424 case MSR_IA32_VMX_CR4_FIXED0:
1425 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1426 case MSR_IA32_VMX_CR0_FIXED1:
1427 case MSR_IA32_VMX_CR4_FIXED1:
1429 * These MSRs are generated based on the vCPU's CPUID, so we
1430 * do not support restoring them directly.
1433 case MSR_IA32_VMX_EPT_VPID_CAP:
1434 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1435 case MSR_IA32_VMX_VMCS_ENUM:
1436 vmx->nested.msrs.vmcs_enum = data;
1438 case MSR_IA32_VMX_VMFUNC:
1439 if (data & ~vmx->nested.msrs.vmfunc_controls)
1441 vmx->nested.msrs.vmfunc_controls = data;
1445 * The rest of the VMX capability MSRs do not support restore.
1451 /* Returns 0 on success, non-0 otherwise. */
1452 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1454 switch (msr_index) {
1455 case MSR_IA32_VMX_BASIC:
1456 *pdata = msrs->basic;
1458 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1459 case MSR_IA32_VMX_PINBASED_CTLS:
1460 *pdata = vmx_control_msr(
1461 msrs->pinbased_ctls_low,
1462 msrs->pinbased_ctls_high);
1463 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1464 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1466 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1467 case MSR_IA32_VMX_PROCBASED_CTLS:
1468 *pdata = vmx_control_msr(
1469 msrs->procbased_ctls_low,
1470 msrs->procbased_ctls_high);
1471 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1472 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1474 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1475 case MSR_IA32_VMX_EXIT_CTLS:
1476 *pdata = vmx_control_msr(
1477 msrs->exit_ctls_low,
1478 msrs->exit_ctls_high);
1479 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1480 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1482 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1483 case MSR_IA32_VMX_ENTRY_CTLS:
1484 *pdata = vmx_control_msr(
1485 msrs->entry_ctls_low,
1486 msrs->entry_ctls_high);
1487 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1488 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1490 case MSR_IA32_VMX_MISC:
1491 *pdata = vmx_control_msr(
1495 case MSR_IA32_VMX_CR0_FIXED0:
1496 *pdata = msrs->cr0_fixed0;
1498 case MSR_IA32_VMX_CR0_FIXED1:
1499 *pdata = msrs->cr0_fixed1;
1501 case MSR_IA32_VMX_CR4_FIXED0:
1502 *pdata = msrs->cr4_fixed0;
1504 case MSR_IA32_VMX_CR4_FIXED1:
1505 *pdata = msrs->cr4_fixed1;
1507 case MSR_IA32_VMX_VMCS_ENUM:
1508 *pdata = msrs->vmcs_enum;
1510 case MSR_IA32_VMX_PROCBASED_CTLS2:
1511 *pdata = vmx_control_msr(
1512 msrs->secondary_ctls_low,
1513 msrs->secondary_ctls_high);
1515 case MSR_IA32_VMX_EPT_VPID_CAP:
1516 *pdata = msrs->ept_caps |
1517 ((u64)msrs->vpid_caps << 32);
1519 case MSR_IA32_VMX_VMFUNC:
1520 *pdata = msrs->vmfunc_controls;
1530 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1531 * been modified by the L1 guest. Note, "writable" in this context means
1532 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1533 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1534 * VM-exit information fields (which are actually writable if the vCPU is
1535 * configured to support "VMWRITE to any supported field in the VMCS").
1537 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1539 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1540 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1541 struct shadow_vmcs_field field;
1545 if (WARN_ON(!shadow_vmcs))
1550 vmcs_load(shadow_vmcs);
1552 for (i = 0; i < max_shadow_read_write_fields; i++) {
1553 field = shadow_read_write_fields[i];
1554 val = __vmcs_readl(field.encoding);
1555 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1558 vmcs_clear(shadow_vmcs);
1559 vmcs_load(vmx->loaded_vmcs->vmcs);
1564 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1566 const struct shadow_vmcs_field *fields[] = {
1567 shadow_read_write_fields,
1568 shadow_read_only_fields
1570 const int max_fields[] = {
1571 max_shadow_read_write_fields,
1572 max_shadow_read_only_fields
1574 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1575 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1576 struct shadow_vmcs_field field;
1580 if (WARN_ON(!shadow_vmcs))
1583 vmcs_load(shadow_vmcs);
1585 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1586 for (i = 0; i < max_fields[q]; i++) {
1587 field = fields[q][i];
1588 val = vmcs12_read_any(vmcs12, field.encoding,
1590 __vmcs_writel(field.encoding, val);
1594 vmcs_clear(shadow_vmcs);
1595 vmcs_load(vmx->loaded_vmcs->vmcs);
1598 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1600 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1601 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1603 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1604 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1605 vmcs12->guest_rip = evmcs->guest_rip;
1607 if (unlikely(!(hv_clean_fields &
1608 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1609 vmcs12->guest_rsp = evmcs->guest_rsp;
1610 vmcs12->guest_rflags = evmcs->guest_rflags;
1611 vmcs12->guest_interruptibility_info =
1612 evmcs->guest_interruptibility_info;
1615 if (unlikely(!(hv_clean_fields &
1616 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1617 vmcs12->cpu_based_vm_exec_control =
1618 evmcs->cpu_based_vm_exec_control;
1621 if (unlikely(!(hv_clean_fields &
1622 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1623 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1626 if (unlikely(!(hv_clean_fields &
1627 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1628 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1631 if (unlikely(!(hv_clean_fields &
1632 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1633 vmcs12->vm_entry_intr_info_field =
1634 evmcs->vm_entry_intr_info_field;
1635 vmcs12->vm_entry_exception_error_code =
1636 evmcs->vm_entry_exception_error_code;
1637 vmcs12->vm_entry_instruction_len =
1638 evmcs->vm_entry_instruction_len;
1641 if (unlikely(!(hv_clean_fields &
1642 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1643 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1644 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1645 vmcs12->host_cr0 = evmcs->host_cr0;
1646 vmcs12->host_cr3 = evmcs->host_cr3;
1647 vmcs12->host_cr4 = evmcs->host_cr4;
1648 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1649 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1650 vmcs12->host_rip = evmcs->host_rip;
1651 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1652 vmcs12->host_es_selector = evmcs->host_es_selector;
1653 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1654 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1655 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1656 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1657 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1658 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1661 if (unlikely(!(hv_clean_fields &
1662 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1663 vmcs12->pin_based_vm_exec_control =
1664 evmcs->pin_based_vm_exec_control;
1665 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1666 vmcs12->secondary_vm_exec_control =
1667 evmcs->secondary_vm_exec_control;
1670 if (unlikely(!(hv_clean_fields &
1671 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1672 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1673 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1676 if (unlikely(!(hv_clean_fields &
1677 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1678 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1681 if (unlikely(!(hv_clean_fields &
1682 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1683 vmcs12->guest_es_base = evmcs->guest_es_base;
1684 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1685 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1686 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1687 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1688 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1689 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1690 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1691 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1692 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1693 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1694 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1695 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1696 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1697 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1698 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1699 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1700 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1701 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1702 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1703 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1704 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1705 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1706 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1707 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1708 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1709 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1710 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1711 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1712 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1713 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1714 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1715 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1716 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1717 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1718 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1721 if (unlikely(!(hv_clean_fields &
1722 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1723 vmcs12->tsc_offset = evmcs->tsc_offset;
1724 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1725 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1728 if (unlikely(!(hv_clean_fields &
1729 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1730 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1731 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1732 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1733 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1734 vmcs12->guest_cr0 = evmcs->guest_cr0;
1735 vmcs12->guest_cr3 = evmcs->guest_cr3;
1736 vmcs12->guest_cr4 = evmcs->guest_cr4;
1737 vmcs12->guest_dr7 = evmcs->guest_dr7;
1740 if (unlikely(!(hv_clean_fields &
1741 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1742 vmcs12->host_fs_base = evmcs->host_fs_base;
1743 vmcs12->host_gs_base = evmcs->host_gs_base;
1744 vmcs12->host_tr_base = evmcs->host_tr_base;
1745 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1746 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1747 vmcs12->host_rsp = evmcs->host_rsp;
1750 if (unlikely(!(hv_clean_fields &
1751 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1752 vmcs12->ept_pointer = evmcs->ept_pointer;
1753 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1756 if (unlikely(!(hv_clean_fields &
1757 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1758 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1759 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1760 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1761 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1762 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1763 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1764 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1765 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1766 vmcs12->guest_pending_dbg_exceptions =
1767 evmcs->guest_pending_dbg_exceptions;
1768 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1769 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1770 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1771 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1772 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1777 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1778 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1779 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1780 * vmcs12->page_fault_error_code_mask =
1781 * evmcs->page_fault_error_code_mask;
1782 * vmcs12->page_fault_error_code_match =
1783 * evmcs->page_fault_error_code_match;
1784 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1785 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1786 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1787 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1792 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1793 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1794 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1795 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1796 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1797 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1798 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1799 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1800 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1801 * vmcs12->exit_qualification = evmcs->exit_qualification;
1802 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1804 * Not present in struct vmcs12:
1805 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1806 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1807 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1808 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1814 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1816 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1817 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1820 * Should not be changed by KVM:
1822 * evmcs->host_es_selector = vmcs12->host_es_selector;
1823 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1824 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1825 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1826 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1827 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1828 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1829 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1830 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1831 * evmcs->host_cr0 = vmcs12->host_cr0;
1832 * evmcs->host_cr3 = vmcs12->host_cr3;
1833 * evmcs->host_cr4 = vmcs12->host_cr4;
1834 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1835 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1836 * evmcs->host_rip = vmcs12->host_rip;
1837 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1838 * evmcs->host_fs_base = vmcs12->host_fs_base;
1839 * evmcs->host_gs_base = vmcs12->host_gs_base;
1840 * evmcs->host_tr_base = vmcs12->host_tr_base;
1841 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1842 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1843 * evmcs->host_rsp = vmcs12->host_rsp;
1844 * sync_vmcs02_to_vmcs12() doesn't read these:
1845 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1846 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1847 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1848 * evmcs->ept_pointer = vmcs12->ept_pointer;
1849 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1850 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1851 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1852 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1853 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1854 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1855 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1856 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1857 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1858 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1859 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1860 * evmcs->page_fault_error_code_mask =
1861 * vmcs12->page_fault_error_code_mask;
1862 * evmcs->page_fault_error_code_match =
1863 * vmcs12->page_fault_error_code_match;
1864 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1865 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1866 * evmcs->tsc_offset = vmcs12->tsc_offset;
1867 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1868 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1869 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1870 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1871 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1872 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1873 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1874 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1876 * Not present in struct vmcs12:
1877 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1878 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1879 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1880 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1883 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1884 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1885 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1886 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1887 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1888 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1889 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1890 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1892 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1893 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1894 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1895 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1896 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1897 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1898 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1899 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1900 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1901 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1903 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1904 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1905 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1906 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1907 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1908 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1909 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1910 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1912 evmcs->guest_es_base = vmcs12->guest_es_base;
1913 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1914 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1915 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1916 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1917 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1918 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1919 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1920 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1921 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1923 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1924 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1926 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1927 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1928 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1929 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1931 evmcs->guest_pending_dbg_exceptions =
1932 vmcs12->guest_pending_dbg_exceptions;
1933 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1934 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1936 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1937 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1939 evmcs->guest_cr0 = vmcs12->guest_cr0;
1940 evmcs->guest_cr3 = vmcs12->guest_cr3;
1941 evmcs->guest_cr4 = vmcs12->guest_cr4;
1942 evmcs->guest_dr7 = vmcs12->guest_dr7;
1944 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1946 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1947 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1948 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1949 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1950 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1951 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1952 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1953 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1955 evmcs->exit_qualification = vmcs12->exit_qualification;
1957 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1958 evmcs->guest_rsp = vmcs12->guest_rsp;
1959 evmcs->guest_rflags = vmcs12->guest_rflags;
1961 evmcs->guest_interruptibility_info =
1962 vmcs12->guest_interruptibility_info;
1963 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1964 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1965 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1966 evmcs->vm_entry_exception_error_code =
1967 vmcs12->vm_entry_exception_error_code;
1968 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1970 evmcs->guest_rip = vmcs12->guest_rip;
1972 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1978 * This is an equivalent of the nested hypervisor executing the vmptrld
1981 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1982 struct kvm_vcpu *vcpu, bool from_launch)
1984 struct vcpu_vmx *vmx = to_vmx(vcpu);
1985 bool evmcs_gpa_changed = false;
1988 if (likely(!vmx->nested.enlightened_vmcs_enabled))
1989 return EVMPTRLD_DISABLED;
1991 if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1992 nested_release_evmcs(vcpu);
1993 return EVMPTRLD_DISABLED;
1996 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1997 vmx->nested.current_vmptr = -1ull;
1999 nested_release_evmcs(vcpu);
2001 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2002 &vmx->nested.hv_evmcs_map))
2003 return EVMPTRLD_ERROR;
2005 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2008 * Currently, KVM only supports eVMCS version 1
2009 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2010 * value to first u32 field of eVMCS which should specify eVMCS
2013 * Guest should be aware of supported eVMCS versions by host by
2014 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2015 * expected to set this CPUID leaf according to the value
2016 * returned in vmcs_version from nested_enable_evmcs().
2018 * However, it turns out that Microsoft Hyper-V fails to comply
2019 * to their own invented interface: When Hyper-V use eVMCS, it
2020 * just sets first u32 field of eVMCS to revision_id specified
2021 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2022 * which is one of the supported versions specified in
2023 * CPUID.0x4000000A.EAX[0:15].
2025 * To overcome Hyper-V bug, we accept here either a supported
2026 * eVMCS version or VMCS12 revision_id as valid values for first
2027 * u32 field of eVMCS.
2029 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2030 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2031 nested_release_evmcs(vcpu);
2032 return EVMPTRLD_VMFAIL;
2035 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2037 evmcs_gpa_changed = true;
2039 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2040 * reloaded from guest's memory (read only fields, fields not
2041 * present in struct hv_enlightened_vmcs, ...). Make sure there
2045 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2046 memset(vmcs12, 0, sizeof(*vmcs12));
2047 vmcs12->hdr.revision_id = VMCS12_REVISION;
2053 * Clean fields data can't be used on VMLAUNCH and when we switch
2054 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2056 if (from_launch || evmcs_gpa_changed)
2057 vmx->nested.hv_evmcs->hv_clean_fields &=
2058 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2060 return EVMPTRLD_SUCCEEDED;
2063 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2065 struct vcpu_vmx *vmx = to_vmx(vcpu);
2067 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2068 copy_vmcs12_to_enlightened(vmx);
2070 copy_vmcs12_to_shadow(vmx);
2072 vmx->nested.need_vmcs12_to_shadow_sync = false;
2075 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2077 struct vcpu_vmx *vmx =
2078 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2080 vmx->nested.preemption_timer_expired = true;
2081 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2082 kvm_vcpu_kick(&vmx->vcpu);
2084 return HRTIMER_NORESTART;
2087 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2089 struct vcpu_vmx *vmx = to_vmx(vcpu);
2090 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2092 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2093 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2095 if (!vmx->nested.has_preemption_timer_deadline) {
2096 vmx->nested.preemption_timer_deadline =
2097 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2098 vmx->nested.has_preemption_timer_deadline = true;
2100 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2103 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2104 u64 preemption_timeout)
2106 struct vcpu_vmx *vmx = to_vmx(vcpu);
2109 * A timer value of zero is architecturally guaranteed to cause
2110 * a VMExit prior to executing any instructions in the guest.
2112 if (preemption_timeout == 0) {
2113 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2117 if (vcpu->arch.virtual_tsc_khz == 0)
2120 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2121 preemption_timeout *= 1000000;
2122 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2123 hrtimer_start(&vmx->nested.preemption_timer,
2124 ktime_add_ns(ktime_get(), preemption_timeout),
2125 HRTIMER_MODE_ABS_PINNED);
2128 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2130 if (vmx->nested.nested_run_pending &&
2131 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2132 return vmcs12->guest_ia32_efer;
2133 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2134 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2136 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2139 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2142 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2143 * according to L0's settings (vmcs12 is irrelevant here). Host
2144 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2145 * will be set as needed prior to VMLAUNCH/VMRESUME.
2147 if (vmx->nested.vmcs02_initialized)
2149 vmx->nested.vmcs02_initialized = true;
2152 * We don't care what the EPTP value is we just need to guarantee
2153 * it's valid so we don't get a false positive when doing early
2154 * consistency checks.
2156 if (enable_ept && nested_early_check)
2157 vmcs_write64(EPT_POINTER,
2158 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2160 /* All VMFUNCs are currently emulated through L0 vmexits. */
2161 if (cpu_has_vmx_vmfunc())
2162 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2164 if (cpu_has_vmx_posted_intr())
2165 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2167 if (cpu_has_vmx_msr_bitmap())
2168 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2171 * PML is emulated for L2, but never enabled in hardware as the MMU
2172 * handles A/D emulation. Disabling PML for L2 also avoids having to
2173 * deal with filtering out L2 GPAs from the buffer.
2176 vmcs_write64(PML_ADDRESS, 0);
2177 vmcs_write16(GUEST_PML_INDEX, -1);
2180 if (cpu_has_vmx_encls_vmexit())
2181 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2184 * Set the MSR load/store lists to match L0's settings. Only the
2185 * addresses are constant (for vmcs02), the counts can change based
2186 * on L2's behavior, e.g. switching to/from long mode.
2188 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2189 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2190 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2192 vmx_set_constant_host_state(vmx);
2195 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2196 struct vmcs12 *vmcs12)
2198 prepare_vmcs02_constant_state(vmx);
2200 vmcs_write64(VMCS_LINK_POINTER, -1ull);
2203 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2204 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2206 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2210 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2211 struct vmcs12 *vmcs12)
2214 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2216 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2217 prepare_vmcs02_early_rare(vmx, vmcs12);
2222 exec_control = __pin_controls_get(vmcs01);
2223 exec_control |= (vmcs12->pin_based_vm_exec_control &
2224 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2226 /* Posted interrupts setting is only taken from vmcs12. */
2227 vmx->nested.pi_pending = false;
2228 if (nested_cpu_has_posted_intr(vmcs12))
2229 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2231 exec_control &= ~PIN_BASED_POSTED_INTR;
2232 pin_controls_set(vmx, exec_control);
2237 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2238 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2239 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2240 exec_control &= ~CPU_BASED_TPR_SHADOW;
2241 exec_control |= vmcs12->cpu_based_vm_exec_control;
2243 vmx->nested.l1_tpr_threshold = -1;
2244 if (exec_control & CPU_BASED_TPR_SHADOW)
2245 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2246 #ifdef CONFIG_X86_64
2248 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2249 CPU_BASED_CR8_STORE_EXITING;
2253 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2254 * for I/O port accesses.
2256 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2257 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2260 * This bit will be computed in nested_get_vmcs12_pages, because
2261 * we do not have access to L1's MSR bitmap yet. For now, keep
2262 * the same bit as before, hoping to avoid multiple VMWRITEs that
2263 * only set/clear this bit.
2265 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2266 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2268 exec_controls_set(vmx, exec_control);
2271 * SECONDARY EXEC CONTROLS
2273 if (cpu_has_secondary_exec_ctrls()) {
2274 exec_control = __secondary_exec_controls_get(vmcs01);
2276 /* Take the following fields only from vmcs12 */
2277 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2278 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2279 SECONDARY_EXEC_ENABLE_INVPCID |
2280 SECONDARY_EXEC_ENABLE_RDTSCP |
2281 SECONDARY_EXEC_XSAVES |
2282 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2283 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2284 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2285 SECONDARY_EXEC_ENABLE_VMFUNC |
2286 SECONDARY_EXEC_TSC_SCALING |
2287 SECONDARY_EXEC_DESC);
2289 if (nested_cpu_has(vmcs12,
2290 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2291 exec_control |= vmcs12->secondary_vm_exec_control;
2293 /* PML is emulated and never enabled in hardware for L2. */
2294 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2296 /* VMCS shadowing for L2 is emulated for now */
2297 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2300 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2301 * will not have to rewrite the controls just for this bit.
2303 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2304 (vmcs12->guest_cr4 & X86_CR4_UMIP))
2305 exec_control |= SECONDARY_EXEC_DESC;
2307 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2308 vmcs_write16(GUEST_INTR_STATUS,
2309 vmcs12->guest_intr_status);
2311 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2312 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2314 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2315 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2317 secondary_exec_controls_set(vmx, exec_control);
2323 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2324 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2325 * on the related bits (if supported by the CPU) in the hope that
2326 * we can avoid VMWrites during vmx_set_efer().
2328 exec_control = __vm_entry_controls_get(vmcs01);
2329 exec_control |= vmcs12->vm_entry_controls;
2330 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2331 if (cpu_has_load_ia32_efer()) {
2332 if (guest_efer & EFER_LMA)
2333 exec_control |= VM_ENTRY_IA32E_MODE;
2334 if (guest_efer != host_efer)
2335 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2337 vm_entry_controls_set(vmx, exec_control);
2342 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2343 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2344 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2346 exec_control = __vm_exit_controls_get(vmcs01);
2347 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2348 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2350 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2351 vm_exit_controls_set(vmx, exec_control);
2354 * Interrupt/Exception Fields
2356 if (vmx->nested.nested_run_pending) {
2357 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2358 vmcs12->vm_entry_intr_info_field);
2359 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2360 vmcs12->vm_entry_exception_error_code);
2361 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2362 vmcs12->vm_entry_instruction_len);
2363 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2364 vmcs12->guest_interruptibility_info);
2365 vmx->loaded_vmcs->nmi_known_unmasked =
2366 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2368 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2372 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2374 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2376 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2377 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2378 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2379 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2380 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2381 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2382 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2383 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2384 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2385 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2386 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2387 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2388 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2389 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2390 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2391 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2392 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2393 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2394 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2395 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2396 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2397 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2398 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2399 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2400 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2401 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2402 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2403 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2404 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2405 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2406 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2407 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2408 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2409 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2410 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2411 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2412 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2413 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2415 vmx->segment_cache.bitmask = 0;
2418 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2419 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2420 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2421 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2422 vmcs12->guest_pending_dbg_exceptions);
2423 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2424 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2427 * L1 may access the L2's PDPTR, so save them to construct
2431 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2432 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2433 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2434 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2437 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2438 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2439 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2442 if (nested_cpu_has_xsaves(vmcs12))
2443 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2446 * Whether page-faults are trapped is determined by a combination of
2447 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2448 * doesn't care about page faults then we should set all of these to
2449 * L1's desires. However, if L0 does care about (some) page faults, it
2450 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2451 * simply ask to exit on each and every L2 page fault. This is done by
2452 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2453 * Note that below we don't need special code to set EB.PF beyond the
2454 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2455 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2456 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2458 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2460 * TODO: if both L0 and L1 need the same MASK and MATCH,
2461 * go ahead and use it?
2463 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2464 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2466 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2467 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2470 if (cpu_has_vmx_apicv()) {
2471 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2472 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2473 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2474 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2478 * Make sure the msr_autostore list is up to date before we set the
2479 * count in the vmcs02.
2481 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2483 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2484 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2485 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2487 set_cr4_guest_host_mask(vmx);
2491 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2492 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2493 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2494 * guest in a way that will both be appropriate to L1's requests, and our
2495 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2496 * function also has additional necessary side-effects, like setting various
2497 * vcpu->arch fields.
2498 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2499 * is assigned to entry_failure_code on failure.
2501 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2503 enum vm_entry_failure_code *entry_failure_code)
2505 struct vcpu_vmx *vmx = to_vmx(vcpu);
2506 bool load_guest_pdptrs_vmcs12 = false;
2508 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2509 prepare_vmcs02_rare(vmx, vmcs12);
2510 vmx->nested.dirty_vmcs12 = false;
2512 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2513 !(vmx->nested.hv_evmcs->hv_clean_fields &
2514 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2517 if (vmx->nested.nested_run_pending &&
2518 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2519 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2520 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2522 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2523 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2525 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2526 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2527 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2528 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2530 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2531 * bitwise-or of what L1 wants to trap for L2, and what we want to
2532 * trap. Note that CR0.TS also needs updating - we do this later.
2534 vmx_update_exception_bitmap(vcpu);
2535 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2536 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2538 if (vmx->nested.nested_run_pending &&
2539 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2540 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2541 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2542 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2543 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2546 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2547 vcpu->arch.l1_tsc_offset,
2548 vmx_get_l2_tsc_offset(vcpu),
2549 vmx_get_l2_tsc_multiplier(vcpu));
2551 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2552 vcpu->arch.l1_tsc_scaling_ratio,
2553 vmx_get_l2_tsc_multiplier(vcpu));
2555 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2556 if (kvm_has_tsc_control)
2557 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2559 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2561 if (nested_cpu_has_ept(vmcs12))
2562 nested_ept_init_mmu_context(vcpu);
2565 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2566 * bits which we consider mandatory enabled.
2567 * The CR0_READ_SHADOW is what L2 should have expected to read given
2568 * the specifications by L1; It's not enough to take
2569 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2570 * have more bits than L1 expected.
2572 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2573 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2575 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2576 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2578 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2579 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2580 vmx_set_efer(vcpu, vcpu->arch.efer);
2583 * Guest state is invalid and unrestricted guest is disabled,
2584 * which means L1 attempted VMEntry to L2 with invalid state.
2587 if (CC(!vmx_guest_state_valid(vcpu))) {
2588 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2592 /* Shadow page tables on either EPT or shadow page tables. */
2593 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2594 from_vmentry, entry_failure_code))
2598 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2599 * on nested VM-Exit, which can occur without actually running L2 and
2600 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2601 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2602 * transition to HLT instead of running L2.
2605 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2607 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2608 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2609 is_pae_paging(vcpu)) {
2610 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2611 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2612 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2613 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2617 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2619 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2620 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2621 vmcs12->guest_ia32_perf_global_ctrl)))
2624 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2625 kvm_rip_write(vcpu, vmcs12->guest_rip);
2628 * It was observed that genuine Hyper-V running in L1 doesn't reset
2629 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2630 * bits when it changes a field in eVMCS. Mark all fields as clean
2633 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2634 vmx->nested.hv_evmcs->hv_clean_fields |=
2635 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2640 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2642 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2643 nested_cpu_has_virtual_nmis(vmcs12)))
2646 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2647 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2653 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2655 struct vcpu_vmx *vmx = to_vmx(vcpu);
2657 /* Check for memory type validity */
2658 switch (new_eptp & VMX_EPTP_MT_MASK) {
2659 case VMX_EPTP_MT_UC:
2660 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2663 case VMX_EPTP_MT_WB:
2664 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2671 /* Page-walk levels validity. */
2672 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2673 case VMX_EPTP_PWL_5:
2674 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2677 case VMX_EPTP_PWL_4:
2678 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2685 /* Reserved bits should not be set */
2686 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2689 /* AD, if set, should be supported */
2690 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2691 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2699 * Checks related to VM-Execution Control Fields
2701 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2702 struct vmcs12 *vmcs12)
2704 struct vcpu_vmx *vmx = to_vmx(vcpu);
2706 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2707 vmx->nested.msrs.pinbased_ctls_low,
2708 vmx->nested.msrs.pinbased_ctls_high)) ||
2709 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2710 vmx->nested.msrs.procbased_ctls_low,
2711 vmx->nested.msrs.procbased_ctls_high)))
2714 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2715 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2716 vmx->nested.msrs.secondary_ctls_low,
2717 vmx->nested.msrs.secondary_ctls_high)))
2720 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2721 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2722 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2723 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2724 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2725 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2726 nested_vmx_check_nmi_controls(vmcs12) ||
2727 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2728 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2729 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2730 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2731 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2734 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2735 nested_cpu_has_save_preemption_timer(vmcs12))
2738 if (nested_cpu_has_ept(vmcs12) &&
2739 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2742 if (nested_cpu_has_vmfunc(vmcs12)) {
2743 if (CC(vmcs12->vm_function_control &
2744 ~vmx->nested.msrs.vmfunc_controls))
2747 if (nested_cpu_has_eptp_switching(vmcs12)) {
2748 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2749 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2758 * Checks related to VM-Exit Control Fields
2760 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2761 struct vmcs12 *vmcs12)
2763 struct vcpu_vmx *vmx = to_vmx(vcpu);
2765 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2766 vmx->nested.msrs.exit_ctls_low,
2767 vmx->nested.msrs.exit_ctls_high)) ||
2768 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2775 * Checks related to VM-Entry Control Fields
2777 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2778 struct vmcs12 *vmcs12)
2780 struct vcpu_vmx *vmx = to_vmx(vcpu);
2782 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2783 vmx->nested.msrs.entry_ctls_low,
2784 vmx->nested.msrs.entry_ctls_high)))
2788 * From the Intel SDM, volume 3:
2789 * Fields relevant to VM-entry event injection must be set properly.
2790 * These fields are the VM-entry interruption-information field, the
2791 * VM-entry exception error code, and the VM-entry instruction length.
2793 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2794 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2795 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2796 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2797 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2798 bool should_have_error_code;
2799 bool urg = nested_cpu_has2(vmcs12,
2800 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2801 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2803 /* VM-entry interruption-info field: interruption type */
2804 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2805 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2806 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2809 /* VM-entry interruption-info field: vector */
2810 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2811 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2812 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2815 /* VM-entry interruption-info field: deliver error code */
2816 should_have_error_code =
2817 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2818 x86_exception_has_error_code(vector);
2819 if (CC(has_error_code != should_have_error_code))
2822 /* VM-entry exception error code */
2823 if (CC(has_error_code &&
2824 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2827 /* VM-entry interruption-info field: reserved bits */
2828 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2831 /* VM-entry instruction length */
2832 switch (intr_type) {
2833 case INTR_TYPE_SOFT_EXCEPTION:
2834 case INTR_TYPE_SOFT_INTR:
2835 case INTR_TYPE_PRIV_SW_EXCEPTION:
2836 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2837 CC(vmcs12->vm_entry_instruction_len == 0 &&
2838 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2843 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2849 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2850 struct vmcs12 *vmcs12)
2852 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2853 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2854 nested_check_vm_entry_controls(vcpu, vmcs12))
2857 if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2858 return nested_evmcs_check_controls(vmcs12);
2863 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2864 struct vmcs12 *vmcs12)
2868 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2869 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2870 CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2873 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2874 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2877 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2878 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2881 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2882 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2883 vmcs12->host_ia32_perf_global_ctrl)))
2886 #ifdef CONFIG_X86_64
2887 ia32e = !!(vcpu->arch.efer & EFER_LMA);
2893 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2894 CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2897 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2898 CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2899 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2900 CC((vmcs12->host_rip) >> 32))
2904 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2905 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2906 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2907 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2908 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2909 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2910 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2911 CC(vmcs12->host_cs_selector == 0) ||
2912 CC(vmcs12->host_tr_selector == 0) ||
2913 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2916 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2917 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2918 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2919 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2920 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2921 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2925 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2926 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2927 * the values of the LMA and LME bits in the field must each be that of
2928 * the host address-space size VM-exit control.
2930 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2931 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2932 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2933 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2940 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2941 struct vmcs12 *vmcs12)
2944 struct vmcs12 *shadow;
2945 struct kvm_host_map map;
2947 if (vmcs12->vmcs_link_pointer == -1ull)
2950 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2953 if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2958 if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2959 CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2962 kvm_vcpu_unmap(vcpu, &map, false);
2967 * Checks related to Guest Non-register State
2969 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2971 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2972 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2973 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2979 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2980 struct vmcs12 *vmcs12,
2981 enum vm_entry_failure_code *entry_failure_code)
2985 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2987 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2988 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2991 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2992 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2995 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2996 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2999 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3000 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3004 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3005 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3006 vmcs12->guest_ia32_perf_global_ctrl)))
3010 * If the load IA32_EFER VM-entry control is 1, the following checks
3011 * are performed on the field for the IA32_EFER MSR:
3012 * - Bits reserved in the IA32_EFER MSR must be 0.
3013 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3014 * the IA-32e mode guest VM-exit control. It must also be identical
3015 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3018 if (to_vmx(vcpu)->nested.nested_run_pending &&
3019 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3020 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3021 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3022 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3023 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3024 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3028 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3029 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3030 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3033 if (nested_check_guest_non_reg_state(vmcs12))
3039 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3041 struct vcpu_vmx *vmx = to_vmx(vcpu);
3042 unsigned long cr3, cr4;
3045 if (!nested_early_check)
3048 if (vmx->msr_autoload.host.nr)
3049 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3050 if (vmx->msr_autoload.guest.nr)
3051 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3055 vmx_prepare_switch_to_guest(vcpu);
3058 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3059 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3060 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3061 * there is no need to preserve other bits or save/restore the field.
3063 vmcs_writel(GUEST_RFLAGS, 0);
3065 cr3 = __get_current_cr3_fast();
3066 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3067 vmcs_writel(HOST_CR3, cr3);
3068 vmx->loaded_vmcs->host_state.cr3 = cr3;
3071 cr4 = cr4_read_shadow();
3072 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3073 vmcs_writel(HOST_CR4, cr4);
3074 vmx->loaded_vmcs->host_state.cr4 = cr4;
3077 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3078 vmx->loaded_vmcs->launched);
3080 if (vmx->msr_autoload.host.nr)
3081 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3082 if (vmx->msr_autoload.guest.nr)
3083 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3086 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3090 trace_kvm_nested_vmenter_failed(
3091 "early hardware check VM-instruction error: ", error);
3092 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3097 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3099 if (hw_breakpoint_active())
3100 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3105 * A non-failing VMEntry means we somehow entered guest mode with
3106 * an illegal RIP, and that's just the tip of the iceberg. There
3107 * is no telling what memory has been modified or what state has
3108 * been exposed to unknown code. Hitting this all but guarantees
3109 * a (very critical) hardware issue.
3111 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3112 VMX_EXIT_REASONS_FAILED_VMENTRY));
3117 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3119 struct vcpu_vmx *vmx = to_vmx(vcpu);
3122 * hv_evmcs may end up being not mapped after migration (when
3123 * L2 was running), map it here to make sure vmcs12 changes are
3124 * properly reflected.
3126 if (vmx->nested.enlightened_vmcs_enabled &&
3127 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3128 enum nested_evmptrld_status evmptrld_status =
3129 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3131 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3132 evmptrld_status == EVMPTRLD_ERROR)
3136 * Post migration VMCS12 always provides the most actual
3137 * information, copy it to eVMCS upon entry.
3139 vmx->nested.need_vmcs12_to_shadow_sync = true;
3145 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3147 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3148 struct vcpu_vmx *vmx = to_vmx(vcpu);
3149 struct kvm_host_map *map;
3153 if (!vcpu->arch.pdptrs_from_userspace &&
3154 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3156 * Reload the guest's PDPTRs since after a migration
3157 * the guest CR3 might be restored prior to setting the nested
3158 * state which can lead to a load of wrong PDPTRs.
3160 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
3165 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3167 * Translate L1 physical address to host physical
3168 * address for vmcs02. Keep the page pinned, so this
3169 * physical address remains valid. We keep a reference
3170 * to it so we can release it later.
3172 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3173 kvm_release_page_clean(vmx->nested.apic_access_page);
3174 vmx->nested.apic_access_page = NULL;
3176 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3177 if (!is_error_page(page)) {
3178 vmx->nested.apic_access_page = page;
3179 hpa = page_to_phys(vmx->nested.apic_access_page);
3180 vmcs_write64(APIC_ACCESS_ADDR, hpa);
3182 pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3184 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3185 vcpu->run->internal.suberror =
3186 KVM_INTERNAL_ERROR_EMULATION;
3187 vcpu->run->internal.ndata = 0;
3192 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3193 map = &vmx->nested.virtual_apic_map;
3195 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3196 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3197 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3198 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3199 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3201 * The processor will never use the TPR shadow, simply
3202 * clear the bit from the execution control. Such a
3203 * configuration is useless, but it happens in tests.
3204 * For any other configuration, failing the vm entry is
3205 * _not_ what the processor does but it's basically the
3206 * only possibility we have.
3208 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3211 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3212 * force VM-Entry to fail.
3214 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3218 if (nested_cpu_has_posted_intr(vmcs12)) {
3219 map = &vmx->nested.pi_desc_map;
3221 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3222 vmx->nested.pi_desc =
3223 (struct pi_desc *)(((void *)map->hva) +
3224 offset_in_page(vmcs12->posted_intr_desc_addr));
3225 vmcs_write64(POSTED_INTR_DESC_ADDR,
3226 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3229 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3230 * access the contents of the VMCS12 posted interrupt
3231 * descriptor. (Note that KVM may do this when it
3232 * should not, per the architectural specification.)
3234 vmx->nested.pi_desc = NULL;
3235 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3238 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3239 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3241 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3246 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3248 if (!nested_get_evmcs_page(vcpu)) {
3249 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3251 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3252 vcpu->run->internal.suberror =
3253 KVM_INTERNAL_ERROR_EMULATION;
3254 vcpu->run->internal.ndata = 0;
3259 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3265 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3267 struct vmcs12 *vmcs12;
3268 struct vcpu_vmx *vmx = to_vmx(vcpu);
3271 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3274 if (WARN_ON_ONCE(vmx->nested.pml_full))
3278 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3279 * set is already checked as part of A/D emulation.
3281 vmcs12 = get_vmcs12(vcpu);
3282 if (!nested_cpu_has_pml(vmcs12))
3285 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3286 vmx->nested.pml_full = true;
3291 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3293 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3294 offset_in_page(dst), sizeof(gpa)))
3297 vmcs12->guest_pml_index--;
3303 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3304 * for running VMX instructions (except VMXON, whose prerequisites are
3305 * slightly different). It also specifies what exception to inject otherwise.
3306 * Note that many of these exceptions have priority over VM exits, so they
3307 * don't have to be checked again here.
3309 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3311 if (!to_vmx(vcpu)->nested.vmxon) {
3312 kvm_queue_exception(vcpu, UD_VECTOR);
3316 if (vmx_get_cpl(vcpu)) {
3317 kvm_inject_gp(vcpu, 0);
3324 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3326 u8 rvi = vmx_get_rvi();
3327 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3329 return ((rvi & 0xf0) > (vppr & 0xf0));
3332 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3333 struct vmcs12 *vmcs12);
3336 * If from_vmentry is false, this is being called from state restore (either RSM
3337 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3340 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3341 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3342 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3343 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3345 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3348 struct vcpu_vmx *vmx = to_vmx(vcpu);
3349 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3350 enum vm_entry_failure_code entry_failure_code;
3351 bool evaluate_pending_interrupts;
3352 union vmx_exit_reason exit_reason = {
3353 .basic = EXIT_REASON_INVALID_STATE,
3354 .failed_vmentry = 1,
3358 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3359 kvm_vcpu_flush_tlb_current(vcpu);
3361 evaluate_pending_interrupts = exec_controls_get(vmx) &
3362 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3363 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3364 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3366 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3367 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3368 if (kvm_mpx_supported() &&
3369 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3370 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3373 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3374 * nested early checks are disabled. In the event of a "late" VM-Fail,
3375 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3376 * software model to the pre-VMEntry host state. When EPT is disabled,
3377 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3378 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3379 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3380 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3381 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3382 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3383 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3384 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3385 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3386 * path would need to manually save/restore vmcs01.GUEST_CR3.
3388 if (!enable_ept && !nested_early_check)
3389 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3391 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3393 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3396 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3397 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3398 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3401 if (nested_vmx_check_vmentry_hw(vcpu)) {
3402 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3403 return NVMX_VMENTRY_VMFAIL;
3406 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3407 &entry_failure_code)) {
3408 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3409 vmcs12->exit_qualification = entry_failure_code;
3410 goto vmentry_fail_vmexit;
3414 enter_guest_mode(vcpu);
3416 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3417 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3418 vmcs12->exit_qualification = entry_failure_code;
3419 goto vmentry_fail_vmexit_guest_mode;
3423 failed_index = nested_vmx_load_msr(vcpu,
3424 vmcs12->vm_entry_msr_load_addr,
3425 vmcs12->vm_entry_msr_load_count);
3427 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3428 vmcs12->exit_qualification = failed_index;
3429 goto vmentry_fail_vmexit_guest_mode;
3433 * The MMU is not initialized to point at the right entities yet and
3434 * "get pages" would need to read data from the guest (i.e. we will
3435 * need to perform gpa to hpa translation). Request a call
3436 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3437 * have already been set at vmentry time and should not be reset.
3439 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3443 * If L1 had a pending IRQ/NMI until it executed
3444 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3445 * disallowed (e.g. interrupts disabled), L0 needs to
3446 * evaluate if this pending event should cause an exit from L2
3447 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3448 * intercept EXTERNAL_INTERRUPT).
3450 * Usually this would be handled by the processor noticing an
3451 * IRQ/NMI window request, or checking RVI during evaluation of
3452 * pending virtual interrupts. However, this setting was done
3453 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3454 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3456 if (unlikely(evaluate_pending_interrupts))
3457 kvm_make_request(KVM_REQ_EVENT, vcpu);
3460 * Do not start the preemption timer hrtimer until after we know
3461 * we are successful, so that only nested_vmx_vmexit needs to cancel
3464 vmx->nested.preemption_timer_expired = false;
3465 if (nested_cpu_has_preemption_timer(vmcs12)) {
3466 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3467 vmx_start_preemption_timer(vcpu, timer_value);
3471 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3472 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3473 * returned as far as L1 is concerned. It will only return (and set
3474 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3476 return NVMX_VMENTRY_SUCCESS;
3479 * A failed consistency check that leads to a VMExit during L1's
3480 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3481 * 26.7 "VM-entry failures during or after loading guest state".
3483 vmentry_fail_vmexit_guest_mode:
3484 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3485 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3486 leave_guest_mode(vcpu);
3488 vmentry_fail_vmexit:
3489 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3492 return NVMX_VMENTRY_VMEXIT;
3494 load_vmcs12_host_state(vcpu, vmcs12);
3495 vmcs12->vm_exit_reason = exit_reason.full;
3496 if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3497 vmx->nested.need_vmcs12_to_shadow_sync = true;
3498 return NVMX_VMENTRY_VMEXIT;
3502 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3503 * for running an L2 nested guest.
3505 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3507 struct vmcs12 *vmcs12;
3508 enum nvmx_vmentry_status status;
3509 struct vcpu_vmx *vmx = to_vmx(vcpu);
3510 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3511 enum nested_evmptrld_status evmptrld_status;
3513 if (!nested_vmx_check_permission(vcpu))
3516 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3517 if (evmptrld_status == EVMPTRLD_ERROR) {
3518 kvm_queue_exception(vcpu, UD_VECTOR);
3520 } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3521 return nested_vmx_failInvalid(vcpu);
3524 if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3525 vmx->nested.current_vmptr == -1ull))
3526 return nested_vmx_failInvalid(vcpu);
3528 vmcs12 = get_vmcs12(vcpu);
3531 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3532 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3533 * rather than RFLAGS.ZF, and no error number is stored to the
3534 * VM-instruction error field.
3536 if (CC(vmcs12->hdr.shadow_vmcs))
3537 return nested_vmx_failInvalid(vcpu);
3539 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3540 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3541 /* Enlightened VMCS doesn't have launch state */
3542 vmcs12->launch_state = !launch;
3543 } else if (enable_shadow_vmcs) {
3544 copy_shadow_to_vmcs12(vmx);
3548 * The nested entry process starts with enforcing various prerequisites
3549 * on vmcs12 as required by the Intel SDM, and act appropriately when
3550 * they fail: As the SDM explains, some conditions should cause the
3551 * instruction to fail, while others will cause the instruction to seem
3552 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3553 * To speed up the normal (success) code path, we should avoid checking
3554 * for misconfigurations which will anyway be caught by the processor
3555 * when using the merged vmcs02.
3557 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3558 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3560 if (CC(vmcs12->launch_state == launch))
3561 return nested_vmx_fail(vcpu,
3562 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3563 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3565 if (nested_vmx_check_controls(vcpu, vmcs12))
3566 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3568 if (nested_vmx_check_host_state(vcpu, vmcs12))
3569 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3572 * We're finally done with prerequisite checking, and can start with
3575 vmx->nested.nested_run_pending = 1;
3576 vmx->nested.has_preemption_timer_deadline = false;
3577 status = nested_vmx_enter_non_root_mode(vcpu, true);
3578 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3579 goto vmentry_failed;
3581 /* Emulate processing of posted interrupts on VM-Enter. */
3582 if (nested_cpu_has_posted_intr(vmcs12) &&
3583 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3584 vmx->nested.pi_pending = true;
3585 kvm_make_request(KVM_REQ_EVENT, vcpu);
3586 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3589 /* Hide L1D cache contents from the nested guest. */
3590 vmx->vcpu.arch.l1tf_flush_l1d = true;
3593 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3594 * also be used as part of restoring nVMX state for
3595 * snapshot restore (migration).
3597 * In this flow, it is assumed that vmcs12 cache was
3598 * transferred as part of captured nVMX state and should
3599 * therefore not be read from guest memory (which may not
3600 * exist on destination host yet).
3602 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3604 switch (vmcs12->guest_activity_state) {
3605 case GUEST_ACTIVITY_HLT:
3607 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3608 * awakened by event injection or by an NMI-window VM-exit or
3609 * by an interrupt-window VM-exit, halt the vcpu.
3611 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3612 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3613 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3614 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3615 vmx->nested.nested_run_pending = 0;
3616 return kvm_vcpu_halt(vcpu);
3619 case GUEST_ACTIVITY_WAIT_SIPI:
3620 vmx->nested.nested_run_pending = 0;
3621 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3630 vmx->nested.nested_run_pending = 0;
3631 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3633 if (status == NVMX_VMENTRY_VMEXIT)
3635 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3636 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3640 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3641 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3642 * This function returns the new value we should put in vmcs12.guest_cr0.
3643 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3644 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3645 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3646 * didn't trap the bit, because if L1 did, so would L0).
3647 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3648 * been modified by L2, and L1 knows it. So just leave the old value of
3649 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3650 * isn't relevant, because if L0 traps this bit it can set it to anything.
3651 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3652 * changed these bits, and therefore they need to be updated, but L0
3653 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3654 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3656 static inline unsigned long
3657 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3660 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3661 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3662 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3663 vcpu->arch.cr0_guest_owned_bits));
3666 static inline unsigned long
3667 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3670 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3671 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3672 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3673 vcpu->arch.cr4_guest_owned_bits));
3676 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3677 struct vmcs12 *vmcs12)
3682 if (vcpu->arch.exception.injected) {
3683 nr = vcpu->arch.exception.nr;
3684 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3686 if (kvm_exception_is_soft(nr)) {
3687 vmcs12->vm_exit_instruction_len =
3688 vcpu->arch.event_exit_inst_len;
3689 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3691 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3693 if (vcpu->arch.exception.has_error_code) {
3694 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3695 vmcs12->idt_vectoring_error_code =
3696 vcpu->arch.exception.error_code;
3699 vmcs12->idt_vectoring_info_field = idt_vectoring;
3700 } else if (vcpu->arch.nmi_injected) {
3701 vmcs12->idt_vectoring_info_field =
3702 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3703 } else if (vcpu->arch.interrupt.injected) {
3704 nr = vcpu->arch.interrupt.nr;
3705 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3707 if (vcpu->arch.interrupt.soft) {
3708 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3709 vmcs12->vm_entry_instruction_len =
3710 vcpu->arch.event_exit_inst_len;
3712 idt_vectoring |= INTR_TYPE_EXT_INTR;
3714 vmcs12->idt_vectoring_info_field = idt_vectoring;
3719 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3721 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3725 * Don't need to mark the APIC access page dirty; it is never
3726 * written to by the CPU during APIC virtualization.
3729 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3730 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3731 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3734 if (nested_cpu_has_posted_intr(vmcs12)) {
3735 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3736 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3740 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3742 struct vcpu_vmx *vmx = to_vmx(vcpu);
3747 if (!vmx->nested.pi_pending)
3750 if (!vmx->nested.pi_desc)
3753 vmx->nested.pi_pending = false;
3755 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3758 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3759 if (max_irr != 256) {
3760 vapic_page = vmx->nested.virtual_apic_map.hva;
3764 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3765 vapic_page, &max_irr);
3766 status = vmcs_read16(GUEST_INTR_STATUS);
3767 if ((u8)max_irr > ((u8)status & 0xff)) {
3769 status |= (u8)max_irr;
3770 vmcs_write16(GUEST_INTR_STATUS, status);
3774 nested_mark_vmcs12_pages_dirty(vcpu);
3778 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3782 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3783 unsigned long exit_qual)
3785 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3786 unsigned int nr = vcpu->arch.exception.nr;
3787 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3789 if (vcpu->arch.exception.has_error_code) {
3790 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3791 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3794 if (kvm_exception_is_soft(nr))
3795 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3797 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3799 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3800 vmx_get_nmi_mask(vcpu))
3801 intr_info |= INTR_INFO_UNBLOCK_NMI;
3803 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3807 * Returns true if a debug trap is pending delivery.
3809 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3810 * exception may be inferred from the presence of an exception payload.
3812 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3814 return vcpu->arch.exception.pending &&
3815 vcpu->arch.exception.nr == DB_VECTOR &&
3816 vcpu->arch.exception.payload;
3820 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3821 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3822 * represents these debug traps with a payload that is said to be compatible
3823 * with the 'pending debug exceptions' field, write the payload to the VMCS
3824 * field if a VM-exit is delivered before the debug trap.
3826 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3828 if (vmx_pending_dbg_trap(vcpu))
3829 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3830 vcpu->arch.exception.payload);
3833 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3835 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3836 to_vmx(vcpu)->nested.preemption_timer_expired;
3839 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3841 struct vcpu_vmx *vmx = to_vmx(vcpu);
3842 unsigned long exit_qual;
3843 bool block_nested_events =
3844 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3845 bool mtf_pending = vmx->nested.mtf_pending;
3846 struct kvm_lapic *apic = vcpu->arch.apic;
3849 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3850 * this state is discarded.
3852 if (!block_nested_events)
3853 vmx->nested.mtf_pending = false;
3855 if (lapic_in_kernel(vcpu) &&
3856 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3857 if (block_nested_events)
3859 nested_vmx_update_pending_dbg(vcpu);
3860 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3861 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3862 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3866 if (lapic_in_kernel(vcpu) &&
3867 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3868 if (block_nested_events)
3871 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3872 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3873 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3874 apic->sipi_vector & 0xFFUL);
3879 * Process any exceptions that are not debug traps before MTF.
3881 * Note that only a pending nested run can block a pending exception.
3882 * Otherwise an injected NMI/interrupt should either be
3883 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3884 * while delivering the pending exception.
3887 if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3888 if (vmx->nested.nested_run_pending)
3890 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3892 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3897 if (block_nested_events)
3899 nested_vmx_update_pending_dbg(vcpu);
3900 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3904 if (vcpu->arch.exception.pending) {
3905 if (vmx->nested.nested_run_pending)
3907 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3909 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3913 if (nested_vmx_preemption_timer_pending(vcpu)) {
3914 if (block_nested_events)
3916 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3920 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3921 if (block_nested_events)
3926 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3927 if (block_nested_events)
3929 if (!nested_exit_on_nmi(vcpu))
3932 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3933 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3934 INTR_INFO_VALID_MASK, 0);
3936 * The NMI-triggered VM exit counts as injection:
3937 * clear this one and block further NMIs.
3939 vcpu->arch.nmi_pending = 0;
3940 vmx_set_nmi_mask(vcpu, true);
3944 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3945 if (block_nested_events)
3947 if (!nested_exit_on_intr(vcpu))
3949 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3954 return vmx_complete_nested_posted_interrupt(vcpu);
3957 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3960 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3963 if (ktime_to_ns(remaining) <= 0)
3966 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3967 do_div(value, 1000000);
3968 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3971 static bool is_vmcs12_ext_field(unsigned long field)
3974 case GUEST_ES_SELECTOR:
3975 case GUEST_CS_SELECTOR:
3976 case GUEST_SS_SELECTOR:
3977 case GUEST_DS_SELECTOR:
3978 case GUEST_FS_SELECTOR:
3979 case GUEST_GS_SELECTOR:
3980 case GUEST_LDTR_SELECTOR:
3981 case GUEST_TR_SELECTOR:
3982 case GUEST_ES_LIMIT:
3983 case GUEST_CS_LIMIT:
3984 case GUEST_SS_LIMIT:
3985 case GUEST_DS_LIMIT:
3986 case GUEST_FS_LIMIT:
3987 case GUEST_GS_LIMIT:
3988 case GUEST_LDTR_LIMIT:
3989 case GUEST_TR_LIMIT:
3990 case GUEST_GDTR_LIMIT:
3991 case GUEST_IDTR_LIMIT:
3992 case GUEST_ES_AR_BYTES:
3993 case GUEST_DS_AR_BYTES:
3994 case GUEST_FS_AR_BYTES:
3995 case GUEST_GS_AR_BYTES:
3996 case GUEST_LDTR_AR_BYTES:
3997 case GUEST_TR_AR_BYTES:
4004 case GUEST_LDTR_BASE:
4006 case GUEST_GDTR_BASE:
4007 case GUEST_IDTR_BASE:
4008 case GUEST_PENDING_DBG_EXCEPTIONS:
4018 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4019 struct vmcs12 *vmcs12)
4021 struct vcpu_vmx *vmx = to_vmx(vcpu);
4023 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4024 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4025 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4026 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4027 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4028 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4029 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4030 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4031 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4032 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4033 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4034 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4035 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4036 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4037 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4038 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4039 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4040 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4041 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4042 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4043 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4044 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4045 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4046 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4047 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4048 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4049 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4050 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4051 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4052 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4053 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4054 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4055 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4056 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4057 vmcs12->guest_pending_dbg_exceptions =
4058 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4059 if (kvm_mpx_supported())
4060 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4062 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4065 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4066 struct vmcs12 *vmcs12)
4068 struct vcpu_vmx *vmx = to_vmx(vcpu);
4071 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4075 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4078 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4079 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4081 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4083 vmx->loaded_vmcs = &vmx->vmcs01;
4084 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4089 * Update the guest state fields of vmcs12 to reflect changes that
4090 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4091 * VM-entry controls is also updated, since this is really a guest
4094 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4096 struct vcpu_vmx *vmx = to_vmx(vcpu);
4098 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4099 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4101 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4102 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4104 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4105 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4107 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4108 vmcs12->guest_rip = kvm_rip_read(vcpu);
4109 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4111 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4112 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4114 vmcs12->guest_interruptibility_info =
4115 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4117 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4118 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4119 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4120 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4122 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4124 if (nested_cpu_has_preemption_timer(vmcs12) &&
4125 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4126 !vmx->nested.nested_run_pending)
4127 vmcs12->vmx_preemption_timer_value =
4128 vmx_get_preemption_timer_value(vcpu);
4131 * In some cases (usually, nested EPT), L2 is allowed to change its
4132 * own CR3 without exiting. If it has changed it, we must keep it.
4133 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4134 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4136 * Additionally, restore L2's PDPTR to vmcs12.
4139 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4140 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4141 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4142 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4143 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4144 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4148 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4150 if (nested_cpu_has_vid(vmcs12))
4151 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4153 vmcs12->vm_entry_controls =
4154 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4155 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4157 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4158 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4160 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4161 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4165 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4166 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4167 * and this function updates it to reflect the changes to the guest state while
4168 * L2 was running (and perhaps made some exits which were handled directly by L0
4169 * without going back to L1), and to reflect the exit reason.
4170 * Note that we do not have to copy here all VMCS fields, just those that
4171 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4172 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4173 * which already writes to vmcs12 directly.
4175 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4176 u32 vm_exit_reason, u32 exit_intr_info,
4177 unsigned long exit_qualification)
4179 /* update exit information fields: */
4180 vmcs12->vm_exit_reason = vm_exit_reason;
4181 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4182 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4183 vmcs12->exit_qualification = exit_qualification;
4184 vmcs12->vm_exit_intr_info = exit_intr_info;
4186 vmcs12->idt_vectoring_info_field = 0;
4187 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4188 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4190 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4191 vmcs12->launch_state = 1;
4193 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4194 * instead of reading the real value. */
4195 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4198 * Transfer the event that L0 or L1 may wanted to inject into
4199 * L2 to IDT_VECTORING_INFO_FIELD.
4201 vmcs12_save_pending_event(vcpu, vmcs12);
4204 * According to spec, there's no need to store the guest's
4205 * MSRs if the exit is due to a VM-entry failure that occurs
4206 * during or after loading the guest state. Since this exit
4207 * does not fall in that category, we need to save the MSRs.
4209 if (nested_vmx_store_msr(vcpu,
4210 vmcs12->vm_exit_msr_store_addr,
4211 vmcs12->vm_exit_msr_store_count))
4212 nested_vmx_abort(vcpu,
4213 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4217 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4218 * preserved above and would only end up incorrectly in L1.
4220 vcpu->arch.nmi_injected = false;
4221 kvm_clear_exception_queue(vcpu);
4222 kvm_clear_interrupt_queue(vcpu);
4226 * A part of what we need to when the nested L2 guest exits and we want to
4227 * run its L1 parent, is to reset L1's guest state to the host state specified
4229 * This function is to be called not only on normal nested exit, but also on
4230 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4231 * Failures During or After Loading Guest State").
4232 * This function should be called when the active VMCS is L1's (vmcs01).
4234 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4235 struct vmcs12 *vmcs12)
4237 enum vm_entry_failure_code ignored;
4238 struct kvm_segment seg;
4240 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4241 vcpu->arch.efer = vmcs12->host_ia32_efer;
4242 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4243 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4245 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4246 vmx_set_efer(vcpu, vcpu->arch.efer);
4248 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4249 kvm_rip_write(vcpu, vmcs12->host_rip);
4250 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4251 vmx_set_interrupt_shadow(vcpu, 0);
4254 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4255 * actually changed, because vmx_set_cr0 refers to efer set above.
4257 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4258 * (KVM doesn't change it);
4260 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4261 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4263 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4264 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4265 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4267 nested_ept_uninit_mmu_context(vcpu);
4270 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4271 * couldn't have changed.
4273 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4274 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4276 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4278 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4279 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4280 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4281 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4282 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4283 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4284 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4286 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4287 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4288 vmcs_write64(GUEST_BNDCFGS, 0);
4290 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4291 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4292 vcpu->arch.pat = vmcs12->host_ia32_pat;
4294 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4295 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4296 vmcs12->host_ia32_perf_global_ctrl));
4298 /* Set L1 segment info according to Intel SDM
4299 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4300 seg = (struct kvm_segment) {
4302 .limit = 0xFFFFFFFF,
4303 .selector = vmcs12->host_cs_selector,
4309 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4313 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4314 seg = (struct kvm_segment) {
4316 .limit = 0xFFFFFFFF,
4323 seg.selector = vmcs12->host_ds_selector;
4324 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4325 seg.selector = vmcs12->host_es_selector;
4326 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4327 seg.selector = vmcs12->host_ss_selector;
4328 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4329 seg.selector = vmcs12->host_fs_selector;
4330 seg.base = vmcs12->host_fs_base;
4331 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4332 seg.selector = vmcs12->host_gs_selector;
4333 seg.base = vmcs12->host_gs_base;
4334 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4335 seg = (struct kvm_segment) {
4336 .base = vmcs12->host_tr_base,
4338 .selector = vmcs12->host_tr_selector,
4342 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4344 memset(&seg, 0, sizeof(seg));
4346 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4348 kvm_set_dr(vcpu, 7, 0x400);
4349 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4351 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4352 vmcs12->vm_exit_msr_load_count))
4353 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4356 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4358 struct vmx_uret_msr *efer_msr;
4361 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4362 return vmcs_read64(GUEST_IA32_EFER);
4364 if (cpu_has_load_ia32_efer())
4367 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4368 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4369 return vmx->msr_autoload.guest.val[i].value;
4372 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4374 return efer_msr->data;
4379 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4381 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4382 struct vcpu_vmx *vmx = to_vmx(vcpu);
4383 struct vmx_msr_entry g, h;
4387 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4389 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4391 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4392 * as vmcs01.GUEST_DR7 contains a userspace defined value
4393 * and vcpu->arch.dr7 is not squirreled away before the
4394 * nested VMENTER (not worth adding a variable in nested_vmx).
4396 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4397 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4399 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4403 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4404 * handle a variety of side effects to KVM's software model.
4406 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4408 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4409 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4411 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4412 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4414 nested_ept_uninit_mmu_context(vcpu);
4415 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4416 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4419 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4420 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4421 * VMFail, like everything else we just need to ensure our
4422 * software model is up-to-date.
4424 if (enable_ept && is_pae_paging(vcpu))
4425 ept_save_pdptrs(vcpu);
4427 kvm_mmu_reset_context(vcpu);
4430 * This nasty bit of open coding is a compromise between blindly
4431 * loading L1's MSRs using the exit load lists (incorrect emulation
4432 * of VMFail), leaving the nested VM's MSRs in the software model
4433 * (incorrect behavior) and snapshotting the modified MSRs (too
4434 * expensive since the lists are unbound by hardware). For each
4435 * MSR that was (prematurely) loaded from the nested VMEntry load
4436 * list, reload it from the exit load list if it exists and differs
4437 * from the guest value. The intent is to stuff host state as
4438 * silently as possible, not to fully process the exit load list.
4440 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4441 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4442 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4443 pr_debug_ratelimited(
4444 "%s read MSR index failed (%u, 0x%08llx)\n",
4449 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4450 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4451 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4452 pr_debug_ratelimited(
4453 "%s read MSR failed (%u, 0x%08llx)\n",
4457 if (h.index != g.index)
4459 if (h.value == g.value)
4462 if (nested_vmx_load_msr_check(vcpu, &h)) {
4463 pr_debug_ratelimited(
4464 "%s check failed (%u, 0x%x, 0x%x)\n",
4465 __func__, j, h.index, h.reserved);
4469 if (kvm_set_msr(vcpu, h.index, h.value)) {
4470 pr_debug_ratelimited(
4471 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4472 __func__, j, h.index, h.value);
4481 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4485 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4486 * and modify vmcs12 to make it see what it would expect to see there if
4487 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4489 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4490 u32 exit_intr_info, unsigned long exit_qualification)
4492 struct vcpu_vmx *vmx = to_vmx(vcpu);
4493 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4495 /* trying to cancel vmlaunch/vmresume is a bug */
4496 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4498 /* Similarly, triple faults in L2 should never escape. */
4499 WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4501 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4503 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4504 * Enlightened VMCS after migration and we still need to
4505 * do that when something is forcing L2->L1 exit prior to
4508 (void)nested_get_evmcs_page(vcpu);
4511 /* Service the TLB flush request for L2 before switching to L1. */
4512 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4513 kvm_vcpu_flush_tlb_current(vcpu);
4516 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4517 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4518 * up-to-date before switching to L1.
4520 if (enable_ept && is_pae_paging(vcpu))
4521 vmx_ept_load_pdptrs(vcpu);
4523 leave_guest_mode(vcpu);
4525 if (nested_cpu_has_preemption_timer(vmcs12))
4526 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4528 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4529 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4530 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4531 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4534 if (likely(!vmx->fail)) {
4535 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4537 if (vm_exit_reason != -1)
4538 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4539 exit_intr_info, exit_qualification);
4542 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4543 * also be used to capture vmcs12 cache as part of
4544 * capturing nVMX state for snapshot (migration).
4546 * Otherwise, this flush will dirty guest memory at a
4547 * point it is already assumed by user-space to be
4550 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4553 * The only expected VM-instruction error is "VM entry with
4554 * invalid control field(s)." Anything else indicates a
4555 * problem with L0. And we should never get here with a
4556 * VMFail of any type if early consistency checks are enabled.
4558 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4559 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4560 WARN_ON_ONCE(nested_early_check);
4563 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4565 /* Update any VMCS fields that might have changed while L2 ran */
4566 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4567 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4568 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4569 if (kvm_has_tsc_control)
4570 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4572 if (vmx->nested.l1_tpr_threshold != -1)
4573 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4575 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4576 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4577 vmx_set_virtual_apic_mode(vcpu);
4580 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4581 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4582 vmx_update_cpu_dirty_logging(vcpu);
4585 /* Unpin physical memory we referred to in vmcs02 */
4586 if (vmx->nested.apic_access_page) {
4587 kvm_release_page_clean(vmx->nested.apic_access_page);
4588 vmx->nested.apic_access_page = NULL;
4590 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4591 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4592 vmx->nested.pi_desc = NULL;
4594 if (vmx->nested.reload_vmcs01_apic_access_page) {
4595 vmx->nested.reload_vmcs01_apic_access_page = false;
4596 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4599 if ((vm_exit_reason != -1) &&
4600 (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4601 vmx->nested.need_vmcs12_to_shadow_sync = true;
4603 /* in case we halted in L2 */
4604 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4606 if (likely(!vmx->fail)) {
4607 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4608 nested_exit_intr_ack_set(vcpu)) {
4609 int irq = kvm_cpu_get_interrupt(vcpu);
4611 vmcs12->vm_exit_intr_info = irq |
4612 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4615 if (vm_exit_reason != -1)
4616 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4617 vmcs12->exit_qualification,
4618 vmcs12->idt_vectoring_info_field,
4619 vmcs12->vm_exit_intr_info,
4620 vmcs12->vm_exit_intr_error_code,
4623 load_vmcs12_host_state(vcpu, vmcs12);
4629 * After an early L2 VM-entry failure, we're now back
4630 * in L1 which thinks it just finished a VMLAUNCH or
4631 * VMRESUME instruction, so we need to set the failure
4632 * flag and the VM-instruction error field of the VMCS
4633 * accordingly, and skip the emulated instruction.
4635 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4638 * Restore L1's host state to KVM's software model. We're here
4639 * because a consistency check was caught by hardware, which
4640 * means some amount of guest state has been propagated to KVM's
4641 * model and needs to be unwound to the host's state.
4643 nested_vmx_restore_host_state(vcpu);
4648 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4650 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4654 * Decode the memory-address operand of a vmx instruction, as recorded on an
4655 * exit caused by such an instruction (run by a guest hypervisor).
4656 * On success, returns 0. When the operand is invalid, returns 1 and throws
4659 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4660 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4664 struct kvm_segment s;
4667 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4668 * Execution", on an exit, vmx_instruction_info holds most of the
4669 * addressing components of the operand. Only the displacement part
4670 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4671 * For how an actual address is calculated from all these components,
4672 * refer to Vol. 1, "Operand Addressing".
4674 int scaling = vmx_instruction_info & 3;
4675 int addr_size = (vmx_instruction_info >> 7) & 7;
4676 bool is_reg = vmx_instruction_info & (1u << 10);
4677 int seg_reg = (vmx_instruction_info >> 15) & 7;
4678 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4679 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4680 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4681 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4684 kvm_queue_exception(vcpu, UD_VECTOR);
4688 /* Addr = segment_base + offset */
4689 /* offset = base + [index * scale] + displacement */
4690 off = exit_qualification; /* holds the displacement */
4692 off = (gva_t)sign_extend64(off, 31);
4693 else if (addr_size == 0)
4694 off = (gva_t)sign_extend64(off, 15);
4696 off += kvm_register_read(vcpu, base_reg);
4698 off += kvm_register_read(vcpu, index_reg) << scaling;
4699 vmx_get_segment(vcpu, &s, seg_reg);
4702 * The effective address, i.e. @off, of a memory operand is truncated
4703 * based on the address size of the instruction. Note that this is
4704 * the *effective address*, i.e. the address prior to accounting for
4705 * the segment's base.
4707 if (addr_size == 1) /* 32 bit */
4709 else if (addr_size == 0) /* 16 bit */
4712 /* Checks for #GP/#SS exceptions. */
4714 if (is_long_mode(vcpu)) {
4716 * The virtual/linear address is never truncated in 64-bit
4717 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4718 * address when using FS/GS with a non-zero base.
4720 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4721 *ret = s.base + off;
4725 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4726 * non-canonical form. This is the only check on the memory
4727 * destination for long mode!
4729 exn = is_noncanonical_address(*ret, vcpu);
4732 * When not in long mode, the virtual/linear address is
4733 * unconditionally truncated to 32 bits regardless of the
4736 *ret = (s.base + off) & 0xffffffff;
4738 /* Protected mode: apply checks for segment validity in the
4740 * - segment type check (#GP(0) may be thrown)
4741 * - usability check (#GP(0)/#SS(0))
4742 * - limit check (#GP(0)/#SS(0))
4745 /* #GP(0) if the destination operand is located in a
4746 * read-only data segment or any code segment.
4748 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4750 /* #GP(0) if the source operand is located in an
4751 * execute-only code segment
4753 exn = ((s.type & 0xa) == 8);
4755 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4758 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4760 exn = (s.unusable != 0);
4763 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4764 * outside the segment limit. All CPUs that support VMX ignore
4765 * limit checks for flat segments, i.e. segments with base==0,
4766 * limit==0xffffffff and of type expand-up data or code.
4768 if (!(s.base == 0 && s.limit == 0xffffffff &&
4769 ((s.type & 8) || !(s.type & 4))))
4770 exn = exn || ((u64)off + len - 1 > s.limit);
4773 kvm_queue_exception_e(vcpu,
4774 seg_reg == VCPU_SREG_SS ?
4775 SS_VECTOR : GP_VECTOR,
4783 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4785 struct vcpu_vmx *vmx;
4787 if (!nested_vmx_allowed(vcpu))
4791 if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4792 vmx->nested.msrs.entry_ctls_high |=
4793 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4794 vmx->nested.msrs.exit_ctls_high |=
4795 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4797 vmx->nested.msrs.entry_ctls_high &=
4798 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4799 vmx->nested.msrs.exit_ctls_high &=
4800 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4804 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4808 struct x86_exception e;
4811 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4812 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4813 sizeof(*vmpointer), &gva)) {
4818 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4819 if (r != X86EMUL_CONTINUE) {
4820 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4828 * Allocate a shadow VMCS and associate it with the currently loaded
4829 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4830 * VMCS is also VMCLEARed, so that it is ready for use.
4832 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4834 struct vcpu_vmx *vmx = to_vmx(vcpu);
4835 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4838 * We should allocate a shadow vmcs for vmcs01 only when L1
4839 * executes VMXON and free it when L1 executes VMXOFF.
4840 * As it is invalid to execute VMXON twice, we shouldn't reach
4841 * here when vmcs01 already have an allocated shadow vmcs.
4843 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4845 if (!loaded_vmcs->shadow_vmcs) {
4846 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4847 if (loaded_vmcs->shadow_vmcs)
4848 vmcs_clear(loaded_vmcs->shadow_vmcs);
4850 return loaded_vmcs->shadow_vmcs;
4853 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4855 struct vcpu_vmx *vmx = to_vmx(vcpu);
4858 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4862 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4863 if (!vmx->nested.cached_vmcs12)
4864 goto out_cached_vmcs12;
4866 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4867 if (!vmx->nested.cached_shadow_vmcs12)
4868 goto out_cached_shadow_vmcs12;
4870 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4871 goto out_shadow_vmcs;
4873 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4874 HRTIMER_MODE_ABS_PINNED);
4875 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4877 vmx->nested.vpid02 = allocate_vpid();
4879 vmx->nested.vmcs02_initialized = false;
4880 vmx->nested.vmxon = true;
4882 if (vmx_pt_mode_is_host_guest()) {
4883 vmx->pt_desc.guest.ctl = 0;
4884 pt_update_intercept_for_msr(vcpu);
4890 kfree(vmx->nested.cached_shadow_vmcs12);
4892 out_cached_shadow_vmcs12:
4893 kfree(vmx->nested.cached_vmcs12);
4896 free_loaded_vmcs(&vmx->nested.vmcs02);
4903 * Emulate the VMXON instruction.
4904 * Currently, we just remember that VMX is active, and do not save or even
4905 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4906 * do not currently need to store anything in that guest-allocated memory
4907 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4908 * argument is different from the VMXON pointer (which the spec says they do).
4910 static int handle_vmon(struct kvm_vcpu *vcpu)
4915 struct vcpu_vmx *vmx = to_vmx(vcpu);
4916 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4917 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4920 * The Intel VMX Instruction Reference lists a bunch of bits that are
4921 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4922 * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4923 * Otherwise, we should fail with #UD. But most faulting conditions
4924 * have already been checked by hardware, prior to the VM-exit for
4925 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
4926 * that bit set to 1 in non-root mode.
4928 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4929 kvm_queue_exception(vcpu, UD_VECTOR);
4933 /* CPL=0 must be checked manually. */
4934 if (vmx_get_cpl(vcpu)) {
4935 kvm_inject_gp(vcpu, 0);
4939 if (vmx->nested.vmxon)
4940 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4942 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4943 != VMXON_NEEDED_FEATURES) {
4944 kvm_inject_gp(vcpu, 0);
4948 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4953 * The first 4 bytes of VMXON region contain the supported
4954 * VMCS revision identifier
4956 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4957 * which replaces physical address width with 32
4959 if (!page_address_valid(vcpu, vmptr))
4960 return nested_vmx_failInvalid(vcpu);
4962 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4963 revision != VMCS12_REVISION)
4964 return nested_vmx_failInvalid(vcpu);
4966 vmx->nested.vmxon_ptr = vmptr;
4967 ret = enter_vmx_operation(vcpu);
4971 return nested_vmx_succeed(vcpu);
4974 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4976 struct vcpu_vmx *vmx = to_vmx(vcpu);
4978 if (vmx->nested.current_vmptr == -1ull)
4981 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4983 if (enable_shadow_vmcs) {
4984 /* copy to memory all shadowed fields in case
4985 they were modified */
4986 copy_shadow_to_vmcs12(vmx);
4987 vmx_disable_shadow_vmcs(vmx);
4989 vmx->nested.posted_intr_nv = -1;
4991 /* Flush VMCS12 to guest memory */
4992 kvm_vcpu_write_guest_page(vcpu,
4993 vmx->nested.current_vmptr >> PAGE_SHIFT,
4994 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4996 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4998 vmx->nested.current_vmptr = -1ull;
5001 /* Emulate the VMXOFF instruction */
5002 static int handle_vmoff(struct kvm_vcpu *vcpu)
5004 if (!nested_vmx_check_permission(vcpu))
5009 /* Process a latched INIT during time CPU was in VMX operation */
5010 kvm_make_request(KVM_REQ_EVENT, vcpu);
5012 return nested_vmx_succeed(vcpu);
5015 /* Emulate the VMCLEAR instruction */
5016 static int handle_vmclear(struct kvm_vcpu *vcpu)
5018 struct vcpu_vmx *vmx = to_vmx(vcpu);
5024 if (!nested_vmx_check_permission(vcpu))
5027 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5030 if (!page_address_valid(vcpu, vmptr))
5031 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5033 if (vmptr == vmx->nested.vmxon_ptr)
5034 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5037 * When Enlightened VMEntry is enabled on the calling CPU we treat
5038 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5039 * way to distinguish it from VMCS12) and we must not corrupt it by
5040 * writing to the non-existent 'launch_state' field. The area doesn't
5041 * have to be the currently active EVMCS on the calling CPU and there's
5042 * nothing KVM has to do to transition it from 'active' to 'non-active'
5043 * state. It is possible that the area will stay mapped as
5044 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5046 if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5047 !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5048 if (vmptr == vmx->nested.current_vmptr)
5049 nested_release_vmcs12(vcpu);
5051 kvm_vcpu_write_guest(vcpu,
5052 vmptr + offsetof(struct vmcs12,
5054 &zero, sizeof(zero));
5055 } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5056 nested_release_evmcs(vcpu);
5059 return nested_vmx_succeed(vcpu);
5062 /* Emulate the VMLAUNCH instruction */
5063 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5065 return nested_vmx_run(vcpu, true);
5068 /* Emulate the VMRESUME instruction */
5069 static int handle_vmresume(struct kvm_vcpu *vcpu)
5072 return nested_vmx_run(vcpu, false);
5075 static int handle_vmread(struct kvm_vcpu *vcpu)
5077 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5079 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5080 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5081 struct vcpu_vmx *vmx = to_vmx(vcpu);
5082 struct x86_exception e;
5083 unsigned long field;
5089 if (!nested_vmx_check_permission(vcpu))
5093 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5094 * any VMREAD sets the ALU flags for VMfailInvalid.
5096 if (vmx->nested.current_vmptr == -1ull ||
5097 (is_guest_mode(vcpu) &&
5098 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5099 return nested_vmx_failInvalid(vcpu);
5101 /* Decode instruction info and find the field to read */
5102 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5104 offset = vmcs_field_to_offset(field);
5106 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5108 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5109 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5111 /* Read the field, zero-extended to a u64 value */
5112 value = vmcs12_read_any(vmcs12, field, offset);
5115 * Now copy part of this value to register or memory, as requested.
5116 * Note that the number of bits actually copied is 32 or 64 depending
5117 * on the guest's mode (32 or 64 bit), not on the given field's length.
5119 if (instr_info & BIT(10)) {
5120 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5122 len = is_64_bit_mode(vcpu) ? 8 : 4;
5123 if (get_vmx_mem_address(vcpu, exit_qualification,
5124 instr_info, true, len, &gva))
5126 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5127 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5128 if (r != X86EMUL_CONTINUE)
5129 return kvm_handle_memory_failure(vcpu, r, &e);
5132 return nested_vmx_succeed(vcpu);
5135 static bool is_shadow_field_rw(unsigned long field)
5138 #define SHADOW_FIELD_RW(x, y) case x:
5139 #include "vmcs_shadow_fields.h"
5147 static bool is_shadow_field_ro(unsigned long field)
5150 #define SHADOW_FIELD_RO(x, y) case x:
5151 #include "vmcs_shadow_fields.h"
5159 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5161 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5163 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5164 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5165 struct vcpu_vmx *vmx = to_vmx(vcpu);
5166 struct x86_exception e;
5167 unsigned long field;
5173 * The value to write might be 32 or 64 bits, depending on L1's long
5174 * mode, and eventually we need to write that into a field of several
5175 * possible lengths. The code below first zero-extends the value to 64
5176 * bit (value), and then copies only the appropriate number of
5177 * bits into the vmcs12 field.
5181 if (!nested_vmx_check_permission(vcpu))
5185 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5186 * any VMWRITE sets the ALU flags for VMfailInvalid.
5188 if (vmx->nested.current_vmptr == -1ull ||
5189 (is_guest_mode(vcpu) &&
5190 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5191 return nested_vmx_failInvalid(vcpu);
5193 if (instr_info & BIT(10))
5194 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5196 len = is_64_bit_mode(vcpu) ? 8 : 4;
5197 if (get_vmx_mem_address(vcpu, exit_qualification,
5198 instr_info, false, len, &gva))
5200 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5201 if (r != X86EMUL_CONTINUE)
5202 return kvm_handle_memory_failure(vcpu, r, &e);
5205 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5207 offset = vmcs_field_to_offset(field);
5209 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5212 * If the vCPU supports "VMWRITE to any supported field in the
5213 * VMCS," then the "read-only" fields are actually read/write.
5215 if (vmcs_field_readonly(field) &&
5216 !nested_cpu_has_vmwrite_any_field(vcpu))
5217 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5220 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5221 * vmcs12, else we may crush a field or consume a stale value.
5223 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5224 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5227 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5228 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5229 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5230 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5231 * from L1 will return a different value than VMREAD from L2 (L1 sees
5232 * the stripped down value, L2 sees the full value as stored by KVM).
5234 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5237 vmcs12_write_any(vmcs12, field, offset, value);
5240 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5241 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5242 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5243 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5245 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5247 * L1 can read these fields without exiting, ensure the
5248 * shadow VMCS is up-to-date.
5250 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5252 vmcs_load(vmx->vmcs01.shadow_vmcs);
5254 __vmcs_writel(field, value);
5256 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5257 vmcs_load(vmx->loaded_vmcs->vmcs);
5260 vmx->nested.dirty_vmcs12 = true;
5263 return nested_vmx_succeed(vcpu);
5266 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5268 vmx->nested.current_vmptr = vmptr;
5269 if (enable_shadow_vmcs) {
5270 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5271 vmcs_write64(VMCS_LINK_POINTER,
5272 __pa(vmx->vmcs01.shadow_vmcs));
5273 vmx->nested.need_vmcs12_to_shadow_sync = true;
5275 vmx->nested.dirty_vmcs12 = true;
5278 /* Emulate the VMPTRLD instruction */
5279 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5281 struct vcpu_vmx *vmx = to_vmx(vcpu);
5285 if (!nested_vmx_check_permission(vcpu))
5288 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5291 if (!page_address_valid(vcpu, vmptr))
5292 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5294 if (vmptr == vmx->nested.vmxon_ptr)
5295 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5297 /* Forbid normal VMPTRLD if Enlightened version was used */
5298 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5301 if (vmx->nested.current_vmptr != vmptr) {
5302 struct kvm_host_map map;
5303 struct vmcs12 *new_vmcs12;
5305 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5307 * Reads from an unbacked page return all 1s,
5308 * which means that the 32 bits located at the
5309 * given physical address won't match the required
5310 * VMCS12_REVISION identifier.
5312 return nested_vmx_fail(vcpu,
5313 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5316 new_vmcs12 = map.hva;
5318 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5319 (new_vmcs12->hdr.shadow_vmcs &&
5320 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5321 kvm_vcpu_unmap(vcpu, &map, false);
5322 return nested_vmx_fail(vcpu,
5323 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5326 nested_release_vmcs12(vcpu);
5329 * Load VMCS12 from guest memory since it is not already
5332 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5333 kvm_vcpu_unmap(vcpu, &map, false);
5335 set_current_vmptr(vmx, vmptr);
5338 return nested_vmx_succeed(vcpu);
5341 /* Emulate the VMPTRST instruction */
5342 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5344 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5345 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5346 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5347 struct x86_exception e;
5351 if (!nested_vmx_check_permission(vcpu))
5354 if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5357 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5358 true, sizeof(gpa_t), &gva))
5360 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5361 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5363 if (r != X86EMUL_CONTINUE)
5364 return kvm_handle_memory_failure(vcpu, r, &e);
5366 return nested_vmx_succeed(vcpu);
5369 /* Emulate the INVEPT instruction */
5370 static int handle_invept(struct kvm_vcpu *vcpu)
5372 struct vcpu_vmx *vmx = to_vmx(vcpu);
5373 u32 vmx_instruction_info, types;
5374 unsigned long type, roots_to_free;
5375 struct kvm_mmu *mmu;
5377 struct x86_exception e;
5383 if (!(vmx->nested.msrs.secondary_ctls_high &
5384 SECONDARY_EXEC_ENABLE_EPT) ||
5385 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5386 kvm_queue_exception(vcpu, UD_VECTOR);
5390 if (!nested_vmx_check_permission(vcpu))
5393 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5394 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5396 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5398 if (type >= 32 || !(types & (1 << type)))
5399 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5401 /* According to the Intel VMX instruction reference, the memory
5402 * operand is read even if it isn't needed (e.g., for type==global)
5404 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5405 vmx_instruction_info, false, sizeof(operand), &gva))
5407 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5408 if (r != X86EMUL_CONTINUE)
5409 return kvm_handle_memory_failure(vcpu, r, &e);
5412 * Nested EPT roots are always held through guest_mmu,
5415 mmu = &vcpu->arch.guest_mmu;
5418 case VMX_EPT_EXTENT_CONTEXT:
5419 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5420 return nested_vmx_fail(vcpu,
5421 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5424 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5426 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5428 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5429 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5430 mmu->prev_roots[i].pgd,
5432 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5435 case VMX_EPT_EXTENT_GLOBAL:
5436 roots_to_free = KVM_MMU_ROOTS_ALL;
5444 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5446 return nested_vmx_succeed(vcpu);
5449 static int handle_invvpid(struct kvm_vcpu *vcpu)
5451 struct vcpu_vmx *vmx = to_vmx(vcpu);
5452 u32 vmx_instruction_info;
5453 unsigned long type, types;
5455 struct x86_exception e;
5463 if (!(vmx->nested.msrs.secondary_ctls_high &
5464 SECONDARY_EXEC_ENABLE_VPID) ||
5465 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5466 kvm_queue_exception(vcpu, UD_VECTOR);
5470 if (!nested_vmx_check_permission(vcpu))
5473 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5474 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5476 types = (vmx->nested.msrs.vpid_caps &
5477 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5479 if (type >= 32 || !(types & (1 << type)))
5480 return nested_vmx_fail(vcpu,
5481 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5483 /* according to the intel vmx instruction reference, the memory
5484 * operand is read even if it isn't needed (e.g., for type==global)
5486 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5487 vmx_instruction_info, false, sizeof(operand), &gva))
5489 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5490 if (r != X86EMUL_CONTINUE)
5491 return kvm_handle_memory_failure(vcpu, r, &e);
5493 if (operand.vpid >> 16)
5494 return nested_vmx_fail(vcpu,
5495 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5497 vpid02 = nested_get_vpid02(vcpu);
5499 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5500 if (!operand.vpid ||
5501 is_noncanonical_address(operand.gla, vcpu))
5502 return nested_vmx_fail(vcpu,
5503 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5504 vpid_sync_vcpu_addr(vpid02, operand.gla);
5506 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5507 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5509 return nested_vmx_fail(vcpu,
5510 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5511 vpid_sync_context(vpid02);
5513 case VMX_VPID_EXTENT_ALL_CONTEXT:
5514 vpid_sync_context(vpid02);
5518 return kvm_skip_emulated_instruction(vcpu);
5522 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5523 * linear mappings for L2 (tagged with L2's VPID). Free all guest
5524 * roots as VPIDs are not tracked in the MMU role.
5526 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5527 * an MMU when EPT is disabled.
5529 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5532 kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5534 return nested_vmx_succeed(vcpu);
5537 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5538 struct vmcs12 *vmcs12)
5540 u32 index = kvm_rcx_read(vcpu);
5543 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5545 if (index >= VMFUNC_EPTP_ENTRIES)
5548 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5549 &new_eptp, index * 8, 8))
5553 * If the (L2) guest does a vmfunc to the currently
5554 * active ept pointer, we don't have to do anything else
5556 if (vmcs12->ept_pointer != new_eptp) {
5557 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5560 vmcs12->ept_pointer = new_eptp;
5561 nested_ept_new_eptp(vcpu);
5563 if (!nested_cpu_has_vpid(vmcs12))
5564 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5570 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5572 struct vcpu_vmx *vmx = to_vmx(vcpu);
5573 struct vmcs12 *vmcs12;
5574 u32 function = kvm_rax_read(vcpu);
5577 * VMFUNC is only supported for nested guests, but we always enable the
5578 * secondary control for simplicity; for non-nested mode, fake that we
5579 * didn't by injecting #UD.
5581 if (!is_guest_mode(vcpu)) {
5582 kvm_queue_exception(vcpu, UD_VECTOR);
5586 vmcs12 = get_vmcs12(vcpu);
5589 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5590 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5592 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5593 kvm_queue_exception(vcpu, UD_VECTOR);
5597 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5602 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5608 return kvm_skip_emulated_instruction(vcpu);
5612 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5613 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5614 * EXIT_REASON_VMFUNC as the exit reason.
5616 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5617 vmx_get_intr_info(vcpu),
5618 vmx_get_exit_qual(vcpu));
5623 * Return true if an IO instruction with the specified port and size should cause
5624 * a VM-exit into L1.
5626 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5629 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5630 gpa_t bitmap, last_bitmap;
5633 last_bitmap = (gpa_t)-1;
5638 bitmap = vmcs12->io_bitmap_a;
5639 else if (port < 0x10000)
5640 bitmap = vmcs12->io_bitmap_b;
5643 bitmap += (port & 0x7fff) / 8;
5645 if (last_bitmap != bitmap)
5646 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5648 if (b & (1 << (port & 7)))
5653 last_bitmap = bitmap;
5659 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5660 struct vmcs12 *vmcs12)
5662 unsigned long exit_qualification;
5663 unsigned short port;
5666 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5667 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5669 exit_qualification = vmx_get_exit_qual(vcpu);
5671 port = exit_qualification >> 16;
5672 size = (exit_qualification & 7) + 1;
5674 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5678 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5679 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5680 * disinterest in the current event (read or write a specific MSR) by using an
5681 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5683 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5684 struct vmcs12 *vmcs12,
5685 union vmx_exit_reason exit_reason)
5687 u32 msr_index = kvm_rcx_read(vcpu);
5690 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5694 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5695 * for the four combinations of read/write and low/high MSR numbers.
5696 * First we need to figure out which of the four to use:
5698 bitmap = vmcs12->msr_bitmap;
5699 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5701 if (msr_index >= 0xc0000000) {
5702 msr_index -= 0xc0000000;
5706 /* Then read the msr_index'th bit from this bitmap: */
5707 if (msr_index < 1024*8) {
5709 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5711 return 1 & (b >> (msr_index & 7));
5713 return true; /* let L1 handle the wrong parameter */
5717 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5718 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5719 * intercept (via guest_host_mask etc.) the current event.
5721 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5722 struct vmcs12 *vmcs12)
5724 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5725 int cr = exit_qualification & 15;
5729 switch ((exit_qualification >> 4) & 3) {
5730 case 0: /* mov to cr */
5731 reg = (exit_qualification >> 8) & 15;
5732 val = kvm_register_read(vcpu, reg);
5735 if (vmcs12->cr0_guest_host_mask &
5736 (val ^ vmcs12->cr0_read_shadow))
5740 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5744 if (vmcs12->cr4_guest_host_mask &
5745 (vmcs12->cr4_read_shadow ^ val))
5749 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5755 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5756 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5759 case 1: /* mov from cr */
5762 if (vmcs12->cpu_based_vm_exec_control &
5763 CPU_BASED_CR3_STORE_EXITING)
5767 if (vmcs12->cpu_based_vm_exec_control &
5768 CPU_BASED_CR8_STORE_EXITING)
5775 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5776 * cr0. Other attempted changes are ignored, with no exit.
5778 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5779 if (vmcs12->cr0_guest_host_mask & 0xe &
5780 (val ^ vmcs12->cr0_read_shadow))
5782 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5783 !(vmcs12->cr0_read_shadow & 0x1) &&
5791 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5792 struct vmcs12 *vmcs12)
5796 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5797 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5800 encls_leaf = kvm_rax_read(vcpu);
5801 if (encls_leaf > 62)
5803 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5806 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5807 struct vmcs12 *vmcs12, gpa_t bitmap)
5809 u32 vmx_instruction_info;
5810 unsigned long field;
5813 if (!nested_cpu_has_shadow_vmcs(vmcs12))
5816 /* Decode instruction info and find the field to access */
5817 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5818 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5820 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5824 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5827 return 1 & (b >> (field & 7));
5830 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5832 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5834 if (nested_cpu_has_mtf(vmcs12))
5838 * An MTF VM-exit may be injected into the guest by setting the
5839 * interruption-type to 7 (other event) and the vector field to 0. Such
5840 * is the case regardless of the 'monitor trap flag' VM-execution
5843 return entry_intr_info == (INTR_INFO_VALID_MASK
5844 | INTR_TYPE_OTHER_EVENT);
5848 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5849 * L1 wants the exit. Only call this when in is_guest_mode (L2).
5851 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5852 union vmx_exit_reason exit_reason)
5856 switch ((u16)exit_reason.basic) {
5857 case EXIT_REASON_EXCEPTION_NMI:
5858 intr_info = vmx_get_intr_info(vcpu);
5859 if (is_nmi(intr_info))
5861 else if (is_page_fault(intr_info))
5862 return vcpu->arch.apf.host_apf_flags ||
5863 vmx_need_pf_intercept(vcpu);
5864 else if (is_debug(intr_info) &&
5866 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5868 else if (is_breakpoint(intr_info) &&
5869 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5871 else if (is_alignment_check(intr_info) &&
5872 !vmx_guest_inject_ac(vcpu))
5875 case EXIT_REASON_EXTERNAL_INTERRUPT:
5877 case EXIT_REASON_MCE_DURING_VMENTRY:
5879 case EXIT_REASON_EPT_VIOLATION:
5881 * L0 always deals with the EPT violation. If nested EPT is
5882 * used, and the nested mmu code discovers that the address is
5883 * missing in the guest EPT table (EPT12), the EPT violation
5884 * will be injected with nested_ept_inject_page_fault()
5887 case EXIT_REASON_EPT_MISCONFIG:
5889 * L2 never uses directly L1's EPT, but rather L0's own EPT
5890 * table (shadow on EPT) or a merged EPT table that L0 built
5891 * (EPT on EPT). So any problems with the structure of the
5892 * table is L0's fault.
5895 case EXIT_REASON_PREEMPTION_TIMER:
5897 case EXIT_REASON_PML_FULL:
5899 * PML is emulated for an L1 VMM and should never be enabled in
5900 * vmcs02, always "handle" PML_FULL by exiting to userspace.
5903 case EXIT_REASON_VMFUNC:
5904 /* VM functions are emulated through L2->L0 vmexits. */
5913 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
5914 * is_guest_mode (L2).
5916 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5917 union vmx_exit_reason exit_reason)
5919 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5922 switch ((u16)exit_reason.basic) {
5923 case EXIT_REASON_EXCEPTION_NMI:
5924 intr_info = vmx_get_intr_info(vcpu);
5925 if (is_nmi(intr_info))
5927 else if (is_page_fault(intr_info))
5929 return vmcs12->exception_bitmap &
5930 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5931 case EXIT_REASON_EXTERNAL_INTERRUPT:
5932 return nested_exit_on_intr(vcpu);
5933 case EXIT_REASON_TRIPLE_FAULT:
5935 case EXIT_REASON_INTERRUPT_WINDOW:
5936 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5937 case EXIT_REASON_NMI_WINDOW:
5938 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5939 case EXIT_REASON_TASK_SWITCH:
5941 case EXIT_REASON_CPUID:
5943 case EXIT_REASON_HLT:
5944 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5945 case EXIT_REASON_INVD:
5947 case EXIT_REASON_INVLPG:
5948 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5949 case EXIT_REASON_RDPMC:
5950 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5951 case EXIT_REASON_RDRAND:
5952 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5953 case EXIT_REASON_RDSEED:
5954 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5955 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5956 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5957 case EXIT_REASON_VMREAD:
5958 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5959 vmcs12->vmread_bitmap);
5960 case EXIT_REASON_VMWRITE:
5961 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5962 vmcs12->vmwrite_bitmap);
5963 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5964 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5965 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5966 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5967 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5969 * VMX instructions trap unconditionally. This allows L1 to
5970 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5973 case EXIT_REASON_CR_ACCESS:
5974 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5975 case EXIT_REASON_DR_ACCESS:
5976 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5977 case EXIT_REASON_IO_INSTRUCTION:
5978 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5979 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5980 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5981 case EXIT_REASON_MSR_READ:
5982 case EXIT_REASON_MSR_WRITE:
5983 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5984 case EXIT_REASON_INVALID_STATE:
5986 case EXIT_REASON_MWAIT_INSTRUCTION:
5987 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5988 case EXIT_REASON_MONITOR_TRAP_FLAG:
5989 return nested_vmx_exit_handled_mtf(vmcs12);
5990 case EXIT_REASON_MONITOR_INSTRUCTION:
5991 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5992 case EXIT_REASON_PAUSE_INSTRUCTION:
5993 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5994 nested_cpu_has2(vmcs12,
5995 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5996 case EXIT_REASON_MCE_DURING_VMENTRY:
5998 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5999 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6000 case EXIT_REASON_APIC_ACCESS:
6001 case EXIT_REASON_APIC_WRITE:
6002 case EXIT_REASON_EOI_INDUCED:
6004 * The controls for "virtualize APIC accesses," "APIC-
6005 * register virtualization," and "virtual-interrupt
6006 * delivery" only come from vmcs12.
6009 case EXIT_REASON_INVPCID:
6011 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6012 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6013 case EXIT_REASON_WBINVD:
6014 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6015 case EXIT_REASON_XSETBV:
6017 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6019 * This should never happen, since it is not possible to
6020 * set XSS to a non-zero value---neither in L1 nor in L2.
6021 * If if it were, XSS would have to be checked against
6022 * the XSS exit bitmap in vmcs12.
6024 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6025 case EXIT_REASON_UMWAIT:
6026 case EXIT_REASON_TPAUSE:
6027 return nested_cpu_has2(vmcs12,
6028 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6029 case EXIT_REASON_ENCLS:
6030 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6037 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6038 * reflected into L1.
6040 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6042 struct vcpu_vmx *vmx = to_vmx(vcpu);
6043 union vmx_exit_reason exit_reason = vmx->exit_reason;
6044 unsigned long exit_qual;
6047 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6050 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6051 * has already loaded L2's state.
6053 if (unlikely(vmx->fail)) {
6054 trace_kvm_nested_vmenter_failed(
6055 "hardware VM-instruction error: ",
6056 vmcs_read32(VM_INSTRUCTION_ERROR));
6059 goto reflect_vmexit;
6062 trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6064 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6065 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6068 /* If L1 doesn't want the exit, handle it in L0. */
6069 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6073 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6074 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6075 * need to be synthesized by querying the in-kernel LAPIC, but external
6076 * interrupts are never reflected to L1 so it's a non-issue.
6078 exit_intr_info = vmx_get_intr_info(vcpu);
6079 if (is_exception_with_error_code(exit_intr_info)) {
6080 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6082 vmcs12->vm_exit_intr_error_code =
6083 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6085 exit_qual = vmx_get_exit_qual(vcpu);
6088 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6092 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6093 struct kvm_nested_state __user *user_kvm_nested_state,
6096 struct vcpu_vmx *vmx;
6097 struct vmcs12 *vmcs12;
6098 struct kvm_nested_state kvm_state = {
6100 .format = KVM_STATE_NESTED_FORMAT_VMX,
6101 .size = sizeof(kvm_state),
6103 .hdr.vmx.vmxon_pa = -1ull,
6104 .hdr.vmx.vmcs12_pa = -1ull,
6105 .hdr.vmx.preemption_timer_deadline = 0,
6107 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6108 &user_kvm_nested_state->data.vmx[0];
6111 return kvm_state.size + sizeof(*user_vmx_nested_state);
6114 vmcs12 = get_vmcs12(vcpu);
6116 if (nested_vmx_allowed(vcpu) &&
6117 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6118 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6119 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6121 if (vmx_has_valid_vmcs12(vcpu)) {
6122 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6124 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6125 if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6126 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6128 if (is_guest_mode(vcpu) &&
6129 nested_cpu_has_shadow_vmcs(vmcs12) &&
6130 vmcs12->vmcs_link_pointer != -1ull)
6131 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6134 if (vmx->nested.smm.vmxon)
6135 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6137 if (vmx->nested.smm.guest_mode)
6138 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6140 if (is_guest_mode(vcpu)) {
6141 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6143 if (vmx->nested.nested_run_pending)
6144 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6146 if (vmx->nested.mtf_pending)
6147 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6149 if (nested_cpu_has_preemption_timer(vmcs12) &&
6150 vmx->nested.has_preemption_timer_deadline) {
6151 kvm_state.hdr.vmx.flags |=
6152 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6153 kvm_state.hdr.vmx.preemption_timer_deadline =
6154 vmx->nested.preemption_timer_deadline;
6159 if (user_data_size < kvm_state.size)
6162 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6165 if (!vmx_has_valid_vmcs12(vcpu))
6169 * When running L2, the authoritative vmcs12 state is in the
6170 * vmcs02. When running L1, the authoritative vmcs12 state is
6171 * in the shadow or enlightened vmcs linked to vmcs01, unless
6172 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6173 * vmcs12 state is in the vmcs12 already.
6175 if (is_guest_mode(vcpu)) {
6176 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6177 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6179 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6180 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6181 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6183 * L1 hypervisor is not obliged to keep eVMCS
6184 * clean fields data always up-to-date while
6185 * not in guest mode, 'hv_clean_fields' is only
6186 * supposed to be actual upon vmentry so we need
6187 * to ignore it here and do full copy.
6189 copy_enlightened_to_vmcs12(vmx, 0);
6190 else if (enable_shadow_vmcs)
6191 copy_shadow_to_vmcs12(vmx);
6195 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6196 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6199 * Copy over the full allocated size of vmcs12 rather than just the size
6202 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6205 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6206 vmcs12->vmcs_link_pointer != -1ull) {
6207 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6208 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6212 return kvm_state.size;
6216 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6218 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6220 if (is_guest_mode(vcpu)) {
6221 to_vmx(vcpu)->nested.nested_run_pending = 0;
6222 nested_vmx_vmexit(vcpu, -1, 0, 0);
6227 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6228 struct kvm_nested_state __user *user_kvm_nested_state,
6229 struct kvm_nested_state *kvm_state)
6231 struct vcpu_vmx *vmx = to_vmx(vcpu);
6232 struct vmcs12 *vmcs12;
6233 enum vm_entry_failure_code ignored;
6234 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6235 &user_kvm_nested_state->data.vmx[0];
6238 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6241 if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6242 if (kvm_state->hdr.vmx.smm.flags)
6245 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6249 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6250 * enable eVMCS capability on vCPU. However, since then
6251 * code was changed such that flag signals vmcs12 should
6252 * be copied into eVMCS in guest memory.
6254 * To preserve backwards compatability, allow user
6255 * to set this flag even when there is no VMXON region.
6257 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6260 if (!nested_vmx_allowed(vcpu))
6263 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6267 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6268 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6271 if (kvm_state->hdr.vmx.smm.flags &
6272 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6275 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6279 * SMM temporarily disables VMX, so we cannot be in guest mode,
6280 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6285 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6286 : kvm_state->hdr.vmx.smm.flags)
6289 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6290 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6293 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6294 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6297 vmx_leave_nested(vcpu);
6299 if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6302 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6303 ret = enter_vmx_operation(vcpu);
6307 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6308 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6309 /* See vmx_has_valid_vmcs12. */
6310 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6311 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6312 (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6318 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6319 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6320 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6323 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6324 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6326 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6327 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6328 * restored yet. EVMCS will be mapped from
6329 * nested_get_vmcs12_pages().
6331 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6332 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6337 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6338 vmx->nested.smm.vmxon = true;
6339 vmx->nested.vmxon = false;
6341 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6342 vmx->nested.smm.guest_mode = true;
6345 vmcs12 = get_vmcs12(vcpu);
6346 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6349 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6352 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6355 vmx->nested.nested_run_pending =
6356 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6358 vmx->nested.mtf_pending =
6359 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6362 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6363 vmcs12->vmcs_link_pointer != -1ull) {
6364 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6366 if (kvm_state->size <
6367 sizeof(*kvm_state) +
6368 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6369 goto error_guest_mode;
6371 if (copy_from_user(shadow_vmcs12,
6372 user_vmx_nested_state->shadow_vmcs12,
6373 sizeof(*shadow_vmcs12))) {
6375 goto error_guest_mode;
6378 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6379 !shadow_vmcs12->hdr.shadow_vmcs)
6380 goto error_guest_mode;
6383 vmx->nested.has_preemption_timer_deadline = false;
6384 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6385 vmx->nested.has_preemption_timer_deadline = true;
6386 vmx->nested.preemption_timer_deadline =
6387 kvm_state->hdr.vmx.preemption_timer_deadline;
6390 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6391 nested_vmx_check_host_state(vcpu, vmcs12) ||
6392 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6393 goto error_guest_mode;
6395 vmx->nested.dirty_vmcs12 = true;
6396 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6398 goto error_guest_mode;
6403 vmx->nested.nested_run_pending = 0;
6407 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6409 if (enable_shadow_vmcs) {
6410 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6411 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6416 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6417 * that madness to get the encoding for comparison.
6419 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6421 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6424 * Note these are the so called "index" of the VMCS field encoding, not
6425 * the index into vmcs12.
6427 unsigned int max_idx, idx;
6431 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6432 * vmcs12, regardless of whether or not the associated feature is
6433 * exposed to L1. Simply find the field with the highest index.
6436 for (i = 0; i < nr_vmcs12_fields; i++) {
6437 /* The vmcs12 table is very, very sparsely populated. */
6438 if (!vmcs_field_to_offset_table[i])
6441 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6446 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6450 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6451 * returned for the various VMX controls MSRs when nested VMX is enabled.
6452 * The same values should also be used to verify that vmcs12 control fields are
6453 * valid during nested entry from L1 to L2.
6454 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6455 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6456 * bit in the high half is on if the corresponding bit in the control field
6457 * may be on. See also vmx_control_verify().
6459 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6462 * Note that as a general rule, the high half of the MSRs (bits in
6463 * the control fields which may be 1) should be initialized by the
6464 * intersection of the underlying hardware's MSR (i.e., features which
6465 * can be supported) and the list of features we want to expose -
6466 * because they are known to be properly supported in our code.
6467 * Also, usually, the low half of the MSRs (bits which must be 1) can
6468 * be set to 0, meaning that L1 may turn off any of these bits. The
6469 * reason is that if one of these bits is necessary, it will appear
6470 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6471 * fields of vmcs01 and vmcs02, will turn these bits off - and
6472 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6473 * These rules have exceptions below.
6476 /* pin-based controls */
6477 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6478 msrs->pinbased_ctls_low,
6479 msrs->pinbased_ctls_high);
6480 msrs->pinbased_ctls_low |=
6481 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6482 msrs->pinbased_ctls_high &=
6483 PIN_BASED_EXT_INTR_MASK |
6484 PIN_BASED_NMI_EXITING |
6485 PIN_BASED_VIRTUAL_NMIS |
6486 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6487 msrs->pinbased_ctls_high |=
6488 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6489 PIN_BASED_VMX_PREEMPTION_TIMER;
6492 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6493 msrs->exit_ctls_low,
6494 msrs->exit_ctls_high);
6495 msrs->exit_ctls_low =
6496 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6498 msrs->exit_ctls_high &=
6499 #ifdef CONFIG_X86_64
6500 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6502 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6503 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6504 msrs->exit_ctls_high |=
6505 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6506 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6507 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6509 /* We support free control of debug control saving. */
6510 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6512 /* entry controls */
6513 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6514 msrs->entry_ctls_low,
6515 msrs->entry_ctls_high);
6516 msrs->entry_ctls_low =
6517 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6518 msrs->entry_ctls_high &=
6519 #ifdef CONFIG_X86_64
6520 VM_ENTRY_IA32E_MODE |
6522 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6523 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6524 msrs->entry_ctls_high |=
6525 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6527 /* We support free control of debug control loading. */
6528 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6530 /* cpu-based controls */
6531 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6532 msrs->procbased_ctls_low,
6533 msrs->procbased_ctls_high);
6534 msrs->procbased_ctls_low =
6535 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6536 msrs->procbased_ctls_high &=
6537 CPU_BASED_INTR_WINDOW_EXITING |
6538 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6539 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6540 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6541 CPU_BASED_CR3_STORE_EXITING |
6542 #ifdef CONFIG_X86_64
6543 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6545 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6546 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6547 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6548 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6549 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6551 * We can allow some features even when not supported by the
6552 * hardware. For example, L1 can specify an MSR bitmap - and we
6553 * can use it to avoid exits to L1 - even when L0 runs L2
6554 * without MSR bitmaps.
6556 msrs->procbased_ctls_high |=
6557 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6558 CPU_BASED_USE_MSR_BITMAPS;
6560 /* We support free control of CR3 access interception. */
6561 msrs->procbased_ctls_low &=
6562 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6565 * secondary cpu-based controls. Do not include those that
6566 * depend on CPUID bits, they are added later by
6567 * vmx_vcpu_after_set_cpuid.
6569 if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6570 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6571 msrs->secondary_ctls_low,
6572 msrs->secondary_ctls_high);
6574 msrs->secondary_ctls_low = 0;
6575 msrs->secondary_ctls_high &=
6576 SECONDARY_EXEC_DESC |
6577 SECONDARY_EXEC_ENABLE_RDTSCP |
6578 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6579 SECONDARY_EXEC_WBINVD_EXITING |
6580 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6581 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6582 SECONDARY_EXEC_RDRAND_EXITING |
6583 SECONDARY_EXEC_ENABLE_INVPCID |
6584 SECONDARY_EXEC_RDSEED_EXITING |
6585 SECONDARY_EXEC_XSAVES |
6586 SECONDARY_EXEC_TSC_SCALING;
6589 * We can emulate "VMCS shadowing," even if the hardware
6590 * doesn't support it.
6592 msrs->secondary_ctls_high |=
6593 SECONDARY_EXEC_SHADOW_VMCS;
6596 /* nested EPT: emulate EPT also to L1 */
6597 msrs->secondary_ctls_high |=
6598 SECONDARY_EXEC_ENABLE_EPT;
6600 VMX_EPT_PAGE_WALK_4_BIT |
6601 VMX_EPT_PAGE_WALK_5_BIT |
6603 VMX_EPT_INVEPT_BIT |
6604 VMX_EPT_EXECUTE_ONLY_BIT;
6606 msrs->ept_caps &= ept_caps;
6607 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6608 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6609 VMX_EPT_1GB_PAGE_BIT;
6610 if (enable_ept_ad_bits) {
6611 msrs->secondary_ctls_high |=
6612 SECONDARY_EXEC_ENABLE_PML;
6613 msrs->ept_caps |= VMX_EPT_AD_BIT;
6617 if (cpu_has_vmx_vmfunc()) {
6618 msrs->secondary_ctls_high |=
6619 SECONDARY_EXEC_ENABLE_VMFUNC;
6621 * Advertise EPTP switching unconditionally
6622 * since we emulate it
6625 msrs->vmfunc_controls =
6626 VMX_VMFUNC_EPTP_SWITCHING;
6630 * Old versions of KVM use the single-context version without
6631 * checking for support, so declare that it is supported even
6632 * though it is treated as global context. The alternative is
6633 * not failing the single-context invvpid, and it is worse.
6636 msrs->secondary_ctls_high |=
6637 SECONDARY_EXEC_ENABLE_VPID;
6638 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6639 VMX_VPID_EXTENT_SUPPORTED_MASK;
6642 if (enable_unrestricted_guest)
6643 msrs->secondary_ctls_high |=
6644 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6646 if (flexpriority_enabled)
6647 msrs->secondary_ctls_high |=
6648 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6651 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6653 /* miscellaneous data */
6654 rdmsr(MSR_IA32_VMX_MISC,
6657 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6659 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6660 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6661 VMX_MISC_ACTIVITY_HLT |
6662 VMX_MISC_ACTIVITY_WAIT_SIPI;
6663 msrs->misc_high = 0;
6666 * This MSR reports some information about VMX support. We
6667 * should return information about the VMX we emulate for the
6668 * guest, and the VMCS structure we give it - not about the
6669 * VMX support of the underlying hardware.
6673 VMX_BASIC_TRUE_CTLS |
6674 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6675 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6677 if (cpu_has_vmx_basic_inout())
6678 msrs->basic |= VMX_BASIC_INOUT;
6681 * These MSRs specify bits which the guest must keep fixed on
6682 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6683 * We picked the standard core2 setting.
6685 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6686 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6687 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6688 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6690 /* These MSRs specify bits which the guest must keep fixed off. */
6691 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6692 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6694 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6697 void nested_vmx_hardware_unsetup(void)
6701 if (enable_shadow_vmcs) {
6702 for (i = 0; i < VMX_BITMAP_NR; i++)
6703 free_page((unsigned long)vmx_bitmap[i]);
6707 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6711 if (!cpu_has_vmx_shadow_vmcs())
6712 enable_shadow_vmcs = 0;
6713 if (enable_shadow_vmcs) {
6714 for (i = 0; i < VMX_BITMAP_NR; i++) {
6716 * The vmx_bitmap is not tied to a VM and so should
6717 * not be charged to a memcg.
6719 vmx_bitmap[i] = (unsigned long *)
6720 __get_free_page(GFP_KERNEL);
6721 if (!vmx_bitmap[i]) {
6722 nested_vmx_hardware_unsetup();
6727 init_vmcs_shadow_fields();
6730 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
6731 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
6732 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
6733 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
6734 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
6735 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
6736 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
6737 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff;
6738 exit_handlers[EXIT_REASON_VMON] = handle_vmon;
6739 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
6740 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
6741 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
6746 struct kvm_x86_nested_ops vmx_nested_ops = {
6747 .check_events = vmx_check_nested_events,
6748 .hv_timer_pending = nested_vmx_preemption_timer_pending,
6749 .triple_fault = nested_vmx_triple_fault,
6750 .get_state = vmx_get_nested_state,
6751 .set_state = vmx_set_nested_state,
6752 .get_nested_state_pages = vmx_get_nested_state_pages,
6753 .write_log_dirty = nested_vmx_write_pml_buffer,
6754 .enable_evmcs = nested_enable_evmcs,
6755 .get_evmcs_version = nested_get_evmcs_version,