fce3ba0f2079e58577073407bb68dc4126080f4e
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT            (1 <<  0)
51 #define SVM_FEATURE_LBRV           (1 <<  1)
52 #define SVM_FEATURE_SVML           (1 <<  2)
53 #define SVM_FEATURE_NRIP           (1 <<  3)
54 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
55 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
56 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
57 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
58 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
59
60 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
61 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
62 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
63
64 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
65
66 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
67 #define TSC_RATIO_MIN           0x0000000000000001ULL
68 #define TSC_RATIO_MAX           0x000000ffffffffffULL
69
70 static bool erratum_383_found __read_mostly;
71
72 static const u32 host_save_user_msrs[] = {
73 #ifdef CONFIG_X86_64
74         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
75         MSR_FS_BASE,
76 #endif
77         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
78 };
79
80 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
81
82 struct kvm_vcpu;
83
84 struct nested_state {
85         struct vmcb *hsave;
86         u64 hsave_msr;
87         u64 vm_cr_msr;
88         u64 vmcb;
89
90         /* These are the merged vectors */
91         u32 *msrpm;
92
93         /* gpa pointers to the real vectors */
94         u64 vmcb_msrpm;
95         u64 vmcb_iopm;
96
97         /* A VMEXIT is required but not yet emulated */
98         bool exit_required;
99
100         /* cache for intercepts of the guest */
101         u32 intercept_cr;
102         u32 intercept_dr;
103         u32 intercept_exceptions;
104         u64 intercept;
105
106         /* Nested Paging related state */
107         u64 nested_cr3;
108 };
109
110 #define MSRPM_OFFSETS   16
111 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
112
113 /*
114  * Set osvw_len to higher value when updated Revision Guides
115  * are published and we know what the new status bits are
116  */
117 static uint64_t osvw_len = 4, osvw_status;
118
119 struct vcpu_svm {
120         struct kvm_vcpu vcpu;
121         struct vmcb *vmcb;
122         unsigned long vmcb_pa;
123         struct svm_cpu_data *svm_data;
124         uint64_t asid_generation;
125         uint64_t sysenter_esp;
126         uint64_t sysenter_eip;
127
128         u64 next_rip;
129
130         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
131         struct {
132                 u16 fs;
133                 u16 gs;
134                 u16 ldt;
135                 u64 gs_base;
136         } host;
137
138         u32 *msrpm;
139
140         ulong nmi_iret_rip;
141
142         struct nested_state nested;
143
144         bool nmi_singlestep;
145
146         unsigned int3_injected;
147         unsigned long int3_rip;
148         u32 apf_reason;
149
150         u64  tsc_ratio;
151 };
152
153 static DEFINE_PER_CPU(u64, current_tsc_ratio);
154 #define TSC_RATIO_DEFAULT       0x0100000000ULL
155
156 #define MSR_INVALID                     0xffffffffU
157
158 static struct svm_direct_access_msrs {
159         u32 index;   /* Index of the MSR */
160         bool always; /* True if intercept is always on */
161 } direct_access_msrs[] = {
162         { .index = MSR_STAR,                            .always = true  },
163         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
164 #ifdef CONFIG_X86_64
165         { .index = MSR_GS_BASE,                         .always = true  },
166         { .index = MSR_FS_BASE,                         .always = true  },
167         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
168         { .index = MSR_LSTAR,                           .always = true  },
169         { .index = MSR_CSTAR,                           .always = true  },
170         { .index = MSR_SYSCALL_MASK,                    .always = true  },
171 #endif
172         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
173         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
174         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
175         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
176         { .index = MSR_INVALID,                         .always = false },
177 };
178
179 /* enable NPT for AMD64 and X86 with PAE */
180 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
181 static bool npt_enabled = true;
182 #else
183 static bool npt_enabled;
184 #endif
185 static int npt = 1;
186
187 module_param(npt, int, S_IRUGO);
188
189 static int nested = 1;
190 module_param(nested, int, S_IRUGO);
191
192 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
193 static void svm_complete_interrupts(struct vcpu_svm *svm);
194
195 static int nested_svm_exit_handled(struct vcpu_svm *svm);
196 static int nested_svm_intercept(struct vcpu_svm *svm);
197 static int nested_svm_vmexit(struct vcpu_svm *svm);
198 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
199                                       bool has_error_code, u32 error_code);
200 static u64 __scale_tsc(u64 ratio, u64 tsc);
201
202 enum {
203         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
204                             pause filter count */
205         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
206         VMCB_ASID,       /* ASID */
207         VMCB_INTR,       /* int_ctl, int_vector */
208         VMCB_NPT,        /* npt_en, nCR3, gPAT */
209         VMCB_CR,         /* CR0, CR3, CR4, EFER */
210         VMCB_DR,         /* DR6, DR7 */
211         VMCB_DT,         /* GDT, IDT */
212         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
213         VMCB_CR2,        /* CR2 only */
214         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
215         VMCB_DIRTY_MAX,
216 };
217
218 /* TPR and CR2 are always written before VMRUN */
219 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
220
221 static inline void mark_all_dirty(struct vmcb *vmcb)
222 {
223         vmcb->control.clean = 0;
224 }
225
226 static inline void mark_all_clean(struct vmcb *vmcb)
227 {
228         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
229                                & ~VMCB_ALWAYS_DIRTY_MASK;
230 }
231
232 static inline void mark_dirty(struct vmcb *vmcb, int bit)
233 {
234         vmcb->control.clean &= ~(1 << bit);
235 }
236
237 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
238 {
239         return container_of(vcpu, struct vcpu_svm, vcpu);
240 }
241
242 static void recalc_intercepts(struct vcpu_svm *svm)
243 {
244         struct vmcb_control_area *c, *h;
245         struct nested_state *g;
246
247         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
248
249         if (!is_guest_mode(&svm->vcpu))
250                 return;
251
252         c = &svm->vmcb->control;
253         h = &svm->nested.hsave->control;
254         g = &svm->nested;
255
256         c->intercept_cr = h->intercept_cr | g->intercept_cr;
257         c->intercept_dr = h->intercept_dr | g->intercept_dr;
258         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
259         c->intercept = h->intercept | g->intercept;
260 }
261
262 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
263 {
264         if (is_guest_mode(&svm->vcpu))
265                 return svm->nested.hsave;
266         else
267                 return svm->vmcb;
268 }
269
270 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
271 {
272         struct vmcb *vmcb = get_host_vmcb(svm);
273
274         vmcb->control.intercept_cr |= (1U << bit);
275
276         recalc_intercepts(svm);
277 }
278
279 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
280 {
281         struct vmcb *vmcb = get_host_vmcb(svm);
282
283         vmcb->control.intercept_cr &= ~(1U << bit);
284
285         recalc_intercepts(svm);
286 }
287
288 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
289 {
290         struct vmcb *vmcb = get_host_vmcb(svm);
291
292         return vmcb->control.intercept_cr & (1U << bit);
293 }
294
295 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
296 {
297         struct vmcb *vmcb = get_host_vmcb(svm);
298
299         vmcb->control.intercept_dr |= (1U << bit);
300
301         recalc_intercepts(svm);
302 }
303
304 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
305 {
306         struct vmcb *vmcb = get_host_vmcb(svm);
307
308         vmcb->control.intercept_dr &= ~(1U << bit);
309
310         recalc_intercepts(svm);
311 }
312
313 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
314 {
315         struct vmcb *vmcb = get_host_vmcb(svm);
316
317         vmcb->control.intercept_exceptions |= (1U << bit);
318
319         recalc_intercepts(svm);
320 }
321
322 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
323 {
324         struct vmcb *vmcb = get_host_vmcb(svm);
325
326         vmcb->control.intercept_exceptions &= ~(1U << bit);
327
328         recalc_intercepts(svm);
329 }
330
331 static inline void set_intercept(struct vcpu_svm *svm, int bit)
332 {
333         struct vmcb *vmcb = get_host_vmcb(svm);
334
335         vmcb->control.intercept |= (1ULL << bit);
336
337         recalc_intercepts(svm);
338 }
339
340 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
341 {
342         struct vmcb *vmcb = get_host_vmcb(svm);
343
344         vmcb->control.intercept &= ~(1ULL << bit);
345
346         recalc_intercepts(svm);
347 }
348
349 static inline void enable_gif(struct vcpu_svm *svm)
350 {
351         svm->vcpu.arch.hflags |= HF_GIF_MASK;
352 }
353
354 static inline void disable_gif(struct vcpu_svm *svm)
355 {
356         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
357 }
358
359 static inline bool gif_set(struct vcpu_svm *svm)
360 {
361         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
362 }
363
364 static unsigned long iopm_base;
365
366 struct kvm_ldttss_desc {
367         u16 limit0;
368         u16 base0;
369         unsigned base1:8, type:5, dpl:2, p:1;
370         unsigned limit1:4, zero0:3, g:1, base2:8;
371         u32 base3;
372         u32 zero1;
373 } __attribute__((packed));
374
375 struct svm_cpu_data {
376         int cpu;
377
378         u64 asid_generation;
379         u32 max_asid;
380         u32 next_asid;
381         struct kvm_ldttss_desc *tss_desc;
382
383         struct page *save_area;
384 };
385
386 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
387
388 struct svm_init_data {
389         int cpu;
390         int r;
391 };
392
393 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
394
395 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
396 #define MSRS_RANGE_SIZE 2048
397 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
398
399 static u32 svm_msrpm_offset(u32 msr)
400 {
401         u32 offset;
402         int i;
403
404         for (i = 0; i < NUM_MSR_MAPS; i++) {
405                 if (msr < msrpm_ranges[i] ||
406                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
407                         continue;
408
409                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
410                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
411
412                 /* Now we have the u8 offset - but need the u32 offset */
413                 return offset / 4;
414         }
415
416         /* MSR not in any range */
417         return MSR_INVALID;
418 }
419
420 #define MAX_INST_SIZE 15
421
422 static inline void clgi(void)
423 {
424         asm volatile (__ex(SVM_CLGI));
425 }
426
427 static inline void stgi(void)
428 {
429         asm volatile (__ex(SVM_STGI));
430 }
431
432 static inline void invlpga(unsigned long addr, u32 asid)
433 {
434         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
435 }
436
437 static int get_npt_level(void)
438 {
439 #ifdef CONFIG_X86_64
440         return PT64_ROOT_LEVEL;
441 #else
442         return PT32E_ROOT_LEVEL;
443 #endif
444 }
445
446 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
447 {
448         vcpu->arch.efer = efer;
449         if (!npt_enabled && !(efer & EFER_LMA))
450                 efer &= ~EFER_LME;
451
452         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
453         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
454 }
455
456 static int is_external_interrupt(u32 info)
457 {
458         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
459         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
460 }
461
462 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
463 {
464         struct vcpu_svm *svm = to_svm(vcpu);
465         u32 ret = 0;
466
467         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
468                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
469         return ret & mask;
470 }
471
472 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
473 {
474         struct vcpu_svm *svm = to_svm(vcpu);
475
476         if (mask == 0)
477                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
478         else
479                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
480
481 }
482
483 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
484 {
485         struct vcpu_svm *svm = to_svm(vcpu);
486
487         if (svm->vmcb->control.next_rip != 0)
488                 svm->next_rip = svm->vmcb->control.next_rip;
489
490         if (!svm->next_rip) {
491                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
492                                 EMULATE_DONE)
493                         printk(KERN_DEBUG "%s: NOP\n", __func__);
494                 return;
495         }
496         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
497                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
498                        __func__, kvm_rip_read(vcpu), svm->next_rip);
499
500         kvm_rip_write(vcpu, svm->next_rip);
501         svm_set_interrupt_shadow(vcpu, 0);
502 }
503
504 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
505                                 bool has_error_code, u32 error_code,
506                                 bool reinject)
507 {
508         struct vcpu_svm *svm = to_svm(vcpu);
509
510         /*
511          * If we are within a nested VM we'd better #VMEXIT and let the guest
512          * handle the exception
513          */
514         if (!reinject &&
515             nested_svm_check_exception(svm, nr, has_error_code, error_code))
516                 return;
517
518         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
519                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
520
521                 /*
522                  * For guest debugging where we have to reinject #BP if some
523                  * INT3 is guest-owned:
524                  * Emulate nRIP by moving RIP forward. Will fail if injection
525                  * raises a fault that is not intercepted. Still better than
526                  * failing in all cases.
527                  */
528                 skip_emulated_instruction(&svm->vcpu);
529                 rip = kvm_rip_read(&svm->vcpu);
530                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
531                 svm->int3_injected = rip - old_rip;
532         }
533
534         svm->vmcb->control.event_inj = nr
535                 | SVM_EVTINJ_VALID
536                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
537                 | SVM_EVTINJ_TYPE_EXEPT;
538         svm->vmcb->control.event_inj_err = error_code;
539 }
540
541 static void svm_init_erratum_383(void)
542 {
543         u32 low, high;
544         int err;
545         u64 val;
546
547         if (!cpu_has_amd_erratum(amd_erratum_383))
548                 return;
549
550         /* Use _safe variants to not break nested virtualization */
551         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
552         if (err)
553                 return;
554
555         val |= (1ULL << 47);
556
557         low  = lower_32_bits(val);
558         high = upper_32_bits(val);
559
560         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
561
562         erratum_383_found = true;
563 }
564
565 static void svm_init_osvw(struct kvm_vcpu *vcpu)
566 {
567         /*
568          * Guests should see errata 400 and 415 as fixed (assuming that
569          * HLT and IO instructions are intercepted).
570          */
571         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
572         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
573
574         /*
575          * By increasing VCPU's osvw.length to 3 we are telling the guest that
576          * all osvw.status bits inside that length, including bit 0 (which is
577          * reserved for erratum 298), are valid. However, if host processor's
578          * osvw_len is 0 then osvw_status[0] carries no information. We need to
579          * be conservative here and therefore we tell the guest that erratum 298
580          * is present (because we really don't know).
581          */
582         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
583                 vcpu->arch.osvw.status |= 1;
584 }
585
586 static int has_svm(void)
587 {
588         const char *msg;
589
590         if (!cpu_has_svm(&msg)) {
591                 printk(KERN_INFO "has_svm: %s\n", msg);
592                 return 0;
593         }
594
595         return 1;
596 }
597
598 static void svm_hardware_disable(void *garbage)
599 {
600         /* Make sure we clean up behind us */
601         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
602                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
603
604         cpu_svm_disable();
605 }
606
607 static int svm_hardware_enable(void *garbage)
608 {
609
610         struct svm_cpu_data *sd;
611         uint64_t efer;
612         struct desc_ptr gdt_descr;
613         struct desc_struct *gdt;
614         int me = raw_smp_processor_id();
615
616         rdmsrl(MSR_EFER, efer);
617         if (efer & EFER_SVME)
618                 return -EBUSY;
619
620         if (!has_svm()) {
621                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
622                        me);
623                 return -EINVAL;
624         }
625         sd = per_cpu(svm_data, me);
626
627         if (!sd) {
628                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
629                        me);
630                 return -EINVAL;
631         }
632
633         sd->asid_generation = 1;
634         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
635         sd->next_asid = sd->max_asid + 1;
636
637         native_store_gdt(&gdt_descr);
638         gdt = (struct desc_struct *)gdt_descr.address;
639         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
640
641         wrmsrl(MSR_EFER, efer | EFER_SVME);
642
643         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
644
645         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
646                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
647                 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
648         }
649
650
651         /*
652          * Get OSVW bits.
653          *
654          * Note that it is possible to have a system with mixed processor
655          * revisions and therefore different OSVW bits. If bits are not the same
656          * on different processors then choose the worst case (i.e. if erratum
657          * is present on one processor and not on another then assume that the
658          * erratum is present everywhere).
659          */
660         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
661                 uint64_t len, status = 0;
662                 int err;
663
664                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
665                 if (!err)
666                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
667                                                       &err);
668
669                 if (err)
670                         osvw_status = osvw_len = 0;
671                 else {
672                         if (len < osvw_len)
673                                 osvw_len = len;
674                         osvw_status |= status;
675                         osvw_status &= (1ULL << osvw_len) - 1;
676                 }
677         } else
678                 osvw_status = osvw_len = 0;
679
680         svm_init_erratum_383();
681
682         return 0;
683 }
684
685 static void svm_cpu_uninit(int cpu)
686 {
687         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
688
689         if (!sd)
690                 return;
691
692         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
693         __free_page(sd->save_area);
694         kfree(sd);
695 }
696
697 static int svm_cpu_init(int cpu)
698 {
699         struct svm_cpu_data *sd;
700         int r;
701
702         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
703         if (!sd)
704                 return -ENOMEM;
705         sd->cpu = cpu;
706         sd->save_area = alloc_page(GFP_KERNEL);
707         r = -ENOMEM;
708         if (!sd->save_area)
709                 goto err_1;
710
711         per_cpu(svm_data, cpu) = sd;
712
713         return 0;
714
715 err_1:
716         kfree(sd);
717         return r;
718
719 }
720
721 static bool valid_msr_intercept(u32 index)
722 {
723         int i;
724
725         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
726                 if (direct_access_msrs[i].index == index)
727                         return true;
728
729         return false;
730 }
731
732 static void set_msr_interception(u32 *msrpm, unsigned msr,
733                                  int read, int write)
734 {
735         u8 bit_read, bit_write;
736         unsigned long tmp;
737         u32 offset;
738
739         /*
740          * If this warning triggers extend the direct_access_msrs list at the
741          * beginning of the file
742          */
743         WARN_ON(!valid_msr_intercept(msr));
744
745         offset    = svm_msrpm_offset(msr);
746         bit_read  = 2 * (msr & 0x0f);
747         bit_write = 2 * (msr & 0x0f) + 1;
748         tmp       = msrpm[offset];
749
750         BUG_ON(offset == MSR_INVALID);
751
752         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
753         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
754
755         msrpm[offset] = tmp;
756 }
757
758 static void svm_vcpu_init_msrpm(u32 *msrpm)
759 {
760         int i;
761
762         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
763
764         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
765                 if (!direct_access_msrs[i].always)
766                         continue;
767
768                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
769         }
770 }
771
772 static void add_msr_offset(u32 offset)
773 {
774         int i;
775
776         for (i = 0; i < MSRPM_OFFSETS; ++i) {
777
778                 /* Offset already in list? */
779                 if (msrpm_offsets[i] == offset)
780                         return;
781
782                 /* Slot used by another offset? */
783                 if (msrpm_offsets[i] != MSR_INVALID)
784                         continue;
785
786                 /* Add offset to list */
787                 msrpm_offsets[i] = offset;
788
789                 return;
790         }
791
792         /*
793          * If this BUG triggers the msrpm_offsets table has an overflow. Just
794          * increase MSRPM_OFFSETS in this case.
795          */
796         BUG();
797 }
798
799 static void init_msrpm_offsets(void)
800 {
801         int i;
802
803         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
804
805         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
806                 u32 offset;
807
808                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
809                 BUG_ON(offset == MSR_INVALID);
810
811                 add_msr_offset(offset);
812         }
813 }
814
815 static void svm_enable_lbrv(struct vcpu_svm *svm)
816 {
817         u32 *msrpm = svm->msrpm;
818
819         svm->vmcb->control.lbr_ctl = 1;
820         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
821         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
822         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
823         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
824 }
825
826 static void svm_disable_lbrv(struct vcpu_svm *svm)
827 {
828         u32 *msrpm = svm->msrpm;
829
830         svm->vmcb->control.lbr_ctl = 0;
831         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
832         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
833         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
834         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
835 }
836
837 static __init int svm_hardware_setup(void)
838 {
839         int cpu;
840         struct page *iopm_pages;
841         void *iopm_va;
842         int r;
843
844         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
845
846         if (!iopm_pages)
847                 return -ENOMEM;
848
849         iopm_va = page_address(iopm_pages);
850         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
851         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
852
853         init_msrpm_offsets();
854
855         if (boot_cpu_has(X86_FEATURE_NX))
856                 kvm_enable_efer_bits(EFER_NX);
857
858         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
859                 kvm_enable_efer_bits(EFER_FFXSR);
860
861         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
862                 u64 max;
863
864                 kvm_has_tsc_control = true;
865
866                 /*
867                  * Make sure the user can only configure tsc_khz values that
868                  * fit into a signed integer.
869                  * A min value is not calculated needed because it will always
870                  * be 1 on all machines and a value of 0 is used to disable
871                  * tsc-scaling for the vcpu.
872                  */
873                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
874
875                 kvm_max_guest_tsc_khz = max;
876         }
877
878         if (nested) {
879                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
880                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
881         }
882
883         for_each_possible_cpu(cpu) {
884                 r = svm_cpu_init(cpu);
885                 if (r)
886                         goto err;
887         }
888
889         if (!boot_cpu_has(X86_FEATURE_NPT))
890                 npt_enabled = false;
891
892         if (npt_enabled && !npt) {
893                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
894                 npt_enabled = false;
895         }
896
897         if (npt_enabled) {
898                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
899                 kvm_enable_tdp();
900         } else
901                 kvm_disable_tdp();
902
903         return 0;
904
905 err:
906         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
907         iopm_base = 0;
908         return r;
909 }
910
911 static __exit void svm_hardware_unsetup(void)
912 {
913         int cpu;
914
915         for_each_possible_cpu(cpu)
916                 svm_cpu_uninit(cpu);
917
918         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
919         iopm_base = 0;
920 }
921
922 static void init_seg(struct vmcb_seg *seg)
923 {
924         seg->selector = 0;
925         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
926                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
927         seg->limit = 0xffff;
928         seg->base = 0;
929 }
930
931 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
932 {
933         seg->selector = 0;
934         seg->attrib = SVM_SELECTOR_P_MASK | type;
935         seg->limit = 0xffff;
936         seg->base = 0;
937 }
938
939 static u64 __scale_tsc(u64 ratio, u64 tsc)
940 {
941         u64 mult, frac, _tsc;
942
943         mult  = ratio >> 32;
944         frac  = ratio & ((1ULL << 32) - 1);
945
946         _tsc  = tsc;
947         _tsc *= mult;
948         _tsc += (tsc >> 32) * frac;
949         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
950
951         return _tsc;
952 }
953
954 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
955 {
956         struct vcpu_svm *svm = to_svm(vcpu);
957         u64 _tsc = tsc;
958
959         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
960                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
961
962         return _tsc;
963 }
964
965 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
966 {
967         struct vcpu_svm *svm = to_svm(vcpu);
968         u64 ratio;
969         u64 khz;
970
971         /* TSC scaling supported? */
972         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR))
973                 return;
974
975         /* TSC-Scaling disabled or guest TSC same frequency as host TSC? */
976         if (user_tsc_khz == 0) {
977                 vcpu->arch.virtual_tsc_khz = 0;
978                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
979                 return;
980         }
981
982         khz = user_tsc_khz;
983
984         /* TSC scaling required  - calculate ratio */
985         ratio = khz << 32;
986         do_div(ratio, tsc_khz);
987
988         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
989                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
990                                 user_tsc_khz);
991                 return;
992         }
993         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
994         svm->tsc_ratio             = ratio;
995 }
996
997 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
998 {
999         struct vcpu_svm *svm = to_svm(vcpu);
1000         u64 g_tsc_offset = 0;
1001
1002         if (is_guest_mode(vcpu)) {
1003                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1004                                svm->nested.hsave->control.tsc_offset;
1005                 svm->nested.hsave->control.tsc_offset = offset;
1006         }
1007
1008         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1009
1010         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1011 }
1012
1013 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1014 {
1015         struct vcpu_svm *svm = to_svm(vcpu);
1016
1017         svm->vmcb->control.tsc_offset += adjustment;
1018         if (is_guest_mode(vcpu))
1019                 svm->nested.hsave->control.tsc_offset += adjustment;
1020         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1021 }
1022
1023 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1024 {
1025         u64 tsc;
1026
1027         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1028
1029         return target_tsc - tsc;
1030 }
1031
1032 static void init_vmcb(struct vcpu_svm *svm)
1033 {
1034         struct vmcb_control_area *control = &svm->vmcb->control;
1035         struct vmcb_save_area *save = &svm->vmcb->save;
1036
1037         svm->vcpu.fpu_active = 1;
1038         svm->vcpu.arch.hflags = 0;
1039
1040         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1041         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1042         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1043         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1044         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1045         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1046         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1047
1048         set_dr_intercept(svm, INTERCEPT_DR0_READ);
1049         set_dr_intercept(svm, INTERCEPT_DR1_READ);
1050         set_dr_intercept(svm, INTERCEPT_DR2_READ);
1051         set_dr_intercept(svm, INTERCEPT_DR3_READ);
1052         set_dr_intercept(svm, INTERCEPT_DR4_READ);
1053         set_dr_intercept(svm, INTERCEPT_DR5_READ);
1054         set_dr_intercept(svm, INTERCEPT_DR6_READ);
1055         set_dr_intercept(svm, INTERCEPT_DR7_READ);
1056
1057         set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1058         set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1059         set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1060         set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1061         set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1062         set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1063         set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1064         set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1065
1066         set_exception_intercept(svm, PF_VECTOR);
1067         set_exception_intercept(svm, UD_VECTOR);
1068         set_exception_intercept(svm, MC_VECTOR);
1069
1070         set_intercept(svm, INTERCEPT_INTR);
1071         set_intercept(svm, INTERCEPT_NMI);
1072         set_intercept(svm, INTERCEPT_SMI);
1073         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1074         set_intercept(svm, INTERCEPT_RDPMC);
1075         set_intercept(svm, INTERCEPT_CPUID);
1076         set_intercept(svm, INTERCEPT_INVD);
1077         set_intercept(svm, INTERCEPT_HLT);
1078         set_intercept(svm, INTERCEPT_INVLPG);
1079         set_intercept(svm, INTERCEPT_INVLPGA);
1080         set_intercept(svm, INTERCEPT_IOIO_PROT);
1081         set_intercept(svm, INTERCEPT_MSR_PROT);
1082         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1083         set_intercept(svm, INTERCEPT_SHUTDOWN);
1084         set_intercept(svm, INTERCEPT_VMRUN);
1085         set_intercept(svm, INTERCEPT_VMMCALL);
1086         set_intercept(svm, INTERCEPT_VMLOAD);
1087         set_intercept(svm, INTERCEPT_VMSAVE);
1088         set_intercept(svm, INTERCEPT_STGI);
1089         set_intercept(svm, INTERCEPT_CLGI);
1090         set_intercept(svm, INTERCEPT_SKINIT);
1091         set_intercept(svm, INTERCEPT_WBINVD);
1092         set_intercept(svm, INTERCEPT_MONITOR);
1093         set_intercept(svm, INTERCEPT_MWAIT);
1094         set_intercept(svm, INTERCEPT_XSETBV);
1095
1096         control->iopm_base_pa = iopm_base;
1097         control->msrpm_base_pa = __pa(svm->msrpm);
1098         control->int_ctl = V_INTR_MASKING_MASK;
1099
1100         init_seg(&save->es);
1101         init_seg(&save->ss);
1102         init_seg(&save->ds);
1103         init_seg(&save->fs);
1104         init_seg(&save->gs);
1105
1106         save->cs.selector = 0xf000;
1107         /* Executable/Readable Code Segment */
1108         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1109                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1110         save->cs.limit = 0xffff;
1111         /*
1112          * cs.base should really be 0xffff0000, but vmx can't handle that, so
1113          * be consistent with it.
1114          *
1115          * Replace when we have real mode working for vmx.
1116          */
1117         save->cs.base = 0xf0000;
1118
1119         save->gdtr.limit = 0xffff;
1120         save->idtr.limit = 0xffff;
1121
1122         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1123         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1124
1125         svm_set_efer(&svm->vcpu, 0);
1126         save->dr6 = 0xffff0ff0;
1127         save->dr7 = 0x400;
1128         kvm_set_rflags(&svm->vcpu, 2);
1129         save->rip = 0x0000fff0;
1130         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1131
1132         /*
1133          * This is the guest-visible cr0 value.
1134          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1135          */
1136         svm->vcpu.arch.cr0 = 0;
1137         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1138
1139         save->cr4 = X86_CR4_PAE;
1140         /* rdx = ?? */
1141
1142         if (npt_enabled) {
1143                 /* Setup VMCB for Nested Paging */
1144                 control->nested_ctl = 1;
1145                 clr_intercept(svm, INTERCEPT_INVLPG);
1146                 clr_exception_intercept(svm, PF_VECTOR);
1147                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1148                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1149                 save->g_pat = 0x0007040600070406ULL;
1150                 save->cr3 = 0;
1151                 save->cr4 = 0;
1152         }
1153         svm->asid_generation = 0;
1154
1155         svm->nested.vmcb = 0;
1156         svm->vcpu.arch.hflags = 0;
1157
1158         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1159                 control->pause_filter_count = 3000;
1160                 set_intercept(svm, INTERCEPT_PAUSE);
1161         }
1162
1163         mark_all_dirty(svm->vmcb);
1164
1165         enable_gif(svm);
1166 }
1167
1168 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1169 {
1170         struct vcpu_svm *svm = to_svm(vcpu);
1171
1172         init_vmcb(svm);
1173
1174         if (!kvm_vcpu_is_bsp(vcpu)) {
1175                 kvm_rip_write(vcpu, 0);
1176                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1177                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1178         }
1179         vcpu->arch.regs_avail = ~0;
1180         vcpu->arch.regs_dirty = ~0;
1181
1182         return 0;
1183 }
1184
1185 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1186 {
1187         struct vcpu_svm *svm;
1188         struct page *page;
1189         struct page *msrpm_pages;
1190         struct page *hsave_page;
1191         struct page *nested_msrpm_pages;
1192         int err;
1193
1194         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1195         if (!svm) {
1196                 err = -ENOMEM;
1197                 goto out;
1198         }
1199
1200         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1201
1202         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1203         if (err)
1204                 goto free_svm;
1205
1206         err = -ENOMEM;
1207         page = alloc_page(GFP_KERNEL);
1208         if (!page)
1209                 goto uninit;
1210
1211         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1212         if (!msrpm_pages)
1213                 goto free_page1;
1214
1215         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1216         if (!nested_msrpm_pages)
1217                 goto free_page2;
1218
1219         hsave_page = alloc_page(GFP_KERNEL);
1220         if (!hsave_page)
1221                 goto free_page3;
1222
1223         svm->nested.hsave = page_address(hsave_page);
1224
1225         svm->msrpm = page_address(msrpm_pages);
1226         svm_vcpu_init_msrpm(svm->msrpm);
1227
1228         svm->nested.msrpm = page_address(nested_msrpm_pages);
1229         svm_vcpu_init_msrpm(svm->nested.msrpm);
1230
1231         svm->vmcb = page_address(page);
1232         clear_page(svm->vmcb);
1233         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1234         svm->asid_generation = 0;
1235         init_vmcb(svm);
1236         kvm_write_tsc(&svm->vcpu, 0);
1237
1238         err = fx_init(&svm->vcpu);
1239         if (err)
1240                 goto free_page4;
1241
1242         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1243         if (kvm_vcpu_is_bsp(&svm->vcpu))
1244                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1245
1246         svm_init_osvw(&svm->vcpu);
1247
1248         return &svm->vcpu;
1249
1250 free_page4:
1251         __free_page(hsave_page);
1252 free_page3:
1253         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1254 free_page2:
1255         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1256 free_page1:
1257         __free_page(page);
1258 uninit:
1259         kvm_vcpu_uninit(&svm->vcpu);
1260 free_svm:
1261         kmem_cache_free(kvm_vcpu_cache, svm);
1262 out:
1263         return ERR_PTR(err);
1264 }
1265
1266 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1267 {
1268         struct vcpu_svm *svm = to_svm(vcpu);
1269
1270         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1271         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1272         __free_page(virt_to_page(svm->nested.hsave));
1273         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1274         kvm_vcpu_uninit(vcpu);
1275         kmem_cache_free(kvm_vcpu_cache, svm);
1276 }
1277
1278 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1279 {
1280         struct vcpu_svm *svm = to_svm(vcpu);
1281         int i;
1282
1283         if (unlikely(cpu != vcpu->cpu)) {
1284                 svm->asid_generation = 0;
1285                 mark_all_dirty(svm->vmcb);
1286         }
1287
1288 #ifdef CONFIG_X86_64
1289         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1290 #endif
1291         savesegment(fs, svm->host.fs);
1292         savesegment(gs, svm->host.gs);
1293         svm->host.ldt = kvm_read_ldt();
1294
1295         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1296                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1297
1298         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1299             svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1300                 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1301                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1302         }
1303 }
1304
1305 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1306 {
1307         struct vcpu_svm *svm = to_svm(vcpu);
1308         int i;
1309
1310         ++vcpu->stat.host_state_reload;
1311         kvm_load_ldt(svm->host.ldt);
1312 #ifdef CONFIG_X86_64
1313         loadsegment(fs, svm->host.fs);
1314         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1315         load_gs_index(svm->host.gs);
1316 #else
1317 #ifdef CONFIG_X86_32_LAZY_GS
1318         loadsegment(gs, svm->host.gs);
1319 #endif
1320 #endif
1321         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1322                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1323 }
1324
1325 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1326 {
1327         return to_svm(vcpu)->vmcb->save.rflags;
1328 }
1329
1330 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1331 {
1332         to_svm(vcpu)->vmcb->save.rflags = rflags;
1333 }
1334
1335 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1336 {
1337         switch (reg) {
1338         case VCPU_EXREG_PDPTR:
1339                 BUG_ON(!npt_enabled);
1340                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1341                 break;
1342         default:
1343                 BUG();
1344         }
1345 }
1346
1347 static void svm_set_vintr(struct vcpu_svm *svm)
1348 {
1349         set_intercept(svm, INTERCEPT_VINTR);
1350 }
1351
1352 static void svm_clear_vintr(struct vcpu_svm *svm)
1353 {
1354         clr_intercept(svm, INTERCEPT_VINTR);
1355 }
1356
1357 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1358 {
1359         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1360
1361         switch (seg) {
1362         case VCPU_SREG_CS: return &save->cs;
1363         case VCPU_SREG_DS: return &save->ds;
1364         case VCPU_SREG_ES: return &save->es;
1365         case VCPU_SREG_FS: return &save->fs;
1366         case VCPU_SREG_GS: return &save->gs;
1367         case VCPU_SREG_SS: return &save->ss;
1368         case VCPU_SREG_TR: return &save->tr;
1369         case VCPU_SREG_LDTR: return &save->ldtr;
1370         }
1371         BUG();
1372         return NULL;
1373 }
1374
1375 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1376 {
1377         struct vmcb_seg *s = svm_seg(vcpu, seg);
1378
1379         return s->base;
1380 }
1381
1382 static void svm_get_segment(struct kvm_vcpu *vcpu,
1383                             struct kvm_segment *var, int seg)
1384 {
1385         struct vmcb_seg *s = svm_seg(vcpu, seg);
1386
1387         var->base = s->base;
1388         var->limit = s->limit;
1389         var->selector = s->selector;
1390         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1391         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1392         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1393         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1394         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1395         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1396         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1397         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1398
1399         /*
1400          * AMD's VMCB does not have an explicit unusable field, so emulate it
1401          * for cross vendor migration purposes by "not present"
1402          */
1403         var->unusable = !var->present || (var->type == 0);
1404
1405         switch (seg) {
1406         case VCPU_SREG_CS:
1407                 /*
1408                  * SVM always stores 0 for the 'G' bit in the CS selector in
1409                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1410                  * Intel's VMENTRY has a check on the 'G' bit.
1411                  */
1412                 var->g = s->limit > 0xfffff;
1413                 break;
1414         case VCPU_SREG_TR:
1415                 /*
1416                  * Work around a bug where the busy flag in the tr selector
1417                  * isn't exposed
1418                  */
1419                 var->type |= 0x2;
1420                 break;
1421         case VCPU_SREG_DS:
1422         case VCPU_SREG_ES:
1423         case VCPU_SREG_FS:
1424         case VCPU_SREG_GS:
1425                 /*
1426                  * The accessed bit must always be set in the segment
1427                  * descriptor cache, although it can be cleared in the
1428                  * descriptor, the cached bit always remains at 1. Since
1429                  * Intel has a check on this, set it here to support
1430                  * cross-vendor migration.
1431                  */
1432                 if (!var->unusable)
1433                         var->type |= 0x1;
1434                 break;
1435         case VCPU_SREG_SS:
1436                 /*
1437                  * On AMD CPUs sometimes the DB bit in the segment
1438                  * descriptor is left as 1, although the whole segment has
1439                  * been made unusable. Clear it here to pass an Intel VMX
1440                  * entry check when cross vendor migrating.
1441                  */
1442                 if (var->unusable)
1443                         var->db = 0;
1444                 break;
1445         }
1446 }
1447
1448 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1449 {
1450         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1451
1452         return save->cpl;
1453 }
1454
1455 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1456 {
1457         struct vcpu_svm *svm = to_svm(vcpu);
1458
1459         dt->size = svm->vmcb->save.idtr.limit;
1460         dt->address = svm->vmcb->save.idtr.base;
1461 }
1462
1463 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1464 {
1465         struct vcpu_svm *svm = to_svm(vcpu);
1466
1467         svm->vmcb->save.idtr.limit = dt->size;
1468         svm->vmcb->save.idtr.base = dt->address ;
1469         mark_dirty(svm->vmcb, VMCB_DT);
1470 }
1471
1472 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1473 {
1474         struct vcpu_svm *svm = to_svm(vcpu);
1475
1476         dt->size = svm->vmcb->save.gdtr.limit;
1477         dt->address = svm->vmcb->save.gdtr.base;
1478 }
1479
1480 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1481 {
1482         struct vcpu_svm *svm = to_svm(vcpu);
1483
1484         svm->vmcb->save.gdtr.limit = dt->size;
1485         svm->vmcb->save.gdtr.base = dt->address ;
1486         mark_dirty(svm->vmcb, VMCB_DT);
1487 }
1488
1489 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1490 {
1491 }
1492
1493 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1494 {
1495 }
1496
1497 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1498 {
1499 }
1500
1501 static void update_cr0_intercept(struct vcpu_svm *svm)
1502 {
1503         ulong gcr0 = svm->vcpu.arch.cr0;
1504         u64 *hcr0 = &svm->vmcb->save.cr0;
1505
1506         if (!svm->vcpu.fpu_active)
1507                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1508         else
1509                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1510                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1511
1512         mark_dirty(svm->vmcb, VMCB_CR);
1513
1514         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1515                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1516                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1517         } else {
1518                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1519                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1520         }
1521 }
1522
1523 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1524 {
1525         struct vcpu_svm *svm = to_svm(vcpu);
1526
1527 #ifdef CONFIG_X86_64
1528         if (vcpu->arch.efer & EFER_LME) {
1529                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1530                         vcpu->arch.efer |= EFER_LMA;
1531                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1532                 }
1533
1534                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1535                         vcpu->arch.efer &= ~EFER_LMA;
1536                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1537                 }
1538         }
1539 #endif
1540         vcpu->arch.cr0 = cr0;
1541
1542         if (!npt_enabled)
1543                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1544
1545         if (!vcpu->fpu_active)
1546                 cr0 |= X86_CR0_TS;
1547         /*
1548          * re-enable caching here because the QEMU bios
1549          * does not do it - this results in some delay at
1550          * reboot
1551          */
1552         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1553         svm->vmcb->save.cr0 = cr0;
1554         mark_dirty(svm->vmcb, VMCB_CR);
1555         update_cr0_intercept(svm);
1556 }
1557
1558 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1559 {
1560         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1561         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1562
1563         if (cr4 & X86_CR4_VMXE)
1564                 return 1;
1565
1566         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1567                 svm_flush_tlb(vcpu);
1568
1569         vcpu->arch.cr4 = cr4;
1570         if (!npt_enabled)
1571                 cr4 |= X86_CR4_PAE;
1572         cr4 |= host_cr4_mce;
1573         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1574         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1575         return 0;
1576 }
1577
1578 static void svm_set_segment(struct kvm_vcpu *vcpu,
1579                             struct kvm_segment *var, int seg)
1580 {
1581         struct vcpu_svm *svm = to_svm(vcpu);
1582         struct vmcb_seg *s = svm_seg(vcpu, seg);
1583
1584         s->base = var->base;
1585         s->limit = var->limit;
1586         s->selector = var->selector;
1587         if (var->unusable)
1588                 s->attrib = 0;
1589         else {
1590                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1591                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1592                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1593                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1594                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1595                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1596                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1597                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1598         }
1599         if (seg == VCPU_SREG_CS)
1600                 svm->vmcb->save.cpl
1601                         = (svm->vmcb->save.cs.attrib
1602                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1603
1604         mark_dirty(svm->vmcb, VMCB_SEG);
1605 }
1606
1607 static void update_db_intercept(struct kvm_vcpu *vcpu)
1608 {
1609         struct vcpu_svm *svm = to_svm(vcpu);
1610
1611         clr_exception_intercept(svm, DB_VECTOR);
1612         clr_exception_intercept(svm, BP_VECTOR);
1613
1614         if (svm->nmi_singlestep)
1615                 set_exception_intercept(svm, DB_VECTOR);
1616
1617         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1618                 if (vcpu->guest_debug &
1619                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1620                         set_exception_intercept(svm, DB_VECTOR);
1621                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1622                         set_exception_intercept(svm, BP_VECTOR);
1623         } else
1624                 vcpu->guest_debug = 0;
1625 }
1626
1627 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1628 {
1629         struct vcpu_svm *svm = to_svm(vcpu);
1630
1631         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1632                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1633         else
1634                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1635
1636         mark_dirty(svm->vmcb, VMCB_DR);
1637
1638         update_db_intercept(vcpu);
1639 }
1640
1641 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1642 {
1643         if (sd->next_asid > sd->max_asid) {
1644                 ++sd->asid_generation;
1645                 sd->next_asid = 1;
1646                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1647         }
1648
1649         svm->asid_generation = sd->asid_generation;
1650         svm->vmcb->control.asid = sd->next_asid++;
1651
1652         mark_dirty(svm->vmcb, VMCB_ASID);
1653 }
1654
1655 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1656 {
1657         struct vcpu_svm *svm = to_svm(vcpu);
1658
1659         svm->vmcb->save.dr7 = value;
1660         mark_dirty(svm->vmcb, VMCB_DR);
1661 }
1662
1663 static int pf_interception(struct vcpu_svm *svm)
1664 {
1665         u64 fault_address = svm->vmcb->control.exit_info_2;
1666         u32 error_code;
1667         int r = 1;
1668
1669         switch (svm->apf_reason) {
1670         default:
1671                 error_code = svm->vmcb->control.exit_info_1;
1672
1673                 trace_kvm_page_fault(fault_address, error_code);
1674                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1675                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1676                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1677                         svm->vmcb->control.insn_bytes,
1678                         svm->vmcb->control.insn_len);
1679                 break;
1680         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1681                 svm->apf_reason = 0;
1682                 local_irq_disable();
1683                 kvm_async_pf_task_wait(fault_address);
1684                 local_irq_enable();
1685                 break;
1686         case KVM_PV_REASON_PAGE_READY:
1687                 svm->apf_reason = 0;
1688                 local_irq_disable();
1689                 kvm_async_pf_task_wake(fault_address);
1690                 local_irq_enable();
1691                 break;
1692         }
1693         return r;
1694 }
1695
1696 static int db_interception(struct vcpu_svm *svm)
1697 {
1698         struct kvm_run *kvm_run = svm->vcpu.run;
1699
1700         if (!(svm->vcpu.guest_debug &
1701               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1702                 !svm->nmi_singlestep) {
1703                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1704                 return 1;
1705         }
1706
1707         if (svm->nmi_singlestep) {
1708                 svm->nmi_singlestep = false;
1709                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1710                         svm->vmcb->save.rflags &=
1711                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1712                 update_db_intercept(&svm->vcpu);
1713         }
1714
1715         if (svm->vcpu.guest_debug &
1716             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1717                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1718                 kvm_run->debug.arch.pc =
1719                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1720                 kvm_run->debug.arch.exception = DB_VECTOR;
1721                 return 0;
1722         }
1723
1724         return 1;
1725 }
1726
1727 static int bp_interception(struct vcpu_svm *svm)
1728 {
1729         struct kvm_run *kvm_run = svm->vcpu.run;
1730
1731         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1732         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1733         kvm_run->debug.arch.exception = BP_VECTOR;
1734         return 0;
1735 }
1736
1737 static int ud_interception(struct vcpu_svm *svm)
1738 {
1739         int er;
1740
1741         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1742         if (er != EMULATE_DONE)
1743                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1744         return 1;
1745 }
1746
1747 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1748 {
1749         struct vcpu_svm *svm = to_svm(vcpu);
1750
1751         clr_exception_intercept(svm, NM_VECTOR);
1752
1753         svm->vcpu.fpu_active = 1;
1754         update_cr0_intercept(svm);
1755 }
1756
1757 static int nm_interception(struct vcpu_svm *svm)
1758 {
1759         svm_fpu_activate(&svm->vcpu);
1760         return 1;
1761 }
1762
1763 static bool is_erratum_383(void)
1764 {
1765         int err, i;
1766         u64 value;
1767
1768         if (!erratum_383_found)
1769                 return false;
1770
1771         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1772         if (err)
1773                 return false;
1774
1775         /* Bit 62 may or may not be set for this mce */
1776         value &= ~(1ULL << 62);
1777
1778         if (value != 0xb600000000010015ULL)
1779                 return false;
1780
1781         /* Clear MCi_STATUS registers */
1782         for (i = 0; i < 6; ++i)
1783                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1784
1785         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1786         if (!err) {
1787                 u32 low, high;
1788
1789                 value &= ~(1ULL << 2);
1790                 low    = lower_32_bits(value);
1791                 high   = upper_32_bits(value);
1792
1793                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1794         }
1795
1796         /* Flush tlb to evict multi-match entries */
1797         __flush_tlb_all();
1798
1799         return true;
1800 }
1801
1802 static void svm_handle_mce(struct vcpu_svm *svm)
1803 {
1804         if (is_erratum_383()) {
1805                 /*
1806                  * Erratum 383 triggered. Guest state is corrupt so kill the
1807                  * guest.
1808                  */
1809                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1810
1811                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1812
1813                 return;
1814         }
1815
1816         /*
1817          * On an #MC intercept the MCE handler is not called automatically in
1818          * the host. So do it by hand here.
1819          */
1820         asm volatile (
1821                 "int $0x12\n");
1822         /* not sure if we ever come back to this point */
1823
1824         return;
1825 }
1826
1827 static int mc_interception(struct vcpu_svm *svm)
1828 {
1829         return 1;
1830 }
1831
1832 static int shutdown_interception(struct vcpu_svm *svm)
1833 {
1834         struct kvm_run *kvm_run = svm->vcpu.run;
1835
1836         /*
1837          * VMCB is undefined after a SHUTDOWN intercept
1838          * so reinitialize it.
1839          */
1840         clear_page(svm->vmcb);
1841         init_vmcb(svm);
1842
1843         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1844         return 0;
1845 }
1846
1847 static int io_interception(struct vcpu_svm *svm)
1848 {
1849         struct kvm_vcpu *vcpu = &svm->vcpu;
1850         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1851         int size, in, string;
1852         unsigned port;
1853
1854         ++svm->vcpu.stat.io_exits;
1855         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1856         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1857         if (string || in)
1858                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1859
1860         port = io_info >> 16;
1861         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1862         svm->next_rip = svm->vmcb->control.exit_info_2;
1863         skip_emulated_instruction(&svm->vcpu);
1864
1865         return kvm_fast_pio_out(vcpu, size, port);
1866 }
1867
1868 static int nmi_interception(struct vcpu_svm *svm)
1869 {
1870         return 1;
1871 }
1872
1873 static int intr_interception(struct vcpu_svm *svm)
1874 {
1875         ++svm->vcpu.stat.irq_exits;
1876         return 1;
1877 }
1878
1879 static int nop_on_interception(struct vcpu_svm *svm)
1880 {
1881         return 1;
1882 }
1883
1884 static int halt_interception(struct vcpu_svm *svm)
1885 {
1886         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1887         skip_emulated_instruction(&svm->vcpu);
1888         return kvm_emulate_halt(&svm->vcpu);
1889 }
1890
1891 static int vmmcall_interception(struct vcpu_svm *svm)
1892 {
1893         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1894         skip_emulated_instruction(&svm->vcpu);
1895         kvm_emulate_hypercall(&svm->vcpu);
1896         return 1;
1897 }
1898
1899 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1900 {
1901         struct vcpu_svm *svm = to_svm(vcpu);
1902
1903         return svm->nested.nested_cr3;
1904 }
1905
1906 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1907 {
1908         struct vcpu_svm *svm = to_svm(vcpu);
1909         u64 cr3 = svm->nested.nested_cr3;
1910         u64 pdpte;
1911         int ret;
1912
1913         ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1914                                   offset_in_page(cr3) + index * 8, 8);
1915         if (ret)
1916                 return 0;
1917         return pdpte;
1918 }
1919
1920 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1921                                    unsigned long root)
1922 {
1923         struct vcpu_svm *svm = to_svm(vcpu);
1924
1925         svm->vmcb->control.nested_cr3 = root;
1926         mark_dirty(svm->vmcb, VMCB_NPT);
1927         svm_flush_tlb(vcpu);
1928 }
1929
1930 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1931                                        struct x86_exception *fault)
1932 {
1933         struct vcpu_svm *svm = to_svm(vcpu);
1934
1935         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1936         svm->vmcb->control.exit_code_hi = 0;
1937         svm->vmcb->control.exit_info_1 = fault->error_code;
1938         svm->vmcb->control.exit_info_2 = fault->address;
1939
1940         nested_svm_vmexit(svm);
1941 }
1942
1943 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1944 {
1945         int r;
1946
1947         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1948
1949         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1950         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1951         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1952         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1953         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1954         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1955
1956         return r;
1957 }
1958
1959 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1960 {
1961         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1962 }
1963
1964 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1965 {
1966         if (!(svm->vcpu.arch.efer & EFER_SVME)
1967             || !is_paging(&svm->vcpu)) {
1968                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1969                 return 1;
1970         }
1971
1972         if (svm->vmcb->save.cpl) {
1973                 kvm_inject_gp(&svm->vcpu, 0);
1974                 return 1;
1975         }
1976
1977        return 0;
1978 }
1979
1980 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1981                                       bool has_error_code, u32 error_code)
1982 {
1983         int vmexit;
1984
1985         if (!is_guest_mode(&svm->vcpu))
1986                 return 0;
1987
1988         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1989         svm->vmcb->control.exit_code_hi = 0;
1990         svm->vmcb->control.exit_info_1 = error_code;
1991         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1992
1993         vmexit = nested_svm_intercept(svm);
1994         if (vmexit == NESTED_EXIT_DONE)
1995                 svm->nested.exit_required = true;
1996
1997         return vmexit;
1998 }
1999
2000 /* This function returns true if it is save to enable the irq window */
2001 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2002 {
2003         if (!is_guest_mode(&svm->vcpu))
2004                 return true;
2005
2006         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2007                 return true;
2008
2009         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2010                 return false;
2011
2012         /*
2013          * if vmexit was already requested (by intercepted exception
2014          * for instance) do not overwrite it with "external interrupt"
2015          * vmexit.
2016          */
2017         if (svm->nested.exit_required)
2018                 return false;
2019
2020         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2021         svm->vmcb->control.exit_info_1 = 0;
2022         svm->vmcb->control.exit_info_2 = 0;
2023
2024         if (svm->nested.intercept & 1ULL) {
2025                 /*
2026                  * The #vmexit can't be emulated here directly because this
2027                  * code path runs with irqs and preemtion disabled. A
2028                  * #vmexit emulation might sleep. Only signal request for
2029                  * the #vmexit here.
2030                  */
2031                 svm->nested.exit_required = true;
2032                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2033                 return false;
2034         }
2035
2036         return true;
2037 }
2038
2039 /* This function returns true if it is save to enable the nmi window */
2040 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2041 {
2042         if (!is_guest_mode(&svm->vcpu))
2043                 return true;
2044
2045         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2046                 return true;
2047
2048         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2049         svm->nested.exit_required = true;
2050
2051         return false;
2052 }
2053
2054 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2055 {
2056         struct page *page;
2057
2058         might_sleep();
2059
2060         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2061         if (is_error_page(page))
2062                 goto error;
2063
2064         *_page = page;
2065
2066         return kmap(page);
2067
2068 error:
2069         kvm_release_page_clean(page);
2070         kvm_inject_gp(&svm->vcpu, 0);
2071
2072         return NULL;
2073 }
2074
2075 static void nested_svm_unmap(struct page *page)
2076 {
2077         kunmap(page);
2078         kvm_release_page_dirty(page);
2079 }
2080
2081 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2082 {
2083         unsigned port;
2084         u8 val, bit;
2085         u64 gpa;
2086
2087         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2088                 return NESTED_EXIT_HOST;
2089
2090         port = svm->vmcb->control.exit_info_1 >> 16;
2091         gpa  = svm->nested.vmcb_iopm + (port / 8);
2092         bit  = port % 8;
2093         val  = 0;
2094
2095         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2096                 val &= (1 << bit);
2097
2098         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2099 }
2100
2101 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2102 {
2103         u32 offset, msr, value;
2104         int write, mask;
2105
2106         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2107                 return NESTED_EXIT_HOST;
2108
2109         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2110         offset = svm_msrpm_offset(msr);
2111         write  = svm->vmcb->control.exit_info_1 & 1;
2112         mask   = 1 << ((2 * (msr & 0xf)) + write);
2113
2114         if (offset == MSR_INVALID)
2115                 return NESTED_EXIT_DONE;
2116
2117         /* Offset is in 32 bit units but need in 8 bit units */
2118         offset *= 4;
2119
2120         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2121                 return NESTED_EXIT_DONE;
2122
2123         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2124 }
2125
2126 static int nested_svm_exit_special(struct vcpu_svm *svm)
2127 {
2128         u32 exit_code = svm->vmcb->control.exit_code;
2129
2130         switch (exit_code) {
2131         case SVM_EXIT_INTR:
2132         case SVM_EXIT_NMI:
2133         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2134                 return NESTED_EXIT_HOST;
2135         case SVM_EXIT_NPF:
2136                 /* For now we are always handling NPFs when using them */
2137                 if (npt_enabled)
2138                         return NESTED_EXIT_HOST;
2139                 break;
2140         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2141                 /* When we're shadowing, trap PFs, but not async PF */
2142                 if (!npt_enabled && svm->apf_reason == 0)
2143                         return NESTED_EXIT_HOST;
2144                 break;
2145         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2146                 nm_interception(svm);
2147                 break;
2148         default:
2149                 break;
2150         }
2151
2152         return NESTED_EXIT_CONTINUE;
2153 }
2154
2155 /*
2156  * If this function returns true, this #vmexit was already handled
2157  */
2158 static int nested_svm_intercept(struct vcpu_svm *svm)
2159 {
2160         u32 exit_code = svm->vmcb->control.exit_code;
2161         int vmexit = NESTED_EXIT_HOST;
2162
2163         switch (exit_code) {
2164         case SVM_EXIT_MSR:
2165                 vmexit = nested_svm_exit_handled_msr(svm);
2166                 break;
2167         case SVM_EXIT_IOIO:
2168                 vmexit = nested_svm_intercept_ioio(svm);
2169                 break;
2170         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2171                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2172                 if (svm->nested.intercept_cr & bit)
2173                         vmexit = NESTED_EXIT_DONE;
2174                 break;
2175         }
2176         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2177                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2178                 if (svm->nested.intercept_dr & bit)
2179                         vmexit = NESTED_EXIT_DONE;
2180                 break;
2181         }
2182         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2183                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2184                 if (svm->nested.intercept_exceptions & excp_bits)
2185                         vmexit = NESTED_EXIT_DONE;
2186                 /* async page fault always cause vmexit */
2187                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2188                          svm->apf_reason != 0)
2189                         vmexit = NESTED_EXIT_DONE;
2190                 break;
2191         }
2192         case SVM_EXIT_ERR: {
2193                 vmexit = NESTED_EXIT_DONE;
2194                 break;
2195         }
2196         default: {
2197                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2198                 if (svm->nested.intercept & exit_bits)
2199                         vmexit = NESTED_EXIT_DONE;
2200         }
2201         }
2202
2203         return vmexit;
2204 }
2205
2206 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2207 {
2208         int vmexit;
2209
2210         vmexit = nested_svm_intercept(svm);
2211
2212         if (vmexit == NESTED_EXIT_DONE)
2213                 nested_svm_vmexit(svm);
2214
2215         return vmexit;
2216 }
2217
2218 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2219 {
2220         struct vmcb_control_area *dst  = &dst_vmcb->control;
2221         struct vmcb_control_area *from = &from_vmcb->control;
2222
2223         dst->intercept_cr         = from->intercept_cr;
2224         dst->intercept_dr         = from->intercept_dr;
2225         dst->intercept_exceptions = from->intercept_exceptions;
2226         dst->intercept            = from->intercept;
2227         dst->iopm_base_pa         = from->iopm_base_pa;
2228         dst->msrpm_base_pa        = from->msrpm_base_pa;
2229         dst->tsc_offset           = from->tsc_offset;
2230         dst->asid                 = from->asid;
2231         dst->tlb_ctl              = from->tlb_ctl;
2232         dst->int_ctl              = from->int_ctl;
2233         dst->int_vector           = from->int_vector;
2234         dst->int_state            = from->int_state;
2235         dst->exit_code            = from->exit_code;
2236         dst->exit_code_hi         = from->exit_code_hi;
2237         dst->exit_info_1          = from->exit_info_1;
2238         dst->exit_info_2          = from->exit_info_2;
2239         dst->exit_int_info        = from->exit_int_info;
2240         dst->exit_int_info_err    = from->exit_int_info_err;
2241         dst->nested_ctl           = from->nested_ctl;
2242         dst->event_inj            = from->event_inj;
2243         dst->event_inj_err        = from->event_inj_err;
2244         dst->nested_cr3           = from->nested_cr3;
2245         dst->lbr_ctl              = from->lbr_ctl;
2246 }
2247
2248 static int nested_svm_vmexit(struct vcpu_svm *svm)
2249 {
2250         struct vmcb *nested_vmcb;
2251         struct vmcb *hsave = svm->nested.hsave;
2252         struct vmcb *vmcb = svm->vmcb;
2253         struct page *page;
2254
2255         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2256                                        vmcb->control.exit_info_1,
2257                                        vmcb->control.exit_info_2,
2258                                        vmcb->control.exit_int_info,
2259                                        vmcb->control.exit_int_info_err,
2260                                        KVM_ISA_SVM);
2261
2262         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2263         if (!nested_vmcb)
2264                 return 1;
2265
2266         /* Exit Guest-Mode */
2267         leave_guest_mode(&svm->vcpu);
2268         svm->nested.vmcb = 0;
2269
2270         /* Give the current vmcb to the guest */
2271         disable_gif(svm);
2272
2273         nested_vmcb->save.es     = vmcb->save.es;
2274         nested_vmcb->save.cs     = vmcb->save.cs;
2275         nested_vmcb->save.ss     = vmcb->save.ss;
2276         nested_vmcb->save.ds     = vmcb->save.ds;
2277         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2278         nested_vmcb->save.idtr   = vmcb->save.idtr;
2279         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2280         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2281         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2282         nested_vmcb->save.cr2    = vmcb->save.cr2;
2283         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2284         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2285         nested_vmcb->save.rip    = vmcb->save.rip;
2286         nested_vmcb->save.rsp    = vmcb->save.rsp;
2287         nested_vmcb->save.rax    = vmcb->save.rax;
2288         nested_vmcb->save.dr7    = vmcb->save.dr7;
2289         nested_vmcb->save.dr6    = vmcb->save.dr6;
2290         nested_vmcb->save.cpl    = vmcb->save.cpl;
2291
2292         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2293         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2294         nested_vmcb->control.int_state         = vmcb->control.int_state;
2295         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2296         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2297         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2298         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2299         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2300         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2301         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2302
2303         /*
2304          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2305          * to make sure that we do not lose injected events. So check event_inj
2306          * here and copy it to exit_int_info if it is valid.
2307          * Exit_int_info and event_inj can't be both valid because the case
2308          * below only happens on a VMRUN instruction intercept which has
2309          * no valid exit_int_info set.
2310          */
2311         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2312                 struct vmcb_control_area *nc = &nested_vmcb->control;
2313
2314                 nc->exit_int_info     = vmcb->control.event_inj;
2315                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2316         }
2317
2318         nested_vmcb->control.tlb_ctl           = 0;
2319         nested_vmcb->control.event_inj         = 0;
2320         nested_vmcb->control.event_inj_err     = 0;
2321
2322         /* We always set V_INTR_MASKING and remember the old value in hflags */
2323         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2324                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2325
2326         /* Restore the original control entries */
2327         copy_vmcb_control_area(vmcb, hsave);
2328
2329         kvm_clear_exception_queue(&svm->vcpu);
2330         kvm_clear_interrupt_queue(&svm->vcpu);
2331
2332         svm->nested.nested_cr3 = 0;
2333
2334         /* Restore selected save entries */
2335         svm->vmcb->save.es = hsave->save.es;
2336         svm->vmcb->save.cs = hsave->save.cs;
2337         svm->vmcb->save.ss = hsave->save.ss;
2338         svm->vmcb->save.ds = hsave->save.ds;
2339         svm->vmcb->save.gdtr = hsave->save.gdtr;
2340         svm->vmcb->save.idtr = hsave->save.idtr;
2341         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2342         svm_set_efer(&svm->vcpu, hsave->save.efer);
2343         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2344         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2345         if (npt_enabled) {
2346                 svm->vmcb->save.cr3 = hsave->save.cr3;
2347                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2348         } else {
2349                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2350         }
2351         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2352         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2353         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2354         svm->vmcb->save.dr7 = 0;
2355         svm->vmcb->save.cpl = 0;
2356         svm->vmcb->control.exit_int_info = 0;
2357
2358         mark_all_dirty(svm->vmcb);
2359
2360         nested_svm_unmap(page);
2361
2362         nested_svm_uninit_mmu_context(&svm->vcpu);
2363         kvm_mmu_reset_context(&svm->vcpu);
2364         kvm_mmu_load(&svm->vcpu);
2365
2366         return 0;
2367 }
2368
2369 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2370 {
2371         /*
2372          * This function merges the msr permission bitmaps of kvm and the
2373          * nested vmcb. It is omptimized in that it only merges the parts where
2374          * the kvm msr permission bitmap may contain zero bits
2375          */
2376         int i;
2377
2378         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2379                 return true;
2380
2381         for (i = 0; i < MSRPM_OFFSETS; i++) {
2382                 u32 value, p;
2383                 u64 offset;
2384
2385                 if (msrpm_offsets[i] == 0xffffffff)
2386                         break;
2387
2388                 p      = msrpm_offsets[i];
2389                 offset = svm->nested.vmcb_msrpm + (p * 4);
2390
2391                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2392                         return false;
2393
2394                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2395         }
2396
2397         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2398
2399         return true;
2400 }
2401
2402 static bool nested_vmcb_checks(struct vmcb *vmcb)
2403 {
2404         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2405                 return false;
2406
2407         if (vmcb->control.asid == 0)
2408                 return false;
2409
2410         if (vmcb->control.nested_ctl && !npt_enabled)
2411                 return false;
2412
2413         return true;
2414 }
2415
2416 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2417 {
2418         struct vmcb *nested_vmcb;
2419         struct vmcb *hsave = svm->nested.hsave;
2420         struct vmcb *vmcb = svm->vmcb;
2421         struct page *page;
2422         u64 vmcb_gpa;
2423
2424         vmcb_gpa = svm->vmcb->save.rax;
2425
2426         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2427         if (!nested_vmcb)
2428                 return false;
2429
2430         if (!nested_vmcb_checks(nested_vmcb)) {
2431                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2432                 nested_vmcb->control.exit_code_hi = 0;
2433                 nested_vmcb->control.exit_info_1  = 0;
2434                 nested_vmcb->control.exit_info_2  = 0;
2435
2436                 nested_svm_unmap(page);
2437
2438                 return false;
2439         }
2440
2441         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2442                                nested_vmcb->save.rip,
2443                                nested_vmcb->control.int_ctl,
2444                                nested_vmcb->control.event_inj,
2445                                nested_vmcb->control.nested_ctl);
2446
2447         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2448                                     nested_vmcb->control.intercept_cr >> 16,
2449                                     nested_vmcb->control.intercept_exceptions,
2450                                     nested_vmcb->control.intercept);
2451
2452         /* Clear internal status */
2453         kvm_clear_exception_queue(&svm->vcpu);
2454         kvm_clear_interrupt_queue(&svm->vcpu);
2455
2456         /*
2457          * Save the old vmcb, so we don't need to pick what we save, but can
2458          * restore everything when a VMEXIT occurs
2459          */
2460         hsave->save.es     = vmcb->save.es;
2461         hsave->save.cs     = vmcb->save.cs;
2462         hsave->save.ss     = vmcb->save.ss;
2463         hsave->save.ds     = vmcb->save.ds;
2464         hsave->save.gdtr   = vmcb->save.gdtr;
2465         hsave->save.idtr   = vmcb->save.idtr;
2466         hsave->save.efer   = svm->vcpu.arch.efer;
2467         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2468         hsave->save.cr4    = svm->vcpu.arch.cr4;
2469         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2470         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2471         hsave->save.rsp    = vmcb->save.rsp;
2472         hsave->save.rax    = vmcb->save.rax;
2473         if (npt_enabled)
2474                 hsave->save.cr3    = vmcb->save.cr3;
2475         else
2476                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2477
2478         copy_vmcb_control_area(hsave, vmcb);
2479
2480         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2481                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2482         else
2483                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2484
2485         if (nested_vmcb->control.nested_ctl) {
2486                 kvm_mmu_unload(&svm->vcpu);
2487                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2488                 nested_svm_init_mmu_context(&svm->vcpu);
2489         }
2490
2491         /* Load the nested guest state */
2492         svm->vmcb->save.es = nested_vmcb->save.es;
2493         svm->vmcb->save.cs = nested_vmcb->save.cs;
2494         svm->vmcb->save.ss = nested_vmcb->save.ss;
2495         svm->vmcb->save.ds = nested_vmcb->save.ds;
2496         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2497         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2498         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2499         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2500         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2501         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2502         if (npt_enabled) {
2503                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2504                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2505         } else
2506                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2507
2508         /* Guest paging mode is active - reset mmu */
2509         kvm_mmu_reset_context(&svm->vcpu);
2510
2511         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2512         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2513         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2514         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2515
2516         /* In case we don't even reach vcpu_run, the fields are not updated */
2517         svm->vmcb->save.rax = nested_vmcb->save.rax;
2518         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2519         svm->vmcb->save.rip = nested_vmcb->save.rip;
2520         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2521         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2522         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2523
2524         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2525         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2526
2527         /* cache intercepts */
2528         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2529         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2530         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2531         svm->nested.intercept            = nested_vmcb->control.intercept;
2532
2533         svm_flush_tlb(&svm->vcpu);
2534         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2535         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2536                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2537         else
2538                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2539
2540         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2541                 /* We only want the cr8 intercept bits of the guest */
2542                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2543                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2544         }
2545
2546         /* We don't want to see VMMCALLs from a nested guest */
2547         clr_intercept(svm, INTERCEPT_VMMCALL);
2548
2549         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2550         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2551         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2552         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2553         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2554         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2555
2556         nested_svm_unmap(page);
2557
2558         /* Enter Guest-Mode */
2559         enter_guest_mode(&svm->vcpu);
2560
2561         /*
2562          * Merge guest and host intercepts - must be called  with vcpu in
2563          * guest-mode to take affect here
2564          */
2565         recalc_intercepts(svm);
2566
2567         svm->nested.vmcb = vmcb_gpa;
2568
2569         enable_gif(svm);
2570
2571         mark_all_dirty(svm->vmcb);
2572
2573         return true;
2574 }
2575
2576 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2577 {
2578         to_vmcb->save.fs = from_vmcb->save.fs;
2579         to_vmcb->save.gs = from_vmcb->save.gs;
2580         to_vmcb->save.tr = from_vmcb->save.tr;
2581         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2582         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2583         to_vmcb->save.star = from_vmcb->save.star;
2584         to_vmcb->save.lstar = from_vmcb->save.lstar;
2585         to_vmcb->save.cstar = from_vmcb->save.cstar;
2586         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2587         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2588         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2589         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2590 }
2591
2592 static int vmload_interception(struct vcpu_svm *svm)
2593 {
2594         struct vmcb *nested_vmcb;
2595         struct page *page;
2596
2597         if (nested_svm_check_permissions(svm))
2598                 return 1;
2599
2600         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2601         if (!nested_vmcb)
2602                 return 1;
2603
2604         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2605         skip_emulated_instruction(&svm->vcpu);
2606
2607         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2608         nested_svm_unmap(page);
2609
2610         return 1;
2611 }
2612
2613 static int vmsave_interception(struct vcpu_svm *svm)
2614 {
2615         struct vmcb *nested_vmcb;
2616         struct page *page;
2617
2618         if (nested_svm_check_permissions(svm))
2619                 return 1;
2620
2621         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2622         if (!nested_vmcb)
2623                 return 1;
2624
2625         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2626         skip_emulated_instruction(&svm->vcpu);
2627
2628         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2629         nested_svm_unmap(page);
2630
2631         return 1;
2632 }
2633
2634 static int vmrun_interception(struct vcpu_svm *svm)
2635 {
2636         if (nested_svm_check_permissions(svm))
2637                 return 1;
2638
2639         /* Save rip after vmrun instruction */
2640         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2641
2642         if (!nested_svm_vmrun(svm))
2643                 return 1;
2644
2645         if (!nested_svm_vmrun_msrpm(svm))
2646                 goto failed;
2647
2648         return 1;
2649
2650 failed:
2651
2652         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2653         svm->vmcb->control.exit_code_hi = 0;
2654         svm->vmcb->control.exit_info_1  = 0;
2655         svm->vmcb->control.exit_info_2  = 0;
2656
2657         nested_svm_vmexit(svm);
2658
2659         return 1;
2660 }
2661
2662 static int stgi_interception(struct vcpu_svm *svm)
2663 {
2664         if (nested_svm_check_permissions(svm))
2665                 return 1;
2666
2667         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2668         skip_emulated_instruction(&svm->vcpu);
2669         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2670
2671         enable_gif(svm);
2672
2673         return 1;
2674 }
2675
2676 static int clgi_interception(struct vcpu_svm *svm)
2677 {
2678         if (nested_svm_check_permissions(svm))
2679                 return 1;
2680
2681         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2682         skip_emulated_instruction(&svm->vcpu);
2683
2684         disable_gif(svm);
2685
2686         /* After a CLGI no interrupts should come */
2687         svm_clear_vintr(svm);
2688         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2689
2690         mark_dirty(svm->vmcb, VMCB_INTR);
2691
2692         return 1;
2693 }
2694
2695 static int invlpga_interception(struct vcpu_svm *svm)
2696 {
2697         struct kvm_vcpu *vcpu = &svm->vcpu;
2698
2699         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2700                           vcpu->arch.regs[VCPU_REGS_RAX]);
2701
2702         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2703         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2704
2705         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2706         skip_emulated_instruction(&svm->vcpu);
2707         return 1;
2708 }
2709
2710 static int skinit_interception(struct vcpu_svm *svm)
2711 {
2712         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2713
2714         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2715         return 1;
2716 }
2717
2718 static int xsetbv_interception(struct vcpu_svm *svm)
2719 {
2720         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2721         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2722
2723         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2724                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2725                 skip_emulated_instruction(&svm->vcpu);
2726         }
2727
2728         return 1;
2729 }
2730
2731 static int invalid_op_interception(struct vcpu_svm *svm)
2732 {
2733         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2734         return 1;
2735 }
2736
2737 static int task_switch_interception(struct vcpu_svm *svm)
2738 {
2739         u16 tss_selector;
2740         int reason;
2741         int int_type = svm->vmcb->control.exit_int_info &
2742                 SVM_EXITINTINFO_TYPE_MASK;
2743         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2744         uint32_t type =
2745                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2746         uint32_t idt_v =
2747                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2748         bool has_error_code = false;
2749         u32 error_code = 0;
2750
2751         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2752
2753         if (svm->vmcb->control.exit_info_2 &
2754             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2755                 reason = TASK_SWITCH_IRET;
2756         else if (svm->vmcb->control.exit_info_2 &
2757                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2758                 reason = TASK_SWITCH_JMP;
2759         else if (idt_v)
2760                 reason = TASK_SWITCH_GATE;
2761         else
2762                 reason = TASK_SWITCH_CALL;
2763
2764         if (reason == TASK_SWITCH_GATE) {
2765                 switch (type) {
2766                 case SVM_EXITINTINFO_TYPE_NMI:
2767                         svm->vcpu.arch.nmi_injected = false;
2768                         break;
2769                 case SVM_EXITINTINFO_TYPE_EXEPT:
2770                         if (svm->vmcb->control.exit_info_2 &
2771                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2772                                 has_error_code = true;
2773                                 error_code =
2774                                         (u32)svm->vmcb->control.exit_info_2;
2775                         }
2776                         kvm_clear_exception_queue(&svm->vcpu);
2777                         break;
2778                 case SVM_EXITINTINFO_TYPE_INTR:
2779                         kvm_clear_interrupt_queue(&svm->vcpu);
2780                         break;
2781                 default:
2782                         break;
2783                 }
2784         }
2785
2786         if (reason != TASK_SWITCH_GATE ||
2787             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2788             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2789              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2790                 skip_emulated_instruction(&svm->vcpu);
2791
2792         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2793                                 has_error_code, error_code) == EMULATE_FAIL) {
2794                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2795                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2796                 svm->vcpu.run->internal.ndata = 0;
2797                 return 0;
2798         }
2799         return 1;
2800 }
2801
2802 static int cpuid_interception(struct vcpu_svm *svm)
2803 {
2804         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2805         kvm_emulate_cpuid(&svm->vcpu);
2806         return 1;
2807 }
2808
2809 static int iret_interception(struct vcpu_svm *svm)
2810 {
2811         ++svm->vcpu.stat.nmi_window_exits;
2812         clr_intercept(svm, INTERCEPT_IRET);
2813         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2814         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2815         return 1;
2816 }
2817
2818 static int invlpg_interception(struct vcpu_svm *svm)
2819 {
2820         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2821                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2822
2823         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2824         skip_emulated_instruction(&svm->vcpu);
2825         return 1;
2826 }
2827
2828 static int emulate_on_interception(struct vcpu_svm *svm)
2829 {
2830         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2831 }
2832
2833 static int rdpmc_interception(struct vcpu_svm *svm)
2834 {
2835         int err;
2836
2837         if (!static_cpu_has(X86_FEATURE_NRIPS))
2838                 return emulate_on_interception(svm);
2839
2840         err = kvm_rdpmc(&svm->vcpu);
2841         kvm_complete_insn_gp(&svm->vcpu, err);
2842
2843         return 1;
2844 }
2845
2846 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2847 {
2848         unsigned long cr0 = svm->vcpu.arch.cr0;
2849         bool ret = false;
2850         u64 intercept;
2851
2852         intercept = svm->nested.intercept;
2853
2854         if (!is_guest_mode(&svm->vcpu) ||
2855             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2856                 return false;
2857
2858         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2859         val &= ~SVM_CR0_SELECTIVE_MASK;
2860
2861         if (cr0 ^ val) {
2862                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2863                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2864         }
2865
2866         return ret;
2867 }
2868
2869 #define CR_VALID (1ULL << 63)
2870
2871 static int cr_interception(struct vcpu_svm *svm)
2872 {
2873         int reg, cr;
2874         unsigned long val;
2875         int err;
2876
2877         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2878                 return emulate_on_interception(svm);
2879
2880         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2881                 return emulate_on_interception(svm);
2882
2883         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2884         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2885
2886         err = 0;
2887         if (cr >= 16) { /* mov to cr */
2888                 cr -= 16;
2889                 val = kvm_register_read(&svm->vcpu, reg);
2890                 switch (cr) {
2891                 case 0:
2892                         if (!check_selective_cr0_intercepted(svm, val))
2893                                 err = kvm_set_cr0(&svm->vcpu, val);
2894                         else
2895                                 return 1;
2896
2897                         break;
2898                 case 3:
2899                         err = kvm_set_cr3(&svm->vcpu, val);
2900                         break;
2901                 case 4:
2902                         err = kvm_set_cr4(&svm->vcpu, val);
2903                         break;
2904                 case 8:
2905                         err = kvm_set_cr8(&svm->vcpu, val);
2906                         break;
2907                 default:
2908                         WARN(1, "unhandled write to CR%d", cr);
2909                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2910                         return 1;
2911                 }
2912         } else { /* mov from cr */
2913                 switch (cr) {
2914                 case 0:
2915                         val = kvm_read_cr0(&svm->vcpu);
2916                         break;
2917                 case 2:
2918                         val = svm->vcpu.arch.cr2;
2919                         break;
2920                 case 3:
2921                         val = kvm_read_cr3(&svm->vcpu);
2922                         break;
2923                 case 4:
2924                         val = kvm_read_cr4(&svm->vcpu);
2925                         break;
2926                 case 8:
2927                         val = kvm_get_cr8(&svm->vcpu);
2928                         break;
2929                 default:
2930                         WARN(1, "unhandled read from CR%d", cr);
2931                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2932                         return 1;
2933                 }
2934                 kvm_register_write(&svm->vcpu, reg, val);
2935         }
2936         kvm_complete_insn_gp(&svm->vcpu, err);
2937
2938         return 1;
2939 }
2940
2941 static int dr_interception(struct vcpu_svm *svm)
2942 {
2943         int reg, dr;
2944         unsigned long val;
2945         int err;
2946
2947         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2948                 return emulate_on_interception(svm);
2949
2950         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2951         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2952
2953         if (dr >= 16) { /* mov to DRn */
2954                 val = kvm_register_read(&svm->vcpu, reg);
2955                 kvm_set_dr(&svm->vcpu, dr - 16, val);
2956         } else {
2957                 err = kvm_get_dr(&svm->vcpu, dr, &val);
2958                 if (!err)
2959                         kvm_register_write(&svm->vcpu, reg, val);
2960         }
2961
2962         skip_emulated_instruction(&svm->vcpu);
2963
2964         return 1;
2965 }
2966
2967 static int cr8_write_interception(struct vcpu_svm *svm)
2968 {
2969         struct kvm_run *kvm_run = svm->vcpu.run;
2970         int r;
2971
2972         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2973         /* instruction emulation calls kvm_set_cr8() */
2974         r = cr_interception(svm);
2975         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2976                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2977                 return r;
2978         }
2979         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2980                 return r;
2981         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2982         return 0;
2983 }
2984
2985 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu)
2986 {
2987         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
2988         return vmcb->control.tsc_offset +
2989                 svm_scale_tsc(vcpu, native_read_tsc());
2990 }
2991
2992 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2993 {
2994         struct vcpu_svm *svm = to_svm(vcpu);
2995
2996         switch (ecx) {
2997         case MSR_IA32_TSC: {
2998                 *data = svm->vmcb->control.tsc_offset +
2999                         svm_scale_tsc(vcpu, native_read_tsc());
3000
3001                 break;
3002         }
3003         case MSR_STAR:
3004                 *data = svm->vmcb->save.star;
3005                 break;
3006 #ifdef CONFIG_X86_64
3007         case MSR_LSTAR:
3008                 *data = svm->vmcb->save.lstar;
3009                 break;
3010         case MSR_CSTAR:
3011                 *data = svm->vmcb->save.cstar;
3012                 break;
3013         case MSR_KERNEL_GS_BASE:
3014                 *data = svm->vmcb->save.kernel_gs_base;
3015                 break;
3016         case MSR_SYSCALL_MASK:
3017                 *data = svm->vmcb->save.sfmask;
3018                 break;
3019 #endif
3020         case MSR_IA32_SYSENTER_CS:
3021                 *data = svm->vmcb->save.sysenter_cs;
3022                 break;
3023         case MSR_IA32_SYSENTER_EIP:
3024                 *data = svm->sysenter_eip;
3025                 break;
3026         case MSR_IA32_SYSENTER_ESP:
3027                 *data = svm->sysenter_esp;
3028                 break;
3029         /*
3030          * Nobody will change the following 5 values in the VMCB so we can
3031          * safely return them on rdmsr. They will always be 0 until LBRV is
3032          * implemented.
3033          */
3034         case MSR_IA32_DEBUGCTLMSR:
3035                 *data = svm->vmcb->save.dbgctl;
3036                 break;
3037         case MSR_IA32_LASTBRANCHFROMIP:
3038                 *data = svm->vmcb->save.br_from;
3039                 break;
3040         case MSR_IA32_LASTBRANCHTOIP:
3041                 *data = svm->vmcb->save.br_to;
3042                 break;
3043         case MSR_IA32_LASTINTFROMIP:
3044                 *data = svm->vmcb->save.last_excp_from;
3045                 break;
3046         case MSR_IA32_LASTINTTOIP:
3047                 *data = svm->vmcb->save.last_excp_to;
3048                 break;
3049         case MSR_VM_HSAVE_PA:
3050                 *data = svm->nested.hsave_msr;
3051                 break;
3052         case MSR_VM_CR:
3053                 *data = svm->nested.vm_cr_msr;
3054                 break;
3055         case MSR_IA32_UCODE_REV:
3056                 *data = 0x01000065;
3057                 break;
3058         default:
3059                 return kvm_get_msr_common(vcpu, ecx, data);
3060         }
3061         return 0;
3062 }
3063
3064 static int rdmsr_interception(struct vcpu_svm *svm)
3065 {
3066         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3067         u64 data;
3068
3069         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3070                 trace_kvm_msr_read_ex(ecx);
3071                 kvm_inject_gp(&svm->vcpu, 0);
3072         } else {
3073                 trace_kvm_msr_read(ecx, data);
3074
3075                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3076                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3077                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3078                 skip_emulated_instruction(&svm->vcpu);
3079         }
3080         return 1;
3081 }
3082
3083 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3084 {
3085         struct vcpu_svm *svm = to_svm(vcpu);
3086         int svm_dis, chg_mask;
3087
3088         if (data & ~SVM_VM_CR_VALID_MASK)
3089                 return 1;
3090
3091         chg_mask = SVM_VM_CR_VALID_MASK;
3092
3093         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3094                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3095
3096         svm->nested.vm_cr_msr &= ~chg_mask;
3097         svm->nested.vm_cr_msr |= (data & chg_mask);
3098
3099         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3100
3101         /* check for svm_disable while efer.svme is set */
3102         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3103                 return 1;
3104
3105         return 0;
3106 }
3107
3108 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3109 {
3110         struct vcpu_svm *svm = to_svm(vcpu);
3111
3112         switch (ecx) {
3113         case MSR_IA32_TSC:
3114                 kvm_write_tsc(vcpu, data);
3115                 break;
3116         case MSR_STAR:
3117                 svm->vmcb->save.star = data;
3118                 break;
3119 #ifdef CONFIG_X86_64
3120         case MSR_LSTAR:
3121                 svm->vmcb->save.lstar = data;
3122                 break;
3123         case MSR_CSTAR:
3124                 svm->vmcb->save.cstar = data;
3125                 break;
3126         case MSR_KERNEL_GS_BASE:
3127                 svm->vmcb->save.kernel_gs_base = data;
3128                 break;
3129         case MSR_SYSCALL_MASK:
3130                 svm->vmcb->save.sfmask = data;
3131                 break;
3132 #endif
3133         case MSR_IA32_SYSENTER_CS:
3134                 svm->vmcb->save.sysenter_cs = data;
3135                 break;
3136         case MSR_IA32_SYSENTER_EIP:
3137                 svm->sysenter_eip = data;
3138                 svm->vmcb->save.sysenter_eip = data;
3139                 break;
3140         case MSR_IA32_SYSENTER_ESP:
3141                 svm->sysenter_esp = data;
3142                 svm->vmcb->save.sysenter_esp = data;
3143                 break;
3144         case MSR_IA32_DEBUGCTLMSR:
3145                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3146                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3147                                         __func__, data);
3148                         break;
3149                 }
3150                 if (data & DEBUGCTL_RESERVED_BITS)
3151                         return 1;
3152
3153                 svm->vmcb->save.dbgctl = data;
3154                 mark_dirty(svm->vmcb, VMCB_LBR);
3155                 if (data & (1ULL<<0))
3156                         svm_enable_lbrv(svm);
3157                 else
3158                         svm_disable_lbrv(svm);
3159                 break;
3160         case MSR_VM_HSAVE_PA:
3161                 svm->nested.hsave_msr = data;
3162                 break;
3163         case MSR_VM_CR:
3164                 return svm_set_vm_cr(vcpu, data);
3165         case MSR_VM_IGNNE:
3166                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3167                 break;
3168         default:
3169                 return kvm_set_msr_common(vcpu, ecx, data);
3170         }
3171         return 0;
3172 }
3173
3174 static int wrmsr_interception(struct vcpu_svm *svm)
3175 {
3176         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3177         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3178                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3179
3180
3181         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3182         if (svm_set_msr(&svm->vcpu, ecx, data)) {
3183                 trace_kvm_msr_write_ex(ecx, data);
3184                 kvm_inject_gp(&svm->vcpu, 0);
3185         } else {
3186                 trace_kvm_msr_write(ecx, data);
3187                 skip_emulated_instruction(&svm->vcpu);
3188         }
3189         return 1;
3190 }
3191
3192 static int msr_interception(struct vcpu_svm *svm)
3193 {
3194         if (svm->vmcb->control.exit_info_1)
3195                 return wrmsr_interception(svm);
3196         else
3197                 return rdmsr_interception(svm);
3198 }
3199
3200 static int interrupt_window_interception(struct vcpu_svm *svm)
3201 {
3202         struct kvm_run *kvm_run = svm->vcpu.run;
3203
3204         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3205         svm_clear_vintr(svm);
3206         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3207         mark_dirty(svm->vmcb, VMCB_INTR);
3208         /*
3209          * If the user space waits to inject interrupts, exit as soon as
3210          * possible
3211          */
3212         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3213             kvm_run->request_interrupt_window &&
3214             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3215                 ++svm->vcpu.stat.irq_window_exits;
3216                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3217                 return 0;
3218         }
3219
3220         return 1;
3221 }
3222
3223 static int pause_interception(struct vcpu_svm *svm)
3224 {
3225         kvm_vcpu_on_spin(&(svm->vcpu));
3226         return 1;
3227 }
3228
3229 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
3230         [SVM_EXIT_READ_CR0]                     = cr_interception,
3231         [SVM_EXIT_READ_CR3]                     = cr_interception,
3232         [SVM_EXIT_READ_CR4]                     = cr_interception,
3233         [SVM_EXIT_READ_CR8]                     = cr_interception,
3234         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3235         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3236         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3237         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3238         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3239         [SVM_EXIT_READ_DR0]                     = dr_interception,
3240         [SVM_EXIT_READ_DR1]                     = dr_interception,
3241         [SVM_EXIT_READ_DR2]                     = dr_interception,
3242         [SVM_EXIT_READ_DR3]                     = dr_interception,
3243         [SVM_EXIT_READ_DR4]                     = dr_interception,
3244         [SVM_EXIT_READ_DR5]                     = dr_interception,
3245         [SVM_EXIT_READ_DR6]                     = dr_interception,
3246         [SVM_EXIT_READ_DR7]                     = dr_interception,
3247         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3248         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3249         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3250         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3251         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3252         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3253         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3254         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3255         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3256         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3257         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3258         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3259         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3260         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3261         [SVM_EXIT_INTR]                         = intr_interception,
3262         [SVM_EXIT_NMI]                          = nmi_interception,
3263         [SVM_EXIT_SMI]                          = nop_on_interception,
3264         [SVM_EXIT_INIT]                         = nop_on_interception,
3265         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3266         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3267         [SVM_EXIT_CPUID]                        = cpuid_interception,
3268         [SVM_EXIT_IRET]                         = iret_interception,
3269         [SVM_EXIT_INVD]                         = emulate_on_interception,
3270         [SVM_EXIT_PAUSE]                        = pause_interception,
3271         [SVM_EXIT_HLT]                          = halt_interception,
3272         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3273         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3274         [SVM_EXIT_IOIO]                         = io_interception,
3275         [SVM_EXIT_MSR]                          = msr_interception,
3276         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3277         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3278         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3279         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3280         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3281         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3282         [SVM_EXIT_STGI]                         = stgi_interception,
3283         [SVM_EXIT_CLGI]                         = clgi_interception,
3284         [SVM_EXIT_SKINIT]                       = skinit_interception,
3285         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3286         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
3287         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
3288         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3289         [SVM_EXIT_NPF]                          = pf_interception,
3290 };
3291
3292 static void dump_vmcb(struct kvm_vcpu *vcpu)
3293 {
3294         struct vcpu_svm *svm = to_svm(vcpu);
3295         struct vmcb_control_area *control = &svm->vmcb->control;
3296         struct vmcb_save_area *save = &svm->vmcb->save;
3297
3298         pr_err("VMCB Control Area:\n");
3299         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3300         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3301         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3302         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3303         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3304         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3305         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3306         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3307         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3308         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3309         pr_err("%-20s%d\n", "asid:", control->asid);
3310         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3311         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3312         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3313         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3314         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3315         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3316         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3317         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3318         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3319         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3320         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3321         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3322         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3323         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3324         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3325         pr_err("VMCB State Save Area:\n");
3326         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3327                "es:",
3328                save->es.selector, save->es.attrib,
3329                save->es.limit, save->es.base);
3330         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3331                "cs:",
3332                save->cs.selector, save->cs.attrib,
3333                save->cs.limit, save->cs.base);
3334         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3335                "ss:",
3336                save->ss.selector, save->ss.attrib,
3337                save->ss.limit, save->ss.base);
3338         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3339                "ds:",
3340                save->ds.selector, save->ds.attrib,
3341                save->ds.limit, save->ds.base);
3342         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3343                "fs:",
3344                save->fs.selector, save->fs.attrib,
3345                save->fs.limit, save->fs.base);
3346         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3347                "gs:",
3348                save->gs.selector, save->gs.attrib,
3349                save->gs.limit, save->gs.base);
3350         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3351                "gdtr:",
3352                save->gdtr.selector, save->gdtr.attrib,
3353                save->gdtr.limit, save->gdtr.base);
3354         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3355                "ldtr:",
3356                save->ldtr.selector, save->ldtr.attrib,
3357                save->ldtr.limit, save->ldtr.base);
3358         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3359                "idtr:",
3360                save->idtr.selector, save->idtr.attrib,
3361                save->idtr.limit, save->idtr.base);
3362         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3363                "tr:",
3364                save->tr.selector, save->tr.attrib,
3365                save->tr.limit, save->tr.base);
3366         pr_err("cpl:            %d                efer:         %016llx\n",
3367                 save->cpl, save->efer);
3368         pr_err("%-15s %016llx %-13s %016llx\n",
3369                "cr0:", save->cr0, "cr2:", save->cr2);
3370         pr_err("%-15s %016llx %-13s %016llx\n",
3371                "cr3:", save->cr3, "cr4:", save->cr4);
3372         pr_err("%-15s %016llx %-13s %016llx\n",
3373                "dr6:", save->dr6, "dr7:", save->dr7);
3374         pr_err("%-15s %016llx %-13s %016llx\n",
3375                "rip:", save->rip, "rflags:", save->rflags);
3376         pr_err("%-15s %016llx %-13s %016llx\n",
3377                "rsp:", save->rsp, "rax:", save->rax);
3378         pr_err("%-15s %016llx %-13s %016llx\n",
3379                "star:", save->star, "lstar:", save->lstar);
3380         pr_err("%-15s %016llx %-13s %016llx\n",
3381                "cstar:", save->cstar, "sfmask:", save->sfmask);
3382         pr_err("%-15s %016llx %-13s %016llx\n",
3383                "kernel_gs_base:", save->kernel_gs_base,
3384                "sysenter_cs:", save->sysenter_cs);
3385         pr_err("%-15s %016llx %-13s %016llx\n",
3386                "sysenter_esp:", save->sysenter_esp,
3387                "sysenter_eip:", save->sysenter_eip);
3388         pr_err("%-15s %016llx %-13s %016llx\n",
3389                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3390         pr_err("%-15s %016llx %-13s %016llx\n",
3391                "br_from:", save->br_from, "br_to:", save->br_to);
3392         pr_err("%-15s %016llx %-13s %016llx\n",
3393                "excp_from:", save->last_excp_from,
3394                "excp_to:", save->last_excp_to);
3395 }
3396
3397 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3398 {
3399         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3400
3401         *info1 = control->exit_info_1;
3402         *info2 = control->exit_info_2;
3403 }
3404
3405 static int handle_exit(struct kvm_vcpu *vcpu)
3406 {
3407         struct vcpu_svm *svm = to_svm(vcpu);
3408         struct kvm_run *kvm_run = vcpu->run;
3409         u32 exit_code = svm->vmcb->control.exit_code;
3410
3411         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3412                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3413         if (npt_enabled)
3414                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3415
3416         if (unlikely(svm->nested.exit_required)) {
3417                 nested_svm_vmexit(svm);
3418                 svm->nested.exit_required = false;
3419
3420                 return 1;
3421         }
3422
3423         if (is_guest_mode(vcpu)) {
3424                 int vmexit;
3425
3426                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3427                                         svm->vmcb->control.exit_info_1,
3428                                         svm->vmcb->control.exit_info_2,
3429                                         svm->vmcb->control.exit_int_info,
3430                                         svm->vmcb->control.exit_int_info_err,
3431                                         KVM_ISA_SVM);
3432
3433                 vmexit = nested_svm_exit_special(svm);
3434
3435                 if (vmexit == NESTED_EXIT_CONTINUE)
3436                         vmexit = nested_svm_exit_handled(svm);
3437
3438                 if (vmexit == NESTED_EXIT_DONE)
3439                         return 1;
3440         }
3441
3442         svm_complete_interrupts(svm);
3443
3444         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3445                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3446                 kvm_run->fail_entry.hardware_entry_failure_reason
3447                         = svm->vmcb->control.exit_code;
3448                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3449                 dump_vmcb(vcpu);
3450                 return 0;
3451         }
3452
3453         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3454             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3455             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3456             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3457                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3458                        "exit_code 0x%x\n",
3459                        __func__, svm->vmcb->control.exit_int_info,
3460                        exit_code);
3461
3462         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3463             || !svm_exit_handlers[exit_code]) {
3464                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3465                 kvm_run->hw.hardware_exit_reason = exit_code;
3466                 return 0;
3467         }
3468
3469         return svm_exit_handlers[exit_code](svm);
3470 }
3471
3472 static void reload_tss(struct kvm_vcpu *vcpu)
3473 {
3474         int cpu = raw_smp_processor_id();
3475
3476         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3477         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3478         load_TR_desc();
3479 }
3480
3481 static void pre_svm_run(struct vcpu_svm *svm)
3482 {
3483         int cpu = raw_smp_processor_id();
3484
3485         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3486
3487         /* FIXME: handle wraparound of asid_generation */
3488         if (svm->asid_generation != sd->asid_generation)
3489                 new_asid(svm, sd);
3490 }
3491
3492 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3493 {
3494         struct vcpu_svm *svm = to_svm(vcpu);
3495
3496         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3497         vcpu->arch.hflags |= HF_NMI_MASK;
3498         set_intercept(svm, INTERCEPT_IRET);
3499         ++vcpu->stat.nmi_injections;
3500 }
3501
3502 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3503 {
3504         struct vmcb_control_area *control;
3505
3506         control = &svm->vmcb->control;
3507         control->int_vector = irq;
3508         control->int_ctl &= ~V_INTR_PRIO_MASK;
3509         control->int_ctl |= V_IRQ_MASK |
3510                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3511         mark_dirty(svm->vmcb, VMCB_INTR);
3512 }
3513
3514 static void svm_set_irq(struct kvm_vcpu *vcpu)
3515 {
3516         struct vcpu_svm *svm = to_svm(vcpu);
3517
3518         BUG_ON(!(gif_set(svm)));
3519
3520         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3521         ++vcpu->stat.irq_injections;
3522
3523         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3524                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3525 }
3526
3527 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3528 {
3529         struct vcpu_svm *svm = to_svm(vcpu);
3530
3531         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3532                 return;
3533
3534         if (irr == -1)
3535                 return;
3536
3537         if (tpr >= irr)
3538                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3539 }
3540
3541 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3542 {
3543         struct vcpu_svm *svm = to_svm(vcpu);
3544         struct vmcb *vmcb = svm->vmcb;
3545         int ret;
3546         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3547               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3548         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3549
3550         return ret;
3551 }
3552
3553 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3554 {
3555         struct vcpu_svm *svm = to_svm(vcpu);
3556
3557         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3558 }
3559
3560 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3561 {
3562         struct vcpu_svm *svm = to_svm(vcpu);
3563
3564         if (masked) {
3565                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3566                 set_intercept(svm, INTERCEPT_IRET);
3567         } else {
3568                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3569                 clr_intercept(svm, INTERCEPT_IRET);
3570         }
3571 }
3572
3573 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3574 {
3575         struct vcpu_svm *svm = to_svm(vcpu);
3576         struct vmcb *vmcb = svm->vmcb;
3577         int ret;
3578
3579         if (!gif_set(svm) ||
3580              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3581                 return 0;
3582
3583         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3584
3585         if (is_guest_mode(vcpu))
3586                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3587
3588         return ret;
3589 }
3590
3591 static void enable_irq_window(struct kvm_vcpu *vcpu)
3592 {
3593         struct vcpu_svm *svm = to_svm(vcpu);
3594
3595         /*
3596          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3597          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3598          * get that intercept, this function will be called again though and
3599          * we'll get the vintr intercept.
3600          */
3601         if (gif_set(svm) && nested_svm_intr(svm)) {
3602                 svm_set_vintr(svm);
3603                 svm_inject_irq(svm, 0x0);
3604         }
3605 }
3606
3607 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3608 {
3609         struct vcpu_svm *svm = to_svm(vcpu);
3610
3611         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3612             == HF_NMI_MASK)
3613                 return; /* IRET will cause a vm exit */
3614
3615         /*
3616          * Something prevents NMI from been injected. Single step over possible
3617          * problem (IRET or exception injection or interrupt shadow)
3618          */
3619         svm->nmi_singlestep = true;
3620         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3621         update_db_intercept(vcpu);
3622 }
3623
3624 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3625 {
3626         return 0;
3627 }
3628
3629 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3630 {
3631         struct vcpu_svm *svm = to_svm(vcpu);
3632
3633         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3634                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3635         else
3636                 svm->asid_generation--;
3637 }
3638
3639 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3640 {
3641 }
3642
3643 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3644 {
3645         struct vcpu_svm *svm = to_svm(vcpu);
3646
3647         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3648                 return;
3649
3650         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3651                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3652                 kvm_set_cr8(vcpu, cr8);
3653         }
3654 }
3655
3656 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3657 {
3658         struct vcpu_svm *svm = to_svm(vcpu);
3659         u64 cr8;
3660
3661         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3662                 return;
3663
3664         cr8 = kvm_get_cr8(vcpu);
3665         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3666         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3667 }
3668
3669 static void svm_complete_interrupts(struct vcpu_svm *svm)
3670 {
3671         u8 vector;
3672         int type;
3673         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3674         unsigned int3_injected = svm->int3_injected;
3675
3676         svm->int3_injected = 0;
3677
3678         /*
3679          * If we've made progress since setting HF_IRET_MASK, we've
3680          * executed an IRET and can allow NMI injection.
3681          */
3682         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3683             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3684                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3685                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3686         }
3687
3688         svm->vcpu.arch.nmi_injected = false;
3689         kvm_clear_exception_queue(&svm->vcpu);
3690         kvm_clear_interrupt_queue(&svm->vcpu);
3691
3692         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3693                 return;
3694
3695         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3696
3697         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3698         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3699
3700         switch (type) {
3701         case SVM_EXITINTINFO_TYPE_NMI:
3702                 svm->vcpu.arch.nmi_injected = true;
3703                 break;
3704         case SVM_EXITINTINFO_TYPE_EXEPT:
3705                 /*
3706                  * In case of software exceptions, do not reinject the vector,
3707                  * but re-execute the instruction instead. Rewind RIP first
3708                  * if we emulated INT3 before.
3709                  */
3710                 if (kvm_exception_is_soft(vector)) {
3711                         if (vector == BP_VECTOR && int3_injected &&
3712                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3713                                 kvm_rip_write(&svm->vcpu,
3714                                               kvm_rip_read(&svm->vcpu) -
3715                                               int3_injected);
3716                         break;
3717                 }
3718                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3719                         u32 err = svm->vmcb->control.exit_int_info_err;
3720                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3721
3722                 } else
3723                         kvm_requeue_exception(&svm->vcpu, vector);
3724                 break;
3725         case SVM_EXITINTINFO_TYPE_INTR:
3726                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3727                 break;
3728         default:
3729                 break;
3730         }
3731 }
3732
3733 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3734 {
3735         struct vcpu_svm *svm = to_svm(vcpu);
3736         struct vmcb_control_area *control = &svm->vmcb->control;
3737
3738         control->exit_int_info = control->event_inj;
3739         control->exit_int_info_err = control->event_inj_err;
3740         control->event_inj = 0;
3741         svm_complete_interrupts(svm);
3742 }
3743
3744 #ifdef CONFIG_X86_64
3745 #define R "r"
3746 #else
3747 #define R "e"
3748 #endif
3749
3750 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3751 {
3752         struct vcpu_svm *svm = to_svm(vcpu);
3753
3754         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3755         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3756         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3757
3758         /*
3759          * A vmexit emulation is required before the vcpu can be executed
3760          * again.
3761          */
3762         if (unlikely(svm->nested.exit_required))
3763                 return;
3764
3765         pre_svm_run(svm);
3766
3767         sync_lapic_to_cr8(vcpu);
3768
3769         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3770
3771         clgi();
3772
3773         local_irq_enable();
3774
3775         asm volatile (
3776                 "push %%"R"bp; \n\t"
3777                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3778                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3779                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3780                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3781                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3782                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3783 #ifdef CONFIG_X86_64
3784                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3785                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3786                 "mov %c[r10](%[svm]), %%r10 \n\t"
3787                 "mov %c[r11](%[svm]), %%r11 \n\t"
3788                 "mov %c[r12](%[svm]), %%r12 \n\t"
3789                 "mov %c[r13](%[svm]), %%r13 \n\t"
3790                 "mov %c[r14](%[svm]), %%r14 \n\t"
3791                 "mov %c[r15](%[svm]), %%r15 \n\t"
3792 #endif
3793
3794                 /* Enter guest mode */
3795                 "push %%"R"ax \n\t"
3796                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3797                 __ex(SVM_VMLOAD) "\n\t"
3798                 __ex(SVM_VMRUN) "\n\t"
3799                 __ex(SVM_VMSAVE) "\n\t"
3800                 "pop %%"R"ax \n\t"
3801
3802                 /* Save guest registers, load host registers */
3803                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3804                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3805                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3806                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3807                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3808                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3809 #ifdef CONFIG_X86_64
3810                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3811                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3812                 "mov %%r10, %c[r10](%[svm]) \n\t"
3813                 "mov %%r11, %c[r11](%[svm]) \n\t"
3814                 "mov %%r12, %c[r12](%[svm]) \n\t"
3815                 "mov %%r13, %c[r13](%[svm]) \n\t"
3816                 "mov %%r14, %c[r14](%[svm]) \n\t"
3817                 "mov %%r15, %c[r15](%[svm]) \n\t"
3818 #endif
3819                 "pop %%"R"bp"
3820                 :
3821                 : [svm]"a"(svm),
3822                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3823                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3824                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3825                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3826                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3827                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3828                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3829 #ifdef CONFIG_X86_64
3830                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3831                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3832                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3833                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3834                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3835                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3836                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3837                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3838 #endif
3839                 : "cc", "memory"
3840                 , R"bx", R"cx", R"dx", R"si", R"di"
3841 #ifdef CONFIG_X86_64
3842                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3843 #endif
3844                 );
3845
3846 #ifdef CONFIG_X86_64
3847         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3848 #else
3849         loadsegment(fs, svm->host.fs);
3850 #ifndef CONFIG_X86_32_LAZY_GS
3851         loadsegment(gs, svm->host.gs);
3852 #endif
3853 #endif
3854
3855         reload_tss(vcpu);
3856
3857         local_irq_disable();
3858
3859         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3860         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3861         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3862         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3863
3864         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3865
3866         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3867                 kvm_before_handle_nmi(&svm->vcpu);
3868
3869         stgi();
3870
3871         /* Any pending NMI will happen here */
3872
3873         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3874                 kvm_after_handle_nmi(&svm->vcpu);
3875
3876         sync_cr8_to_lapic(vcpu);
3877
3878         svm->next_rip = 0;
3879
3880         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3881
3882         /* if exit due to PF check for async PF */
3883         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3884                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3885
3886         if (npt_enabled) {
3887                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3888                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3889         }
3890
3891         /*
3892          * We need to handle MC intercepts here before the vcpu has a chance to
3893          * change the physical cpu
3894          */
3895         if (unlikely(svm->vmcb->control.exit_code ==
3896                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3897                 svm_handle_mce(svm);
3898
3899         mark_all_clean(svm->vmcb);
3900 }
3901
3902 #undef R
3903
3904 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3905 {
3906         struct vcpu_svm *svm = to_svm(vcpu);
3907
3908         svm->vmcb->save.cr3 = root;
3909         mark_dirty(svm->vmcb, VMCB_CR);
3910         svm_flush_tlb(vcpu);
3911 }
3912
3913 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3914 {
3915         struct vcpu_svm *svm = to_svm(vcpu);
3916
3917         svm->vmcb->control.nested_cr3 = root;
3918         mark_dirty(svm->vmcb, VMCB_NPT);
3919
3920         /* Also sync guest cr3 here in case we live migrate */
3921         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3922         mark_dirty(svm->vmcb, VMCB_CR);
3923
3924         svm_flush_tlb(vcpu);
3925 }
3926
3927 static int is_disabled(void)
3928 {
3929         u64 vm_cr;
3930
3931         rdmsrl(MSR_VM_CR, vm_cr);
3932         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3933                 return 1;
3934
3935         return 0;
3936 }
3937
3938 static void
3939 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3940 {
3941         /*
3942          * Patch in the VMMCALL instruction:
3943          */
3944         hypercall[0] = 0x0f;
3945         hypercall[1] = 0x01;
3946         hypercall[2] = 0xd9;
3947 }
3948
3949 static void svm_check_processor_compat(void *rtn)
3950 {
3951         *(int *)rtn = 0;
3952 }
3953
3954 static bool svm_cpu_has_accelerated_tpr(void)
3955 {
3956         return false;
3957 }
3958
3959 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3960 {
3961         return 0;
3962 }
3963
3964 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3965 {
3966 }
3967
3968 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3969 {
3970         switch (func) {
3971         case 0x80000001:
3972                 if (nested)
3973                         entry->ecx |= (1 << 2); /* Set SVM bit */
3974                 break;
3975         case 0x8000000A:
3976                 entry->eax = 1; /* SVM revision 1 */
3977                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3978                                    ASID emulation to nested SVM */
3979                 entry->ecx = 0; /* Reserved */
3980                 entry->edx = 0; /* Per default do not support any
3981                                    additional features */
3982
3983                 /* Support next_rip if host supports it */
3984                 if (boot_cpu_has(X86_FEATURE_NRIPS))
3985                         entry->edx |= SVM_FEATURE_NRIP;
3986
3987                 /* Support NPT for the guest if enabled */
3988                 if (npt_enabled)
3989                         entry->edx |= SVM_FEATURE_NPT;
3990
3991                 break;
3992         }
3993 }
3994
3995 static int svm_get_lpage_level(void)
3996 {
3997         return PT_PDPE_LEVEL;
3998 }
3999
4000 static bool svm_rdtscp_supported(void)
4001 {
4002         return false;
4003 }
4004
4005 static bool svm_has_wbinvd_exit(void)
4006 {
4007         return true;
4008 }
4009
4010 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4011 {
4012         struct vcpu_svm *svm = to_svm(vcpu);
4013
4014         set_exception_intercept(svm, NM_VECTOR);
4015         update_cr0_intercept(svm);
4016 }
4017
4018 #define PRE_EX(exit)  { .exit_code = (exit), \
4019                         .stage = X86_ICPT_PRE_EXCEPT, }
4020 #define POST_EX(exit) { .exit_code = (exit), \
4021                         .stage = X86_ICPT_POST_EXCEPT, }
4022 #define POST_MEM(exit) { .exit_code = (exit), \
4023                         .stage = X86_ICPT_POST_MEMACCESS, }
4024
4025 static struct __x86_intercept {
4026         u32 exit_code;
4027         enum x86_intercept_stage stage;
4028 } x86_intercept_map[] = {
4029         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4030         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4031         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4032         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4033         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4034         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4035         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4036         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4037         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4038         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4039         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4040         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4041         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4042         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4043         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4044         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4045         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4046         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4047         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4048         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4049         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4050         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4051         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4052         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4053         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4054         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4055         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4056         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4057         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4058         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4059         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4060         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4061         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4062         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4063         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4064         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4065         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4066         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4067         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4068         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4069         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4070         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4071         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4072         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4073         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4074         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4075 };
4076
4077 #undef PRE_EX
4078 #undef POST_EX
4079 #undef POST_MEM
4080
4081 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4082                                struct x86_instruction_info *info,
4083                                enum x86_intercept_stage stage)
4084 {
4085         struct vcpu_svm *svm = to_svm(vcpu);
4086         int vmexit, ret = X86EMUL_CONTINUE;
4087         struct __x86_intercept icpt_info;
4088         struct vmcb *vmcb = svm->vmcb;
4089
4090         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4091                 goto out;
4092
4093         icpt_info = x86_intercept_map[info->intercept];
4094
4095         if (stage != icpt_info.stage)
4096                 goto out;
4097
4098         switch (icpt_info.exit_code) {
4099         case SVM_EXIT_READ_CR0:
4100                 if (info->intercept == x86_intercept_cr_read)
4101                         icpt_info.exit_code += info->modrm_reg;
4102                 break;
4103         case SVM_EXIT_WRITE_CR0: {
4104                 unsigned long cr0, val;
4105                 u64 intercept;
4106
4107                 if (info->intercept == x86_intercept_cr_write)
4108                         icpt_info.exit_code += info->modrm_reg;
4109
4110                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4111                         break;
4112
4113                 intercept = svm->nested.intercept;
4114
4115                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4116                         break;
4117
4118                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4119                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4120
4121                 if (info->intercept == x86_intercept_lmsw) {
4122                         cr0 &= 0xfUL;
4123                         val &= 0xfUL;
4124                         /* lmsw can't clear PE - catch this here */
4125                         if (cr0 & X86_CR0_PE)
4126                                 val |= X86_CR0_PE;
4127                 }
4128
4129                 if (cr0 ^ val)
4130                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4131
4132                 break;
4133         }
4134         case SVM_EXIT_READ_DR0:
4135         case SVM_EXIT_WRITE_DR0:
4136                 icpt_info.exit_code += info->modrm_reg;
4137                 break;
4138         case SVM_EXIT_MSR:
4139                 if (info->intercept == x86_intercept_wrmsr)
4140                         vmcb->control.exit_info_1 = 1;
4141                 else
4142                         vmcb->control.exit_info_1 = 0;
4143                 break;
4144         case SVM_EXIT_PAUSE:
4145                 /*
4146                  * We get this for NOP only, but pause
4147                  * is rep not, check this here
4148                  */
4149                 if (info->rep_prefix != REPE_PREFIX)
4150                         goto out;
4151         case SVM_EXIT_IOIO: {
4152                 u64 exit_info;
4153                 u32 bytes;
4154
4155                 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4156
4157                 if (info->intercept == x86_intercept_in ||
4158                     info->intercept == x86_intercept_ins) {
4159                         exit_info |= SVM_IOIO_TYPE_MASK;
4160                         bytes = info->src_bytes;
4161                 } else {
4162                         bytes = info->dst_bytes;
4163                 }
4164
4165                 if (info->intercept == x86_intercept_outs ||
4166                     info->intercept == x86_intercept_ins)
4167                         exit_info |= SVM_IOIO_STR_MASK;
4168
4169                 if (info->rep_prefix)
4170                         exit_info |= SVM_IOIO_REP_MASK;
4171
4172                 bytes = min(bytes, 4u);
4173
4174                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4175
4176                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4177
4178                 vmcb->control.exit_info_1 = exit_info;
4179                 vmcb->control.exit_info_2 = info->next_rip;
4180
4181                 break;
4182         }
4183         default:
4184                 break;
4185         }
4186
4187         vmcb->control.next_rip  = info->next_rip;
4188         vmcb->control.exit_code = icpt_info.exit_code;
4189         vmexit = nested_svm_exit_handled(svm);
4190
4191         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4192                                            : X86EMUL_CONTINUE;
4193
4194 out:
4195         return ret;
4196 }
4197
4198 static struct kvm_x86_ops svm_x86_ops = {
4199         .cpu_has_kvm_support = has_svm,
4200         .disabled_by_bios = is_disabled,
4201         .hardware_setup = svm_hardware_setup,
4202         .hardware_unsetup = svm_hardware_unsetup,
4203         .check_processor_compatibility = svm_check_processor_compat,
4204         .hardware_enable = svm_hardware_enable,
4205         .hardware_disable = svm_hardware_disable,
4206         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4207
4208         .vcpu_create = svm_create_vcpu,
4209         .vcpu_free = svm_free_vcpu,
4210         .vcpu_reset = svm_vcpu_reset,
4211
4212         .prepare_guest_switch = svm_prepare_guest_switch,
4213         .vcpu_load = svm_vcpu_load,
4214         .vcpu_put = svm_vcpu_put,
4215
4216         .set_guest_debug = svm_guest_debug,
4217         .get_msr = svm_get_msr,
4218         .set_msr = svm_set_msr,
4219         .get_segment_base = svm_get_segment_base,
4220         .get_segment = svm_get_segment,
4221         .set_segment = svm_set_segment,
4222         .get_cpl = svm_get_cpl,
4223         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4224         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4225         .decache_cr3 = svm_decache_cr3,
4226         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4227         .set_cr0 = svm_set_cr0,
4228         .set_cr3 = svm_set_cr3,
4229         .set_cr4 = svm_set_cr4,
4230         .set_efer = svm_set_efer,
4231         .get_idt = svm_get_idt,
4232         .set_idt = svm_set_idt,
4233         .get_gdt = svm_get_gdt,
4234         .set_gdt = svm_set_gdt,
4235         .set_dr7 = svm_set_dr7,
4236         .cache_reg = svm_cache_reg,
4237         .get_rflags = svm_get_rflags,
4238         .set_rflags = svm_set_rflags,
4239         .fpu_activate = svm_fpu_activate,
4240         .fpu_deactivate = svm_fpu_deactivate,
4241
4242         .tlb_flush = svm_flush_tlb,
4243
4244         .run = svm_vcpu_run,
4245         .handle_exit = handle_exit,
4246         .skip_emulated_instruction = skip_emulated_instruction,
4247         .set_interrupt_shadow = svm_set_interrupt_shadow,
4248         .get_interrupt_shadow = svm_get_interrupt_shadow,
4249         .patch_hypercall = svm_patch_hypercall,
4250         .set_irq = svm_set_irq,
4251         .set_nmi = svm_inject_nmi,
4252         .queue_exception = svm_queue_exception,
4253         .cancel_injection = svm_cancel_injection,
4254         .interrupt_allowed = svm_interrupt_allowed,
4255         .nmi_allowed = svm_nmi_allowed,
4256         .get_nmi_mask = svm_get_nmi_mask,
4257         .set_nmi_mask = svm_set_nmi_mask,
4258         .enable_nmi_window = enable_nmi_window,
4259         .enable_irq_window = enable_irq_window,
4260         .update_cr8_intercept = update_cr8_intercept,
4261
4262         .set_tss_addr = svm_set_tss_addr,
4263         .get_tdp_level = get_npt_level,
4264         .get_mt_mask = svm_get_mt_mask,
4265
4266         .get_exit_info = svm_get_exit_info,
4267
4268         .get_lpage_level = svm_get_lpage_level,
4269
4270         .cpuid_update = svm_cpuid_update,
4271
4272         .rdtscp_supported = svm_rdtscp_supported,
4273
4274         .set_supported_cpuid = svm_set_supported_cpuid,
4275
4276         .has_wbinvd_exit = svm_has_wbinvd_exit,
4277
4278         .set_tsc_khz = svm_set_tsc_khz,
4279         .write_tsc_offset = svm_write_tsc_offset,
4280         .adjust_tsc_offset = svm_adjust_tsc_offset,
4281         .compute_tsc_offset = svm_compute_tsc_offset,
4282         .read_l1_tsc = svm_read_l1_tsc,
4283
4284         .set_tdp_cr3 = set_tdp_cr3,
4285
4286         .check_intercept = svm_check_intercept,
4287 };
4288
4289 static int __init svm_init(void)
4290 {
4291         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4292                         __alignof__(struct vcpu_svm), THIS_MODULE);
4293 }
4294
4295 static void __exit svm_exit(void)
4296 {
4297         kvm_exit();
4298 }
4299
4300 module_init(svm_init)
4301 module_exit(svm_exit)