KVM: nVMX: vmread should not set rflags to specify success in case of #PF
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 #define CC(consistency_check)                                           \
23 ({                                                                      \
24         bool failed = (consistency_check);                              \
25         if (failed)                                                     \
26                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
27         failed;                                                         \
28 })
29
30 /*
31  * Hyper-V requires all of these, so mark them as supported even though
32  * they are just treated the same as all-context.
33  */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
35         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
36         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
37         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41
42 enum {
43         VMX_VMREAD_BITMAP,
44         VMX_VMWRITE_BITMAP,
45         VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48
49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
51
52 struct shadow_vmcs_field {
53         u16     encoding;
54         u16     offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61         ARRAY_SIZE(shadow_read_only_fields);
62
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68         ARRAY_SIZE(shadow_read_write_fields);
69
70 static void init_vmcs_shadow_fields(void)
71 {
72         int i, j;
73
74         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76
77         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79                 u16 field = entry.encoding;
80
81                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82                     (i + 1 == max_shadow_read_only_fields ||
83                      shadow_read_only_fields[i + 1].encoding != field + 1))
84                         pr_err("Missing field from shadow_read_only_field %x\n",
85                                field + 1);
86
87                 clear_bit(field, vmx_vmread_bitmap);
88                 if (field & 1)
89 #ifdef CONFIG_X86_64
90                         continue;
91 #else
92                         entry.offset += sizeof(u32);
93 #endif
94                 shadow_read_only_fields[j++] = entry;
95         }
96         max_shadow_read_only_fields = j;
97
98         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100                 u16 field = entry.encoding;
101
102                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103                     (i + 1 == max_shadow_read_write_fields ||
104                      shadow_read_write_fields[i + 1].encoding != field + 1))
105                         pr_err("Missing field from shadow_read_write_field %x\n",
106                                field + 1);
107
108                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109                           field <= GUEST_TR_AR_BYTES,
110                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111
112                 /*
113                  * PML and the preemption timer can be emulated, but the
114                  * processor cannot vmwrite to fields that don't exist
115                  * on bare metal.
116                  */
117                 switch (field) {
118                 case GUEST_PML_INDEX:
119                         if (!cpu_has_vmx_pml())
120                                 continue;
121                         break;
122                 case VMX_PREEMPTION_TIMER_VALUE:
123                         if (!cpu_has_vmx_preemption_timer())
124                                 continue;
125                         break;
126                 case GUEST_INTR_STATUS:
127                         if (!cpu_has_vmx_apicv())
128                                 continue;
129                         break;
130                 default:
131                         break;
132                 }
133
134                 clear_bit(field, vmx_vmwrite_bitmap);
135                 clear_bit(field, vmx_vmread_bitmap);
136                 if (field & 1)
137 #ifdef CONFIG_X86_64
138                         continue;
139 #else
140                         entry.offset += sizeof(u32);
141 #endif
142                 shadow_read_write_fields[j++] = entry;
143         }
144         max_shadow_read_write_fields = j;
145 }
146
147 /*
148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149  * set the success or error code of an emulated VMX instruction (as specified
150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151  * instruction.
152  */
153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158         return kvm_skip_emulated_instruction(vcpu);
159 }
160
161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165                             X86_EFLAGS_SF | X86_EFLAGS_OF))
166                         | X86_EFLAGS_CF);
167         return kvm_skip_emulated_instruction(vcpu);
168 }
169
170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171                                 u32 vm_instruction_error)
172 {
173         struct vcpu_vmx *vmx = to_vmx(vcpu);
174
175         /*
176          * failValid writes the error number to the current VMCS, which
177          * can't be done if there isn't a current VMCS.
178          */
179         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
180                 return nested_vmx_failInvalid(vcpu);
181
182         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
183                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
184                             X86_EFLAGS_SF | X86_EFLAGS_OF))
185                         | X86_EFLAGS_ZF);
186         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
187         /*
188          * We don't need to force a shadow sync because
189          * VM_INSTRUCTION_ERROR is not shadowed
190          */
191         return kvm_skip_emulated_instruction(vcpu);
192 }
193
194 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
195 {
196         /* TODO: not to reset guest simply here. */
197         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
198         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
199 }
200
201 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
202 {
203         return fixed_bits_valid(control, low, high);
204 }
205
206 static inline u64 vmx_control_msr(u32 low, u32 high)
207 {
208         return low | ((u64)high << 32);
209 }
210
211 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
212 {
213         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
214         vmcs_write64(VMCS_LINK_POINTER, -1ull);
215         vmx->nested.need_vmcs12_to_shadow_sync = false;
216 }
217
218 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
219 {
220         struct vcpu_vmx *vmx = to_vmx(vcpu);
221
222         if (!vmx->nested.hv_evmcs)
223                 return;
224
225         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
226         vmx->nested.hv_evmcs_vmptr = -1ull;
227         vmx->nested.hv_evmcs = NULL;
228 }
229
230 /*
231  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
232  * just stops using VMX.
233  */
234 static void free_nested(struct kvm_vcpu *vcpu)
235 {
236         struct vcpu_vmx *vmx = to_vmx(vcpu);
237
238         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
239                 return;
240
241         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
242
243         vmx->nested.vmxon = false;
244         vmx->nested.smm.vmxon = false;
245         free_vpid(vmx->nested.vpid02);
246         vmx->nested.posted_intr_nv = -1;
247         vmx->nested.current_vmptr = -1ull;
248         if (enable_shadow_vmcs) {
249                 vmx_disable_shadow_vmcs(vmx);
250                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
251                 free_vmcs(vmx->vmcs01.shadow_vmcs);
252                 vmx->vmcs01.shadow_vmcs = NULL;
253         }
254         kfree(vmx->nested.cached_vmcs12);
255         vmx->nested.cached_vmcs12 = NULL;
256         kfree(vmx->nested.cached_shadow_vmcs12);
257         vmx->nested.cached_shadow_vmcs12 = NULL;
258         /* Unpin physical memory we referred to in the vmcs02 */
259         if (vmx->nested.apic_access_page) {
260                 kvm_release_page_dirty(vmx->nested.apic_access_page);
261                 vmx->nested.apic_access_page = NULL;
262         }
263         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
264         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
265         vmx->nested.pi_desc = NULL;
266
267         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
268
269         nested_release_evmcs(vcpu);
270
271         free_loaded_vmcs(&vmx->nested.vmcs02);
272 }
273
274 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
275                                      struct loaded_vmcs *prev)
276 {
277         struct vmcs_host_state *dest, *src;
278
279         if (unlikely(!vmx->guest_state_loaded))
280                 return;
281
282         src = &prev->host_state;
283         dest = &vmx->loaded_vmcs->host_state;
284
285         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
286         dest->ldt_sel = src->ldt_sel;
287 #ifdef CONFIG_X86_64
288         dest->ds_sel = src->ds_sel;
289         dest->es_sel = src->es_sel;
290 #endif
291 }
292
293 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
294 {
295         struct vcpu_vmx *vmx = to_vmx(vcpu);
296         struct loaded_vmcs *prev;
297         int cpu;
298
299         if (vmx->loaded_vmcs == vmcs)
300                 return;
301
302         cpu = get_cpu();
303         prev = vmx->loaded_vmcs;
304         vmx->loaded_vmcs = vmcs;
305         vmx_vcpu_load_vmcs(vcpu, cpu);
306         vmx_sync_vmcs_host_state(vmx, prev);
307         put_cpu();
308
309         vmx_segment_cache_clear(vmx);
310 }
311
312 /*
313  * Ensure that the current vmcs of the logical processor is the
314  * vmcs01 of the vcpu before calling free_nested().
315  */
316 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
317 {
318         vcpu_load(vcpu);
319         vmx_leave_nested(vcpu);
320         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
321         free_nested(vcpu);
322         vcpu_put(vcpu);
323 }
324
325 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
326                 struct x86_exception *fault)
327 {
328         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
329         struct vcpu_vmx *vmx = to_vmx(vcpu);
330         u32 exit_reason;
331         unsigned long exit_qualification = vcpu->arch.exit_qualification;
332
333         if (vmx->nested.pml_full) {
334                 exit_reason = EXIT_REASON_PML_FULL;
335                 vmx->nested.pml_full = false;
336                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
337         } else if (fault->error_code & PFERR_RSVD_MASK)
338                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
339         else
340                 exit_reason = EXIT_REASON_EPT_VIOLATION;
341
342         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
343         vmcs12->guest_physical_address = fault->address;
344 }
345
346 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
347 {
348         WARN_ON(mmu_is_nested(vcpu));
349
350         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
351         kvm_init_shadow_ept_mmu(vcpu,
352                         to_vmx(vcpu)->nested.msrs.ept_caps &
353                         VMX_EPT_EXECUTE_ONLY_BIT,
354                         nested_ept_ad_enabled(vcpu),
355                         nested_ept_get_cr3(vcpu));
356         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
357         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
358         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
359         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
360
361         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
362 }
363
364 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
365 {
366         vcpu->arch.mmu = &vcpu->arch.root_mmu;
367         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
368 }
369
370 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
371                                             u16 error_code)
372 {
373         bool inequality, bit;
374
375         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
376         inequality =
377                 (error_code & vmcs12->page_fault_error_code_mask) !=
378                  vmcs12->page_fault_error_code_match;
379         return inequality ^ bit;
380 }
381
382
383 /*
384  * KVM wants to inject page-faults which it got to the guest. This function
385  * checks whether in a nested guest, we need to inject them to L1 or L2.
386  */
387 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
388 {
389         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
390         unsigned int nr = vcpu->arch.exception.nr;
391         bool has_payload = vcpu->arch.exception.has_payload;
392         unsigned long payload = vcpu->arch.exception.payload;
393
394         if (nr == PF_VECTOR) {
395                 if (vcpu->arch.exception.nested_apf) {
396                         *exit_qual = vcpu->arch.apf.nested_apf_token;
397                         return 1;
398                 }
399                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
400                                                     vcpu->arch.exception.error_code)) {
401                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
402                         return 1;
403                 }
404         } else if (vmcs12->exception_bitmap & (1u << nr)) {
405                 if (nr == DB_VECTOR) {
406                         if (!has_payload) {
407                                 payload = vcpu->arch.dr6;
408                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
409                                 payload ^= DR6_RTM;
410                         }
411                         *exit_qual = payload;
412                 } else
413                         *exit_qual = 0;
414                 return 1;
415         }
416
417         return 0;
418 }
419
420
421 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
422                 struct x86_exception *fault)
423 {
424         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
425
426         WARN_ON(!is_guest_mode(vcpu));
427
428         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
429                 !to_vmx(vcpu)->nested.nested_run_pending) {
430                 vmcs12->vm_exit_intr_error_code = fault->error_code;
431                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
432                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
433                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
434                                   fault->address);
435         } else {
436                 kvm_inject_page_fault(vcpu, fault);
437         }
438 }
439
440 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
441 {
442         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
443 }
444
445 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
446                                                struct vmcs12 *vmcs12)
447 {
448         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
449                 return 0;
450
451         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
452             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
453                 return -EINVAL;
454
455         return 0;
456 }
457
458 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
459                                                 struct vmcs12 *vmcs12)
460 {
461         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
462                 return 0;
463
464         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
465                 return -EINVAL;
466
467         return 0;
468 }
469
470 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
471                                                 struct vmcs12 *vmcs12)
472 {
473         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
474                 return 0;
475
476         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
477                 return -EINVAL;
478
479         return 0;
480 }
481
482 /*
483  * Check if MSR is intercepted for L01 MSR bitmap.
484  */
485 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
486 {
487         unsigned long *msr_bitmap;
488         int f = sizeof(unsigned long);
489
490         if (!cpu_has_vmx_msr_bitmap())
491                 return true;
492
493         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
494
495         if (msr <= 0x1fff) {
496                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
497         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
498                 msr &= 0x1fff;
499                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
500         }
501
502         return true;
503 }
504
505 /*
506  * If a msr is allowed by L0, we should check whether it is allowed by L1.
507  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
508  */
509 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
510                                                unsigned long *msr_bitmap_nested,
511                                                u32 msr, int type)
512 {
513         int f = sizeof(unsigned long);
514
515         /*
516          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
517          * have the write-low and read-high bitmap offsets the wrong way round.
518          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
519          */
520         if (msr <= 0x1fff) {
521                 if (type & MSR_TYPE_R &&
522                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
523                         /* read-low */
524                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
525
526                 if (type & MSR_TYPE_W &&
527                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
528                         /* write-low */
529                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
530
531         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
532                 msr &= 0x1fff;
533                 if (type & MSR_TYPE_R &&
534                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
535                         /* read-high */
536                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
537
538                 if (type & MSR_TYPE_W &&
539                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
540                         /* write-high */
541                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
542
543         }
544 }
545
546 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
547         int msr;
548
549         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
550                 unsigned word = msr / BITS_PER_LONG;
551
552                 msr_bitmap[word] = ~0;
553                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
554         }
555 }
556
557 /*
558  * Merge L0's and L1's MSR bitmap, return false to indicate that
559  * we do not use the hardware.
560  */
561 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
562                                                  struct vmcs12 *vmcs12)
563 {
564         int msr;
565         unsigned long *msr_bitmap_l1;
566         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
567         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
568
569         /* Nothing to do if the MSR bitmap is not in use.  */
570         if (!cpu_has_vmx_msr_bitmap() ||
571             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
572                 return false;
573
574         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
575                 return false;
576
577         msr_bitmap_l1 = (unsigned long *)map->hva;
578
579         /*
580          * To keep the control flow simple, pay eight 8-byte writes (sixteen
581          * 4-byte writes on 32-bit systems) up front to enable intercepts for
582          * the x2APIC MSR range and selectively disable them below.
583          */
584         enable_x2apic_msr_intercepts(msr_bitmap_l0);
585
586         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
587                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
588                         /*
589                          * L0 need not intercept reads for MSRs between 0x800
590                          * and 0x8ff, it just lets the processor take the value
591                          * from the virtual-APIC page; take those 256 bits
592                          * directly from the L1 bitmap.
593                          */
594                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595                                 unsigned word = msr / BITS_PER_LONG;
596
597                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
598                         }
599                 }
600
601                 nested_vmx_disable_intercept_for_msr(
602                         msr_bitmap_l1, msr_bitmap_l0,
603                         X2APIC_MSR(APIC_TASKPRI),
604                         MSR_TYPE_R | MSR_TYPE_W);
605
606                 if (nested_cpu_has_vid(vmcs12)) {
607                         nested_vmx_disable_intercept_for_msr(
608                                 msr_bitmap_l1, msr_bitmap_l0,
609                                 X2APIC_MSR(APIC_EOI),
610                                 MSR_TYPE_W);
611                         nested_vmx_disable_intercept_for_msr(
612                                 msr_bitmap_l1, msr_bitmap_l0,
613                                 X2APIC_MSR(APIC_SELF_IPI),
614                                 MSR_TYPE_W);
615                 }
616         }
617
618         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
619         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
620                                              MSR_FS_BASE, MSR_TYPE_RW);
621
622         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
623                                              MSR_GS_BASE, MSR_TYPE_RW);
624
625         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
626                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
627
628         /*
629          * Checking the L0->L1 bitmap is trying to verify two things:
630          *
631          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
632          *    ensures that we do not accidentally generate an L02 MSR bitmap
633          *    from the L12 MSR bitmap that is too permissive.
634          * 2. That L1 or L2s have actually used the MSR. This avoids
635          *    unnecessarily merging of the bitmap if the MSR is unused. This
636          *    works properly because we only update the L01 MSR bitmap lazily.
637          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
638          *    updated to reflect this when L1 (or its L2s) actually write to
639          *    the MSR.
640          */
641         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
642                 nested_vmx_disable_intercept_for_msr(
643                                         msr_bitmap_l1, msr_bitmap_l0,
644                                         MSR_IA32_SPEC_CTRL,
645                                         MSR_TYPE_R | MSR_TYPE_W);
646
647         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
648                 nested_vmx_disable_intercept_for_msr(
649                                         msr_bitmap_l1, msr_bitmap_l0,
650                                         MSR_IA32_PRED_CMD,
651                                         MSR_TYPE_W);
652
653         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
654
655         return true;
656 }
657
658 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
659                                        struct vmcs12 *vmcs12)
660 {
661         struct kvm_host_map map;
662         struct vmcs12 *shadow;
663
664         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
665             vmcs12->vmcs_link_pointer == -1ull)
666                 return;
667
668         shadow = get_shadow_vmcs12(vcpu);
669
670         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
671                 return;
672
673         memcpy(shadow, map.hva, VMCS12_SIZE);
674         kvm_vcpu_unmap(vcpu, &map, false);
675 }
676
677 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
678                                               struct vmcs12 *vmcs12)
679 {
680         struct vcpu_vmx *vmx = to_vmx(vcpu);
681
682         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
683             vmcs12->vmcs_link_pointer == -1ull)
684                 return;
685
686         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
687                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
688 }
689
690 /*
691  * In nested virtualization, check if L1 has set
692  * VM_EXIT_ACK_INTR_ON_EXIT
693  */
694 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
695 {
696         return get_vmcs12(vcpu)->vm_exit_controls &
697                 VM_EXIT_ACK_INTR_ON_EXIT;
698 }
699
700 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
701 {
702         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
703 }
704
705 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
706                                           struct vmcs12 *vmcs12)
707 {
708         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
709             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
710                 return -EINVAL;
711         else
712                 return 0;
713 }
714
715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
716                                            struct vmcs12 *vmcs12)
717 {
718         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719             !nested_cpu_has_apic_reg_virt(vmcs12) &&
720             !nested_cpu_has_vid(vmcs12) &&
721             !nested_cpu_has_posted_intr(vmcs12))
722                 return 0;
723
724         /*
725          * If virtualize x2apic mode is enabled,
726          * virtualize apic access must be disabled.
727          */
728         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
729                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
730                 return -EINVAL;
731
732         /*
733          * If virtual interrupt delivery is enabled,
734          * we must exit on external interrupts.
735          */
736         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
737                 return -EINVAL;
738
739         /*
740          * bits 15:8 should be zero in posted_intr_nv,
741          * the descriptor address has been already checked
742          * in nested_get_vmcs12_pages.
743          *
744          * bits 5:0 of posted_intr_desc_addr should be zero.
745          */
746         if (nested_cpu_has_posted_intr(vmcs12) &&
747            (CC(!nested_cpu_has_vid(vmcs12)) ||
748             CC(!nested_exit_intr_ack_set(vcpu)) ||
749             CC((vmcs12->posted_intr_nv & 0xff00)) ||
750             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
751             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
752                 return -EINVAL;
753
754         /* tpr shadow is needed by all apicv features. */
755         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
756                 return -EINVAL;
757
758         return 0;
759 }
760
761 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
762                                        u32 count, u64 addr)
763 {
764         int maxphyaddr;
765
766         if (count == 0)
767                 return 0;
768         maxphyaddr = cpuid_maxphyaddr(vcpu);
769         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
770             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
771                 return -EINVAL;
772
773         return 0;
774 }
775
776 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
777                                                      struct vmcs12 *vmcs12)
778 {
779         if (CC(nested_vmx_check_msr_switch(vcpu,
780                                            vmcs12->vm_exit_msr_load_count,
781                                            vmcs12->vm_exit_msr_load_addr)) ||
782             CC(nested_vmx_check_msr_switch(vcpu,
783                                            vmcs12->vm_exit_msr_store_count,
784                                            vmcs12->vm_exit_msr_store_addr)))
785                 return -EINVAL;
786
787         return 0;
788 }
789
790 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
791                                                       struct vmcs12 *vmcs12)
792 {
793         if (CC(nested_vmx_check_msr_switch(vcpu,
794                                            vmcs12->vm_entry_msr_load_count,
795                                            vmcs12->vm_entry_msr_load_addr)))
796                 return -EINVAL;
797
798         return 0;
799 }
800
801 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
802                                          struct vmcs12 *vmcs12)
803 {
804         if (!nested_cpu_has_pml(vmcs12))
805                 return 0;
806
807         if (CC(!nested_cpu_has_ept(vmcs12)) ||
808             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
809                 return -EINVAL;
810
811         return 0;
812 }
813
814 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
815                                                         struct vmcs12 *vmcs12)
816 {
817         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
818                !nested_cpu_has_ept(vmcs12)))
819                 return -EINVAL;
820         return 0;
821 }
822
823 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
824                                                          struct vmcs12 *vmcs12)
825 {
826         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
827                !nested_cpu_has_ept(vmcs12)))
828                 return -EINVAL;
829         return 0;
830 }
831
832 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
833                                                  struct vmcs12 *vmcs12)
834 {
835         if (!nested_cpu_has_shadow_vmcs(vmcs12))
836                 return 0;
837
838         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
839             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
840                 return -EINVAL;
841
842         return 0;
843 }
844
845 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
846                                        struct vmx_msr_entry *e)
847 {
848         /* x2APIC MSR accesses are not allowed */
849         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
850                 return -EINVAL;
851         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
852             CC(e->index == MSR_IA32_UCODE_REV))
853                 return -EINVAL;
854         if (CC(e->reserved != 0))
855                 return -EINVAL;
856         return 0;
857 }
858
859 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
860                                      struct vmx_msr_entry *e)
861 {
862         if (CC(e->index == MSR_FS_BASE) ||
863             CC(e->index == MSR_GS_BASE) ||
864             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
865             nested_vmx_msr_check_common(vcpu, e))
866                 return -EINVAL;
867         return 0;
868 }
869
870 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
871                                       struct vmx_msr_entry *e)
872 {
873         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
874             nested_vmx_msr_check_common(vcpu, e))
875                 return -EINVAL;
876         return 0;
877 }
878
879 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
880 {
881         struct vcpu_vmx *vmx = to_vmx(vcpu);
882         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
883                                        vmx->nested.msrs.misc_high);
884
885         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
886 }
887
888 /*
889  * Load guest's/host's msr at nested entry/exit.
890  * return 0 for success, entry index for failure.
891  *
892  * One of the failure modes for MSR load/store is when a list exceeds the
893  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
894  * as possible, process all valid entries before failing rather than precheck
895  * for a capacity violation.
896  */
897 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
898 {
899         u32 i;
900         struct vmx_msr_entry e;
901         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
902
903         for (i = 0; i < count; i++) {
904                 if (unlikely(i >= max_msr_list_size))
905                         goto fail;
906
907                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
908                                         &e, sizeof(e))) {
909                         pr_debug_ratelimited(
910                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
911                                 __func__, i, gpa + i * sizeof(e));
912                         goto fail;
913                 }
914                 if (nested_vmx_load_msr_check(vcpu, &e)) {
915                         pr_debug_ratelimited(
916                                 "%s check failed (%u, 0x%x, 0x%x)\n",
917                                 __func__, i, e.index, e.reserved);
918                         goto fail;
919                 }
920                 if (kvm_set_msr(vcpu, e.index, e.value)) {
921                         pr_debug_ratelimited(
922                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
923                                 __func__, i, e.index, e.value);
924                         goto fail;
925                 }
926         }
927         return 0;
928 fail:
929         return i + 1;
930 }
931
932 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
933 {
934         u64 data;
935         u32 i;
936         struct vmx_msr_entry e;
937         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
938
939         for (i = 0; i < count; i++) {
940                 if (unlikely(i >= max_msr_list_size))
941                         return -EINVAL;
942
943                 if (kvm_vcpu_read_guest(vcpu,
944                                         gpa + i * sizeof(e),
945                                         &e, 2 * sizeof(u32))) {
946                         pr_debug_ratelimited(
947                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
948                                 __func__, i, gpa + i * sizeof(e));
949                         return -EINVAL;
950                 }
951                 if (nested_vmx_store_msr_check(vcpu, &e)) {
952                         pr_debug_ratelimited(
953                                 "%s check failed (%u, 0x%x, 0x%x)\n",
954                                 __func__, i, e.index, e.reserved);
955                         return -EINVAL;
956                 }
957                 if (kvm_get_msr(vcpu, e.index, &data)) {
958                         pr_debug_ratelimited(
959                                 "%s cannot read MSR (%u, 0x%x)\n",
960                                 __func__, i, e.index);
961                         return -EINVAL;
962                 }
963                 if (kvm_vcpu_write_guest(vcpu,
964                                          gpa + i * sizeof(e) +
965                                              offsetof(struct vmx_msr_entry, value),
966                                          &data, sizeof(data))) {
967                         pr_debug_ratelimited(
968                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
969                                 __func__, i, e.index, data);
970                         return -EINVAL;
971                 }
972         }
973         return 0;
974 }
975
976 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
977 {
978         unsigned long invalid_mask;
979
980         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
981         return (val & invalid_mask) == 0;
982 }
983
984 /*
985  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
986  * emulating VM entry into a guest with EPT enabled.
987  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
988  * is assigned to entry_failure_code on failure.
989  */
990 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
991                                u32 *entry_failure_code)
992 {
993         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
994                 if (CC(!nested_cr3_valid(vcpu, cr3))) {
995                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
996                         return -EINVAL;
997                 }
998
999                 /*
1000                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1001                  * must not be dereferenced.
1002                  */
1003                 if (is_pae_paging(vcpu) && !nested_ept) {
1004                         if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1005                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1006                                 return -EINVAL;
1007                         }
1008                 }
1009         }
1010
1011         if (!nested_ept)
1012                 kvm_mmu_new_cr3(vcpu, cr3, false);
1013
1014         vcpu->arch.cr3 = cr3;
1015         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1016
1017         kvm_init_mmu(vcpu, false);
1018
1019         return 0;
1020 }
1021
1022 /*
1023  * Returns if KVM is able to config CPU to tag TLB entries
1024  * populated by L2 differently than TLB entries populated
1025  * by L1.
1026  *
1027  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
1028  *
1029  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1030  * with different VPID (L1 entries are tagged with vmx->vpid
1031  * while L2 entries are tagged with vmx->nested.vpid02).
1032  */
1033 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1034 {
1035         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1036
1037         return nested_cpu_has_ept(vmcs12) ||
1038                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1039 }
1040
1041 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1042 {
1043         struct vcpu_vmx *vmx = to_vmx(vcpu);
1044
1045         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1046 }
1047
1048 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1049 {
1050         superset &= mask;
1051         subset &= mask;
1052
1053         return (superset | subset) == superset;
1054 }
1055
1056 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1057 {
1058         const u64 feature_and_reserved =
1059                 /* feature (except bit 48; see below) */
1060                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1061                 /* reserved */
1062                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1063         u64 vmx_basic = vmx->nested.msrs.basic;
1064
1065         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1066                 return -EINVAL;
1067
1068         /*
1069          * KVM does not emulate a version of VMX that constrains physical
1070          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1071          */
1072         if (data & BIT_ULL(48))
1073                 return -EINVAL;
1074
1075         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1076             vmx_basic_vmcs_revision_id(data))
1077                 return -EINVAL;
1078
1079         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1080                 return -EINVAL;
1081
1082         vmx->nested.msrs.basic = data;
1083         return 0;
1084 }
1085
1086 static int
1087 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1088 {
1089         u64 supported;
1090         u32 *lowp, *highp;
1091
1092         switch (msr_index) {
1093         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1094                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1095                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1096                 break;
1097         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1098                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1099                 highp = &vmx->nested.msrs.procbased_ctls_high;
1100                 break;
1101         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1102                 lowp = &vmx->nested.msrs.exit_ctls_low;
1103                 highp = &vmx->nested.msrs.exit_ctls_high;
1104                 break;
1105         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1106                 lowp = &vmx->nested.msrs.entry_ctls_low;
1107                 highp = &vmx->nested.msrs.entry_ctls_high;
1108                 break;
1109         case MSR_IA32_VMX_PROCBASED_CTLS2:
1110                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1111                 highp = &vmx->nested.msrs.secondary_ctls_high;
1112                 break;
1113         default:
1114                 BUG();
1115         }
1116
1117         supported = vmx_control_msr(*lowp, *highp);
1118
1119         /* Check must-be-1 bits are still 1. */
1120         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1121                 return -EINVAL;
1122
1123         /* Check must-be-0 bits are still 0. */
1124         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1125                 return -EINVAL;
1126
1127         *lowp = data;
1128         *highp = data >> 32;
1129         return 0;
1130 }
1131
1132 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1133 {
1134         const u64 feature_and_reserved_bits =
1135                 /* feature */
1136                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1137                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1138                 /* reserved */
1139                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1140         u64 vmx_misc;
1141
1142         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1143                                    vmx->nested.msrs.misc_high);
1144
1145         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1146                 return -EINVAL;
1147
1148         if ((vmx->nested.msrs.pinbased_ctls_high &
1149              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1150             vmx_misc_preemption_timer_rate(data) !=
1151             vmx_misc_preemption_timer_rate(vmx_misc))
1152                 return -EINVAL;
1153
1154         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1155                 return -EINVAL;
1156
1157         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1158                 return -EINVAL;
1159
1160         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1161                 return -EINVAL;
1162
1163         vmx->nested.msrs.misc_low = data;
1164         vmx->nested.msrs.misc_high = data >> 32;
1165
1166         return 0;
1167 }
1168
1169 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1170 {
1171         u64 vmx_ept_vpid_cap;
1172
1173         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1174                                            vmx->nested.msrs.vpid_caps);
1175
1176         /* Every bit is either reserved or a feature bit. */
1177         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1178                 return -EINVAL;
1179
1180         vmx->nested.msrs.ept_caps = data;
1181         vmx->nested.msrs.vpid_caps = data >> 32;
1182         return 0;
1183 }
1184
1185 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1186 {
1187         u64 *msr;
1188
1189         switch (msr_index) {
1190         case MSR_IA32_VMX_CR0_FIXED0:
1191                 msr = &vmx->nested.msrs.cr0_fixed0;
1192                 break;
1193         case MSR_IA32_VMX_CR4_FIXED0:
1194                 msr = &vmx->nested.msrs.cr4_fixed0;
1195                 break;
1196         default:
1197                 BUG();
1198         }
1199
1200         /*
1201          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1202          * must be 1 in the restored value.
1203          */
1204         if (!is_bitwise_subset(data, *msr, -1ULL))
1205                 return -EINVAL;
1206
1207         *msr = data;
1208         return 0;
1209 }
1210
1211 /*
1212  * Called when userspace is restoring VMX MSRs.
1213  *
1214  * Returns 0 on success, non-0 otherwise.
1215  */
1216 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1217 {
1218         struct vcpu_vmx *vmx = to_vmx(vcpu);
1219
1220         /*
1221          * Don't allow changes to the VMX capability MSRs while the vCPU
1222          * is in VMX operation.
1223          */
1224         if (vmx->nested.vmxon)
1225                 return -EBUSY;
1226
1227         switch (msr_index) {
1228         case MSR_IA32_VMX_BASIC:
1229                 return vmx_restore_vmx_basic(vmx, data);
1230         case MSR_IA32_VMX_PINBASED_CTLS:
1231         case MSR_IA32_VMX_PROCBASED_CTLS:
1232         case MSR_IA32_VMX_EXIT_CTLS:
1233         case MSR_IA32_VMX_ENTRY_CTLS:
1234                 /*
1235                  * The "non-true" VMX capability MSRs are generated from the
1236                  * "true" MSRs, so we do not support restoring them directly.
1237                  *
1238                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1239                  * should restore the "true" MSRs with the must-be-1 bits
1240                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1241                  * DEFAULT SETTINGS".
1242                  */
1243                 return -EINVAL;
1244         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1245         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1246         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1247         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248         case MSR_IA32_VMX_PROCBASED_CTLS2:
1249                 return vmx_restore_control_msr(vmx, msr_index, data);
1250         case MSR_IA32_VMX_MISC:
1251                 return vmx_restore_vmx_misc(vmx, data);
1252         case MSR_IA32_VMX_CR0_FIXED0:
1253         case MSR_IA32_VMX_CR4_FIXED0:
1254                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1255         case MSR_IA32_VMX_CR0_FIXED1:
1256         case MSR_IA32_VMX_CR4_FIXED1:
1257                 /*
1258                  * These MSRs are generated based on the vCPU's CPUID, so we
1259                  * do not support restoring them directly.
1260                  */
1261                 return -EINVAL;
1262         case MSR_IA32_VMX_EPT_VPID_CAP:
1263                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1264         case MSR_IA32_VMX_VMCS_ENUM:
1265                 vmx->nested.msrs.vmcs_enum = data;
1266                 return 0;
1267         case MSR_IA32_VMX_VMFUNC:
1268                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1269                         return -EINVAL;
1270                 vmx->nested.msrs.vmfunc_controls = data;
1271                 return 0;
1272         default:
1273                 /*
1274                  * The rest of the VMX capability MSRs do not support restore.
1275                  */
1276                 return -EINVAL;
1277         }
1278 }
1279
1280 /* Returns 0 on success, non-0 otherwise. */
1281 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1282 {
1283         switch (msr_index) {
1284         case MSR_IA32_VMX_BASIC:
1285                 *pdata = msrs->basic;
1286                 break;
1287         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1288         case MSR_IA32_VMX_PINBASED_CTLS:
1289                 *pdata = vmx_control_msr(
1290                         msrs->pinbased_ctls_low,
1291                         msrs->pinbased_ctls_high);
1292                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1293                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1294                 break;
1295         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1296         case MSR_IA32_VMX_PROCBASED_CTLS:
1297                 *pdata = vmx_control_msr(
1298                         msrs->procbased_ctls_low,
1299                         msrs->procbased_ctls_high);
1300                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1301                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1302                 break;
1303         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1304         case MSR_IA32_VMX_EXIT_CTLS:
1305                 *pdata = vmx_control_msr(
1306                         msrs->exit_ctls_low,
1307                         msrs->exit_ctls_high);
1308                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1309                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1310                 break;
1311         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1312         case MSR_IA32_VMX_ENTRY_CTLS:
1313                 *pdata = vmx_control_msr(
1314                         msrs->entry_ctls_low,
1315                         msrs->entry_ctls_high);
1316                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1317                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1318                 break;
1319         case MSR_IA32_VMX_MISC:
1320                 *pdata = vmx_control_msr(
1321                         msrs->misc_low,
1322                         msrs->misc_high);
1323                 break;
1324         case MSR_IA32_VMX_CR0_FIXED0:
1325                 *pdata = msrs->cr0_fixed0;
1326                 break;
1327         case MSR_IA32_VMX_CR0_FIXED1:
1328                 *pdata = msrs->cr0_fixed1;
1329                 break;
1330         case MSR_IA32_VMX_CR4_FIXED0:
1331                 *pdata = msrs->cr4_fixed0;
1332                 break;
1333         case MSR_IA32_VMX_CR4_FIXED1:
1334                 *pdata = msrs->cr4_fixed1;
1335                 break;
1336         case MSR_IA32_VMX_VMCS_ENUM:
1337                 *pdata = msrs->vmcs_enum;
1338                 break;
1339         case MSR_IA32_VMX_PROCBASED_CTLS2:
1340                 *pdata = vmx_control_msr(
1341                         msrs->secondary_ctls_low,
1342                         msrs->secondary_ctls_high);
1343                 break;
1344         case MSR_IA32_VMX_EPT_VPID_CAP:
1345                 *pdata = msrs->ept_caps |
1346                         ((u64)msrs->vpid_caps << 32);
1347                 break;
1348         case MSR_IA32_VMX_VMFUNC:
1349                 *pdata = msrs->vmfunc_controls;
1350                 break;
1351         default:
1352                 return 1;
1353         }
1354
1355         return 0;
1356 }
1357
1358 /*
1359  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1360  * been modified by the L1 guest.  Note, "writable" in this context means
1361  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1362  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1363  * VM-exit information fields (which are actually writable if the vCPU is
1364  * configured to support "VMWRITE to any supported field in the VMCS").
1365  */
1366 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1367 {
1368         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1369         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1370         struct shadow_vmcs_field field;
1371         unsigned long val;
1372         int i;
1373
1374         if (WARN_ON(!shadow_vmcs))
1375                 return;
1376
1377         preempt_disable();
1378
1379         vmcs_load(shadow_vmcs);
1380
1381         for (i = 0; i < max_shadow_read_write_fields; i++) {
1382                 field = shadow_read_write_fields[i];
1383                 val = __vmcs_readl(field.encoding);
1384                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1385         }
1386
1387         vmcs_clear(shadow_vmcs);
1388         vmcs_load(vmx->loaded_vmcs->vmcs);
1389
1390         preempt_enable();
1391 }
1392
1393 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1394 {
1395         const struct shadow_vmcs_field *fields[] = {
1396                 shadow_read_write_fields,
1397                 shadow_read_only_fields
1398         };
1399         const int max_fields[] = {
1400                 max_shadow_read_write_fields,
1401                 max_shadow_read_only_fields
1402         };
1403         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1404         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1405         struct shadow_vmcs_field field;
1406         unsigned long val;
1407         int i, q;
1408
1409         if (WARN_ON(!shadow_vmcs))
1410                 return;
1411
1412         vmcs_load(shadow_vmcs);
1413
1414         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1415                 for (i = 0; i < max_fields[q]; i++) {
1416                         field = fields[q][i];
1417                         val = vmcs12_read_any(vmcs12, field.encoding,
1418                                               field.offset);
1419                         __vmcs_writel(field.encoding, val);
1420                 }
1421         }
1422
1423         vmcs_clear(shadow_vmcs);
1424         vmcs_load(vmx->loaded_vmcs->vmcs);
1425 }
1426
1427 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1428 {
1429         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1430         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1431
1432         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1433         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1434         vmcs12->guest_rip = evmcs->guest_rip;
1435
1436         if (unlikely(!(evmcs->hv_clean_fields &
1437                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1438                 vmcs12->guest_rsp = evmcs->guest_rsp;
1439                 vmcs12->guest_rflags = evmcs->guest_rflags;
1440                 vmcs12->guest_interruptibility_info =
1441                         evmcs->guest_interruptibility_info;
1442         }
1443
1444         if (unlikely(!(evmcs->hv_clean_fields &
1445                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1446                 vmcs12->cpu_based_vm_exec_control =
1447                         evmcs->cpu_based_vm_exec_control;
1448         }
1449
1450         if (unlikely(!(evmcs->hv_clean_fields &
1451                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1452                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1453         }
1454
1455         if (unlikely(!(evmcs->hv_clean_fields &
1456                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1457                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1458         }
1459
1460         if (unlikely(!(evmcs->hv_clean_fields &
1461                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1462                 vmcs12->vm_entry_intr_info_field =
1463                         evmcs->vm_entry_intr_info_field;
1464                 vmcs12->vm_entry_exception_error_code =
1465                         evmcs->vm_entry_exception_error_code;
1466                 vmcs12->vm_entry_instruction_len =
1467                         evmcs->vm_entry_instruction_len;
1468         }
1469
1470         if (unlikely(!(evmcs->hv_clean_fields &
1471                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1472                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1473                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1474                 vmcs12->host_cr0 = evmcs->host_cr0;
1475                 vmcs12->host_cr3 = evmcs->host_cr3;
1476                 vmcs12->host_cr4 = evmcs->host_cr4;
1477                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1478                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1479                 vmcs12->host_rip = evmcs->host_rip;
1480                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1481                 vmcs12->host_es_selector = evmcs->host_es_selector;
1482                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1483                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1484                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1485                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1486                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1487                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1488         }
1489
1490         if (unlikely(!(evmcs->hv_clean_fields &
1491                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1492                 vmcs12->pin_based_vm_exec_control =
1493                         evmcs->pin_based_vm_exec_control;
1494                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1495                 vmcs12->secondary_vm_exec_control =
1496                         evmcs->secondary_vm_exec_control;
1497         }
1498
1499         if (unlikely(!(evmcs->hv_clean_fields &
1500                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1501                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1502                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1503         }
1504
1505         if (unlikely(!(evmcs->hv_clean_fields &
1506                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1507                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1508         }
1509
1510         if (unlikely(!(evmcs->hv_clean_fields &
1511                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1512                 vmcs12->guest_es_base = evmcs->guest_es_base;
1513                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1514                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1515                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1516                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1517                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1518                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1519                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1520                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1521                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1522                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1523                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1524                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1525                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1526                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1527                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1528                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1529                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1530                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1531                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1532                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1533                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1534                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1535                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1536                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1537                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1538                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1539                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1540                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1541                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1542                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1543                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1544                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1545                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1546                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1547                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1548         }
1549
1550         if (unlikely(!(evmcs->hv_clean_fields &
1551                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1552                 vmcs12->tsc_offset = evmcs->tsc_offset;
1553                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1554                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1555         }
1556
1557         if (unlikely(!(evmcs->hv_clean_fields &
1558                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1559                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1560                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1561                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1562                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1563                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1564                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1565                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1566                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1567         }
1568
1569         if (unlikely(!(evmcs->hv_clean_fields &
1570                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1571                 vmcs12->host_fs_base = evmcs->host_fs_base;
1572                 vmcs12->host_gs_base = evmcs->host_gs_base;
1573                 vmcs12->host_tr_base = evmcs->host_tr_base;
1574                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1575                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1576                 vmcs12->host_rsp = evmcs->host_rsp;
1577         }
1578
1579         if (unlikely(!(evmcs->hv_clean_fields &
1580                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1581                 vmcs12->ept_pointer = evmcs->ept_pointer;
1582                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1583         }
1584
1585         if (unlikely(!(evmcs->hv_clean_fields &
1586                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1587                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1588                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1589                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1590                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1591                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1592                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1593                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1594                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1595                 vmcs12->guest_pending_dbg_exceptions =
1596                         evmcs->guest_pending_dbg_exceptions;
1597                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1598                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1599                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1600                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1601                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1602         }
1603
1604         /*
1605          * Not used?
1606          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1607          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1608          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1609          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1610          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1611          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1612          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1613          * vmcs12->page_fault_error_code_mask =
1614          *              evmcs->page_fault_error_code_mask;
1615          * vmcs12->page_fault_error_code_match =
1616          *              evmcs->page_fault_error_code_match;
1617          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1618          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1619          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1620          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1621          */
1622
1623         /*
1624          * Read only fields:
1625          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1626          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1627          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1628          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1629          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1630          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1631          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1632          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1633          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1634          * vmcs12->exit_qualification = evmcs->exit_qualification;
1635          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1636          *
1637          * Not present in struct vmcs12:
1638          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1639          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1640          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1641          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1642          */
1643
1644         return 0;
1645 }
1646
1647 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1648 {
1649         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1650         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1651
1652         /*
1653          * Should not be changed by KVM:
1654          *
1655          * evmcs->host_es_selector = vmcs12->host_es_selector;
1656          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1657          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1658          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1659          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1660          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1661          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1662          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1663          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1664          * evmcs->host_cr0 = vmcs12->host_cr0;
1665          * evmcs->host_cr3 = vmcs12->host_cr3;
1666          * evmcs->host_cr4 = vmcs12->host_cr4;
1667          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1668          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1669          * evmcs->host_rip = vmcs12->host_rip;
1670          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1671          * evmcs->host_fs_base = vmcs12->host_fs_base;
1672          * evmcs->host_gs_base = vmcs12->host_gs_base;
1673          * evmcs->host_tr_base = vmcs12->host_tr_base;
1674          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1675          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1676          * evmcs->host_rsp = vmcs12->host_rsp;
1677          * sync_vmcs02_to_vmcs12() doesn't read these:
1678          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1679          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1680          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1681          * evmcs->ept_pointer = vmcs12->ept_pointer;
1682          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1683          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1684          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1685          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1686          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1687          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1688          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1689          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1690          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1691          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1692          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1693          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1694          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1695          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1696          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1697          * evmcs->page_fault_error_code_mask =
1698          *              vmcs12->page_fault_error_code_mask;
1699          * evmcs->page_fault_error_code_match =
1700          *              vmcs12->page_fault_error_code_match;
1701          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1702          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1703          * evmcs->tsc_offset = vmcs12->tsc_offset;
1704          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1705          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1706          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1707          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1708          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1709          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1710          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1711          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1712          *
1713          * Not present in struct vmcs12:
1714          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1715          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1716          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1717          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1718          */
1719
1720         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1721         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1722         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1723         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1724         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1725         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1726         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1727         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1728
1729         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1730         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1731         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1732         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1733         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1734         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1735         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1736         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1737         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1738         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1739
1740         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1741         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1742         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1743         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1744         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1745         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1746         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1747         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1748
1749         evmcs->guest_es_base = vmcs12->guest_es_base;
1750         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1751         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1752         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1753         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1754         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1755         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1756         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1757         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1758         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1759
1760         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1761         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1762
1763         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1764         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1765         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1766         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1767
1768         evmcs->guest_pending_dbg_exceptions =
1769                 vmcs12->guest_pending_dbg_exceptions;
1770         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1771         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1772
1773         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1774         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1775
1776         evmcs->guest_cr0 = vmcs12->guest_cr0;
1777         evmcs->guest_cr3 = vmcs12->guest_cr3;
1778         evmcs->guest_cr4 = vmcs12->guest_cr4;
1779         evmcs->guest_dr7 = vmcs12->guest_dr7;
1780
1781         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1782
1783         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1784         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1785         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1786         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1787         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1788         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1789         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1790         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1791
1792         evmcs->exit_qualification = vmcs12->exit_qualification;
1793
1794         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1795         evmcs->guest_rsp = vmcs12->guest_rsp;
1796         evmcs->guest_rflags = vmcs12->guest_rflags;
1797
1798         evmcs->guest_interruptibility_info =
1799                 vmcs12->guest_interruptibility_info;
1800         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1801         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1802         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1803         evmcs->vm_entry_exception_error_code =
1804                 vmcs12->vm_entry_exception_error_code;
1805         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1806
1807         evmcs->guest_rip = vmcs12->guest_rip;
1808
1809         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1810
1811         return 0;
1812 }
1813
1814 /*
1815  * This is an equivalent of the nested hypervisor executing the vmptrld
1816  * instruction.
1817  */
1818 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1819                                                  bool from_launch)
1820 {
1821         struct vcpu_vmx *vmx = to_vmx(vcpu);
1822         bool evmcs_gpa_changed = false;
1823         u64 evmcs_gpa;
1824
1825         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1826                 return 1;
1827
1828         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1829                 return 1;
1830
1831         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1832                 if (!vmx->nested.hv_evmcs)
1833                         vmx->nested.current_vmptr = -1ull;
1834
1835                 nested_release_evmcs(vcpu);
1836
1837                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1838                                  &vmx->nested.hv_evmcs_map))
1839                         return 0;
1840
1841                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1842
1843                 /*
1844                  * Currently, KVM only supports eVMCS version 1
1845                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1846                  * value to first u32 field of eVMCS which should specify eVMCS
1847                  * VersionNumber.
1848                  *
1849                  * Guest should be aware of supported eVMCS versions by host by
1850                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1851                  * expected to set this CPUID leaf according to the value
1852                  * returned in vmcs_version from nested_enable_evmcs().
1853                  *
1854                  * However, it turns out that Microsoft Hyper-V fails to comply
1855                  * to their own invented interface: When Hyper-V use eVMCS, it
1856                  * just sets first u32 field of eVMCS to revision_id specified
1857                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1858                  * which is one of the supported versions specified in
1859                  * CPUID.0x4000000A.EAX[0:15].
1860                  *
1861                  * To overcome Hyper-V bug, we accept here either a supported
1862                  * eVMCS version or VMCS12 revision_id as valid values for first
1863                  * u32 field of eVMCS.
1864                  */
1865                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1866                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1867                         nested_release_evmcs(vcpu);
1868                         return 0;
1869                 }
1870
1871                 vmx->nested.dirty_vmcs12 = true;
1872                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1873
1874                 evmcs_gpa_changed = true;
1875                 /*
1876                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1877                  * reloaded from guest's memory (read only fields, fields not
1878                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1879                  * are no leftovers.
1880                  */
1881                 if (from_launch) {
1882                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1883                         memset(vmcs12, 0, sizeof(*vmcs12));
1884                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1885                 }
1886
1887         }
1888
1889         /*
1890          * Clean fields data can't de used on VMLAUNCH and when we switch
1891          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1892          */
1893         if (from_launch || evmcs_gpa_changed)
1894                 vmx->nested.hv_evmcs->hv_clean_fields &=
1895                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1896
1897         return 1;
1898 }
1899
1900 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1901 {
1902         struct vcpu_vmx *vmx = to_vmx(vcpu);
1903
1904         /*
1905          * hv_evmcs may end up being not mapped after migration (when
1906          * L2 was running), map it here to make sure vmcs12 changes are
1907          * properly reflected.
1908          */
1909         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1910                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1911
1912         if (vmx->nested.hv_evmcs) {
1913                 copy_vmcs12_to_enlightened(vmx);
1914                 /* All fields are clean */
1915                 vmx->nested.hv_evmcs->hv_clean_fields |=
1916                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1917         } else {
1918                 copy_vmcs12_to_shadow(vmx);
1919         }
1920
1921         vmx->nested.need_vmcs12_to_shadow_sync = false;
1922 }
1923
1924 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1925 {
1926         struct vcpu_vmx *vmx =
1927                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1928
1929         vmx->nested.preemption_timer_expired = true;
1930         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1931         kvm_vcpu_kick(&vmx->vcpu);
1932
1933         return HRTIMER_NORESTART;
1934 }
1935
1936 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1937 {
1938         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1939         struct vcpu_vmx *vmx = to_vmx(vcpu);
1940
1941         /*
1942          * A timer value of zero is architecturally guaranteed to cause
1943          * a VMExit prior to executing any instructions in the guest.
1944          */
1945         if (preemption_timeout == 0) {
1946                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1947                 return;
1948         }
1949
1950         if (vcpu->arch.virtual_tsc_khz == 0)
1951                 return;
1952
1953         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1954         preemption_timeout *= 1000000;
1955         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1956         hrtimer_start(&vmx->nested.preemption_timer,
1957                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1958 }
1959
1960 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1961 {
1962         if (vmx->nested.nested_run_pending &&
1963             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1964                 return vmcs12->guest_ia32_efer;
1965         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1966                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1967         else
1968                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1969 }
1970
1971 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1972 {
1973         /*
1974          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1975          * according to L0's settings (vmcs12 is irrelevant here).  Host
1976          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1977          * will be set as needed prior to VMLAUNCH/VMRESUME.
1978          */
1979         if (vmx->nested.vmcs02_initialized)
1980                 return;
1981         vmx->nested.vmcs02_initialized = true;
1982
1983         /*
1984          * We don't care what the EPTP value is we just need to guarantee
1985          * it's valid so we don't get a false positive when doing early
1986          * consistency checks.
1987          */
1988         if (enable_ept && nested_early_check)
1989                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1990
1991         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1992         if (cpu_has_vmx_vmfunc())
1993                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1994
1995         if (cpu_has_vmx_posted_intr())
1996                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1997
1998         if (cpu_has_vmx_msr_bitmap())
1999                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2000
2001         /*
2002          * The PML address never changes, so it is constant in vmcs02.
2003          * Conceptually we want to copy the PML index from vmcs01 here,
2004          * and then back to vmcs01 on nested vmexit.  But since we flush
2005          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2006          * index is also effectively constant in vmcs02.
2007          */
2008         if (enable_pml) {
2009                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2010                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2011         }
2012
2013         if (cpu_has_vmx_encls_vmexit())
2014                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2015
2016         /*
2017          * Set the MSR load/store lists to match L0's settings.  Only the
2018          * addresses are constant (for vmcs02), the counts can change based
2019          * on L2's behavior, e.g. switching to/from long mode.
2020          */
2021         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2022         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2023         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2024
2025         vmx_set_constant_host_state(vmx);
2026 }
2027
2028 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2029                                       struct vmcs12 *vmcs12)
2030 {
2031         prepare_vmcs02_constant_state(vmx);
2032
2033         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2034
2035         if (enable_vpid) {
2036                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2037                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2038                 else
2039                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2040         }
2041 }
2042
2043 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2044 {
2045         u32 exec_control, vmcs12_exec_ctrl;
2046         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2047
2048         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2049                 prepare_vmcs02_early_rare(vmx, vmcs12);
2050
2051         /*
2052          * PIN CONTROLS
2053          */
2054         exec_control = vmx_pin_based_exec_ctrl(vmx);
2055         exec_control |= (vmcs12->pin_based_vm_exec_control &
2056                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2057
2058         /* Posted interrupts setting is only taken from vmcs12.  */
2059         if (nested_cpu_has_posted_intr(vmcs12)) {
2060                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2061                 vmx->nested.pi_pending = false;
2062         } else {
2063                 exec_control &= ~PIN_BASED_POSTED_INTR;
2064         }
2065         pin_controls_set(vmx, exec_control);
2066
2067         /*
2068          * EXEC CONTROLS
2069          */
2070         exec_control = vmx_exec_control(vmx); /* L0's desires */
2071         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2072         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2073         exec_control &= ~CPU_BASED_TPR_SHADOW;
2074         exec_control |= vmcs12->cpu_based_vm_exec_control;
2075
2076         if (exec_control & CPU_BASED_TPR_SHADOW)
2077                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2078 #ifdef CONFIG_X86_64
2079         else
2080                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2081                                 CPU_BASED_CR8_STORE_EXITING;
2082 #endif
2083
2084         /*
2085          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2086          * for I/O port accesses.
2087          */
2088         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2089         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2090
2091         /*
2092          * This bit will be computed in nested_get_vmcs12_pages, because
2093          * we do not have access to L1's MSR bitmap yet.  For now, keep
2094          * the same bit as before, hoping to avoid multiple VMWRITEs that
2095          * only set/clear this bit.
2096          */
2097         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2098         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2099
2100         exec_controls_set(vmx, exec_control);
2101
2102         /*
2103          * SECONDARY EXEC CONTROLS
2104          */
2105         if (cpu_has_secondary_exec_ctrls()) {
2106                 exec_control = vmx->secondary_exec_control;
2107
2108                 /* Take the following fields only from vmcs12 */
2109                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2110                                   SECONDARY_EXEC_ENABLE_INVPCID |
2111                                   SECONDARY_EXEC_RDTSCP |
2112                                   SECONDARY_EXEC_XSAVES |
2113                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2114                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2115                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2116                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2117                 if (nested_cpu_has(vmcs12,
2118                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2119                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2120                                 ~SECONDARY_EXEC_ENABLE_PML;
2121                         exec_control |= vmcs12_exec_ctrl;
2122                 }
2123
2124                 /* VMCS shadowing for L2 is emulated for now */
2125                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2126
2127                 /*
2128                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2129                  * will not have to rewrite the controls just for this bit.
2130                  */
2131                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2132                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2133                         exec_control |= SECONDARY_EXEC_DESC;
2134
2135                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2136                         vmcs_write16(GUEST_INTR_STATUS,
2137                                 vmcs12->guest_intr_status);
2138
2139                 secondary_exec_controls_set(vmx, exec_control);
2140         }
2141
2142         /*
2143          * ENTRY CONTROLS
2144          *
2145          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2146          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2147          * on the related bits (if supported by the CPU) in the hope that
2148          * we can avoid VMWrites during vmx_set_efer().
2149          */
2150         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2151                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2152         if (cpu_has_load_ia32_efer()) {
2153                 if (guest_efer & EFER_LMA)
2154                         exec_control |= VM_ENTRY_IA32E_MODE;
2155                 if (guest_efer != host_efer)
2156                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2157         }
2158         vm_entry_controls_set(vmx, exec_control);
2159
2160         /*
2161          * EXIT CONTROLS
2162          *
2163          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2164          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2165          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2166          */
2167         exec_control = vmx_vmexit_ctrl();
2168         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2169                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2170         vm_exit_controls_set(vmx, exec_control);
2171
2172         /*
2173          * Interrupt/Exception Fields
2174          */
2175         if (vmx->nested.nested_run_pending) {
2176                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2177                              vmcs12->vm_entry_intr_info_field);
2178                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2179                              vmcs12->vm_entry_exception_error_code);
2180                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2181                              vmcs12->vm_entry_instruction_len);
2182                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2183                              vmcs12->guest_interruptibility_info);
2184                 vmx->loaded_vmcs->nmi_known_unmasked =
2185                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2186         } else {
2187                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2188         }
2189 }
2190
2191 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2192 {
2193         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2194
2195         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2196                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2197                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2198                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2199                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2200                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2201                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2202                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2203                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2204                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2205                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2206                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2207                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2208                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2209                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2210                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2211                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2212                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2213                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2214                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2215                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2216                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2217                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2218                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2219                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2220                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2221                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2222                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2223                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2224                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2225                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2226                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2227                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2228                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2229                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2230                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2231                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2232                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2233         }
2234
2235         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2236                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2237                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2238                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2239                             vmcs12->guest_pending_dbg_exceptions);
2240                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2241                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2242
2243                 /*
2244                  * L1 may access the L2's PDPTR, so save them to construct
2245                  * vmcs12
2246                  */
2247                 if (enable_ept) {
2248                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2249                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2250                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2251                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2252                 }
2253
2254                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2255                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2256                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2257         }
2258
2259         if (nested_cpu_has_xsaves(vmcs12))
2260                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2261
2262         /*
2263          * Whether page-faults are trapped is determined by a combination of
2264          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2265          * If enable_ept, L0 doesn't care about page faults and we should
2266          * set all of these to L1's desires. However, if !enable_ept, L0 does
2267          * care about (at least some) page faults, and because it is not easy
2268          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2269          * to exit on each and every L2 page fault. This is done by setting
2270          * MASK=MATCH=0 and (see below) EB.PF=1.
2271          * Note that below we don't need special code to set EB.PF beyond the
2272          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2273          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2274          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2275          */
2276         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2277                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2278         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2279                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2280
2281         if (cpu_has_vmx_apicv()) {
2282                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2283                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2284                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2285                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2286         }
2287
2288         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2289         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2290
2291         set_cr4_guest_host_mask(vmx);
2292 }
2293
2294 /*
2295  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2296  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2297  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2298  * guest in a way that will both be appropriate to L1's requests, and our
2299  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2300  * function also has additional necessary side-effects, like setting various
2301  * vcpu->arch fields.
2302  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2303  * is assigned to entry_failure_code on failure.
2304  */
2305 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2306                           u32 *entry_failure_code)
2307 {
2308         struct vcpu_vmx *vmx = to_vmx(vcpu);
2309         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2310         bool load_guest_pdptrs_vmcs12 = false;
2311
2312         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2313                 prepare_vmcs02_rare(vmx, vmcs12);
2314                 vmx->nested.dirty_vmcs12 = false;
2315
2316                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2317                         !(hv_evmcs->hv_clean_fields &
2318                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2319         }
2320
2321         if (vmx->nested.nested_run_pending &&
2322             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2323                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2324                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2325         } else {
2326                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2327                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2328         }
2329         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2330             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2331                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2332         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2333
2334         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2335          * bitwise-or of what L1 wants to trap for L2, and what we want to
2336          * trap. Note that CR0.TS also needs updating - we do this later.
2337          */
2338         update_exception_bitmap(vcpu);
2339         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2340         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2341
2342         if (vmx->nested.nested_run_pending &&
2343             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2344                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2345                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2346         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2347                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2348         }
2349
2350         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2351
2352         if (kvm_has_tsc_control)
2353                 decache_tsc_multiplier(vmx);
2354
2355         if (enable_vpid) {
2356                 /*
2357                  * There is no direct mapping between vpid02 and vpid12, the
2358                  * vpid02 is per-vCPU for L0 and reused while the value of
2359                  * vpid12 is changed w/ one invvpid during nested vmentry.
2360                  * The vpid12 is allocated by L1 for L2, so it will not
2361                  * influence global bitmap(for vpid01 and vpid02 allocation)
2362                  * even if spawn a lot of nested vCPUs.
2363                  */
2364                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2365                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2366                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2367                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2368                         }
2369                 } else {
2370                         /*
2371                          * If L1 use EPT, then L0 needs to execute INVEPT on
2372                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2373                          * flush until vmcs02->eptp is fully updated by
2374                          * KVM_REQ_LOAD_CR3. Note that this assumes
2375                          * KVM_REQ_TLB_FLUSH is evaluated after
2376                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2377                          */
2378                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2379                 }
2380         }
2381
2382         if (nested_cpu_has_ept(vmcs12))
2383                 nested_ept_init_mmu_context(vcpu);
2384         else if (nested_cpu_has2(vmcs12,
2385                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2386                 vmx_flush_tlb(vcpu, true);
2387
2388         /*
2389          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2390          * bits which we consider mandatory enabled.
2391          * The CR0_READ_SHADOW is what L2 should have expected to read given
2392          * the specifications by L1; It's not enough to take
2393          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2394          * have more bits than L1 expected.
2395          */
2396         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2397         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2398
2399         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2400         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2401
2402         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2403         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2404         vmx_set_efer(vcpu, vcpu->arch.efer);
2405
2406         /*
2407          * Guest state is invalid and unrestricted guest is disabled,
2408          * which means L1 attempted VMEntry to L2 with invalid state.
2409          * Fail the VMEntry.
2410          */
2411         if (vmx->emulation_required) {
2412                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2413                 return -EINVAL;
2414         }
2415
2416         /* Shadow page tables on either EPT or shadow page tables. */
2417         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2418                                 entry_failure_code))
2419                 return -EINVAL;
2420
2421         /*
2422          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2423          * on nested VM-Exit, which can occur without actually running L2 and
2424          * thus without hitting vmx_set_cr3(), e.g. if L1 is entering L2 with
2425          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2426          * transition to HLT instead of running L2.
2427          */
2428         if (enable_ept)
2429                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2430
2431         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2432         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2433             is_pae_paging(vcpu)) {
2434                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2435                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2436                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2437                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2438         }
2439
2440         if (!enable_ept)
2441                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2442
2443         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2444         kvm_rip_write(vcpu, vmcs12->guest_rip);
2445         return 0;
2446 }
2447
2448 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2449 {
2450         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2451                nested_cpu_has_virtual_nmis(vmcs12)))
2452                 return -EINVAL;
2453
2454         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2455                nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)))
2456                 return -EINVAL;
2457
2458         return 0;
2459 }
2460
2461 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2462 {
2463         struct vcpu_vmx *vmx = to_vmx(vcpu);
2464         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2465
2466         /* Check for memory type validity */
2467         switch (address & VMX_EPTP_MT_MASK) {
2468         case VMX_EPTP_MT_UC:
2469                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2470                         return false;
2471                 break;
2472         case VMX_EPTP_MT_WB:
2473                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2474                         return false;
2475                 break;
2476         default:
2477                 return false;
2478         }
2479
2480         /* only 4 levels page-walk length are valid */
2481         if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2482                 return false;
2483
2484         /* Reserved bits should not be set */
2485         if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2486                 return false;
2487
2488         /* AD, if set, should be supported */
2489         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2490                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2491                         return false;
2492         }
2493
2494         return true;
2495 }
2496
2497 /*
2498  * Checks related to VM-Execution Control Fields
2499  */
2500 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2501                                               struct vmcs12 *vmcs12)
2502 {
2503         struct vcpu_vmx *vmx = to_vmx(vcpu);
2504
2505         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2506                                    vmx->nested.msrs.pinbased_ctls_low,
2507                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2508             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2509                                    vmx->nested.msrs.procbased_ctls_low,
2510                                    vmx->nested.msrs.procbased_ctls_high)))
2511                 return -EINVAL;
2512
2513         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2514             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2515                                    vmx->nested.msrs.secondary_ctls_low,
2516                                    vmx->nested.msrs.secondary_ctls_high)))
2517                 return -EINVAL;
2518
2519         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2520             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2521             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2522             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2523             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2524             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2525             nested_vmx_check_nmi_controls(vmcs12) ||
2526             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2527             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2528             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2529             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2530             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2531                 return -EINVAL;
2532
2533         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2534             nested_cpu_has_save_preemption_timer(vmcs12))
2535                 return -EINVAL;
2536
2537         if (nested_cpu_has_ept(vmcs12) &&
2538             CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2539                 return -EINVAL;
2540
2541         if (nested_cpu_has_vmfunc(vmcs12)) {
2542                 if (CC(vmcs12->vm_function_control &
2543                        ~vmx->nested.msrs.vmfunc_controls))
2544                         return -EINVAL;
2545
2546                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2547                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2548                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2549                                 return -EINVAL;
2550                 }
2551         }
2552
2553         return 0;
2554 }
2555
2556 /*
2557  * Checks related to VM-Exit Control Fields
2558  */
2559 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2560                                          struct vmcs12 *vmcs12)
2561 {
2562         struct vcpu_vmx *vmx = to_vmx(vcpu);
2563
2564         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2565                                     vmx->nested.msrs.exit_ctls_low,
2566                                     vmx->nested.msrs.exit_ctls_high)) ||
2567             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2568                 return -EINVAL;
2569
2570         return 0;
2571 }
2572
2573 /*
2574  * Checks related to VM-Entry Control Fields
2575  */
2576 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2577                                           struct vmcs12 *vmcs12)
2578 {
2579         struct vcpu_vmx *vmx = to_vmx(vcpu);
2580
2581         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2582                                     vmx->nested.msrs.entry_ctls_low,
2583                                     vmx->nested.msrs.entry_ctls_high)))
2584                 return -EINVAL;
2585
2586         /*
2587          * From the Intel SDM, volume 3:
2588          * Fields relevant to VM-entry event injection must be set properly.
2589          * These fields are the VM-entry interruption-information field, the
2590          * VM-entry exception error code, and the VM-entry instruction length.
2591          */
2592         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2593                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2594                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2595                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2596                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2597                 bool should_have_error_code;
2598                 bool urg = nested_cpu_has2(vmcs12,
2599                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2600                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2601
2602                 /* VM-entry interruption-info field: interruption type */
2603                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2604                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2605                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2606                         return -EINVAL;
2607
2608                 /* VM-entry interruption-info field: vector */
2609                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2610                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2611                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2612                         return -EINVAL;
2613
2614                 /* VM-entry interruption-info field: deliver error code */
2615                 should_have_error_code =
2616                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2617                         x86_exception_has_error_code(vector);
2618                 if (CC(has_error_code != should_have_error_code))
2619                         return -EINVAL;
2620
2621                 /* VM-entry exception error code */
2622                 if (CC(has_error_code &&
2623                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2624                         return -EINVAL;
2625
2626                 /* VM-entry interruption-info field: reserved bits */
2627                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2628                         return -EINVAL;
2629
2630                 /* VM-entry instruction length */
2631                 switch (intr_type) {
2632                 case INTR_TYPE_SOFT_EXCEPTION:
2633                 case INTR_TYPE_SOFT_INTR:
2634                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2635                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2636                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2637                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2638                                 return -EINVAL;
2639                 }
2640         }
2641
2642         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2643                 return -EINVAL;
2644
2645         return 0;
2646 }
2647
2648 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2649                                      struct vmcs12 *vmcs12)
2650 {
2651         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2652             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2653             nested_check_vm_entry_controls(vcpu, vmcs12))
2654                 return -EINVAL;
2655
2656         return 0;
2657 }
2658
2659 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2660                                        struct vmcs12 *vmcs12)
2661 {
2662         bool ia32e;
2663
2664         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2665             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2666             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2667                 return -EINVAL;
2668
2669         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2670             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2671                 return -EINVAL;
2672
2673         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2674             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2675                 return -EINVAL;
2676
2677 #ifdef CONFIG_X86_64
2678         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2679 #else
2680         ia32e = false;
2681 #endif
2682
2683         if (ia32e) {
2684                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2685                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2686                         return -EINVAL;
2687         } else {
2688                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2689                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2690                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2691                     CC((vmcs12->host_rip) >> 32))
2692                         return -EINVAL;
2693         }
2694
2695         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2696             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2697             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2698             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2699             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2700             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2701             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2702             CC(vmcs12->host_cs_selector == 0) ||
2703             CC(vmcs12->host_tr_selector == 0) ||
2704             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2705                 return -EINVAL;
2706
2707 #ifdef CONFIG_X86_64
2708         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2709             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2710             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2711             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2712             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2713             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2714                 return -EINVAL;
2715 #endif
2716
2717         /*
2718          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2719          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2720          * the values of the LMA and LME bits in the field must each be that of
2721          * the host address-space size VM-exit control.
2722          */
2723         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2724                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2725                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2726                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2727                         return -EINVAL;
2728         }
2729
2730         return 0;
2731 }
2732
2733 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2734                                           struct vmcs12 *vmcs12)
2735 {
2736         int r = 0;
2737         struct vmcs12 *shadow;
2738         struct kvm_host_map map;
2739
2740         if (vmcs12->vmcs_link_pointer == -1ull)
2741                 return 0;
2742
2743         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2744                 return -EINVAL;
2745
2746         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2747                 return -EINVAL;
2748
2749         shadow = map.hva;
2750
2751         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2752             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2753                 r = -EINVAL;
2754
2755         kvm_vcpu_unmap(vcpu, &map, false);
2756         return r;
2757 }
2758
2759 /*
2760  * Checks related to Guest Non-register State
2761  */
2762 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2763 {
2764         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2765                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2766                 return -EINVAL;
2767
2768         return 0;
2769 }
2770
2771 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2772                                         struct vmcs12 *vmcs12,
2773                                         u32 *exit_qual)
2774 {
2775         bool ia32e;
2776
2777         *exit_qual = ENTRY_FAIL_DEFAULT;
2778
2779         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2780             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2781                 return -EINVAL;
2782
2783         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2784             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2785                 return -EINVAL;
2786
2787         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2788                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2789                 return -EINVAL;
2790         }
2791
2792         /*
2793          * If the load IA32_EFER VM-entry control is 1, the following checks
2794          * are performed on the field for the IA32_EFER MSR:
2795          * - Bits reserved in the IA32_EFER MSR must be 0.
2796          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2797          *   the IA-32e mode guest VM-exit control. It must also be identical
2798          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2799          *   CR0.PG) is 1.
2800          */
2801         if (to_vmx(vcpu)->nested.nested_run_pending &&
2802             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2803                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2804                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2805                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2806                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2807                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2808                         return -EINVAL;
2809         }
2810
2811         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2812             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2813              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2814                 return -EINVAL;
2815
2816         if (nested_check_guest_non_reg_state(vmcs12))
2817                 return -EINVAL;
2818
2819         return 0;
2820 }
2821
2822 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2823 {
2824         struct vcpu_vmx *vmx = to_vmx(vcpu);
2825         unsigned long cr3, cr4;
2826         bool vm_fail;
2827
2828         if (!nested_early_check)
2829                 return 0;
2830
2831         if (vmx->msr_autoload.host.nr)
2832                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2833         if (vmx->msr_autoload.guest.nr)
2834                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2835
2836         preempt_disable();
2837
2838         vmx_prepare_switch_to_guest(vcpu);
2839
2840         /*
2841          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2842          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2843          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2844          * there is no need to preserve other bits or save/restore the field.
2845          */
2846         vmcs_writel(GUEST_RFLAGS, 0);
2847
2848         cr3 = __get_current_cr3_fast();
2849         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2850                 vmcs_writel(HOST_CR3, cr3);
2851                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2852         }
2853
2854         cr4 = cr4_read_shadow();
2855         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2856                 vmcs_writel(HOST_CR4, cr4);
2857                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2858         }
2859
2860         asm(
2861                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2862                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2863                 "je 1f \n\t"
2864                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2865                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2866                 "1: \n\t"
2867                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2868
2869                 /* Check if vmlaunch or vmresume is needed */
2870                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2871
2872                 /*
2873                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2874                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2875                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2876                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2877                  */
2878                 "call vmx_vmenter\n\t"
2879
2880                 CC_SET(be)
2881               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2882               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2883                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2884                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
2885                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2886                 [wordsize]"i"(sizeof(ulong))
2887               : "memory"
2888         );
2889
2890         if (vmx->msr_autoload.host.nr)
2891                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2892         if (vmx->msr_autoload.guest.nr)
2893                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2894
2895         if (vm_fail) {
2896                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
2897
2898                 preempt_enable();
2899
2900                 trace_kvm_nested_vmenter_failed(
2901                         "early hardware check VM-instruction error: ", error);
2902                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2903                 return 1;
2904         }
2905
2906         /*
2907          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2908          */
2909         local_irq_enable();
2910         if (hw_breakpoint_active())
2911                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2912         preempt_enable();
2913
2914         /*
2915          * A non-failing VMEntry means we somehow entered guest mode with
2916          * an illegal RIP, and that's just the tip of the iceberg.  There
2917          * is no telling what memory has been modified or what state has
2918          * been exposed to unknown code.  Hitting this all but guarantees
2919          * a (very critical) hardware issue.
2920          */
2921         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2922                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2923
2924         return 0;
2925 }
2926
2927 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2928                                                  struct vmcs12 *vmcs12);
2929
2930 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2931 {
2932         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2933         struct vcpu_vmx *vmx = to_vmx(vcpu);
2934         struct kvm_host_map *map;
2935         struct page *page;
2936         u64 hpa;
2937
2938         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2939                 /*
2940                  * Translate L1 physical address to host physical
2941                  * address for vmcs02. Keep the page pinned, so this
2942                  * physical address remains valid. We keep a reference
2943                  * to it so we can release it later.
2944                  */
2945                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2946                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2947                         vmx->nested.apic_access_page = NULL;
2948                 }
2949                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2950                 if (!is_error_page(page)) {
2951                         vmx->nested.apic_access_page = page;
2952                         hpa = page_to_phys(vmx->nested.apic_access_page);
2953                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2954                 } else {
2955                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
2956                                              __func__);
2957                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2958                         vcpu->run->internal.suberror =
2959                                 KVM_INTERNAL_ERROR_EMULATION;
2960                         vcpu->run->internal.ndata = 0;
2961                         return false;
2962                 }
2963         }
2964
2965         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2966                 map = &vmx->nested.virtual_apic_map;
2967
2968                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2969                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2970                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2971                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2972                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2973                         /*
2974                          * The processor will never use the TPR shadow, simply
2975                          * clear the bit from the execution control.  Such a
2976                          * configuration is useless, but it happens in tests.
2977                          * For any other configuration, failing the vm entry is
2978                          * _not_ what the processor does but it's basically the
2979                          * only possibility we have.
2980                          */
2981                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
2982                 } else {
2983                         /*
2984                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
2985                          * force VM-Entry to fail.
2986                          */
2987                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2988                 }
2989         }
2990
2991         if (nested_cpu_has_posted_intr(vmcs12)) {
2992                 map = &vmx->nested.pi_desc_map;
2993
2994                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2995                         vmx->nested.pi_desc =
2996                                 (struct pi_desc *)(((void *)map->hva) +
2997                                 offset_in_page(vmcs12->posted_intr_desc_addr));
2998                         vmcs_write64(POSTED_INTR_DESC_ADDR,
2999                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3000                 }
3001         }
3002         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3003                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3004         else
3005                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3006         return true;
3007 }
3008
3009 /*
3010  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3011  * for running VMX instructions (except VMXON, whose prerequisites are
3012  * slightly different). It also specifies what exception to inject otherwise.
3013  * Note that many of these exceptions have priority over VM exits, so they
3014  * don't have to be checked again here.
3015  */
3016 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3017 {
3018         if (!to_vmx(vcpu)->nested.vmxon) {
3019                 kvm_queue_exception(vcpu, UD_VECTOR);
3020                 return 0;
3021         }
3022
3023         if (vmx_get_cpl(vcpu)) {
3024                 kvm_inject_gp(vcpu, 0);
3025                 return 0;
3026         }
3027
3028         return 1;
3029 }
3030
3031 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3032 {
3033         u8 rvi = vmx_get_rvi();
3034         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3035
3036         return ((rvi & 0xf0) > (vppr & 0xf0));
3037 }
3038
3039 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3040                                    struct vmcs12 *vmcs12);
3041
3042 /*
3043  * If from_vmentry is false, this is being called from state restore (either RSM
3044  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3045  *
3046  * Returns:
3047  *      NVMX_ENTRY_SUCCESS: Entered VMX non-root mode
3048  *      NVMX_ENTRY_VMFAIL:  Consistency check VMFail
3049  *      NVMX_ENTRY_VMEXIT:  Consistency check VMExit
3050  *      NVMX_ENTRY_KVM_INTERNAL_ERROR: KVM internal error
3051  */
3052 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3053                                                         bool from_vmentry)
3054 {
3055         struct vcpu_vmx *vmx = to_vmx(vcpu);
3056         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3057         bool evaluate_pending_interrupts;
3058         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3059         u32 exit_qual;
3060
3061         evaluate_pending_interrupts = exec_controls_get(vmx) &
3062                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
3063         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3064                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3065
3066         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3067                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3068         if (kvm_mpx_supported() &&
3069                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3070                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3071
3072         /*
3073          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3074          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3075          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3076          * software model to the pre-VMEntry host state.  When EPT is disabled,
3077          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3078          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3079          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3080          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3081          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3082          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3083          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3084          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3085          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3086          * path would need to manually save/restore vmcs01.GUEST_CR3.
3087          */
3088         if (!enable_ept && !nested_early_check)
3089                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3090
3091         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3092
3093         prepare_vmcs02_early(vmx, vmcs12);
3094
3095         if (from_vmentry) {
3096                 if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3097                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3098
3099                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3100                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3101                         return NVMX_VMENTRY_VMFAIL;
3102                 }
3103
3104                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3105                         goto vmentry_fail_vmexit;
3106         }
3107
3108         enter_guest_mode(vcpu);
3109         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3110                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3111
3112         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3113                 goto vmentry_fail_vmexit_guest_mode;
3114
3115         if (from_vmentry) {
3116                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3117                 exit_qual = nested_vmx_load_msr(vcpu,
3118                                                 vmcs12->vm_entry_msr_load_addr,
3119                                                 vmcs12->vm_entry_msr_load_count);
3120                 if (exit_qual)
3121                         goto vmentry_fail_vmexit_guest_mode;
3122         } else {
3123                 /*
3124                  * The MMU is not initialized to point at the right entities yet and
3125                  * "get pages" would need to read data from the guest (i.e. we will
3126                  * need to perform gpa to hpa translation). Request a call
3127                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3128                  * have already been set at vmentry time and should not be reset.
3129                  */
3130                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3131         }
3132
3133         /*
3134          * If L1 had a pending IRQ/NMI until it executed
3135          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3136          * disallowed (e.g. interrupts disabled), L0 needs to
3137          * evaluate if this pending event should cause an exit from L2
3138          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3139          * intercept EXTERNAL_INTERRUPT).
3140          *
3141          * Usually this would be handled by the processor noticing an
3142          * IRQ/NMI window request, or checking RVI during evaluation of
3143          * pending virtual interrupts.  However, this setting was done
3144          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3145          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3146          */
3147         if (unlikely(evaluate_pending_interrupts))
3148                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3149
3150         /*
3151          * Do not start the preemption timer hrtimer until after we know
3152          * we are successful, so that only nested_vmx_vmexit needs to cancel
3153          * the timer.
3154          */
3155         vmx->nested.preemption_timer_expired = false;
3156         if (nested_cpu_has_preemption_timer(vmcs12))
3157                 vmx_start_preemption_timer(vcpu);
3158
3159         /*
3160          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3161          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3162          * returned as far as L1 is concerned. It will only return (and set
3163          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3164          */
3165         return NVMX_VMENTRY_SUCCESS;
3166
3167         /*
3168          * A failed consistency check that leads to a VMExit during L1's
3169          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3170          * 26.7 "VM-entry failures during or after loading guest state".
3171          */
3172 vmentry_fail_vmexit_guest_mode:
3173         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3174                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3175         leave_guest_mode(vcpu);
3176
3177 vmentry_fail_vmexit:
3178         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3179
3180         if (!from_vmentry)
3181                 return NVMX_VMENTRY_VMEXIT;
3182
3183         load_vmcs12_host_state(vcpu, vmcs12);
3184         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3185         vmcs12->exit_qualification = exit_qual;
3186         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3187                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3188         return NVMX_VMENTRY_VMEXIT;
3189 }
3190
3191 /*
3192  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3193  * for running an L2 nested guest.
3194  */
3195 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3196 {
3197         struct vmcs12 *vmcs12;
3198         enum nvmx_vmentry_status status;
3199         struct vcpu_vmx *vmx = to_vmx(vcpu);
3200         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3201
3202         if (!nested_vmx_check_permission(vcpu))
3203                 return 1;
3204
3205         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3206                 return 1;
3207
3208         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3209                 return nested_vmx_failInvalid(vcpu);
3210
3211         vmcs12 = get_vmcs12(vcpu);
3212
3213         /*
3214          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3215          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3216          * rather than RFLAGS.ZF, and no error number is stored to the
3217          * VM-instruction error field.
3218          */
3219         if (vmcs12->hdr.shadow_vmcs)
3220                 return nested_vmx_failInvalid(vcpu);
3221
3222         if (vmx->nested.hv_evmcs) {
3223                 copy_enlightened_to_vmcs12(vmx);
3224                 /* Enlightened VMCS doesn't have launch state */
3225                 vmcs12->launch_state = !launch;
3226         } else if (enable_shadow_vmcs) {
3227                 copy_shadow_to_vmcs12(vmx);
3228         }
3229
3230         /*
3231          * The nested entry process starts with enforcing various prerequisites
3232          * on vmcs12 as required by the Intel SDM, and act appropriately when
3233          * they fail: As the SDM explains, some conditions should cause the
3234          * instruction to fail, while others will cause the instruction to seem
3235          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3236          * To speed up the normal (success) code path, we should avoid checking
3237          * for misconfigurations which will anyway be caught by the processor
3238          * when using the merged vmcs02.
3239          */
3240         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3241                 return nested_vmx_failValid(vcpu,
3242                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3243
3244         if (vmcs12->launch_state == launch)
3245                 return nested_vmx_failValid(vcpu,
3246                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3247                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3248
3249         if (nested_vmx_check_controls(vcpu, vmcs12))
3250                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3251
3252         if (nested_vmx_check_host_state(vcpu, vmcs12))
3253                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3254
3255         /*
3256          * We're finally done with prerequisite checking, and can start with
3257          * the nested entry.
3258          */
3259         vmx->nested.nested_run_pending = 1;
3260         status = nested_vmx_enter_non_root_mode(vcpu, true);
3261         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3262                 goto vmentry_failed;
3263
3264         /* Hide L1D cache contents from the nested guest.  */
3265         vmx->vcpu.arch.l1tf_flush_l1d = true;
3266
3267         /*
3268          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3269          * also be used as part of restoring nVMX state for
3270          * snapshot restore (migration).
3271          *
3272          * In this flow, it is assumed that vmcs12 cache was
3273          * trasferred as part of captured nVMX state and should
3274          * therefore not be read from guest memory (which may not
3275          * exist on destination host yet).
3276          */
3277         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3278
3279         /*
3280          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3281          * awakened by event injection or by an NMI-window VM-exit or
3282          * by an interrupt-window VM-exit, halt the vcpu.
3283          */
3284         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3285             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3286             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3287             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3288               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3289                 vmx->nested.nested_run_pending = 0;
3290                 return kvm_vcpu_halt(vcpu);
3291         }
3292         return 1;
3293
3294 vmentry_failed:
3295         vmx->nested.nested_run_pending = 0;
3296         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3297                 return 0;
3298         if (status == NVMX_VMENTRY_VMEXIT)
3299                 return 1;
3300         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3301         return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3302 }
3303
3304 /*
3305  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3306  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3307  * This function returns the new value we should put in vmcs12.guest_cr0.
3308  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3309  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3310  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3311  *     didn't trap the bit, because if L1 did, so would L0).
3312  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3313  *     been modified by L2, and L1 knows it. So just leave the old value of
3314  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3315  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3316  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3317  *     changed these bits, and therefore they need to be updated, but L0
3318  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3319  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3320  */
3321 static inline unsigned long
3322 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3323 {
3324         return
3325         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3326         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3327         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3328                         vcpu->arch.cr0_guest_owned_bits));
3329 }
3330
3331 static inline unsigned long
3332 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3333 {
3334         return
3335         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3336         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3337         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3338                         vcpu->arch.cr4_guest_owned_bits));
3339 }
3340
3341 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3342                                       struct vmcs12 *vmcs12)
3343 {
3344         u32 idt_vectoring;
3345         unsigned int nr;
3346
3347         if (vcpu->arch.exception.injected) {
3348                 nr = vcpu->arch.exception.nr;
3349                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3350
3351                 if (kvm_exception_is_soft(nr)) {
3352                         vmcs12->vm_exit_instruction_len =
3353                                 vcpu->arch.event_exit_inst_len;
3354                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3355                 } else
3356                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3357
3358                 if (vcpu->arch.exception.has_error_code) {
3359                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3360                         vmcs12->idt_vectoring_error_code =
3361                                 vcpu->arch.exception.error_code;
3362                 }
3363
3364                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3365         } else if (vcpu->arch.nmi_injected) {
3366                 vmcs12->idt_vectoring_info_field =
3367                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3368         } else if (vcpu->arch.interrupt.injected) {
3369                 nr = vcpu->arch.interrupt.nr;
3370                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3371
3372                 if (vcpu->arch.interrupt.soft) {
3373                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3374                         vmcs12->vm_entry_instruction_len =
3375                                 vcpu->arch.event_exit_inst_len;
3376                 } else
3377                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3378
3379                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3380         }
3381 }
3382
3383
3384 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3385 {
3386         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3387         gfn_t gfn;
3388
3389         /*
3390          * Don't need to mark the APIC access page dirty; it is never
3391          * written to by the CPU during APIC virtualization.
3392          */
3393
3394         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3395                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3396                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3397         }
3398
3399         if (nested_cpu_has_posted_intr(vmcs12)) {
3400                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3401                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3402         }
3403 }
3404
3405 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3406 {
3407         struct vcpu_vmx *vmx = to_vmx(vcpu);
3408         int max_irr;
3409         void *vapic_page;
3410         u16 status;
3411
3412         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3413                 return;
3414
3415         vmx->nested.pi_pending = false;
3416         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3417                 return;
3418
3419         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3420         if (max_irr != 256) {
3421                 vapic_page = vmx->nested.virtual_apic_map.hva;
3422                 if (!vapic_page)
3423                         return;
3424
3425                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3426                         vapic_page, &max_irr);
3427                 status = vmcs_read16(GUEST_INTR_STATUS);
3428                 if ((u8)max_irr > ((u8)status & 0xff)) {
3429                         status &= ~0xff;
3430                         status |= (u8)max_irr;
3431                         vmcs_write16(GUEST_INTR_STATUS, status);
3432                 }
3433         }
3434
3435         nested_mark_vmcs12_pages_dirty(vcpu);
3436 }
3437
3438 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3439                                                unsigned long exit_qual)
3440 {
3441         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3442         unsigned int nr = vcpu->arch.exception.nr;
3443         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3444
3445         if (vcpu->arch.exception.has_error_code) {
3446                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3447                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3448         }
3449
3450         if (kvm_exception_is_soft(nr))
3451                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3452         else
3453                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3454
3455         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3456             vmx_get_nmi_mask(vcpu))
3457                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3458
3459         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3460 }
3461
3462 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3463 {
3464         struct vcpu_vmx *vmx = to_vmx(vcpu);
3465         unsigned long exit_qual;
3466         bool block_nested_events =
3467             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3468         struct kvm_lapic *apic = vcpu->arch.apic;
3469
3470         if (lapic_in_kernel(vcpu) &&
3471                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3472                 if (block_nested_events)
3473                         return -EBUSY;
3474                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3475                 return 0;
3476         }
3477
3478         if (vcpu->arch.exception.pending &&
3479                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3480                 if (block_nested_events)
3481                         return -EBUSY;
3482                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3483                 return 0;
3484         }
3485
3486         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3487             vmx->nested.preemption_timer_expired) {
3488                 if (block_nested_events)
3489                         return -EBUSY;
3490                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3491                 return 0;
3492         }
3493
3494         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3495                 if (block_nested_events)
3496                         return -EBUSY;
3497                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3498                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3499                                   INTR_INFO_VALID_MASK, 0);
3500                 /*
3501                  * The NMI-triggered VM exit counts as injection:
3502                  * clear this one and block further NMIs.
3503                  */
3504                 vcpu->arch.nmi_pending = 0;
3505                 vmx_set_nmi_mask(vcpu, true);
3506                 return 0;
3507         }
3508
3509         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3510             nested_exit_on_intr(vcpu)) {
3511                 if (block_nested_events)
3512                         return -EBUSY;
3513                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3514                 return 0;
3515         }
3516
3517         vmx_complete_nested_posted_interrupt(vcpu);
3518         return 0;
3519 }
3520
3521 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3522 {
3523         ktime_t remaining =
3524                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3525         u64 value;
3526
3527         if (ktime_to_ns(remaining) <= 0)
3528                 return 0;
3529
3530         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3531         do_div(value, 1000000);
3532         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3533 }
3534
3535 static bool is_vmcs12_ext_field(unsigned long field)
3536 {
3537         switch (field) {
3538         case GUEST_ES_SELECTOR:
3539         case GUEST_CS_SELECTOR:
3540         case GUEST_SS_SELECTOR:
3541         case GUEST_DS_SELECTOR:
3542         case GUEST_FS_SELECTOR:
3543         case GUEST_GS_SELECTOR:
3544         case GUEST_LDTR_SELECTOR:
3545         case GUEST_TR_SELECTOR:
3546         case GUEST_ES_LIMIT:
3547         case GUEST_CS_LIMIT:
3548         case GUEST_SS_LIMIT:
3549         case GUEST_DS_LIMIT:
3550         case GUEST_FS_LIMIT:
3551         case GUEST_GS_LIMIT:
3552         case GUEST_LDTR_LIMIT:
3553         case GUEST_TR_LIMIT:
3554         case GUEST_GDTR_LIMIT:
3555         case GUEST_IDTR_LIMIT:
3556         case GUEST_ES_AR_BYTES:
3557         case GUEST_DS_AR_BYTES:
3558         case GUEST_FS_AR_BYTES:
3559         case GUEST_GS_AR_BYTES:
3560         case GUEST_LDTR_AR_BYTES:
3561         case GUEST_TR_AR_BYTES:
3562         case GUEST_ES_BASE:
3563         case GUEST_CS_BASE:
3564         case GUEST_SS_BASE:
3565         case GUEST_DS_BASE:
3566         case GUEST_FS_BASE:
3567         case GUEST_GS_BASE:
3568         case GUEST_LDTR_BASE:
3569         case GUEST_TR_BASE:
3570         case GUEST_GDTR_BASE:
3571         case GUEST_IDTR_BASE:
3572         case GUEST_PENDING_DBG_EXCEPTIONS:
3573         case GUEST_BNDCFGS:
3574                 return true;
3575         default:
3576                 break;
3577         }
3578
3579         return false;
3580 }
3581
3582 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3583                                        struct vmcs12 *vmcs12)
3584 {
3585         struct vcpu_vmx *vmx = to_vmx(vcpu);
3586
3587         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3588         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3589         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3590         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3591         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3592         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3593         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3594         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3595         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3596         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3597         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3598         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3599         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3600         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3601         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3602         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3603         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3604         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3605         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3606         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3607         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3608         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3609         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3610         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3611         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3612         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3613         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3614         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3615         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3616         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3617         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3618         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3619         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3620         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3621         vmcs12->guest_pending_dbg_exceptions =
3622                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3623         if (kvm_mpx_supported())
3624                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3625
3626         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3627 }
3628
3629 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3630                                        struct vmcs12 *vmcs12)
3631 {
3632         struct vcpu_vmx *vmx = to_vmx(vcpu);
3633         int cpu;
3634
3635         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3636                 return;
3637
3638
3639         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3640
3641         cpu = get_cpu();
3642         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3643         vmx_vcpu_load(&vmx->vcpu, cpu);
3644
3645         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3646
3647         vmx->loaded_vmcs = &vmx->vmcs01;
3648         vmx_vcpu_load(&vmx->vcpu, cpu);
3649         put_cpu();
3650 }
3651
3652 /*
3653  * Update the guest state fields of vmcs12 to reflect changes that
3654  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3655  * VM-entry controls is also updated, since this is really a guest
3656  * state bit.)
3657  */
3658 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3659 {
3660         struct vcpu_vmx *vmx = to_vmx(vcpu);
3661
3662         if (vmx->nested.hv_evmcs)
3663                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3664
3665         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3666
3667         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3668         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3669
3670         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3671         vmcs12->guest_rip = kvm_rip_read(vcpu);
3672         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3673
3674         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3675         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3676
3677         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3678         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3679         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3680
3681         vmcs12->guest_interruptibility_info =
3682                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3683
3684         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3685                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3686         else
3687                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3688
3689         if (nested_cpu_has_preemption_timer(vmcs12) &&
3690             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3691                         vmcs12->vmx_preemption_timer_value =
3692                                 vmx_get_preemption_timer_value(vcpu);
3693
3694         /*
3695          * In some cases (usually, nested EPT), L2 is allowed to change its
3696          * own CR3 without exiting. If it has changed it, we must keep it.
3697          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3698          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3699          *
3700          * Additionally, restore L2's PDPTR to vmcs12.
3701          */
3702         if (enable_ept) {
3703                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3704                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3705                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3706                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3707                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3708                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3709                 }
3710         }
3711
3712         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3713
3714         if (nested_cpu_has_vid(vmcs12))
3715                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3716
3717         vmcs12->vm_entry_controls =
3718                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3719                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3720
3721         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3722                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3723
3724         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3725                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3726 }
3727
3728 /*
3729  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3730  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3731  * and this function updates it to reflect the changes to the guest state while
3732  * L2 was running (and perhaps made some exits which were handled directly by L0
3733  * without going back to L1), and to reflect the exit reason.
3734  * Note that we do not have to copy here all VMCS fields, just those that
3735  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3736  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3737  * which already writes to vmcs12 directly.
3738  */
3739 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3740                            u32 exit_reason, u32 exit_intr_info,
3741                            unsigned long exit_qualification)
3742 {
3743         /* update exit information fields: */
3744         vmcs12->vm_exit_reason = exit_reason;
3745         vmcs12->exit_qualification = exit_qualification;
3746         vmcs12->vm_exit_intr_info = exit_intr_info;
3747
3748         vmcs12->idt_vectoring_info_field = 0;
3749         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3750         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3751
3752         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3753                 vmcs12->launch_state = 1;
3754
3755                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3756                  * instead of reading the real value. */
3757                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3758
3759                 /*
3760                  * Transfer the event that L0 or L1 may wanted to inject into
3761                  * L2 to IDT_VECTORING_INFO_FIELD.
3762                  */
3763                 vmcs12_save_pending_event(vcpu, vmcs12);
3764
3765                 /*
3766                  * According to spec, there's no need to store the guest's
3767                  * MSRs if the exit is due to a VM-entry failure that occurs
3768                  * during or after loading the guest state. Since this exit
3769                  * does not fall in that category, we need to save the MSRs.
3770                  */
3771                 if (nested_vmx_store_msr(vcpu,
3772                                          vmcs12->vm_exit_msr_store_addr,
3773                                          vmcs12->vm_exit_msr_store_count))
3774                         nested_vmx_abort(vcpu,
3775                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3776         }
3777
3778         /*
3779          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3780          * preserved above and would only end up incorrectly in L1.
3781          */
3782         vcpu->arch.nmi_injected = false;
3783         kvm_clear_exception_queue(vcpu);
3784         kvm_clear_interrupt_queue(vcpu);
3785 }
3786
3787 /*
3788  * A part of what we need to when the nested L2 guest exits and we want to
3789  * run its L1 parent, is to reset L1's guest state to the host state specified
3790  * in vmcs12.
3791  * This function is to be called not only on normal nested exit, but also on
3792  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3793  * Failures During or After Loading Guest State").
3794  * This function should be called when the active VMCS is L1's (vmcs01).
3795  */
3796 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3797                                    struct vmcs12 *vmcs12)
3798 {
3799         struct kvm_segment seg;
3800         u32 entry_failure_code;
3801
3802         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3803                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3804         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3805                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3806         else
3807                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3808         vmx_set_efer(vcpu, vcpu->arch.efer);
3809
3810         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3811         kvm_rip_write(vcpu, vmcs12->host_rip);
3812         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3813         vmx_set_interrupt_shadow(vcpu, 0);
3814
3815         /*
3816          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3817          * actually changed, because vmx_set_cr0 refers to efer set above.
3818          *
3819          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3820          * (KVM doesn't change it);
3821          */
3822         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3823         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3824
3825         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3826         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3827         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3828
3829         nested_ept_uninit_mmu_context(vcpu);
3830
3831         /*
3832          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3833          * couldn't have changed.
3834          */
3835         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3836                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3837
3838         if (!enable_ept)
3839                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3840
3841         /*
3842          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3843          * VMEntry/VMExit. Thus, no need to flush TLB.
3844          *
3845          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3846          * flushed on every VMEntry/VMExit.
3847          *
3848          * Otherwise, we can preserve TLB entries as long as we are
3849          * able to tag L1 TLB entries differently than L2 TLB entries.
3850          *
3851          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3852          * and therefore we request the TLB flush to happen only after VMCS EPTP
3853          * has been set by KVM_REQ_LOAD_CR3.
3854          */
3855         if (enable_vpid &&
3856             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3857                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3858         }
3859
3860         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3861         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3862         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3863         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3864         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3865         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3866         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3867
3868         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3869         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3870                 vmcs_write64(GUEST_BNDCFGS, 0);
3871
3872         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3873                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3874                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3875         }
3876         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3877                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3878                         vmcs12->host_ia32_perf_global_ctrl);
3879
3880         /* Set L1 segment info according to Intel SDM
3881             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3882         seg = (struct kvm_segment) {
3883                 .base = 0,
3884                 .limit = 0xFFFFFFFF,
3885                 .selector = vmcs12->host_cs_selector,
3886                 .type = 11,
3887                 .present = 1,
3888                 .s = 1,
3889                 .g = 1
3890         };
3891         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3892                 seg.l = 1;
3893         else
3894                 seg.db = 1;
3895         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3896         seg = (struct kvm_segment) {
3897                 .base = 0,
3898                 .limit = 0xFFFFFFFF,
3899                 .type = 3,
3900                 .present = 1,
3901                 .s = 1,
3902                 .db = 1,
3903                 .g = 1
3904         };
3905         seg.selector = vmcs12->host_ds_selector;
3906         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3907         seg.selector = vmcs12->host_es_selector;
3908         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3909         seg.selector = vmcs12->host_ss_selector;
3910         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3911         seg.selector = vmcs12->host_fs_selector;
3912         seg.base = vmcs12->host_fs_base;
3913         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3914         seg.selector = vmcs12->host_gs_selector;
3915         seg.base = vmcs12->host_gs_base;
3916         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3917         seg = (struct kvm_segment) {
3918                 .base = vmcs12->host_tr_base,
3919                 .limit = 0x67,
3920                 .selector = vmcs12->host_tr_selector,
3921                 .type = 11,
3922                 .present = 1
3923         };
3924         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3925
3926         kvm_set_dr(vcpu, 7, 0x400);
3927         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3928
3929         if (cpu_has_vmx_msr_bitmap())
3930                 vmx_update_msr_bitmap(vcpu);
3931
3932         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3933                                 vmcs12->vm_exit_msr_load_count))
3934                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3935 }
3936
3937 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3938 {
3939         struct shared_msr_entry *efer_msr;
3940         unsigned int i;
3941
3942         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3943                 return vmcs_read64(GUEST_IA32_EFER);
3944
3945         if (cpu_has_load_ia32_efer())
3946                 return host_efer;
3947
3948         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3949                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3950                         return vmx->msr_autoload.guest.val[i].value;
3951         }
3952
3953         efer_msr = find_msr_entry(vmx, MSR_EFER);
3954         if (efer_msr)
3955                 return efer_msr->data;
3956
3957         return host_efer;
3958 }
3959
3960 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3961 {
3962         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3963         struct vcpu_vmx *vmx = to_vmx(vcpu);
3964         struct vmx_msr_entry g, h;
3965         gpa_t gpa;
3966         u32 i, j;
3967
3968         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3969
3970         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3971                 /*
3972                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3973                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3974                  * and vcpu->arch.dr7 is not squirreled away before the
3975                  * nested VMENTER (not worth adding a variable in nested_vmx).
3976                  */
3977                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3978                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3979                 else
3980                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3981         }
3982
3983         /*
3984          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3985          * handle a variety of side effects to KVM's software model.
3986          */
3987         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3988
3989         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3990         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3991
3992         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3993         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3994
3995         nested_ept_uninit_mmu_context(vcpu);
3996         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3997         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3998
3999         /*
4000          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4001          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4002          * VMFail, like everything else we just need to ensure our
4003          * software model is up-to-date.
4004          */
4005         if (enable_ept)
4006                 ept_save_pdptrs(vcpu);
4007
4008         kvm_mmu_reset_context(vcpu);
4009
4010         if (cpu_has_vmx_msr_bitmap())
4011                 vmx_update_msr_bitmap(vcpu);
4012
4013         /*
4014          * This nasty bit of open coding is a compromise between blindly
4015          * loading L1's MSRs using the exit load lists (incorrect emulation
4016          * of VMFail), leaving the nested VM's MSRs in the software model
4017          * (incorrect behavior) and snapshotting the modified MSRs (too
4018          * expensive since the lists are unbound by hardware).  For each
4019          * MSR that was (prematurely) loaded from the nested VMEntry load
4020          * list, reload it from the exit load list if it exists and differs
4021          * from the guest value.  The intent is to stuff host state as
4022          * silently as possible, not to fully process the exit load list.
4023          */
4024         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4025                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4026                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4027                         pr_debug_ratelimited(
4028                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4029                                 __func__, i, gpa);
4030                         goto vmabort;
4031                 }
4032
4033                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4034                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4035                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4036                                 pr_debug_ratelimited(
4037                                         "%s read MSR failed (%u, 0x%08llx)\n",
4038                                         __func__, j, gpa);
4039                                 goto vmabort;
4040                         }
4041                         if (h.index != g.index)
4042                                 continue;
4043                         if (h.value == g.value)
4044                                 break;
4045
4046                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4047                                 pr_debug_ratelimited(
4048                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4049                                         __func__, j, h.index, h.reserved);
4050                                 goto vmabort;
4051                         }
4052
4053                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4054                                 pr_debug_ratelimited(
4055                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4056                                         __func__, j, h.index, h.value);
4057                                 goto vmabort;
4058                         }
4059                 }
4060         }
4061
4062         return;
4063
4064 vmabort:
4065         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4066 }
4067
4068 /*
4069  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4070  * and modify vmcs12 to make it see what it would expect to see there if
4071  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4072  */
4073 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4074                        u32 exit_intr_info, unsigned long exit_qualification)
4075 {
4076         struct vcpu_vmx *vmx = to_vmx(vcpu);
4077         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4078
4079         /* trying to cancel vmlaunch/vmresume is a bug */
4080         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4081
4082         leave_guest_mode(vcpu);
4083
4084         if (nested_cpu_has_preemption_timer(vmcs12))
4085                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4086
4087         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
4088                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4089
4090         if (likely(!vmx->fail)) {
4091                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4092
4093                 if (exit_reason != -1)
4094                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4095                                        exit_qualification);
4096
4097                 /*
4098                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4099                  * also be used to capture vmcs12 cache as part of
4100                  * capturing nVMX state for snapshot (migration).
4101                  *
4102                  * Otherwise, this flush will dirty guest memory at a
4103                  * point it is already assumed by user-space to be
4104                  * immutable.
4105                  */
4106                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4107         } else {
4108                 /*
4109                  * The only expected VM-instruction error is "VM entry with
4110                  * invalid control field(s)." Anything else indicates a
4111                  * problem with L0.  And we should never get here with a
4112                  * VMFail of any type if early consistency checks are enabled.
4113                  */
4114                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4115                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4116                 WARN_ON_ONCE(nested_early_check);
4117         }
4118
4119         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4120
4121         /* Update any VMCS fields that might have changed while L2 ran */
4122         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4123         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4124         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4125
4126         if (kvm_has_tsc_control)
4127                 decache_tsc_multiplier(vmx);
4128
4129         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4130                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4131                 vmx_set_virtual_apic_mode(vcpu);
4132         } else if (!nested_cpu_has_ept(vmcs12) &&
4133                    nested_cpu_has2(vmcs12,
4134                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
4135                 vmx_flush_tlb(vcpu, true);
4136         }
4137
4138         /* Unpin physical memory we referred to in vmcs02 */
4139         if (vmx->nested.apic_access_page) {
4140                 kvm_release_page_dirty(vmx->nested.apic_access_page);
4141                 vmx->nested.apic_access_page = NULL;
4142         }
4143         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4144         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4145         vmx->nested.pi_desc = NULL;
4146
4147         /*
4148          * We are now running in L2, mmu_notifier will force to reload the
4149          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4150          */
4151         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4152
4153         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4154                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4155
4156         /* in case we halted in L2 */
4157         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4158
4159         if (likely(!vmx->fail)) {
4160                 /*
4161                  * TODO: SDM says that with acknowledge interrupt on
4162                  * exit, bit 31 of the VM-exit interrupt information
4163                  * (valid interrupt) is always set to 1 on
4164                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4165                  * need kvm_cpu_has_interrupt().  See the commit
4166                  * message for details.
4167                  */
4168                 if (nested_exit_intr_ack_set(vcpu) &&
4169                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4170                     kvm_cpu_has_interrupt(vcpu)) {
4171                         int irq = kvm_cpu_get_interrupt(vcpu);
4172                         WARN_ON(irq < 0);
4173                         vmcs12->vm_exit_intr_info = irq |
4174                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4175                 }
4176
4177                 if (exit_reason != -1)
4178                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4179                                                        vmcs12->exit_qualification,
4180                                                        vmcs12->idt_vectoring_info_field,
4181                                                        vmcs12->vm_exit_intr_info,
4182                                                        vmcs12->vm_exit_intr_error_code,
4183                                                        KVM_ISA_VMX);
4184
4185                 load_vmcs12_host_state(vcpu, vmcs12);
4186
4187                 return;
4188         }
4189
4190         /*
4191          * After an early L2 VM-entry failure, we're now back
4192          * in L1 which thinks it just finished a VMLAUNCH or
4193          * VMRESUME instruction, so we need to set the failure
4194          * flag and the VM-instruction error field of the VMCS
4195          * accordingly, and skip the emulated instruction.
4196          */
4197         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4198
4199         /*
4200          * Restore L1's host state to KVM's software model.  We're here
4201          * because a consistency check was caught by hardware, which
4202          * means some amount of guest state has been propagated to KVM's
4203          * model and needs to be unwound to the host's state.
4204          */
4205         nested_vmx_restore_host_state(vcpu);
4206
4207         vmx->fail = 0;
4208 }
4209
4210 /*
4211  * Decode the memory-address operand of a vmx instruction, as recorded on an
4212  * exit caused by such an instruction (run by a guest hypervisor).
4213  * On success, returns 0. When the operand is invalid, returns 1 and throws
4214  * #UD or #GP.
4215  */
4216 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4217                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4218 {
4219         gva_t off;
4220         bool exn;
4221         struct kvm_segment s;
4222
4223         /*
4224          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4225          * Execution", on an exit, vmx_instruction_info holds most of the
4226          * addressing components of the operand. Only the displacement part
4227          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4228          * For how an actual address is calculated from all these components,
4229          * refer to Vol. 1, "Operand Addressing".
4230          */
4231         int  scaling = vmx_instruction_info & 3;
4232         int  addr_size = (vmx_instruction_info >> 7) & 7;
4233         bool is_reg = vmx_instruction_info & (1u << 10);
4234         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4235         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4236         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4237         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4238         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4239
4240         if (is_reg) {
4241                 kvm_queue_exception(vcpu, UD_VECTOR);
4242                 return 1;
4243         }
4244
4245         /* Addr = segment_base + offset */
4246         /* offset = base + [index * scale] + displacement */
4247         off = exit_qualification; /* holds the displacement */
4248         if (addr_size == 1)
4249                 off = (gva_t)sign_extend64(off, 31);
4250         else if (addr_size == 0)
4251                 off = (gva_t)sign_extend64(off, 15);
4252         if (base_is_valid)
4253                 off += kvm_register_read(vcpu, base_reg);
4254         if (index_is_valid)
4255                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4256         vmx_get_segment(vcpu, &s, seg_reg);
4257
4258         /*
4259          * The effective address, i.e. @off, of a memory operand is truncated
4260          * based on the address size of the instruction.  Note that this is
4261          * the *effective address*, i.e. the address prior to accounting for
4262          * the segment's base.
4263          */
4264         if (addr_size == 1) /* 32 bit */
4265                 off &= 0xffffffff;
4266         else if (addr_size == 0) /* 16 bit */
4267                 off &= 0xffff;
4268
4269         /* Checks for #GP/#SS exceptions. */
4270         exn = false;
4271         if (is_long_mode(vcpu)) {
4272                 /*
4273                  * The virtual/linear address is never truncated in 64-bit
4274                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4275                  * address when using FS/GS with a non-zero base.
4276                  */
4277                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4278                         *ret = s.base + off;
4279                 else
4280                         *ret = off;
4281
4282                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4283                  * non-canonical form. This is the only check on the memory
4284                  * destination for long mode!
4285                  */
4286                 exn = is_noncanonical_address(*ret, vcpu);
4287         } else {
4288                 /*
4289                  * When not in long mode, the virtual/linear address is
4290                  * unconditionally truncated to 32 bits regardless of the
4291                  * address size.
4292                  */
4293                 *ret = (s.base + off) & 0xffffffff;
4294
4295                 /* Protected mode: apply checks for segment validity in the
4296                  * following order:
4297                  * - segment type check (#GP(0) may be thrown)
4298                  * - usability check (#GP(0)/#SS(0))
4299                  * - limit check (#GP(0)/#SS(0))
4300                  */
4301                 if (wr)
4302                         /* #GP(0) if the destination operand is located in a
4303                          * read-only data segment or any code segment.
4304                          */
4305                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4306                 else
4307                         /* #GP(0) if the source operand is located in an
4308                          * execute-only code segment
4309                          */
4310                         exn = ((s.type & 0xa) == 8);
4311                 if (exn) {
4312                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4313                         return 1;
4314                 }
4315                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4316                  */
4317                 exn = (s.unusable != 0);
4318
4319                 /*
4320                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4321                  * outside the segment limit.  All CPUs that support VMX ignore
4322                  * limit checks for flat segments, i.e. segments with base==0,
4323                  * limit==0xffffffff and of type expand-up data or code.
4324                  */
4325                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4326                      ((s.type & 8) || !(s.type & 4))))
4327                         exn = exn || ((u64)off + len - 1 > s.limit);
4328         }
4329         if (exn) {
4330                 kvm_queue_exception_e(vcpu,
4331                                       seg_reg == VCPU_SREG_SS ?
4332                                                 SS_VECTOR : GP_VECTOR,
4333                                       0);
4334                 return 1;
4335         }
4336
4337         return 0;
4338 }
4339
4340 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4341 {
4342         gva_t gva;
4343         struct x86_exception e;
4344
4345         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4346                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4347                                 sizeof(*vmpointer), &gva))
4348                 return 1;
4349
4350         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4351                 kvm_inject_page_fault(vcpu, &e);
4352                 return 1;
4353         }
4354
4355         return 0;
4356 }
4357
4358 /*
4359  * Allocate a shadow VMCS and associate it with the currently loaded
4360  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4361  * VMCS is also VMCLEARed, so that it is ready for use.
4362  */
4363 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4364 {
4365         struct vcpu_vmx *vmx = to_vmx(vcpu);
4366         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4367
4368         /*
4369          * We should allocate a shadow vmcs for vmcs01 only when L1
4370          * executes VMXON and free it when L1 executes VMXOFF.
4371          * As it is invalid to execute VMXON twice, we shouldn't reach
4372          * here when vmcs01 already have an allocated shadow vmcs.
4373          */
4374         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4375
4376         if (!loaded_vmcs->shadow_vmcs) {
4377                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4378                 if (loaded_vmcs->shadow_vmcs)
4379                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4380         }
4381         return loaded_vmcs->shadow_vmcs;
4382 }
4383
4384 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4385 {
4386         struct vcpu_vmx *vmx = to_vmx(vcpu);
4387         int r;
4388
4389         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4390         if (r < 0)
4391                 goto out_vmcs02;
4392
4393         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4394         if (!vmx->nested.cached_vmcs12)
4395                 goto out_cached_vmcs12;
4396
4397         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4398         if (!vmx->nested.cached_shadow_vmcs12)
4399                 goto out_cached_shadow_vmcs12;
4400
4401         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4402                 goto out_shadow_vmcs;
4403
4404         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4405                      HRTIMER_MODE_REL_PINNED);
4406         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4407
4408         vmx->nested.vpid02 = allocate_vpid();
4409
4410         vmx->nested.vmcs02_initialized = false;
4411         vmx->nested.vmxon = true;
4412
4413         if (pt_mode == PT_MODE_HOST_GUEST) {
4414                 vmx->pt_desc.guest.ctl = 0;
4415                 pt_update_intercept_for_msr(vmx);
4416         }
4417
4418         return 0;
4419
4420 out_shadow_vmcs:
4421         kfree(vmx->nested.cached_shadow_vmcs12);
4422
4423 out_cached_shadow_vmcs12:
4424         kfree(vmx->nested.cached_vmcs12);
4425
4426 out_cached_vmcs12:
4427         free_loaded_vmcs(&vmx->nested.vmcs02);
4428
4429 out_vmcs02:
4430         return -ENOMEM;
4431 }
4432
4433 /*
4434  * Emulate the VMXON instruction.
4435  * Currently, we just remember that VMX is active, and do not save or even
4436  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4437  * do not currently need to store anything in that guest-allocated memory
4438  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4439  * argument is different from the VMXON pointer (which the spec says they do).
4440  */
4441 static int handle_vmon(struct kvm_vcpu *vcpu)
4442 {
4443         int ret;
4444         gpa_t vmptr;
4445         uint32_t revision;
4446         struct vcpu_vmx *vmx = to_vmx(vcpu);
4447         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4448                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4449
4450         /*
4451          * The Intel VMX Instruction Reference lists a bunch of bits that are
4452          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4453          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4454          * Otherwise, we should fail with #UD.  But most faulting conditions
4455          * have already been checked by hardware, prior to the VM-exit for
4456          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4457          * that bit set to 1 in non-root mode.
4458          */
4459         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4460                 kvm_queue_exception(vcpu, UD_VECTOR);
4461                 return 1;
4462         }
4463
4464         /* CPL=0 must be checked manually. */
4465         if (vmx_get_cpl(vcpu)) {
4466                 kvm_inject_gp(vcpu, 0);
4467                 return 1;
4468         }
4469
4470         if (vmx->nested.vmxon)
4471                 return nested_vmx_failValid(vcpu,
4472                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4473
4474         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4475                         != VMXON_NEEDED_FEATURES) {
4476                 kvm_inject_gp(vcpu, 0);
4477                 return 1;
4478         }
4479
4480         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4481                 return 1;
4482
4483         /*
4484          * SDM 3: 24.11.5
4485          * The first 4 bytes of VMXON region contain the supported
4486          * VMCS revision identifier
4487          *
4488          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4489          * which replaces physical address width with 32
4490          */
4491         if (!page_address_valid(vcpu, vmptr))
4492                 return nested_vmx_failInvalid(vcpu);
4493
4494         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4495             revision != VMCS12_REVISION)
4496                 return nested_vmx_failInvalid(vcpu);
4497
4498         vmx->nested.vmxon_ptr = vmptr;
4499         ret = enter_vmx_operation(vcpu);
4500         if (ret)
4501                 return ret;
4502
4503         return nested_vmx_succeed(vcpu);
4504 }
4505
4506 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4507 {
4508         struct vcpu_vmx *vmx = to_vmx(vcpu);
4509
4510         if (vmx->nested.current_vmptr == -1ull)
4511                 return;
4512
4513         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4514
4515         if (enable_shadow_vmcs) {
4516                 /* copy to memory all shadowed fields in case
4517                    they were modified */
4518                 copy_shadow_to_vmcs12(vmx);
4519                 vmx_disable_shadow_vmcs(vmx);
4520         }
4521         vmx->nested.posted_intr_nv = -1;
4522
4523         /* Flush VMCS12 to guest memory */
4524         kvm_vcpu_write_guest_page(vcpu,
4525                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4526                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4527
4528         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4529
4530         vmx->nested.current_vmptr = -1ull;
4531 }
4532
4533 /* Emulate the VMXOFF instruction */
4534 static int handle_vmoff(struct kvm_vcpu *vcpu)
4535 {
4536         if (!nested_vmx_check_permission(vcpu))
4537                 return 1;
4538
4539         free_nested(vcpu);
4540
4541         /* Process a latched INIT during time CPU was in VMX operation */
4542         kvm_make_request(KVM_REQ_EVENT, vcpu);
4543
4544         return nested_vmx_succeed(vcpu);
4545 }
4546
4547 /* Emulate the VMCLEAR instruction */
4548 static int handle_vmclear(struct kvm_vcpu *vcpu)
4549 {
4550         struct vcpu_vmx *vmx = to_vmx(vcpu);
4551         u32 zero = 0;
4552         gpa_t vmptr;
4553         u64 evmcs_gpa;
4554
4555         if (!nested_vmx_check_permission(vcpu))
4556                 return 1;
4557
4558         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4559                 return 1;
4560
4561         if (!page_address_valid(vcpu, vmptr))
4562                 return nested_vmx_failValid(vcpu,
4563                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4564
4565         if (vmptr == vmx->nested.vmxon_ptr)
4566                 return nested_vmx_failValid(vcpu,
4567                         VMXERR_VMCLEAR_VMXON_POINTER);
4568
4569         /*
4570          * When Enlightened VMEntry is enabled on the calling CPU we treat
4571          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4572          * way to distinguish it from VMCS12) and we must not corrupt it by
4573          * writing to the non-existent 'launch_state' field. The area doesn't
4574          * have to be the currently active EVMCS on the calling CPU and there's
4575          * nothing KVM has to do to transition it from 'active' to 'non-active'
4576          * state. It is possible that the area will stay mapped as
4577          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4578          */
4579         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4580                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4581                 if (vmptr == vmx->nested.current_vmptr)
4582                         nested_release_vmcs12(vcpu);
4583
4584                 kvm_vcpu_write_guest(vcpu,
4585                                      vmptr + offsetof(struct vmcs12,
4586                                                       launch_state),
4587                                      &zero, sizeof(zero));
4588         }
4589
4590         return nested_vmx_succeed(vcpu);
4591 }
4592
4593 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4594
4595 /* Emulate the VMLAUNCH instruction */
4596 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4597 {
4598         return nested_vmx_run(vcpu, true);
4599 }
4600
4601 /* Emulate the VMRESUME instruction */
4602 static int handle_vmresume(struct kvm_vcpu *vcpu)
4603 {
4604
4605         return nested_vmx_run(vcpu, false);
4606 }
4607
4608 static int handle_vmread(struct kvm_vcpu *vcpu)
4609 {
4610         unsigned long field;
4611         u64 field_value;
4612         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4613         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4614         int len;
4615         gva_t gva = 0;
4616         struct vmcs12 *vmcs12;
4617         struct x86_exception e;
4618         short offset;
4619
4620         if (!nested_vmx_check_permission(vcpu))
4621                 return 1;
4622
4623         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4624                 return nested_vmx_failInvalid(vcpu);
4625
4626         if (!is_guest_mode(vcpu))
4627                 vmcs12 = get_vmcs12(vcpu);
4628         else {
4629                 /*
4630                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4631                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4632                  */
4633                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4634                         return nested_vmx_failInvalid(vcpu);
4635                 vmcs12 = get_shadow_vmcs12(vcpu);
4636         }
4637
4638         /* Decode instruction info and find the field to read */
4639         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4640
4641         offset = vmcs_field_to_offset(field);
4642         if (offset < 0)
4643                 return nested_vmx_failValid(vcpu,
4644                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4645
4646         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4647                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4648
4649         /* Read the field, zero-extended to a u64 field_value */
4650         field_value = vmcs12_read_any(vmcs12, field, offset);
4651
4652         /*
4653          * Now copy part of this value to register or memory, as requested.
4654          * Note that the number of bits actually copied is 32 or 64 depending
4655          * on the guest's mode (32 or 64 bit), not on the given field's length.
4656          */
4657         if (vmx_instruction_info & (1u << 10)) {
4658                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4659                         field_value);
4660         } else {
4661                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4662                 if (get_vmx_mem_address(vcpu, exit_qualification,
4663                                 vmx_instruction_info, true, len, &gva))
4664                         return 1;
4665                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4666                 if (kvm_write_guest_virt_system(vcpu, gva, &field_value, len, &e)) {
4667                         kvm_inject_page_fault(vcpu, &e);
4668                         return 1;
4669                 }
4670         }
4671
4672         return nested_vmx_succeed(vcpu);
4673 }
4674
4675 static bool is_shadow_field_rw(unsigned long field)
4676 {
4677         switch (field) {
4678 #define SHADOW_FIELD_RW(x, y) case x:
4679 #include "vmcs_shadow_fields.h"
4680                 return true;
4681         default:
4682                 break;
4683         }
4684         return false;
4685 }
4686
4687 static bool is_shadow_field_ro(unsigned long field)
4688 {
4689         switch (field) {
4690 #define SHADOW_FIELD_RO(x, y) case x:
4691 #include "vmcs_shadow_fields.h"
4692                 return true;
4693         default:
4694                 break;
4695         }
4696         return false;
4697 }
4698
4699 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4700 {
4701         unsigned long field;
4702         int len;
4703         gva_t gva;
4704         struct vcpu_vmx *vmx = to_vmx(vcpu);
4705         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4706         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4707
4708         /* The value to write might be 32 or 64 bits, depending on L1's long
4709          * mode, and eventually we need to write that into a field of several
4710          * possible lengths. The code below first zero-extends the value to 64
4711          * bit (field_value), and then copies only the appropriate number of
4712          * bits into the vmcs12 field.
4713          */
4714         u64 field_value = 0;
4715         struct x86_exception e;
4716         struct vmcs12 *vmcs12;
4717         short offset;
4718
4719         if (!nested_vmx_check_permission(vcpu))
4720                 return 1;
4721
4722         if (vmx->nested.current_vmptr == -1ull)
4723                 return nested_vmx_failInvalid(vcpu);
4724
4725         if (vmx_instruction_info & (1u << 10))
4726                 field_value = kvm_register_readl(vcpu,
4727                         (((vmx_instruction_info) >> 3) & 0xf));
4728         else {
4729                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4730                 if (get_vmx_mem_address(vcpu, exit_qualification,
4731                                 vmx_instruction_info, false, len, &gva))
4732                         return 1;
4733                 if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4734                         kvm_inject_page_fault(vcpu, &e);
4735                         return 1;
4736                 }
4737         }
4738
4739
4740         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4741         /*
4742          * If the vCPU supports "VMWRITE to any supported field in the
4743          * VMCS," then the "read-only" fields are actually read/write.
4744          */
4745         if (vmcs_field_readonly(field) &&
4746             !nested_cpu_has_vmwrite_any_field(vcpu))
4747                 return nested_vmx_failValid(vcpu,
4748                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4749
4750         if (!is_guest_mode(vcpu)) {
4751                 vmcs12 = get_vmcs12(vcpu);
4752
4753                 /*
4754                  * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4755                  * vmcs12, else we may crush a field or consume a stale value.
4756                  */
4757                 if (!is_shadow_field_rw(field))
4758                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4759         } else {
4760                 /*
4761                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4762                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4763                  */
4764                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4765                         return nested_vmx_failInvalid(vcpu);
4766                 vmcs12 = get_shadow_vmcs12(vcpu);
4767         }
4768
4769         offset = vmcs_field_to_offset(field);
4770         if (offset < 0)
4771                 return nested_vmx_failValid(vcpu,
4772                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4773
4774         /*
4775          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4776          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4777          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4778          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4779          * from L1 will return a different value than VMREAD from L2 (L1 sees
4780          * the stripped down value, L2 sees the full value as stored by KVM).
4781          */
4782         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4783                 field_value &= 0x1f0ff;
4784
4785         vmcs12_write_any(vmcs12, field, offset, field_value);
4786
4787         /*
4788          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4789          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4790          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4791          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4792          */
4793         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4794                 /*
4795                  * L1 can read these fields without exiting, ensure the
4796                  * shadow VMCS is up-to-date.
4797                  */
4798                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4799                         preempt_disable();
4800                         vmcs_load(vmx->vmcs01.shadow_vmcs);
4801
4802                         __vmcs_writel(field, field_value);
4803
4804                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
4805                         vmcs_load(vmx->loaded_vmcs->vmcs);
4806                         preempt_enable();
4807                 }
4808                 vmx->nested.dirty_vmcs12 = true;
4809         }
4810
4811         return nested_vmx_succeed(vcpu);
4812 }
4813
4814 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4815 {
4816         vmx->nested.current_vmptr = vmptr;
4817         if (enable_shadow_vmcs) {
4818                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4819                 vmcs_write64(VMCS_LINK_POINTER,
4820                              __pa(vmx->vmcs01.shadow_vmcs));
4821                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4822         }
4823         vmx->nested.dirty_vmcs12 = true;
4824 }
4825
4826 /* Emulate the VMPTRLD instruction */
4827 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4828 {
4829         struct vcpu_vmx *vmx = to_vmx(vcpu);
4830         gpa_t vmptr;
4831
4832         if (!nested_vmx_check_permission(vcpu))
4833                 return 1;
4834
4835         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4836                 return 1;
4837
4838         if (!page_address_valid(vcpu, vmptr))
4839                 return nested_vmx_failValid(vcpu,
4840                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4841
4842         if (vmptr == vmx->nested.vmxon_ptr)
4843                 return nested_vmx_failValid(vcpu,
4844                         VMXERR_VMPTRLD_VMXON_POINTER);
4845
4846         /* Forbid normal VMPTRLD if Enlightened version was used */
4847         if (vmx->nested.hv_evmcs)
4848                 return 1;
4849
4850         if (vmx->nested.current_vmptr != vmptr) {
4851                 struct kvm_host_map map;
4852                 struct vmcs12 *new_vmcs12;
4853
4854                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4855                         /*
4856                          * Reads from an unbacked page return all 1s,
4857                          * which means that the 32 bits located at the
4858                          * given physical address won't match the required
4859                          * VMCS12_REVISION identifier.
4860                          */
4861                         return nested_vmx_failValid(vcpu,
4862                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4863                 }
4864
4865                 new_vmcs12 = map.hva;
4866
4867                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4868                     (new_vmcs12->hdr.shadow_vmcs &&
4869                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4870                         kvm_vcpu_unmap(vcpu, &map, false);
4871                         return nested_vmx_failValid(vcpu,
4872                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4873                 }
4874
4875                 nested_release_vmcs12(vcpu);
4876
4877                 /*
4878                  * Load VMCS12 from guest memory since it is not already
4879                  * cached.
4880                  */
4881                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4882                 kvm_vcpu_unmap(vcpu, &map, false);
4883
4884                 set_current_vmptr(vmx, vmptr);
4885         }
4886
4887         return nested_vmx_succeed(vcpu);
4888 }
4889
4890 /* Emulate the VMPTRST instruction */
4891 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4892 {
4893         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4894         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4895         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4896         struct x86_exception e;
4897         gva_t gva;
4898
4899         if (!nested_vmx_check_permission(vcpu))
4900                 return 1;
4901
4902         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4903                 return 1;
4904
4905         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
4906                                 true, sizeof(gpa_t), &gva))
4907                 return 1;
4908         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4909         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4910                                         sizeof(gpa_t), &e)) {
4911                 kvm_inject_page_fault(vcpu, &e);
4912                 return 1;
4913         }
4914         return nested_vmx_succeed(vcpu);
4915 }
4916
4917 /* Emulate the INVEPT instruction */
4918 static int handle_invept(struct kvm_vcpu *vcpu)
4919 {
4920         struct vcpu_vmx *vmx = to_vmx(vcpu);
4921         u32 vmx_instruction_info, types;
4922         unsigned long type;
4923         gva_t gva;
4924         struct x86_exception e;
4925         struct {
4926                 u64 eptp, gpa;
4927         } operand;
4928
4929         if (!(vmx->nested.msrs.secondary_ctls_high &
4930               SECONDARY_EXEC_ENABLE_EPT) ||
4931             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4932                 kvm_queue_exception(vcpu, UD_VECTOR);
4933                 return 1;
4934         }
4935
4936         if (!nested_vmx_check_permission(vcpu))
4937                 return 1;
4938
4939         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4940         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4941
4942         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4943
4944         if (type >= 32 || !(types & (1 << type)))
4945                 return nested_vmx_failValid(vcpu,
4946                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4947
4948         /* According to the Intel VMX instruction reference, the memory
4949          * operand is read even if it isn't needed (e.g., for type==global)
4950          */
4951         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4952                         vmx_instruction_info, false, sizeof(operand), &gva))
4953                 return 1;
4954         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4955                 kvm_inject_page_fault(vcpu, &e);
4956                 return 1;
4957         }
4958
4959         switch (type) {
4960         case VMX_EPT_EXTENT_GLOBAL:
4961         case VMX_EPT_EXTENT_CONTEXT:
4962         /*
4963          * TODO: Sync the necessary shadow EPT roots here, rather than
4964          * at the next emulated VM-entry.
4965          */
4966                 break;
4967         default:
4968                 BUG_ON(1);
4969                 break;
4970         }
4971
4972         return nested_vmx_succeed(vcpu);
4973 }
4974
4975 static int handle_invvpid(struct kvm_vcpu *vcpu)
4976 {
4977         struct vcpu_vmx *vmx = to_vmx(vcpu);
4978         u32 vmx_instruction_info;
4979         unsigned long type, types;
4980         gva_t gva;
4981         struct x86_exception e;
4982         struct {
4983                 u64 vpid;
4984                 u64 gla;
4985         } operand;
4986         u16 vpid02;
4987
4988         if (!(vmx->nested.msrs.secondary_ctls_high &
4989               SECONDARY_EXEC_ENABLE_VPID) ||
4990                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4991                 kvm_queue_exception(vcpu, UD_VECTOR);
4992                 return 1;
4993         }
4994
4995         if (!nested_vmx_check_permission(vcpu))
4996                 return 1;
4997
4998         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4999         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5000
5001         types = (vmx->nested.msrs.vpid_caps &
5002                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5003
5004         if (type >= 32 || !(types & (1 << type)))
5005                 return nested_vmx_failValid(vcpu,
5006                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5007
5008         /* according to the intel vmx instruction reference, the memory
5009          * operand is read even if it isn't needed (e.g., for type==global)
5010          */
5011         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5012                         vmx_instruction_info, false, sizeof(operand), &gva))
5013                 return 1;
5014         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5015                 kvm_inject_page_fault(vcpu, &e);
5016                 return 1;
5017         }
5018         if (operand.vpid >> 16)
5019                 return nested_vmx_failValid(vcpu,
5020                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5021
5022         vpid02 = nested_get_vpid02(vcpu);
5023         switch (type) {
5024         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5025                 if (!operand.vpid ||
5026                     is_noncanonical_address(operand.gla, vcpu))
5027                         return nested_vmx_failValid(vcpu,
5028                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5029                 if (cpu_has_vmx_invvpid_individual_addr()) {
5030                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5031                                 vpid02, operand.gla);
5032                 } else
5033                         __vmx_flush_tlb(vcpu, vpid02, false);
5034                 break;
5035         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5036         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5037                 if (!operand.vpid)
5038                         return nested_vmx_failValid(vcpu,
5039                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5040                 __vmx_flush_tlb(vcpu, vpid02, false);
5041                 break;
5042         case VMX_VPID_EXTENT_ALL_CONTEXT:
5043                 __vmx_flush_tlb(vcpu, vpid02, false);
5044                 break;
5045         default:
5046                 WARN_ON_ONCE(1);
5047                 return kvm_skip_emulated_instruction(vcpu);
5048         }
5049
5050         return nested_vmx_succeed(vcpu);
5051 }
5052
5053 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5054                                      struct vmcs12 *vmcs12)
5055 {
5056         u32 index = kvm_rcx_read(vcpu);
5057         u64 address;
5058         bool accessed_dirty;
5059         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5060
5061         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5062             !nested_cpu_has_ept(vmcs12))
5063                 return 1;
5064
5065         if (index >= VMFUNC_EPTP_ENTRIES)
5066                 return 1;
5067
5068
5069         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5070                                      &address, index * 8, 8))
5071                 return 1;
5072
5073         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5074
5075         /*
5076          * If the (L2) guest does a vmfunc to the currently
5077          * active ept pointer, we don't have to do anything else
5078          */
5079         if (vmcs12->ept_pointer != address) {
5080                 if (!valid_ept_address(vcpu, address))
5081                         return 1;
5082
5083                 kvm_mmu_unload(vcpu);
5084                 mmu->ept_ad = accessed_dirty;
5085                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5086                 vmcs12->ept_pointer = address;
5087                 /*
5088                  * TODO: Check what's the correct approach in case
5089                  * mmu reload fails. Currently, we just let the next
5090                  * reload potentially fail
5091                  */
5092                 kvm_mmu_reload(vcpu);
5093         }
5094
5095         return 0;
5096 }
5097
5098 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5099 {
5100         struct vcpu_vmx *vmx = to_vmx(vcpu);
5101         struct vmcs12 *vmcs12;
5102         u32 function = kvm_rax_read(vcpu);
5103
5104         /*
5105          * VMFUNC is only supported for nested guests, but we always enable the
5106          * secondary control for simplicity; for non-nested mode, fake that we
5107          * didn't by injecting #UD.
5108          */
5109         if (!is_guest_mode(vcpu)) {
5110                 kvm_queue_exception(vcpu, UD_VECTOR);
5111                 return 1;
5112         }
5113
5114         vmcs12 = get_vmcs12(vcpu);
5115         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5116                 goto fail;
5117
5118         switch (function) {
5119         case 0:
5120                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5121                         goto fail;
5122                 break;
5123         default:
5124                 goto fail;
5125         }
5126         return kvm_skip_emulated_instruction(vcpu);
5127
5128 fail:
5129         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5130                           vmcs_read32(VM_EXIT_INTR_INFO),
5131                           vmcs_readl(EXIT_QUALIFICATION));
5132         return 1;
5133 }
5134
5135
5136 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5137                                        struct vmcs12 *vmcs12)
5138 {
5139         unsigned long exit_qualification;
5140         gpa_t bitmap, last_bitmap;
5141         unsigned int port;
5142         int size;
5143         u8 b;
5144
5145         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5146                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5147
5148         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5149
5150         port = exit_qualification >> 16;
5151         size = (exit_qualification & 7) + 1;
5152
5153         last_bitmap = (gpa_t)-1;
5154         b = -1;
5155
5156         while (size > 0) {
5157                 if (port < 0x8000)
5158                         bitmap = vmcs12->io_bitmap_a;
5159                 else if (port < 0x10000)
5160                         bitmap = vmcs12->io_bitmap_b;
5161                 else
5162                         return true;
5163                 bitmap += (port & 0x7fff) / 8;
5164
5165                 if (last_bitmap != bitmap)
5166                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5167                                 return true;
5168                 if (b & (1 << (port & 7)))
5169                         return true;
5170
5171                 port++;
5172                 size--;
5173                 last_bitmap = bitmap;
5174         }
5175
5176         return false;
5177 }
5178
5179 /*
5180  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5181  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5182  * disinterest in the current event (read or write a specific MSR) by using an
5183  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5184  */
5185 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5186         struct vmcs12 *vmcs12, u32 exit_reason)
5187 {
5188         u32 msr_index = kvm_rcx_read(vcpu);
5189         gpa_t bitmap;
5190
5191         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5192                 return true;
5193
5194         /*
5195          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5196          * for the four combinations of read/write and low/high MSR numbers.
5197          * First we need to figure out which of the four to use:
5198          */
5199         bitmap = vmcs12->msr_bitmap;
5200         if (exit_reason == EXIT_REASON_MSR_WRITE)
5201                 bitmap += 2048;
5202         if (msr_index >= 0xc0000000) {
5203                 msr_index -= 0xc0000000;
5204                 bitmap += 1024;
5205         }
5206
5207         /* Then read the msr_index'th bit from this bitmap: */
5208         if (msr_index < 1024*8) {
5209                 unsigned char b;
5210                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5211                         return true;
5212                 return 1 & (b >> (msr_index & 7));
5213         } else
5214                 return true; /* let L1 handle the wrong parameter */
5215 }
5216
5217 /*
5218  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5219  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5220  * intercept (via guest_host_mask etc.) the current event.
5221  */
5222 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5223         struct vmcs12 *vmcs12)
5224 {
5225         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5226         int cr = exit_qualification & 15;
5227         int reg;
5228         unsigned long val;
5229
5230         switch ((exit_qualification >> 4) & 3) {
5231         case 0: /* mov to cr */
5232                 reg = (exit_qualification >> 8) & 15;
5233                 val = kvm_register_readl(vcpu, reg);
5234                 switch (cr) {
5235                 case 0:
5236                         if (vmcs12->cr0_guest_host_mask &
5237                             (val ^ vmcs12->cr0_read_shadow))
5238                                 return true;
5239                         break;
5240                 case 3:
5241                         if ((vmcs12->cr3_target_count >= 1 &&
5242                                         vmcs12->cr3_target_value0 == val) ||
5243                                 (vmcs12->cr3_target_count >= 2 &&
5244                                         vmcs12->cr3_target_value1 == val) ||
5245                                 (vmcs12->cr3_target_count >= 3 &&
5246                                         vmcs12->cr3_target_value2 == val) ||
5247                                 (vmcs12->cr3_target_count >= 4 &&
5248                                         vmcs12->cr3_target_value3 == val))
5249                                 return false;
5250                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5251                                 return true;
5252                         break;
5253                 case 4:
5254                         if (vmcs12->cr4_guest_host_mask &
5255                             (vmcs12->cr4_read_shadow ^ val))
5256                                 return true;
5257                         break;
5258                 case 8:
5259                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5260                                 return true;
5261                         break;
5262                 }
5263                 break;
5264         case 2: /* clts */
5265                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5266                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5267                         return true;
5268                 break;
5269         case 1: /* mov from cr */
5270                 switch (cr) {
5271                 case 3:
5272                         if (vmcs12->cpu_based_vm_exec_control &
5273                             CPU_BASED_CR3_STORE_EXITING)
5274                                 return true;
5275                         break;
5276                 case 8:
5277                         if (vmcs12->cpu_based_vm_exec_control &
5278                             CPU_BASED_CR8_STORE_EXITING)
5279                                 return true;
5280                         break;
5281                 }
5282                 break;
5283         case 3: /* lmsw */
5284                 /*
5285                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5286                  * cr0. Other attempted changes are ignored, with no exit.
5287                  */
5288                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5289                 if (vmcs12->cr0_guest_host_mask & 0xe &
5290                     (val ^ vmcs12->cr0_read_shadow))
5291                         return true;
5292                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5293                     !(vmcs12->cr0_read_shadow & 0x1) &&
5294                     (val & 0x1))
5295                         return true;
5296                 break;
5297         }
5298         return false;
5299 }
5300
5301 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5302         struct vmcs12 *vmcs12, gpa_t bitmap)
5303 {
5304         u32 vmx_instruction_info;
5305         unsigned long field;
5306         u8 b;
5307
5308         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5309                 return true;
5310
5311         /* Decode instruction info and find the field to access */
5312         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5313         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5314
5315         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5316         if (field >> 15)
5317                 return true;
5318
5319         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5320                 return true;
5321
5322         return 1 & (b >> (field & 7));
5323 }
5324
5325 /*
5326  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5327  * should handle it ourselves in L0 (and then continue L2). Only call this
5328  * when in is_guest_mode (L2).
5329  */
5330 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5331 {
5332         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5333         struct vcpu_vmx *vmx = to_vmx(vcpu);
5334         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5335
5336         if (vmx->nested.nested_run_pending)
5337                 return false;
5338
5339         if (unlikely(vmx->fail)) {
5340                 trace_kvm_nested_vmenter_failed(
5341                         "hardware VM-instruction error: ",
5342                         vmcs_read32(VM_INSTRUCTION_ERROR));
5343                 return true;
5344         }
5345
5346         /*
5347          * The host physical addresses of some pages of guest memory
5348          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5349          * Page). The CPU may write to these pages via their host
5350          * physical address while L2 is running, bypassing any
5351          * address-translation-based dirty tracking (e.g. EPT write
5352          * protection).
5353          *
5354          * Mark them dirty on every exit from L2 to prevent them from
5355          * getting out of sync with dirty tracking.
5356          */
5357         nested_mark_vmcs12_pages_dirty(vcpu);
5358
5359         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5360                                 vmcs_readl(EXIT_QUALIFICATION),
5361                                 vmx->idt_vectoring_info,
5362                                 intr_info,
5363                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5364                                 KVM_ISA_VMX);
5365
5366         switch (exit_reason) {
5367         case EXIT_REASON_EXCEPTION_NMI:
5368                 if (is_nmi(intr_info))
5369                         return false;
5370                 else if (is_page_fault(intr_info))
5371                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5372                 else if (is_debug(intr_info) &&
5373                          vcpu->guest_debug &
5374                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5375                         return false;
5376                 else if (is_breakpoint(intr_info) &&
5377                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5378                         return false;
5379                 return vmcs12->exception_bitmap &
5380                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5381         case EXIT_REASON_EXTERNAL_INTERRUPT:
5382                 return false;
5383         case EXIT_REASON_TRIPLE_FAULT:
5384                 return true;
5385         case EXIT_REASON_PENDING_INTERRUPT:
5386                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5387         case EXIT_REASON_NMI_WINDOW:
5388                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5389         case EXIT_REASON_TASK_SWITCH:
5390                 return true;
5391         case EXIT_REASON_CPUID:
5392                 return true;
5393         case EXIT_REASON_HLT:
5394                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5395         case EXIT_REASON_INVD:
5396                 return true;
5397         case EXIT_REASON_INVLPG:
5398                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5399         case EXIT_REASON_RDPMC:
5400                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5401         case EXIT_REASON_RDRAND:
5402                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5403         case EXIT_REASON_RDSEED:
5404                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5405         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5406                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5407         case EXIT_REASON_VMREAD:
5408                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5409                         vmcs12->vmread_bitmap);
5410         case EXIT_REASON_VMWRITE:
5411                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5412                         vmcs12->vmwrite_bitmap);
5413         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5414         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5415         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5416         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5417         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5418                 /*
5419                  * VMX instructions trap unconditionally. This allows L1 to
5420                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5421                  */
5422                 return true;
5423         case EXIT_REASON_CR_ACCESS:
5424                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5425         case EXIT_REASON_DR_ACCESS:
5426                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5427         case EXIT_REASON_IO_INSTRUCTION:
5428                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5429         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5430                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5431         case EXIT_REASON_MSR_READ:
5432         case EXIT_REASON_MSR_WRITE:
5433                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5434         case EXIT_REASON_INVALID_STATE:
5435                 return true;
5436         case EXIT_REASON_MWAIT_INSTRUCTION:
5437                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5438         case EXIT_REASON_MONITOR_TRAP_FLAG:
5439                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5440         case EXIT_REASON_MONITOR_INSTRUCTION:
5441                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5442         case EXIT_REASON_PAUSE_INSTRUCTION:
5443                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5444                         nested_cpu_has2(vmcs12,
5445                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5446         case EXIT_REASON_MCE_DURING_VMENTRY:
5447                 return false;
5448         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5449                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5450         case EXIT_REASON_APIC_ACCESS:
5451         case EXIT_REASON_APIC_WRITE:
5452         case EXIT_REASON_EOI_INDUCED:
5453                 /*
5454                  * The controls for "virtualize APIC accesses," "APIC-
5455                  * register virtualization," and "virtual-interrupt
5456                  * delivery" only come from vmcs12.
5457                  */
5458                 return true;
5459         case EXIT_REASON_EPT_VIOLATION:
5460                 /*
5461                  * L0 always deals with the EPT violation. If nested EPT is
5462                  * used, and the nested mmu code discovers that the address is
5463                  * missing in the guest EPT table (EPT12), the EPT violation
5464                  * will be injected with nested_ept_inject_page_fault()
5465                  */
5466                 return false;
5467         case EXIT_REASON_EPT_MISCONFIG:
5468                 /*
5469                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5470                  * table (shadow on EPT) or a merged EPT table that L0 built
5471                  * (EPT on EPT). So any problems with the structure of the
5472                  * table is L0's fault.
5473                  */
5474                 return false;
5475         case EXIT_REASON_INVPCID:
5476                 return
5477                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5478                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5479         case EXIT_REASON_WBINVD:
5480                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5481         case EXIT_REASON_XSETBV:
5482                 return true;
5483         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5484                 /*
5485                  * This should never happen, since it is not possible to
5486                  * set XSS to a non-zero value---neither in L1 nor in L2.
5487                  * If if it were, XSS would have to be checked against
5488                  * the XSS exit bitmap in vmcs12.
5489                  */
5490                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5491         case EXIT_REASON_PREEMPTION_TIMER:
5492                 return false;
5493         case EXIT_REASON_PML_FULL:
5494                 /* We emulate PML support to L1. */
5495                 return false;
5496         case EXIT_REASON_VMFUNC:
5497                 /* VM functions are emulated through L2->L0 vmexits. */
5498                 return false;
5499         case EXIT_REASON_ENCLS:
5500                 /* SGX is never exposed to L1 */
5501                 return false;
5502         case EXIT_REASON_UMWAIT:
5503         case EXIT_REASON_TPAUSE:
5504                 return nested_cpu_has2(vmcs12,
5505                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5506         default:
5507                 return true;
5508         }
5509 }
5510
5511
5512 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5513                                 struct kvm_nested_state __user *user_kvm_nested_state,
5514                                 u32 user_data_size)
5515 {
5516         struct vcpu_vmx *vmx;
5517         struct vmcs12 *vmcs12;
5518         struct kvm_nested_state kvm_state = {
5519                 .flags = 0,
5520                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5521                 .size = sizeof(kvm_state),
5522                 .hdr.vmx.vmxon_pa = -1ull,
5523                 .hdr.vmx.vmcs12_pa = -1ull,
5524         };
5525         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5526                 &user_kvm_nested_state->data.vmx[0];
5527
5528         if (!vcpu)
5529                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5530
5531         vmx = to_vmx(vcpu);
5532         vmcs12 = get_vmcs12(vcpu);
5533
5534         if (nested_vmx_allowed(vcpu) &&
5535             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5536                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5537                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5538
5539                 if (vmx_has_valid_vmcs12(vcpu)) {
5540                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5541
5542                         if (vmx->nested.hv_evmcs)
5543                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5544
5545                         if (is_guest_mode(vcpu) &&
5546                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5547                             vmcs12->vmcs_link_pointer != -1ull)
5548                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5549                 }
5550
5551                 if (vmx->nested.smm.vmxon)
5552                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5553
5554                 if (vmx->nested.smm.guest_mode)
5555                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5556
5557                 if (is_guest_mode(vcpu)) {
5558                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5559
5560                         if (vmx->nested.nested_run_pending)
5561                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5562                 }
5563         }
5564
5565         if (user_data_size < kvm_state.size)
5566                 goto out;
5567
5568         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5569                 return -EFAULT;
5570
5571         if (!vmx_has_valid_vmcs12(vcpu))
5572                 goto out;
5573
5574         /*
5575          * When running L2, the authoritative vmcs12 state is in the
5576          * vmcs02. When running L1, the authoritative vmcs12 state is
5577          * in the shadow or enlightened vmcs linked to vmcs01, unless
5578          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5579          * vmcs12 state is in the vmcs12 already.
5580          */
5581         if (is_guest_mode(vcpu)) {
5582                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5583                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5584         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5585                 if (vmx->nested.hv_evmcs)
5586                         copy_enlightened_to_vmcs12(vmx);
5587                 else if (enable_shadow_vmcs)
5588                         copy_shadow_to_vmcs12(vmx);
5589         }
5590
5591         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5592         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5593
5594         /*
5595          * Copy over the full allocated size of vmcs12 rather than just the size
5596          * of the struct.
5597          */
5598         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5599                 return -EFAULT;
5600
5601         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5602             vmcs12->vmcs_link_pointer != -1ull) {
5603                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5604                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5605                         return -EFAULT;
5606         }
5607
5608 out:
5609         return kvm_state.size;
5610 }
5611
5612 /*
5613  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5614  */
5615 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5616 {
5617         if (is_guest_mode(vcpu)) {
5618                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5619                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5620         }
5621         free_nested(vcpu);
5622 }
5623
5624 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5625                                 struct kvm_nested_state __user *user_kvm_nested_state,
5626                                 struct kvm_nested_state *kvm_state)
5627 {
5628         struct vcpu_vmx *vmx = to_vmx(vcpu);
5629         struct vmcs12 *vmcs12;
5630         u32 exit_qual;
5631         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5632                 &user_kvm_nested_state->data.vmx[0];
5633         int ret;
5634
5635         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5636                 return -EINVAL;
5637
5638         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5639                 if (kvm_state->hdr.vmx.smm.flags)
5640                         return -EINVAL;
5641
5642                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5643                         return -EINVAL;
5644
5645                 /*
5646                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5647                  * enable eVMCS capability on vCPU. However, since then
5648                  * code was changed such that flag signals vmcs12 should
5649                  * be copied into eVMCS in guest memory.
5650                  *
5651                  * To preserve backwards compatability, allow user
5652                  * to set this flag even when there is no VMXON region.
5653                  */
5654                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5655                         return -EINVAL;
5656         } else {
5657                 if (!nested_vmx_allowed(vcpu))
5658                         return -EINVAL;
5659
5660                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5661                         return -EINVAL;
5662         }
5663
5664         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5665             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5666                 return -EINVAL;
5667
5668         if (kvm_state->hdr.vmx.smm.flags &
5669             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5670                 return -EINVAL;
5671
5672         /*
5673          * SMM temporarily disables VMX, so we cannot be in guest mode,
5674          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5675          * must be zero.
5676          */
5677         if (is_smm(vcpu) ?
5678                 (kvm_state->flags &
5679                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5680                 : kvm_state->hdr.vmx.smm.flags)
5681                 return -EINVAL;
5682
5683         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5684             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5685                 return -EINVAL;
5686
5687         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5688                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5689                         return -EINVAL;
5690
5691         vmx_leave_nested(vcpu);
5692
5693         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5694                 return 0;
5695
5696         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5697         ret = enter_vmx_operation(vcpu);
5698         if (ret)
5699                 return ret;
5700
5701         /* Empty 'VMXON' state is permitted */
5702         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5703                 return 0;
5704
5705         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5706                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5707                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5708                         return -EINVAL;
5709
5710                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5711         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5712                 /*
5713                  * Sync eVMCS upon entry as we may not have
5714                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5715                  */
5716                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5717         } else {
5718                 return -EINVAL;
5719         }
5720
5721         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5722                 vmx->nested.smm.vmxon = true;
5723                 vmx->nested.vmxon = false;
5724
5725                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5726                         vmx->nested.smm.guest_mode = true;
5727         }
5728
5729         vmcs12 = get_vmcs12(vcpu);
5730         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5731                 return -EFAULT;
5732
5733         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5734                 return -EINVAL;
5735
5736         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5737                 return 0;
5738
5739         vmx->nested.nested_run_pending =
5740                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5741
5742         ret = -EINVAL;
5743         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5744             vmcs12->vmcs_link_pointer != -1ull) {
5745                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5746
5747                 if (kvm_state->size <
5748                     sizeof(*kvm_state) +
5749                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5750                         goto error_guest_mode;
5751
5752                 if (copy_from_user(shadow_vmcs12,
5753                                    user_vmx_nested_state->shadow_vmcs12,
5754                                    sizeof(*shadow_vmcs12))) {
5755                         ret = -EFAULT;
5756                         goto error_guest_mode;
5757                 }
5758
5759                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5760                     !shadow_vmcs12->hdr.shadow_vmcs)
5761                         goto error_guest_mode;
5762         }
5763
5764         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5765             nested_vmx_check_host_state(vcpu, vmcs12) ||
5766             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5767                 goto error_guest_mode;
5768
5769         vmx->nested.dirty_vmcs12 = true;
5770         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5771         if (ret)
5772                 goto error_guest_mode;
5773
5774         return 0;
5775
5776 error_guest_mode:
5777         vmx->nested.nested_run_pending = 0;
5778         return ret;
5779 }
5780
5781 void nested_vmx_vcpu_setup(void)
5782 {
5783         if (enable_shadow_vmcs) {
5784                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5785                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5786         }
5787 }
5788
5789 /*
5790  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5791  * returned for the various VMX controls MSRs when nested VMX is enabled.
5792  * The same values should also be used to verify that vmcs12 control fields are
5793  * valid during nested entry from L1 to L2.
5794  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5795  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5796  * bit in the high half is on if the corresponding bit in the control field
5797  * may be on. See also vmx_control_verify().
5798  */
5799 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5800                                 bool apicv)
5801 {
5802         /*
5803          * Note that as a general rule, the high half of the MSRs (bits in
5804          * the control fields which may be 1) should be initialized by the
5805          * intersection of the underlying hardware's MSR (i.e., features which
5806          * can be supported) and the list of features we want to expose -
5807          * because they are known to be properly supported in our code.
5808          * Also, usually, the low half of the MSRs (bits which must be 1) can
5809          * be set to 0, meaning that L1 may turn off any of these bits. The
5810          * reason is that if one of these bits is necessary, it will appear
5811          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5812          * fields of vmcs01 and vmcs02, will turn these bits off - and
5813          * nested_vmx_exit_reflected() will not pass related exits to L1.
5814          * These rules have exceptions below.
5815          */
5816
5817         /* pin-based controls */
5818         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5819                 msrs->pinbased_ctls_low,
5820                 msrs->pinbased_ctls_high);
5821         msrs->pinbased_ctls_low |=
5822                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5823         msrs->pinbased_ctls_high &=
5824                 PIN_BASED_EXT_INTR_MASK |
5825                 PIN_BASED_NMI_EXITING |
5826                 PIN_BASED_VIRTUAL_NMIS |
5827                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5828         msrs->pinbased_ctls_high |=
5829                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5830                 PIN_BASED_VMX_PREEMPTION_TIMER;
5831
5832         /* exit controls */
5833         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5834                 msrs->exit_ctls_low,
5835                 msrs->exit_ctls_high);
5836         msrs->exit_ctls_low =
5837                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5838
5839         msrs->exit_ctls_high &=
5840 #ifdef CONFIG_X86_64
5841                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5842 #endif
5843                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5844         msrs->exit_ctls_high |=
5845                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5846                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5847                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5848
5849         /* We support free control of debug control saving. */
5850         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5851
5852         /* entry controls */
5853         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5854                 msrs->entry_ctls_low,
5855                 msrs->entry_ctls_high);
5856         msrs->entry_ctls_low =
5857                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5858         msrs->entry_ctls_high &=
5859 #ifdef CONFIG_X86_64
5860                 VM_ENTRY_IA32E_MODE |
5861 #endif
5862                 VM_ENTRY_LOAD_IA32_PAT;
5863         msrs->entry_ctls_high |=
5864                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5865
5866         /* We support free control of debug control loading. */
5867         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5868
5869         /* cpu-based controls */
5870         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5871                 msrs->procbased_ctls_low,
5872                 msrs->procbased_ctls_high);
5873         msrs->procbased_ctls_low =
5874                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5875         msrs->procbased_ctls_high &=
5876                 CPU_BASED_VIRTUAL_INTR_PENDING |
5877                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5878                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5879                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5880                 CPU_BASED_CR3_STORE_EXITING |
5881 #ifdef CONFIG_X86_64
5882                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5883 #endif
5884                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5885                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5886                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5887                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5888                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5889         /*
5890          * We can allow some features even when not supported by the
5891          * hardware. For example, L1 can specify an MSR bitmap - and we
5892          * can use it to avoid exits to L1 - even when L0 runs L2
5893          * without MSR bitmaps.
5894          */
5895         msrs->procbased_ctls_high |=
5896                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5897                 CPU_BASED_USE_MSR_BITMAPS;
5898
5899         /* We support free control of CR3 access interception. */
5900         msrs->procbased_ctls_low &=
5901                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5902
5903         /*
5904          * secondary cpu-based controls.  Do not include those that
5905          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5906          */
5907         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5908                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5909                       msrs->secondary_ctls_low,
5910                       msrs->secondary_ctls_high);
5911
5912         msrs->secondary_ctls_low = 0;
5913         msrs->secondary_ctls_high &=
5914                 SECONDARY_EXEC_DESC |
5915                 SECONDARY_EXEC_RDTSCP |
5916                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5917                 SECONDARY_EXEC_WBINVD_EXITING |
5918                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5919                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5920                 SECONDARY_EXEC_RDRAND_EXITING |
5921                 SECONDARY_EXEC_ENABLE_INVPCID |
5922                 SECONDARY_EXEC_RDSEED_EXITING |
5923                 SECONDARY_EXEC_XSAVES;
5924
5925         /*
5926          * We can emulate "VMCS shadowing," even if the hardware
5927          * doesn't support it.
5928          */
5929         msrs->secondary_ctls_high |=
5930                 SECONDARY_EXEC_SHADOW_VMCS;
5931
5932         if (enable_ept) {
5933                 /* nested EPT: emulate EPT also to L1 */
5934                 msrs->secondary_ctls_high |=
5935                         SECONDARY_EXEC_ENABLE_EPT;
5936                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5937                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5938                 if (cpu_has_vmx_ept_execute_only())
5939                         msrs->ept_caps |=
5940                                 VMX_EPT_EXECUTE_ONLY_BIT;
5941                 msrs->ept_caps &= ept_caps;
5942                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5943                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5944                         VMX_EPT_1GB_PAGE_BIT;
5945                 if (enable_ept_ad_bits) {
5946                         msrs->secondary_ctls_high |=
5947                                 SECONDARY_EXEC_ENABLE_PML;
5948                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5949                 }
5950         }
5951
5952         if (cpu_has_vmx_vmfunc()) {
5953                 msrs->secondary_ctls_high |=
5954                         SECONDARY_EXEC_ENABLE_VMFUNC;
5955                 /*
5956                  * Advertise EPTP switching unconditionally
5957                  * since we emulate it
5958                  */
5959                 if (enable_ept)
5960                         msrs->vmfunc_controls =
5961                                 VMX_VMFUNC_EPTP_SWITCHING;
5962         }
5963
5964         /*
5965          * Old versions of KVM use the single-context version without
5966          * checking for support, so declare that it is supported even
5967          * though it is treated as global context.  The alternative is
5968          * not failing the single-context invvpid, and it is worse.
5969          */
5970         if (enable_vpid) {
5971                 msrs->secondary_ctls_high |=
5972                         SECONDARY_EXEC_ENABLE_VPID;
5973                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5974                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5975         }
5976
5977         if (enable_unrestricted_guest)
5978                 msrs->secondary_ctls_high |=
5979                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5980
5981         if (flexpriority_enabled)
5982                 msrs->secondary_ctls_high |=
5983                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5984
5985         /* miscellaneous data */
5986         rdmsr(MSR_IA32_VMX_MISC,
5987                 msrs->misc_low,
5988                 msrs->misc_high);
5989         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5990         msrs->misc_low |=
5991                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5992                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5993                 VMX_MISC_ACTIVITY_HLT;
5994         msrs->misc_high = 0;
5995
5996         /*
5997          * This MSR reports some information about VMX support. We
5998          * should return information about the VMX we emulate for the
5999          * guest, and the VMCS structure we give it - not about the
6000          * VMX support of the underlying hardware.
6001          */
6002         msrs->basic =
6003                 VMCS12_REVISION |
6004                 VMX_BASIC_TRUE_CTLS |
6005                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6006                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6007
6008         if (cpu_has_vmx_basic_inout())
6009                 msrs->basic |= VMX_BASIC_INOUT;
6010
6011         /*
6012          * These MSRs specify bits which the guest must keep fixed on
6013          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6014          * We picked the standard core2 setting.
6015          */
6016 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6017 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6018         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6019         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6020
6021         /* These MSRs specify bits which the guest must keep fixed off. */
6022         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6023         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6024
6025         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6026         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6027 }
6028
6029 void nested_vmx_hardware_unsetup(void)
6030 {
6031         int i;
6032
6033         if (enable_shadow_vmcs) {
6034                 for (i = 0; i < VMX_BITMAP_NR; i++)
6035                         free_page((unsigned long)vmx_bitmap[i]);
6036         }
6037 }
6038
6039 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6040 {
6041         int i;
6042
6043         if (!cpu_has_vmx_shadow_vmcs())
6044                 enable_shadow_vmcs = 0;
6045         if (enable_shadow_vmcs) {
6046                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6047                         /*
6048                          * The vmx_bitmap is not tied to a VM and so should
6049                          * not be charged to a memcg.
6050                          */
6051                         vmx_bitmap[i] = (unsigned long *)
6052                                 __get_free_page(GFP_KERNEL);
6053                         if (!vmx_bitmap[i]) {
6054                                 nested_vmx_hardware_unsetup();
6055                                 return -ENOMEM;
6056                         }
6057                 }
6058
6059                 init_vmcs_shadow_fields();
6060         }
6061
6062         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
6063         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
6064         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
6065         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
6066         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
6067         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
6068         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
6069         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
6070         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
6071         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
6072         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
6073         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
6074
6075         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6076         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6077         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6078         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
6079         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6080         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6081
6082         return 0;
6083 }