1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
15 #define pr_fmt(fmt) "SVM: " fmt
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
43 #include <asm/perf_event.h>
44 #include <asm/tlbflush.h>
46 #include <asm/debugreg.h>
47 #include <asm/kvm_para.h>
48 #include <asm/irq_remapping.h>
49 #include <asm/spec-ctrl.h>
51 #include <asm/virtext.h>
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
59 static const struct x86_cpu_id svm_cpu_id[] = {
60 X86_FEATURE_MATCH(X86_FEATURE_SVM),
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
65 #define IOPM_ALLOC_ORDER 2
66 #define MSRPM_ALLOC_ORDER 1
68 #define SEG_TYPE_LDT 2
69 #define SEG_TYPE_BUSY_TSS16 3
71 #define SVM_FEATURE_LBRV (1 << 1)
72 #define SVM_FEATURE_SVML (1 << 2)
73 #define SVM_FEATURE_TSC_RATE (1 << 4)
74 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
75 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
76 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
77 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
79 #define SVM_AVIC_DOORBELL 0xc001011b
81 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
82 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
83 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
85 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
87 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
88 #define TSC_RATIO_MIN 0x0000000000000001ULL
89 #define TSC_RATIO_MAX 0x000000ffffffffffULL
91 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
94 * 0xff is broadcast, so the max index allowed for physical APIC ID
95 * table is 0xfe. APIC IDs above 0xff are reserved.
97 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
99 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
100 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
101 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
103 /* AVIC GATAG is encoded using VM and VCPU IDs */
104 #define AVIC_VCPU_ID_BITS 8
105 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
107 #define AVIC_VM_ID_BITS 24
108 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
109 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
111 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
112 (y & AVIC_VCPU_ID_MASK))
113 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
114 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
116 static bool erratum_383_found __read_mostly;
118 static const u32 host_save_user_msrs[] = {
120 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
123 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
127 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
129 struct kvm_sev_info {
130 bool active; /* SEV enabled guest */
131 unsigned int asid; /* ASID used for this guest */
132 unsigned int handle; /* SEV firmware handle */
133 int fd; /* SEV device fd */
134 unsigned long pages_locked; /* Number of pages locked */
135 struct list_head regions_list; /* List of registered regions */
141 /* Struct members for AVIC */
143 struct page *avic_logical_id_table_page;
144 struct page *avic_physical_id_table_page;
145 struct hlist_node hnode;
147 struct kvm_sev_info sev_info;
152 struct nested_state {
158 /* These are the merged vectors */
161 /* gpa pointers to the real vectors */
165 /* A VMEXIT is required but not yet emulated */
168 /* cache for intercepts of the guest */
171 u32 intercept_exceptions;
174 /* Nested Paging related state */
178 #define MSRPM_OFFSETS 16
179 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
182 * Set osvw_len to higher value when updated Revision Guides
183 * are published and we know what the new status bits are
185 static uint64_t osvw_len = 4, osvw_status;
188 struct kvm_vcpu vcpu;
190 unsigned long vmcb_pa;
191 struct svm_cpu_data *svm_data;
192 uint64_t asid_generation;
193 uint64_t sysenter_esp;
194 uint64_t sysenter_eip;
201 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
211 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
212 * translated into the appropriate L2_CFG bits on the host to
213 * perform speculative control.
221 struct nested_state nested;
224 u64 nmi_singlestep_guest_rflags;
226 unsigned int3_injected;
227 unsigned long int3_rip;
229 /* cached guest cpuid flags for faster access */
230 bool nrips_enabled : 1;
234 struct page *avic_backing_page;
235 u64 *avic_physical_id_cache;
236 bool avic_is_running;
239 * Per-vcpu list of struct amd_svm_iommu_ir:
240 * This is used mainly to store interrupt remapping information used
241 * when update the vcpu affinity. This avoids the need to scan for
242 * IRTE and try to match ga_tag in the IOMMU driver.
244 struct list_head ir_list;
245 spinlock_t ir_list_lock;
247 /* which host CPU was used for running this vcpu */
248 unsigned int last_cpu;
252 * This is a wrapper of struct amd_iommu_ir_data.
254 struct amd_svm_iommu_ir {
255 struct list_head node; /* Used by SVM for per-vcpu ir_list */
256 void *data; /* Storing pointer to struct amd_ir_data */
259 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
260 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
261 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
263 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
264 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
265 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
266 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
268 static DEFINE_PER_CPU(u64, current_tsc_ratio);
269 #define TSC_RATIO_DEFAULT 0x0100000000ULL
271 #define MSR_INVALID 0xffffffffU
273 static const struct svm_direct_access_msrs {
274 u32 index; /* Index of the MSR */
275 bool always; /* True if intercept is always on */
276 } direct_access_msrs[] = {
277 { .index = MSR_STAR, .always = true },
278 { .index = MSR_IA32_SYSENTER_CS, .always = true },
280 { .index = MSR_GS_BASE, .always = true },
281 { .index = MSR_FS_BASE, .always = true },
282 { .index = MSR_KERNEL_GS_BASE, .always = true },
283 { .index = MSR_LSTAR, .always = true },
284 { .index = MSR_CSTAR, .always = true },
285 { .index = MSR_SYSCALL_MASK, .always = true },
287 { .index = MSR_IA32_SPEC_CTRL, .always = false },
288 { .index = MSR_IA32_PRED_CMD, .always = false },
289 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
290 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
291 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
292 { .index = MSR_IA32_LASTINTTOIP, .always = false },
293 { .index = MSR_INVALID, .always = false },
296 /* enable NPT for AMD64 and X86 with PAE */
297 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
298 static bool npt_enabled = true;
300 static bool npt_enabled;
304 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
305 * pause_filter_count: On processors that support Pause filtering(indicated
306 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
307 * count value. On VMRUN this value is loaded into an internal counter.
308 * Each time a pause instruction is executed, this counter is decremented
309 * until it reaches zero at which time a #VMEXIT is generated if pause
310 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
311 * Intercept Filtering for more details.
312 * This also indicate if ple logic enabled.
314 * pause_filter_thresh: In addition, some processor families support advanced
315 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
316 * the amount of time a guest is allowed to execute in a pause loop.
317 * In this mode, a 16-bit pause filter threshold field is added in the
318 * VMCB. The threshold value is a cycle count that is used to reset the
319 * pause counter. As with simple pause filtering, VMRUN loads the pause
320 * count value from VMCB into an internal counter. Then, on each pause
321 * instruction the hardware checks the elapsed number of cycles since
322 * the most recent pause instruction against the pause filter threshold.
323 * If the elapsed cycle count is greater than the pause filter threshold,
324 * then the internal pause count is reloaded from the VMCB and execution
325 * continues. If the elapsed cycle count is less than the pause filter
326 * threshold, then the internal pause count is decremented. If the count
327 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
328 * triggered. If advanced pause filtering is supported and pause filter
329 * threshold field is set to zero, the filter will operate in the simpler,
333 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
334 module_param(pause_filter_thresh, ushort, 0444);
336 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
337 module_param(pause_filter_count, ushort, 0444);
339 /* Default doubles per-vcpu window every exit. */
340 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
341 module_param(pause_filter_count_grow, ushort, 0444);
343 /* Default resets per-vcpu window every exit to pause_filter_count. */
344 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
345 module_param(pause_filter_count_shrink, ushort, 0444);
347 /* Default is to compute the maximum so we can never overflow. */
348 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
349 module_param(pause_filter_count_max, ushort, 0444);
351 /* allow nested paging (virtualized MMU) for all guests */
352 static int npt = true;
353 module_param(npt, int, S_IRUGO);
355 /* allow nested virtualization in KVM/SVM */
356 static int nested = true;
357 module_param(nested, int, S_IRUGO);
359 /* enable / disable AVIC */
361 #ifdef CONFIG_X86_LOCAL_APIC
362 module_param(avic, int, S_IRUGO);
365 /* enable/disable Next RIP Save */
366 static int nrips = true;
367 module_param(nrips, int, 0444);
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
381 static bool __read_mostly dump_invalid_vmcb = 0;
382 module_param(dump_invalid_vmcb, bool, 0644);
384 static u8 rsm_ins_bytes[] = "\x0f\xaa";
386 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
387 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
388 static void svm_complete_interrupts(struct vcpu_svm *svm);
390 static int nested_svm_exit_handled(struct vcpu_svm *svm);
391 static int nested_svm_intercept(struct vcpu_svm *svm);
392 static int nested_svm_vmexit(struct vcpu_svm *svm);
393 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
394 bool has_error_code, u32 error_code);
397 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
398 pause filter count */
399 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
400 VMCB_ASID, /* ASID */
401 VMCB_INTR, /* int_ctl, int_vector */
402 VMCB_NPT, /* npt_en, nCR3, gPAT */
403 VMCB_CR, /* CR0, CR3, CR4, EFER */
404 VMCB_DR, /* DR6, DR7 */
405 VMCB_DT, /* GDT, IDT */
406 VMCB_SEG, /* CS, DS, SS, ES, CPL */
407 VMCB_CR2, /* CR2 only */
408 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
409 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
410 * AVIC PHYSICAL_TABLE pointer,
411 * AVIC LOGICAL_TABLE pointer
416 /* TPR and CR2 are always written before VMRUN */
417 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
419 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
421 static unsigned int max_sev_asid;
422 static unsigned int min_sev_asid;
423 static unsigned long *sev_asid_bitmap;
424 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
427 struct list_head list;
428 unsigned long npages;
435 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
437 return container_of(kvm, struct kvm_svm, kvm);
440 static inline bool svm_sev_enabled(void)
442 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
445 static inline bool sev_guest(struct kvm *kvm)
447 #ifdef CONFIG_KVM_AMD_SEV
448 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
456 static inline int sev_get_asid(struct kvm *kvm)
458 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
463 static inline void mark_all_dirty(struct vmcb *vmcb)
465 vmcb->control.clean = 0;
468 static inline void mark_all_clean(struct vmcb *vmcb)
470 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
471 & ~VMCB_ALWAYS_DIRTY_MASK;
474 static inline void mark_dirty(struct vmcb *vmcb, int bit)
476 vmcb->control.clean &= ~(1 << bit);
479 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
481 return container_of(vcpu, struct vcpu_svm, vcpu);
484 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
486 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
487 mark_dirty(svm->vmcb, VMCB_AVIC);
490 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
492 struct vcpu_svm *svm = to_svm(vcpu);
493 u64 *entry = svm->avic_physical_id_cache;
498 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
501 static void recalc_intercepts(struct vcpu_svm *svm)
503 struct vmcb_control_area *c, *h;
504 struct nested_state *g;
506 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
508 if (!is_guest_mode(&svm->vcpu))
511 c = &svm->vmcb->control;
512 h = &svm->nested.hsave->control;
515 c->intercept_cr = h->intercept_cr | g->intercept_cr;
516 c->intercept_dr = h->intercept_dr | g->intercept_dr;
517 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
518 c->intercept = h->intercept | g->intercept;
521 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
523 if (is_guest_mode(&svm->vcpu))
524 return svm->nested.hsave;
529 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
531 struct vmcb *vmcb = get_host_vmcb(svm);
533 vmcb->control.intercept_cr |= (1U << bit);
535 recalc_intercepts(svm);
538 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
540 struct vmcb *vmcb = get_host_vmcb(svm);
542 vmcb->control.intercept_cr &= ~(1U << bit);
544 recalc_intercepts(svm);
547 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
549 struct vmcb *vmcb = get_host_vmcb(svm);
551 return vmcb->control.intercept_cr & (1U << bit);
554 static inline void set_dr_intercepts(struct vcpu_svm *svm)
556 struct vmcb *vmcb = get_host_vmcb(svm);
558 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
559 | (1 << INTERCEPT_DR1_READ)
560 | (1 << INTERCEPT_DR2_READ)
561 | (1 << INTERCEPT_DR3_READ)
562 | (1 << INTERCEPT_DR4_READ)
563 | (1 << INTERCEPT_DR5_READ)
564 | (1 << INTERCEPT_DR6_READ)
565 | (1 << INTERCEPT_DR7_READ)
566 | (1 << INTERCEPT_DR0_WRITE)
567 | (1 << INTERCEPT_DR1_WRITE)
568 | (1 << INTERCEPT_DR2_WRITE)
569 | (1 << INTERCEPT_DR3_WRITE)
570 | (1 << INTERCEPT_DR4_WRITE)
571 | (1 << INTERCEPT_DR5_WRITE)
572 | (1 << INTERCEPT_DR6_WRITE)
573 | (1 << INTERCEPT_DR7_WRITE);
575 recalc_intercepts(svm);
578 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
580 struct vmcb *vmcb = get_host_vmcb(svm);
582 vmcb->control.intercept_dr = 0;
584 recalc_intercepts(svm);
587 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
589 struct vmcb *vmcb = get_host_vmcb(svm);
591 vmcb->control.intercept_exceptions |= (1U << bit);
593 recalc_intercepts(svm);
596 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
598 struct vmcb *vmcb = get_host_vmcb(svm);
600 vmcb->control.intercept_exceptions &= ~(1U << bit);
602 recalc_intercepts(svm);
605 static inline void set_intercept(struct vcpu_svm *svm, int bit)
607 struct vmcb *vmcb = get_host_vmcb(svm);
609 vmcb->control.intercept |= (1ULL << bit);
611 recalc_intercepts(svm);
614 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
616 struct vmcb *vmcb = get_host_vmcb(svm);
618 vmcb->control.intercept &= ~(1ULL << bit);
620 recalc_intercepts(svm);
623 static inline bool vgif_enabled(struct vcpu_svm *svm)
625 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
628 static inline void enable_gif(struct vcpu_svm *svm)
630 if (vgif_enabled(svm))
631 svm->vmcb->control.int_ctl |= V_GIF_MASK;
633 svm->vcpu.arch.hflags |= HF_GIF_MASK;
636 static inline void disable_gif(struct vcpu_svm *svm)
638 if (vgif_enabled(svm))
639 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
641 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
644 static inline bool gif_set(struct vcpu_svm *svm)
646 if (vgif_enabled(svm))
647 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
649 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
652 static unsigned long iopm_base;
654 struct kvm_ldttss_desc {
657 unsigned base1:8, type:5, dpl:2, p:1;
658 unsigned limit1:4, zero0:3, g:1, base2:8;
661 } __attribute__((packed));
663 struct svm_cpu_data {
670 struct kvm_ldttss_desc *tss_desc;
672 struct page *save_area;
673 struct vmcb *current_vmcb;
675 /* index = sev_asid, value = vmcb pointer */
676 struct vmcb **sev_vmcbs;
679 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
681 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
683 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
684 #define MSRS_RANGE_SIZE 2048
685 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
687 static u32 svm_msrpm_offset(u32 msr)
692 for (i = 0; i < NUM_MSR_MAPS; i++) {
693 if (msr < msrpm_ranges[i] ||
694 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
697 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
698 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
700 /* Now we have the u8 offset - but need the u32 offset */
704 /* MSR not in any range */
708 #define MAX_INST_SIZE 15
710 static inline void clgi(void)
712 asm volatile (__ex("clgi"));
715 static inline void stgi(void)
717 asm volatile (__ex("stgi"));
720 static inline void invlpga(unsigned long addr, u32 asid)
722 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
725 static int get_npt_level(struct kvm_vcpu *vcpu)
728 return PT64_ROOT_4LEVEL;
730 return PT32E_ROOT_LEVEL;
734 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
736 vcpu->arch.efer = efer;
737 if (!npt_enabled && !(efer & EFER_LMA))
740 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
741 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
744 static int is_external_interrupt(u32 info)
746 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
747 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
750 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
752 struct vcpu_svm *svm = to_svm(vcpu);
755 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
756 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
760 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
762 struct vcpu_svm *svm = to_svm(vcpu);
765 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
767 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
771 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
773 struct vcpu_svm *svm = to_svm(vcpu);
775 if (nrips && svm->vmcb->control.next_rip != 0) {
776 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
777 svm->next_rip = svm->vmcb->control.next_rip;
780 if (!svm->next_rip) {
781 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
784 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
785 pr_err("%s: ip 0x%lx next 0x%llx\n",
786 __func__, kvm_rip_read(vcpu), svm->next_rip);
787 kvm_rip_write(vcpu, svm->next_rip);
789 svm_set_interrupt_shadow(vcpu, 0);
794 static void svm_queue_exception(struct kvm_vcpu *vcpu)
796 struct vcpu_svm *svm = to_svm(vcpu);
797 unsigned nr = vcpu->arch.exception.nr;
798 bool has_error_code = vcpu->arch.exception.has_error_code;
799 bool reinject = vcpu->arch.exception.injected;
800 u32 error_code = vcpu->arch.exception.error_code;
803 * If we are within a nested VM we'd better #VMEXIT and let the guest
804 * handle the exception
807 nested_svm_check_exception(svm, nr, has_error_code, error_code))
810 kvm_deliver_exception_payload(&svm->vcpu);
812 if (nr == BP_VECTOR && !nrips) {
813 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
816 * For guest debugging where we have to reinject #BP if some
817 * INT3 is guest-owned:
818 * Emulate nRIP by moving RIP forward. Will fail if injection
819 * raises a fault that is not intercepted. Still better than
820 * failing in all cases.
822 (void)skip_emulated_instruction(&svm->vcpu);
823 rip = kvm_rip_read(&svm->vcpu);
824 svm->int3_rip = rip + svm->vmcb->save.cs.base;
825 svm->int3_injected = rip - old_rip;
828 svm->vmcb->control.event_inj = nr
830 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
831 | SVM_EVTINJ_TYPE_EXEPT;
832 svm->vmcb->control.event_inj_err = error_code;
835 static void svm_init_erratum_383(void)
841 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
844 /* Use _safe variants to not break nested virtualization */
845 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
851 low = lower_32_bits(val);
852 high = upper_32_bits(val);
854 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
856 erratum_383_found = true;
859 static void svm_init_osvw(struct kvm_vcpu *vcpu)
862 * Guests should see errata 400 and 415 as fixed (assuming that
863 * HLT and IO instructions are intercepted).
865 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
866 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
869 * By increasing VCPU's osvw.length to 3 we are telling the guest that
870 * all osvw.status bits inside that length, including bit 0 (which is
871 * reserved for erratum 298), are valid. However, if host processor's
872 * osvw_len is 0 then osvw_status[0] carries no information. We need to
873 * be conservative here and therefore we tell the guest that erratum 298
874 * is present (because we really don't know).
876 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
877 vcpu->arch.osvw.status |= 1;
880 static int has_svm(void)
884 if (!cpu_has_svm(&msg)) {
885 printk(KERN_INFO "has_svm: %s\n", msg);
892 static void svm_hardware_disable(void)
894 /* Make sure we clean up behind us */
895 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
896 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
900 amd_pmu_disable_virt();
903 static int svm_hardware_enable(void)
906 struct svm_cpu_data *sd;
908 struct desc_struct *gdt;
909 int me = raw_smp_processor_id();
911 rdmsrl(MSR_EFER, efer);
912 if (efer & EFER_SVME)
916 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
919 sd = per_cpu(svm_data, me);
921 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
925 sd->asid_generation = 1;
926 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
927 sd->next_asid = sd->max_asid + 1;
928 sd->min_asid = max_sev_asid + 1;
930 gdt = get_current_gdt_rw();
931 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
933 wrmsrl(MSR_EFER, efer | EFER_SVME);
935 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
937 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
938 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
939 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
946 * Note that it is possible to have a system with mixed processor
947 * revisions and therefore different OSVW bits. If bits are not the same
948 * on different processors then choose the worst case (i.e. if erratum
949 * is present on one processor and not on another then assume that the
950 * erratum is present everywhere).
952 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
953 uint64_t len, status = 0;
956 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
958 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
962 osvw_status = osvw_len = 0;
966 osvw_status |= status;
967 osvw_status &= (1ULL << osvw_len) - 1;
970 osvw_status = osvw_len = 0;
972 svm_init_erratum_383();
974 amd_pmu_enable_virt();
979 static void svm_cpu_uninit(int cpu)
981 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
986 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
987 kfree(sd->sev_vmcbs);
988 __free_page(sd->save_area);
992 static int svm_cpu_init(int cpu)
994 struct svm_cpu_data *sd;
997 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1002 sd->save_area = alloc_page(GFP_KERNEL);
1006 if (svm_sev_enabled()) {
1008 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1015 per_cpu(svm_data, cpu) = sd;
1025 static bool valid_msr_intercept(u32 index)
1029 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1030 if (direct_access_msrs[i].index == index)
1036 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1043 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1044 to_svm(vcpu)->msrpm;
1046 offset = svm_msrpm_offset(msr);
1047 bit_write = 2 * (msr & 0x0f) + 1;
1048 tmp = msrpm[offset];
1050 BUG_ON(offset == MSR_INVALID);
1052 return !!test_bit(bit_write, &tmp);
1055 static void set_msr_interception(u32 *msrpm, unsigned msr,
1056 int read, int write)
1058 u8 bit_read, bit_write;
1063 * If this warning triggers extend the direct_access_msrs list at the
1064 * beginning of the file
1066 WARN_ON(!valid_msr_intercept(msr));
1068 offset = svm_msrpm_offset(msr);
1069 bit_read = 2 * (msr & 0x0f);
1070 bit_write = 2 * (msr & 0x0f) + 1;
1071 tmp = msrpm[offset];
1073 BUG_ON(offset == MSR_INVALID);
1075 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1076 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1078 msrpm[offset] = tmp;
1081 static void svm_vcpu_init_msrpm(u32 *msrpm)
1085 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1087 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1088 if (!direct_access_msrs[i].always)
1091 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1095 static void add_msr_offset(u32 offset)
1099 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1101 /* Offset already in list? */
1102 if (msrpm_offsets[i] == offset)
1105 /* Slot used by another offset? */
1106 if (msrpm_offsets[i] != MSR_INVALID)
1109 /* Add offset to list */
1110 msrpm_offsets[i] = offset;
1116 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1117 * increase MSRPM_OFFSETS in this case.
1122 static void init_msrpm_offsets(void)
1126 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1128 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1131 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1132 BUG_ON(offset == MSR_INVALID);
1134 add_msr_offset(offset);
1138 static void svm_enable_lbrv(struct vcpu_svm *svm)
1140 u32 *msrpm = svm->msrpm;
1142 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1143 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1144 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1145 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1146 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1149 static void svm_disable_lbrv(struct vcpu_svm *svm)
1151 u32 *msrpm = svm->msrpm;
1153 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1154 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1155 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1156 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1157 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1160 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1162 svm->nmi_singlestep = false;
1164 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1165 /* Clear our flags if they were not set by the guest */
1166 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1167 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1168 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1169 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1174 * This hash table is used to map VM_ID to a struct kvm_svm,
1175 * when handling AMD IOMMU GALOG notification to schedule in
1176 * a particular vCPU.
1178 #define SVM_VM_DATA_HASH_BITS 8
1179 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1180 static u32 next_vm_id = 0;
1181 static bool next_vm_id_wrapped = 0;
1182 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1185 * This function is called from IOMMU driver to notify
1186 * SVM to schedule in a particular vCPU of a particular VM.
1188 static int avic_ga_log_notifier(u32 ga_tag)
1190 unsigned long flags;
1191 struct kvm_svm *kvm_svm;
1192 struct kvm_vcpu *vcpu = NULL;
1193 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1194 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1196 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1198 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1199 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1200 if (kvm_svm->avic_vm_id != vm_id)
1202 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1205 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1208 * At this point, the IOMMU should have already set the pending
1209 * bit in the vAPIC backing page. So, we just need to schedule
1213 kvm_vcpu_wake_up(vcpu);
1218 static __init int sev_hardware_setup(void)
1220 struct sev_user_data_status *status;
1223 /* Maximum number of encrypted guests supported simultaneously */
1224 max_sev_asid = cpuid_ecx(0x8000001F);
1229 /* Minimum ASID value that should be used for SEV guest */
1230 min_sev_asid = cpuid_edx(0x8000001F);
1232 /* Initialize SEV ASID bitmap */
1233 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1234 if (!sev_asid_bitmap)
1237 status = kmalloc(sizeof(*status), GFP_KERNEL);
1242 * Check SEV platform status.
1244 * PLATFORM_STATUS can be called in any state, if we failed to query
1245 * the PLATFORM status then either PSP firmware does not support SEV
1246 * feature or SEV firmware is dead.
1248 rc = sev_platform_status(status, NULL);
1252 pr_info("SEV supported\n");
1259 static void grow_ple_window(struct kvm_vcpu *vcpu)
1261 struct vcpu_svm *svm = to_svm(vcpu);
1262 struct vmcb_control_area *control = &svm->vmcb->control;
1263 int old = control->pause_filter_count;
1265 control->pause_filter_count = __grow_ple_window(old,
1267 pause_filter_count_grow,
1268 pause_filter_count_max);
1270 if (control->pause_filter_count != old) {
1271 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1272 trace_kvm_ple_window_update(vcpu->vcpu_id,
1273 control->pause_filter_count, old);
1277 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1279 struct vcpu_svm *svm = to_svm(vcpu);
1280 struct vmcb_control_area *control = &svm->vmcb->control;
1281 int old = control->pause_filter_count;
1283 control->pause_filter_count =
1284 __shrink_ple_window(old,
1286 pause_filter_count_shrink,
1287 pause_filter_count);
1288 if (control->pause_filter_count != old) {
1289 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1290 trace_kvm_ple_window_update(vcpu->vcpu_id,
1291 control->pause_filter_count, old);
1295 static __init int svm_hardware_setup(void)
1298 struct page *iopm_pages;
1302 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1307 iopm_va = page_address(iopm_pages);
1308 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1309 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1311 init_msrpm_offsets();
1313 if (boot_cpu_has(X86_FEATURE_NX))
1314 kvm_enable_efer_bits(EFER_NX);
1316 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1317 kvm_enable_efer_bits(EFER_FFXSR);
1319 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1320 kvm_has_tsc_control = true;
1321 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1322 kvm_tsc_scaling_ratio_frac_bits = 32;
1325 /* Check for pause filtering support */
1326 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1327 pause_filter_count = 0;
1328 pause_filter_thresh = 0;
1329 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1330 pause_filter_thresh = 0;
1334 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1335 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1339 if (boot_cpu_has(X86_FEATURE_SEV) &&
1340 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1341 r = sev_hardware_setup();
1349 for_each_possible_cpu(cpu) {
1350 r = svm_cpu_init(cpu);
1355 if (!boot_cpu_has(X86_FEATURE_NPT))
1356 npt_enabled = false;
1358 if (npt_enabled && !npt) {
1359 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1360 npt_enabled = false;
1364 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1370 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1376 !boot_cpu_has(X86_FEATURE_AVIC) ||
1377 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1380 pr_info("AVIC enabled\n");
1382 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1388 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1389 !IS_ENABLED(CONFIG_X86_64)) {
1392 pr_info("Virtual VMLOAD VMSAVE supported\n");
1397 if (!boot_cpu_has(X86_FEATURE_VGIF))
1400 pr_info("Virtual GIF supported\n");
1406 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1411 static __exit void svm_hardware_unsetup(void)
1415 if (svm_sev_enabled())
1416 bitmap_free(sev_asid_bitmap);
1418 for_each_possible_cpu(cpu)
1419 svm_cpu_uninit(cpu);
1421 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1425 static void init_seg(struct vmcb_seg *seg)
1428 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1429 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1430 seg->limit = 0xffff;
1434 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1437 seg->attrib = SVM_SELECTOR_P_MASK | type;
1438 seg->limit = 0xffff;
1442 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1444 struct vcpu_svm *svm = to_svm(vcpu);
1446 if (is_guest_mode(vcpu))
1447 return svm->nested.hsave->control.tsc_offset;
1449 return vcpu->arch.tsc_offset;
1452 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1454 struct vcpu_svm *svm = to_svm(vcpu);
1455 u64 g_tsc_offset = 0;
1457 if (is_guest_mode(vcpu)) {
1458 /* Write L1's TSC offset. */
1459 g_tsc_offset = svm->vmcb->control.tsc_offset -
1460 svm->nested.hsave->control.tsc_offset;
1461 svm->nested.hsave->control.tsc_offset = offset;
1464 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1465 svm->vmcb->control.tsc_offset - g_tsc_offset,
1468 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1470 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1471 return svm->vmcb->control.tsc_offset;
1474 static void avic_init_vmcb(struct vcpu_svm *svm)
1476 struct vmcb *vmcb = svm->vmcb;
1477 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1478 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1479 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1480 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1482 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1483 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1484 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1485 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1486 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1489 static void init_vmcb(struct vcpu_svm *svm)
1491 struct vmcb_control_area *control = &svm->vmcb->control;
1492 struct vmcb_save_area *save = &svm->vmcb->save;
1494 svm->vcpu.arch.hflags = 0;
1496 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1497 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1498 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1499 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1500 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1501 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1502 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1503 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1505 set_dr_intercepts(svm);
1507 set_exception_intercept(svm, PF_VECTOR);
1508 set_exception_intercept(svm, UD_VECTOR);
1509 set_exception_intercept(svm, MC_VECTOR);
1510 set_exception_intercept(svm, AC_VECTOR);
1511 set_exception_intercept(svm, DB_VECTOR);
1513 * Guest access to VMware backdoor ports could legitimately
1514 * trigger #GP because of TSS I/O permission bitmap.
1515 * We intercept those #GP and allow access to them anyway
1518 if (enable_vmware_backdoor)
1519 set_exception_intercept(svm, GP_VECTOR);
1521 set_intercept(svm, INTERCEPT_INTR);
1522 set_intercept(svm, INTERCEPT_NMI);
1523 set_intercept(svm, INTERCEPT_SMI);
1524 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1525 set_intercept(svm, INTERCEPT_RDPMC);
1526 set_intercept(svm, INTERCEPT_CPUID);
1527 set_intercept(svm, INTERCEPT_INVD);
1528 set_intercept(svm, INTERCEPT_INVLPG);
1529 set_intercept(svm, INTERCEPT_INVLPGA);
1530 set_intercept(svm, INTERCEPT_IOIO_PROT);
1531 set_intercept(svm, INTERCEPT_MSR_PROT);
1532 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1533 set_intercept(svm, INTERCEPT_SHUTDOWN);
1534 set_intercept(svm, INTERCEPT_VMRUN);
1535 set_intercept(svm, INTERCEPT_VMMCALL);
1536 set_intercept(svm, INTERCEPT_VMLOAD);
1537 set_intercept(svm, INTERCEPT_VMSAVE);
1538 set_intercept(svm, INTERCEPT_STGI);
1539 set_intercept(svm, INTERCEPT_CLGI);
1540 set_intercept(svm, INTERCEPT_SKINIT);
1541 set_intercept(svm, INTERCEPT_WBINVD);
1542 set_intercept(svm, INTERCEPT_XSETBV);
1543 set_intercept(svm, INTERCEPT_RDPRU);
1544 set_intercept(svm, INTERCEPT_RSM);
1546 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1547 set_intercept(svm, INTERCEPT_MONITOR);
1548 set_intercept(svm, INTERCEPT_MWAIT);
1551 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1552 set_intercept(svm, INTERCEPT_HLT);
1554 control->iopm_base_pa = __sme_set(iopm_base);
1555 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1556 control->int_ctl = V_INTR_MASKING_MASK;
1558 init_seg(&save->es);
1559 init_seg(&save->ss);
1560 init_seg(&save->ds);
1561 init_seg(&save->fs);
1562 init_seg(&save->gs);
1564 save->cs.selector = 0xf000;
1565 save->cs.base = 0xffff0000;
1566 /* Executable/Readable Code Segment */
1567 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1568 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1569 save->cs.limit = 0xffff;
1571 save->gdtr.limit = 0xffff;
1572 save->idtr.limit = 0xffff;
1574 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1575 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1577 svm_set_efer(&svm->vcpu, 0);
1578 save->dr6 = 0xffff0ff0;
1579 kvm_set_rflags(&svm->vcpu, 2);
1580 save->rip = 0x0000fff0;
1581 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1584 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1585 * It also updates the guest-visible cr0 value.
1587 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1588 kvm_mmu_reset_context(&svm->vcpu);
1590 save->cr4 = X86_CR4_PAE;
1594 /* Setup VMCB for Nested Paging */
1595 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1596 clr_intercept(svm, INTERCEPT_INVLPG);
1597 clr_exception_intercept(svm, PF_VECTOR);
1598 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1599 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1600 save->g_pat = svm->vcpu.arch.pat;
1604 svm->asid_generation = 0;
1606 svm->nested.vmcb = 0;
1607 svm->vcpu.arch.hflags = 0;
1609 if (pause_filter_count) {
1610 control->pause_filter_count = pause_filter_count;
1611 if (pause_filter_thresh)
1612 control->pause_filter_thresh = pause_filter_thresh;
1613 set_intercept(svm, INTERCEPT_PAUSE);
1615 clr_intercept(svm, INTERCEPT_PAUSE);
1618 if (kvm_vcpu_apicv_active(&svm->vcpu))
1619 avic_init_vmcb(svm);
1622 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1623 * in VMCB and clear intercepts to avoid #VMEXIT.
1626 clr_intercept(svm, INTERCEPT_VMLOAD);
1627 clr_intercept(svm, INTERCEPT_VMSAVE);
1628 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1632 clr_intercept(svm, INTERCEPT_STGI);
1633 clr_intercept(svm, INTERCEPT_CLGI);
1634 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1637 if (sev_guest(svm->vcpu.kvm)) {
1638 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1639 clr_exception_intercept(svm, UD_VECTOR);
1642 mark_all_dirty(svm->vmcb);
1648 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1651 u64 *avic_physical_id_table;
1652 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1654 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1657 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1659 return &avic_physical_id_table[index];
1664 * AVIC hardware walks the nested page table to check permissions,
1665 * but does not use the SPA address specified in the leaf page
1666 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1667 * field of the VMCB. Therefore, we set up the
1668 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1670 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1672 struct kvm *kvm = vcpu->kvm;
1675 mutex_lock(&kvm->slots_lock);
1676 if (kvm->arch.apic_access_page_done)
1679 ret = __x86_set_memory_region(kvm,
1680 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1681 APIC_DEFAULT_PHYS_BASE,
1686 kvm->arch.apic_access_page_done = true;
1688 mutex_unlock(&kvm->slots_lock);
1692 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1695 u64 *entry, new_entry;
1696 int id = vcpu->vcpu_id;
1697 struct vcpu_svm *svm = to_svm(vcpu);
1699 ret = avic_init_access_page(vcpu);
1703 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1706 if (!svm->vcpu.arch.apic->regs)
1709 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1711 /* Setting AVIC backing page address in the phy APIC ID table */
1712 entry = avic_get_physical_id_entry(vcpu, id);
1716 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1717 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1718 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1719 WRITE_ONCE(*entry, new_entry);
1721 svm->avic_physical_id_cache = entry;
1726 static void __sev_asid_free(int asid)
1728 struct svm_cpu_data *sd;
1732 clear_bit(pos, sev_asid_bitmap);
1734 for_each_possible_cpu(cpu) {
1735 sd = per_cpu(svm_data, cpu);
1736 sd->sev_vmcbs[pos] = NULL;
1740 static void sev_asid_free(struct kvm *kvm)
1742 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1744 __sev_asid_free(sev->asid);
1747 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1749 struct sev_data_decommission *decommission;
1750 struct sev_data_deactivate *data;
1755 data = kzalloc(sizeof(*data), GFP_KERNEL);
1759 /* deactivate handle */
1760 data->handle = handle;
1761 sev_guest_deactivate(data, NULL);
1763 wbinvd_on_all_cpus();
1764 sev_guest_df_flush(NULL);
1767 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1771 /* decommission handle */
1772 decommission->handle = handle;
1773 sev_guest_decommission(decommission, NULL);
1775 kfree(decommission);
1778 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1779 unsigned long ulen, unsigned long *n,
1782 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1783 unsigned long npages, npinned, size;
1784 unsigned long locked, lock_limit;
1785 struct page **pages;
1786 unsigned long first, last;
1788 if (ulen == 0 || uaddr + ulen < uaddr)
1791 /* Calculate number of pages. */
1792 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1793 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1794 npages = (last - first + 1);
1796 locked = sev->pages_locked + npages;
1797 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1798 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1799 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1803 /* Avoid using vmalloc for smaller buffers. */
1804 size = npages * sizeof(struct page *);
1805 if (size > PAGE_SIZE)
1806 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1809 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1814 /* Pin the user virtual address. */
1815 npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1816 if (npinned != npages) {
1817 pr_err("SEV: Failure locking %lu pages.\n", npages);
1822 sev->pages_locked = locked;
1828 release_pages(pages, npinned);
1834 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1835 unsigned long npages)
1837 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1839 release_pages(pages, npages);
1841 sev->pages_locked -= npages;
1844 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1846 uint8_t *page_virtual;
1849 if (npages == 0 || pages == NULL)
1852 for (i = 0; i < npages; i++) {
1853 page_virtual = kmap_atomic(pages[i]);
1854 clflush_cache_range(page_virtual, PAGE_SIZE);
1855 kunmap_atomic(page_virtual);
1859 static void __unregister_enc_region_locked(struct kvm *kvm,
1860 struct enc_region *region)
1863 * The guest may change the memory encryption attribute from C=0 -> C=1
1864 * or vice versa for this memory range. Lets make sure caches are
1865 * flushed to ensure that guest data gets written into memory with
1868 sev_clflush_pages(region->pages, region->npages);
1870 sev_unpin_memory(kvm, region->pages, region->npages);
1871 list_del(®ion->list);
1875 static struct kvm *svm_vm_alloc(void)
1877 struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1878 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1880 return &kvm_svm->kvm;
1883 static void svm_vm_free(struct kvm *kvm)
1885 vfree(to_kvm_svm(kvm));
1888 static void sev_vm_destroy(struct kvm *kvm)
1890 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1891 struct list_head *head = &sev->regions_list;
1892 struct list_head *pos, *q;
1894 if (!sev_guest(kvm))
1897 mutex_lock(&kvm->lock);
1900 * if userspace was terminated before unregistering the memory regions
1901 * then lets unpin all the registered memory.
1903 if (!list_empty(head)) {
1904 list_for_each_safe(pos, q, head) {
1905 __unregister_enc_region_locked(kvm,
1906 list_entry(pos, struct enc_region, list));
1910 mutex_unlock(&kvm->lock);
1912 sev_unbind_asid(kvm, sev->handle);
1916 static void avic_vm_destroy(struct kvm *kvm)
1918 unsigned long flags;
1919 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1924 if (kvm_svm->avic_logical_id_table_page)
1925 __free_page(kvm_svm->avic_logical_id_table_page);
1926 if (kvm_svm->avic_physical_id_table_page)
1927 __free_page(kvm_svm->avic_physical_id_table_page);
1929 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1930 hash_del(&kvm_svm->hnode);
1931 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1934 static void svm_vm_destroy(struct kvm *kvm)
1936 avic_vm_destroy(kvm);
1937 sev_vm_destroy(kvm);
1940 static int avic_vm_init(struct kvm *kvm)
1942 unsigned long flags;
1944 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1946 struct page *p_page;
1947 struct page *l_page;
1953 /* Allocating physical APIC ID table (4KB) */
1954 p_page = alloc_page(GFP_KERNEL_ACCOUNT);
1958 kvm_svm->avic_physical_id_table_page = p_page;
1959 clear_page(page_address(p_page));
1961 /* Allocating logical APIC ID table (4KB) */
1962 l_page = alloc_page(GFP_KERNEL_ACCOUNT);
1966 kvm_svm->avic_logical_id_table_page = l_page;
1967 clear_page(page_address(l_page));
1969 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1971 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1972 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1973 next_vm_id_wrapped = 1;
1976 /* Is it still in use? Only possible if wrapped at least once */
1977 if (next_vm_id_wrapped) {
1978 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1979 if (k2->avic_vm_id == vm_id)
1983 kvm_svm->avic_vm_id = vm_id;
1984 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1985 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1990 avic_vm_destroy(kvm);
1995 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1998 unsigned long flags;
1999 struct amd_svm_iommu_ir *ir;
2000 struct vcpu_svm *svm = to_svm(vcpu);
2002 if (!kvm_arch_has_assigned_device(vcpu->kvm))
2006 * Here, we go through the per-vcpu ir_list to update all existing
2007 * interrupt remapping table entry targeting this vcpu.
2009 spin_lock_irqsave(&svm->ir_list_lock, flags);
2011 if (list_empty(&svm->ir_list))
2014 list_for_each_entry(ir, &svm->ir_list, node) {
2015 ret = amd_iommu_update_ga(cpu, r, ir->data);
2020 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2024 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2027 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2028 int h_physical_id = kvm_cpu_get_apicid(cpu);
2029 struct vcpu_svm *svm = to_svm(vcpu);
2031 if (!kvm_vcpu_apicv_active(vcpu))
2035 * Since the host physical APIC id is 8 bits,
2036 * we can support host APIC ID upto 255.
2038 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2041 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2042 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2044 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2045 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2047 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2048 if (svm->avic_is_running)
2049 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2051 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2052 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2053 svm->avic_is_running);
2056 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2059 struct vcpu_svm *svm = to_svm(vcpu);
2061 if (!kvm_vcpu_apicv_active(vcpu))
2064 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2065 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2066 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2068 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2069 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2073 * This function is called during VCPU halt/unhalt.
2075 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2077 struct vcpu_svm *svm = to_svm(vcpu);
2079 svm->avic_is_running = is_run;
2081 avic_vcpu_load(vcpu, vcpu->cpu);
2083 avic_vcpu_put(vcpu);
2086 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2088 struct vcpu_svm *svm = to_svm(vcpu);
2092 vcpu->arch.microcode_version = 0x01000065;
2094 svm->virt_spec_ctrl = 0;
2097 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2098 MSR_IA32_APICBASE_ENABLE;
2099 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2100 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2104 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2105 kvm_rdx_write(vcpu, eax);
2107 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2108 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2111 static int avic_init_vcpu(struct vcpu_svm *svm)
2115 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2118 ret = avic_init_backing_page(&svm->vcpu);
2122 INIT_LIST_HEAD(&svm->ir_list);
2123 spin_lock_init(&svm->ir_list_lock);
2124 svm->dfr_reg = APIC_DFR_FLAT;
2129 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2131 struct vcpu_svm *svm;
2133 struct page *msrpm_pages;
2134 struct page *hsave_page;
2135 struct page *nested_msrpm_pages;
2138 BUILD_BUG_ON_MSG(offsetof(struct vcpu_svm, vcpu) != 0,
2139 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
2141 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2147 svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
2148 GFP_KERNEL_ACCOUNT);
2149 if (!svm->vcpu.arch.user_fpu) {
2150 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
2152 goto free_partial_svm;
2155 svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2156 GFP_KERNEL_ACCOUNT);
2157 if (!svm->vcpu.arch.guest_fpu) {
2158 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2163 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2168 page = alloc_page(GFP_KERNEL_ACCOUNT);
2172 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2176 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2177 if (!nested_msrpm_pages)
2180 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2184 err = avic_init_vcpu(svm);
2188 /* We initialize this flag to true to make sure that the is_running
2189 * bit would be set the first time the vcpu is loaded.
2191 svm->avic_is_running = true;
2193 svm->nested.hsave = page_address(hsave_page);
2195 svm->msrpm = page_address(msrpm_pages);
2196 svm_vcpu_init_msrpm(svm->msrpm);
2198 svm->nested.msrpm = page_address(nested_msrpm_pages);
2199 svm_vcpu_init_msrpm(svm->nested.msrpm);
2201 svm->vmcb = page_address(page);
2202 clear_page(svm->vmcb);
2203 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2204 svm->asid_generation = 0;
2207 svm_init_osvw(&svm->vcpu);
2212 __free_page(hsave_page);
2214 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2216 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2220 kvm_vcpu_uninit(&svm->vcpu);
2222 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2224 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2226 kmem_cache_free(kvm_vcpu_cache, svm);
2228 return ERR_PTR(err);
2231 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2235 for_each_online_cpu(i)
2236 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2239 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2241 struct vcpu_svm *svm = to_svm(vcpu);
2244 * The vmcb page can be recycled, causing a false negative in
2245 * svm_vcpu_load(). So, ensure that no logical CPU has this
2246 * vmcb page recorded as its current vmcb.
2248 svm_clear_current_vmcb(svm->vmcb);
2250 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2251 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2252 __free_page(virt_to_page(svm->nested.hsave));
2253 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2254 kvm_vcpu_uninit(vcpu);
2255 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2256 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2257 kmem_cache_free(kvm_vcpu_cache, svm);
2260 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2262 struct vcpu_svm *svm = to_svm(vcpu);
2263 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2266 if (unlikely(cpu != vcpu->cpu)) {
2267 svm->asid_generation = 0;
2268 mark_all_dirty(svm->vmcb);
2271 #ifdef CONFIG_X86_64
2272 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2274 savesegment(fs, svm->host.fs);
2275 savesegment(gs, svm->host.gs);
2276 svm->host.ldt = kvm_read_ldt();
2278 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2279 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2281 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2282 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2283 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2284 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2285 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2288 /* This assumes that the kernel never uses MSR_TSC_AUX */
2289 if (static_cpu_has(X86_FEATURE_RDTSCP))
2290 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2292 if (sd->current_vmcb != svm->vmcb) {
2293 sd->current_vmcb = svm->vmcb;
2294 indirect_branch_prediction_barrier();
2296 avic_vcpu_load(vcpu, cpu);
2299 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2301 struct vcpu_svm *svm = to_svm(vcpu);
2304 avic_vcpu_put(vcpu);
2306 ++vcpu->stat.host_state_reload;
2307 kvm_load_ldt(svm->host.ldt);
2308 #ifdef CONFIG_X86_64
2309 loadsegment(fs, svm->host.fs);
2310 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2311 load_gs_index(svm->host.gs);
2313 #ifdef CONFIG_X86_32_LAZY_GS
2314 loadsegment(gs, svm->host.gs);
2317 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2318 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2321 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2323 avic_set_running(vcpu, false);
2326 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2328 avic_set_running(vcpu, true);
2331 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2333 struct vcpu_svm *svm = to_svm(vcpu);
2334 unsigned long rflags = svm->vmcb->save.rflags;
2336 if (svm->nmi_singlestep) {
2337 /* Hide our flags if they were not set by the guest */
2338 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2339 rflags &= ~X86_EFLAGS_TF;
2340 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2341 rflags &= ~X86_EFLAGS_RF;
2346 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2348 if (to_svm(vcpu)->nmi_singlestep)
2349 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2352 * Any change of EFLAGS.VM is accompanied by a reload of SS
2353 * (caused by either a task switch or an inter-privilege IRET),
2354 * so we do not need to update the CPL here.
2356 to_svm(vcpu)->vmcb->save.rflags = rflags;
2359 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2362 case VCPU_EXREG_PDPTR:
2363 BUG_ON(!npt_enabled);
2364 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2371 static void svm_set_vintr(struct vcpu_svm *svm)
2373 set_intercept(svm, INTERCEPT_VINTR);
2376 static void svm_clear_vintr(struct vcpu_svm *svm)
2378 clr_intercept(svm, INTERCEPT_VINTR);
2381 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2383 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2386 case VCPU_SREG_CS: return &save->cs;
2387 case VCPU_SREG_DS: return &save->ds;
2388 case VCPU_SREG_ES: return &save->es;
2389 case VCPU_SREG_FS: return &save->fs;
2390 case VCPU_SREG_GS: return &save->gs;
2391 case VCPU_SREG_SS: return &save->ss;
2392 case VCPU_SREG_TR: return &save->tr;
2393 case VCPU_SREG_LDTR: return &save->ldtr;
2399 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2401 struct vmcb_seg *s = svm_seg(vcpu, seg);
2406 static void svm_get_segment(struct kvm_vcpu *vcpu,
2407 struct kvm_segment *var, int seg)
2409 struct vmcb_seg *s = svm_seg(vcpu, seg);
2411 var->base = s->base;
2412 var->limit = s->limit;
2413 var->selector = s->selector;
2414 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2415 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2416 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2417 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2418 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2419 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2420 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2423 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2424 * However, the SVM spec states that the G bit is not observed by the
2425 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2426 * So let's synthesize a legal G bit for all segments, this helps
2427 * running KVM nested. It also helps cross-vendor migration, because
2428 * Intel's vmentry has a check on the 'G' bit.
2430 var->g = s->limit > 0xfffff;
2433 * AMD's VMCB does not have an explicit unusable field, so emulate it
2434 * for cross vendor migration purposes by "not present"
2436 var->unusable = !var->present;
2441 * Work around a bug where the busy flag in the tr selector
2451 * The accessed bit must always be set in the segment
2452 * descriptor cache, although it can be cleared in the
2453 * descriptor, the cached bit always remains at 1. Since
2454 * Intel has a check on this, set it here to support
2455 * cross-vendor migration.
2462 * On AMD CPUs sometimes the DB bit in the segment
2463 * descriptor is left as 1, although the whole segment has
2464 * been made unusable. Clear it here to pass an Intel VMX
2465 * entry check when cross vendor migrating.
2469 /* This is symmetric with svm_set_segment() */
2470 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2475 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2477 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2482 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2484 struct vcpu_svm *svm = to_svm(vcpu);
2486 dt->size = svm->vmcb->save.idtr.limit;
2487 dt->address = svm->vmcb->save.idtr.base;
2490 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2492 struct vcpu_svm *svm = to_svm(vcpu);
2494 svm->vmcb->save.idtr.limit = dt->size;
2495 svm->vmcb->save.idtr.base = dt->address ;
2496 mark_dirty(svm->vmcb, VMCB_DT);
2499 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2501 struct vcpu_svm *svm = to_svm(vcpu);
2503 dt->size = svm->vmcb->save.gdtr.limit;
2504 dt->address = svm->vmcb->save.gdtr.base;
2507 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2509 struct vcpu_svm *svm = to_svm(vcpu);
2511 svm->vmcb->save.gdtr.limit = dt->size;
2512 svm->vmcb->save.gdtr.base = dt->address ;
2513 mark_dirty(svm->vmcb, VMCB_DT);
2516 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2520 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2524 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2528 static void update_cr0_intercept(struct vcpu_svm *svm)
2530 ulong gcr0 = svm->vcpu.arch.cr0;
2531 u64 *hcr0 = &svm->vmcb->save.cr0;
2533 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2534 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2536 mark_dirty(svm->vmcb, VMCB_CR);
2538 if (gcr0 == *hcr0) {
2539 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2540 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2542 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2543 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2547 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2549 struct vcpu_svm *svm = to_svm(vcpu);
2551 #ifdef CONFIG_X86_64
2552 if (vcpu->arch.efer & EFER_LME) {
2553 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2554 vcpu->arch.efer |= EFER_LMA;
2555 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2558 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2559 vcpu->arch.efer &= ~EFER_LMA;
2560 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2564 vcpu->arch.cr0 = cr0;
2567 cr0 |= X86_CR0_PG | X86_CR0_WP;
2570 * re-enable caching here because the QEMU bios
2571 * does not do it - this results in some delay at
2574 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2575 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2576 svm->vmcb->save.cr0 = cr0;
2577 mark_dirty(svm->vmcb, VMCB_CR);
2578 update_cr0_intercept(svm);
2581 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2583 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2584 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2586 if (cr4 & X86_CR4_VMXE)
2589 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2590 svm_flush_tlb(vcpu, true);
2592 vcpu->arch.cr4 = cr4;
2595 cr4 |= host_cr4_mce;
2596 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2597 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2601 static void svm_set_segment(struct kvm_vcpu *vcpu,
2602 struct kvm_segment *var, int seg)
2604 struct vcpu_svm *svm = to_svm(vcpu);
2605 struct vmcb_seg *s = svm_seg(vcpu, seg);
2607 s->base = var->base;
2608 s->limit = var->limit;
2609 s->selector = var->selector;
2610 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2611 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2612 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2613 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2614 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2615 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2616 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2617 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2620 * This is always accurate, except if SYSRET returned to a segment
2621 * with SS.DPL != 3. Intel does not have this quirk, and always
2622 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2623 * would entail passing the CPL to userspace and back.
2625 if (seg == VCPU_SREG_SS)
2626 /* This is symmetric with svm_get_segment() */
2627 svm->vmcb->save.cpl = (var->dpl & 3);
2629 mark_dirty(svm->vmcb, VMCB_SEG);
2632 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2634 struct vcpu_svm *svm = to_svm(vcpu);
2636 clr_exception_intercept(svm, BP_VECTOR);
2638 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2639 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2640 set_exception_intercept(svm, BP_VECTOR);
2642 vcpu->guest_debug = 0;
2645 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2647 if (sd->next_asid > sd->max_asid) {
2648 ++sd->asid_generation;
2649 sd->next_asid = sd->min_asid;
2650 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2653 svm->asid_generation = sd->asid_generation;
2654 svm->vmcb->control.asid = sd->next_asid++;
2656 mark_dirty(svm->vmcb, VMCB_ASID);
2659 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2661 return to_svm(vcpu)->vmcb->save.dr6;
2664 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2666 struct vcpu_svm *svm = to_svm(vcpu);
2668 svm->vmcb->save.dr6 = value;
2669 mark_dirty(svm->vmcb, VMCB_DR);
2672 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2674 struct vcpu_svm *svm = to_svm(vcpu);
2676 get_debugreg(vcpu->arch.db[0], 0);
2677 get_debugreg(vcpu->arch.db[1], 1);
2678 get_debugreg(vcpu->arch.db[2], 2);
2679 get_debugreg(vcpu->arch.db[3], 3);
2680 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2681 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2683 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2684 set_dr_intercepts(svm);
2687 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2689 struct vcpu_svm *svm = to_svm(vcpu);
2691 svm->vmcb->save.dr7 = value;
2692 mark_dirty(svm->vmcb, VMCB_DR);
2695 static int pf_interception(struct vcpu_svm *svm)
2697 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2698 u64 error_code = svm->vmcb->control.exit_info_1;
2700 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2701 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2702 svm->vmcb->control.insn_bytes : NULL,
2703 svm->vmcb->control.insn_len);
2706 static int npf_interception(struct vcpu_svm *svm)
2708 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2709 u64 error_code = svm->vmcb->control.exit_info_1;
2711 trace_kvm_page_fault(fault_address, error_code);
2712 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2713 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2714 svm->vmcb->control.insn_bytes : NULL,
2715 svm->vmcb->control.insn_len);
2718 static int db_interception(struct vcpu_svm *svm)
2720 struct kvm_run *kvm_run = svm->vcpu.run;
2721 struct kvm_vcpu *vcpu = &svm->vcpu;
2723 if (!(svm->vcpu.guest_debug &
2724 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2725 !svm->nmi_singlestep) {
2726 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2730 if (svm->nmi_singlestep) {
2731 disable_nmi_singlestep(svm);
2732 /* Make sure we check for pending NMIs upon entry */
2733 kvm_make_request(KVM_REQ_EVENT, vcpu);
2736 if (svm->vcpu.guest_debug &
2737 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2738 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2739 kvm_run->debug.arch.pc =
2740 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2741 kvm_run->debug.arch.exception = DB_VECTOR;
2748 static int bp_interception(struct vcpu_svm *svm)
2750 struct kvm_run *kvm_run = svm->vcpu.run;
2752 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2753 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2754 kvm_run->debug.arch.exception = BP_VECTOR;
2758 static int ud_interception(struct vcpu_svm *svm)
2760 return handle_ud(&svm->vcpu);
2763 static int ac_interception(struct vcpu_svm *svm)
2765 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2769 static int gp_interception(struct vcpu_svm *svm)
2771 struct kvm_vcpu *vcpu = &svm->vcpu;
2772 u32 error_code = svm->vmcb->control.exit_info_1;
2774 WARN_ON_ONCE(!enable_vmware_backdoor);
2777 * VMware backdoor emulation on #GP interception only handles IN{S},
2778 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2781 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2784 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
2787 static bool is_erratum_383(void)
2792 if (!erratum_383_found)
2795 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2799 /* Bit 62 may or may not be set for this mce */
2800 value &= ~(1ULL << 62);
2802 if (value != 0xb600000000010015ULL)
2805 /* Clear MCi_STATUS registers */
2806 for (i = 0; i < 6; ++i)
2807 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2809 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2813 value &= ~(1ULL << 2);
2814 low = lower_32_bits(value);
2815 high = upper_32_bits(value);
2817 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2820 /* Flush tlb to evict multi-match entries */
2826 static void svm_handle_mce(struct vcpu_svm *svm)
2828 if (is_erratum_383()) {
2830 * Erratum 383 triggered. Guest state is corrupt so kill the
2833 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2835 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2841 * On an #MC intercept the MCE handler is not called automatically in
2842 * the host. So do it by hand here.
2846 /* not sure if we ever come back to this point */
2851 static int mc_interception(struct vcpu_svm *svm)
2856 static int shutdown_interception(struct vcpu_svm *svm)
2858 struct kvm_run *kvm_run = svm->vcpu.run;
2861 * VMCB is undefined after a SHUTDOWN intercept
2862 * so reinitialize it.
2864 clear_page(svm->vmcb);
2867 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2871 static int io_interception(struct vcpu_svm *svm)
2873 struct kvm_vcpu *vcpu = &svm->vcpu;
2874 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2875 int size, in, string;
2878 ++svm->vcpu.stat.io_exits;
2879 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2880 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2882 return kvm_emulate_instruction(vcpu, 0);
2884 port = io_info >> 16;
2885 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2886 svm->next_rip = svm->vmcb->control.exit_info_2;
2888 return kvm_fast_pio(&svm->vcpu, size, port, in);
2891 static int nmi_interception(struct vcpu_svm *svm)
2896 static int intr_interception(struct vcpu_svm *svm)
2898 ++svm->vcpu.stat.irq_exits;
2902 static int nop_on_interception(struct vcpu_svm *svm)
2907 static int halt_interception(struct vcpu_svm *svm)
2909 return kvm_emulate_halt(&svm->vcpu);
2912 static int vmmcall_interception(struct vcpu_svm *svm)
2914 return kvm_emulate_hypercall(&svm->vcpu);
2917 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2919 struct vcpu_svm *svm = to_svm(vcpu);
2921 return svm->nested.nested_cr3;
2924 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2926 struct vcpu_svm *svm = to_svm(vcpu);
2927 u64 cr3 = svm->nested.nested_cr3;
2931 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2932 offset_in_page(cr3) + index * 8, 8);
2938 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2941 struct vcpu_svm *svm = to_svm(vcpu);
2943 svm->vmcb->control.nested_cr3 = __sme_set(root);
2944 mark_dirty(svm->vmcb, VMCB_NPT);
2947 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2948 struct x86_exception *fault)
2950 struct vcpu_svm *svm = to_svm(vcpu);
2952 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2954 * TODO: track the cause of the nested page fault, and
2955 * correctly fill in the high bits of exit_info_1.
2957 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2958 svm->vmcb->control.exit_code_hi = 0;
2959 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2960 svm->vmcb->control.exit_info_2 = fault->address;
2963 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2964 svm->vmcb->control.exit_info_1 |= fault->error_code;
2967 * The present bit is always zero for page structure faults on real
2970 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2971 svm->vmcb->control.exit_info_1 &= ~1;
2973 nested_svm_vmexit(svm);
2976 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2978 WARN_ON(mmu_is_nested(vcpu));
2980 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
2981 kvm_init_shadow_mmu(vcpu);
2982 vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
2983 vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
2984 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
2985 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2986 vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2987 reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2988 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2991 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2993 vcpu->arch.mmu = &vcpu->arch.root_mmu;
2994 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
2997 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2999 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3000 !is_paging(&svm->vcpu)) {
3001 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3005 if (svm->vmcb->save.cpl) {
3006 kvm_inject_gp(&svm->vcpu, 0);
3013 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3014 bool has_error_code, u32 error_code)
3018 if (!is_guest_mode(&svm->vcpu))
3021 vmexit = nested_svm_intercept(svm);
3022 if (vmexit != NESTED_EXIT_DONE)
3025 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3026 svm->vmcb->control.exit_code_hi = 0;
3027 svm->vmcb->control.exit_info_1 = error_code;
3030 * EXITINFO2 is undefined for all exception intercepts other
3033 if (svm->vcpu.arch.exception.nested_apf)
3034 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3035 else if (svm->vcpu.arch.exception.has_payload)
3036 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3038 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3040 svm->nested.exit_required = true;
3044 /* This function returns true if it is save to enable the irq window */
3045 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3047 if (!is_guest_mode(&svm->vcpu))
3050 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3053 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3057 * if vmexit was already requested (by intercepted exception
3058 * for instance) do not overwrite it with "external interrupt"
3061 if (svm->nested.exit_required)
3064 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3065 svm->vmcb->control.exit_info_1 = 0;
3066 svm->vmcb->control.exit_info_2 = 0;
3068 if (svm->nested.intercept & 1ULL) {
3070 * The #vmexit can't be emulated here directly because this
3071 * code path runs with irqs and preemption disabled. A
3072 * #vmexit emulation might sleep. Only signal request for
3075 svm->nested.exit_required = true;
3076 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3083 /* This function returns true if it is save to enable the nmi window */
3084 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3086 if (!is_guest_mode(&svm->vcpu))
3089 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3092 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3093 svm->nested.exit_required = true;
3098 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3100 unsigned port, size, iopm_len;
3105 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3106 return NESTED_EXIT_HOST;
3108 port = svm->vmcb->control.exit_info_1 >> 16;
3109 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3110 SVM_IOIO_SIZE_SHIFT;
3111 gpa = svm->nested.vmcb_iopm + (port / 8);
3112 start_bit = port % 8;
3113 iopm_len = (start_bit + size > 8) ? 2 : 1;
3114 mask = (0xf >> (4 - size)) << start_bit;
3117 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3118 return NESTED_EXIT_DONE;
3120 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3123 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3125 u32 offset, msr, value;
3128 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3129 return NESTED_EXIT_HOST;
3131 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3132 offset = svm_msrpm_offset(msr);
3133 write = svm->vmcb->control.exit_info_1 & 1;
3134 mask = 1 << ((2 * (msr & 0xf)) + write);
3136 if (offset == MSR_INVALID)
3137 return NESTED_EXIT_DONE;
3139 /* Offset is in 32 bit units but need in 8 bit units */
3142 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3143 return NESTED_EXIT_DONE;
3145 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3148 /* DB exceptions for our internal use must not cause vmexit */
3149 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3153 /* if we're not singlestepping, it's not ours */
3154 if (!svm->nmi_singlestep)
3155 return NESTED_EXIT_DONE;
3157 /* if it's not a singlestep exception, it's not ours */
3158 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3159 return NESTED_EXIT_DONE;
3160 if (!(dr6 & DR6_BS))
3161 return NESTED_EXIT_DONE;
3163 /* if the guest is singlestepping, it should get the vmexit */
3164 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3165 disable_nmi_singlestep(svm);
3166 return NESTED_EXIT_DONE;
3169 /* it's ours, the nested hypervisor must not see this one */
3170 return NESTED_EXIT_HOST;
3173 static int nested_svm_exit_special(struct vcpu_svm *svm)
3175 u32 exit_code = svm->vmcb->control.exit_code;
3177 switch (exit_code) {
3180 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3181 return NESTED_EXIT_HOST;
3183 /* For now we are always handling NPFs when using them */
3185 return NESTED_EXIT_HOST;
3187 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3188 /* When we're shadowing, trap PFs, but not async PF */
3189 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3190 return NESTED_EXIT_HOST;
3196 return NESTED_EXIT_CONTINUE;
3200 * If this function returns true, this #vmexit was already handled
3202 static int nested_svm_intercept(struct vcpu_svm *svm)
3204 u32 exit_code = svm->vmcb->control.exit_code;
3205 int vmexit = NESTED_EXIT_HOST;
3207 switch (exit_code) {
3209 vmexit = nested_svm_exit_handled_msr(svm);
3212 vmexit = nested_svm_intercept_ioio(svm);
3214 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3215 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3216 if (svm->nested.intercept_cr & bit)
3217 vmexit = NESTED_EXIT_DONE;
3220 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3221 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3222 if (svm->nested.intercept_dr & bit)
3223 vmexit = NESTED_EXIT_DONE;
3226 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3227 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3228 if (svm->nested.intercept_exceptions & excp_bits) {
3229 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3230 vmexit = nested_svm_intercept_db(svm);
3232 vmexit = NESTED_EXIT_DONE;
3234 /* async page fault always cause vmexit */
3235 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3236 svm->vcpu.arch.exception.nested_apf != 0)
3237 vmexit = NESTED_EXIT_DONE;
3240 case SVM_EXIT_ERR: {
3241 vmexit = NESTED_EXIT_DONE;
3245 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3246 if (svm->nested.intercept & exit_bits)
3247 vmexit = NESTED_EXIT_DONE;
3254 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3258 vmexit = nested_svm_intercept(svm);
3260 if (vmexit == NESTED_EXIT_DONE)
3261 nested_svm_vmexit(svm);
3266 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3268 struct vmcb_control_area *dst = &dst_vmcb->control;
3269 struct vmcb_control_area *from = &from_vmcb->control;
3271 dst->intercept_cr = from->intercept_cr;
3272 dst->intercept_dr = from->intercept_dr;
3273 dst->intercept_exceptions = from->intercept_exceptions;
3274 dst->intercept = from->intercept;
3275 dst->iopm_base_pa = from->iopm_base_pa;
3276 dst->msrpm_base_pa = from->msrpm_base_pa;
3277 dst->tsc_offset = from->tsc_offset;
3278 dst->asid = from->asid;
3279 dst->tlb_ctl = from->tlb_ctl;
3280 dst->int_ctl = from->int_ctl;
3281 dst->int_vector = from->int_vector;
3282 dst->int_state = from->int_state;
3283 dst->exit_code = from->exit_code;
3284 dst->exit_code_hi = from->exit_code_hi;
3285 dst->exit_info_1 = from->exit_info_1;
3286 dst->exit_info_2 = from->exit_info_2;
3287 dst->exit_int_info = from->exit_int_info;
3288 dst->exit_int_info_err = from->exit_int_info_err;
3289 dst->nested_ctl = from->nested_ctl;
3290 dst->event_inj = from->event_inj;
3291 dst->event_inj_err = from->event_inj_err;
3292 dst->nested_cr3 = from->nested_cr3;
3293 dst->virt_ext = from->virt_ext;
3294 dst->pause_filter_count = from->pause_filter_count;
3295 dst->pause_filter_thresh = from->pause_filter_thresh;
3298 static int nested_svm_vmexit(struct vcpu_svm *svm)
3301 struct vmcb *nested_vmcb;
3302 struct vmcb *hsave = svm->nested.hsave;
3303 struct vmcb *vmcb = svm->vmcb;
3304 struct kvm_host_map map;
3306 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3307 vmcb->control.exit_info_1,
3308 vmcb->control.exit_info_2,
3309 vmcb->control.exit_int_info,
3310 vmcb->control.exit_int_info_err,
3313 rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3316 kvm_inject_gp(&svm->vcpu, 0);
3320 nested_vmcb = map.hva;
3322 /* Exit Guest-Mode */
3323 leave_guest_mode(&svm->vcpu);
3324 svm->nested.vmcb = 0;
3326 /* Give the current vmcb to the guest */
3329 nested_vmcb->save.es = vmcb->save.es;
3330 nested_vmcb->save.cs = vmcb->save.cs;
3331 nested_vmcb->save.ss = vmcb->save.ss;
3332 nested_vmcb->save.ds = vmcb->save.ds;
3333 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3334 nested_vmcb->save.idtr = vmcb->save.idtr;
3335 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3336 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3337 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3338 nested_vmcb->save.cr2 = vmcb->save.cr2;
3339 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3340 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3341 nested_vmcb->save.rip = vmcb->save.rip;
3342 nested_vmcb->save.rsp = vmcb->save.rsp;
3343 nested_vmcb->save.rax = vmcb->save.rax;
3344 nested_vmcb->save.dr7 = vmcb->save.dr7;
3345 nested_vmcb->save.dr6 = vmcb->save.dr6;
3346 nested_vmcb->save.cpl = vmcb->save.cpl;
3348 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3349 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3350 nested_vmcb->control.int_state = vmcb->control.int_state;
3351 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3352 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3353 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3354 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3355 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3356 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3358 if (svm->nrips_enabled)
3359 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3362 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3363 * to make sure that we do not lose injected events. So check event_inj
3364 * here and copy it to exit_int_info if it is valid.
3365 * Exit_int_info and event_inj can't be both valid because the case
3366 * below only happens on a VMRUN instruction intercept which has
3367 * no valid exit_int_info set.
3369 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3370 struct vmcb_control_area *nc = &nested_vmcb->control;
3372 nc->exit_int_info = vmcb->control.event_inj;
3373 nc->exit_int_info_err = vmcb->control.event_inj_err;
3376 nested_vmcb->control.tlb_ctl = 0;
3377 nested_vmcb->control.event_inj = 0;
3378 nested_vmcb->control.event_inj_err = 0;
3380 nested_vmcb->control.pause_filter_count =
3381 svm->vmcb->control.pause_filter_count;
3382 nested_vmcb->control.pause_filter_thresh =
3383 svm->vmcb->control.pause_filter_thresh;
3385 /* We always set V_INTR_MASKING and remember the old value in hflags */
3386 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3387 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3389 /* Restore the original control entries */
3390 copy_vmcb_control_area(vmcb, hsave);
3392 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3393 kvm_clear_exception_queue(&svm->vcpu);
3394 kvm_clear_interrupt_queue(&svm->vcpu);
3396 svm->nested.nested_cr3 = 0;
3398 /* Restore selected save entries */
3399 svm->vmcb->save.es = hsave->save.es;
3400 svm->vmcb->save.cs = hsave->save.cs;
3401 svm->vmcb->save.ss = hsave->save.ss;
3402 svm->vmcb->save.ds = hsave->save.ds;
3403 svm->vmcb->save.gdtr = hsave->save.gdtr;
3404 svm->vmcb->save.idtr = hsave->save.idtr;
3405 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3406 svm_set_efer(&svm->vcpu, hsave->save.efer);
3407 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3408 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3410 svm->vmcb->save.cr3 = hsave->save.cr3;
3411 svm->vcpu.arch.cr3 = hsave->save.cr3;
3413 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3415 kvm_rax_write(&svm->vcpu, hsave->save.rax);
3416 kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3417 kvm_rip_write(&svm->vcpu, hsave->save.rip);
3418 svm->vmcb->save.dr7 = 0;
3419 svm->vmcb->save.cpl = 0;
3420 svm->vmcb->control.exit_int_info = 0;
3422 mark_all_dirty(svm->vmcb);
3424 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3426 nested_svm_uninit_mmu_context(&svm->vcpu);
3427 kvm_mmu_reset_context(&svm->vcpu);
3428 kvm_mmu_load(&svm->vcpu);
3431 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3432 * doesn't end up in L1.
3434 svm->vcpu.arch.nmi_injected = false;
3435 kvm_clear_exception_queue(&svm->vcpu);
3436 kvm_clear_interrupt_queue(&svm->vcpu);
3441 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3444 * This function merges the msr permission bitmaps of kvm and the
3445 * nested vmcb. It is optimized in that it only merges the parts where
3446 * the kvm msr permission bitmap may contain zero bits
3450 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3453 for (i = 0; i < MSRPM_OFFSETS; i++) {
3457 if (msrpm_offsets[i] == 0xffffffff)
3460 p = msrpm_offsets[i];
3461 offset = svm->nested.vmcb_msrpm + (p * 4);
3463 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3466 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3469 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3474 static bool nested_vmcb_checks(struct vmcb *vmcb)
3476 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3479 if (vmcb->control.asid == 0)
3482 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3489 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3490 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3492 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3493 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3495 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3497 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3498 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3499 nested_svm_init_mmu_context(&svm->vcpu);
3502 /* Load the nested guest state */
3503 svm->vmcb->save.es = nested_vmcb->save.es;
3504 svm->vmcb->save.cs = nested_vmcb->save.cs;
3505 svm->vmcb->save.ss = nested_vmcb->save.ss;
3506 svm->vmcb->save.ds = nested_vmcb->save.ds;
3507 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3508 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3509 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3510 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3511 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3512 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3514 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3515 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3517 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3519 /* Guest paging mode is active - reset mmu */
3520 kvm_mmu_reset_context(&svm->vcpu);
3522 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3523 kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3524 kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3525 kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3527 /* In case we don't even reach vcpu_run, the fields are not updated */
3528 svm->vmcb->save.rax = nested_vmcb->save.rax;
3529 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3530 svm->vmcb->save.rip = nested_vmcb->save.rip;
3531 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3532 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3533 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3535 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3536 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3538 /* cache intercepts */
3539 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3540 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3541 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3542 svm->nested.intercept = nested_vmcb->control.intercept;
3544 svm_flush_tlb(&svm->vcpu, true);
3545 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3546 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3547 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3549 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3551 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3552 /* We only want the cr8 intercept bits of the guest */
3553 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3554 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3557 /* We don't want to see VMMCALLs from a nested guest */
3558 clr_intercept(svm, INTERCEPT_VMMCALL);
3560 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3561 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3563 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3564 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3565 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3566 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3567 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3569 svm->vmcb->control.pause_filter_count =
3570 nested_vmcb->control.pause_filter_count;
3571 svm->vmcb->control.pause_filter_thresh =
3572 nested_vmcb->control.pause_filter_thresh;
3574 kvm_vcpu_unmap(&svm->vcpu, map, true);
3576 /* Enter Guest-Mode */
3577 enter_guest_mode(&svm->vcpu);
3580 * Merge guest and host intercepts - must be called with vcpu in
3581 * guest-mode to take affect here
3583 recalc_intercepts(svm);
3585 svm->nested.vmcb = vmcb_gpa;
3589 mark_all_dirty(svm->vmcb);
3592 static int nested_svm_vmrun(struct vcpu_svm *svm)
3595 struct vmcb *nested_vmcb;
3596 struct vmcb *hsave = svm->nested.hsave;
3597 struct vmcb *vmcb = svm->vmcb;
3598 struct kvm_host_map map;
3601 vmcb_gpa = svm->vmcb->save.rax;
3603 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3604 if (ret == -EINVAL) {
3605 kvm_inject_gp(&svm->vcpu, 0);
3608 return kvm_skip_emulated_instruction(&svm->vcpu);
3611 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3613 nested_vmcb = map.hva;
3615 if (!nested_vmcb_checks(nested_vmcb)) {
3616 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3617 nested_vmcb->control.exit_code_hi = 0;
3618 nested_vmcb->control.exit_info_1 = 0;
3619 nested_vmcb->control.exit_info_2 = 0;
3621 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3626 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3627 nested_vmcb->save.rip,
3628 nested_vmcb->control.int_ctl,
3629 nested_vmcb->control.event_inj,
3630 nested_vmcb->control.nested_ctl);
3632 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3633 nested_vmcb->control.intercept_cr >> 16,
3634 nested_vmcb->control.intercept_exceptions,
3635 nested_vmcb->control.intercept);
3637 /* Clear internal status */
3638 kvm_clear_exception_queue(&svm->vcpu);
3639 kvm_clear_interrupt_queue(&svm->vcpu);
3642 * Save the old vmcb, so we don't need to pick what we save, but can
3643 * restore everything when a VMEXIT occurs
3645 hsave->save.es = vmcb->save.es;
3646 hsave->save.cs = vmcb->save.cs;
3647 hsave->save.ss = vmcb->save.ss;
3648 hsave->save.ds = vmcb->save.ds;
3649 hsave->save.gdtr = vmcb->save.gdtr;
3650 hsave->save.idtr = vmcb->save.idtr;
3651 hsave->save.efer = svm->vcpu.arch.efer;
3652 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3653 hsave->save.cr4 = svm->vcpu.arch.cr4;
3654 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3655 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3656 hsave->save.rsp = vmcb->save.rsp;
3657 hsave->save.rax = vmcb->save.rax;
3659 hsave->save.cr3 = vmcb->save.cr3;
3661 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3663 copy_vmcb_control_area(hsave, vmcb);
3665 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3667 if (!nested_svm_vmrun_msrpm(svm)) {
3668 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3669 svm->vmcb->control.exit_code_hi = 0;
3670 svm->vmcb->control.exit_info_1 = 0;
3671 svm->vmcb->control.exit_info_2 = 0;
3673 nested_svm_vmexit(svm);
3679 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3681 to_vmcb->save.fs = from_vmcb->save.fs;
3682 to_vmcb->save.gs = from_vmcb->save.gs;
3683 to_vmcb->save.tr = from_vmcb->save.tr;
3684 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3685 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3686 to_vmcb->save.star = from_vmcb->save.star;
3687 to_vmcb->save.lstar = from_vmcb->save.lstar;
3688 to_vmcb->save.cstar = from_vmcb->save.cstar;
3689 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3690 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3691 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3692 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3695 static int vmload_interception(struct vcpu_svm *svm)
3697 struct vmcb *nested_vmcb;
3698 struct kvm_host_map map;
3701 if (nested_svm_check_permissions(svm))
3704 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3707 kvm_inject_gp(&svm->vcpu, 0);
3711 nested_vmcb = map.hva;
3713 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3715 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3716 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3721 static int vmsave_interception(struct vcpu_svm *svm)
3723 struct vmcb *nested_vmcb;
3724 struct kvm_host_map map;
3727 if (nested_svm_check_permissions(svm))
3730 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3733 kvm_inject_gp(&svm->vcpu, 0);
3737 nested_vmcb = map.hva;
3739 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3741 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3742 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3747 static int vmrun_interception(struct vcpu_svm *svm)
3749 if (nested_svm_check_permissions(svm))
3752 return nested_svm_vmrun(svm);
3755 static int stgi_interception(struct vcpu_svm *svm)
3759 if (nested_svm_check_permissions(svm))
3763 * If VGIF is enabled, the STGI intercept is only added to
3764 * detect the opening of the SMI/NMI window; remove it now.
3766 if (vgif_enabled(svm))
3767 clr_intercept(svm, INTERCEPT_STGI);
3769 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3770 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3777 static int clgi_interception(struct vcpu_svm *svm)
3781 if (nested_svm_check_permissions(svm))
3784 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3788 /* After a CLGI no interrupts should come */
3789 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3790 svm_clear_vintr(svm);
3791 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3792 mark_dirty(svm->vmcb, VMCB_INTR);
3798 static int invlpga_interception(struct vcpu_svm *svm)
3800 struct kvm_vcpu *vcpu = &svm->vcpu;
3802 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3803 kvm_rax_read(&svm->vcpu));
3805 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3806 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3808 return kvm_skip_emulated_instruction(&svm->vcpu);
3811 static int skinit_interception(struct vcpu_svm *svm)
3813 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3815 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3819 static int wbinvd_interception(struct vcpu_svm *svm)
3821 return kvm_emulate_wbinvd(&svm->vcpu);
3824 static int xsetbv_interception(struct vcpu_svm *svm)
3826 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3827 u32 index = kvm_rcx_read(&svm->vcpu);
3829 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3830 return kvm_skip_emulated_instruction(&svm->vcpu);
3836 static int rdpru_interception(struct vcpu_svm *svm)
3838 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3842 static int task_switch_interception(struct vcpu_svm *svm)
3846 int int_type = svm->vmcb->control.exit_int_info &
3847 SVM_EXITINTINFO_TYPE_MASK;
3848 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3850 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3852 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3853 bool has_error_code = false;
3856 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3858 if (svm->vmcb->control.exit_info_2 &
3859 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3860 reason = TASK_SWITCH_IRET;
3861 else if (svm->vmcb->control.exit_info_2 &
3862 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3863 reason = TASK_SWITCH_JMP;
3865 reason = TASK_SWITCH_GATE;
3867 reason = TASK_SWITCH_CALL;
3869 if (reason == TASK_SWITCH_GATE) {
3871 case SVM_EXITINTINFO_TYPE_NMI:
3872 svm->vcpu.arch.nmi_injected = false;
3874 case SVM_EXITINTINFO_TYPE_EXEPT:
3875 if (svm->vmcb->control.exit_info_2 &
3876 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3877 has_error_code = true;
3879 (u32)svm->vmcb->control.exit_info_2;
3881 kvm_clear_exception_queue(&svm->vcpu);
3883 case SVM_EXITINTINFO_TYPE_INTR:
3884 kvm_clear_interrupt_queue(&svm->vcpu);
3891 if (reason != TASK_SWITCH_GATE ||
3892 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3893 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3894 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
3895 if (!skip_emulated_instruction(&svm->vcpu))
3899 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3902 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3903 has_error_code, error_code);
3906 static int cpuid_interception(struct vcpu_svm *svm)
3908 return kvm_emulate_cpuid(&svm->vcpu);
3911 static int iret_interception(struct vcpu_svm *svm)
3913 ++svm->vcpu.stat.nmi_window_exits;
3914 clr_intercept(svm, INTERCEPT_IRET);
3915 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3916 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3917 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3921 static int invlpg_interception(struct vcpu_svm *svm)
3923 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3924 return kvm_emulate_instruction(&svm->vcpu, 0);
3926 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3927 return kvm_skip_emulated_instruction(&svm->vcpu);
3930 static int emulate_on_interception(struct vcpu_svm *svm)
3932 return kvm_emulate_instruction(&svm->vcpu, 0);
3935 static int rsm_interception(struct vcpu_svm *svm)
3937 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
3940 static int rdpmc_interception(struct vcpu_svm *svm)
3945 return emulate_on_interception(svm);
3947 err = kvm_rdpmc(&svm->vcpu);
3948 return kvm_complete_insn_gp(&svm->vcpu, err);
3951 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3954 unsigned long cr0 = svm->vcpu.arch.cr0;
3958 intercept = svm->nested.intercept;
3960 if (!is_guest_mode(&svm->vcpu) ||
3961 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3964 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3965 val &= ~SVM_CR0_SELECTIVE_MASK;
3968 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3969 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3975 #define CR_VALID (1ULL << 63)
3977 static int cr_interception(struct vcpu_svm *svm)
3983 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3984 return emulate_on_interception(svm);
3986 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3987 return emulate_on_interception(svm);
3989 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3990 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3991 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3993 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3996 if (cr >= 16) { /* mov to cr */
3998 val = kvm_register_read(&svm->vcpu, reg);
4001 if (!check_selective_cr0_intercepted(svm, val))
4002 err = kvm_set_cr0(&svm->vcpu, val);
4008 err = kvm_set_cr3(&svm->vcpu, val);
4011 err = kvm_set_cr4(&svm->vcpu, val);
4014 err = kvm_set_cr8(&svm->vcpu, val);
4017 WARN(1, "unhandled write to CR%d", cr);
4018 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4021 } else { /* mov from cr */
4024 val = kvm_read_cr0(&svm->vcpu);
4027 val = svm->vcpu.arch.cr2;
4030 val = kvm_read_cr3(&svm->vcpu);
4033 val = kvm_read_cr4(&svm->vcpu);
4036 val = kvm_get_cr8(&svm->vcpu);
4039 WARN(1, "unhandled read from CR%d", cr);
4040 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4043 kvm_register_write(&svm->vcpu, reg, val);
4045 return kvm_complete_insn_gp(&svm->vcpu, err);
4048 static int dr_interception(struct vcpu_svm *svm)
4053 if (svm->vcpu.guest_debug == 0) {
4055 * No more DR vmexits; force a reload of the debug registers
4056 * and reenter on this instruction. The next vmexit will
4057 * retrieve the full state of the debug registers.
4059 clr_dr_intercepts(svm);
4060 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4064 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4065 return emulate_on_interception(svm);
4067 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4068 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4070 if (dr >= 16) { /* mov to DRn */
4071 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4073 val = kvm_register_read(&svm->vcpu, reg);
4074 kvm_set_dr(&svm->vcpu, dr - 16, val);
4076 if (!kvm_require_dr(&svm->vcpu, dr))
4078 kvm_get_dr(&svm->vcpu, dr, &val);
4079 kvm_register_write(&svm->vcpu, reg, val);
4082 return kvm_skip_emulated_instruction(&svm->vcpu);
4085 static int cr8_write_interception(struct vcpu_svm *svm)
4087 struct kvm_run *kvm_run = svm->vcpu.run;
4090 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4091 /* instruction emulation calls kvm_set_cr8() */
4092 r = cr_interception(svm);
4093 if (lapic_in_kernel(&svm->vcpu))
4095 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4097 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4101 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4105 switch (msr->index) {
4106 case MSR_F10H_DECFG:
4107 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4108 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4117 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4119 struct vcpu_svm *svm = to_svm(vcpu);
4121 switch (msr_info->index) {
4123 msr_info->data = svm->vmcb->save.star;
4125 #ifdef CONFIG_X86_64
4127 msr_info->data = svm->vmcb->save.lstar;
4130 msr_info->data = svm->vmcb->save.cstar;
4132 case MSR_KERNEL_GS_BASE:
4133 msr_info->data = svm->vmcb->save.kernel_gs_base;
4135 case MSR_SYSCALL_MASK:
4136 msr_info->data = svm->vmcb->save.sfmask;
4139 case MSR_IA32_SYSENTER_CS:
4140 msr_info->data = svm->vmcb->save.sysenter_cs;
4142 case MSR_IA32_SYSENTER_EIP:
4143 msr_info->data = svm->sysenter_eip;
4145 case MSR_IA32_SYSENTER_ESP:
4146 msr_info->data = svm->sysenter_esp;
4149 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4151 msr_info->data = svm->tsc_aux;
4154 * Nobody will change the following 5 values in the VMCB so we can
4155 * safely return them on rdmsr. They will always be 0 until LBRV is
4158 case MSR_IA32_DEBUGCTLMSR:
4159 msr_info->data = svm->vmcb->save.dbgctl;
4161 case MSR_IA32_LASTBRANCHFROMIP:
4162 msr_info->data = svm->vmcb->save.br_from;
4164 case MSR_IA32_LASTBRANCHTOIP:
4165 msr_info->data = svm->vmcb->save.br_to;
4167 case MSR_IA32_LASTINTFROMIP:
4168 msr_info->data = svm->vmcb->save.last_excp_from;
4170 case MSR_IA32_LASTINTTOIP:
4171 msr_info->data = svm->vmcb->save.last_excp_to;
4173 case MSR_VM_HSAVE_PA:
4174 msr_info->data = svm->nested.hsave_msr;
4177 msr_info->data = svm->nested.vm_cr_msr;
4179 case MSR_IA32_SPEC_CTRL:
4180 if (!msr_info->host_initiated &&
4181 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4182 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4185 msr_info->data = svm->spec_ctrl;
4187 case MSR_AMD64_VIRT_SPEC_CTRL:
4188 if (!msr_info->host_initiated &&
4189 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4192 msr_info->data = svm->virt_spec_ctrl;
4194 case MSR_F15H_IC_CFG: {
4198 family = guest_cpuid_family(vcpu);
4199 model = guest_cpuid_model(vcpu);
4201 if (family < 0 || model < 0)
4202 return kvm_get_msr_common(vcpu, msr_info);
4206 if (family == 0x15 &&
4207 (model >= 0x2 && model < 0x20))
4208 msr_info->data = 0x1E;
4211 case MSR_F10H_DECFG:
4212 msr_info->data = svm->msr_decfg;
4215 return kvm_get_msr_common(vcpu, msr_info);
4220 static int rdmsr_interception(struct vcpu_svm *svm)
4222 return kvm_emulate_rdmsr(&svm->vcpu);
4225 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4227 struct vcpu_svm *svm = to_svm(vcpu);
4228 int svm_dis, chg_mask;
4230 if (data & ~SVM_VM_CR_VALID_MASK)
4233 chg_mask = SVM_VM_CR_VALID_MASK;
4235 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4236 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4238 svm->nested.vm_cr_msr &= ~chg_mask;
4239 svm->nested.vm_cr_msr |= (data & chg_mask);
4241 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4243 /* check for svm_disable while efer.svme is set */
4244 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4250 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4252 struct vcpu_svm *svm = to_svm(vcpu);
4254 u32 ecx = msr->index;
4255 u64 data = msr->data;
4257 case MSR_IA32_CR_PAT:
4258 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4260 vcpu->arch.pat = data;
4261 svm->vmcb->save.g_pat = data;
4262 mark_dirty(svm->vmcb, VMCB_NPT);
4264 case MSR_IA32_SPEC_CTRL:
4265 if (!msr->host_initiated &&
4266 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4267 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4270 /* The STIBP bit doesn't fault even if it's not advertised */
4271 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4274 svm->spec_ctrl = data;
4281 * When it's written (to non-zero) for the first time, pass
4285 * The handling of the MSR bitmap for L2 guests is done in
4286 * nested_svm_vmrun_msrpm.
4287 * We update the L1 MSR bit as well since it will end up
4288 * touching the MSR anyway now.
4290 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4292 case MSR_IA32_PRED_CMD:
4293 if (!msr->host_initiated &&
4294 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4297 if (data & ~PRED_CMD_IBPB)
4303 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4304 if (is_guest_mode(vcpu))
4306 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4308 case MSR_AMD64_VIRT_SPEC_CTRL:
4309 if (!msr->host_initiated &&
4310 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4313 if (data & ~SPEC_CTRL_SSBD)
4316 svm->virt_spec_ctrl = data;
4319 svm->vmcb->save.star = data;
4321 #ifdef CONFIG_X86_64
4323 svm->vmcb->save.lstar = data;
4326 svm->vmcb->save.cstar = data;
4328 case MSR_KERNEL_GS_BASE:
4329 svm->vmcb->save.kernel_gs_base = data;
4331 case MSR_SYSCALL_MASK:
4332 svm->vmcb->save.sfmask = data;
4335 case MSR_IA32_SYSENTER_CS:
4336 svm->vmcb->save.sysenter_cs = data;
4338 case MSR_IA32_SYSENTER_EIP:
4339 svm->sysenter_eip = data;
4340 svm->vmcb->save.sysenter_eip = data;
4342 case MSR_IA32_SYSENTER_ESP:
4343 svm->sysenter_esp = data;
4344 svm->vmcb->save.sysenter_esp = data;
4347 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4351 * This is rare, so we update the MSR here instead of using
4352 * direct_access_msrs. Doing that would require a rdmsr in
4355 svm->tsc_aux = data;
4356 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4358 case MSR_IA32_DEBUGCTLMSR:
4359 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4360 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4364 if (data & DEBUGCTL_RESERVED_BITS)
4367 svm->vmcb->save.dbgctl = data;
4368 mark_dirty(svm->vmcb, VMCB_LBR);
4369 if (data & (1ULL<<0))
4370 svm_enable_lbrv(svm);
4372 svm_disable_lbrv(svm);
4374 case MSR_VM_HSAVE_PA:
4375 svm->nested.hsave_msr = data;
4378 return svm_set_vm_cr(vcpu, data);
4380 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4382 case MSR_F10H_DECFG: {
4383 struct kvm_msr_entry msr_entry;
4385 msr_entry.index = msr->index;
4386 if (svm_get_msr_feature(&msr_entry))
4389 /* Check the supported bits */
4390 if (data & ~msr_entry.data)
4393 /* Don't allow the guest to change a bit, #GP */
4394 if (!msr->host_initiated && (data ^ msr_entry.data))
4397 svm->msr_decfg = data;
4400 case MSR_IA32_APICBASE:
4401 if (kvm_vcpu_apicv_active(vcpu))
4402 avic_update_vapic_bar(to_svm(vcpu), data);
4405 return kvm_set_msr_common(vcpu, msr);
4410 static int wrmsr_interception(struct vcpu_svm *svm)
4412 return kvm_emulate_wrmsr(&svm->vcpu);
4415 static int msr_interception(struct vcpu_svm *svm)
4417 if (svm->vmcb->control.exit_info_1)
4418 return wrmsr_interception(svm);
4420 return rdmsr_interception(svm);
4423 static int interrupt_window_interception(struct vcpu_svm *svm)
4425 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4426 svm_clear_vintr(svm);
4427 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4428 mark_dirty(svm->vmcb, VMCB_INTR);
4429 ++svm->vcpu.stat.irq_window_exits;
4433 static int pause_interception(struct vcpu_svm *svm)
4435 struct kvm_vcpu *vcpu = &svm->vcpu;
4436 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4438 if (pause_filter_thresh)
4439 grow_ple_window(vcpu);
4441 kvm_vcpu_on_spin(vcpu, in_kernel);
4445 static int nop_interception(struct vcpu_svm *svm)
4447 return kvm_skip_emulated_instruction(&(svm->vcpu));
4450 static int monitor_interception(struct vcpu_svm *svm)
4452 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4453 return nop_interception(svm);
4456 static int mwait_interception(struct vcpu_svm *svm)
4458 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4459 return nop_interception(svm);
4462 enum avic_ipi_failure_cause {
4463 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4464 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4465 AVIC_IPI_FAILURE_INVALID_TARGET,
4466 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4469 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4471 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4472 u32 icrl = svm->vmcb->control.exit_info_1;
4473 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4474 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4475 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4477 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4480 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4482 * AVIC hardware handles the generation of
4483 * IPIs when the specified Message Type is Fixed
4484 * (also known as fixed delivery mode) and
4485 * the Trigger Mode is edge-triggered. The hardware
4486 * also supports self and broadcast delivery modes
4487 * specified via the Destination Shorthand(DSH)
4488 * field of the ICRL. Logical and physical APIC ID
4489 * formats are supported. All other IPI types cause
4490 * a #VMEXIT, which needs to emulated.
4492 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4493 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4495 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4497 struct kvm_vcpu *vcpu;
4498 struct kvm *kvm = svm->vcpu.kvm;
4499 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4502 * At this point, we expect that the AVIC HW has already
4503 * set the appropriate IRR bits on the valid target
4504 * vcpus. So, we just need to kick the appropriate vcpu.
4506 kvm_for_each_vcpu(i, vcpu, kvm) {
4507 bool m = kvm_apic_match_dest(vcpu, apic,
4508 icrl & KVM_APIC_SHORT_MASK,
4509 GET_APIC_DEST_FIELD(icrh),
4510 icrl & KVM_APIC_DEST_MASK);
4512 if (m && !avic_vcpu_is_running(vcpu))
4513 kvm_vcpu_wake_up(vcpu);
4517 case AVIC_IPI_FAILURE_INVALID_TARGET:
4518 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4519 index, svm->vcpu.vcpu_id, icrh, icrl);
4521 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4522 WARN_ONCE(1, "Invalid backing page\n");
4525 pr_err("Unknown IPI interception\n");
4531 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4533 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4535 u32 *logical_apic_id_table;
4536 int dlid = GET_APIC_LOGICAL_ID(ldr);
4541 if (flat) { /* flat */
4542 index = ffs(dlid) - 1;
4545 } else { /* cluster */
4546 int cluster = (dlid & 0xf0) >> 4;
4547 int apic = ffs(dlid & 0x0f) - 1;
4549 if ((apic < 0) || (apic > 7) ||
4552 index = (cluster << 2) + apic;
4555 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4557 return &logical_apic_id_table[index];
4560 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4563 u32 *entry, new_entry;
4565 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4566 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4570 new_entry = READ_ONCE(*entry);
4571 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4572 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4573 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4574 WRITE_ONCE(*entry, new_entry);
4579 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4581 struct vcpu_svm *svm = to_svm(vcpu);
4582 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4583 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4586 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4589 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4592 struct vcpu_svm *svm = to_svm(vcpu);
4593 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4594 u32 id = kvm_xapic_id(vcpu->arch.apic);
4596 if (ldr == svm->ldr_reg)
4599 avic_invalidate_logical_id_entry(vcpu);
4602 ret = avic_ldr_write(vcpu, id, ldr);
4610 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4613 struct vcpu_svm *svm = to_svm(vcpu);
4614 u32 id = kvm_xapic_id(vcpu->arch.apic);
4616 if (vcpu->vcpu_id == id)
4619 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4620 new = avic_get_physical_id_entry(vcpu, id);
4624 /* We need to move physical_id_entry to new offset */
4627 to_svm(vcpu)->avic_physical_id_cache = new;
4630 * Also update the guest physical APIC ID in the logical
4631 * APIC ID table entry if already setup the LDR.
4634 avic_handle_ldr_update(vcpu);
4639 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4641 struct vcpu_svm *svm = to_svm(vcpu);
4642 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4644 if (svm->dfr_reg == dfr)
4647 avic_invalidate_logical_id_entry(vcpu);
4651 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4653 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4654 u32 offset = svm->vmcb->control.exit_info_1 &
4655 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4659 if (avic_handle_apic_id_update(&svm->vcpu))
4663 if (avic_handle_ldr_update(&svm->vcpu))
4667 avic_handle_dfr_update(&svm->vcpu);
4673 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4678 static bool is_avic_unaccelerated_access_trap(u32 offset)
4707 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4710 u32 offset = svm->vmcb->control.exit_info_1 &
4711 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4712 u32 vector = svm->vmcb->control.exit_info_2 &
4713 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4714 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4715 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4716 bool trap = is_avic_unaccelerated_access_trap(offset);
4718 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4719 trap, write, vector);
4722 WARN_ONCE(!write, "svm: Handling trap read.\n");
4723 ret = avic_unaccel_trap_write(svm);
4725 /* Handling Fault */
4726 ret = kvm_emulate_instruction(&svm->vcpu, 0);
4732 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4733 [SVM_EXIT_READ_CR0] = cr_interception,
4734 [SVM_EXIT_READ_CR3] = cr_interception,
4735 [SVM_EXIT_READ_CR4] = cr_interception,
4736 [SVM_EXIT_READ_CR8] = cr_interception,
4737 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4738 [SVM_EXIT_WRITE_CR0] = cr_interception,
4739 [SVM_EXIT_WRITE_CR3] = cr_interception,
4740 [SVM_EXIT_WRITE_CR4] = cr_interception,
4741 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4742 [SVM_EXIT_READ_DR0] = dr_interception,
4743 [SVM_EXIT_READ_DR1] = dr_interception,
4744 [SVM_EXIT_READ_DR2] = dr_interception,
4745 [SVM_EXIT_READ_DR3] = dr_interception,
4746 [SVM_EXIT_READ_DR4] = dr_interception,
4747 [SVM_EXIT_READ_DR5] = dr_interception,
4748 [SVM_EXIT_READ_DR6] = dr_interception,
4749 [SVM_EXIT_READ_DR7] = dr_interception,
4750 [SVM_EXIT_WRITE_DR0] = dr_interception,
4751 [SVM_EXIT_WRITE_DR1] = dr_interception,
4752 [SVM_EXIT_WRITE_DR2] = dr_interception,
4753 [SVM_EXIT_WRITE_DR3] = dr_interception,
4754 [SVM_EXIT_WRITE_DR4] = dr_interception,
4755 [SVM_EXIT_WRITE_DR5] = dr_interception,
4756 [SVM_EXIT_WRITE_DR6] = dr_interception,
4757 [SVM_EXIT_WRITE_DR7] = dr_interception,
4758 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4759 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4760 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4761 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4762 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4763 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4764 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4765 [SVM_EXIT_INTR] = intr_interception,
4766 [SVM_EXIT_NMI] = nmi_interception,
4767 [SVM_EXIT_SMI] = nop_on_interception,
4768 [SVM_EXIT_INIT] = nop_on_interception,
4769 [SVM_EXIT_VINTR] = interrupt_window_interception,
4770 [SVM_EXIT_RDPMC] = rdpmc_interception,
4771 [SVM_EXIT_CPUID] = cpuid_interception,
4772 [SVM_EXIT_IRET] = iret_interception,
4773 [SVM_EXIT_INVD] = emulate_on_interception,
4774 [SVM_EXIT_PAUSE] = pause_interception,
4775 [SVM_EXIT_HLT] = halt_interception,
4776 [SVM_EXIT_INVLPG] = invlpg_interception,
4777 [SVM_EXIT_INVLPGA] = invlpga_interception,
4778 [SVM_EXIT_IOIO] = io_interception,
4779 [SVM_EXIT_MSR] = msr_interception,
4780 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4781 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4782 [SVM_EXIT_VMRUN] = vmrun_interception,
4783 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4784 [SVM_EXIT_VMLOAD] = vmload_interception,
4785 [SVM_EXIT_VMSAVE] = vmsave_interception,
4786 [SVM_EXIT_STGI] = stgi_interception,
4787 [SVM_EXIT_CLGI] = clgi_interception,
4788 [SVM_EXIT_SKINIT] = skinit_interception,
4789 [SVM_EXIT_WBINVD] = wbinvd_interception,
4790 [SVM_EXIT_MONITOR] = monitor_interception,
4791 [SVM_EXIT_MWAIT] = mwait_interception,
4792 [SVM_EXIT_XSETBV] = xsetbv_interception,
4793 [SVM_EXIT_RDPRU] = rdpru_interception,
4794 [SVM_EXIT_NPF] = npf_interception,
4795 [SVM_EXIT_RSM] = rsm_interception,
4796 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4797 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4800 static void dump_vmcb(struct kvm_vcpu *vcpu)
4802 struct vcpu_svm *svm = to_svm(vcpu);
4803 struct vmcb_control_area *control = &svm->vmcb->control;
4804 struct vmcb_save_area *save = &svm->vmcb->save;
4806 if (!dump_invalid_vmcb) {
4807 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4811 pr_err("VMCB Control Area:\n");
4812 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4813 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4814 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4815 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4816 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4817 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4818 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4819 pr_err("%-20s%d\n", "pause filter threshold:",
4820 control->pause_filter_thresh);
4821 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4822 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4823 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4824 pr_err("%-20s%d\n", "asid:", control->asid);
4825 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4826 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4827 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4828 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4829 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4830 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4831 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4832 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4833 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4834 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4835 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4836 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4837 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4838 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4839 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4840 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4841 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4842 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4843 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4844 pr_err("VMCB State Save Area:\n");
4845 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4847 save->es.selector, save->es.attrib,
4848 save->es.limit, save->es.base);
4849 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4851 save->cs.selector, save->cs.attrib,
4852 save->cs.limit, save->cs.base);
4853 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4855 save->ss.selector, save->ss.attrib,
4856 save->ss.limit, save->ss.base);
4857 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4859 save->ds.selector, save->ds.attrib,
4860 save->ds.limit, save->ds.base);
4861 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4863 save->fs.selector, save->fs.attrib,
4864 save->fs.limit, save->fs.base);
4865 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4867 save->gs.selector, save->gs.attrib,
4868 save->gs.limit, save->gs.base);
4869 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4871 save->gdtr.selector, save->gdtr.attrib,
4872 save->gdtr.limit, save->gdtr.base);
4873 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4875 save->ldtr.selector, save->ldtr.attrib,
4876 save->ldtr.limit, save->ldtr.base);
4877 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4879 save->idtr.selector, save->idtr.attrib,
4880 save->idtr.limit, save->idtr.base);
4881 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4883 save->tr.selector, save->tr.attrib,
4884 save->tr.limit, save->tr.base);
4885 pr_err("cpl: %d efer: %016llx\n",
4886 save->cpl, save->efer);
4887 pr_err("%-15s %016llx %-13s %016llx\n",
4888 "cr0:", save->cr0, "cr2:", save->cr2);
4889 pr_err("%-15s %016llx %-13s %016llx\n",
4890 "cr3:", save->cr3, "cr4:", save->cr4);
4891 pr_err("%-15s %016llx %-13s %016llx\n",
4892 "dr6:", save->dr6, "dr7:", save->dr7);
4893 pr_err("%-15s %016llx %-13s %016llx\n",
4894 "rip:", save->rip, "rflags:", save->rflags);
4895 pr_err("%-15s %016llx %-13s %016llx\n",
4896 "rsp:", save->rsp, "rax:", save->rax);
4897 pr_err("%-15s %016llx %-13s %016llx\n",
4898 "star:", save->star, "lstar:", save->lstar);
4899 pr_err("%-15s %016llx %-13s %016llx\n",
4900 "cstar:", save->cstar, "sfmask:", save->sfmask);
4901 pr_err("%-15s %016llx %-13s %016llx\n",
4902 "kernel_gs_base:", save->kernel_gs_base,
4903 "sysenter_cs:", save->sysenter_cs);
4904 pr_err("%-15s %016llx %-13s %016llx\n",
4905 "sysenter_esp:", save->sysenter_esp,
4906 "sysenter_eip:", save->sysenter_eip);
4907 pr_err("%-15s %016llx %-13s %016llx\n",
4908 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4909 pr_err("%-15s %016llx %-13s %016llx\n",
4910 "br_from:", save->br_from, "br_to:", save->br_to);
4911 pr_err("%-15s %016llx %-13s %016llx\n",
4912 "excp_from:", save->last_excp_from,
4913 "excp_to:", save->last_excp_to);
4916 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4918 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4920 *info1 = control->exit_info_1;
4921 *info2 = control->exit_info_2;
4924 static int handle_exit(struct kvm_vcpu *vcpu)
4926 struct vcpu_svm *svm = to_svm(vcpu);
4927 struct kvm_run *kvm_run = vcpu->run;
4928 u32 exit_code = svm->vmcb->control.exit_code;
4930 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4932 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4933 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4935 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4937 if (unlikely(svm->nested.exit_required)) {
4938 nested_svm_vmexit(svm);
4939 svm->nested.exit_required = false;
4944 if (is_guest_mode(vcpu)) {
4947 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4948 svm->vmcb->control.exit_info_1,
4949 svm->vmcb->control.exit_info_2,
4950 svm->vmcb->control.exit_int_info,
4951 svm->vmcb->control.exit_int_info_err,
4954 vmexit = nested_svm_exit_special(svm);
4956 if (vmexit == NESTED_EXIT_CONTINUE)
4957 vmexit = nested_svm_exit_handled(svm);
4959 if (vmexit == NESTED_EXIT_DONE)
4963 svm_complete_interrupts(svm);
4965 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4966 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4967 kvm_run->fail_entry.hardware_entry_failure_reason
4968 = svm->vmcb->control.exit_code;
4973 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4974 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4975 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4976 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4977 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4979 __func__, svm->vmcb->control.exit_int_info,
4982 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4983 || !svm_exit_handlers[exit_code]) {
4984 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
4986 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4987 vcpu->run->internal.suberror =
4988 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
4989 vcpu->run->internal.ndata = 1;
4990 vcpu->run->internal.data[0] = exit_code;
4994 return svm_exit_handlers[exit_code](svm);
4997 static void reload_tss(struct kvm_vcpu *vcpu)
4999 int cpu = raw_smp_processor_id();
5001 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5002 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5006 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5008 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5009 int asid = sev_get_asid(svm->vcpu.kvm);
5011 /* Assign the asid allocated with this SEV guest */
5012 svm->vmcb->control.asid = asid;
5017 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5018 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5020 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5021 svm->last_cpu == cpu)
5024 svm->last_cpu = cpu;
5025 sd->sev_vmcbs[asid] = svm->vmcb;
5026 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5027 mark_dirty(svm->vmcb, VMCB_ASID);
5030 static void pre_svm_run(struct vcpu_svm *svm)
5032 int cpu = raw_smp_processor_id();
5034 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5036 if (sev_guest(svm->vcpu.kvm))
5037 return pre_sev_run(svm, cpu);
5039 /* FIXME: handle wraparound of asid_generation */
5040 if (svm->asid_generation != sd->asid_generation)
5044 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5046 struct vcpu_svm *svm = to_svm(vcpu);
5048 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5049 vcpu->arch.hflags |= HF_NMI_MASK;
5050 set_intercept(svm, INTERCEPT_IRET);
5051 ++vcpu->stat.nmi_injections;
5054 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5056 struct vmcb_control_area *control;
5058 /* The following fields are ignored when AVIC is enabled */
5059 control = &svm->vmcb->control;
5060 control->int_vector = irq;
5061 control->int_ctl &= ~V_INTR_PRIO_MASK;
5062 control->int_ctl |= V_IRQ_MASK |
5063 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5064 mark_dirty(svm->vmcb, VMCB_INTR);
5067 static void svm_set_irq(struct kvm_vcpu *vcpu)
5069 struct vcpu_svm *svm = to_svm(vcpu);
5071 BUG_ON(!(gif_set(svm)));
5073 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5074 ++vcpu->stat.irq_injections;
5076 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5077 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5080 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5082 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5085 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5087 struct vcpu_svm *svm = to_svm(vcpu);
5089 if (svm_nested_virtualize_tpr(vcpu) ||
5090 kvm_vcpu_apicv_active(vcpu))
5093 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5099 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5102 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5107 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5109 return avic && irqchip_split(vcpu->kvm);
5112 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5116 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5120 /* Note: Currently only used by Hyper-V. */
5121 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5123 struct vcpu_svm *svm = to_svm(vcpu);
5124 struct vmcb *vmcb = svm->vmcb;
5126 if (kvm_vcpu_apicv_active(vcpu))
5127 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5129 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5130 mark_dirty(vmcb, VMCB_AVIC);
5133 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5138 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5140 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5141 smp_mb__after_atomic();
5143 if (avic_vcpu_is_running(vcpu)) {
5144 int cpuid = vcpu->cpu;
5146 if (cpuid != get_cpu())
5147 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5150 kvm_vcpu_wake_up(vcpu);
5153 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5158 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5160 unsigned long flags;
5161 struct amd_svm_iommu_ir *cur;
5163 spin_lock_irqsave(&svm->ir_list_lock, flags);
5164 list_for_each_entry(cur, &svm->ir_list, node) {
5165 if (cur->data != pi->ir_data)
5167 list_del(&cur->node);
5171 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5174 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5177 unsigned long flags;
5178 struct amd_svm_iommu_ir *ir;
5181 * In some cases, the existing irte is updaed and re-set,
5182 * so we need to check here if it's already been * added
5185 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5186 struct kvm *kvm = svm->vcpu.kvm;
5187 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5188 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5189 struct vcpu_svm *prev_svm;
5196 prev_svm = to_svm(prev_vcpu);
5197 svm_ir_list_del(prev_svm, pi);
5201 * Allocating new amd_iommu_pi_data, which will get
5202 * add to the per-vcpu ir_list.
5204 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5209 ir->data = pi->ir_data;
5211 spin_lock_irqsave(&svm->ir_list_lock, flags);
5212 list_add(&ir->node, &svm->ir_list);
5213 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5220 * The HW cannot support posting multicast/broadcast
5221 * interrupts to a vCPU. So, we still use legacy interrupt
5222 * remapping for these kind of interrupts.
5224 * For lowest-priority interrupts, we only support
5225 * those with single CPU as the destination, e.g. user
5226 * configures the interrupts via /proc/irq or uses
5227 * irqbalance to make the interrupts single-CPU.
5230 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5231 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5233 struct kvm_lapic_irq irq;
5234 struct kvm_vcpu *vcpu = NULL;
5236 kvm_set_msi_irq(kvm, e, &irq);
5238 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
5239 !kvm_irq_is_postable(&irq)) {
5240 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5241 __func__, irq.vector);
5245 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5247 *svm = to_svm(vcpu);
5248 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5249 vcpu_info->vector = irq.vector;
5255 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5258 * @host_irq: host irq of the interrupt
5259 * @guest_irq: gsi of the interrupt
5260 * @set: set or unset PI
5261 * returns 0 on success, < 0 on failure
5263 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5264 uint32_t guest_irq, bool set)
5266 struct kvm_kernel_irq_routing_entry *e;
5267 struct kvm_irq_routing_table *irq_rt;
5268 int idx, ret = -EINVAL;
5270 if (!kvm_arch_has_assigned_device(kvm) ||
5271 !irq_remapping_cap(IRQ_POSTING_CAP))
5274 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5275 __func__, host_irq, guest_irq, set);
5277 idx = srcu_read_lock(&kvm->irq_srcu);
5278 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5279 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5281 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5282 struct vcpu_data vcpu_info;
5283 struct vcpu_svm *svm = NULL;
5285 if (e->type != KVM_IRQ_ROUTING_MSI)
5289 * Here, we setup with legacy mode in the following cases:
5290 * 1. When cannot target interrupt to a specific vcpu.
5291 * 2. Unsetting posted interrupt.
5292 * 3. APIC virtialization is disabled for the vcpu.
5293 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5295 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5296 kvm_vcpu_apicv_active(&svm->vcpu)) {
5297 struct amd_iommu_pi_data pi;
5299 /* Try to enable guest_mode in IRTE */
5300 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5302 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5304 pi.is_guest_mode = true;
5305 pi.vcpu_data = &vcpu_info;
5306 ret = irq_set_vcpu_affinity(host_irq, &pi);
5309 * Here, we successfully setting up vcpu affinity in
5310 * IOMMU guest mode. Now, we need to store the posted
5311 * interrupt information in a per-vcpu ir_list so that
5312 * we can reference to them directly when we update vcpu
5313 * scheduling information in IOMMU irte.
5315 if (!ret && pi.is_guest_mode)
5316 svm_ir_list_add(svm, &pi);
5318 /* Use legacy mode in IRTE */
5319 struct amd_iommu_pi_data pi;
5322 * Here, pi is used to:
5323 * - Tell IOMMU to use legacy mode for this interrupt.
5324 * - Retrieve ga_tag of prior interrupt remapping data.
5326 pi.is_guest_mode = false;
5327 ret = irq_set_vcpu_affinity(host_irq, &pi);
5330 * Check if the posted interrupt was previously
5331 * setup with the guest_mode by checking if the ga_tag
5332 * was cached. If so, we need to clean up the per-vcpu
5335 if (!ret && pi.prev_ga_tag) {
5336 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5337 struct kvm_vcpu *vcpu;
5339 vcpu = kvm_get_vcpu_by_id(kvm, id);
5341 svm_ir_list_del(to_svm(vcpu), &pi);
5346 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5347 e->gsi, vcpu_info.vector,
5348 vcpu_info.pi_desc_addr, set);
5352 pr_err("%s: failed to update PI IRTE\n", __func__);
5359 srcu_read_unlock(&kvm->irq_srcu, idx);
5363 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5365 struct vcpu_svm *svm = to_svm(vcpu);
5366 struct vmcb *vmcb = svm->vmcb;
5368 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5369 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5370 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5375 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5377 struct vcpu_svm *svm = to_svm(vcpu);
5379 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5382 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5384 struct vcpu_svm *svm = to_svm(vcpu);
5387 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5388 set_intercept(svm, INTERCEPT_IRET);
5390 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5391 clr_intercept(svm, INTERCEPT_IRET);
5395 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5397 struct vcpu_svm *svm = to_svm(vcpu);
5398 struct vmcb *vmcb = svm->vmcb;
5401 if (!gif_set(svm) ||
5402 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5405 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5407 if (is_guest_mode(vcpu))
5408 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5413 static void enable_irq_window(struct kvm_vcpu *vcpu)
5415 struct vcpu_svm *svm = to_svm(vcpu);
5417 if (kvm_vcpu_apicv_active(vcpu))
5421 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5422 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5423 * get that intercept, this function will be called again though and
5424 * we'll get the vintr intercept. However, if the vGIF feature is
5425 * enabled, the STGI interception will not occur. Enable the irq
5426 * window under the assumption that the hardware will set the GIF.
5428 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5430 svm_inject_irq(svm, 0x0);
5434 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5436 struct vcpu_svm *svm = to_svm(vcpu);
5438 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5440 return; /* IRET will cause a vm exit */
5442 if (!gif_set(svm)) {
5443 if (vgif_enabled(svm))
5444 set_intercept(svm, INTERCEPT_STGI);
5445 return; /* STGI will cause a vm exit */
5448 if (svm->nested.exit_required)
5449 return; /* we're not going to run the guest yet */
5452 * Something prevents NMI from been injected. Single step over possible
5453 * problem (IRET or exception injection or interrupt shadow)
5455 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5456 svm->nmi_singlestep = true;
5457 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5460 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5465 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5470 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5472 struct vcpu_svm *svm = to_svm(vcpu);
5474 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5475 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5477 svm->asid_generation--;
5480 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5482 struct vcpu_svm *svm = to_svm(vcpu);
5484 invlpga(gva, svm->vmcb->control.asid);
5487 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5491 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5493 struct vcpu_svm *svm = to_svm(vcpu);
5495 if (svm_nested_virtualize_tpr(vcpu))
5498 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5499 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5500 kvm_set_cr8(vcpu, cr8);
5504 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5506 struct vcpu_svm *svm = to_svm(vcpu);
5509 if (svm_nested_virtualize_tpr(vcpu) ||
5510 kvm_vcpu_apicv_active(vcpu))
5513 cr8 = kvm_get_cr8(vcpu);
5514 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5515 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5518 static void svm_complete_interrupts(struct vcpu_svm *svm)
5522 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5523 unsigned int3_injected = svm->int3_injected;
5525 svm->int3_injected = 0;
5528 * If we've made progress since setting HF_IRET_MASK, we've
5529 * executed an IRET and can allow NMI injection.
5531 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5532 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5533 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5534 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5537 svm->vcpu.arch.nmi_injected = false;
5538 kvm_clear_exception_queue(&svm->vcpu);
5539 kvm_clear_interrupt_queue(&svm->vcpu);
5541 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5544 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5546 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5547 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5550 case SVM_EXITINTINFO_TYPE_NMI:
5551 svm->vcpu.arch.nmi_injected = true;
5553 case SVM_EXITINTINFO_TYPE_EXEPT:
5555 * In case of software exceptions, do not reinject the vector,
5556 * but re-execute the instruction instead. Rewind RIP first
5557 * if we emulated INT3 before.
5559 if (kvm_exception_is_soft(vector)) {
5560 if (vector == BP_VECTOR && int3_injected &&
5561 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5562 kvm_rip_write(&svm->vcpu,
5563 kvm_rip_read(&svm->vcpu) -
5567 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5568 u32 err = svm->vmcb->control.exit_int_info_err;
5569 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5572 kvm_requeue_exception(&svm->vcpu, vector);
5574 case SVM_EXITINTINFO_TYPE_INTR:
5575 kvm_queue_interrupt(&svm->vcpu, vector, false);
5582 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5584 struct vcpu_svm *svm = to_svm(vcpu);
5585 struct vmcb_control_area *control = &svm->vmcb->control;
5587 control->exit_int_info = control->event_inj;
5588 control->exit_int_info_err = control->event_inj_err;
5589 control->event_inj = 0;
5590 svm_complete_interrupts(svm);
5593 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5595 struct vcpu_svm *svm = to_svm(vcpu);
5597 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5598 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5599 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5602 * A vmexit emulation is required before the vcpu can be executed
5605 if (unlikely(svm->nested.exit_required))
5609 * Disable singlestep if we're injecting an interrupt/exception.
5610 * We don't want our modified rflags to be pushed on the stack where
5611 * we might not be able to easily reset them if we disabled NMI
5614 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5616 * Event injection happens before external interrupts cause a
5617 * vmexit and interrupts are disabled here, so smp_send_reschedule
5618 * is enough to force an immediate vmexit.
5620 disable_nmi_singlestep(svm);
5621 smp_send_reschedule(vcpu->cpu);
5626 sync_lapic_to_cr8(vcpu);
5628 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5631 kvm_load_guest_xcr0(vcpu);
5633 if (lapic_in_kernel(vcpu) &&
5634 vcpu->arch.apic->lapic_timer.timer_advance_ns)
5635 kvm_wait_lapic_expire(vcpu);
5638 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5639 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5640 * is no need to worry about the conditional branch over the wrmsr
5641 * being speculatively taken.
5643 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5648 "push %%" _ASM_BP "; \n\t"
5649 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5650 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5651 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5652 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5653 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5654 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5655 #ifdef CONFIG_X86_64
5656 "mov %c[r8](%[svm]), %%r8 \n\t"
5657 "mov %c[r9](%[svm]), %%r9 \n\t"
5658 "mov %c[r10](%[svm]), %%r10 \n\t"
5659 "mov %c[r11](%[svm]), %%r11 \n\t"
5660 "mov %c[r12](%[svm]), %%r12 \n\t"
5661 "mov %c[r13](%[svm]), %%r13 \n\t"
5662 "mov %c[r14](%[svm]), %%r14 \n\t"
5663 "mov %c[r15](%[svm]), %%r15 \n\t"
5666 /* Enter guest mode */
5667 "push %%" _ASM_AX " \n\t"
5668 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5669 __ex("vmload %%" _ASM_AX) "\n\t"
5670 __ex("vmrun %%" _ASM_AX) "\n\t"
5671 __ex("vmsave %%" _ASM_AX) "\n\t"
5672 "pop %%" _ASM_AX " \n\t"
5674 /* Save guest registers, load host registers */
5675 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5676 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5677 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5678 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5679 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5680 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5681 #ifdef CONFIG_X86_64
5682 "mov %%r8, %c[r8](%[svm]) \n\t"
5683 "mov %%r9, %c[r9](%[svm]) \n\t"
5684 "mov %%r10, %c[r10](%[svm]) \n\t"
5685 "mov %%r11, %c[r11](%[svm]) \n\t"
5686 "mov %%r12, %c[r12](%[svm]) \n\t"
5687 "mov %%r13, %c[r13](%[svm]) \n\t"
5688 "mov %%r14, %c[r14](%[svm]) \n\t"
5689 "mov %%r15, %c[r15](%[svm]) \n\t"
5691 * Clear host registers marked as clobbered to prevent
5694 "xor %%r8d, %%r8d \n\t"
5695 "xor %%r9d, %%r9d \n\t"
5696 "xor %%r10d, %%r10d \n\t"
5697 "xor %%r11d, %%r11d \n\t"
5698 "xor %%r12d, %%r12d \n\t"
5699 "xor %%r13d, %%r13d \n\t"
5700 "xor %%r14d, %%r14d \n\t"
5701 "xor %%r15d, %%r15d \n\t"
5703 "xor %%ebx, %%ebx \n\t"
5704 "xor %%ecx, %%ecx \n\t"
5705 "xor %%edx, %%edx \n\t"
5706 "xor %%esi, %%esi \n\t"
5707 "xor %%edi, %%edi \n\t"
5711 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5712 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5713 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5714 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5715 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5716 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5717 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5718 #ifdef CONFIG_X86_64
5719 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5720 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5721 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5722 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5723 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5724 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5725 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5726 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5729 #ifdef CONFIG_X86_64
5730 , "rbx", "rcx", "rdx", "rsi", "rdi"
5731 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5733 , "ebx", "ecx", "edx", "esi", "edi"
5737 /* Eliminate branch target predictions from guest mode */
5740 #ifdef CONFIG_X86_64
5741 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5743 loadsegment(fs, svm->host.fs);
5744 #ifndef CONFIG_X86_32_LAZY_GS
5745 loadsegment(gs, svm->host.gs);
5750 * We do not use IBRS in the kernel. If this vCPU has used the
5751 * SPEC_CTRL MSR it may have left it on; save the value and
5752 * turn it off. This is much more efficient than blindly adding
5753 * it to the atomic save/restore list. Especially as the former
5754 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5756 * For non-nested case:
5757 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5761 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5764 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5765 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5769 local_irq_disable();
5771 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5773 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5774 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5775 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5776 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5778 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5779 kvm_before_interrupt(&svm->vcpu);
5781 kvm_put_guest_xcr0(vcpu);
5784 /* Any pending NMI will happen here */
5786 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5787 kvm_after_interrupt(&svm->vcpu);
5789 sync_cr8_to_lapic(vcpu);
5793 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5795 /* if exit due to PF check for async PF */
5796 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5797 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5800 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5801 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5805 * We need to handle MC intercepts here before the vcpu has a chance to
5806 * change the physical cpu
5808 if (unlikely(svm->vmcb->control.exit_code ==
5809 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5810 svm_handle_mce(svm);
5812 mark_all_clean(svm->vmcb);
5814 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5816 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5818 struct vcpu_svm *svm = to_svm(vcpu);
5820 svm->vmcb->save.cr3 = __sme_set(root);
5821 mark_dirty(svm->vmcb, VMCB_CR);
5824 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5826 struct vcpu_svm *svm = to_svm(vcpu);
5828 svm->vmcb->control.nested_cr3 = __sme_set(root);
5829 mark_dirty(svm->vmcb, VMCB_NPT);
5831 /* Also sync guest cr3 here in case we live migrate */
5832 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5833 mark_dirty(svm->vmcb, VMCB_CR);
5836 static int is_disabled(void)
5840 rdmsrl(MSR_VM_CR, vm_cr);
5841 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5848 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5851 * Patch in the VMMCALL instruction:
5853 hypercall[0] = 0x0f;
5854 hypercall[1] = 0x01;
5855 hypercall[2] = 0xd9;
5858 static int __init svm_check_processor_compat(void)
5863 static bool svm_cpu_has_accelerated_tpr(void)
5868 static bool svm_has_emulated_msr(int index)
5871 case MSR_IA32_MCG_EXT_CTL:
5872 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5881 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5886 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5888 struct vcpu_svm *svm = to_svm(vcpu);
5890 /* Update nrips enabled cache */
5891 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5893 if (!kvm_vcpu_apicv_active(vcpu))
5896 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5899 #define F(x) bit(X86_FEATURE_##x)
5901 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5906 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5910 entry->ecx |= (1 << 2); /* Set SVM bit */
5913 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5914 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5915 entry->ebx |= F(VIRT_SSBD);
5918 entry->eax = 1; /* SVM revision 1 */
5919 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5920 ASID emulation to nested SVM */
5921 entry->ecx = 0; /* Reserved */
5922 entry->edx = 0; /* Per default do not support any
5923 additional features */
5925 /* Support next_rip if host supports it */
5926 if (boot_cpu_has(X86_FEATURE_NRIPS))
5927 entry->edx |= F(NRIPS);
5929 /* Support NPT for the guest if enabled */
5931 entry->edx |= F(NPT);
5935 /* Support memory encryption cpuid if host supports it */
5936 if (boot_cpu_has(X86_FEATURE_SEV))
5937 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5938 &entry->ecx, &entry->edx);
5943 static int svm_get_lpage_level(void)
5945 return PT_PDPE_LEVEL;
5948 static bool svm_rdtscp_supported(void)
5950 return boot_cpu_has(X86_FEATURE_RDTSCP);
5953 static bool svm_invpcid_supported(void)
5958 static bool svm_mpx_supported(void)
5963 static bool svm_xsaves_supported(void)
5968 static bool svm_umip_emulated(void)
5973 static bool svm_pt_supported(void)
5978 static bool svm_has_wbinvd_exit(void)
5983 #define PRE_EX(exit) { .exit_code = (exit), \
5984 .stage = X86_ICPT_PRE_EXCEPT, }
5985 #define POST_EX(exit) { .exit_code = (exit), \
5986 .stage = X86_ICPT_POST_EXCEPT, }
5987 #define POST_MEM(exit) { .exit_code = (exit), \
5988 .stage = X86_ICPT_POST_MEMACCESS, }
5990 static const struct __x86_intercept {
5992 enum x86_intercept_stage stage;
5993 } x86_intercept_map[] = {
5994 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5995 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5996 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5997 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5998 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5999 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
6000 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
6001 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
6002 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
6003 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
6004 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
6005 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
6006 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
6007 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
6008 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
6009 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
6010 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
6011 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
6012 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
6013 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
6014 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
6015 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
6016 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
6017 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
6018 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
6019 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
6020 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
6021 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
6022 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
6023 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
6024 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
6025 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
6026 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
6027 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
6028 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
6029 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
6030 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
6031 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
6032 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
6033 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
6034 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
6035 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
6036 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
6037 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
6038 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
6039 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
6040 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
6047 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6048 struct x86_instruction_info *info,
6049 enum x86_intercept_stage stage)
6051 struct vcpu_svm *svm = to_svm(vcpu);
6052 int vmexit, ret = X86EMUL_CONTINUE;
6053 struct __x86_intercept icpt_info;
6054 struct vmcb *vmcb = svm->vmcb;
6056 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6059 icpt_info = x86_intercept_map[info->intercept];
6061 if (stage != icpt_info.stage)
6064 switch (icpt_info.exit_code) {
6065 case SVM_EXIT_READ_CR0:
6066 if (info->intercept == x86_intercept_cr_read)
6067 icpt_info.exit_code += info->modrm_reg;
6069 case SVM_EXIT_WRITE_CR0: {
6070 unsigned long cr0, val;
6073 if (info->intercept == x86_intercept_cr_write)
6074 icpt_info.exit_code += info->modrm_reg;
6076 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6077 info->intercept == x86_intercept_clts)
6080 intercept = svm->nested.intercept;
6082 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6085 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6086 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6088 if (info->intercept == x86_intercept_lmsw) {
6091 /* lmsw can't clear PE - catch this here */
6092 if (cr0 & X86_CR0_PE)
6097 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6101 case SVM_EXIT_READ_DR0:
6102 case SVM_EXIT_WRITE_DR0:
6103 icpt_info.exit_code += info->modrm_reg;
6106 if (info->intercept == x86_intercept_wrmsr)
6107 vmcb->control.exit_info_1 = 1;
6109 vmcb->control.exit_info_1 = 0;
6111 case SVM_EXIT_PAUSE:
6113 * We get this for NOP only, but pause
6114 * is rep not, check this here
6116 if (info->rep_prefix != REPE_PREFIX)
6119 case SVM_EXIT_IOIO: {
6123 if (info->intercept == x86_intercept_in ||
6124 info->intercept == x86_intercept_ins) {
6125 exit_info = ((info->src_val & 0xffff) << 16) |
6127 bytes = info->dst_bytes;
6129 exit_info = (info->dst_val & 0xffff) << 16;
6130 bytes = info->src_bytes;
6133 if (info->intercept == x86_intercept_outs ||
6134 info->intercept == x86_intercept_ins)
6135 exit_info |= SVM_IOIO_STR_MASK;
6137 if (info->rep_prefix)
6138 exit_info |= SVM_IOIO_REP_MASK;
6140 bytes = min(bytes, 4u);
6142 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6144 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6146 vmcb->control.exit_info_1 = exit_info;
6147 vmcb->control.exit_info_2 = info->next_rip;
6155 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6156 if (static_cpu_has(X86_FEATURE_NRIPS))
6157 vmcb->control.next_rip = info->next_rip;
6158 vmcb->control.exit_code = icpt_info.exit_code;
6159 vmexit = nested_svm_exit_handled(svm);
6161 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6168 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6173 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6175 if (pause_filter_thresh)
6176 shrink_ple_window(vcpu);
6179 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6181 if (avic_handle_apic_id_update(vcpu) != 0)
6183 avic_handle_dfr_update(vcpu);
6184 avic_handle_ldr_update(vcpu);
6187 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6189 /* [63:9] are reserved. */
6190 vcpu->arch.mcg_cap &= 0x1ff;
6193 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6195 struct vcpu_svm *svm = to_svm(vcpu);
6197 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6201 if (is_guest_mode(&svm->vcpu) &&
6202 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6203 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6204 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6205 svm->nested.exit_required = true;
6212 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6214 struct vcpu_svm *svm = to_svm(vcpu);
6217 if (is_guest_mode(vcpu)) {
6218 /* FED8h - SVM Guest */
6219 put_smstate(u64, smstate, 0x7ed8, 1);
6220 /* FEE0h - SVM Guest VMCB Physical Address */
6221 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6223 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6224 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6225 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6227 ret = nested_svm_vmexit(svm);
6234 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6236 struct vcpu_svm *svm = to_svm(vcpu);
6237 struct vmcb *nested_vmcb;
6238 struct kvm_host_map map;
6242 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6243 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6246 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6248 nested_vmcb = map.hva;
6249 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6254 static int enable_smi_window(struct kvm_vcpu *vcpu)
6256 struct vcpu_svm *svm = to_svm(vcpu);
6258 if (!gif_set(svm)) {
6259 if (vgif_enabled(svm))
6260 set_intercept(svm, INTERCEPT_STGI);
6261 /* STGI will cause a vm exit */
6267 static int sev_asid_new(void)
6272 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6274 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6275 if (pos >= max_sev_asid)
6278 set_bit(pos, sev_asid_bitmap);
6282 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6284 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6288 if (unlikely(sev->active))
6291 asid = sev_asid_new();
6295 ret = sev_platform_init(&argp->error);
6301 INIT_LIST_HEAD(&sev->regions_list);
6306 __sev_asid_free(asid);
6310 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6312 struct sev_data_activate *data;
6313 int asid = sev_get_asid(kvm);
6316 wbinvd_on_all_cpus();
6318 ret = sev_guest_df_flush(error);
6322 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6326 /* activate ASID on the given handle */
6327 data->handle = handle;
6329 ret = sev_guest_activate(data, error);
6335 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6344 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6350 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6352 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6354 return __sev_issue_cmd(sev->fd, id, data, error);
6357 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6359 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6360 struct sev_data_launch_start *start;
6361 struct kvm_sev_launch_start params;
6362 void *dh_blob, *session_blob;
6363 int *error = &argp->error;
6366 if (!sev_guest(kvm))
6369 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6372 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6377 if (params.dh_uaddr) {
6378 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6379 if (IS_ERR(dh_blob)) {
6380 ret = PTR_ERR(dh_blob);
6384 start->dh_cert_address = __sme_set(__pa(dh_blob));
6385 start->dh_cert_len = params.dh_len;
6388 session_blob = NULL;
6389 if (params.session_uaddr) {
6390 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6391 if (IS_ERR(session_blob)) {
6392 ret = PTR_ERR(session_blob);
6396 start->session_address = __sme_set(__pa(session_blob));
6397 start->session_len = params.session_len;
6400 start->handle = params.handle;
6401 start->policy = params.policy;
6403 /* create memory encryption context */
6404 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6406 goto e_free_session;
6408 /* Bind ASID to this guest */
6409 ret = sev_bind_asid(kvm, start->handle, error);
6411 goto e_free_session;
6413 /* return handle to userspace */
6414 params.handle = start->handle;
6415 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
6416 sev_unbind_asid(kvm, start->handle);
6418 goto e_free_session;
6421 sev->handle = start->handle;
6422 sev->fd = argp->sev_fd;
6425 kfree(session_blob);
6433 static unsigned long get_num_contig_pages(unsigned long idx,
6434 struct page **inpages, unsigned long npages)
6436 unsigned long paddr, next_paddr;
6437 unsigned long i = idx + 1, pages = 1;
6439 /* find the number of contiguous pages starting from idx */
6440 paddr = __sme_page_pa(inpages[idx]);
6441 while (i < npages) {
6442 next_paddr = __sme_page_pa(inpages[i++]);
6443 if ((paddr + PAGE_SIZE) == next_paddr) {
6454 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6456 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6457 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6458 struct kvm_sev_launch_update_data params;
6459 struct sev_data_launch_update_data *data;
6460 struct page **inpages;
6463 if (!sev_guest(kvm))
6466 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6469 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6473 vaddr = params.uaddr;
6475 vaddr_end = vaddr + size;
6477 /* Lock the user memory. */
6478 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6485 * The LAUNCH_UPDATE command will perform in-place encryption of the
6486 * memory content (i.e it will write the same memory region with C=1).
6487 * It's possible that the cache may contain the data with C=0, i.e.,
6488 * unencrypted so invalidate it first.
6490 sev_clflush_pages(inpages, npages);
6492 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6496 * If the user buffer is not page-aligned, calculate the offset
6499 offset = vaddr & (PAGE_SIZE - 1);
6501 /* Calculate the number of pages that can be encrypted in one go. */
6502 pages = get_num_contig_pages(i, inpages, npages);
6504 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6506 data->handle = sev->handle;
6508 data->address = __sme_page_pa(inpages[i]) + offset;
6509 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6514 next_vaddr = vaddr + len;
6518 /* content of memory is updated, mark pages dirty */
6519 for (i = 0; i < npages; i++) {
6520 set_page_dirty_lock(inpages[i]);
6521 mark_page_accessed(inpages[i]);
6523 /* unlock the user pages */
6524 sev_unpin_memory(kvm, inpages, npages);
6530 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6532 void __user *measure = (void __user *)(uintptr_t)argp->data;
6533 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6534 struct sev_data_launch_measure *data;
6535 struct kvm_sev_launch_measure params;
6536 void __user *p = NULL;
6540 if (!sev_guest(kvm))
6543 if (copy_from_user(¶ms, measure, sizeof(params)))
6546 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6550 /* User wants to query the blob length */
6554 p = (void __user *)(uintptr_t)params.uaddr;
6556 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6562 blob = kmalloc(params.len, GFP_KERNEL);
6566 data->address = __psp_pa(blob);
6567 data->len = params.len;
6571 data->handle = sev->handle;
6572 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6575 * If we query the session length, FW responded with expected data.
6584 if (copy_to_user(p, blob, params.len))
6589 params.len = data->len;
6590 if (copy_to_user(measure, ¶ms, sizeof(params)))
6599 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6601 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6602 struct sev_data_launch_finish *data;
6605 if (!sev_guest(kvm))
6608 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6612 data->handle = sev->handle;
6613 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6619 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6621 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6622 struct kvm_sev_guest_status params;
6623 struct sev_data_guest_status *data;
6626 if (!sev_guest(kvm))
6629 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6633 data->handle = sev->handle;
6634 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6638 params.policy = data->policy;
6639 params.state = data->state;
6640 params.handle = data->handle;
6642 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
6649 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6650 unsigned long dst, int size,
6651 int *error, bool enc)
6653 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6654 struct sev_data_dbg *data;
6657 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6661 data->handle = sev->handle;
6662 data->dst_addr = dst;
6663 data->src_addr = src;
6666 ret = sev_issue_cmd(kvm,
6667 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6673 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6674 unsigned long dst_paddr, int sz, int *err)
6679 * Its safe to read more than we are asked, caller should ensure that
6680 * destination has enough space.
6682 src_paddr = round_down(src_paddr, 16);
6683 offset = src_paddr & 15;
6684 sz = round_up(sz + offset, 16);
6686 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6689 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6690 unsigned long __user dst_uaddr,
6691 unsigned long dst_paddr,
6694 struct page *tpage = NULL;
6697 /* if inputs are not 16-byte then use intermediate buffer */
6698 if (!IS_ALIGNED(dst_paddr, 16) ||
6699 !IS_ALIGNED(paddr, 16) ||
6700 !IS_ALIGNED(size, 16)) {
6701 tpage = (void *)alloc_page(GFP_KERNEL);
6705 dst_paddr = __sme_page_pa(tpage);
6708 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6713 offset = paddr & 15;
6714 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6715 page_address(tpage) + offset, size))
6726 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6727 unsigned long __user vaddr,
6728 unsigned long dst_paddr,
6729 unsigned long __user dst_vaddr,
6730 int size, int *error)
6732 struct page *src_tpage = NULL;
6733 struct page *dst_tpage = NULL;
6734 int ret, len = size;
6736 /* If source buffer is not aligned then use an intermediate buffer */
6737 if (!IS_ALIGNED(vaddr, 16)) {
6738 src_tpage = alloc_page(GFP_KERNEL);
6742 if (copy_from_user(page_address(src_tpage),
6743 (void __user *)(uintptr_t)vaddr, size)) {
6744 __free_page(src_tpage);
6748 paddr = __sme_page_pa(src_tpage);
6752 * If destination buffer or length is not aligned then do read-modify-write:
6753 * - decrypt destination in an intermediate buffer
6754 * - copy the source buffer in an intermediate buffer
6755 * - use the intermediate buffer as source buffer
6757 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6760 dst_tpage = alloc_page(GFP_KERNEL);
6766 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6767 __sme_page_pa(dst_tpage), size, error);
6772 * If source is kernel buffer then use memcpy() otherwise
6775 dst_offset = dst_paddr & 15;
6778 memcpy(page_address(dst_tpage) + dst_offset,
6779 page_address(src_tpage), size);
6781 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6782 (void __user *)(uintptr_t)vaddr, size)) {
6788 paddr = __sme_page_pa(dst_tpage);
6789 dst_paddr = round_down(dst_paddr, 16);
6790 len = round_up(size, 16);
6793 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6797 __free_page(src_tpage);
6799 __free_page(dst_tpage);
6803 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6805 unsigned long vaddr, vaddr_end, next_vaddr;
6806 unsigned long dst_vaddr;
6807 struct page **src_p, **dst_p;
6808 struct kvm_sev_dbg debug;
6813 if (!sev_guest(kvm))
6816 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6819 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6821 if (!debug.dst_uaddr)
6824 vaddr = debug.src_uaddr;
6826 vaddr_end = vaddr + size;
6827 dst_vaddr = debug.dst_uaddr;
6829 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6830 int len, s_off, d_off;
6832 /* lock userspace source and destination page */
6833 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6837 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6839 sev_unpin_memory(kvm, src_p, n);
6844 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6845 * memory content (i.e it will write the same memory region with C=1).
6846 * It's possible that the cache may contain the data with C=0, i.e.,
6847 * unencrypted so invalidate it first.
6849 sev_clflush_pages(src_p, 1);
6850 sev_clflush_pages(dst_p, 1);
6853 * Since user buffer may not be page aligned, calculate the
6854 * offset within the page.
6856 s_off = vaddr & ~PAGE_MASK;
6857 d_off = dst_vaddr & ~PAGE_MASK;
6858 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6861 ret = __sev_dbg_decrypt_user(kvm,
6862 __sme_page_pa(src_p[0]) + s_off,
6864 __sme_page_pa(dst_p[0]) + d_off,
6867 ret = __sev_dbg_encrypt_user(kvm,
6868 __sme_page_pa(src_p[0]) + s_off,
6870 __sme_page_pa(dst_p[0]) + d_off,
6874 sev_unpin_memory(kvm, src_p, n);
6875 sev_unpin_memory(kvm, dst_p, n);
6880 next_vaddr = vaddr + len;
6881 dst_vaddr = dst_vaddr + len;
6888 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6890 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6891 struct sev_data_launch_secret *data;
6892 struct kvm_sev_launch_secret params;
6893 struct page **pages;
6898 if (!sev_guest(kvm))
6901 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6904 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6909 * The secret must be copied into contiguous memory region, lets verify
6910 * that userspace memory pages are contiguous before we issue command.
6912 if (get_num_contig_pages(0, pages, n) != n) {
6914 goto e_unpin_memory;
6918 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6920 goto e_unpin_memory;
6922 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6923 data->guest_address = __sme_page_pa(pages[0]) + offset;
6924 data->guest_len = params.guest_len;
6926 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6928 ret = PTR_ERR(blob);
6932 data->trans_address = __psp_pa(blob);
6933 data->trans_len = params.trans_len;
6935 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6940 data->hdr_address = __psp_pa(hdr);
6941 data->hdr_len = params.hdr_len;
6943 data->handle = sev->handle;
6944 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6953 sev_unpin_memory(kvm, pages, n);
6957 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6959 struct kvm_sev_cmd sev_cmd;
6962 if (!svm_sev_enabled())
6965 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6968 mutex_lock(&kvm->lock);
6970 switch (sev_cmd.id) {
6972 r = sev_guest_init(kvm, &sev_cmd);
6974 case KVM_SEV_LAUNCH_START:
6975 r = sev_launch_start(kvm, &sev_cmd);
6977 case KVM_SEV_LAUNCH_UPDATE_DATA:
6978 r = sev_launch_update_data(kvm, &sev_cmd);
6980 case KVM_SEV_LAUNCH_MEASURE:
6981 r = sev_launch_measure(kvm, &sev_cmd);
6983 case KVM_SEV_LAUNCH_FINISH:
6984 r = sev_launch_finish(kvm, &sev_cmd);
6986 case KVM_SEV_GUEST_STATUS:
6987 r = sev_guest_status(kvm, &sev_cmd);
6989 case KVM_SEV_DBG_DECRYPT:
6990 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6992 case KVM_SEV_DBG_ENCRYPT:
6993 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6995 case KVM_SEV_LAUNCH_SECRET:
6996 r = sev_launch_secret(kvm, &sev_cmd);
7003 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7007 mutex_unlock(&kvm->lock);
7011 static int svm_register_enc_region(struct kvm *kvm,
7012 struct kvm_enc_region *range)
7014 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7015 struct enc_region *region;
7018 if (!sev_guest(kvm))
7021 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7024 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7028 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
7029 if (!region->pages) {
7035 * The guest may change the memory encryption attribute from C=0 -> C=1
7036 * or vice versa for this memory range. Lets make sure caches are
7037 * flushed to ensure that guest data gets written into memory with
7040 sev_clflush_pages(region->pages, region->npages);
7042 region->uaddr = range->addr;
7043 region->size = range->size;
7045 mutex_lock(&kvm->lock);
7046 list_add_tail(®ion->list, &sev->regions_list);
7047 mutex_unlock(&kvm->lock);
7056 static struct enc_region *
7057 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7059 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7060 struct list_head *head = &sev->regions_list;
7061 struct enc_region *i;
7063 list_for_each_entry(i, head, list) {
7064 if (i->uaddr == range->addr &&
7065 i->size == range->size)
7073 static int svm_unregister_enc_region(struct kvm *kvm,
7074 struct kvm_enc_region *range)
7076 struct enc_region *region;
7079 mutex_lock(&kvm->lock);
7081 if (!sev_guest(kvm)) {
7086 region = find_enc_region(kvm, range);
7092 __unregister_enc_region_locked(kvm, region);
7094 mutex_unlock(&kvm->lock);
7098 mutex_unlock(&kvm->lock);
7102 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7104 unsigned long cr4 = kvm_read_cr4(vcpu);
7105 bool smep = cr4 & X86_CR4_SMEP;
7106 bool smap = cr4 & X86_CR4_SMAP;
7107 bool is_user = svm_get_cpl(vcpu) == 3;
7110 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7113 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7114 * possible that CPU microcode implementing DecodeAssist will fail
7115 * to read bytes of instruction which caused #NPF. In this case,
7116 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7117 * return 0 instead of the correct guest instruction bytes.
7119 * This happens because CPU microcode reading instruction bytes
7120 * uses a special opcode which attempts to read data using CPL=0
7121 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7122 * fault, it gives up and returns no instruction bytes.
7125 * We reach here in case CPU supports DecodeAssist, raised #NPF and
7126 * returned 0 in GuestIntrBytes field of the VMCB.
7127 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7128 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7129 * in case vCPU CPL==3 (Because otherwise guest would have triggered
7130 * a SMEP fault instead of #NPF).
7131 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7132 * As most guests enable SMAP if they have also enabled SMEP, use above
7133 * logic in order to attempt minimize false-positive of detecting errata
7134 * while still preserving all cases semantic correctness.
7137 * To determine what instruction the guest was executing, the hypervisor
7138 * will have to decode the instruction at the instruction pointer.
7140 * In non SEV guest, hypervisor will be able to read the guest
7141 * memory to decode the instruction pointer when insn_len is zero
7142 * so we return true to indicate that decoding is possible.
7144 * But in the SEV guest, the guest memory is encrypted with the
7145 * guest specific key and hypervisor will not be able to decode the
7146 * instruction pointer so we will not able to workaround it. Lets
7147 * print the error and request to kill the guest.
7149 if (smap && (!smep || is_user)) {
7150 if (!sev_guest(vcpu->kvm))
7153 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7154 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7160 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7162 struct vcpu_svm *svm = to_svm(vcpu);
7165 * TODO: Last condition latch INIT signals on vCPU when
7166 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7167 * To properly emulate the INIT intercept, SVM should implement
7168 * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7169 * there if an INIT signal is pending.
7171 return !gif_set(svm) ||
7172 (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
7175 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7176 .cpu_has_kvm_support = has_svm,
7177 .disabled_by_bios = is_disabled,
7178 .hardware_setup = svm_hardware_setup,
7179 .hardware_unsetup = svm_hardware_unsetup,
7180 .check_processor_compatibility = svm_check_processor_compat,
7181 .hardware_enable = svm_hardware_enable,
7182 .hardware_disable = svm_hardware_disable,
7183 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7184 .has_emulated_msr = svm_has_emulated_msr,
7186 .vcpu_create = svm_create_vcpu,
7187 .vcpu_free = svm_free_vcpu,
7188 .vcpu_reset = svm_vcpu_reset,
7190 .vm_alloc = svm_vm_alloc,
7191 .vm_free = svm_vm_free,
7192 .vm_init = avic_vm_init,
7193 .vm_destroy = svm_vm_destroy,
7195 .prepare_guest_switch = svm_prepare_guest_switch,
7196 .vcpu_load = svm_vcpu_load,
7197 .vcpu_put = svm_vcpu_put,
7198 .vcpu_blocking = svm_vcpu_blocking,
7199 .vcpu_unblocking = svm_vcpu_unblocking,
7201 .update_bp_intercept = update_bp_intercept,
7202 .get_msr_feature = svm_get_msr_feature,
7203 .get_msr = svm_get_msr,
7204 .set_msr = svm_set_msr,
7205 .get_segment_base = svm_get_segment_base,
7206 .get_segment = svm_get_segment,
7207 .set_segment = svm_set_segment,
7208 .get_cpl = svm_get_cpl,
7209 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7210 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7211 .decache_cr3 = svm_decache_cr3,
7212 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7213 .set_cr0 = svm_set_cr0,
7214 .set_cr3 = svm_set_cr3,
7215 .set_cr4 = svm_set_cr4,
7216 .set_efer = svm_set_efer,
7217 .get_idt = svm_get_idt,
7218 .set_idt = svm_set_idt,
7219 .get_gdt = svm_get_gdt,
7220 .set_gdt = svm_set_gdt,
7221 .get_dr6 = svm_get_dr6,
7222 .set_dr6 = svm_set_dr6,
7223 .set_dr7 = svm_set_dr7,
7224 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7225 .cache_reg = svm_cache_reg,
7226 .get_rflags = svm_get_rflags,
7227 .set_rflags = svm_set_rflags,
7229 .tlb_flush = svm_flush_tlb,
7230 .tlb_flush_gva = svm_flush_tlb_gva,
7232 .run = svm_vcpu_run,
7233 .handle_exit = handle_exit,
7234 .skip_emulated_instruction = skip_emulated_instruction,
7235 .set_interrupt_shadow = svm_set_interrupt_shadow,
7236 .get_interrupt_shadow = svm_get_interrupt_shadow,
7237 .patch_hypercall = svm_patch_hypercall,
7238 .set_irq = svm_set_irq,
7239 .set_nmi = svm_inject_nmi,
7240 .queue_exception = svm_queue_exception,
7241 .cancel_injection = svm_cancel_injection,
7242 .interrupt_allowed = svm_interrupt_allowed,
7243 .nmi_allowed = svm_nmi_allowed,
7244 .get_nmi_mask = svm_get_nmi_mask,
7245 .set_nmi_mask = svm_set_nmi_mask,
7246 .enable_nmi_window = enable_nmi_window,
7247 .enable_irq_window = enable_irq_window,
7248 .update_cr8_intercept = update_cr8_intercept,
7249 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7250 .get_enable_apicv = svm_get_enable_apicv,
7251 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7252 .load_eoi_exitmap = svm_load_eoi_exitmap,
7253 .hwapic_irr_update = svm_hwapic_irr_update,
7254 .hwapic_isr_update = svm_hwapic_isr_update,
7255 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7256 .apicv_post_state_restore = avic_post_state_restore,
7258 .set_tss_addr = svm_set_tss_addr,
7259 .set_identity_map_addr = svm_set_identity_map_addr,
7260 .get_tdp_level = get_npt_level,
7261 .get_mt_mask = svm_get_mt_mask,
7263 .get_exit_info = svm_get_exit_info,
7265 .get_lpage_level = svm_get_lpage_level,
7267 .cpuid_update = svm_cpuid_update,
7269 .rdtscp_supported = svm_rdtscp_supported,
7270 .invpcid_supported = svm_invpcid_supported,
7271 .mpx_supported = svm_mpx_supported,
7272 .xsaves_supported = svm_xsaves_supported,
7273 .umip_emulated = svm_umip_emulated,
7274 .pt_supported = svm_pt_supported,
7276 .set_supported_cpuid = svm_set_supported_cpuid,
7278 .has_wbinvd_exit = svm_has_wbinvd_exit,
7280 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7281 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7283 .set_tdp_cr3 = set_tdp_cr3,
7285 .check_intercept = svm_check_intercept,
7286 .handle_exit_irqoff = svm_handle_exit_irqoff,
7288 .request_immediate_exit = __kvm_request_immediate_exit,
7290 .sched_in = svm_sched_in,
7292 .pmu_ops = &amd_pmu_ops,
7293 .deliver_posted_interrupt = svm_deliver_avic_intr,
7294 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7295 .update_pi_irte = svm_update_pi_irte,
7296 .setup_mce = svm_setup_mce,
7298 .smi_allowed = svm_smi_allowed,
7299 .pre_enter_smm = svm_pre_enter_smm,
7300 .pre_leave_smm = svm_pre_leave_smm,
7301 .enable_smi_window = enable_smi_window,
7303 .mem_enc_op = svm_mem_enc_op,
7304 .mem_enc_reg_region = svm_register_enc_region,
7305 .mem_enc_unreg_region = svm_unregister_enc_region,
7307 .nested_enable_evmcs = NULL,
7308 .nested_get_evmcs_version = NULL,
7310 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7312 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
7315 static int __init svm_init(void)
7317 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7318 __alignof__(struct vcpu_svm), THIS_MODULE);
7321 static void __exit svm_exit(void)
7326 module_init(svm_init)
7327 module_exit(svm_exit)