1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
15 #define pr_fmt(fmt) "SVM: " fmt
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
43 #include <asm/perf_event.h>
44 #include <asm/tlbflush.h>
46 #include <asm/debugreg.h>
47 #include <asm/kvm_para.h>
48 #include <asm/irq_remapping.h>
49 #include <asm/spec-ctrl.h>
51 #include <asm/virtext.h>
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
59 static const struct x86_cpu_id svm_cpu_id[] = {
60 X86_FEATURE_MATCH(X86_FEATURE_SVM),
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
65 #define IOPM_ALLOC_ORDER 2
66 #define MSRPM_ALLOC_ORDER 1
68 #define SEG_TYPE_LDT 2
69 #define SEG_TYPE_BUSY_TSS16 3
71 #define SVM_FEATURE_NPT (1 << 0)
72 #define SVM_FEATURE_LBRV (1 << 1)
73 #define SVM_FEATURE_SVML (1 << 2)
74 #define SVM_FEATURE_NRIP (1 << 3)
75 #define SVM_FEATURE_TSC_RATE (1 << 4)
76 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
77 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
78 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
79 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
81 #define SVM_AVIC_DOORBELL 0xc001011b
83 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
84 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
85 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
87 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
89 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
90 #define TSC_RATIO_MIN 0x0000000000000001ULL
91 #define TSC_RATIO_MAX 0x000000ffffffffffULL
93 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
96 * 0xff is broadcast, so the max index allowed for physical APIC ID
97 * table is 0xfe. APIC IDs above 0xff are reserved.
99 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
101 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
102 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
103 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
105 /* AVIC GATAG is encoded using VM and VCPU IDs */
106 #define AVIC_VCPU_ID_BITS 8
107 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
109 #define AVIC_VM_ID_BITS 24
110 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
111 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
113 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
114 (y & AVIC_VCPU_ID_MASK))
115 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
116 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
118 static bool erratum_383_found __read_mostly;
120 static const u32 host_save_user_msrs[] = {
122 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
125 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
131 struct kvm_sev_info {
132 bool active; /* SEV enabled guest */
133 unsigned int asid; /* ASID used for this guest */
134 unsigned int handle; /* SEV firmware handle */
135 int fd; /* SEV device fd */
136 unsigned long pages_locked; /* Number of pages locked */
137 struct list_head regions_list; /* List of registered regions */
143 /* Struct members for AVIC */
145 struct page *avic_logical_id_table_page;
146 struct page *avic_physical_id_table_page;
147 struct hlist_node hnode;
149 struct kvm_sev_info sev_info;
154 struct nested_state {
160 /* These are the merged vectors */
163 /* gpa pointers to the real vectors */
167 /* A VMEXIT is required but not yet emulated */
170 /* cache for intercepts of the guest */
173 u32 intercept_exceptions;
176 /* Nested Paging related state */
180 #define MSRPM_OFFSETS 16
181 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
184 * Set osvw_len to higher value when updated Revision Guides
185 * are published and we know what the new status bits are
187 static uint64_t osvw_len = 4, osvw_status;
190 struct kvm_vcpu vcpu;
192 unsigned long vmcb_pa;
193 struct svm_cpu_data *svm_data;
194 uint64_t asid_generation;
195 uint64_t sysenter_esp;
196 uint64_t sysenter_eip;
203 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
213 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
214 * translated into the appropriate L2_CFG bits on the host to
215 * perform speculative control.
223 struct nested_state nested;
226 u64 nmi_singlestep_guest_rflags;
228 unsigned int3_injected;
229 unsigned long int3_rip;
231 /* cached guest cpuid flags for faster access */
232 bool nrips_enabled : 1;
236 struct page *avic_backing_page;
237 u64 *avic_physical_id_cache;
238 bool avic_is_running;
241 * Per-vcpu list of struct amd_svm_iommu_ir:
242 * This is used mainly to store interrupt remapping information used
243 * when update the vcpu affinity. This avoids the need to scan for
244 * IRTE and try to match ga_tag in the IOMMU driver.
246 struct list_head ir_list;
247 spinlock_t ir_list_lock;
249 /* which host CPU was used for running this vcpu */
250 unsigned int last_cpu;
254 * This is a wrapper of struct amd_iommu_ir_data.
256 struct amd_svm_iommu_ir {
257 struct list_head node; /* Used by SVM for per-vcpu ir_list */
258 void *data; /* Storing pointer to struct amd_ir_data */
261 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
262 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
263 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
265 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
266 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
267 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
268 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
270 static DEFINE_PER_CPU(u64, current_tsc_ratio);
271 #define TSC_RATIO_DEFAULT 0x0100000000ULL
273 #define MSR_INVALID 0xffffffffU
275 static const struct svm_direct_access_msrs {
276 u32 index; /* Index of the MSR */
277 bool always; /* True if intercept is always on */
278 } direct_access_msrs[] = {
279 { .index = MSR_STAR, .always = true },
280 { .index = MSR_IA32_SYSENTER_CS, .always = true },
282 { .index = MSR_GS_BASE, .always = true },
283 { .index = MSR_FS_BASE, .always = true },
284 { .index = MSR_KERNEL_GS_BASE, .always = true },
285 { .index = MSR_LSTAR, .always = true },
286 { .index = MSR_CSTAR, .always = true },
287 { .index = MSR_SYSCALL_MASK, .always = true },
289 { .index = MSR_IA32_SPEC_CTRL, .always = false },
290 { .index = MSR_IA32_PRED_CMD, .always = false },
291 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
292 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
293 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
294 { .index = MSR_IA32_LASTINTTOIP, .always = false },
295 { .index = MSR_INVALID, .always = false },
298 /* enable NPT for AMD64 and X86 with PAE */
299 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
300 static bool npt_enabled = true;
302 static bool npt_enabled;
306 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
307 * pause_filter_count: On processors that support Pause filtering(indicated
308 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
309 * count value. On VMRUN this value is loaded into an internal counter.
310 * Each time a pause instruction is executed, this counter is decremented
311 * until it reaches zero at which time a #VMEXIT is generated if pause
312 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
313 * Intercept Filtering for more details.
314 * This also indicate if ple logic enabled.
316 * pause_filter_thresh: In addition, some processor families support advanced
317 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
318 * the amount of time a guest is allowed to execute in a pause loop.
319 * In this mode, a 16-bit pause filter threshold field is added in the
320 * VMCB. The threshold value is a cycle count that is used to reset the
321 * pause counter. As with simple pause filtering, VMRUN loads the pause
322 * count value from VMCB into an internal counter. Then, on each pause
323 * instruction the hardware checks the elapsed number of cycles since
324 * the most recent pause instruction against the pause filter threshold.
325 * If the elapsed cycle count is greater than the pause filter threshold,
326 * then the internal pause count is reloaded from the VMCB and execution
327 * continues. If the elapsed cycle count is less than the pause filter
328 * threshold, then the internal pause count is decremented. If the count
329 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
330 * triggered. If advanced pause filtering is supported and pause filter
331 * threshold field is set to zero, the filter will operate in the simpler,
335 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
336 module_param(pause_filter_thresh, ushort, 0444);
338 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
339 module_param(pause_filter_count, ushort, 0444);
341 /* Default doubles per-vcpu window every exit. */
342 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
343 module_param(pause_filter_count_grow, ushort, 0444);
345 /* Default resets per-vcpu window every exit to pause_filter_count. */
346 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
347 module_param(pause_filter_count_shrink, ushort, 0444);
349 /* Default is to compute the maximum so we can never overflow. */
350 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
351 module_param(pause_filter_count_max, ushort, 0444);
353 /* allow nested paging (virtualized MMU) for all guests */
354 static int npt = true;
355 module_param(npt, int, S_IRUGO);
357 /* allow nested virtualization in KVM/SVM */
358 static int nested = true;
359 module_param(nested, int, S_IRUGO);
361 /* enable / disable AVIC */
363 #ifdef CONFIG_X86_LOCAL_APIC
364 module_param(avic, int, S_IRUGO);
367 /* enable/disable Next RIP Save */
368 static int nrips = true;
369 module_param(nrips, int, 0444);
371 /* enable/disable Virtual VMLOAD VMSAVE */
372 static int vls = true;
373 module_param(vls, int, 0444);
375 /* enable/disable Virtual GIF */
376 static int vgif = true;
377 module_param(vgif, int, 0444);
379 /* enable/disable SEV support */
380 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
381 module_param(sev, int, 0444);
383 static bool __read_mostly dump_invalid_vmcb = 0;
384 module_param(dump_invalid_vmcb, bool, 0644);
386 static u8 rsm_ins_bytes[] = "\x0f\xaa";
388 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
389 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
390 static void svm_complete_interrupts(struct vcpu_svm *svm);
392 static int nested_svm_exit_handled(struct vcpu_svm *svm);
393 static int nested_svm_intercept(struct vcpu_svm *svm);
394 static int nested_svm_vmexit(struct vcpu_svm *svm);
395 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
396 bool has_error_code, u32 error_code);
399 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
400 pause filter count */
401 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
402 VMCB_ASID, /* ASID */
403 VMCB_INTR, /* int_ctl, int_vector */
404 VMCB_NPT, /* npt_en, nCR3, gPAT */
405 VMCB_CR, /* CR0, CR3, CR4, EFER */
406 VMCB_DR, /* DR6, DR7 */
407 VMCB_DT, /* GDT, IDT */
408 VMCB_SEG, /* CS, DS, SS, ES, CPL */
409 VMCB_CR2, /* CR2 only */
410 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
411 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
412 * AVIC PHYSICAL_TABLE pointer,
413 * AVIC LOGICAL_TABLE pointer
418 /* TPR and CR2 are always written before VMRUN */
419 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
421 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
423 static unsigned int max_sev_asid;
424 static unsigned int min_sev_asid;
425 static unsigned long *sev_asid_bitmap;
426 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
429 struct list_head list;
430 unsigned long npages;
437 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
439 return container_of(kvm, struct kvm_svm, kvm);
442 static inline bool svm_sev_enabled(void)
444 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
447 static inline bool sev_guest(struct kvm *kvm)
449 #ifdef CONFIG_KVM_AMD_SEV
450 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
458 static inline int sev_get_asid(struct kvm *kvm)
460 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
465 static inline void mark_all_dirty(struct vmcb *vmcb)
467 vmcb->control.clean = 0;
470 static inline void mark_all_clean(struct vmcb *vmcb)
472 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
473 & ~VMCB_ALWAYS_DIRTY_MASK;
476 static inline void mark_dirty(struct vmcb *vmcb, int bit)
478 vmcb->control.clean &= ~(1 << bit);
481 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
483 return container_of(vcpu, struct vcpu_svm, vcpu);
486 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
488 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
489 mark_dirty(svm->vmcb, VMCB_AVIC);
492 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
494 struct vcpu_svm *svm = to_svm(vcpu);
495 u64 *entry = svm->avic_physical_id_cache;
500 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
503 static void recalc_intercepts(struct vcpu_svm *svm)
505 struct vmcb_control_area *c, *h;
506 struct nested_state *g;
508 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
510 if (!is_guest_mode(&svm->vcpu))
513 c = &svm->vmcb->control;
514 h = &svm->nested.hsave->control;
517 c->intercept_cr = h->intercept_cr | g->intercept_cr;
518 c->intercept_dr = h->intercept_dr | g->intercept_dr;
519 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
520 c->intercept = h->intercept | g->intercept;
523 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
525 if (is_guest_mode(&svm->vcpu))
526 return svm->nested.hsave;
531 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
533 struct vmcb *vmcb = get_host_vmcb(svm);
535 vmcb->control.intercept_cr |= (1U << bit);
537 recalc_intercepts(svm);
540 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
542 struct vmcb *vmcb = get_host_vmcb(svm);
544 vmcb->control.intercept_cr &= ~(1U << bit);
546 recalc_intercepts(svm);
549 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
551 struct vmcb *vmcb = get_host_vmcb(svm);
553 return vmcb->control.intercept_cr & (1U << bit);
556 static inline void set_dr_intercepts(struct vcpu_svm *svm)
558 struct vmcb *vmcb = get_host_vmcb(svm);
560 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
561 | (1 << INTERCEPT_DR1_READ)
562 | (1 << INTERCEPT_DR2_READ)
563 | (1 << INTERCEPT_DR3_READ)
564 | (1 << INTERCEPT_DR4_READ)
565 | (1 << INTERCEPT_DR5_READ)
566 | (1 << INTERCEPT_DR6_READ)
567 | (1 << INTERCEPT_DR7_READ)
568 | (1 << INTERCEPT_DR0_WRITE)
569 | (1 << INTERCEPT_DR1_WRITE)
570 | (1 << INTERCEPT_DR2_WRITE)
571 | (1 << INTERCEPT_DR3_WRITE)
572 | (1 << INTERCEPT_DR4_WRITE)
573 | (1 << INTERCEPT_DR5_WRITE)
574 | (1 << INTERCEPT_DR6_WRITE)
575 | (1 << INTERCEPT_DR7_WRITE);
577 recalc_intercepts(svm);
580 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
582 struct vmcb *vmcb = get_host_vmcb(svm);
584 vmcb->control.intercept_dr = 0;
586 recalc_intercepts(svm);
589 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
591 struct vmcb *vmcb = get_host_vmcb(svm);
593 vmcb->control.intercept_exceptions |= (1U << bit);
595 recalc_intercepts(svm);
598 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
600 struct vmcb *vmcb = get_host_vmcb(svm);
602 vmcb->control.intercept_exceptions &= ~(1U << bit);
604 recalc_intercepts(svm);
607 static inline void set_intercept(struct vcpu_svm *svm, int bit)
609 struct vmcb *vmcb = get_host_vmcb(svm);
611 vmcb->control.intercept |= (1ULL << bit);
613 recalc_intercepts(svm);
616 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
618 struct vmcb *vmcb = get_host_vmcb(svm);
620 vmcb->control.intercept &= ~(1ULL << bit);
622 recalc_intercepts(svm);
625 static inline bool vgif_enabled(struct vcpu_svm *svm)
627 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
630 static inline void enable_gif(struct vcpu_svm *svm)
632 if (vgif_enabled(svm))
633 svm->vmcb->control.int_ctl |= V_GIF_MASK;
635 svm->vcpu.arch.hflags |= HF_GIF_MASK;
638 static inline void disable_gif(struct vcpu_svm *svm)
640 if (vgif_enabled(svm))
641 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
643 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
646 static inline bool gif_set(struct vcpu_svm *svm)
648 if (vgif_enabled(svm))
649 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
651 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
654 static unsigned long iopm_base;
656 struct kvm_ldttss_desc {
659 unsigned base1:8, type:5, dpl:2, p:1;
660 unsigned limit1:4, zero0:3, g:1, base2:8;
663 } __attribute__((packed));
665 struct svm_cpu_data {
672 struct kvm_ldttss_desc *tss_desc;
674 struct page *save_area;
675 struct vmcb *current_vmcb;
677 /* index = sev_asid, value = vmcb pointer */
678 struct vmcb **sev_vmcbs;
681 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
683 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
685 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
686 #define MSRS_RANGE_SIZE 2048
687 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
689 static u32 svm_msrpm_offset(u32 msr)
694 for (i = 0; i < NUM_MSR_MAPS; i++) {
695 if (msr < msrpm_ranges[i] ||
696 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
699 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
700 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
702 /* Now we have the u8 offset - but need the u32 offset */
706 /* MSR not in any range */
710 #define MAX_INST_SIZE 15
712 static inline void clgi(void)
714 asm volatile (__ex("clgi"));
717 static inline void stgi(void)
719 asm volatile (__ex("stgi"));
722 static inline void invlpga(unsigned long addr, u32 asid)
724 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
727 static int get_npt_level(struct kvm_vcpu *vcpu)
730 return PT64_ROOT_4LEVEL;
732 return PT32E_ROOT_LEVEL;
736 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
738 vcpu->arch.efer = efer;
739 if (!npt_enabled && !(efer & EFER_LMA))
742 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
743 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
746 static int is_external_interrupt(u32 info)
748 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
749 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
752 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
754 struct vcpu_svm *svm = to_svm(vcpu);
757 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
758 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
762 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
764 struct vcpu_svm *svm = to_svm(vcpu);
767 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
769 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
773 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
775 struct vcpu_svm *svm = to_svm(vcpu);
777 if (nrips && svm->vmcb->control.next_rip != 0) {
778 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
779 svm->next_rip = svm->vmcb->control.next_rip;
782 if (!svm->next_rip) {
783 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
785 printk(KERN_DEBUG "%s: NOP\n", __func__);
788 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
789 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
790 __func__, kvm_rip_read(vcpu), svm->next_rip);
792 kvm_rip_write(vcpu, svm->next_rip);
793 svm_set_interrupt_shadow(vcpu, 0);
796 static void svm_queue_exception(struct kvm_vcpu *vcpu)
798 struct vcpu_svm *svm = to_svm(vcpu);
799 unsigned nr = vcpu->arch.exception.nr;
800 bool has_error_code = vcpu->arch.exception.has_error_code;
801 bool reinject = vcpu->arch.exception.injected;
802 u32 error_code = vcpu->arch.exception.error_code;
805 * If we are within a nested VM we'd better #VMEXIT and let the guest
806 * handle the exception
809 nested_svm_check_exception(svm, nr, has_error_code, error_code))
812 kvm_deliver_exception_payload(&svm->vcpu);
814 if (nr == BP_VECTOR && !nrips) {
815 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
818 * For guest debugging where we have to reinject #BP if some
819 * INT3 is guest-owned:
820 * Emulate nRIP by moving RIP forward. Will fail if injection
821 * raises a fault that is not intercepted. Still better than
822 * failing in all cases.
824 skip_emulated_instruction(&svm->vcpu);
825 rip = kvm_rip_read(&svm->vcpu);
826 svm->int3_rip = rip + svm->vmcb->save.cs.base;
827 svm->int3_injected = rip - old_rip;
830 svm->vmcb->control.event_inj = nr
832 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
833 | SVM_EVTINJ_TYPE_EXEPT;
834 svm->vmcb->control.event_inj_err = error_code;
837 static void svm_init_erratum_383(void)
843 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
846 /* Use _safe variants to not break nested virtualization */
847 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
853 low = lower_32_bits(val);
854 high = upper_32_bits(val);
856 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
858 erratum_383_found = true;
861 static void svm_init_osvw(struct kvm_vcpu *vcpu)
864 * Guests should see errata 400 and 415 as fixed (assuming that
865 * HLT and IO instructions are intercepted).
867 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
868 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
871 * By increasing VCPU's osvw.length to 3 we are telling the guest that
872 * all osvw.status bits inside that length, including bit 0 (which is
873 * reserved for erratum 298), are valid. However, if host processor's
874 * osvw_len is 0 then osvw_status[0] carries no information. We need to
875 * be conservative here and therefore we tell the guest that erratum 298
876 * is present (because we really don't know).
878 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
879 vcpu->arch.osvw.status |= 1;
882 static int has_svm(void)
886 if (!cpu_has_svm(&msg)) {
887 printk(KERN_INFO "has_svm: %s\n", msg);
894 static void svm_hardware_disable(void)
896 /* Make sure we clean up behind us */
897 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
898 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
902 amd_pmu_disable_virt();
905 static int svm_hardware_enable(void)
908 struct svm_cpu_data *sd;
910 struct desc_struct *gdt;
911 int me = raw_smp_processor_id();
913 rdmsrl(MSR_EFER, efer);
914 if (efer & EFER_SVME)
918 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
921 sd = per_cpu(svm_data, me);
923 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
927 sd->asid_generation = 1;
928 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
929 sd->next_asid = sd->max_asid + 1;
930 sd->min_asid = max_sev_asid + 1;
932 gdt = get_current_gdt_rw();
933 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
935 wrmsrl(MSR_EFER, efer | EFER_SVME);
937 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
939 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
940 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
941 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
948 * Note that it is possible to have a system with mixed processor
949 * revisions and therefore different OSVW bits. If bits are not the same
950 * on different processors then choose the worst case (i.e. if erratum
951 * is present on one processor and not on another then assume that the
952 * erratum is present everywhere).
954 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
955 uint64_t len, status = 0;
958 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
960 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
964 osvw_status = osvw_len = 0;
968 osvw_status |= status;
969 osvw_status &= (1ULL << osvw_len) - 1;
972 osvw_status = osvw_len = 0;
974 svm_init_erratum_383();
976 amd_pmu_enable_virt();
981 static void svm_cpu_uninit(int cpu)
983 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
988 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
989 kfree(sd->sev_vmcbs);
990 __free_page(sd->save_area);
994 static int svm_cpu_init(int cpu)
996 struct svm_cpu_data *sd;
999 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1004 sd->save_area = alloc_page(GFP_KERNEL);
1008 if (svm_sev_enabled()) {
1010 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1017 per_cpu(svm_data, cpu) = sd;
1027 static bool valid_msr_intercept(u32 index)
1031 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1032 if (direct_access_msrs[i].index == index)
1038 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1045 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1046 to_svm(vcpu)->msrpm;
1048 offset = svm_msrpm_offset(msr);
1049 bit_write = 2 * (msr & 0x0f) + 1;
1050 tmp = msrpm[offset];
1052 BUG_ON(offset == MSR_INVALID);
1054 return !!test_bit(bit_write, &tmp);
1057 static void set_msr_interception(u32 *msrpm, unsigned msr,
1058 int read, int write)
1060 u8 bit_read, bit_write;
1065 * If this warning triggers extend the direct_access_msrs list at the
1066 * beginning of the file
1068 WARN_ON(!valid_msr_intercept(msr));
1070 offset = svm_msrpm_offset(msr);
1071 bit_read = 2 * (msr & 0x0f);
1072 bit_write = 2 * (msr & 0x0f) + 1;
1073 tmp = msrpm[offset];
1075 BUG_ON(offset == MSR_INVALID);
1077 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1078 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1080 msrpm[offset] = tmp;
1083 static void svm_vcpu_init_msrpm(u32 *msrpm)
1087 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1089 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1090 if (!direct_access_msrs[i].always)
1093 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1097 static void add_msr_offset(u32 offset)
1101 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1103 /* Offset already in list? */
1104 if (msrpm_offsets[i] == offset)
1107 /* Slot used by another offset? */
1108 if (msrpm_offsets[i] != MSR_INVALID)
1111 /* Add offset to list */
1112 msrpm_offsets[i] = offset;
1118 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1119 * increase MSRPM_OFFSETS in this case.
1124 static void init_msrpm_offsets(void)
1128 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1130 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1133 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1134 BUG_ON(offset == MSR_INVALID);
1136 add_msr_offset(offset);
1140 static void svm_enable_lbrv(struct vcpu_svm *svm)
1142 u32 *msrpm = svm->msrpm;
1144 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1145 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1146 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1147 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1148 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1151 static void svm_disable_lbrv(struct vcpu_svm *svm)
1153 u32 *msrpm = svm->msrpm;
1155 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1156 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1157 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1158 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1159 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1162 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1164 svm->nmi_singlestep = false;
1166 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1167 /* Clear our flags if they were not set by the guest */
1168 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1169 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1170 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1171 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1176 * This hash table is used to map VM_ID to a struct kvm_svm,
1177 * when handling AMD IOMMU GALOG notification to schedule in
1178 * a particular vCPU.
1180 #define SVM_VM_DATA_HASH_BITS 8
1181 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1182 static u32 next_vm_id = 0;
1183 static bool next_vm_id_wrapped = 0;
1184 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1187 * This function is called from IOMMU driver to notify
1188 * SVM to schedule in a particular vCPU of a particular VM.
1190 static int avic_ga_log_notifier(u32 ga_tag)
1192 unsigned long flags;
1193 struct kvm_svm *kvm_svm;
1194 struct kvm_vcpu *vcpu = NULL;
1195 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1196 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1198 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1200 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1201 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1202 if (kvm_svm->avic_vm_id != vm_id)
1204 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1207 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1210 * At this point, the IOMMU should have already set the pending
1211 * bit in the vAPIC backing page. So, we just need to schedule
1215 kvm_vcpu_wake_up(vcpu);
1220 static __init int sev_hardware_setup(void)
1222 struct sev_user_data_status *status;
1225 /* Maximum number of encrypted guests supported simultaneously */
1226 max_sev_asid = cpuid_ecx(0x8000001F);
1231 /* Minimum ASID value that should be used for SEV guest */
1232 min_sev_asid = cpuid_edx(0x8000001F);
1234 /* Initialize SEV ASID bitmap */
1235 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1236 if (!sev_asid_bitmap)
1239 status = kmalloc(sizeof(*status), GFP_KERNEL);
1244 * Check SEV platform status.
1246 * PLATFORM_STATUS can be called in any state, if we failed to query
1247 * the PLATFORM status then either PSP firmware does not support SEV
1248 * feature or SEV firmware is dead.
1250 rc = sev_platform_status(status, NULL);
1254 pr_info("SEV supported\n");
1261 static void grow_ple_window(struct kvm_vcpu *vcpu)
1263 struct vcpu_svm *svm = to_svm(vcpu);
1264 struct vmcb_control_area *control = &svm->vmcb->control;
1265 int old = control->pause_filter_count;
1267 control->pause_filter_count = __grow_ple_window(old,
1269 pause_filter_count_grow,
1270 pause_filter_count_max);
1272 if (control->pause_filter_count != old)
1273 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1275 trace_kvm_ple_window_grow(vcpu->vcpu_id,
1276 control->pause_filter_count, old);
1279 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1281 struct vcpu_svm *svm = to_svm(vcpu);
1282 struct vmcb_control_area *control = &svm->vmcb->control;
1283 int old = control->pause_filter_count;
1285 control->pause_filter_count =
1286 __shrink_ple_window(old,
1288 pause_filter_count_shrink,
1289 pause_filter_count);
1290 if (control->pause_filter_count != old)
1291 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1293 trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1294 control->pause_filter_count, old);
1297 static __init int svm_hardware_setup(void)
1300 struct page *iopm_pages;
1304 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1309 iopm_va = page_address(iopm_pages);
1310 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1311 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1313 init_msrpm_offsets();
1315 if (boot_cpu_has(X86_FEATURE_NX))
1316 kvm_enable_efer_bits(EFER_NX);
1318 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1319 kvm_enable_efer_bits(EFER_FFXSR);
1321 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1322 kvm_has_tsc_control = true;
1323 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1324 kvm_tsc_scaling_ratio_frac_bits = 32;
1327 /* Check for pause filtering support */
1328 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1329 pause_filter_count = 0;
1330 pause_filter_thresh = 0;
1331 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1332 pause_filter_thresh = 0;
1336 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1337 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1341 if (boot_cpu_has(X86_FEATURE_SEV) &&
1342 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1343 r = sev_hardware_setup();
1351 for_each_possible_cpu(cpu) {
1352 r = svm_cpu_init(cpu);
1357 if (!boot_cpu_has(X86_FEATURE_NPT))
1358 npt_enabled = false;
1360 if (npt_enabled && !npt) {
1361 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1362 npt_enabled = false;
1366 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1372 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1378 !boot_cpu_has(X86_FEATURE_AVIC) ||
1379 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1382 pr_info("AVIC enabled\n");
1384 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1390 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1391 !IS_ENABLED(CONFIG_X86_64)) {
1394 pr_info("Virtual VMLOAD VMSAVE supported\n");
1399 if (!boot_cpu_has(X86_FEATURE_VGIF))
1402 pr_info("Virtual GIF supported\n");
1408 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1413 static __exit void svm_hardware_unsetup(void)
1417 if (svm_sev_enabled())
1418 bitmap_free(sev_asid_bitmap);
1420 for_each_possible_cpu(cpu)
1421 svm_cpu_uninit(cpu);
1423 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1427 static void init_seg(struct vmcb_seg *seg)
1430 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1431 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1432 seg->limit = 0xffff;
1436 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1439 seg->attrib = SVM_SELECTOR_P_MASK | type;
1440 seg->limit = 0xffff;
1444 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1446 struct vcpu_svm *svm = to_svm(vcpu);
1448 if (is_guest_mode(vcpu))
1449 return svm->nested.hsave->control.tsc_offset;
1451 return vcpu->arch.tsc_offset;
1454 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1456 struct vcpu_svm *svm = to_svm(vcpu);
1457 u64 g_tsc_offset = 0;
1459 if (is_guest_mode(vcpu)) {
1460 /* Write L1's TSC offset. */
1461 g_tsc_offset = svm->vmcb->control.tsc_offset -
1462 svm->nested.hsave->control.tsc_offset;
1463 svm->nested.hsave->control.tsc_offset = offset;
1466 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1467 svm->vmcb->control.tsc_offset - g_tsc_offset,
1470 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1472 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1473 return svm->vmcb->control.tsc_offset;
1476 static void avic_init_vmcb(struct vcpu_svm *svm)
1478 struct vmcb *vmcb = svm->vmcb;
1479 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1480 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1481 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1482 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1484 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1485 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1486 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1487 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1488 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1491 static void init_vmcb(struct vcpu_svm *svm)
1493 struct vmcb_control_area *control = &svm->vmcb->control;
1494 struct vmcb_save_area *save = &svm->vmcb->save;
1496 svm->vcpu.arch.hflags = 0;
1498 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1499 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1500 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1501 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1502 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1503 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1504 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1505 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1507 set_dr_intercepts(svm);
1509 set_exception_intercept(svm, PF_VECTOR);
1510 set_exception_intercept(svm, UD_VECTOR);
1511 set_exception_intercept(svm, MC_VECTOR);
1512 set_exception_intercept(svm, AC_VECTOR);
1513 set_exception_intercept(svm, DB_VECTOR);
1515 * Guest access to VMware backdoor ports could legitimately
1516 * trigger #GP because of TSS I/O permission bitmap.
1517 * We intercept those #GP and allow access to them anyway
1520 if (enable_vmware_backdoor)
1521 set_exception_intercept(svm, GP_VECTOR);
1523 set_intercept(svm, INTERCEPT_INTR);
1524 set_intercept(svm, INTERCEPT_NMI);
1525 set_intercept(svm, INTERCEPT_SMI);
1526 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1527 set_intercept(svm, INTERCEPT_RDPMC);
1528 set_intercept(svm, INTERCEPT_CPUID);
1529 set_intercept(svm, INTERCEPT_INVD);
1530 set_intercept(svm, INTERCEPT_INVLPG);
1531 set_intercept(svm, INTERCEPT_INVLPGA);
1532 set_intercept(svm, INTERCEPT_IOIO_PROT);
1533 set_intercept(svm, INTERCEPT_MSR_PROT);
1534 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1535 set_intercept(svm, INTERCEPT_SHUTDOWN);
1536 set_intercept(svm, INTERCEPT_VMRUN);
1537 set_intercept(svm, INTERCEPT_VMMCALL);
1538 set_intercept(svm, INTERCEPT_VMLOAD);
1539 set_intercept(svm, INTERCEPT_VMSAVE);
1540 set_intercept(svm, INTERCEPT_STGI);
1541 set_intercept(svm, INTERCEPT_CLGI);
1542 set_intercept(svm, INTERCEPT_SKINIT);
1543 set_intercept(svm, INTERCEPT_WBINVD);
1544 set_intercept(svm, INTERCEPT_XSETBV);
1545 set_intercept(svm, INTERCEPT_RSM);
1547 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1548 set_intercept(svm, INTERCEPT_MONITOR);
1549 set_intercept(svm, INTERCEPT_MWAIT);
1552 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1553 set_intercept(svm, INTERCEPT_HLT);
1555 control->iopm_base_pa = __sme_set(iopm_base);
1556 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1557 control->int_ctl = V_INTR_MASKING_MASK;
1559 init_seg(&save->es);
1560 init_seg(&save->ss);
1561 init_seg(&save->ds);
1562 init_seg(&save->fs);
1563 init_seg(&save->gs);
1565 save->cs.selector = 0xf000;
1566 save->cs.base = 0xffff0000;
1567 /* Executable/Readable Code Segment */
1568 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1569 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1570 save->cs.limit = 0xffff;
1572 save->gdtr.limit = 0xffff;
1573 save->idtr.limit = 0xffff;
1575 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1576 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1578 svm_set_efer(&svm->vcpu, 0);
1579 save->dr6 = 0xffff0ff0;
1580 kvm_set_rflags(&svm->vcpu, 2);
1581 save->rip = 0x0000fff0;
1582 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1585 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1586 * It also updates the guest-visible cr0 value.
1588 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1589 kvm_mmu_reset_context(&svm->vcpu);
1591 save->cr4 = X86_CR4_PAE;
1595 /* Setup VMCB for Nested Paging */
1596 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1597 clr_intercept(svm, INTERCEPT_INVLPG);
1598 clr_exception_intercept(svm, PF_VECTOR);
1599 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1600 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1601 save->g_pat = svm->vcpu.arch.pat;
1605 svm->asid_generation = 0;
1607 svm->nested.vmcb = 0;
1608 svm->vcpu.arch.hflags = 0;
1610 if (pause_filter_count) {
1611 control->pause_filter_count = pause_filter_count;
1612 if (pause_filter_thresh)
1613 control->pause_filter_thresh = pause_filter_thresh;
1614 set_intercept(svm, INTERCEPT_PAUSE);
1616 clr_intercept(svm, INTERCEPT_PAUSE);
1619 if (kvm_vcpu_apicv_active(&svm->vcpu))
1620 avic_init_vmcb(svm);
1623 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1624 * in VMCB and clear intercepts to avoid #VMEXIT.
1627 clr_intercept(svm, INTERCEPT_VMLOAD);
1628 clr_intercept(svm, INTERCEPT_VMSAVE);
1629 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1633 clr_intercept(svm, INTERCEPT_STGI);
1634 clr_intercept(svm, INTERCEPT_CLGI);
1635 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1638 if (sev_guest(svm->vcpu.kvm)) {
1639 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1640 clr_exception_intercept(svm, UD_VECTOR);
1643 mark_all_dirty(svm->vmcb);
1649 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1652 u64 *avic_physical_id_table;
1653 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1655 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1658 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1660 return &avic_physical_id_table[index];
1665 * AVIC hardware walks the nested page table to check permissions,
1666 * but does not use the SPA address specified in the leaf page
1667 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1668 * field of the VMCB. Therefore, we set up the
1669 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1671 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1673 struct kvm *kvm = vcpu->kvm;
1676 mutex_lock(&kvm->slots_lock);
1677 if (kvm->arch.apic_access_page_done)
1680 ret = __x86_set_memory_region(kvm,
1681 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1682 APIC_DEFAULT_PHYS_BASE,
1687 kvm->arch.apic_access_page_done = true;
1689 mutex_unlock(&kvm->slots_lock);
1693 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1696 u64 *entry, new_entry;
1697 int id = vcpu->vcpu_id;
1698 struct vcpu_svm *svm = to_svm(vcpu);
1700 ret = avic_init_access_page(vcpu);
1704 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1707 if (!svm->vcpu.arch.apic->regs)
1710 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1712 /* Setting AVIC backing page address in the phy APIC ID table */
1713 entry = avic_get_physical_id_entry(vcpu, id);
1717 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1718 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1719 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1720 WRITE_ONCE(*entry, new_entry);
1722 svm->avic_physical_id_cache = entry;
1727 static void __sev_asid_free(int asid)
1729 struct svm_cpu_data *sd;
1733 clear_bit(pos, sev_asid_bitmap);
1735 for_each_possible_cpu(cpu) {
1736 sd = per_cpu(svm_data, cpu);
1737 sd->sev_vmcbs[pos] = NULL;
1741 static void sev_asid_free(struct kvm *kvm)
1743 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1745 __sev_asid_free(sev->asid);
1748 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1750 struct sev_data_decommission *decommission;
1751 struct sev_data_deactivate *data;
1756 data = kzalloc(sizeof(*data), GFP_KERNEL);
1760 /* deactivate handle */
1761 data->handle = handle;
1762 sev_guest_deactivate(data, NULL);
1764 wbinvd_on_all_cpus();
1765 sev_guest_df_flush(NULL);
1768 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1772 /* decommission handle */
1773 decommission->handle = handle;
1774 sev_guest_decommission(decommission, NULL);
1776 kfree(decommission);
1779 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1780 unsigned long ulen, unsigned long *n,
1783 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1784 unsigned long npages, npinned, size;
1785 unsigned long locked, lock_limit;
1786 struct page **pages;
1787 unsigned long first, last;
1789 if (ulen == 0 || uaddr + ulen < uaddr)
1792 /* Calculate number of pages. */
1793 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1794 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1795 npages = (last - first + 1);
1797 locked = sev->pages_locked + npages;
1798 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1799 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1800 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1804 /* Avoid using vmalloc for smaller buffers. */
1805 size = npages * sizeof(struct page *);
1806 if (size > PAGE_SIZE)
1807 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1810 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1815 /* Pin the user virtual address. */
1816 npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1817 if (npinned != npages) {
1818 pr_err("SEV: Failure locking %lu pages.\n", npages);
1823 sev->pages_locked = locked;
1829 release_pages(pages, npinned);
1835 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1836 unsigned long npages)
1838 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1840 release_pages(pages, npages);
1842 sev->pages_locked -= npages;
1845 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1847 uint8_t *page_virtual;
1850 if (npages == 0 || pages == NULL)
1853 for (i = 0; i < npages; i++) {
1854 page_virtual = kmap_atomic(pages[i]);
1855 clflush_cache_range(page_virtual, PAGE_SIZE);
1856 kunmap_atomic(page_virtual);
1860 static void __unregister_enc_region_locked(struct kvm *kvm,
1861 struct enc_region *region)
1864 * The guest may change the memory encryption attribute from C=0 -> C=1
1865 * or vice versa for this memory range. Lets make sure caches are
1866 * flushed to ensure that guest data gets written into memory with
1869 sev_clflush_pages(region->pages, region->npages);
1871 sev_unpin_memory(kvm, region->pages, region->npages);
1872 list_del(®ion->list);
1876 static struct kvm *svm_vm_alloc(void)
1878 struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1879 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1881 return &kvm_svm->kvm;
1884 static void svm_vm_free(struct kvm *kvm)
1886 vfree(to_kvm_svm(kvm));
1889 static void sev_vm_destroy(struct kvm *kvm)
1891 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1892 struct list_head *head = &sev->regions_list;
1893 struct list_head *pos, *q;
1895 if (!sev_guest(kvm))
1898 mutex_lock(&kvm->lock);
1901 * if userspace was terminated before unregistering the memory regions
1902 * then lets unpin all the registered memory.
1904 if (!list_empty(head)) {
1905 list_for_each_safe(pos, q, head) {
1906 __unregister_enc_region_locked(kvm,
1907 list_entry(pos, struct enc_region, list));
1911 mutex_unlock(&kvm->lock);
1913 sev_unbind_asid(kvm, sev->handle);
1917 static void avic_vm_destroy(struct kvm *kvm)
1919 unsigned long flags;
1920 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1925 if (kvm_svm->avic_logical_id_table_page)
1926 __free_page(kvm_svm->avic_logical_id_table_page);
1927 if (kvm_svm->avic_physical_id_table_page)
1928 __free_page(kvm_svm->avic_physical_id_table_page);
1930 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1931 hash_del(&kvm_svm->hnode);
1932 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1935 static void svm_vm_destroy(struct kvm *kvm)
1937 avic_vm_destroy(kvm);
1938 sev_vm_destroy(kvm);
1941 static int avic_vm_init(struct kvm *kvm)
1943 unsigned long flags;
1945 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1947 struct page *p_page;
1948 struct page *l_page;
1954 /* Allocating physical APIC ID table (4KB) */
1955 p_page = alloc_page(GFP_KERNEL_ACCOUNT);
1959 kvm_svm->avic_physical_id_table_page = p_page;
1960 clear_page(page_address(p_page));
1962 /* Allocating logical APIC ID table (4KB) */
1963 l_page = alloc_page(GFP_KERNEL_ACCOUNT);
1967 kvm_svm->avic_logical_id_table_page = l_page;
1968 clear_page(page_address(l_page));
1970 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1972 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1973 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1974 next_vm_id_wrapped = 1;
1977 /* Is it still in use? Only possible if wrapped at least once */
1978 if (next_vm_id_wrapped) {
1979 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1980 if (k2->avic_vm_id == vm_id)
1984 kvm_svm->avic_vm_id = vm_id;
1985 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1986 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1991 avic_vm_destroy(kvm);
1996 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1999 unsigned long flags;
2000 struct amd_svm_iommu_ir *ir;
2001 struct vcpu_svm *svm = to_svm(vcpu);
2003 if (!kvm_arch_has_assigned_device(vcpu->kvm))
2007 * Here, we go through the per-vcpu ir_list to update all existing
2008 * interrupt remapping table entry targeting this vcpu.
2010 spin_lock_irqsave(&svm->ir_list_lock, flags);
2012 if (list_empty(&svm->ir_list))
2015 list_for_each_entry(ir, &svm->ir_list, node) {
2016 ret = amd_iommu_update_ga(cpu, r, ir->data);
2021 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2025 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2028 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2029 int h_physical_id = kvm_cpu_get_apicid(cpu);
2030 struct vcpu_svm *svm = to_svm(vcpu);
2032 if (!kvm_vcpu_apicv_active(vcpu))
2036 * Since the host physical APIC id is 8 bits,
2037 * we can support host APIC ID upto 255.
2039 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2042 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2043 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2045 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2046 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2048 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2049 if (svm->avic_is_running)
2050 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2052 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2053 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2054 svm->avic_is_running);
2057 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2060 struct vcpu_svm *svm = to_svm(vcpu);
2062 if (!kvm_vcpu_apicv_active(vcpu))
2065 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2066 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2067 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2069 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2070 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2074 * This function is called during VCPU halt/unhalt.
2076 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2078 struct vcpu_svm *svm = to_svm(vcpu);
2080 svm->avic_is_running = is_run;
2082 avic_vcpu_load(vcpu, vcpu->cpu);
2084 avic_vcpu_put(vcpu);
2087 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2089 struct vcpu_svm *svm = to_svm(vcpu);
2093 vcpu->arch.microcode_version = 0x01000065;
2095 svm->virt_spec_ctrl = 0;
2098 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2099 MSR_IA32_APICBASE_ENABLE;
2100 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2101 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2105 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2106 kvm_rdx_write(vcpu, eax);
2108 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2109 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2112 static int avic_init_vcpu(struct vcpu_svm *svm)
2116 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2119 ret = avic_init_backing_page(&svm->vcpu);
2123 INIT_LIST_HEAD(&svm->ir_list);
2124 spin_lock_init(&svm->ir_list_lock);
2125 svm->dfr_reg = APIC_DFR_FLAT;
2130 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2132 struct vcpu_svm *svm;
2134 struct page *msrpm_pages;
2135 struct page *hsave_page;
2136 struct page *nested_msrpm_pages;
2139 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2145 svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
2146 GFP_KERNEL_ACCOUNT);
2147 if (!svm->vcpu.arch.user_fpu) {
2148 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
2150 goto free_partial_svm;
2153 svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2154 GFP_KERNEL_ACCOUNT);
2155 if (!svm->vcpu.arch.guest_fpu) {
2156 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2161 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2166 page = alloc_page(GFP_KERNEL_ACCOUNT);
2170 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2174 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2175 if (!nested_msrpm_pages)
2178 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2182 err = avic_init_vcpu(svm);
2186 /* We initialize this flag to true to make sure that the is_running
2187 * bit would be set the first time the vcpu is loaded.
2189 svm->avic_is_running = true;
2191 svm->nested.hsave = page_address(hsave_page);
2193 svm->msrpm = page_address(msrpm_pages);
2194 svm_vcpu_init_msrpm(svm->msrpm);
2196 svm->nested.msrpm = page_address(nested_msrpm_pages);
2197 svm_vcpu_init_msrpm(svm->nested.msrpm);
2199 svm->vmcb = page_address(page);
2200 clear_page(svm->vmcb);
2201 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2202 svm->asid_generation = 0;
2205 svm_init_osvw(&svm->vcpu);
2210 __free_page(hsave_page);
2212 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2214 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2218 kvm_vcpu_uninit(&svm->vcpu);
2220 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2222 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2224 kmem_cache_free(kvm_vcpu_cache, svm);
2226 return ERR_PTR(err);
2229 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2233 for_each_online_cpu(i)
2234 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2237 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2239 struct vcpu_svm *svm = to_svm(vcpu);
2242 * The vmcb page can be recycled, causing a false negative in
2243 * svm_vcpu_load(). So, ensure that no logical CPU has this
2244 * vmcb page recorded as its current vmcb.
2246 svm_clear_current_vmcb(svm->vmcb);
2248 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2249 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2250 __free_page(virt_to_page(svm->nested.hsave));
2251 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2252 kvm_vcpu_uninit(vcpu);
2253 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2254 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2255 kmem_cache_free(kvm_vcpu_cache, svm);
2258 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2260 struct vcpu_svm *svm = to_svm(vcpu);
2261 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2264 if (unlikely(cpu != vcpu->cpu)) {
2265 svm->asid_generation = 0;
2266 mark_all_dirty(svm->vmcb);
2269 #ifdef CONFIG_X86_64
2270 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2272 savesegment(fs, svm->host.fs);
2273 savesegment(gs, svm->host.gs);
2274 svm->host.ldt = kvm_read_ldt();
2276 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2277 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2279 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2280 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2281 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2282 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2283 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2286 /* This assumes that the kernel never uses MSR_TSC_AUX */
2287 if (static_cpu_has(X86_FEATURE_RDTSCP))
2288 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2290 if (sd->current_vmcb != svm->vmcb) {
2291 sd->current_vmcb = svm->vmcb;
2292 indirect_branch_prediction_barrier();
2294 avic_vcpu_load(vcpu, cpu);
2297 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2299 struct vcpu_svm *svm = to_svm(vcpu);
2302 avic_vcpu_put(vcpu);
2304 ++vcpu->stat.host_state_reload;
2305 kvm_load_ldt(svm->host.ldt);
2306 #ifdef CONFIG_X86_64
2307 loadsegment(fs, svm->host.fs);
2308 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2309 load_gs_index(svm->host.gs);
2311 #ifdef CONFIG_X86_32_LAZY_GS
2312 loadsegment(gs, svm->host.gs);
2315 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2316 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2319 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2321 avic_set_running(vcpu, false);
2324 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2326 avic_set_running(vcpu, true);
2329 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2331 struct vcpu_svm *svm = to_svm(vcpu);
2332 unsigned long rflags = svm->vmcb->save.rflags;
2334 if (svm->nmi_singlestep) {
2335 /* Hide our flags if they were not set by the guest */
2336 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2337 rflags &= ~X86_EFLAGS_TF;
2338 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2339 rflags &= ~X86_EFLAGS_RF;
2344 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2346 if (to_svm(vcpu)->nmi_singlestep)
2347 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2350 * Any change of EFLAGS.VM is accompanied by a reload of SS
2351 * (caused by either a task switch or an inter-privilege IRET),
2352 * so we do not need to update the CPL here.
2354 to_svm(vcpu)->vmcb->save.rflags = rflags;
2357 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2360 case VCPU_EXREG_PDPTR:
2361 BUG_ON(!npt_enabled);
2362 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2369 static void svm_set_vintr(struct vcpu_svm *svm)
2371 set_intercept(svm, INTERCEPT_VINTR);
2374 static void svm_clear_vintr(struct vcpu_svm *svm)
2376 clr_intercept(svm, INTERCEPT_VINTR);
2379 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2381 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2384 case VCPU_SREG_CS: return &save->cs;
2385 case VCPU_SREG_DS: return &save->ds;
2386 case VCPU_SREG_ES: return &save->es;
2387 case VCPU_SREG_FS: return &save->fs;
2388 case VCPU_SREG_GS: return &save->gs;
2389 case VCPU_SREG_SS: return &save->ss;
2390 case VCPU_SREG_TR: return &save->tr;
2391 case VCPU_SREG_LDTR: return &save->ldtr;
2397 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2399 struct vmcb_seg *s = svm_seg(vcpu, seg);
2404 static void svm_get_segment(struct kvm_vcpu *vcpu,
2405 struct kvm_segment *var, int seg)
2407 struct vmcb_seg *s = svm_seg(vcpu, seg);
2409 var->base = s->base;
2410 var->limit = s->limit;
2411 var->selector = s->selector;
2412 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2413 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2414 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2415 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2416 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2417 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2418 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2421 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2422 * However, the SVM spec states that the G bit is not observed by the
2423 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2424 * So let's synthesize a legal G bit for all segments, this helps
2425 * running KVM nested. It also helps cross-vendor migration, because
2426 * Intel's vmentry has a check on the 'G' bit.
2428 var->g = s->limit > 0xfffff;
2431 * AMD's VMCB does not have an explicit unusable field, so emulate it
2432 * for cross vendor migration purposes by "not present"
2434 var->unusable = !var->present;
2439 * Work around a bug where the busy flag in the tr selector
2449 * The accessed bit must always be set in the segment
2450 * descriptor cache, although it can be cleared in the
2451 * descriptor, the cached bit always remains at 1. Since
2452 * Intel has a check on this, set it here to support
2453 * cross-vendor migration.
2460 * On AMD CPUs sometimes the DB bit in the segment
2461 * descriptor is left as 1, although the whole segment has
2462 * been made unusable. Clear it here to pass an Intel VMX
2463 * entry check when cross vendor migrating.
2467 /* This is symmetric with svm_set_segment() */
2468 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2473 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2475 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2480 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2482 struct vcpu_svm *svm = to_svm(vcpu);
2484 dt->size = svm->vmcb->save.idtr.limit;
2485 dt->address = svm->vmcb->save.idtr.base;
2488 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2490 struct vcpu_svm *svm = to_svm(vcpu);
2492 svm->vmcb->save.idtr.limit = dt->size;
2493 svm->vmcb->save.idtr.base = dt->address ;
2494 mark_dirty(svm->vmcb, VMCB_DT);
2497 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2499 struct vcpu_svm *svm = to_svm(vcpu);
2501 dt->size = svm->vmcb->save.gdtr.limit;
2502 dt->address = svm->vmcb->save.gdtr.base;
2505 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2507 struct vcpu_svm *svm = to_svm(vcpu);
2509 svm->vmcb->save.gdtr.limit = dt->size;
2510 svm->vmcb->save.gdtr.base = dt->address ;
2511 mark_dirty(svm->vmcb, VMCB_DT);
2514 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2518 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2522 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2526 static void update_cr0_intercept(struct vcpu_svm *svm)
2528 ulong gcr0 = svm->vcpu.arch.cr0;
2529 u64 *hcr0 = &svm->vmcb->save.cr0;
2531 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2532 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2534 mark_dirty(svm->vmcb, VMCB_CR);
2536 if (gcr0 == *hcr0) {
2537 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2538 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2540 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2541 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2545 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2547 struct vcpu_svm *svm = to_svm(vcpu);
2549 #ifdef CONFIG_X86_64
2550 if (vcpu->arch.efer & EFER_LME) {
2551 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2552 vcpu->arch.efer |= EFER_LMA;
2553 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2556 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2557 vcpu->arch.efer &= ~EFER_LMA;
2558 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2562 vcpu->arch.cr0 = cr0;
2565 cr0 |= X86_CR0_PG | X86_CR0_WP;
2568 * re-enable caching here because the QEMU bios
2569 * does not do it - this results in some delay at
2572 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2573 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2574 svm->vmcb->save.cr0 = cr0;
2575 mark_dirty(svm->vmcb, VMCB_CR);
2576 update_cr0_intercept(svm);
2579 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2581 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2582 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2584 if (cr4 & X86_CR4_VMXE)
2587 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2588 svm_flush_tlb(vcpu, true);
2590 vcpu->arch.cr4 = cr4;
2593 cr4 |= host_cr4_mce;
2594 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2595 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2599 static void svm_set_segment(struct kvm_vcpu *vcpu,
2600 struct kvm_segment *var, int seg)
2602 struct vcpu_svm *svm = to_svm(vcpu);
2603 struct vmcb_seg *s = svm_seg(vcpu, seg);
2605 s->base = var->base;
2606 s->limit = var->limit;
2607 s->selector = var->selector;
2608 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2609 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2610 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2611 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2612 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2613 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2614 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2615 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2618 * This is always accurate, except if SYSRET returned to a segment
2619 * with SS.DPL != 3. Intel does not have this quirk, and always
2620 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2621 * would entail passing the CPL to userspace and back.
2623 if (seg == VCPU_SREG_SS)
2624 /* This is symmetric with svm_get_segment() */
2625 svm->vmcb->save.cpl = (var->dpl & 3);
2627 mark_dirty(svm->vmcb, VMCB_SEG);
2630 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2632 struct vcpu_svm *svm = to_svm(vcpu);
2634 clr_exception_intercept(svm, BP_VECTOR);
2636 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2637 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2638 set_exception_intercept(svm, BP_VECTOR);
2640 vcpu->guest_debug = 0;
2643 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2645 if (sd->next_asid > sd->max_asid) {
2646 ++sd->asid_generation;
2647 sd->next_asid = sd->min_asid;
2648 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2651 svm->asid_generation = sd->asid_generation;
2652 svm->vmcb->control.asid = sd->next_asid++;
2654 mark_dirty(svm->vmcb, VMCB_ASID);
2657 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2659 return to_svm(vcpu)->vmcb->save.dr6;
2662 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2664 struct vcpu_svm *svm = to_svm(vcpu);
2666 svm->vmcb->save.dr6 = value;
2667 mark_dirty(svm->vmcb, VMCB_DR);
2670 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2672 struct vcpu_svm *svm = to_svm(vcpu);
2674 get_debugreg(vcpu->arch.db[0], 0);
2675 get_debugreg(vcpu->arch.db[1], 1);
2676 get_debugreg(vcpu->arch.db[2], 2);
2677 get_debugreg(vcpu->arch.db[3], 3);
2678 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2679 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2681 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2682 set_dr_intercepts(svm);
2685 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2687 struct vcpu_svm *svm = to_svm(vcpu);
2689 svm->vmcb->save.dr7 = value;
2690 mark_dirty(svm->vmcb, VMCB_DR);
2693 static int pf_interception(struct vcpu_svm *svm)
2695 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2696 u64 error_code = svm->vmcb->control.exit_info_1;
2698 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2699 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2700 svm->vmcb->control.insn_bytes : NULL,
2701 svm->vmcb->control.insn_len);
2704 static int npf_interception(struct vcpu_svm *svm)
2706 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2707 u64 error_code = svm->vmcb->control.exit_info_1;
2709 trace_kvm_page_fault(fault_address, error_code);
2710 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2711 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2712 svm->vmcb->control.insn_bytes : NULL,
2713 svm->vmcb->control.insn_len);
2716 static int db_interception(struct vcpu_svm *svm)
2718 struct kvm_run *kvm_run = svm->vcpu.run;
2719 struct kvm_vcpu *vcpu = &svm->vcpu;
2721 if (!(svm->vcpu.guest_debug &
2722 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2723 !svm->nmi_singlestep) {
2724 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2728 if (svm->nmi_singlestep) {
2729 disable_nmi_singlestep(svm);
2730 /* Make sure we check for pending NMIs upon entry */
2731 kvm_make_request(KVM_REQ_EVENT, vcpu);
2734 if (svm->vcpu.guest_debug &
2735 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2736 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2737 kvm_run->debug.arch.pc =
2738 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2739 kvm_run->debug.arch.exception = DB_VECTOR;
2746 static int bp_interception(struct vcpu_svm *svm)
2748 struct kvm_run *kvm_run = svm->vcpu.run;
2750 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2751 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2752 kvm_run->debug.arch.exception = BP_VECTOR;
2756 static int ud_interception(struct vcpu_svm *svm)
2758 return handle_ud(&svm->vcpu);
2761 static int ac_interception(struct vcpu_svm *svm)
2763 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2767 static int gp_interception(struct vcpu_svm *svm)
2769 struct kvm_vcpu *vcpu = &svm->vcpu;
2770 u32 error_code = svm->vmcb->control.exit_info_1;
2773 WARN_ON_ONCE(!enable_vmware_backdoor);
2775 er = kvm_emulate_instruction(vcpu,
2776 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2777 if (er == EMULATE_USER_EXIT)
2779 else if (er != EMULATE_DONE)
2780 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2784 static bool is_erratum_383(void)
2789 if (!erratum_383_found)
2792 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2796 /* Bit 62 may or may not be set for this mce */
2797 value &= ~(1ULL << 62);
2799 if (value != 0xb600000000010015ULL)
2802 /* Clear MCi_STATUS registers */
2803 for (i = 0; i < 6; ++i)
2804 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2806 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2810 value &= ~(1ULL << 2);
2811 low = lower_32_bits(value);
2812 high = upper_32_bits(value);
2814 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2817 /* Flush tlb to evict multi-match entries */
2823 static void svm_handle_mce(struct vcpu_svm *svm)
2825 if (is_erratum_383()) {
2827 * Erratum 383 triggered. Guest state is corrupt so kill the
2830 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2832 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2838 * On an #MC intercept the MCE handler is not called automatically in
2839 * the host. So do it by hand here.
2843 /* not sure if we ever come back to this point */
2848 static int mc_interception(struct vcpu_svm *svm)
2853 static int shutdown_interception(struct vcpu_svm *svm)
2855 struct kvm_run *kvm_run = svm->vcpu.run;
2858 * VMCB is undefined after a SHUTDOWN intercept
2859 * so reinitialize it.
2861 clear_page(svm->vmcb);
2864 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2868 static int io_interception(struct vcpu_svm *svm)
2870 struct kvm_vcpu *vcpu = &svm->vcpu;
2871 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2872 int size, in, string;
2875 ++svm->vcpu.stat.io_exits;
2876 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2877 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2879 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2881 port = io_info >> 16;
2882 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2883 svm->next_rip = svm->vmcb->control.exit_info_2;
2885 return kvm_fast_pio(&svm->vcpu, size, port, in);
2888 static int nmi_interception(struct vcpu_svm *svm)
2893 static int intr_interception(struct vcpu_svm *svm)
2895 ++svm->vcpu.stat.irq_exits;
2899 static int nop_on_interception(struct vcpu_svm *svm)
2904 static int halt_interception(struct vcpu_svm *svm)
2906 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2907 return kvm_emulate_halt(&svm->vcpu);
2910 static int vmmcall_interception(struct vcpu_svm *svm)
2912 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2913 return kvm_emulate_hypercall(&svm->vcpu);
2916 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2918 struct vcpu_svm *svm = to_svm(vcpu);
2920 return svm->nested.nested_cr3;
2923 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2925 struct vcpu_svm *svm = to_svm(vcpu);
2926 u64 cr3 = svm->nested.nested_cr3;
2930 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2931 offset_in_page(cr3) + index * 8, 8);
2937 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2940 struct vcpu_svm *svm = to_svm(vcpu);
2942 svm->vmcb->control.nested_cr3 = __sme_set(root);
2943 mark_dirty(svm->vmcb, VMCB_NPT);
2946 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2947 struct x86_exception *fault)
2949 struct vcpu_svm *svm = to_svm(vcpu);
2951 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2953 * TODO: track the cause of the nested page fault, and
2954 * correctly fill in the high bits of exit_info_1.
2956 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2957 svm->vmcb->control.exit_code_hi = 0;
2958 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2959 svm->vmcb->control.exit_info_2 = fault->address;
2962 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2963 svm->vmcb->control.exit_info_1 |= fault->error_code;
2966 * The present bit is always zero for page structure faults on real
2969 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2970 svm->vmcb->control.exit_info_1 &= ~1;
2972 nested_svm_vmexit(svm);
2975 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2977 WARN_ON(mmu_is_nested(vcpu));
2979 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
2980 kvm_init_shadow_mmu(vcpu);
2981 vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
2982 vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
2983 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
2984 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2985 vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2986 reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2987 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2990 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2992 vcpu->arch.mmu = &vcpu->arch.root_mmu;
2993 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
2996 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2998 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2999 !is_paging(&svm->vcpu)) {
3000 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3004 if (svm->vmcb->save.cpl) {
3005 kvm_inject_gp(&svm->vcpu, 0);
3012 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3013 bool has_error_code, u32 error_code)
3017 if (!is_guest_mode(&svm->vcpu))
3020 vmexit = nested_svm_intercept(svm);
3021 if (vmexit != NESTED_EXIT_DONE)
3024 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3025 svm->vmcb->control.exit_code_hi = 0;
3026 svm->vmcb->control.exit_info_1 = error_code;
3029 * EXITINFO2 is undefined for all exception intercepts other
3032 if (svm->vcpu.arch.exception.nested_apf)
3033 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3034 else if (svm->vcpu.arch.exception.has_payload)
3035 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3037 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3039 svm->nested.exit_required = true;
3043 /* This function returns true if it is save to enable the irq window */
3044 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3046 if (!is_guest_mode(&svm->vcpu))
3049 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3052 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3056 * if vmexit was already requested (by intercepted exception
3057 * for instance) do not overwrite it with "external interrupt"
3060 if (svm->nested.exit_required)
3063 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3064 svm->vmcb->control.exit_info_1 = 0;
3065 svm->vmcb->control.exit_info_2 = 0;
3067 if (svm->nested.intercept & 1ULL) {
3069 * The #vmexit can't be emulated here directly because this
3070 * code path runs with irqs and preemption disabled. A
3071 * #vmexit emulation might sleep. Only signal request for
3074 svm->nested.exit_required = true;
3075 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3082 /* This function returns true if it is save to enable the nmi window */
3083 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3085 if (!is_guest_mode(&svm->vcpu))
3088 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3091 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3092 svm->nested.exit_required = true;
3097 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3099 unsigned port, size, iopm_len;
3104 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3105 return NESTED_EXIT_HOST;
3107 port = svm->vmcb->control.exit_info_1 >> 16;
3108 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3109 SVM_IOIO_SIZE_SHIFT;
3110 gpa = svm->nested.vmcb_iopm + (port / 8);
3111 start_bit = port % 8;
3112 iopm_len = (start_bit + size > 8) ? 2 : 1;
3113 mask = (0xf >> (4 - size)) << start_bit;
3116 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3117 return NESTED_EXIT_DONE;
3119 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3122 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3124 u32 offset, msr, value;
3127 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3128 return NESTED_EXIT_HOST;
3130 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3131 offset = svm_msrpm_offset(msr);
3132 write = svm->vmcb->control.exit_info_1 & 1;
3133 mask = 1 << ((2 * (msr & 0xf)) + write);
3135 if (offset == MSR_INVALID)
3136 return NESTED_EXIT_DONE;
3138 /* Offset is in 32 bit units but need in 8 bit units */
3141 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3142 return NESTED_EXIT_DONE;
3144 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3147 /* DB exceptions for our internal use must not cause vmexit */
3148 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3152 /* if we're not singlestepping, it's not ours */
3153 if (!svm->nmi_singlestep)
3154 return NESTED_EXIT_DONE;
3156 /* if it's not a singlestep exception, it's not ours */
3157 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3158 return NESTED_EXIT_DONE;
3159 if (!(dr6 & DR6_BS))
3160 return NESTED_EXIT_DONE;
3162 /* if the guest is singlestepping, it should get the vmexit */
3163 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3164 disable_nmi_singlestep(svm);
3165 return NESTED_EXIT_DONE;
3168 /* it's ours, the nested hypervisor must not see this one */
3169 return NESTED_EXIT_HOST;
3172 static int nested_svm_exit_special(struct vcpu_svm *svm)
3174 u32 exit_code = svm->vmcb->control.exit_code;
3176 switch (exit_code) {
3179 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3180 return NESTED_EXIT_HOST;
3182 /* For now we are always handling NPFs when using them */
3184 return NESTED_EXIT_HOST;
3186 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3187 /* When we're shadowing, trap PFs, but not async PF */
3188 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3189 return NESTED_EXIT_HOST;
3195 return NESTED_EXIT_CONTINUE;
3199 * If this function returns true, this #vmexit was already handled
3201 static int nested_svm_intercept(struct vcpu_svm *svm)
3203 u32 exit_code = svm->vmcb->control.exit_code;
3204 int vmexit = NESTED_EXIT_HOST;
3206 switch (exit_code) {
3208 vmexit = nested_svm_exit_handled_msr(svm);
3211 vmexit = nested_svm_intercept_ioio(svm);
3213 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3214 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3215 if (svm->nested.intercept_cr & bit)
3216 vmexit = NESTED_EXIT_DONE;
3219 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3220 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3221 if (svm->nested.intercept_dr & bit)
3222 vmexit = NESTED_EXIT_DONE;
3225 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3226 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3227 if (svm->nested.intercept_exceptions & excp_bits) {
3228 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3229 vmexit = nested_svm_intercept_db(svm);
3231 vmexit = NESTED_EXIT_DONE;
3233 /* async page fault always cause vmexit */
3234 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3235 svm->vcpu.arch.exception.nested_apf != 0)
3236 vmexit = NESTED_EXIT_DONE;
3239 case SVM_EXIT_ERR: {
3240 vmexit = NESTED_EXIT_DONE;
3244 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3245 if (svm->nested.intercept & exit_bits)
3246 vmexit = NESTED_EXIT_DONE;
3253 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3257 vmexit = nested_svm_intercept(svm);
3259 if (vmexit == NESTED_EXIT_DONE)
3260 nested_svm_vmexit(svm);
3265 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3267 struct vmcb_control_area *dst = &dst_vmcb->control;
3268 struct vmcb_control_area *from = &from_vmcb->control;
3270 dst->intercept_cr = from->intercept_cr;
3271 dst->intercept_dr = from->intercept_dr;
3272 dst->intercept_exceptions = from->intercept_exceptions;
3273 dst->intercept = from->intercept;
3274 dst->iopm_base_pa = from->iopm_base_pa;
3275 dst->msrpm_base_pa = from->msrpm_base_pa;
3276 dst->tsc_offset = from->tsc_offset;
3277 dst->asid = from->asid;
3278 dst->tlb_ctl = from->tlb_ctl;
3279 dst->int_ctl = from->int_ctl;
3280 dst->int_vector = from->int_vector;
3281 dst->int_state = from->int_state;
3282 dst->exit_code = from->exit_code;
3283 dst->exit_code_hi = from->exit_code_hi;
3284 dst->exit_info_1 = from->exit_info_1;
3285 dst->exit_info_2 = from->exit_info_2;
3286 dst->exit_int_info = from->exit_int_info;
3287 dst->exit_int_info_err = from->exit_int_info_err;
3288 dst->nested_ctl = from->nested_ctl;
3289 dst->event_inj = from->event_inj;
3290 dst->event_inj_err = from->event_inj_err;
3291 dst->nested_cr3 = from->nested_cr3;
3292 dst->virt_ext = from->virt_ext;
3293 dst->pause_filter_count = from->pause_filter_count;
3294 dst->pause_filter_thresh = from->pause_filter_thresh;
3297 static int nested_svm_vmexit(struct vcpu_svm *svm)
3300 struct vmcb *nested_vmcb;
3301 struct vmcb *hsave = svm->nested.hsave;
3302 struct vmcb *vmcb = svm->vmcb;
3303 struct kvm_host_map map;
3305 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3306 vmcb->control.exit_info_1,
3307 vmcb->control.exit_info_2,
3308 vmcb->control.exit_int_info,
3309 vmcb->control.exit_int_info_err,
3312 rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3315 kvm_inject_gp(&svm->vcpu, 0);
3319 nested_vmcb = map.hva;
3321 /* Exit Guest-Mode */
3322 leave_guest_mode(&svm->vcpu);
3323 svm->nested.vmcb = 0;
3325 /* Give the current vmcb to the guest */
3328 nested_vmcb->save.es = vmcb->save.es;
3329 nested_vmcb->save.cs = vmcb->save.cs;
3330 nested_vmcb->save.ss = vmcb->save.ss;
3331 nested_vmcb->save.ds = vmcb->save.ds;
3332 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3333 nested_vmcb->save.idtr = vmcb->save.idtr;
3334 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3335 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3336 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3337 nested_vmcb->save.cr2 = vmcb->save.cr2;
3338 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3339 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3340 nested_vmcb->save.rip = vmcb->save.rip;
3341 nested_vmcb->save.rsp = vmcb->save.rsp;
3342 nested_vmcb->save.rax = vmcb->save.rax;
3343 nested_vmcb->save.dr7 = vmcb->save.dr7;
3344 nested_vmcb->save.dr6 = vmcb->save.dr6;
3345 nested_vmcb->save.cpl = vmcb->save.cpl;
3347 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3348 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3349 nested_vmcb->control.int_state = vmcb->control.int_state;
3350 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3351 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3352 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3353 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3354 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3355 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3357 if (svm->nrips_enabled)
3358 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3361 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3362 * to make sure that we do not lose injected events. So check event_inj
3363 * here and copy it to exit_int_info if it is valid.
3364 * Exit_int_info and event_inj can't be both valid because the case
3365 * below only happens on a VMRUN instruction intercept which has
3366 * no valid exit_int_info set.
3368 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3369 struct vmcb_control_area *nc = &nested_vmcb->control;
3371 nc->exit_int_info = vmcb->control.event_inj;
3372 nc->exit_int_info_err = vmcb->control.event_inj_err;
3375 nested_vmcb->control.tlb_ctl = 0;
3376 nested_vmcb->control.event_inj = 0;
3377 nested_vmcb->control.event_inj_err = 0;
3379 nested_vmcb->control.pause_filter_count =
3380 svm->vmcb->control.pause_filter_count;
3381 nested_vmcb->control.pause_filter_thresh =
3382 svm->vmcb->control.pause_filter_thresh;
3384 /* We always set V_INTR_MASKING and remember the old value in hflags */
3385 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3386 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3388 /* Restore the original control entries */
3389 copy_vmcb_control_area(vmcb, hsave);
3391 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3392 kvm_clear_exception_queue(&svm->vcpu);
3393 kvm_clear_interrupt_queue(&svm->vcpu);
3395 svm->nested.nested_cr3 = 0;
3397 /* Restore selected save entries */
3398 svm->vmcb->save.es = hsave->save.es;
3399 svm->vmcb->save.cs = hsave->save.cs;
3400 svm->vmcb->save.ss = hsave->save.ss;
3401 svm->vmcb->save.ds = hsave->save.ds;
3402 svm->vmcb->save.gdtr = hsave->save.gdtr;
3403 svm->vmcb->save.idtr = hsave->save.idtr;
3404 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3405 svm_set_efer(&svm->vcpu, hsave->save.efer);
3406 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3407 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3409 svm->vmcb->save.cr3 = hsave->save.cr3;
3410 svm->vcpu.arch.cr3 = hsave->save.cr3;
3412 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3414 kvm_rax_write(&svm->vcpu, hsave->save.rax);
3415 kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3416 kvm_rip_write(&svm->vcpu, hsave->save.rip);
3417 svm->vmcb->save.dr7 = 0;
3418 svm->vmcb->save.cpl = 0;
3419 svm->vmcb->control.exit_int_info = 0;
3421 mark_all_dirty(svm->vmcb);
3423 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3425 nested_svm_uninit_mmu_context(&svm->vcpu);
3426 kvm_mmu_reset_context(&svm->vcpu);
3427 kvm_mmu_load(&svm->vcpu);
3430 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3431 * doesn't end up in L1.
3433 svm->vcpu.arch.nmi_injected = false;
3434 kvm_clear_exception_queue(&svm->vcpu);
3435 kvm_clear_interrupt_queue(&svm->vcpu);
3440 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3443 * This function merges the msr permission bitmaps of kvm and the
3444 * nested vmcb. It is optimized in that it only merges the parts where
3445 * the kvm msr permission bitmap may contain zero bits
3449 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3452 for (i = 0; i < MSRPM_OFFSETS; i++) {
3456 if (msrpm_offsets[i] == 0xffffffff)
3459 p = msrpm_offsets[i];
3460 offset = svm->nested.vmcb_msrpm + (p * 4);
3462 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3465 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3468 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3473 static bool nested_vmcb_checks(struct vmcb *vmcb)
3475 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3478 if (vmcb->control.asid == 0)
3481 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3488 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3489 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3491 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3492 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3494 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3496 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3497 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3498 nested_svm_init_mmu_context(&svm->vcpu);
3501 /* Load the nested guest state */
3502 svm->vmcb->save.es = nested_vmcb->save.es;
3503 svm->vmcb->save.cs = nested_vmcb->save.cs;
3504 svm->vmcb->save.ss = nested_vmcb->save.ss;
3505 svm->vmcb->save.ds = nested_vmcb->save.ds;
3506 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3507 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3508 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3509 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3510 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3511 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3513 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3514 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3516 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3518 /* Guest paging mode is active - reset mmu */
3519 kvm_mmu_reset_context(&svm->vcpu);
3521 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3522 kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3523 kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3524 kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3526 /* In case we don't even reach vcpu_run, the fields are not updated */
3527 svm->vmcb->save.rax = nested_vmcb->save.rax;
3528 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3529 svm->vmcb->save.rip = nested_vmcb->save.rip;
3530 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3531 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3532 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3534 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3535 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3537 /* cache intercepts */
3538 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3539 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3540 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3541 svm->nested.intercept = nested_vmcb->control.intercept;
3543 svm_flush_tlb(&svm->vcpu, true);
3544 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3545 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3546 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3548 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3550 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3551 /* We only want the cr8 intercept bits of the guest */
3552 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3553 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3556 /* We don't want to see VMMCALLs from a nested guest */
3557 clr_intercept(svm, INTERCEPT_VMMCALL);
3559 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3560 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3562 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3563 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3564 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3565 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3566 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3568 svm->vmcb->control.pause_filter_count =
3569 nested_vmcb->control.pause_filter_count;
3570 svm->vmcb->control.pause_filter_thresh =
3571 nested_vmcb->control.pause_filter_thresh;
3573 kvm_vcpu_unmap(&svm->vcpu, map, true);
3575 /* Enter Guest-Mode */
3576 enter_guest_mode(&svm->vcpu);
3579 * Merge guest and host intercepts - must be called with vcpu in
3580 * guest-mode to take affect here
3582 recalc_intercepts(svm);
3584 svm->nested.vmcb = vmcb_gpa;
3588 mark_all_dirty(svm->vmcb);
3591 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3594 struct vmcb *nested_vmcb;
3595 struct vmcb *hsave = svm->nested.hsave;
3596 struct vmcb *vmcb = svm->vmcb;
3597 struct kvm_host_map map;
3600 vmcb_gpa = svm->vmcb->save.rax;
3602 rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3605 kvm_inject_gp(&svm->vcpu, 0);
3609 nested_vmcb = map.hva;
3611 if (!nested_vmcb_checks(nested_vmcb)) {
3612 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3613 nested_vmcb->control.exit_code_hi = 0;
3614 nested_vmcb->control.exit_info_1 = 0;
3615 nested_vmcb->control.exit_info_2 = 0;
3617 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3622 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3623 nested_vmcb->save.rip,
3624 nested_vmcb->control.int_ctl,
3625 nested_vmcb->control.event_inj,
3626 nested_vmcb->control.nested_ctl);
3628 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3629 nested_vmcb->control.intercept_cr >> 16,
3630 nested_vmcb->control.intercept_exceptions,
3631 nested_vmcb->control.intercept);
3633 /* Clear internal status */
3634 kvm_clear_exception_queue(&svm->vcpu);
3635 kvm_clear_interrupt_queue(&svm->vcpu);
3638 * Save the old vmcb, so we don't need to pick what we save, but can
3639 * restore everything when a VMEXIT occurs
3641 hsave->save.es = vmcb->save.es;
3642 hsave->save.cs = vmcb->save.cs;
3643 hsave->save.ss = vmcb->save.ss;
3644 hsave->save.ds = vmcb->save.ds;
3645 hsave->save.gdtr = vmcb->save.gdtr;
3646 hsave->save.idtr = vmcb->save.idtr;
3647 hsave->save.efer = svm->vcpu.arch.efer;
3648 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3649 hsave->save.cr4 = svm->vcpu.arch.cr4;
3650 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3651 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3652 hsave->save.rsp = vmcb->save.rsp;
3653 hsave->save.rax = vmcb->save.rax;
3655 hsave->save.cr3 = vmcb->save.cr3;
3657 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3659 copy_vmcb_control_area(hsave, vmcb);
3661 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3666 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3668 to_vmcb->save.fs = from_vmcb->save.fs;
3669 to_vmcb->save.gs = from_vmcb->save.gs;
3670 to_vmcb->save.tr = from_vmcb->save.tr;
3671 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3672 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3673 to_vmcb->save.star = from_vmcb->save.star;
3674 to_vmcb->save.lstar = from_vmcb->save.lstar;
3675 to_vmcb->save.cstar = from_vmcb->save.cstar;
3676 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3677 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3678 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3679 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3682 static int vmload_interception(struct vcpu_svm *svm)
3684 struct vmcb *nested_vmcb;
3685 struct kvm_host_map map;
3688 if (nested_svm_check_permissions(svm))
3691 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3694 kvm_inject_gp(&svm->vcpu, 0);
3698 nested_vmcb = map.hva;
3700 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3701 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3703 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3704 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3709 static int vmsave_interception(struct vcpu_svm *svm)
3711 struct vmcb *nested_vmcb;
3712 struct kvm_host_map map;
3715 if (nested_svm_check_permissions(svm))
3718 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3721 kvm_inject_gp(&svm->vcpu, 0);
3725 nested_vmcb = map.hva;
3727 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3728 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3730 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3731 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3736 static int vmrun_interception(struct vcpu_svm *svm)
3738 if (nested_svm_check_permissions(svm))
3741 /* Save rip after vmrun instruction */
3742 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3744 if (!nested_svm_vmrun(svm))
3747 if (!nested_svm_vmrun_msrpm(svm))
3754 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3755 svm->vmcb->control.exit_code_hi = 0;
3756 svm->vmcb->control.exit_info_1 = 0;
3757 svm->vmcb->control.exit_info_2 = 0;
3759 nested_svm_vmexit(svm);
3764 static int stgi_interception(struct vcpu_svm *svm)
3768 if (nested_svm_check_permissions(svm))
3772 * If VGIF is enabled, the STGI intercept is only added to
3773 * detect the opening of the SMI/NMI window; remove it now.
3775 if (vgif_enabled(svm))
3776 clr_intercept(svm, INTERCEPT_STGI);
3778 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3779 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3780 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3787 static int clgi_interception(struct vcpu_svm *svm)
3791 if (nested_svm_check_permissions(svm))
3794 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3795 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3799 /* After a CLGI no interrupts should come */
3800 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3801 svm_clear_vintr(svm);
3802 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3803 mark_dirty(svm->vmcb, VMCB_INTR);
3809 static int invlpga_interception(struct vcpu_svm *svm)
3811 struct kvm_vcpu *vcpu = &svm->vcpu;
3813 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3814 kvm_rax_read(&svm->vcpu));
3816 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3817 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3819 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3820 return kvm_skip_emulated_instruction(&svm->vcpu);
3823 static int skinit_interception(struct vcpu_svm *svm)
3825 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3827 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3831 static int wbinvd_interception(struct vcpu_svm *svm)
3833 return kvm_emulate_wbinvd(&svm->vcpu);
3836 static int xsetbv_interception(struct vcpu_svm *svm)
3838 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3839 u32 index = kvm_rcx_read(&svm->vcpu);
3841 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3842 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3843 return kvm_skip_emulated_instruction(&svm->vcpu);
3849 static int task_switch_interception(struct vcpu_svm *svm)
3853 int int_type = svm->vmcb->control.exit_int_info &
3854 SVM_EXITINTINFO_TYPE_MASK;
3855 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3857 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3859 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3860 bool has_error_code = false;
3863 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3865 if (svm->vmcb->control.exit_info_2 &
3866 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3867 reason = TASK_SWITCH_IRET;
3868 else if (svm->vmcb->control.exit_info_2 &
3869 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3870 reason = TASK_SWITCH_JMP;
3872 reason = TASK_SWITCH_GATE;
3874 reason = TASK_SWITCH_CALL;
3876 if (reason == TASK_SWITCH_GATE) {
3878 case SVM_EXITINTINFO_TYPE_NMI:
3879 svm->vcpu.arch.nmi_injected = false;
3881 case SVM_EXITINTINFO_TYPE_EXEPT:
3882 if (svm->vmcb->control.exit_info_2 &
3883 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3884 has_error_code = true;
3886 (u32)svm->vmcb->control.exit_info_2;
3888 kvm_clear_exception_queue(&svm->vcpu);
3890 case SVM_EXITINTINFO_TYPE_INTR:
3891 kvm_clear_interrupt_queue(&svm->vcpu);
3898 if (reason != TASK_SWITCH_GATE ||
3899 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3900 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3901 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3902 skip_emulated_instruction(&svm->vcpu);
3904 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3907 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3908 has_error_code, error_code) == EMULATE_FAIL) {
3909 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3910 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3911 svm->vcpu.run->internal.ndata = 0;
3917 static int cpuid_interception(struct vcpu_svm *svm)
3919 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3920 return kvm_emulate_cpuid(&svm->vcpu);
3923 static int iret_interception(struct vcpu_svm *svm)
3925 ++svm->vcpu.stat.nmi_window_exits;
3926 clr_intercept(svm, INTERCEPT_IRET);
3927 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3928 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3929 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3933 static int invlpg_interception(struct vcpu_svm *svm)
3935 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3936 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3938 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3939 return kvm_skip_emulated_instruction(&svm->vcpu);
3942 static int emulate_on_interception(struct vcpu_svm *svm)
3944 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3947 static int rsm_interception(struct vcpu_svm *svm)
3949 return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3950 rsm_ins_bytes, 2) == EMULATE_DONE;
3953 static int rdpmc_interception(struct vcpu_svm *svm)
3958 return emulate_on_interception(svm);
3960 err = kvm_rdpmc(&svm->vcpu);
3961 return kvm_complete_insn_gp(&svm->vcpu, err);
3964 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3967 unsigned long cr0 = svm->vcpu.arch.cr0;
3971 intercept = svm->nested.intercept;
3973 if (!is_guest_mode(&svm->vcpu) ||
3974 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3977 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3978 val &= ~SVM_CR0_SELECTIVE_MASK;
3981 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3982 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3988 #define CR_VALID (1ULL << 63)
3990 static int cr_interception(struct vcpu_svm *svm)
3996 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3997 return emulate_on_interception(svm);
3999 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
4000 return emulate_on_interception(svm);
4002 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4003 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
4004 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
4006 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4009 if (cr >= 16) { /* mov to cr */
4011 val = kvm_register_read(&svm->vcpu, reg);
4014 if (!check_selective_cr0_intercepted(svm, val))
4015 err = kvm_set_cr0(&svm->vcpu, val);
4021 err = kvm_set_cr3(&svm->vcpu, val);
4024 err = kvm_set_cr4(&svm->vcpu, val);
4027 err = kvm_set_cr8(&svm->vcpu, val);
4030 WARN(1, "unhandled write to CR%d", cr);
4031 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4034 } else { /* mov from cr */
4037 val = kvm_read_cr0(&svm->vcpu);
4040 val = svm->vcpu.arch.cr2;
4043 val = kvm_read_cr3(&svm->vcpu);
4046 val = kvm_read_cr4(&svm->vcpu);
4049 val = kvm_get_cr8(&svm->vcpu);
4052 WARN(1, "unhandled read from CR%d", cr);
4053 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4056 kvm_register_write(&svm->vcpu, reg, val);
4058 return kvm_complete_insn_gp(&svm->vcpu, err);
4061 static int dr_interception(struct vcpu_svm *svm)
4066 if (svm->vcpu.guest_debug == 0) {
4068 * No more DR vmexits; force a reload of the debug registers
4069 * and reenter on this instruction. The next vmexit will
4070 * retrieve the full state of the debug registers.
4072 clr_dr_intercepts(svm);
4073 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4077 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4078 return emulate_on_interception(svm);
4080 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4081 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4083 if (dr >= 16) { /* mov to DRn */
4084 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4086 val = kvm_register_read(&svm->vcpu, reg);
4087 kvm_set_dr(&svm->vcpu, dr - 16, val);
4089 if (!kvm_require_dr(&svm->vcpu, dr))
4091 kvm_get_dr(&svm->vcpu, dr, &val);
4092 kvm_register_write(&svm->vcpu, reg, val);
4095 return kvm_skip_emulated_instruction(&svm->vcpu);
4098 static int cr8_write_interception(struct vcpu_svm *svm)
4100 struct kvm_run *kvm_run = svm->vcpu.run;
4103 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4104 /* instruction emulation calls kvm_set_cr8() */
4105 r = cr_interception(svm);
4106 if (lapic_in_kernel(&svm->vcpu))
4108 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4110 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4114 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4118 switch (msr->index) {
4119 case MSR_F10H_DECFG:
4120 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4121 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4130 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4132 struct vcpu_svm *svm = to_svm(vcpu);
4134 switch (msr_info->index) {
4136 msr_info->data = svm->vmcb->save.star;
4138 #ifdef CONFIG_X86_64
4140 msr_info->data = svm->vmcb->save.lstar;
4143 msr_info->data = svm->vmcb->save.cstar;
4145 case MSR_KERNEL_GS_BASE:
4146 msr_info->data = svm->vmcb->save.kernel_gs_base;
4148 case MSR_SYSCALL_MASK:
4149 msr_info->data = svm->vmcb->save.sfmask;
4152 case MSR_IA32_SYSENTER_CS:
4153 msr_info->data = svm->vmcb->save.sysenter_cs;
4155 case MSR_IA32_SYSENTER_EIP:
4156 msr_info->data = svm->sysenter_eip;
4158 case MSR_IA32_SYSENTER_ESP:
4159 msr_info->data = svm->sysenter_esp;
4162 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4164 msr_info->data = svm->tsc_aux;
4167 * Nobody will change the following 5 values in the VMCB so we can
4168 * safely return them on rdmsr. They will always be 0 until LBRV is
4171 case MSR_IA32_DEBUGCTLMSR:
4172 msr_info->data = svm->vmcb->save.dbgctl;
4174 case MSR_IA32_LASTBRANCHFROMIP:
4175 msr_info->data = svm->vmcb->save.br_from;
4177 case MSR_IA32_LASTBRANCHTOIP:
4178 msr_info->data = svm->vmcb->save.br_to;
4180 case MSR_IA32_LASTINTFROMIP:
4181 msr_info->data = svm->vmcb->save.last_excp_from;
4183 case MSR_IA32_LASTINTTOIP:
4184 msr_info->data = svm->vmcb->save.last_excp_to;
4186 case MSR_VM_HSAVE_PA:
4187 msr_info->data = svm->nested.hsave_msr;
4190 msr_info->data = svm->nested.vm_cr_msr;
4192 case MSR_IA32_SPEC_CTRL:
4193 if (!msr_info->host_initiated &&
4194 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4195 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4198 msr_info->data = svm->spec_ctrl;
4200 case MSR_AMD64_VIRT_SPEC_CTRL:
4201 if (!msr_info->host_initiated &&
4202 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4205 msr_info->data = svm->virt_spec_ctrl;
4207 case MSR_F15H_IC_CFG: {
4211 family = guest_cpuid_family(vcpu);
4212 model = guest_cpuid_model(vcpu);
4214 if (family < 0 || model < 0)
4215 return kvm_get_msr_common(vcpu, msr_info);
4219 if (family == 0x15 &&
4220 (model >= 0x2 && model < 0x20))
4221 msr_info->data = 0x1E;
4224 case MSR_F10H_DECFG:
4225 msr_info->data = svm->msr_decfg;
4228 return kvm_get_msr_common(vcpu, msr_info);
4233 static int rdmsr_interception(struct vcpu_svm *svm)
4235 u32 ecx = kvm_rcx_read(&svm->vcpu);
4236 struct msr_data msr_info;
4238 msr_info.index = ecx;
4239 msr_info.host_initiated = false;
4240 if (svm_get_msr(&svm->vcpu, &msr_info)) {
4241 trace_kvm_msr_read_ex(ecx);
4242 kvm_inject_gp(&svm->vcpu, 0);
4245 trace_kvm_msr_read(ecx, msr_info.data);
4247 kvm_rax_write(&svm->vcpu, msr_info.data & 0xffffffff);
4248 kvm_rdx_write(&svm->vcpu, msr_info.data >> 32);
4249 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4250 return kvm_skip_emulated_instruction(&svm->vcpu);
4254 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4256 struct vcpu_svm *svm = to_svm(vcpu);
4257 int svm_dis, chg_mask;
4259 if (data & ~SVM_VM_CR_VALID_MASK)
4262 chg_mask = SVM_VM_CR_VALID_MASK;
4264 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4265 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4267 svm->nested.vm_cr_msr &= ~chg_mask;
4268 svm->nested.vm_cr_msr |= (data & chg_mask);
4270 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4272 /* check for svm_disable while efer.svme is set */
4273 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4279 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4281 struct vcpu_svm *svm = to_svm(vcpu);
4283 u32 ecx = msr->index;
4284 u64 data = msr->data;
4286 case MSR_IA32_CR_PAT:
4287 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4289 vcpu->arch.pat = data;
4290 svm->vmcb->save.g_pat = data;
4291 mark_dirty(svm->vmcb, VMCB_NPT);
4293 case MSR_IA32_SPEC_CTRL:
4294 if (!msr->host_initiated &&
4295 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4296 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4299 /* The STIBP bit doesn't fault even if it's not advertised */
4300 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4303 svm->spec_ctrl = data;
4310 * When it's written (to non-zero) for the first time, pass
4314 * The handling of the MSR bitmap for L2 guests is done in
4315 * nested_svm_vmrun_msrpm.
4316 * We update the L1 MSR bit as well since it will end up
4317 * touching the MSR anyway now.
4319 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4321 case MSR_IA32_PRED_CMD:
4322 if (!msr->host_initiated &&
4323 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4326 if (data & ~PRED_CMD_IBPB)
4332 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4333 if (is_guest_mode(vcpu))
4335 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4337 case MSR_AMD64_VIRT_SPEC_CTRL:
4338 if (!msr->host_initiated &&
4339 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4342 if (data & ~SPEC_CTRL_SSBD)
4345 svm->virt_spec_ctrl = data;
4348 svm->vmcb->save.star = data;
4350 #ifdef CONFIG_X86_64
4352 svm->vmcb->save.lstar = data;
4355 svm->vmcb->save.cstar = data;
4357 case MSR_KERNEL_GS_BASE:
4358 svm->vmcb->save.kernel_gs_base = data;
4360 case MSR_SYSCALL_MASK:
4361 svm->vmcb->save.sfmask = data;
4364 case MSR_IA32_SYSENTER_CS:
4365 svm->vmcb->save.sysenter_cs = data;
4367 case MSR_IA32_SYSENTER_EIP:
4368 svm->sysenter_eip = data;
4369 svm->vmcb->save.sysenter_eip = data;
4371 case MSR_IA32_SYSENTER_ESP:
4372 svm->sysenter_esp = data;
4373 svm->vmcb->save.sysenter_esp = data;
4376 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4380 * This is rare, so we update the MSR here instead of using
4381 * direct_access_msrs. Doing that would require a rdmsr in
4384 svm->tsc_aux = data;
4385 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4387 case MSR_IA32_DEBUGCTLMSR:
4388 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4389 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4393 if (data & DEBUGCTL_RESERVED_BITS)
4396 svm->vmcb->save.dbgctl = data;
4397 mark_dirty(svm->vmcb, VMCB_LBR);
4398 if (data & (1ULL<<0))
4399 svm_enable_lbrv(svm);
4401 svm_disable_lbrv(svm);
4403 case MSR_VM_HSAVE_PA:
4404 svm->nested.hsave_msr = data;
4407 return svm_set_vm_cr(vcpu, data);
4409 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4411 case MSR_F10H_DECFG: {
4412 struct kvm_msr_entry msr_entry;
4414 msr_entry.index = msr->index;
4415 if (svm_get_msr_feature(&msr_entry))
4418 /* Check the supported bits */
4419 if (data & ~msr_entry.data)
4422 /* Don't allow the guest to change a bit, #GP */
4423 if (!msr->host_initiated && (data ^ msr_entry.data))
4426 svm->msr_decfg = data;
4429 case MSR_IA32_APICBASE:
4430 if (kvm_vcpu_apicv_active(vcpu))
4431 avic_update_vapic_bar(to_svm(vcpu), data);
4434 return kvm_set_msr_common(vcpu, msr);
4439 static int wrmsr_interception(struct vcpu_svm *svm)
4441 struct msr_data msr;
4442 u32 ecx = kvm_rcx_read(&svm->vcpu);
4443 u64 data = kvm_read_edx_eax(&svm->vcpu);
4447 msr.host_initiated = false;
4449 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4450 if (kvm_set_msr(&svm->vcpu, &msr)) {
4451 trace_kvm_msr_write_ex(ecx, data);
4452 kvm_inject_gp(&svm->vcpu, 0);
4455 trace_kvm_msr_write(ecx, data);
4456 return kvm_skip_emulated_instruction(&svm->vcpu);
4460 static int msr_interception(struct vcpu_svm *svm)
4462 if (svm->vmcb->control.exit_info_1)
4463 return wrmsr_interception(svm);
4465 return rdmsr_interception(svm);
4468 static int interrupt_window_interception(struct vcpu_svm *svm)
4470 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4471 svm_clear_vintr(svm);
4472 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4473 mark_dirty(svm->vmcb, VMCB_INTR);
4474 ++svm->vcpu.stat.irq_window_exits;
4478 static int pause_interception(struct vcpu_svm *svm)
4480 struct kvm_vcpu *vcpu = &svm->vcpu;
4481 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4483 if (pause_filter_thresh)
4484 grow_ple_window(vcpu);
4486 kvm_vcpu_on_spin(vcpu, in_kernel);
4490 static int nop_interception(struct vcpu_svm *svm)
4492 return kvm_skip_emulated_instruction(&(svm->vcpu));
4495 static int monitor_interception(struct vcpu_svm *svm)
4497 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4498 return nop_interception(svm);
4501 static int mwait_interception(struct vcpu_svm *svm)
4503 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4504 return nop_interception(svm);
4507 enum avic_ipi_failure_cause {
4508 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4509 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4510 AVIC_IPI_FAILURE_INVALID_TARGET,
4511 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4514 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4516 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4517 u32 icrl = svm->vmcb->control.exit_info_1;
4518 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4519 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4520 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4522 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4525 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4527 * AVIC hardware handles the generation of
4528 * IPIs when the specified Message Type is Fixed
4529 * (also known as fixed delivery mode) and
4530 * the Trigger Mode is edge-triggered. The hardware
4531 * also supports self and broadcast delivery modes
4532 * specified via the Destination Shorthand(DSH)
4533 * field of the ICRL. Logical and physical APIC ID
4534 * formats are supported. All other IPI types cause
4535 * a #VMEXIT, which needs to emulated.
4537 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4538 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4540 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4542 struct kvm_vcpu *vcpu;
4543 struct kvm *kvm = svm->vcpu.kvm;
4544 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4547 * At this point, we expect that the AVIC HW has already
4548 * set the appropriate IRR bits on the valid target
4549 * vcpus. So, we just need to kick the appropriate vcpu.
4551 kvm_for_each_vcpu(i, vcpu, kvm) {
4552 bool m = kvm_apic_match_dest(vcpu, apic,
4553 icrl & KVM_APIC_SHORT_MASK,
4554 GET_APIC_DEST_FIELD(icrh),
4555 icrl & KVM_APIC_DEST_MASK);
4557 if (m && !avic_vcpu_is_running(vcpu))
4558 kvm_vcpu_wake_up(vcpu);
4562 case AVIC_IPI_FAILURE_INVALID_TARGET:
4563 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4564 index, svm->vcpu.vcpu_id, icrh, icrl);
4566 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4567 WARN_ONCE(1, "Invalid backing page\n");
4570 pr_err("Unknown IPI interception\n");
4576 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4578 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4580 u32 *logical_apic_id_table;
4581 int dlid = GET_APIC_LOGICAL_ID(ldr);
4586 if (flat) { /* flat */
4587 index = ffs(dlid) - 1;
4590 } else { /* cluster */
4591 int cluster = (dlid & 0xf0) >> 4;
4592 int apic = ffs(dlid & 0x0f) - 1;
4594 if ((apic < 0) || (apic > 7) ||
4597 index = (cluster << 2) + apic;
4600 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4602 return &logical_apic_id_table[index];
4605 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4608 u32 *entry, new_entry;
4610 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4611 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4615 new_entry = READ_ONCE(*entry);
4616 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4617 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4618 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4619 WRITE_ONCE(*entry, new_entry);
4624 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4626 struct vcpu_svm *svm = to_svm(vcpu);
4627 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4628 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4631 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4634 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4637 struct vcpu_svm *svm = to_svm(vcpu);
4638 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4640 if (ldr == svm->ldr_reg)
4643 avic_invalidate_logical_id_entry(vcpu);
4646 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr);
4654 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4657 struct vcpu_svm *svm = to_svm(vcpu);
4658 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4659 u32 id = (apic_id_reg >> 24) & 0xff;
4661 if (vcpu->vcpu_id == id)
4664 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4665 new = avic_get_physical_id_entry(vcpu, id);
4669 /* We need to move physical_id_entry to new offset */
4672 to_svm(vcpu)->avic_physical_id_cache = new;
4675 * Also update the guest physical APIC ID in the logical
4676 * APIC ID table entry if already setup the LDR.
4679 avic_handle_ldr_update(vcpu);
4684 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4686 struct vcpu_svm *svm = to_svm(vcpu);
4687 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4689 if (svm->dfr_reg == dfr)
4692 avic_invalidate_logical_id_entry(vcpu);
4696 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4698 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4699 u32 offset = svm->vmcb->control.exit_info_1 &
4700 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4704 if (avic_handle_apic_id_update(&svm->vcpu))
4708 if (avic_handle_ldr_update(&svm->vcpu))
4712 avic_handle_dfr_update(&svm->vcpu);
4718 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4723 static bool is_avic_unaccelerated_access_trap(u32 offset)
4752 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4755 u32 offset = svm->vmcb->control.exit_info_1 &
4756 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4757 u32 vector = svm->vmcb->control.exit_info_2 &
4758 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4759 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4760 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4761 bool trap = is_avic_unaccelerated_access_trap(offset);
4763 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4764 trap, write, vector);
4767 WARN_ONCE(!write, "svm: Handling trap read.\n");
4768 ret = avic_unaccel_trap_write(svm);
4770 /* Handling Fault */
4771 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4777 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4778 [SVM_EXIT_READ_CR0] = cr_interception,
4779 [SVM_EXIT_READ_CR3] = cr_interception,
4780 [SVM_EXIT_READ_CR4] = cr_interception,
4781 [SVM_EXIT_READ_CR8] = cr_interception,
4782 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4783 [SVM_EXIT_WRITE_CR0] = cr_interception,
4784 [SVM_EXIT_WRITE_CR3] = cr_interception,
4785 [SVM_EXIT_WRITE_CR4] = cr_interception,
4786 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4787 [SVM_EXIT_READ_DR0] = dr_interception,
4788 [SVM_EXIT_READ_DR1] = dr_interception,
4789 [SVM_EXIT_READ_DR2] = dr_interception,
4790 [SVM_EXIT_READ_DR3] = dr_interception,
4791 [SVM_EXIT_READ_DR4] = dr_interception,
4792 [SVM_EXIT_READ_DR5] = dr_interception,
4793 [SVM_EXIT_READ_DR6] = dr_interception,
4794 [SVM_EXIT_READ_DR7] = dr_interception,
4795 [SVM_EXIT_WRITE_DR0] = dr_interception,
4796 [SVM_EXIT_WRITE_DR1] = dr_interception,
4797 [SVM_EXIT_WRITE_DR2] = dr_interception,
4798 [SVM_EXIT_WRITE_DR3] = dr_interception,
4799 [SVM_EXIT_WRITE_DR4] = dr_interception,
4800 [SVM_EXIT_WRITE_DR5] = dr_interception,
4801 [SVM_EXIT_WRITE_DR6] = dr_interception,
4802 [SVM_EXIT_WRITE_DR7] = dr_interception,
4803 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4804 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4805 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4806 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4807 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4808 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4809 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4810 [SVM_EXIT_INTR] = intr_interception,
4811 [SVM_EXIT_NMI] = nmi_interception,
4812 [SVM_EXIT_SMI] = nop_on_interception,
4813 [SVM_EXIT_INIT] = nop_on_interception,
4814 [SVM_EXIT_VINTR] = interrupt_window_interception,
4815 [SVM_EXIT_RDPMC] = rdpmc_interception,
4816 [SVM_EXIT_CPUID] = cpuid_interception,
4817 [SVM_EXIT_IRET] = iret_interception,
4818 [SVM_EXIT_INVD] = emulate_on_interception,
4819 [SVM_EXIT_PAUSE] = pause_interception,
4820 [SVM_EXIT_HLT] = halt_interception,
4821 [SVM_EXIT_INVLPG] = invlpg_interception,
4822 [SVM_EXIT_INVLPGA] = invlpga_interception,
4823 [SVM_EXIT_IOIO] = io_interception,
4824 [SVM_EXIT_MSR] = msr_interception,
4825 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4826 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4827 [SVM_EXIT_VMRUN] = vmrun_interception,
4828 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4829 [SVM_EXIT_VMLOAD] = vmload_interception,
4830 [SVM_EXIT_VMSAVE] = vmsave_interception,
4831 [SVM_EXIT_STGI] = stgi_interception,
4832 [SVM_EXIT_CLGI] = clgi_interception,
4833 [SVM_EXIT_SKINIT] = skinit_interception,
4834 [SVM_EXIT_WBINVD] = wbinvd_interception,
4835 [SVM_EXIT_MONITOR] = monitor_interception,
4836 [SVM_EXIT_MWAIT] = mwait_interception,
4837 [SVM_EXIT_XSETBV] = xsetbv_interception,
4838 [SVM_EXIT_NPF] = npf_interception,
4839 [SVM_EXIT_RSM] = rsm_interception,
4840 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4841 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4844 static void dump_vmcb(struct kvm_vcpu *vcpu)
4846 struct vcpu_svm *svm = to_svm(vcpu);
4847 struct vmcb_control_area *control = &svm->vmcb->control;
4848 struct vmcb_save_area *save = &svm->vmcb->save;
4850 if (!dump_invalid_vmcb) {
4851 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4855 pr_err("VMCB Control Area:\n");
4856 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4857 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4858 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4859 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4860 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4861 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4862 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4863 pr_err("%-20s%d\n", "pause filter threshold:",
4864 control->pause_filter_thresh);
4865 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4866 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4867 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4868 pr_err("%-20s%d\n", "asid:", control->asid);
4869 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4870 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4871 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4872 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4873 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4874 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4875 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4876 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4877 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4878 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4879 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4880 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4881 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4882 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4883 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4884 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4885 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4886 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4887 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4888 pr_err("VMCB State Save Area:\n");
4889 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4891 save->es.selector, save->es.attrib,
4892 save->es.limit, save->es.base);
4893 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4895 save->cs.selector, save->cs.attrib,
4896 save->cs.limit, save->cs.base);
4897 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4899 save->ss.selector, save->ss.attrib,
4900 save->ss.limit, save->ss.base);
4901 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4903 save->ds.selector, save->ds.attrib,
4904 save->ds.limit, save->ds.base);
4905 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4907 save->fs.selector, save->fs.attrib,
4908 save->fs.limit, save->fs.base);
4909 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4911 save->gs.selector, save->gs.attrib,
4912 save->gs.limit, save->gs.base);
4913 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4915 save->gdtr.selector, save->gdtr.attrib,
4916 save->gdtr.limit, save->gdtr.base);
4917 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4919 save->ldtr.selector, save->ldtr.attrib,
4920 save->ldtr.limit, save->ldtr.base);
4921 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4923 save->idtr.selector, save->idtr.attrib,
4924 save->idtr.limit, save->idtr.base);
4925 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4927 save->tr.selector, save->tr.attrib,
4928 save->tr.limit, save->tr.base);
4929 pr_err("cpl: %d efer: %016llx\n",
4930 save->cpl, save->efer);
4931 pr_err("%-15s %016llx %-13s %016llx\n",
4932 "cr0:", save->cr0, "cr2:", save->cr2);
4933 pr_err("%-15s %016llx %-13s %016llx\n",
4934 "cr3:", save->cr3, "cr4:", save->cr4);
4935 pr_err("%-15s %016llx %-13s %016llx\n",
4936 "dr6:", save->dr6, "dr7:", save->dr7);
4937 pr_err("%-15s %016llx %-13s %016llx\n",
4938 "rip:", save->rip, "rflags:", save->rflags);
4939 pr_err("%-15s %016llx %-13s %016llx\n",
4940 "rsp:", save->rsp, "rax:", save->rax);
4941 pr_err("%-15s %016llx %-13s %016llx\n",
4942 "star:", save->star, "lstar:", save->lstar);
4943 pr_err("%-15s %016llx %-13s %016llx\n",
4944 "cstar:", save->cstar, "sfmask:", save->sfmask);
4945 pr_err("%-15s %016llx %-13s %016llx\n",
4946 "kernel_gs_base:", save->kernel_gs_base,
4947 "sysenter_cs:", save->sysenter_cs);
4948 pr_err("%-15s %016llx %-13s %016llx\n",
4949 "sysenter_esp:", save->sysenter_esp,
4950 "sysenter_eip:", save->sysenter_eip);
4951 pr_err("%-15s %016llx %-13s %016llx\n",
4952 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4953 pr_err("%-15s %016llx %-13s %016llx\n",
4954 "br_from:", save->br_from, "br_to:", save->br_to);
4955 pr_err("%-15s %016llx %-13s %016llx\n",
4956 "excp_from:", save->last_excp_from,
4957 "excp_to:", save->last_excp_to);
4960 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4962 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4964 *info1 = control->exit_info_1;
4965 *info2 = control->exit_info_2;
4968 static int handle_exit(struct kvm_vcpu *vcpu)
4970 struct vcpu_svm *svm = to_svm(vcpu);
4971 struct kvm_run *kvm_run = vcpu->run;
4972 u32 exit_code = svm->vmcb->control.exit_code;
4974 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4976 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4977 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4979 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4981 if (unlikely(svm->nested.exit_required)) {
4982 nested_svm_vmexit(svm);
4983 svm->nested.exit_required = false;
4988 if (is_guest_mode(vcpu)) {
4991 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4992 svm->vmcb->control.exit_info_1,
4993 svm->vmcb->control.exit_info_2,
4994 svm->vmcb->control.exit_int_info,
4995 svm->vmcb->control.exit_int_info_err,
4998 vmexit = nested_svm_exit_special(svm);
5000 if (vmexit == NESTED_EXIT_CONTINUE)
5001 vmexit = nested_svm_exit_handled(svm);
5003 if (vmexit == NESTED_EXIT_DONE)
5007 svm_complete_interrupts(svm);
5009 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
5010 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5011 kvm_run->fail_entry.hardware_entry_failure_reason
5012 = svm->vmcb->control.exit_code;
5017 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
5018 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
5019 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
5020 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
5021 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
5023 __func__, svm->vmcb->control.exit_int_info,
5026 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
5027 || !svm_exit_handlers[exit_code]) {
5028 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
5029 kvm_queue_exception(vcpu, UD_VECTOR);
5033 return svm_exit_handlers[exit_code](svm);
5036 static void reload_tss(struct kvm_vcpu *vcpu)
5038 int cpu = raw_smp_processor_id();
5040 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5041 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5045 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5047 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5048 int asid = sev_get_asid(svm->vcpu.kvm);
5050 /* Assign the asid allocated with this SEV guest */
5051 svm->vmcb->control.asid = asid;
5056 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5057 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5059 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5060 svm->last_cpu == cpu)
5063 svm->last_cpu = cpu;
5064 sd->sev_vmcbs[asid] = svm->vmcb;
5065 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5066 mark_dirty(svm->vmcb, VMCB_ASID);
5069 static void pre_svm_run(struct vcpu_svm *svm)
5071 int cpu = raw_smp_processor_id();
5073 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5075 if (sev_guest(svm->vcpu.kvm))
5076 return pre_sev_run(svm, cpu);
5078 /* FIXME: handle wraparound of asid_generation */
5079 if (svm->asid_generation != sd->asid_generation)
5083 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5085 struct vcpu_svm *svm = to_svm(vcpu);
5087 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5088 vcpu->arch.hflags |= HF_NMI_MASK;
5089 set_intercept(svm, INTERCEPT_IRET);
5090 ++vcpu->stat.nmi_injections;
5093 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5095 struct vmcb_control_area *control;
5097 /* The following fields are ignored when AVIC is enabled */
5098 control = &svm->vmcb->control;
5099 control->int_vector = irq;
5100 control->int_ctl &= ~V_INTR_PRIO_MASK;
5101 control->int_ctl |= V_IRQ_MASK |
5102 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5103 mark_dirty(svm->vmcb, VMCB_INTR);
5106 static void svm_set_irq(struct kvm_vcpu *vcpu)
5108 struct vcpu_svm *svm = to_svm(vcpu);
5110 BUG_ON(!(gif_set(svm)));
5112 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5113 ++vcpu->stat.irq_injections;
5115 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5116 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5119 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5121 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5124 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5126 struct vcpu_svm *svm = to_svm(vcpu);
5128 if (svm_nested_virtualize_tpr(vcpu) ||
5129 kvm_vcpu_apicv_active(vcpu))
5132 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5138 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5141 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5146 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5148 return avic && irqchip_split(vcpu->kvm);
5151 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5155 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5159 /* Note: Currently only used by Hyper-V. */
5160 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5162 struct vcpu_svm *svm = to_svm(vcpu);
5163 struct vmcb *vmcb = svm->vmcb;
5165 if (kvm_vcpu_apicv_active(vcpu))
5166 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5168 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5169 mark_dirty(vmcb, VMCB_AVIC);
5172 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5177 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5179 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5180 smp_mb__after_atomic();
5182 if (avic_vcpu_is_running(vcpu)) {
5183 int cpuid = vcpu->cpu;
5185 if (cpuid != get_cpu())
5186 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5189 kvm_vcpu_wake_up(vcpu);
5192 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5197 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5199 unsigned long flags;
5200 struct amd_svm_iommu_ir *cur;
5202 spin_lock_irqsave(&svm->ir_list_lock, flags);
5203 list_for_each_entry(cur, &svm->ir_list, node) {
5204 if (cur->data != pi->ir_data)
5206 list_del(&cur->node);
5210 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5213 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5216 unsigned long flags;
5217 struct amd_svm_iommu_ir *ir;
5220 * In some cases, the existing irte is updaed and re-set,
5221 * so we need to check here if it's already been * added
5224 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5225 struct kvm *kvm = svm->vcpu.kvm;
5226 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5227 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5228 struct vcpu_svm *prev_svm;
5235 prev_svm = to_svm(prev_vcpu);
5236 svm_ir_list_del(prev_svm, pi);
5240 * Allocating new amd_iommu_pi_data, which will get
5241 * add to the per-vcpu ir_list.
5243 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5248 ir->data = pi->ir_data;
5250 spin_lock_irqsave(&svm->ir_list_lock, flags);
5251 list_add(&ir->node, &svm->ir_list);
5252 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5259 * The HW cannot support posting multicast/broadcast
5260 * interrupts to a vCPU. So, we still use legacy interrupt
5261 * remapping for these kind of interrupts.
5263 * For lowest-priority interrupts, we only support
5264 * those with single CPU as the destination, e.g. user
5265 * configures the interrupts via /proc/irq or uses
5266 * irqbalance to make the interrupts single-CPU.
5269 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5270 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5272 struct kvm_lapic_irq irq;
5273 struct kvm_vcpu *vcpu = NULL;
5275 kvm_set_msi_irq(kvm, e, &irq);
5277 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5278 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5279 __func__, irq.vector);
5283 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5285 *svm = to_svm(vcpu);
5286 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5287 vcpu_info->vector = irq.vector;
5293 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5296 * @host_irq: host irq of the interrupt
5297 * @guest_irq: gsi of the interrupt
5298 * @set: set or unset PI
5299 * returns 0 on success, < 0 on failure
5301 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5302 uint32_t guest_irq, bool set)
5304 struct kvm_kernel_irq_routing_entry *e;
5305 struct kvm_irq_routing_table *irq_rt;
5306 int idx, ret = -EINVAL;
5308 if (!kvm_arch_has_assigned_device(kvm) ||
5309 !irq_remapping_cap(IRQ_POSTING_CAP))
5312 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5313 __func__, host_irq, guest_irq, set);
5315 idx = srcu_read_lock(&kvm->irq_srcu);
5316 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5317 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5319 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5320 struct vcpu_data vcpu_info;
5321 struct vcpu_svm *svm = NULL;
5323 if (e->type != KVM_IRQ_ROUTING_MSI)
5327 * Here, we setup with legacy mode in the following cases:
5328 * 1. When cannot target interrupt to a specific vcpu.
5329 * 2. Unsetting posted interrupt.
5330 * 3. APIC virtialization is disabled for the vcpu.
5332 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5333 kvm_vcpu_apicv_active(&svm->vcpu)) {
5334 struct amd_iommu_pi_data pi;
5336 /* Try to enable guest_mode in IRTE */
5337 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5339 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5341 pi.is_guest_mode = true;
5342 pi.vcpu_data = &vcpu_info;
5343 ret = irq_set_vcpu_affinity(host_irq, &pi);
5346 * Here, we successfully setting up vcpu affinity in
5347 * IOMMU guest mode. Now, we need to store the posted
5348 * interrupt information in a per-vcpu ir_list so that
5349 * we can reference to them directly when we update vcpu
5350 * scheduling information in IOMMU irte.
5352 if (!ret && pi.is_guest_mode)
5353 svm_ir_list_add(svm, &pi);
5355 /* Use legacy mode in IRTE */
5356 struct amd_iommu_pi_data pi;
5359 * Here, pi is used to:
5360 * - Tell IOMMU to use legacy mode for this interrupt.
5361 * - Retrieve ga_tag of prior interrupt remapping data.
5363 pi.is_guest_mode = false;
5364 ret = irq_set_vcpu_affinity(host_irq, &pi);
5367 * Check if the posted interrupt was previously
5368 * setup with the guest_mode by checking if the ga_tag
5369 * was cached. If so, we need to clean up the per-vcpu
5372 if (!ret && pi.prev_ga_tag) {
5373 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5374 struct kvm_vcpu *vcpu;
5376 vcpu = kvm_get_vcpu_by_id(kvm, id);
5378 svm_ir_list_del(to_svm(vcpu), &pi);
5383 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5384 e->gsi, vcpu_info.vector,
5385 vcpu_info.pi_desc_addr, set);
5389 pr_err("%s: failed to update PI IRTE\n", __func__);
5396 srcu_read_unlock(&kvm->irq_srcu, idx);
5400 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5402 struct vcpu_svm *svm = to_svm(vcpu);
5403 struct vmcb *vmcb = svm->vmcb;
5405 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5406 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5407 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5412 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5414 struct vcpu_svm *svm = to_svm(vcpu);
5416 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5419 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5421 struct vcpu_svm *svm = to_svm(vcpu);
5424 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5425 set_intercept(svm, INTERCEPT_IRET);
5427 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5428 clr_intercept(svm, INTERCEPT_IRET);
5432 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5434 struct vcpu_svm *svm = to_svm(vcpu);
5435 struct vmcb *vmcb = svm->vmcb;
5438 if (!gif_set(svm) ||
5439 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5442 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5444 if (is_guest_mode(vcpu))
5445 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5450 static void enable_irq_window(struct kvm_vcpu *vcpu)
5452 struct vcpu_svm *svm = to_svm(vcpu);
5454 if (kvm_vcpu_apicv_active(vcpu))
5458 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5459 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5460 * get that intercept, this function will be called again though and
5461 * we'll get the vintr intercept. However, if the vGIF feature is
5462 * enabled, the STGI interception will not occur. Enable the irq
5463 * window under the assumption that the hardware will set the GIF.
5465 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5467 svm_inject_irq(svm, 0x0);
5471 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5473 struct vcpu_svm *svm = to_svm(vcpu);
5475 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5477 return; /* IRET will cause a vm exit */
5479 if (!gif_set(svm)) {
5480 if (vgif_enabled(svm))
5481 set_intercept(svm, INTERCEPT_STGI);
5482 return; /* STGI will cause a vm exit */
5485 if (svm->nested.exit_required)
5486 return; /* we're not going to run the guest yet */
5489 * Something prevents NMI from been injected. Single step over possible
5490 * problem (IRET or exception injection or interrupt shadow)
5492 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5493 svm->nmi_singlestep = true;
5494 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5497 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5502 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5507 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5509 struct vcpu_svm *svm = to_svm(vcpu);
5511 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5512 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5514 svm->asid_generation--;
5517 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5519 struct vcpu_svm *svm = to_svm(vcpu);
5521 invlpga(gva, svm->vmcb->control.asid);
5524 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5528 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5530 struct vcpu_svm *svm = to_svm(vcpu);
5532 if (svm_nested_virtualize_tpr(vcpu))
5535 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5536 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5537 kvm_set_cr8(vcpu, cr8);
5541 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5543 struct vcpu_svm *svm = to_svm(vcpu);
5546 if (svm_nested_virtualize_tpr(vcpu) ||
5547 kvm_vcpu_apicv_active(vcpu))
5550 cr8 = kvm_get_cr8(vcpu);
5551 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5552 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5555 static void svm_complete_interrupts(struct vcpu_svm *svm)
5559 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5560 unsigned int3_injected = svm->int3_injected;
5562 svm->int3_injected = 0;
5565 * If we've made progress since setting HF_IRET_MASK, we've
5566 * executed an IRET and can allow NMI injection.
5568 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5569 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5570 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5571 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5574 svm->vcpu.arch.nmi_injected = false;
5575 kvm_clear_exception_queue(&svm->vcpu);
5576 kvm_clear_interrupt_queue(&svm->vcpu);
5578 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5581 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5583 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5584 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5587 case SVM_EXITINTINFO_TYPE_NMI:
5588 svm->vcpu.arch.nmi_injected = true;
5590 case SVM_EXITINTINFO_TYPE_EXEPT:
5592 * In case of software exceptions, do not reinject the vector,
5593 * but re-execute the instruction instead. Rewind RIP first
5594 * if we emulated INT3 before.
5596 if (kvm_exception_is_soft(vector)) {
5597 if (vector == BP_VECTOR && int3_injected &&
5598 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5599 kvm_rip_write(&svm->vcpu,
5600 kvm_rip_read(&svm->vcpu) -
5604 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5605 u32 err = svm->vmcb->control.exit_int_info_err;
5606 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5609 kvm_requeue_exception(&svm->vcpu, vector);
5611 case SVM_EXITINTINFO_TYPE_INTR:
5612 kvm_queue_interrupt(&svm->vcpu, vector, false);
5619 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5621 struct vcpu_svm *svm = to_svm(vcpu);
5622 struct vmcb_control_area *control = &svm->vmcb->control;
5624 control->exit_int_info = control->event_inj;
5625 control->exit_int_info_err = control->event_inj_err;
5626 control->event_inj = 0;
5627 svm_complete_interrupts(svm);
5630 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5632 struct vcpu_svm *svm = to_svm(vcpu);
5634 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5635 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5636 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5639 * A vmexit emulation is required before the vcpu can be executed
5642 if (unlikely(svm->nested.exit_required))
5646 * Disable singlestep if we're injecting an interrupt/exception.
5647 * We don't want our modified rflags to be pushed on the stack where
5648 * we might not be able to easily reset them if we disabled NMI
5651 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5653 * Event injection happens before external interrupts cause a
5654 * vmexit and interrupts are disabled here, so smp_send_reschedule
5655 * is enough to force an immediate vmexit.
5657 disable_nmi_singlestep(svm);
5658 smp_send_reschedule(vcpu->cpu);
5663 sync_lapic_to_cr8(vcpu);
5665 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5668 kvm_load_guest_xcr0(vcpu);
5670 if (lapic_in_kernel(vcpu) &&
5671 vcpu->arch.apic->lapic_timer.timer_advance_ns)
5672 kvm_wait_lapic_expire(vcpu);
5675 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5676 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5677 * is no need to worry about the conditional branch over the wrmsr
5678 * being speculatively taken.
5680 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5685 "push %%" _ASM_BP "; \n\t"
5686 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5687 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5688 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5689 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5690 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5691 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5692 #ifdef CONFIG_X86_64
5693 "mov %c[r8](%[svm]), %%r8 \n\t"
5694 "mov %c[r9](%[svm]), %%r9 \n\t"
5695 "mov %c[r10](%[svm]), %%r10 \n\t"
5696 "mov %c[r11](%[svm]), %%r11 \n\t"
5697 "mov %c[r12](%[svm]), %%r12 \n\t"
5698 "mov %c[r13](%[svm]), %%r13 \n\t"
5699 "mov %c[r14](%[svm]), %%r14 \n\t"
5700 "mov %c[r15](%[svm]), %%r15 \n\t"
5703 /* Enter guest mode */
5704 "push %%" _ASM_AX " \n\t"
5705 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5706 __ex("vmload %%" _ASM_AX) "\n\t"
5707 __ex("vmrun %%" _ASM_AX) "\n\t"
5708 __ex("vmsave %%" _ASM_AX) "\n\t"
5709 "pop %%" _ASM_AX " \n\t"
5711 /* Save guest registers, load host registers */
5712 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5713 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5714 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5715 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5716 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5717 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5718 #ifdef CONFIG_X86_64
5719 "mov %%r8, %c[r8](%[svm]) \n\t"
5720 "mov %%r9, %c[r9](%[svm]) \n\t"
5721 "mov %%r10, %c[r10](%[svm]) \n\t"
5722 "mov %%r11, %c[r11](%[svm]) \n\t"
5723 "mov %%r12, %c[r12](%[svm]) \n\t"
5724 "mov %%r13, %c[r13](%[svm]) \n\t"
5725 "mov %%r14, %c[r14](%[svm]) \n\t"
5726 "mov %%r15, %c[r15](%[svm]) \n\t"
5728 * Clear host registers marked as clobbered to prevent
5731 "xor %%r8d, %%r8d \n\t"
5732 "xor %%r9d, %%r9d \n\t"
5733 "xor %%r10d, %%r10d \n\t"
5734 "xor %%r11d, %%r11d \n\t"
5735 "xor %%r12d, %%r12d \n\t"
5736 "xor %%r13d, %%r13d \n\t"
5737 "xor %%r14d, %%r14d \n\t"
5738 "xor %%r15d, %%r15d \n\t"
5740 "xor %%ebx, %%ebx \n\t"
5741 "xor %%ecx, %%ecx \n\t"
5742 "xor %%edx, %%edx \n\t"
5743 "xor %%esi, %%esi \n\t"
5744 "xor %%edi, %%edi \n\t"
5748 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5749 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5750 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5751 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5752 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5753 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5754 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5755 #ifdef CONFIG_X86_64
5756 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5757 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5758 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5759 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5760 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5761 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5762 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5763 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5766 #ifdef CONFIG_X86_64
5767 , "rbx", "rcx", "rdx", "rsi", "rdi"
5768 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5770 , "ebx", "ecx", "edx", "esi", "edi"
5774 /* Eliminate branch target predictions from guest mode */
5777 #ifdef CONFIG_X86_64
5778 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5780 loadsegment(fs, svm->host.fs);
5781 #ifndef CONFIG_X86_32_LAZY_GS
5782 loadsegment(gs, svm->host.gs);
5787 * We do not use IBRS in the kernel. If this vCPU has used the
5788 * SPEC_CTRL MSR it may have left it on; save the value and
5789 * turn it off. This is much more efficient than blindly adding
5790 * it to the atomic save/restore list. Especially as the former
5791 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5793 * For non-nested case:
5794 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5798 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5801 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5802 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5806 local_irq_disable();
5808 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5810 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5811 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5812 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5813 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5815 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5816 kvm_before_interrupt(&svm->vcpu);
5818 kvm_put_guest_xcr0(vcpu);
5821 /* Any pending NMI will happen here */
5823 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5824 kvm_after_interrupt(&svm->vcpu);
5826 sync_cr8_to_lapic(vcpu);
5830 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5832 /* if exit due to PF check for async PF */
5833 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5834 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5837 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5838 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5842 * We need to handle MC intercepts here before the vcpu has a chance to
5843 * change the physical cpu
5845 if (unlikely(svm->vmcb->control.exit_code ==
5846 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5847 svm_handle_mce(svm);
5849 mark_all_clean(svm->vmcb);
5851 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5853 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5855 struct vcpu_svm *svm = to_svm(vcpu);
5857 svm->vmcb->save.cr3 = __sme_set(root);
5858 mark_dirty(svm->vmcb, VMCB_CR);
5861 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5863 struct vcpu_svm *svm = to_svm(vcpu);
5865 svm->vmcb->control.nested_cr3 = __sme_set(root);
5866 mark_dirty(svm->vmcb, VMCB_NPT);
5868 /* Also sync guest cr3 here in case we live migrate */
5869 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5870 mark_dirty(svm->vmcb, VMCB_CR);
5873 static int is_disabled(void)
5877 rdmsrl(MSR_VM_CR, vm_cr);
5878 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5885 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5888 * Patch in the VMMCALL instruction:
5890 hypercall[0] = 0x0f;
5891 hypercall[1] = 0x01;
5892 hypercall[2] = 0xd9;
5895 static int __init svm_check_processor_compat(void)
5900 static bool svm_cpu_has_accelerated_tpr(void)
5905 static bool svm_has_emulated_msr(int index)
5908 case MSR_IA32_MCG_EXT_CTL:
5909 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5918 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5923 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5925 struct vcpu_svm *svm = to_svm(vcpu);
5927 /* Update nrips enabled cache */
5928 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5930 if (!kvm_vcpu_apicv_active(vcpu))
5933 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5936 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5941 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5945 entry->ecx |= (1 << 2); /* Set SVM bit */
5948 entry->eax = 1; /* SVM revision 1 */
5949 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5950 ASID emulation to nested SVM */
5951 entry->ecx = 0; /* Reserved */
5952 entry->edx = 0; /* Per default do not support any
5953 additional features */
5955 /* Support next_rip if host supports it */
5956 if (boot_cpu_has(X86_FEATURE_NRIPS))
5957 entry->edx |= SVM_FEATURE_NRIP;
5959 /* Support NPT for the guest if enabled */
5961 entry->edx |= SVM_FEATURE_NPT;
5965 /* Support memory encryption cpuid if host supports it */
5966 if (boot_cpu_has(X86_FEATURE_SEV))
5967 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5968 &entry->ecx, &entry->edx);
5973 static int svm_get_lpage_level(void)
5975 return PT_PDPE_LEVEL;
5978 static bool svm_rdtscp_supported(void)
5980 return boot_cpu_has(X86_FEATURE_RDTSCP);
5983 static bool svm_invpcid_supported(void)
5988 static bool svm_mpx_supported(void)
5993 static bool svm_xsaves_supported(void)
5998 static bool svm_umip_emulated(void)
6003 static bool svm_pt_supported(void)
6008 static bool svm_has_wbinvd_exit(void)
6013 #define PRE_EX(exit) { .exit_code = (exit), \
6014 .stage = X86_ICPT_PRE_EXCEPT, }
6015 #define POST_EX(exit) { .exit_code = (exit), \
6016 .stage = X86_ICPT_POST_EXCEPT, }
6017 #define POST_MEM(exit) { .exit_code = (exit), \
6018 .stage = X86_ICPT_POST_MEMACCESS, }
6020 static const struct __x86_intercept {
6022 enum x86_intercept_stage stage;
6023 } x86_intercept_map[] = {
6024 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
6025 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
6026 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
6027 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
6028 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
6029 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
6030 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
6031 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
6032 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
6033 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
6034 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
6035 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
6036 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
6037 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
6038 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
6039 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
6040 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
6041 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
6042 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
6043 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
6044 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
6045 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
6046 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
6047 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
6048 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
6049 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
6050 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
6051 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
6052 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
6053 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
6054 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
6055 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
6056 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
6057 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
6058 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
6059 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
6060 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
6061 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
6062 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
6063 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
6064 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
6065 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
6066 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
6067 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
6068 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
6069 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
6076 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6077 struct x86_instruction_info *info,
6078 enum x86_intercept_stage stage)
6080 struct vcpu_svm *svm = to_svm(vcpu);
6081 int vmexit, ret = X86EMUL_CONTINUE;
6082 struct __x86_intercept icpt_info;
6083 struct vmcb *vmcb = svm->vmcb;
6085 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6088 icpt_info = x86_intercept_map[info->intercept];
6090 if (stage != icpt_info.stage)
6093 switch (icpt_info.exit_code) {
6094 case SVM_EXIT_READ_CR0:
6095 if (info->intercept == x86_intercept_cr_read)
6096 icpt_info.exit_code += info->modrm_reg;
6098 case SVM_EXIT_WRITE_CR0: {
6099 unsigned long cr0, val;
6102 if (info->intercept == x86_intercept_cr_write)
6103 icpt_info.exit_code += info->modrm_reg;
6105 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6106 info->intercept == x86_intercept_clts)
6109 intercept = svm->nested.intercept;
6111 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6114 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6115 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6117 if (info->intercept == x86_intercept_lmsw) {
6120 /* lmsw can't clear PE - catch this here */
6121 if (cr0 & X86_CR0_PE)
6126 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6130 case SVM_EXIT_READ_DR0:
6131 case SVM_EXIT_WRITE_DR0:
6132 icpt_info.exit_code += info->modrm_reg;
6135 if (info->intercept == x86_intercept_wrmsr)
6136 vmcb->control.exit_info_1 = 1;
6138 vmcb->control.exit_info_1 = 0;
6140 case SVM_EXIT_PAUSE:
6142 * We get this for NOP only, but pause
6143 * is rep not, check this here
6145 if (info->rep_prefix != REPE_PREFIX)
6148 case SVM_EXIT_IOIO: {
6152 if (info->intercept == x86_intercept_in ||
6153 info->intercept == x86_intercept_ins) {
6154 exit_info = ((info->src_val & 0xffff) << 16) |
6156 bytes = info->dst_bytes;
6158 exit_info = (info->dst_val & 0xffff) << 16;
6159 bytes = info->src_bytes;
6162 if (info->intercept == x86_intercept_outs ||
6163 info->intercept == x86_intercept_ins)
6164 exit_info |= SVM_IOIO_STR_MASK;
6166 if (info->rep_prefix)
6167 exit_info |= SVM_IOIO_REP_MASK;
6169 bytes = min(bytes, 4u);
6171 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6173 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6175 vmcb->control.exit_info_1 = exit_info;
6176 vmcb->control.exit_info_2 = info->next_rip;
6184 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6185 if (static_cpu_has(X86_FEATURE_NRIPS))
6186 vmcb->control.next_rip = info->next_rip;
6187 vmcb->control.exit_code = icpt_info.exit_code;
6188 vmexit = nested_svm_exit_handled(svm);
6190 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6197 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6202 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6204 if (pause_filter_thresh)
6205 shrink_ple_window(vcpu);
6208 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6210 if (avic_handle_apic_id_update(vcpu) != 0)
6212 avic_handle_dfr_update(vcpu);
6213 avic_handle_ldr_update(vcpu);
6216 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6218 /* [63:9] are reserved. */
6219 vcpu->arch.mcg_cap &= 0x1ff;
6222 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6224 struct vcpu_svm *svm = to_svm(vcpu);
6226 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6230 if (is_guest_mode(&svm->vcpu) &&
6231 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6232 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6233 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6234 svm->nested.exit_required = true;
6241 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6243 struct vcpu_svm *svm = to_svm(vcpu);
6246 if (is_guest_mode(vcpu)) {
6247 /* FED8h - SVM Guest */
6248 put_smstate(u64, smstate, 0x7ed8, 1);
6249 /* FEE0h - SVM Guest VMCB Physical Address */
6250 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6252 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6253 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6254 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6256 ret = nested_svm_vmexit(svm);
6263 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6265 struct vcpu_svm *svm = to_svm(vcpu);
6266 struct vmcb *nested_vmcb;
6267 struct kvm_host_map map;
6271 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6272 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6275 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6277 nested_vmcb = map.hva;
6278 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6283 static int enable_smi_window(struct kvm_vcpu *vcpu)
6285 struct vcpu_svm *svm = to_svm(vcpu);
6287 if (!gif_set(svm)) {
6288 if (vgif_enabled(svm))
6289 set_intercept(svm, INTERCEPT_STGI);
6290 /* STGI will cause a vm exit */
6296 static int sev_asid_new(void)
6301 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6303 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6304 if (pos >= max_sev_asid)
6307 set_bit(pos, sev_asid_bitmap);
6311 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6313 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6317 if (unlikely(sev->active))
6320 asid = sev_asid_new();
6324 ret = sev_platform_init(&argp->error);
6330 INIT_LIST_HEAD(&sev->regions_list);
6335 __sev_asid_free(asid);
6339 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6341 struct sev_data_activate *data;
6342 int asid = sev_get_asid(kvm);
6345 wbinvd_on_all_cpus();
6347 ret = sev_guest_df_flush(error);
6351 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6355 /* activate ASID on the given handle */
6356 data->handle = handle;
6358 ret = sev_guest_activate(data, error);
6364 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6373 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6379 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6381 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6383 return __sev_issue_cmd(sev->fd, id, data, error);
6386 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6388 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6389 struct sev_data_launch_start *start;
6390 struct kvm_sev_launch_start params;
6391 void *dh_blob, *session_blob;
6392 int *error = &argp->error;
6395 if (!sev_guest(kvm))
6398 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6401 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6406 if (params.dh_uaddr) {
6407 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6408 if (IS_ERR(dh_blob)) {
6409 ret = PTR_ERR(dh_blob);
6413 start->dh_cert_address = __sme_set(__pa(dh_blob));
6414 start->dh_cert_len = params.dh_len;
6417 session_blob = NULL;
6418 if (params.session_uaddr) {
6419 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6420 if (IS_ERR(session_blob)) {
6421 ret = PTR_ERR(session_blob);
6425 start->session_address = __sme_set(__pa(session_blob));
6426 start->session_len = params.session_len;
6429 start->handle = params.handle;
6430 start->policy = params.policy;
6432 /* create memory encryption context */
6433 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6435 goto e_free_session;
6437 /* Bind ASID to this guest */
6438 ret = sev_bind_asid(kvm, start->handle, error);
6440 goto e_free_session;
6442 /* return handle to userspace */
6443 params.handle = start->handle;
6444 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
6445 sev_unbind_asid(kvm, start->handle);
6447 goto e_free_session;
6450 sev->handle = start->handle;
6451 sev->fd = argp->sev_fd;
6454 kfree(session_blob);
6462 static unsigned long get_num_contig_pages(unsigned long idx,
6463 struct page **inpages, unsigned long npages)
6465 unsigned long paddr, next_paddr;
6466 unsigned long i = idx + 1, pages = 1;
6468 /* find the number of contiguous pages starting from idx */
6469 paddr = __sme_page_pa(inpages[idx]);
6470 while (i < npages) {
6471 next_paddr = __sme_page_pa(inpages[i++]);
6472 if ((paddr + PAGE_SIZE) == next_paddr) {
6483 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6485 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6486 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6487 struct kvm_sev_launch_update_data params;
6488 struct sev_data_launch_update_data *data;
6489 struct page **inpages;
6492 if (!sev_guest(kvm))
6495 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6498 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6502 vaddr = params.uaddr;
6504 vaddr_end = vaddr + size;
6506 /* Lock the user memory. */
6507 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6514 * The LAUNCH_UPDATE command will perform in-place encryption of the
6515 * memory content (i.e it will write the same memory region with C=1).
6516 * It's possible that the cache may contain the data with C=0, i.e.,
6517 * unencrypted so invalidate it first.
6519 sev_clflush_pages(inpages, npages);
6521 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6525 * If the user buffer is not page-aligned, calculate the offset
6528 offset = vaddr & (PAGE_SIZE - 1);
6530 /* Calculate the number of pages that can be encrypted in one go. */
6531 pages = get_num_contig_pages(i, inpages, npages);
6533 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6535 data->handle = sev->handle;
6537 data->address = __sme_page_pa(inpages[i]) + offset;
6538 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6543 next_vaddr = vaddr + len;
6547 /* content of memory is updated, mark pages dirty */
6548 for (i = 0; i < npages; i++) {
6549 set_page_dirty_lock(inpages[i]);
6550 mark_page_accessed(inpages[i]);
6552 /* unlock the user pages */
6553 sev_unpin_memory(kvm, inpages, npages);
6559 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6561 void __user *measure = (void __user *)(uintptr_t)argp->data;
6562 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6563 struct sev_data_launch_measure *data;
6564 struct kvm_sev_launch_measure params;
6565 void __user *p = NULL;
6569 if (!sev_guest(kvm))
6572 if (copy_from_user(¶ms, measure, sizeof(params)))
6575 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6579 /* User wants to query the blob length */
6583 p = (void __user *)(uintptr_t)params.uaddr;
6585 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6591 blob = kmalloc(params.len, GFP_KERNEL);
6595 data->address = __psp_pa(blob);
6596 data->len = params.len;
6600 data->handle = sev->handle;
6601 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6604 * If we query the session length, FW responded with expected data.
6613 if (copy_to_user(p, blob, params.len))
6618 params.len = data->len;
6619 if (copy_to_user(measure, ¶ms, sizeof(params)))
6628 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6630 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6631 struct sev_data_launch_finish *data;
6634 if (!sev_guest(kvm))
6637 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6641 data->handle = sev->handle;
6642 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6648 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6650 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6651 struct kvm_sev_guest_status params;
6652 struct sev_data_guest_status *data;
6655 if (!sev_guest(kvm))
6658 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6662 data->handle = sev->handle;
6663 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6667 params.policy = data->policy;
6668 params.state = data->state;
6669 params.handle = data->handle;
6671 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
6678 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6679 unsigned long dst, int size,
6680 int *error, bool enc)
6682 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6683 struct sev_data_dbg *data;
6686 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6690 data->handle = sev->handle;
6691 data->dst_addr = dst;
6692 data->src_addr = src;
6695 ret = sev_issue_cmd(kvm,
6696 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6702 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6703 unsigned long dst_paddr, int sz, int *err)
6708 * Its safe to read more than we are asked, caller should ensure that
6709 * destination has enough space.
6711 src_paddr = round_down(src_paddr, 16);
6712 offset = src_paddr & 15;
6713 sz = round_up(sz + offset, 16);
6715 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6718 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6719 unsigned long __user dst_uaddr,
6720 unsigned long dst_paddr,
6723 struct page *tpage = NULL;
6726 /* if inputs are not 16-byte then use intermediate buffer */
6727 if (!IS_ALIGNED(dst_paddr, 16) ||
6728 !IS_ALIGNED(paddr, 16) ||
6729 !IS_ALIGNED(size, 16)) {
6730 tpage = (void *)alloc_page(GFP_KERNEL);
6734 dst_paddr = __sme_page_pa(tpage);
6737 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6742 offset = paddr & 15;
6743 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6744 page_address(tpage) + offset, size))
6755 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6756 unsigned long __user vaddr,
6757 unsigned long dst_paddr,
6758 unsigned long __user dst_vaddr,
6759 int size, int *error)
6761 struct page *src_tpage = NULL;
6762 struct page *dst_tpage = NULL;
6763 int ret, len = size;
6765 /* If source buffer is not aligned then use an intermediate buffer */
6766 if (!IS_ALIGNED(vaddr, 16)) {
6767 src_tpage = alloc_page(GFP_KERNEL);
6771 if (copy_from_user(page_address(src_tpage),
6772 (void __user *)(uintptr_t)vaddr, size)) {
6773 __free_page(src_tpage);
6777 paddr = __sme_page_pa(src_tpage);
6781 * If destination buffer or length is not aligned then do read-modify-write:
6782 * - decrypt destination in an intermediate buffer
6783 * - copy the source buffer in an intermediate buffer
6784 * - use the intermediate buffer as source buffer
6786 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6789 dst_tpage = alloc_page(GFP_KERNEL);
6795 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6796 __sme_page_pa(dst_tpage), size, error);
6801 * If source is kernel buffer then use memcpy() otherwise
6804 dst_offset = dst_paddr & 15;
6807 memcpy(page_address(dst_tpage) + dst_offset,
6808 page_address(src_tpage), size);
6810 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6811 (void __user *)(uintptr_t)vaddr, size)) {
6817 paddr = __sme_page_pa(dst_tpage);
6818 dst_paddr = round_down(dst_paddr, 16);
6819 len = round_up(size, 16);
6822 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6826 __free_page(src_tpage);
6828 __free_page(dst_tpage);
6832 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6834 unsigned long vaddr, vaddr_end, next_vaddr;
6835 unsigned long dst_vaddr;
6836 struct page **src_p, **dst_p;
6837 struct kvm_sev_dbg debug;
6842 if (!sev_guest(kvm))
6845 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6848 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6850 if (!debug.dst_uaddr)
6853 vaddr = debug.src_uaddr;
6855 vaddr_end = vaddr + size;
6856 dst_vaddr = debug.dst_uaddr;
6858 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6859 int len, s_off, d_off;
6861 /* lock userspace source and destination page */
6862 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6866 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6868 sev_unpin_memory(kvm, src_p, n);
6873 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6874 * memory content (i.e it will write the same memory region with C=1).
6875 * It's possible that the cache may contain the data with C=0, i.e.,
6876 * unencrypted so invalidate it first.
6878 sev_clflush_pages(src_p, 1);
6879 sev_clflush_pages(dst_p, 1);
6882 * Since user buffer may not be page aligned, calculate the
6883 * offset within the page.
6885 s_off = vaddr & ~PAGE_MASK;
6886 d_off = dst_vaddr & ~PAGE_MASK;
6887 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6890 ret = __sev_dbg_decrypt_user(kvm,
6891 __sme_page_pa(src_p[0]) + s_off,
6893 __sme_page_pa(dst_p[0]) + d_off,
6896 ret = __sev_dbg_encrypt_user(kvm,
6897 __sme_page_pa(src_p[0]) + s_off,
6899 __sme_page_pa(dst_p[0]) + d_off,
6903 sev_unpin_memory(kvm, src_p, n);
6904 sev_unpin_memory(kvm, dst_p, n);
6909 next_vaddr = vaddr + len;
6910 dst_vaddr = dst_vaddr + len;
6917 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6919 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6920 struct sev_data_launch_secret *data;
6921 struct kvm_sev_launch_secret params;
6922 struct page **pages;
6927 if (!sev_guest(kvm))
6930 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6933 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6938 * The secret must be copied into contiguous memory region, lets verify
6939 * that userspace memory pages are contiguous before we issue command.
6941 if (get_num_contig_pages(0, pages, n) != n) {
6943 goto e_unpin_memory;
6947 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6949 goto e_unpin_memory;
6951 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6952 data->guest_address = __sme_page_pa(pages[0]) + offset;
6953 data->guest_len = params.guest_len;
6955 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6957 ret = PTR_ERR(blob);
6961 data->trans_address = __psp_pa(blob);
6962 data->trans_len = params.trans_len;
6964 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6969 data->hdr_address = __psp_pa(hdr);
6970 data->hdr_len = params.hdr_len;
6972 data->handle = sev->handle;
6973 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6982 sev_unpin_memory(kvm, pages, n);
6986 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6988 struct kvm_sev_cmd sev_cmd;
6991 if (!svm_sev_enabled())
6994 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6997 mutex_lock(&kvm->lock);
6999 switch (sev_cmd.id) {
7001 r = sev_guest_init(kvm, &sev_cmd);
7003 case KVM_SEV_LAUNCH_START:
7004 r = sev_launch_start(kvm, &sev_cmd);
7006 case KVM_SEV_LAUNCH_UPDATE_DATA:
7007 r = sev_launch_update_data(kvm, &sev_cmd);
7009 case KVM_SEV_LAUNCH_MEASURE:
7010 r = sev_launch_measure(kvm, &sev_cmd);
7012 case KVM_SEV_LAUNCH_FINISH:
7013 r = sev_launch_finish(kvm, &sev_cmd);
7015 case KVM_SEV_GUEST_STATUS:
7016 r = sev_guest_status(kvm, &sev_cmd);
7018 case KVM_SEV_DBG_DECRYPT:
7019 r = sev_dbg_crypt(kvm, &sev_cmd, true);
7021 case KVM_SEV_DBG_ENCRYPT:
7022 r = sev_dbg_crypt(kvm, &sev_cmd, false);
7024 case KVM_SEV_LAUNCH_SECRET:
7025 r = sev_launch_secret(kvm, &sev_cmd);
7032 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7036 mutex_unlock(&kvm->lock);
7040 static int svm_register_enc_region(struct kvm *kvm,
7041 struct kvm_enc_region *range)
7043 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7044 struct enc_region *region;
7047 if (!sev_guest(kvm))
7050 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7053 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7057 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
7058 if (!region->pages) {
7064 * The guest may change the memory encryption attribute from C=0 -> C=1
7065 * or vice versa for this memory range. Lets make sure caches are
7066 * flushed to ensure that guest data gets written into memory with
7069 sev_clflush_pages(region->pages, region->npages);
7071 region->uaddr = range->addr;
7072 region->size = range->size;
7074 mutex_lock(&kvm->lock);
7075 list_add_tail(®ion->list, &sev->regions_list);
7076 mutex_unlock(&kvm->lock);
7085 static struct enc_region *
7086 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7088 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7089 struct list_head *head = &sev->regions_list;
7090 struct enc_region *i;
7092 list_for_each_entry(i, head, list) {
7093 if (i->uaddr == range->addr &&
7094 i->size == range->size)
7102 static int svm_unregister_enc_region(struct kvm *kvm,
7103 struct kvm_enc_region *range)
7105 struct enc_region *region;
7108 mutex_lock(&kvm->lock);
7110 if (!sev_guest(kvm)) {
7115 region = find_enc_region(kvm, range);
7121 __unregister_enc_region_locked(kvm, region);
7123 mutex_unlock(&kvm->lock);
7127 mutex_unlock(&kvm->lock);
7131 static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
7132 uint16_t *vmcs_version)
7134 /* Intel-only feature */
7138 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7140 unsigned long cr4 = kvm_read_cr4(vcpu);
7141 bool smep = cr4 & X86_CR4_SMEP;
7142 bool smap = cr4 & X86_CR4_SMAP;
7143 bool is_user = svm_get_cpl(vcpu) == 3;
7146 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7149 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7150 * possible that CPU microcode implementing DecodeAssist will fail
7151 * to read bytes of instruction which caused #NPF. In this case,
7152 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7153 * return 0 instead of the correct guest instruction bytes.
7155 * This happens because CPU microcode reading instruction bytes
7156 * uses a special opcode which attempts to read data using CPL=0
7157 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7158 * fault, it gives up and returns no instruction bytes.
7161 * We reach here in case CPU supports DecodeAssist, raised #NPF and
7162 * returned 0 in GuestIntrBytes field of the VMCB.
7163 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7164 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7165 * in case vCPU CPL==3 (Because otherwise guest would have triggered
7166 * a SMEP fault instead of #NPF).
7167 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7168 * As most guests enable SMAP if they have also enabled SMEP, use above
7169 * logic in order to attempt minimize false-positive of detecting errata
7170 * while still preserving all cases semantic correctness.
7173 * To determine what instruction the guest was executing, the hypervisor
7174 * will have to decode the instruction at the instruction pointer.
7176 * In non SEV guest, hypervisor will be able to read the guest
7177 * memory to decode the instruction pointer when insn_len is zero
7178 * so we return true to indicate that decoding is possible.
7180 * But in the SEV guest, the guest memory is encrypted with the
7181 * guest specific key and hypervisor will not be able to decode the
7182 * instruction pointer so we will not able to workaround it. Lets
7183 * print the error and request to kill the guest.
7185 if (smap && (!smep || is_user)) {
7186 if (!sev_guest(vcpu->kvm))
7189 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7190 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7196 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7197 .cpu_has_kvm_support = has_svm,
7198 .disabled_by_bios = is_disabled,
7199 .hardware_setup = svm_hardware_setup,
7200 .hardware_unsetup = svm_hardware_unsetup,
7201 .check_processor_compatibility = svm_check_processor_compat,
7202 .hardware_enable = svm_hardware_enable,
7203 .hardware_disable = svm_hardware_disable,
7204 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7205 .has_emulated_msr = svm_has_emulated_msr,
7207 .vcpu_create = svm_create_vcpu,
7208 .vcpu_free = svm_free_vcpu,
7209 .vcpu_reset = svm_vcpu_reset,
7211 .vm_alloc = svm_vm_alloc,
7212 .vm_free = svm_vm_free,
7213 .vm_init = avic_vm_init,
7214 .vm_destroy = svm_vm_destroy,
7216 .prepare_guest_switch = svm_prepare_guest_switch,
7217 .vcpu_load = svm_vcpu_load,
7218 .vcpu_put = svm_vcpu_put,
7219 .vcpu_blocking = svm_vcpu_blocking,
7220 .vcpu_unblocking = svm_vcpu_unblocking,
7222 .update_bp_intercept = update_bp_intercept,
7223 .get_msr_feature = svm_get_msr_feature,
7224 .get_msr = svm_get_msr,
7225 .set_msr = svm_set_msr,
7226 .get_segment_base = svm_get_segment_base,
7227 .get_segment = svm_get_segment,
7228 .set_segment = svm_set_segment,
7229 .get_cpl = svm_get_cpl,
7230 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7231 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7232 .decache_cr3 = svm_decache_cr3,
7233 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7234 .set_cr0 = svm_set_cr0,
7235 .set_cr3 = svm_set_cr3,
7236 .set_cr4 = svm_set_cr4,
7237 .set_efer = svm_set_efer,
7238 .get_idt = svm_get_idt,
7239 .set_idt = svm_set_idt,
7240 .get_gdt = svm_get_gdt,
7241 .set_gdt = svm_set_gdt,
7242 .get_dr6 = svm_get_dr6,
7243 .set_dr6 = svm_set_dr6,
7244 .set_dr7 = svm_set_dr7,
7245 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7246 .cache_reg = svm_cache_reg,
7247 .get_rflags = svm_get_rflags,
7248 .set_rflags = svm_set_rflags,
7250 .tlb_flush = svm_flush_tlb,
7251 .tlb_flush_gva = svm_flush_tlb_gva,
7253 .run = svm_vcpu_run,
7254 .handle_exit = handle_exit,
7255 .skip_emulated_instruction = skip_emulated_instruction,
7256 .set_interrupt_shadow = svm_set_interrupt_shadow,
7257 .get_interrupt_shadow = svm_get_interrupt_shadow,
7258 .patch_hypercall = svm_patch_hypercall,
7259 .set_irq = svm_set_irq,
7260 .set_nmi = svm_inject_nmi,
7261 .queue_exception = svm_queue_exception,
7262 .cancel_injection = svm_cancel_injection,
7263 .interrupt_allowed = svm_interrupt_allowed,
7264 .nmi_allowed = svm_nmi_allowed,
7265 .get_nmi_mask = svm_get_nmi_mask,
7266 .set_nmi_mask = svm_set_nmi_mask,
7267 .enable_nmi_window = enable_nmi_window,
7268 .enable_irq_window = enable_irq_window,
7269 .update_cr8_intercept = update_cr8_intercept,
7270 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7271 .get_enable_apicv = svm_get_enable_apicv,
7272 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7273 .load_eoi_exitmap = svm_load_eoi_exitmap,
7274 .hwapic_irr_update = svm_hwapic_irr_update,
7275 .hwapic_isr_update = svm_hwapic_isr_update,
7276 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7277 .apicv_post_state_restore = avic_post_state_restore,
7279 .set_tss_addr = svm_set_tss_addr,
7280 .set_identity_map_addr = svm_set_identity_map_addr,
7281 .get_tdp_level = get_npt_level,
7282 .get_mt_mask = svm_get_mt_mask,
7284 .get_exit_info = svm_get_exit_info,
7286 .get_lpage_level = svm_get_lpage_level,
7288 .cpuid_update = svm_cpuid_update,
7290 .rdtscp_supported = svm_rdtscp_supported,
7291 .invpcid_supported = svm_invpcid_supported,
7292 .mpx_supported = svm_mpx_supported,
7293 .xsaves_supported = svm_xsaves_supported,
7294 .umip_emulated = svm_umip_emulated,
7295 .pt_supported = svm_pt_supported,
7297 .set_supported_cpuid = svm_set_supported_cpuid,
7299 .has_wbinvd_exit = svm_has_wbinvd_exit,
7301 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7302 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7304 .set_tdp_cr3 = set_tdp_cr3,
7306 .check_intercept = svm_check_intercept,
7307 .handle_exit_irqoff = svm_handle_exit_irqoff,
7309 .request_immediate_exit = __kvm_request_immediate_exit,
7311 .sched_in = svm_sched_in,
7313 .pmu_ops = &amd_pmu_ops,
7314 .deliver_posted_interrupt = svm_deliver_avic_intr,
7315 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7316 .update_pi_irte = svm_update_pi_irte,
7317 .setup_mce = svm_setup_mce,
7319 .smi_allowed = svm_smi_allowed,
7320 .pre_enter_smm = svm_pre_enter_smm,
7321 .pre_leave_smm = svm_pre_leave_smm,
7322 .enable_smi_window = enable_smi_window,
7324 .mem_enc_op = svm_mem_enc_op,
7325 .mem_enc_reg_region = svm_register_enc_region,
7326 .mem_enc_unreg_region = svm_unregister_enc_region,
7328 .nested_enable_evmcs = nested_enable_evmcs,
7329 .nested_get_evmcs_version = NULL,
7331 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7334 static int __init svm_init(void)
7336 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7337 __alignof__(struct vcpu_svm), THIS_MODULE);
7340 static void __exit svm_exit(void)
7345 module_init(svm_init)
7346 module_exit(svm_exit)