1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
15 #define pr_fmt(fmt) "SVM: " fmt
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
43 #include <asm/perf_event.h>
44 #include <asm/tlbflush.h>
46 #include <asm/debugreg.h>
47 #include <asm/kvm_para.h>
48 #include <asm/irq_remapping.h>
49 #include <asm/spec-ctrl.h>
51 #include <asm/virtext.h>
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
59 static const struct x86_cpu_id svm_cpu_id[] = {
60 X86_FEATURE_MATCH(X86_FEATURE_SVM),
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
65 #define IOPM_ALLOC_ORDER 2
66 #define MSRPM_ALLOC_ORDER 1
68 #define SEG_TYPE_LDT 2
69 #define SEG_TYPE_BUSY_TSS16 3
71 #define SVM_FEATURE_LBRV (1 << 1)
72 #define SVM_FEATURE_SVML (1 << 2)
73 #define SVM_FEATURE_TSC_RATE (1 << 4)
74 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
75 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
76 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
77 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
79 #define SVM_AVIC_DOORBELL 0xc001011b
81 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
82 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
83 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
85 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
87 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
88 #define TSC_RATIO_MIN 0x0000000000000001ULL
89 #define TSC_RATIO_MAX 0x000000ffffffffffULL
91 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
94 * 0xff is broadcast, so the max index allowed for physical APIC ID
95 * table is 0xfe. APIC IDs above 0xff are reserved.
97 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
99 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
100 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
101 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
103 /* AVIC GATAG is encoded using VM and VCPU IDs */
104 #define AVIC_VCPU_ID_BITS 8
105 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
107 #define AVIC_VM_ID_BITS 24
108 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
109 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
111 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
112 (y & AVIC_VCPU_ID_MASK))
113 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
114 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
116 static bool erratum_383_found __read_mostly;
118 static const u32 host_save_user_msrs[] = {
120 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
123 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
127 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
129 struct kvm_sev_info {
130 bool active; /* SEV enabled guest */
131 unsigned int asid; /* ASID used for this guest */
132 unsigned int handle; /* SEV firmware handle */
133 int fd; /* SEV device fd */
134 unsigned long pages_locked; /* Number of pages locked */
135 struct list_head regions_list; /* List of registered regions */
141 /* Struct members for AVIC */
143 struct page *avic_logical_id_table_page;
144 struct page *avic_physical_id_table_page;
145 struct hlist_node hnode;
147 struct kvm_sev_info sev_info;
152 struct nested_state {
158 /* These are the merged vectors */
161 /* gpa pointers to the real vectors */
165 /* A VMEXIT is required but not yet emulated */
168 /* cache for intercepts of the guest */
171 u32 intercept_exceptions;
174 /* Nested Paging related state */
178 #define MSRPM_OFFSETS 16
179 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
182 * Set osvw_len to higher value when updated Revision Guides
183 * are published and we know what the new status bits are
185 static uint64_t osvw_len = 4, osvw_status;
188 struct kvm_vcpu vcpu;
190 unsigned long vmcb_pa;
191 struct svm_cpu_data *svm_data;
192 uint64_t asid_generation;
193 uint64_t sysenter_esp;
194 uint64_t sysenter_eip;
201 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
211 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
212 * translated into the appropriate L2_CFG bits on the host to
213 * perform speculative control.
221 struct nested_state nested;
224 u64 nmi_singlestep_guest_rflags;
226 unsigned int3_injected;
227 unsigned long int3_rip;
229 /* cached guest cpuid flags for faster access */
230 bool nrips_enabled : 1;
234 struct page *avic_backing_page;
235 u64 *avic_physical_id_cache;
236 bool avic_is_running;
239 * Per-vcpu list of struct amd_svm_iommu_ir:
240 * This is used mainly to store interrupt remapping information used
241 * when update the vcpu affinity. This avoids the need to scan for
242 * IRTE and try to match ga_tag in the IOMMU driver.
244 struct list_head ir_list;
245 spinlock_t ir_list_lock;
247 /* which host CPU was used for running this vcpu */
248 unsigned int last_cpu;
252 * This is a wrapper of struct amd_iommu_ir_data.
254 struct amd_svm_iommu_ir {
255 struct list_head node; /* Used by SVM for per-vcpu ir_list */
256 void *data; /* Storing pointer to struct amd_ir_data */
259 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
260 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
261 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
263 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
264 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
265 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
266 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
268 static DEFINE_PER_CPU(u64, current_tsc_ratio);
269 #define TSC_RATIO_DEFAULT 0x0100000000ULL
271 #define MSR_INVALID 0xffffffffU
273 static const struct svm_direct_access_msrs {
274 u32 index; /* Index of the MSR */
275 bool always; /* True if intercept is always on */
276 } direct_access_msrs[] = {
277 { .index = MSR_STAR, .always = true },
278 { .index = MSR_IA32_SYSENTER_CS, .always = true },
280 { .index = MSR_GS_BASE, .always = true },
281 { .index = MSR_FS_BASE, .always = true },
282 { .index = MSR_KERNEL_GS_BASE, .always = true },
283 { .index = MSR_LSTAR, .always = true },
284 { .index = MSR_CSTAR, .always = true },
285 { .index = MSR_SYSCALL_MASK, .always = true },
287 { .index = MSR_IA32_SPEC_CTRL, .always = false },
288 { .index = MSR_IA32_PRED_CMD, .always = false },
289 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
290 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
291 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
292 { .index = MSR_IA32_LASTINTTOIP, .always = false },
293 { .index = MSR_INVALID, .always = false },
296 /* enable NPT for AMD64 and X86 with PAE */
297 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
298 static bool npt_enabled = true;
300 static bool npt_enabled;
304 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
305 * pause_filter_count: On processors that support Pause filtering(indicated
306 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
307 * count value. On VMRUN this value is loaded into an internal counter.
308 * Each time a pause instruction is executed, this counter is decremented
309 * until it reaches zero at which time a #VMEXIT is generated if pause
310 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
311 * Intercept Filtering for more details.
312 * This also indicate if ple logic enabled.
314 * pause_filter_thresh: In addition, some processor families support advanced
315 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
316 * the amount of time a guest is allowed to execute in a pause loop.
317 * In this mode, a 16-bit pause filter threshold field is added in the
318 * VMCB. The threshold value is a cycle count that is used to reset the
319 * pause counter. As with simple pause filtering, VMRUN loads the pause
320 * count value from VMCB into an internal counter. Then, on each pause
321 * instruction the hardware checks the elapsed number of cycles since
322 * the most recent pause instruction against the pause filter threshold.
323 * If the elapsed cycle count is greater than the pause filter threshold,
324 * then the internal pause count is reloaded from the VMCB and execution
325 * continues. If the elapsed cycle count is less than the pause filter
326 * threshold, then the internal pause count is decremented. If the count
327 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
328 * triggered. If advanced pause filtering is supported and pause filter
329 * threshold field is set to zero, the filter will operate in the simpler,
333 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
334 module_param(pause_filter_thresh, ushort, 0444);
336 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
337 module_param(pause_filter_count, ushort, 0444);
339 /* Default doubles per-vcpu window every exit. */
340 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
341 module_param(pause_filter_count_grow, ushort, 0444);
343 /* Default resets per-vcpu window every exit to pause_filter_count. */
344 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
345 module_param(pause_filter_count_shrink, ushort, 0444);
347 /* Default is to compute the maximum so we can never overflow. */
348 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
349 module_param(pause_filter_count_max, ushort, 0444);
351 /* allow nested paging (virtualized MMU) for all guests */
352 static int npt = true;
353 module_param(npt, int, S_IRUGO);
355 /* allow nested virtualization in KVM/SVM */
356 static int nested = true;
357 module_param(nested, int, S_IRUGO);
359 /* enable / disable AVIC */
361 #ifdef CONFIG_X86_LOCAL_APIC
362 module_param(avic, int, S_IRUGO);
365 /* enable/disable Next RIP Save */
366 static int nrips = true;
367 module_param(nrips, int, 0444);
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
381 static bool __read_mostly dump_invalid_vmcb = 0;
382 module_param(dump_invalid_vmcb, bool, 0644);
384 static u8 rsm_ins_bytes[] = "\x0f\xaa";
386 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
387 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
388 static void svm_complete_interrupts(struct vcpu_svm *svm);
390 static int nested_svm_exit_handled(struct vcpu_svm *svm);
391 static int nested_svm_intercept(struct vcpu_svm *svm);
392 static int nested_svm_vmexit(struct vcpu_svm *svm);
393 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
394 bool has_error_code, u32 error_code);
397 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
398 pause filter count */
399 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
400 VMCB_ASID, /* ASID */
401 VMCB_INTR, /* int_ctl, int_vector */
402 VMCB_NPT, /* npt_en, nCR3, gPAT */
403 VMCB_CR, /* CR0, CR3, CR4, EFER */
404 VMCB_DR, /* DR6, DR7 */
405 VMCB_DT, /* GDT, IDT */
406 VMCB_SEG, /* CS, DS, SS, ES, CPL */
407 VMCB_CR2, /* CR2 only */
408 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
409 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
410 * AVIC PHYSICAL_TABLE pointer,
411 * AVIC LOGICAL_TABLE pointer
416 /* TPR and CR2 are always written before VMRUN */
417 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
419 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
421 static unsigned int max_sev_asid;
422 static unsigned int min_sev_asid;
423 static unsigned long *sev_asid_bitmap;
424 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
427 struct list_head list;
428 unsigned long npages;
435 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
437 return container_of(kvm, struct kvm_svm, kvm);
440 static inline bool svm_sev_enabled(void)
442 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
445 static inline bool sev_guest(struct kvm *kvm)
447 #ifdef CONFIG_KVM_AMD_SEV
448 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
456 static inline int sev_get_asid(struct kvm *kvm)
458 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
463 static inline void mark_all_dirty(struct vmcb *vmcb)
465 vmcb->control.clean = 0;
468 static inline void mark_all_clean(struct vmcb *vmcb)
470 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
471 & ~VMCB_ALWAYS_DIRTY_MASK;
474 static inline void mark_dirty(struct vmcb *vmcb, int bit)
476 vmcb->control.clean &= ~(1 << bit);
479 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
481 return container_of(vcpu, struct vcpu_svm, vcpu);
484 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
486 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
487 mark_dirty(svm->vmcb, VMCB_AVIC);
490 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
492 struct vcpu_svm *svm = to_svm(vcpu);
493 u64 *entry = svm->avic_physical_id_cache;
498 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
501 static void recalc_intercepts(struct vcpu_svm *svm)
503 struct vmcb_control_area *c, *h;
504 struct nested_state *g;
506 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
508 if (!is_guest_mode(&svm->vcpu))
511 c = &svm->vmcb->control;
512 h = &svm->nested.hsave->control;
515 c->intercept_cr = h->intercept_cr | g->intercept_cr;
516 c->intercept_dr = h->intercept_dr | g->intercept_dr;
517 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
518 c->intercept = h->intercept | g->intercept;
521 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
523 if (is_guest_mode(&svm->vcpu))
524 return svm->nested.hsave;
529 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
531 struct vmcb *vmcb = get_host_vmcb(svm);
533 vmcb->control.intercept_cr |= (1U << bit);
535 recalc_intercepts(svm);
538 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
540 struct vmcb *vmcb = get_host_vmcb(svm);
542 vmcb->control.intercept_cr &= ~(1U << bit);
544 recalc_intercepts(svm);
547 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
549 struct vmcb *vmcb = get_host_vmcb(svm);
551 return vmcb->control.intercept_cr & (1U << bit);
554 static inline void set_dr_intercepts(struct vcpu_svm *svm)
556 struct vmcb *vmcb = get_host_vmcb(svm);
558 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
559 | (1 << INTERCEPT_DR1_READ)
560 | (1 << INTERCEPT_DR2_READ)
561 | (1 << INTERCEPT_DR3_READ)
562 | (1 << INTERCEPT_DR4_READ)
563 | (1 << INTERCEPT_DR5_READ)
564 | (1 << INTERCEPT_DR6_READ)
565 | (1 << INTERCEPT_DR7_READ)
566 | (1 << INTERCEPT_DR0_WRITE)
567 | (1 << INTERCEPT_DR1_WRITE)
568 | (1 << INTERCEPT_DR2_WRITE)
569 | (1 << INTERCEPT_DR3_WRITE)
570 | (1 << INTERCEPT_DR4_WRITE)
571 | (1 << INTERCEPT_DR5_WRITE)
572 | (1 << INTERCEPT_DR6_WRITE)
573 | (1 << INTERCEPT_DR7_WRITE);
575 recalc_intercepts(svm);
578 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
580 struct vmcb *vmcb = get_host_vmcb(svm);
582 vmcb->control.intercept_dr = 0;
584 recalc_intercepts(svm);
587 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
589 struct vmcb *vmcb = get_host_vmcb(svm);
591 vmcb->control.intercept_exceptions |= (1U << bit);
593 recalc_intercepts(svm);
596 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
598 struct vmcb *vmcb = get_host_vmcb(svm);
600 vmcb->control.intercept_exceptions &= ~(1U << bit);
602 recalc_intercepts(svm);
605 static inline void set_intercept(struct vcpu_svm *svm, int bit)
607 struct vmcb *vmcb = get_host_vmcb(svm);
609 vmcb->control.intercept |= (1ULL << bit);
611 recalc_intercepts(svm);
614 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
616 struct vmcb *vmcb = get_host_vmcb(svm);
618 vmcb->control.intercept &= ~(1ULL << bit);
620 recalc_intercepts(svm);
623 static inline bool vgif_enabled(struct vcpu_svm *svm)
625 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
628 static inline void enable_gif(struct vcpu_svm *svm)
630 if (vgif_enabled(svm))
631 svm->vmcb->control.int_ctl |= V_GIF_MASK;
633 svm->vcpu.arch.hflags |= HF_GIF_MASK;
636 static inline void disable_gif(struct vcpu_svm *svm)
638 if (vgif_enabled(svm))
639 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
641 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
644 static inline bool gif_set(struct vcpu_svm *svm)
646 if (vgif_enabled(svm))
647 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
649 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
652 static unsigned long iopm_base;
654 struct kvm_ldttss_desc {
657 unsigned base1:8, type:5, dpl:2, p:1;
658 unsigned limit1:4, zero0:3, g:1, base2:8;
661 } __attribute__((packed));
663 struct svm_cpu_data {
670 struct kvm_ldttss_desc *tss_desc;
672 struct page *save_area;
673 struct vmcb *current_vmcb;
675 /* index = sev_asid, value = vmcb pointer */
676 struct vmcb **sev_vmcbs;
679 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
681 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
683 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
684 #define MSRS_RANGE_SIZE 2048
685 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
687 static u32 svm_msrpm_offset(u32 msr)
692 for (i = 0; i < NUM_MSR_MAPS; i++) {
693 if (msr < msrpm_ranges[i] ||
694 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
697 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
698 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
700 /* Now we have the u8 offset - but need the u32 offset */
704 /* MSR not in any range */
708 #define MAX_INST_SIZE 15
710 static inline void clgi(void)
712 asm volatile (__ex("clgi"));
715 static inline void stgi(void)
717 asm volatile (__ex("stgi"));
720 static inline void invlpga(unsigned long addr, u32 asid)
722 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
725 static int get_npt_level(struct kvm_vcpu *vcpu)
728 return PT64_ROOT_4LEVEL;
730 return PT32E_ROOT_LEVEL;
734 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
736 vcpu->arch.efer = efer;
739 /* Shadow paging assumes NX to be available. */
742 if (!(efer & EFER_LMA))
746 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
747 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
750 static int is_external_interrupt(u32 info)
752 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
753 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
756 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
758 struct vcpu_svm *svm = to_svm(vcpu);
761 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
762 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
766 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
768 struct vcpu_svm *svm = to_svm(vcpu);
771 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
773 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
777 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
779 struct vcpu_svm *svm = to_svm(vcpu);
781 if (nrips && svm->vmcb->control.next_rip != 0) {
782 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
783 svm->next_rip = svm->vmcb->control.next_rip;
786 if (!svm->next_rip) {
787 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
790 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
791 pr_err("%s: ip 0x%lx next 0x%llx\n",
792 __func__, kvm_rip_read(vcpu), svm->next_rip);
793 kvm_rip_write(vcpu, svm->next_rip);
795 svm_set_interrupt_shadow(vcpu, 0);
800 static void svm_queue_exception(struct kvm_vcpu *vcpu)
802 struct vcpu_svm *svm = to_svm(vcpu);
803 unsigned nr = vcpu->arch.exception.nr;
804 bool has_error_code = vcpu->arch.exception.has_error_code;
805 bool reinject = vcpu->arch.exception.injected;
806 u32 error_code = vcpu->arch.exception.error_code;
809 * If we are within a nested VM we'd better #VMEXIT and let the guest
810 * handle the exception
813 nested_svm_check_exception(svm, nr, has_error_code, error_code))
816 kvm_deliver_exception_payload(&svm->vcpu);
818 if (nr == BP_VECTOR && !nrips) {
819 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
822 * For guest debugging where we have to reinject #BP if some
823 * INT3 is guest-owned:
824 * Emulate nRIP by moving RIP forward. Will fail if injection
825 * raises a fault that is not intercepted. Still better than
826 * failing in all cases.
828 (void)skip_emulated_instruction(&svm->vcpu);
829 rip = kvm_rip_read(&svm->vcpu);
830 svm->int3_rip = rip + svm->vmcb->save.cs.base;
831 svm->int3_injected = rip - old_rip;
834 svm->vmcb->control.event_inj = nr
836 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
837 | SVM_EVTINJ_TYPE_EXEPT;
838 svm->vmcb->control.event_inj_err = error_code;
841 static void svm_init_erratum_383(void)
847 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
850 /* Use _safe variants to not break nested virtualization */
851 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
857 low = lower_32_bits(val);
858 high = upper_32_bits(val);
860 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
862 erratum_383_found = true;
865 static void svm_init_osvw(struct kvm_vcpu *vcpu)
868 * Guests should see errata 400 and 415 as fixed (assuming that
869 * HLT and IO instructions are intercepted).
871 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
872 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
875 * By increasing VCPU's osvw.length to 3 we are telling the guest that
876 * all osvw.status bits inside that length, including bit 0 (which is
877 * reserved for erratum 298), are valid. However, if host processor's
878 * osvw_len is 0 then osvw_status[0] carries no information. We need to
879 * be conservative here and therefore we tell the guest that erratum 298
880 * is present (because we really don't know).
882 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
883 vcpu->arch.osvw.status |= 1;
886 static int has_svm(void)
890 if (!cpu_has_svm(&msg)) {
891 printk(KERN_INFO "has_svm: %s\n", msg);
898 static void svm_hardware_disable(void)
900 /* Make sure we clean up behind us */
901 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
902 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
906 amd_pmu_disable_virt();
909 static int svm_hardware_enable(void)
912 struct svm_cpu_data *sd;
914 struct desc_struct *gdt;
915 int me = raw_smp_processor_id();
917 rdmsrl(MSR_EFER, efer);
918 if (efer & EFER_SVME)
922 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
925 sd = per_cpu(svm_data, me);
927 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
931 sd->asid_generation = 1;
932 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
933 sd->next_asid = sd->max_asid + 1;
934 sd->min_asid = max_sev_asid + 1;
936 gdt = get_current_gdt_rw();
937 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
939 wrmsrl(MSR_EFER, efer | EFER_SVME);
941 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
943 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
944 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
945 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
952 * Note that it is possible to have a system with mixed processor
953 * revisions and therefore different OSVW bits. If bits are not the same
954 * on different processors then choose the worst case (i.e. if erratum
955 * is present on one processor and not on another then assume that the
956 * erratum is present everywhere).
958 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
959 uint64_t len, status = 0;
962 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
964 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
968 osvw_status = osvw_len = 0;
972 osvw_status |= status;
973 osvw_status &= (1ULL << osvw_len) - 1;
976 osvw_status = osvw_len = 0;
978 svm_init_erratum_383();
980 amd_pmu_enable_virt();
985 static void svm_cpu_uninit(int cpu)
987 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
992 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
993 kfree(sd->sev_vmcbs);
994 __free_page(sd->save_area);
998 static int svm_cpu_init(int cpu)
1000 struct svm_cpu_data *sd;
1003 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1008 sd->save_area = alloc_page(GFP_KERNEL);
1012 if (svm_sev_enabled()) {
1014 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1021 per_cpu(svm_data, cpu) = sd;
1031 static bool valid_msr_intercept(u32 index)
1035 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1036 if (direct_access_msrs[i].index == index)
1042 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1049 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1050 to_svm(vcpu)->msrpm;
1052 offset = svm_msrpm_offset(msr);
1053 bit_write = 2 * (msr & 0x0f) + 1;
1054 tmp = msrpm[offset];
1056 BUG_ON(offset == MSR_INVALID);
1058 return !!test_bit(bit_write, &tmp);
1061 static void set_msr_interception(u32 *msrpm, unsigned msr,
1062 int read, int write)
1064 u8 bit_read, bit_write;
1069 * If this warning triggers extend the direct_access_msrs list at the
1070 * beginning of the file
1072 WARN_ON(!valid_msr_intercept(msr));
1074 offset = svm_msrpm_offset(msr);
1075 bit_read = 2 * (msr & 0x0f);
1076 bit_write = 2 * (msr & 0x0f) + 1;
1077 tmp = msrpm[offset];
1079 BUG_ON(offset == MSR_INVALID);
1081 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1082 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1084 msrpm[offset] = tmp;
1087 static void svm_vcpu_init_msrpm(u32 *msrpm)
1091 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1093 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1094 if (!direct_access_msrs[i].always)
1097 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1101 static void add_msr_offset(u32 offset)
1105 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1107 /* Offset already in list? */
1108 if (msrpm_offsets[i] == offset)
1111 /* Slot used by another offset? */
1112 if (msrpm_offsets[i] != MSR_INVALID)
1115 /* Add offset to list */
1116 msrpm_offsets[i] = offset;
1122 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1123 * increase MSRPM_OFFSETS in this case.
1128 static void init_msrpm_offsets(void)
1132 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1134 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1137 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1138 BUG_ON(offset == MSR_INVALID);
1140 add_msr_offset(offset);
1144 static void svm_enable_lbrv(struct vcpu_svm *svm)
1146 u32 *msrpm = svm->msrpm;
1148 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1149 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1150 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1151 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1152 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1155 static void svm_disable_lbrv(struct vcpu_svm *svm)
1157 u32 *msrpm = svm->msrpm;
1159 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1160 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1161 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1162 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1163 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1166 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1168 svm->nmi_singlestep = false;
1170 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1171 /* Clear our flags if they were not set by the guest */
1172 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1173 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1174 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1175 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1180 * This hash table is used to map VM_ID to a struct kvm_svm,
1181 * when handling AMD IOMMU GALOG notification to schedule in
1182 * a particular vCPU.
1184 #define SVM_VM_DATA_HASH_BITS 8
1185 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1186 static u32 next_vm_id = 0;
1187 static bool next_vm_id_wrapped = 0;
1188 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1191 * This function is called from IOMMU driver to notify
1192 * SVM to schedule in a particular vCPU of a particular VM.
1194 static int avic_ga_log_notifier(u32 ga_tag)
1196 unsigned long flags;
1197 struct kvm_svm *kvm_svm;
1198 struct kvm_vcpu *vcpu = NULL;
1199 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1200 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1202 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1204 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1205 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1206 if (kvm_svm->avic_vm_id != vm_id)
1208 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1211 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1214 * At this point, the IOMMU should have already set the pending
1215 * bit in the vAPIC backing page. So, we just need to schedule
1219 kvm_vcpu_wake_up(vcpu);
1224 static __init int sev_hardware_setup(void)
1226 struct sev_user_data_status *status;
1229 /* Maximum number of encrypted guests supported simultaneously */
1230 max_sev_asid = cpuid_ecx(0x8000001F);
1235 /* Minimum ASID value that should be used for SEV guest */
1236 min_sev_asid = cpuid_edx(0x8000001F);
1238 /* Initialize SEV ASID bitmap */
1239 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1240 if (!sev_asid_bitmap)
1243 status = kmalloc(sizeof(*status), GFP_KERNEL);
1248 * Check SEV platform status.
1250 * PLATFORM_STATUS can be called in any state, if we failed to query
1251 * the PLATFORM status then either PSP firmware does not support SEV
1252 * feature or SEV firmware is dead.
1254 rc = sev_platform_status(status, NULL);
1258 pr_info("SEV supported\n");
1265 static void grow_ple_window(struct kvm_vcpu *vcpu)
1267 struct vcpu_svm *svm = to_svm(vcpu);
1268 struct vmcb_control_area *control = &svm->vmcb->control;
1269 int old = control->pause_filter_count;
1271 control->pause_filter_count = __grow_ple_window(old,
1273 pause_filter_count_grow,
1274 pause_filter_count_max);
1276 if (control->pause_filter_count != old) {
1277 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1278 trace_kvm_ple_window_update(vcpu->vcpu_id,
1279 control->pause_filter_count, old);
1283 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1285 struct vcpu_svm *svm = to_svm(vcpu);
1286 struct vmcb_control_area *control = &svm->vmcb->control;
1287 int old = control->pause_filter_count;
1289 control->pause_filter_count =
1290 __shrink_ple_window(old,
1292 pause_filter_count_shrink,
1293 pause_filter_count);
1294 if (control->pause_filter_count != old) {
1295 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1296 trace_kvm_ple_window_update(vcpu->vcpu_id,
1297 control->pause_filter_count, old);
1302 * The default MMIO mask is a single bit (excluding the present bit),
1303 * which could conflict with the memory encryption bit. Check for
1304 * memory encryption support and override the default MMIO mask if
1305 * memory encryption is enabled.
1307 static __init void svm_adjust_mmio_mask(void)
1309 unsigned int enc_bit, mask_bit;
1312 /* If there is no memory encryption support, use existing mask */
1313 if (cpuid_eax(0x80000000) < 0x8000001f)
1316 /* If memory encryption is not enabled, use existing mask */
1317 rdmsrl(MSR_K8_SYSCFG, msr);
1318 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
1321 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
1322 mask_bit = boot_cpu_data.x86_phys_bits;
1324 /* Increment the mask bit if it is the same as the encryption bit */
1325 if (enc_bit == mask_bit)
1329 * If the mask bit location is below 52, then some bits above the
1330 * physical addressing limit will always be reserved, so use the
1331 * rsvd_bits() function to generate the mask. This mask, along with
1332 * the present bit, will be used to generate a page fault with
1335 * If the mask bit location is 52 (or above), then clear the mask.
1337 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
1339 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
1342 static __init int svm_hardware_setup(void)
1345 struct page *iopm_pages;
1349 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1354 iopm_va = page_address(iopm_pages);
1355 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1356 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1358 init_msrpm_offsets();
1360 if (boot_cpu_has(X86_FEATURE_NX))
1361 kvm_enable_efer_bits(EFER_NX);
1363 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1364 kvm_enable_efer_bits(EFER_FFXSR);
1366 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1367 kvm_has_tsc_control = true;
1368 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1369 kvm_tsc_scaling_ratio_frac_bits = 32;
1372 /* Check for pause filtering support */
1373 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1374 pause_filter_count = 0;
1375 pause_filter_thresh = 0;
1376 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1377 pause_filter_thresh = 0;
1381 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1382 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1386 if (boot_cpu_has(X86_FEATURE_SEV) &&
1387 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1388 r = sev_hardware_setup();
1396 svm_adjust_mmio_mask();
1398 for_each_possible_cpu(cpu) {
1399 r = svm_cpu_init(cpu);
1404 if (!boot_cpu_has(X86_FEATURE_NPT))
1405 npt_enabled = false;
1407 if (npt_enabled && !npt) {
1408 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1409 npt_enabled = false;
1413 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1419 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1425 !boot_cpu_has(X86_FEATURE_AVIC) ||
1426 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1429 pr_info("AVIC enabled\n");
1431 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1437 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1438 !IS_ENABLED(CONFIG_X86_64)) {
1441 pr_info("Virtual VMLOAD VMSAVE supported\n");
1446 if (!boot_cpu_has(X86_FEATURE_VGIF))
1449 pr_info("Virtual GIF supported\n");
1455 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1460 static __exit void svm_hardware_unsetup(void)
1464 if (svm_sev_enabled())
1465 bitmap_free(sev_asid_bitmap);
1467 for_each_possible_cpu(cpu)
1468 svm_cpu_uninit(cpu);
1470 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1474 static void init_seg(struct vmcb_seg *seg)
1477 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1478 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1479 seg->limit = 0xffff;
1483 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1486 seg->attrib = SVM_SELECTOR_P_MASK | type;
1487 seg->limit = 0xffff;
1491 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1493 struct vcpu_svm *svm = to_svm(vcpu);
1495 if (is_guest_mode(vcpu))
1496 return svm->nested.hsave->control.tsc_offset;
1498 return vcpu->arch.tsc_offset;
1501 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1503 struct vcpu_svm *svm = to_svm(vcpu);
1504 u64 g_tsc_offset = 0;
1506 if (is_guest_mode(vcpu)) {
1507 /* Write L1's TSC offset. */
1508 g_tsc_offset = svm->vmcb->control.tsc_offset -
1509 svm->nested.hsave->control.tsc_offset;
1510 svm->nested.hsave->control.tsc_offset = offset;
1513 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1514 svm->vmcb->control.tsc_offset - g_tsc_offset,
1517 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1519 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1520 return svm->vmcb->control.tsc_offset;
1523 static void avic_init_vmcb(struct vcpu_svm *svm)
1525 struct vmcb *vmcb = svm->vmcb;
1526 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1527 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1528 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1529 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1531 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1532 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1533 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1534 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1535 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1538 static void init_vmcb(struct vcpu_svm *svm)
1540 struct vmcb_control_area *control = &svm->vmcb->control;
1541 struct vmcb_save_area *save = &svm->vmcb->save;
1543 svm->vcpu.arch.hflags = 0;
1545 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1546 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1547 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1548 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1549 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1550 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1551 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1552 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1554 set_dr_intercepts(svm);
1556 set_exception_intercept(svm, PF_VECTOR);
1557 set_exception_intercept(svm, UD_VECTOR);
1558 set_exception_intercept(svm, MC_VECTOR);
1559 set_exception_intercept(svm, AC_VECTOR);
1560 set_exception_intercept(svm, DB_VECTOR);
1562 * Guest access to VMware backdoor ports could legitimately
1563 * trigger #GP because of TSS I/O permission bitmap.
1564 * We intercept those #GP and allow access to them anyway
1567 if (enable_vmware_backdoor)
1568 set_exception_intercept(svm, GP_VECTOR);
1570 set_intercept(svm, INTERCEPT_INTR);
1571 set_intercept(svm, INTERCEPT_NMI);
1572 set_intercept(svm, INTERCEPT_SMI);
1573 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1574 set_intercept(svm, INTERCEPT_RDPMC);
1575 set_intercept(svm, INTERCEPT_CPUID);
1576 set_intercept(svm, INTERCEPT_INVD);
1577 set_intercept(svm, INTERCEPT_INVLPG);
1578 set_intercept(svm, INTERCEPT_INVLPGA);
1579 set_intercept(svm, INTERCEPT_IOIO_PROT);
1580 set_intercept(svm, INTERCEPT_MSR_PROT);
1581 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1582 set_intercept(svm, INTERCEPT_SHUTDOWN);
1583 set_intercept(svm, INTERCEPT_VMRUN);
1584 set_intercept(svm, INTERCEPT_VMMCALL);
1585 set_intercept(svm, INTERCEPT_VMLOAD);
1586 set_intercept(svm, INTERCEPT_VMSAVE);
1587 set_intercept(svm, INTERCEPT_STGI);
1588 set_intercept(svm, INTERCEPT_CLGI);
1589 set_intercept(svm, INTERCEPT_SKINIT);
1590 set_intercept(svm, INTERCEPT_WBINVD);
1591 set_intercept(svm, INTERCEPT_XSETBV);
1592 set_intercept(svm, INTERCEPT_RDPRU);
1593 set_intercept(svm, INTERCEPT_RSM);
1595 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1596 set_intercept(svm, INTERCEPT_MONITOR);
1597 set_intercept(svm, INTERCEPT_MWAIT);
1600 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1601 set_intercept(svm, INTERCEPT_HLT);
1603 control->iopm_base_pa = __sme_set(iopm_base);
1604 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1605 control->int_ctl = V_INTR_MASKING_MASK;
1607 init_seg(&save->es);
1608 init_seg(&save->ss);
1609 init_seg(&save->ds);
1610 init_seg(&save->fs);
1611 init_seg(&save->gs);
1613 save->cs.selector = 0xf000;
1614 save->cs.base = 0xffff0000;
1615 /* Executable/Readable Code Segment */
1616 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1617 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1618 save->cs.limit = 0xffff;
1620 save->gdtr.limit = 0xffff;
1621 save->idtr.limit = 0xffff;
1623 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1624 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1626 svm_set_efer(&svm->vcpu, 0);
1627 save->dr6 = 0xffff0ff0;
1628 kvm_set_rflags(&svm->vcpu, 2);
1629 save->rip = 0x0000fff0;
1630 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1633 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1634 * It also updates the guest-visible cr0 value.
1636 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1637 kvm_mmu_reset_context(&svm->vcpu);
1639 save->cr4 = X86_CR4_PAE;
1643 /* Setup VMCB for Nested Paging */
1644 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1645 clr_intercept(svm, INTERCEPT_INVLPG);
1646 clr_exception_intercept(svm, PF_VECTOR);
1647 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1648 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1649 save->g_pat = svm->vcpu.arch.pat;
1653 svm->asid_generation = 0;
1655 svm->nested.vmcb = 0;
1656 svm->vcpu.arch.hflags = 0;
1658 if (pause_filter_count) {
1659 control->pause_filter_count = pause_filter_count;
1660 if (pause_filter_thresh)
1661 control->pause_filter_thresh = pause_filter_thresh;
1662 set_intercept(svm, INTERCEPT_PAUSE);
1664 clr_intercept(svm, INTERCEPT_PAUSE);
1667 if (kvm_vcpu_apicv_active(&svm->vcpu))
1668 avic_init_vmcb(svm);
1671 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1672 * in VMCB and clear intercepts to avoid #VMEXIT.
1675 clr_intercept(svm, INTERCEPT_VMLOAD);
1676 clr_intercept(svm, INTERCEPT_VMSAVE);
1677 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1681 clr_intercept(svm, INTERCEPT_STGI);
1682 clr_intercept(svm, INTERCEPT_CLGI);
1683 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1686 if (sev_guest(svm->vcpu.kvm)) {
1687 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1688 clr_exception_intercept(svm, UD_VECTOR);
1691 mark_all_dirty(svm->vmcb);
1697 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1700 u64 *avic_physical_id_table;
1701 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1703 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1706 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1708 return &avic_physical_id_table[index];
1713 * AVIC hardware walks the nested page table to check permissions,
1714 * but does not use the SPA address specified in the leaf page
1715 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1716 * field of the VMCB. Therefore, we set up the
1717 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1719 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1721 struct kvm *kvm = vcpu->kvm;
1724 mutex_lock(&kvm->slots_lock);
1725 if (kvm->arch.apic_access_page_done)
1728 ret = __x86_set_memory_region(kvm,
1729 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1730 APIC_DEFAULT_PHYS_BASE,
1735 kvm->arch.apic_access_page_done = true;
1737 mutex_unlock(&kvm->slots_lock);
1741 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1744 u64 *entry, new_entry;
1745 int id = vcpu->vcpu_id;
1746 struct vcpu_svm *svm = to_svm(vcpu);
1748 ret = avic_init_access_page(vcpu);
1752 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1755 if (!svm->vcpu.arch.apic->regs)
1758 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1760 /* Setting AVIC backing page address in the phy APIC ID table */
1761 entry = avic_get_physical_id_entry(vcpu, id);
1765 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1766 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1767 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1768 WRITE_ONCE(*entry, new_entry);
1770 svm->avic_physical_id_cache = entry;
1775 static void __sev_asid_free(int asid)
1777 struct svm_cpu_data *sd;
1781 clear_bit(pos, sev_asid_bitmap);
1783 for_each_possible_cpu(cpu) {
1784 sd = per_cpu(svm_data, cpu);
1785 sd->sev_vmcbs[pos] = NULL;
1789 static void sev_asid_free(struct kvm *kvm)
1791 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1793 __sev_asid_free(sev->asid);
1796 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1798 struct sev_data_decommission *decommission;
1799 struct sev_data_deactivate *data;
1804 data = kzalloc(sizeof(*data), GFP_KERNEL);
1808 /* deactivate handle */
1809 data->handle = handle;
1810 sev_guest_deactivate(data, NULL);
1812 wbinvd_on_all_cpus();
1813 sev_guest_df_flush(NULL);
1816 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1820 /* decommission handle */
1821 decommission->handle = handle;
1822 sev_guest_decommission(decommission, NULL);
1824 kfree(decommission);
1827 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1828 unsigned long ulen, unsigned long *n,
1831 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1832 unsigned long npages, npinned, size;
1833 unsigned long locked, lock_limit;
1834 struct page **pages;
1835 unsigned long first, last;
1837 if (ulen == 0 || uaddr + ulen < uaddr)
1840 /* Calculate number of pages. */
1841 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1842 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1843 npages = (last - first + 1);
1845 locked = sev->pages_locked + npages;
1846 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1847 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1848 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1852 /* Avoid using vmalloc for smaller buffers. */
1853 size = npages * sizeof(struct page *);
1854 if (size > PAGE_SIZE)
1855 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1858 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1863 /* Pin the user virtual address. */
1864 npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1865 if (npinned != npages) {
1866 pr_err("SEV: Failure locking %lu pages.\n", npages);
1871 sev->pages_locked = locked;
1877 release_pages(pages, npinned);
1883 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1884 unsigned long npages)
1886 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1888 release_pages(pages, npages);
1890 sev->pages_locked -= npages;
1893 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1895 uint8_t *page_virtual;
1898 if (npages == 0 || pages == NULL)
1901 for (i = 0; i < npages; i++) {
1902 page_virtual = kmap_atomic(pages[i]);
1903 clflush_cache_range(page_virtual, PAGE_SIZE);
1904 kunmap_atomic(page_virtual);
1908 static void __unregister_enc_region_locked(struct kvm *kvm,
1909 struct enc_region *region)
1912 * The guest may change the memory encryption attribute from C=0 -> C=1
1913 * or vice versa for this memory range. Lets make sure caches are
1914 * flushed to ensure that guest data gets written into memory with
1917 sev_clflush_pages(region->pages, region->npages);
1919 sev_unpin_memory(kvm, region->pages, region->npages);
1920 list_del(®ion->list);
1924 static struct kvm *svm_vm_alloc(void)
1926 struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1927 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1933 return &kvm_svm->kvm;
1936 static void svm_vm_free(struct kvm *kvm)
1938 vfree(to_kvm_svm(kvm));
1941 static void sev_vm_destroy(struct kvm *kvm)
1943 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1944 struct list_head *head = &sev->regions_list;
1945 struct list_head *pos, *q;
1947 if (!sev_guest(kvm))
1950 mutex_lock(&kvm->lock);
1953 * if userspace was terminated before unregistering the memory regions
1954 * then lets unpin all the registered memory.
1956 if (!list_empty(head)) {
1957 list_for_each_safe(pos, q, head) {
1958 __unregister_enc_region_locked(kvm,
1959 list_entry(pos, struct enc_region, list));
1963 mutex_unlock(&kvm->lock);
1965 sev_unbind_asid(kvm, sev->handle);
1969 static void avic_vm_destroy(struct kvm *kvm)
1971 unsigned long flags;
1972 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1977 if (kvm_svm->avic_logical_id_table_page)
1978 __free_page(kvm_svm->avic_logical_id_table_page);
1979 if (kvm_svm->avic_physical_id_table_page)
1980 __free_page(kvm_svm->avic_physical_id_table_page);
1982 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1983 hash_del(&kvm_svm->hnode);
1984 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1987 static void svm_vm_destroy(struct kvm *kvm)
1989 avic_vm_destroy(kvm);
1990 sev_vm_destroy(kvm);
1993 static int avic_vm_init(struct kvm *kvm)
1995 unsigned long flags;
1997 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1999 struct page *p_page;
2000 struct page *l_page;
2006 /* Allocating physical APIC ID table (4KB) */
2007 p_page = alloc_page(GFP_KERNEL_ACCOUNT);
2011 kvm_svm->avic_physical_id_table_page = p_page;
2012 clear_page(page_address(p_page));
2014 /* Allocating logical APIC ID table (4KB) */
2015 l_page = alloc_page(GFP_KERNEL_ACCOUNT);
2019 kvm_svm->avic_logical_id_table_page = l_page;
2020 clear_page(page_address(l_page));
2022 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
2024 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
2025 if (vm_id == 0) { /* id is 1-based, zero is not okay */
2026 next_vm_id_wrapped = 1;
2029 /* Is it still in use? Only possible if wrapped at least once */
2030 if (next_vm_id_wrapped) {
2031 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
2032 if (k2->avic_vm_id == vm_id)
2036 kvm_svm->avic_vm_id = vm_id;
2037 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
2038 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
2043 avic_vm_destroy(kvm);
2048 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
2051 unsigned long flags;
2052 struct amd_svm_iommu_ir *ir;
2053 struct vcpu_svm *svm = to_svm(vcpu);
2055 if (!kvm_arch_has_assigned_device(vcpu->kvm))
2059 * Here, we go through the per-vcpu ir_list to update all existing
2060 * interrupt remapping table entry targeting this vcpu.
2062 spin_lock_irqsave(&svm->ir_list_lock, flags);
2064 if (list_empty(&svm->ir_list))
2067 list_for_each_entry(ir, &svm->ir_list, node) {
2068 ret = amd_iommu_update_ga(cpu, r, ir->data);
2073 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2077 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2080 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2081 int h_physical_id = kvm_cpu_get_apicid(cpu);
2082 struct vcpu_svm *svm = to_svm(vcpu);
2084 if (!kvm_vcpu_apicv_active(vcpu))
2088 * Since the host physical APIC id is 8 bits,
2089 * we can support host APIC ID upto 255.
2091 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2094 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2095 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2097 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2098 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2100 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2101 if (svm->avic_is_running)
2102 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2104 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2105 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2106 svm->avic_is_running);
2109 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2112 struct vcpu_svm *svm = to_svm(vcpu);
2114 if (!kvm_vcpu_apicv_active(vcpu))
2117 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2118 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2119 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2121 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2122 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2126 * This function is called during VCPU halt/unhalt.
2128 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2130 struct vcpu_svm *svm = to_svm(vcpu);
2132 svm->avic_is_running = is_run;
2134 avic_vcpu_load(vcpu, vcpu->cpu);
2136 avic_vcpu_put(vcpu);
2139 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2141 struct vcpu_svm *svm = to_svm(vcpu);
2145 vcpu->arch.microcode_version = 0x01000065;
2147 svm->virt_spec_ctrl = 0;
2150 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2151 MSR_IA32_APICBASE_ENABLE;
2152 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2153 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2157 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2158 kvm_rdx_write(vcpu, eax);
2160 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2161 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2164 static int avic_init_vcpu(struct vcpu_svm *svm)
2168 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2171 ret = avic_init_backing_page(&svm->vcpu);
2175 INIT_LIST_HEAD(&svm->ir_list);
2176 spin_lock_init(&svm->ir_list_lock);
2177 svm->dfr_reg = APIC_DFR_FLAT;
2182 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2184 struct vcpu_svm *svm;
2186 struct page *msrpm_pages;
2187 struct page *hsave_page;
2188 struct page *nested_msrpm_pages;
2191 BUILD_BUG_ON_MSG(offsetof(struct vcpu_svm, vcpu) != 0,
2192 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
2194 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2200 svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
2201 GFP_KERNEL_ACCOUNT);
2202 if (!svm->vcpu.arch.user_fpu) {
2203 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
2205 goto free_partial_svm;
2208 svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2209 GFP_KERNEL_ACCOUNT);
2210 if (!svm->vcpu.arch.guest_fpu) {
2211 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2216 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2221 page = alloc_page(GFP_KERNEL_ACCOUNT);
2225 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2229 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2230 if (!nested_msrpm_pages)
2233 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2237 err = avic_init_vcpu(svm);
2241 /* We initialize this flag to true to make sure that the is_running
2242 * bit would be set the first time the vcpu is loaded.
2244 svm->avic_is_running = true;
2246 svm->nested.hsave = page_address(hsave_page);
2248 svm->msrpm = page_address(msrpm_pages);
2249 svm_vcpu_init_msrpm(svm->msrpm);
2251 svm->nested.msrpm = page_address(nested_msrpm_pages);
2252 svm_vcpu_init_msrpm(svm->nested.msrpm);
2254 svm->vmcb = page_address(page);
2255 clear_page(svm->vmcb);
2256 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2257 svm->asid_generation = 0;
2260 svm_init_osvw(&svm->vcpu);
2265 __free_page(hsave_page);
2267 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2269 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2273 kvm_vcpu_uninit(&svm->vcpu);
2275 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2277 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2279 kmem_cache_free(kvm_vcpu_cache, svm);
2281 return ERR_PTR(err);
2284 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2288 for_each_online_cpu(i)
2289 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2292 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2294 struct vcpu_svm *svm = to_svm(vcpu);
2297 * The vmcb page can be recycled, causing a false negative in
2298 * svm_vcpu_load(). So, ensure that no logical CPU has this
2299 * vmcb page recorded as its current vmcb.
2301 svm_clear_current_vmcb(svm->vmcb);
2303 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2304 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2305 __free_page(virt_to_page(svm->nested.hsave));
2306 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2307 kvm_vcpu_uninit(vcpu);
2308 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2309 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2310 kmem_cache_free(kvm_vcpu_cache, svm);
2313 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2315 struct vcpu_svm *svm = to_svm(vcpu);
2316 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2319 if (unlikely(cpu != vcpu->cpu)) {
2320 svm->asid_generation = 0;
2321 mark_all_dirty(svm->vmcb);
2324 #ifdef CONFIG_X86_64
2325 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2327 savesegment(fs, svm->host.fs);
2328 savesegment(gs, svm->host.gs);
2329 svm->host.ldt = kvm_read_ldt();
2331 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2332 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2334 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2335 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2336 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2337 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2338 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2341 /* This assumes that the kernel never uses MSR_TSC_AUX */
2342 if (static_cpu_has(X86_FEATURE_RDTSCP))
2343 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2345 if (sd->current_vmcb != svm->vmcb) {
2346 sd->current_vmcb = svm->vmcb;
2347 indirect_branch_prediction_barrier();
2349 avic_vcpu_load(vcpu, cpu);
2352 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2354 struct vcpu_svm *svm = to_svm(vcpu);
2357 avic_vcpu_put(vcpu);
2359 ++vcpu->stat.host_state_reload;
2360 kvm_load_ldt(svm->host.ldt);
2361 #ifdef CONFIG_X86_64
2362 loadsegment(fs, svm->host.fs);
2363 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2364 load_gs_index(svm->host.gs);
2366 #ifdef CONFIG_X86_32_LAZY_GS
2367 loadsegment(gs, svm->host.gs);
2370 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2371 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2374 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2376 avic_set_running(vcpu, false);
2379 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2381 avic_set_running(vcpu, true);
2384 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2386 struct vcpu_svm *svm = to_svm(vcpu);
2387 unsigned long rflags = svm->vmcb->save.rflags;
2389 if (svm->nmi_singlestep) {
2390 /* Hide our flags if they were not set by the guest */
2391 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2392 rflags &= ~X86_EFLAGS_TF;
2393 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2394 rflags &= ~X86_EFLAGS_RF;
2399 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2401 if (to_svm(vcpu)->nmi_singlestep)
2402 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2405 * Any change of EFLAGS.VM is accompanied by a reload of SS
2406 * (caused by either a task switch or an inter-privilege IRET),
2407 * so we do not need to update the CPL here.
2409 to_svm(vcpu)->vmcb->save.rflags = rflags;
2412 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2415 case VCPU_EXREG_PDPTR:
2416 BUG_ON(!npt_enabled);
2417 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2424 static void svm_set_vintr(struct vcpu_svm *svm)
2426 set_intercept(svm, INTERCEPT_VINTR);
2429 static void svm_clear_vintr(struct vcpu_svm *svm)
2431 clr_intercept(svm, INTERCEPT_VINTR);
2434 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2436 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2439 case VCPU_SREG_CS: return &save->cs;
2440 case VCPU_SREG_DS: return &save->ds;
2441 case VCPU_SREG_ES: return &save->es;
2442 case VCPU_SREG_FS: return &save->fs;
2443 case VCPU_SREG_GS: return &save->gs;
2444 case VCPU_SREG_SS: return &save->ss;
2445 case VCPU_SREG_TR: return &save->tr;
2446 case VCPU_SREG_LDTR: return &save->ldtr;
2452 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2454 struct vmcb_seg *s = svm_seg(vcpu, seg);
2459 static void svm_get_segment(struct kvm_vcpu *vcpu,
2460 struct kvm_segment *var, int seg)
2462 struct vmcb_seg *s = svm_seg(vcpu, seg);
2464 var->base = s->base;
2465 var->limit = s->limit;
2466 var->selector = s->selector;
2467 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2468 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2469 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2470 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2471 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2472 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2473 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2476 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2477 * However, the SVM spec states that the G bit is not observed by the
2478 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2479 * So let's synthesize a legal G bit for all segments, this helps
2480 * running KVM nested. It also helps cross-vendor migration, because
2481 * Intel's vmentry has a check on the 'G' bit.
2483 var->g = s->limit > 0xfffff;
2486 * AMD's VMCB does not have an explicit unusable field, so emulate it
2487 * for cross vendor migration purposes by "not present"
2489 var->unusable = !var->present;
2494 * Work around a bug where the busy flag in the tr selector
2504 * The accessed bit must always be set in the segment
2505 * descriptor cache, although it can be cleared in the
2506 * descriptor, the cached bit always remains at 1. Since
2507 * Intel has a check on this, set it here to support
2508 * cross-vendor migration.
2515 * On AMD CPUs sometimes the DB bit in the segment
2516 * descriptor is left as 1, although the whole segment has
2517 * been made unusable. Clear it here to pass an Intel VMX
2518 * entry check when cross vendor migrating.
2522 /* This is symmetric with svm_set_segment() */
2523 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2528 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2530 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2535 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2537 struct vcpu_svm *svm = to_svm(vcpu);
2539 dt->size = svm->vmcb->save.idtr.limit;
2540 dt->address = svm->vmcb->save.idtr.base;
2543 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2545 struct vcpu_svm *svm = to_svm(vcpu);
2547 svm->vmcb->save.idtr.limit = dt->size;
2548 svm->vmcb->save.idtr.base = dt->address ;
2549 mark_dirty(svm->vmcb, VMCB_DT);
2552 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2554 struct vcpu_svm *svm = to_svm(vcpu);
2556 dt->size = svm->vmcb->save.gdtr.limit;
2557 dt->address = svm->vmcb->save.gdtr.base;
2560 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2562 struct vcpu_svm *svm = to_svm(vcpu);
2564 svm->vmcb->save.gdtr.limit = dt->size;
2565 svm->vmcb->save.gdtr.base = dt->address ;
2566 mark_dirty(svm->vmcb, VMCB_DT);
2569 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2573 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2577 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2581 static void update_cr0_intercept(struct vcpu_svm *svm)
2583 ulong gcr0 = svm->vcpu.arch.cr0;
2584 u64 *hcr0 = &svm->vmcb->save.cr0;
2586 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2587 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2589 mark_dirty(svm->vmcb, VMCB_CR);
2591 if (gcr0 == *hcr0) {
2592 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2593 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2595 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2596 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2600 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2602 struct vcpu_svm *svm = to_svm(vcpu);
2604 #ifdef CONFIG_X86_64
2605 if (vcpu->arch.efer & EFER_LME) {
2606 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2607 vcpu->arch.efer |= EFER_LMA;
2608 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2611 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2612 vcpu->arch.efer &= ~EFER_LMA;
2613 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2617 vcpu->arch.cr0 = cr0;
2620 cr0 |= X86_CR0_PG | X86_CR0_WP;
2623 * re-enable caching here because the QEMU bios
2624 * does not do it - this results in some delay at
2627 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2628 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2629 svm->vmcb->save.cr0 = cr0;
2630 mark_dirty(svm->vmcb, VMCB_CR);
2631 update_cr0_intercept(svm);
2634 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2636 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2637 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2639 if (cr4 & X86_CR4_VMXE)
2642 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2643 svm_flush_tlb(vcpu, true);
2645 vcpu->arch.cr4 = cr4;
2648 cr4 |= host_cr4_mce;
2649 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2650 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2654 static void svm_set_segment(struct kvm_vcpu *vcpu,
2655 struct kvm_segment *var, int seg)
2657 struct vcpu_svm *svm = to_svm(vcpu);
2658 struct vmcb_seg *s = svm_seg(vcpu, seg);
2660 s->base = var->base;
2661 s->limit = var->limit;
2662 s->selector = var->selector;
2663 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2664 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2665 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2666 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2667 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2668 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2669 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2670 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2673 * This is always accurate, except if SYSRET returned to a segment
2674 * with SS.DPL != 3. Intel does not have this quirk, and always
2675 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2676 * would entail passing the CPL to userspace and back.
2678 if (seg == VCPU_SREG_SS)
2679 /* This is symmetric with svm_get_segment() */
2680 svm->vmcb->save.cpl = (var->dpl & 3);
2682 mark_dirty(svm->vmcb, VMCB_SEG);
2685 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2687 struct vcpu_svm *svm = to_svm(vcpu);
2689 clr_exception_intercept(svm, BP_VECTOR);
2691 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2692 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2693 set_exception_intercept(svm, BP_VECTOR);
2695 vcpu->guest_debug = 0;
2698 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2700 if (sd->next_asid > sd->max_asid) {
2701 ++sd->asid_generation;
2702 sd->next_asid = sd->min_asid;
2703 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2706 svm->asid_generation = sd->asid_generation;
2707 svm->vmcb->control.asid = sd->next_asid++;
2709 mark_dirty(svm->vmcb, VMCB_ASID);
2712 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2714 return to_svm(vcpu)->vmcb->save.dr6;
2717 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2719 struct vcpu_svm *svm = to_svm(vcpu);
2721 svm->vmcb->save.dr6 = value;
2722 mark_dirty(svm->vmcb, VMCB_DR);
2725 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2727 struct vcpu_svm *svm = to_svm(vcpu);
2729 get_debugreg(vcpu->arch.db[0], 0);
2730 get_debugreg(vcpu->arch.db[1], 1);
2731 get_debugreg(vcpu->arch.db[2], 2);
2732 get_debugreg(vcpu->arch.db[3], 3);
2733 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2734 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2736 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2737 set_dr_intercepts(svm);
2740 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2742 struct vcpu_svm *svm = to_svm(vcpu);
2744 svm->vmcb->save.dr7 = value;
2745 mark_dirty(svm->vmcb, VMCB_DR);
2748 static int pf_interception(struct vcpu_svm *svm)
2750 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2751 u64 error_code = svm->vmcb->control.exit_info_1;
2753 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2754 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2755 svm->vmcb->control.insn_bytes : NULL,
2756 svm->vmcb->control.insn_len);
2759 static int npf_interception(struct vcpu_svm *svm)
2761 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2762 u64 error_code = svm->vmcb->control.exit_info_1;
2764 trace_kvm_page_fault(fault_address, error_code);
2765 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2766 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2767 svm->vmcb->control.insn_bytes : NULL,
2768 svm->vmcb->control.insn_len);
2771 static int db_interception(struct vcpu_svm *svm)
2773 struct kvm_run *kvm_run = svm->vcpu.run;
2774 struct kvm_vcpu *vcpu = &svm->vcpu;
2776 if (!(svm->vcpu.guest_debug &
2777 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2778 !svm->nmi_singlestep) {
2779 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2783 if (svm->nmi_singlestep) {
2784 disable_nmi_singlestep(svm);
2785 /* Make sure we check for pending NMIs upon entry */
2786 kvm_make_request(KVM_REQ_EVENT, vcpu);
2789 if (svm->vcpu.guest_debug &
2790 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2791 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2792 kvm_run->debug.arch.pc =
2793 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2794 kvm_run->debug.arch.exception = DB_VECTOR;
2801 static int bp_interception(struct vcpu_svm *svm)
2803 struct kvm_run *kvm_run = svm->vcpu.run;
2805 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2806 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2807 kvm_run->debug.arch.exception = BP_VECTOR;
2811 static int ud_interception(struct vcpu_svm *svm)
2813 return handle_ud(&svm->vcpu);
2816 static int ac_interception(struct vcpu_svm *svm)
2818 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2822 static int gp_interception(struct vcpu_svm *svm)
2824 struct kvm_vcpu *vcpu = &svm->vcpu;
2825 u32 error_code = svm->vmcb->control.exit_info_1;
2827 WARN_ON_ONCE(!enable_vmware_backdoor);
2830 * VMware backdoor emulation on #GP interception only handles IN{S},
2831 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2834 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2837 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
2840 static bool is_erratum_383(void)
2845 if (!erratum_383_found)
2848 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2852 /* Bit 62 may or may not be set for this mce */
2853 value &= ~(1ULL << 62);
2855 if (value != 0xb600000000010015ULL)
2858 /* Clear MCi_STATUS registers */
2859 for (i = 0; i < 6; ++i)
2860 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2862 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2866 value &= ~(1ULL << 2);
2867 low = lower_32_bits(value);
2868 high = upper_32_bits(value);
2870 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2873 /* Flush tlb to evict multi-match entries */
2879 static void svm_handle_mce(struct vcpu_svm *svm)
2881 if (is_erratum_383()) {
2883 * Erratum 383 triggered. Guest state is corrupt so kill the
2886 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2888 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2894 * On an #MC intercept the MCE handler is not called automatically in
2895 * the host. So do it by hand here.
2899 /* not sure if we ever come back to this point */
2904 static int mc_interception(struct vcpu_svm *svm)
2909 static int shutdown_interception(struct vcpu_svm *svm)
2911 struct kvm_run *kvm_run = svm->vcpu.run;
2914 * VMCB is undefined after a SHUTDOWN intercept
2915 * so reinitialize it.
2917 clear_page(svm->vmcb);
2920 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2924 static int io_interception(struct vcpu_svm *svm)
2926 struct kvm_vcpu *vcpu = &svm->vcpu;
2927 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2928 int size, in, string;
2931 ++svm->vcpu.stat.io_exits;
2932 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2933 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2935 return kvm_emulate_instruction(vcpu, 0);
2937 port = io_info >> 16;
2938 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2939 svm->next_rip = svm->vmcb->control.exit_info_2;
2941 return kvm_fast_pio(&svm->vcpu, size, port, in);
2944 static int nmi_interception(struct vcpu_svm *svm)
2949 static int intr_interception(struct vcpu_svm *svm)
2951 ++svm->vcpu.stat.irq_exits;
2955 static int nop_on_interception(struct vcpu_svm *svm)
2960 static int halt_interception(struct vcpu_svm *svm)
2962 return kvm_emulate_halt(&svm->vcpu);
2965 static int vmmcall_interception(struct vcpu_svm *svm)
2967 return kvm_emulate_hypercall(&svm->vcpu);
2970 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2972 struct vcpu_svm *svm = to_svm(vcpu);
2974 return svm->nested.nested_cr3;
2977 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2979 struct vcpu_svm *svm = to_svm(vcpu);
2980 u64 cr3 = svm->nested.nested_cr3;
2984 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2985 offset_in_page(cr3) + index * 8, 8);
2991 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2994 struct vcpu_svm *svm = to_svm(vcpu);
2996 svm->vmcb->control.nested_cr3 = __sme_set(root);
2997 mark_dirty(svm->vmcb, VMCB_NPT);
3000 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
3001 struct x86_exception *fault)
3003 struct vcpu_svm *svm = to_svm(vcpu);
3005 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
3007 * TODO: track the cause of the nested page fault, and
3008 * correctly fill in the high bits of exit_info_1.
3010 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
3011 svm->vmcb->control.exit_code_hi = 0;
3012 svm->vmcb->control.exit_info_1 = (1ULL << 32);
3013 svm->vmcb->control.exit_info_2 = fault->address;
3016 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
3017 svm->vmcb->control.exit_info_1 |= fault->error_code;
3020 * The present bit is always zero for page structure faults on real
3023 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
3024 svm->vmcb->control.exit_info_1 &= ~1;
3026 nested_svm_vmexit(svm);
3029 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
3031 WARN_ON(mmu_is_nested(vcpu));
3033 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
3034 kvm_init_shadow_mmu(vcpu);
3035 vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
3036 vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
3037 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
3038 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
3039 vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
3040 reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
3041 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
3044 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
3046 vcpu->arch.mmu = &vcpu->arch.root_mmu;
3047 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
3050 static int nested_svm_check_permissions(struct vcpu_svm *svm)
3052 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3053 !is_paging(&svm->vcpu)) {
3054 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3058 if (svm->vmcb->save.cpl) {
3059 kvm_inject_gp(&svm->vcpu, 0);
3066 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3067 bool has_error_code, u32 error_code)
3071 if (!is_guest_mode(&svm->vcpu))
3074 vmexit = nested_svm_intercept(svm);
3075 if (vmexit != NESTED_EXIT_DONE)
3078 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3079 svm->vmcb->control.exit_code_hi = 0;
3080 svm->vmcb->control.exit_info_1 = error_code;
3083 * EXITINFO2 is undefined for all exception intercepts other
3086 if (svm->vcpu.arch.exception.nested_apf)
3087 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3088 else if (svm->vcpu.arch.exception.has_payload)
3089 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3091 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3093 svm->nested.exit_required = true;
3097 /* This function returns true if it is save to enable the irq window */
3098 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3100 if (!is_guest_mode(&svm->vcpu))
3103 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3106 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3110 * if vmexit was already requested (by intercepted exception
3111 * for instance) do not overwrite it with "external interrupt"
3114 if (svm->nested.exit_required)
3117 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3118 svm->vmcb->control.exit_info_1 = 0;
3119 svm->vmcb->control.exit_info_2 = 0;
3121 if (svm->nested.intercept & 1ULL) {
3123 * The #vmexit can't be emulated here directly because this
3124 * code path runs with irqs and preemption disabled. A
3125 * #vmexit emulation might sleep. Only signal request for
3128 svm->nested.exit_required = true;
3129 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3136 /* This function returns true if it is save to enable the nmi window */
3137 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3139 if (!is_guest_mode(&svm->vcpu))
3142 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3145 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3146 svm->nested.exit_required = true;
3151 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3153 unsigned port, size, iopm_len;
3158 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3159 return NESTED_EXIT_HOST;
3161 port = svm->vmcb->control.exit_info_1 >> 16;
3162 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3163 SVM_IOIO_SIZE_SHIFT;
3164 gpa = svm->nested.vmcb_iopm + (port / 8);
3165 start_bit = port % 8;
3166 iopm_len = (start_bit + size > 8) ? 2 : 1;
3167 mask = (0xf >> (4 - size)) << start_bit;
3170 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3171 return NESTED_EXIT_DONE;
3173 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3176 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3178 u32 offset, msr, value;
3181 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3182 return NESTED_EXIT_HOST;
3184 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3185 offset = svm_msrpm_offset(msr);
3186 write = svm->vmcb->control.exit_info_1 & 1;
3187 mask = 1 << ((2 * (msr & 0xf)) + write);
3189 if (offset == MSR_INVALID)
3190 return NESTED_EXIT_DONE;
3192 /* Offset is in 32 bit units but need in 8 bit units */
3195 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3196 return NESTED_EXIT_DONE;
3198 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3201 /* DB exceptions for our internal use must not cause vmexit */
3202 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3206 /* if we're not singlestepping, it's not ours */
3207 if (!svm->nmi_singlestep)
3208 return NESTED_EXIT_DONE;
3210 /* if it's not a singlestep exception, it's not ours */
3211 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3212 return NESTED_EXIT_DONE;
3213 if (!(dr6 & DR6_BS))
3214 return NESTED_EXIT_DONE;
3216 /* if the guest is singlestepping, it should get the vmexit */
3217 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3218 disable_nmi_singlestep(svm);
3219 return NESTED_EXIT_DONE;
3222 /* it's ours, the nested hypervisor must not see this one */
3223 return NESTED_EXIT_HOST;
3226 static int nested_svm_exit_special(struct vcpu_svm *svm)
3228 u32 exit_code = svm->vmcb->control.exit_code;
3230 switch (exit_code) {
3233 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3234 return NESTED_EXIT_HOST;
3236 /* For now we are always handling NPFs when using them */
3238 return NESTED_EXIT_HOST;
3240 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3241 /* When we're shadowing, trap PFs, but not async PF */
3242 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3243 return NESTED_EXIT_HOST;
3249 return NESTED_EXIT_CONTINUE;
3253 * If this function returns true, this #vmexit was already handled
3255 static int nested_svm_intercept(struct vcpu_svm *svm)
3257 u32 exit_code = svm->vmcb->control.exit_code;
3258 int vmexit = NESTED_EXIT_HOST;
3260 switch (exit_code) {
3262 vmexit = nested_svm_exit_handled_msr(svm);
3265 vmexit = nested_svm_intercept_ioio(svm);
3267 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3268 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3269 if (svm->nested.intercept_cr & bit)
3270 vmexit = NESTED_EXIT_DONE;
3273 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3274 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3275 if (svm->nested.intercept_dr & bit)
3276 vmexit = NESTED_EXIT_DONE;
3279 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3280 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3281 if (svm->nested.intercept_exceptions & excp_bits) {
3282 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3283 vmexit = nested_svm_intercept_db(svm);
3285 vmexit = NESTED_EXIT_DONE;
3287 /* async page fault always cause vmexit */
3288 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3289 svm->vcpu.arch.exception.nested_apf != 0)
3290 vmexit = NESTED_EXIT_DONE;
3293 case SVM_EXIT_ERR: {
3294 vmexit = NESTED_EXIT_DONE;
3298 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3299 if (svm->nested.intercept & exit_bits)
3300 vmexit = NESTED_EXIT_DONE;
3307 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3311 vmexit = nested_svm_intercept(svm);
3313 if (vmexit == NESTED_EXIT_DONE)
3314 nested_svm_vmexit(svm);
3319 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3321 struct vmcb_control_area *dst = &dst_vmcb->control;
3322 struct vmcb_control_area *from = &from_vmcb->control;
3324 dst->intercept_cr = from->intercept_cr;
3325 dst->intercept_dr = from->intercept_dr;
3326 dst->intercept_exceptions = from->intercept_exceptions;
3327 dst->intercept = from->intercept;
3328 dst->iopm_base_pa = from->iopm_base_pa;
3329 dst->msrpm_base_pa = from->msrpm_base_pa;
3330 dst->tsc_offset = from->tsc_offset;
3331 dst->asid = from->asid;
3332 dst->tlb_ctl = from->tlb_ctl;
3333 dst->int_ctl = from->int_ctl;
3334 dst->int_vector = from->int_vector;
3335 dst->int_state = from->int_state;
3336 dst->exit_code = from->exit_code;
3337 dst->exit_code_hi = from->exit_code_hi;
3338 dst->exit_info_1 = from->exit_info_1;
3339 dst->exit_info_2 = from->exit_info_2;
3340 dst->exit_int_info = from->exit_int_info;
3341 dst->exit_int_info_err = from->exit_int_info_err;
3342 dst->nested_ctl = from->nested_ctl;
3343 dst->event_inj = from->event_inj;
3344 dst->event_inj_err = from->event_inj_err;
3345 dst->nested_cr3 = from->nested_cr3;
3346 dst->virt_ext = from->virt_ext;
3347 dst->pause_filter_count = from->pause_filter_count;
3348 dst->pause_filter_thresh = from->pause_filter_thresh;
3351 static int nested_svm_vmexit(struct vcpu_svm *svm)
3354 struct vmcb *nested_vmcb;
3355 struct vmcb *hsave = svm->nested.hsave;
3356 struct vmcb *vmcb = svm->vmcb;
3357 struct kvm_host_map map;
3359 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3360 vmcb->control.exit_info_1,
3361 vmcb->control.exit_info_2,
3362 vmcb->control.exit_int_info,
3363 vmcb->control.exit_int_info_err,
3366 rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3369 kvm_inject_gp(&svm->vcpu, 0);
3373 nested_vmcb = map.hva;
3375 /* Exit Guest-Mode */
3376 leave_guest_mode(&svm->vcpu);
3377 svm->nested.vmcb = 0;
3379 /* Give the current vmcb to the guest */
3382 nested_vmcb->save.es = vmcb->save.es;
3383 nested_vmcb->save.cs = vmcb->save.cs;
3384 nested_vmcb->save.ss = vmcb->save.ss;
3385 nested_vmcb->save.ds = vmcb->save.ds;
3386 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3387 nested_vmcb->save.idtr = vmcb->save.idtr;
3388 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3389 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3390 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3391 nested_vmcb->save.cr2 = vmcb->save.cr2;
3392 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3393 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3394 nested_vmcb->save.rip = vmcb->save.rip;
3395 nested_vmcb->save.rsp = vmcb->save.rsp;
3396 nested_vmcb->save.rax = vmcb->save.rax;
3397 nested_vmcb->save.dr7 = vmcb->save.dr7;
3398 nested_vmcb->save.dr6 = vmcb->save.dr6;
3399 nested_vmcb->save.cpl = vmcb->save.cpl;
3401 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3402 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3403 nested_vmcb->control.int_state = vmcb->control.int_state;
3404 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3405 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3406 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3407 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3408 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3409 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3411 if (svm->nrips_enabled)
3412 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3415 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3416 * to make sure that we do not lose injected events. So check event_inj
3417 * here and copy it to exit_int_info if it is valid.
3418 * Exit_int_info and event_inj can't be both valid because the case
3419 * below only happens on a VMRUN instruction intercept which has
3420 * no valid exit_int_info set.
3422 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3423 struct vmcb_control_area *nc = &nested_vmcb->control;
3425 nc->exit_int_info = vmcb->control.event_inj;
3426 nc->exit_int_info_err = vmcb->control.event_inj_err;
3429 nested_vmcb->control.tlb_ctl = 0;
3430 nested_vmcb->control.event_inj = 0;
3431 nested_vmcb->control.event_inj_err = 0;
3433 nested_vmcb->control.pause_filter_count =
3434 svm->vmcb->control.pause_filter_count;
3435 nested_vmcb->control.pause_filter_thresh =
3436 svm->vmcb->control.pause_filter_thresh;
3438 /* We always set V_INTR_MASKING and remember the old value in hflags */
3439 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3440 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3442 /* Restore the original control entries */
3443 copy_vmcb_control_area(vmcb, hsave);
3445 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3446 kvm_clear_exception_queue(&svm->vcpu);
3447 kvm_clear_interrupt_queue(&svm->vcpu);
3449 svm->nested.nested_cr3 = 0;
3451 /* Restore selected save entries */
3452 svm->vmcb->save.es = hsave->save.es;
3453 svm->vmcb->save.cs = hsave->save.cs;
3454 svm->vmcb->save.ss = hsave->save.ss;
3455 svm->vmcb->save.ds = hsave->save.ds;
3456 svm->vmcb->save.gdtr = hsave->save.gdtr;
3457 svm->vmcb->save.idtr = hsave->save.idtr;
3458 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3459 svm_set_efer(&svm->vcpu, hsave->save.efer);
3460 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3461 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3463 svm->vmcb->save.cr3 = hsave->save.cr3;
3464 svm->vcpu.arch.cr3 = hsave->save.cr3;
3466 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3468 kvm_rax_write(&svm->vcpu, hsave->save.rax);
3469 kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3470 kvm_rip_write(&svm->vcpu, hsave->save.rip);
3471 svm->vmcb->save.dr7 = 0;
3472 svm->vmcb->save.cpl = 0;
3473 svm->vmcb->control.exit_int_info = 0;
3475 mark_all_dirty(svm->vmcb);
3477 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3479 nested_svm_uninit_mmu_context(&svm->vcpu);
3480 kvm_mmu_reset_context(&svm->vcpu);
3481 kvm_mmu_load(&svm->vcpu);
3484 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3485 * doesn't end up in L1.
3487 svm->vcpu.arch.nmi_injected = false;
3488 kvm_clear_exception_queue(&svm->vcpu);
3489 kvm_clear_interrupt_queue(&svm->vcpu);
3494 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3497 * This function merges the msr permission bitmaps of kvm and the
3498 * nested vmcb. It is optimized in that it only merges the parts where
3499 * the kvm msr permission bitmap may contain zero bits
3503 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3506 for (i = 0; i < MSRPM_OFFSETS; i++) {
3510 if (msrpm_offsets[i] == 0xffffffff)
3513 p = msrpm_offsets[i];
3514 offset = svm->nested.vmcb_msrpm + (p * 4);
3516 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3519 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3522 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3527 static bool nested_vmcb_checks(struct vmcb *vmcb)
3529 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3532 if (vmcb->control.asid == 0)
3535 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3542 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3543 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3545 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3546 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3548 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3550 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3551 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3552 nested_svm_init_mmu_context(&svm->vcpu);
3555 /* Load the nested guest state */
3556 svm->vmcb->save.es = nested_vmcb->save.es;
3557 svm->vmcb->save.cs = nested_vmcb->save.cs;
3558 svm->vmcb->save.ss = nested_vmcb->save.ss;
3559 svm->vmcb->save.ds = nested_vmcb->save.ds;
3560 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3561 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3562 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3563 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3564 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3565 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3567 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3568 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3570 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3572 /* Guest paging mode is active - reset mmu */
3573 kvm_mmu_reset_context(&svm->vcpu);
3575 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3576 kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3577 kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3578 kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3580 /* In case we don't even reach vcpu_run, the fields are not updated */
3581 svm->vmcb->save.rax = nested_vmcb->save.rax;
3582 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3583 svm->vmcb->save.rip = nested_vmcb->save.rip;
3584 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3585 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3586 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3588 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3589 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3591 /* cache intercepts */
3592 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3593 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3594 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3595 svm->nested.intercept = nested_vmcb->control.intercept;
3597 svm_flush_tlb(&svm->vcpu, true);
3598 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3599 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3600 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3602 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3604 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3605 /* We only want the cr8 intercept bits of the guest */
3606 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3607 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3610 /* We don't want to see VMMCALLs from a nested guest */
3611 clr_intercept(svm, INTERCEPT_VMMCALL);
3613 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3614 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3616 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3617 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3618 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3619 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3620 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3622 svm->vmcb->control.pause_filter_count =
3623 nested_vmcb->control.pause_filter_count;
3624 svm->vmcb->control.pause_filter_thresh =
3625 nested_vmcb->control.pause_filter_thresh;
3627 kvm_vcpu_unmap(&svm->vcpu, map, true);
3629 /* Enter Guest-Mode */
3630 enter_guest_mode(&svm->vcpu);
3633 * Merge guest and host intercepts - must be called with vcpu in
3634 * guest-mode to take affect here
3636 recalc_intercepts(svm);
3638 svm->nested.vmcb = vmcb_gpa;
3642 mark_all_dirty(svm->vmcb);
3645 static int nested_svm_vmrun(struct vcpu_svm *svm)
3648 struct vmcb *nested_vmcb;
3649 struct vmcb *hsave = svm->nested.hsave;
3650 struct vmcb *vmcb = svm->vmcb;
3651 struct kvm_host_map map;
3654 vmcb_gpa = svm->vmcb->save.rax;
3656 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3657 if (ret == -EINVAL) {
3658 kvm_inject_gp(&svm->vcpu, 0);
3661 return kvm_skip_emulated_instruction(&svm->vcpu);
3664 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3666 nested_vmcb = map.hva;
3668 if (!nested_vmcb_checks(nested_vmcb)) {
3669 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3670 nested_vmcb->control.exit_code_hi = 0;
3671 nested_vmcb->control.exit_info_1 = 0;
3672 nested_vmcb->control.exit_info_2 = 0;
3674 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3679 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3680 nested_vmcb->save.rip,
3681 nested_vmcb->control.int_ctl,
3682 nested_vmcb->control.event_inj,
3683 nested_vmcb->control.nested_ctl);
3685 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3686 nested_vmcb->control.intercept_cr >> 16,
3687 nested_vmcb->control.intercept_exceptions,
3688 nested_vmcb->control.intercept);
3690 /* Clear internal status */
3691 kvm_clear_exception_queue(&svm->vcpu);
3692 kvm_clear_interrupt_queue(&svm->vcpu);
3695 * Save the old vmcb, so we don't need to pick what we save, but can
3696 * restore everything when a VMEXIT occurs
3698 hsave->save.es = vmcb->save.es;
3699 hsave->save.cs = vmcb->save.cs;
3700 hsave->save.ss = vmcb->save.ss;
3701 hsave->save.ds = vmcb->save.ds;
3702 hsave->save.gdtr = vmcb->save.gdtr;
3703 hsave->save.idtr = vmcb->save.idtr;
3704 hsave->save.efer = svm->vcpu.arch.efer;
3705 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3706 hsave->save.cr4 = svm->vcpu.arch.cr4;
3707 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3708 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3709 hsave->save.rsp = vmcb->save.rsp;
3710 hsave->save.rax = vmcb->save.rax;
3712 hsave->save.cr3 = vmcb->save.cr3;
3714 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3716 copy_vmcb_control_area(hsave, vmcb);
3718 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3720 if (!nested_svm_vmrun_msrpm(svm)) {
3721 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3722 svm->vmcb->control.exit_code_hi = 0;
3723 svm->vmcb->control.exit_info_1 = 0;
3724 svm->vmcb->control.exit_info_2 = 0;
3726 nested_svm_vmexit(svm);
3732 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3734 to_vmcb->save.fs = from_vmcb->save.fs;
3735 to_vmcb->save.gs = from_vmcb->save.gs;
3736 to_vmcb->save.tr = from_vmcb->save.tr;
3737 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3738 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3739 to_vmcb->save.star = from_vmcb->save.star;
3740 to_vmcb->save.lstar = from_vmcb->save.lstar;
3741 to_vmcb->save.cstar = from_vmcb->save.cstar;
3742 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3743 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3744 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3745 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3748 static int vmload_interception(struct vcpu_svm *svm)
3750 struct vmcb *nested_vmcb;
3751 struct kvm_host_map map;
3754 if (nested_svm_check_permissions(svm))
3757 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3760 kvm_inject_gp(&svm->vcpu, 0);
3764 nested_vmcb = map.hva;
3766 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3768 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3769 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3774 static int vmsave_interception(struct vcpu_svm *svm)
3776 struct vmcb *nested_vmcb;
3777 struct kvm_host_map map;
3780 if (nested_svm_check_permissions(svm))
3783 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3786 kvm_inject_gp(&svm->vcpu, 0);
3790 nested_vmcb = map.hva;
3792 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3794 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3795 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3800 static int vmrun_interception(struct vcpu_svm *svm)
3802 if (nested_svm_check_permissions(svm))
3805 return nested_svm_vmrun(svm);
3808 static int stgi_interception(struct vcpu_svm *svm)
3812 if (nested_svm_check_permissions(svm))
3816 * If VGIF is enabled, the STGI intercept is only added to
3817 * detect the opening of the SMI/NMI window; remove it now.
3819 if (vgif_enabled(svm))
3820 clr_intercept(svm, INTERCEPT_STGI);
3822 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3823 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3830 static int clgi_interception(struct vcpu_svm *svm)
3834 if (nested_svm_check_permissions(svm))
3837 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3841 /* After a CLGI no interrupts should come */
3842 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3843 svm_clear_vintr(svm);
3844 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3845 mark_dirty(svm->vmcb, VMCB_INTR);
3851 static int invlpga_interception(struct vcpu_svm *svm)
3853 struct kvm_vcpu *vcpu = &svm->vcpu;
3855 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3856 kvm_rax_read(&svm->vcpu));
3858 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3859 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3861 return kvm_skip_emulated_instruction(&svm->vcpu);
3864 static int skinit_interception(struct vcpu_svm *svm)
3866 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3868 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3872 static int wbinvd_interception(struct vcpu_svm *svm)
3874 return kvm_emulate_wbinvd(&svm->vcpu);
3877 static int xsetbv_interception(struct vcpu_svm *svm)
3879 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3880 u32 index = kvm_rcx_read(&svm->vcpu);
3882 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3883 return kvm_skip_emulated_instruction(&svm->vcpu);
3889 static int rdpru_interception(struct vcpu_svm *svm)
3891 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3895 static int task_switch_interception(struct vcpu_svm *svm)
3899 int int_type = svm->vmcb->control.exit_int_info &
3900 SVM_EXITINTINFO_TYPE_MASK;
3901 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3903 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3905 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3906 bool has_error_code = false;
3909 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3911 if (svm->vmcb->control.exit_info_2 &
3912 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3913 reason = TASK_SWITCH_IRET;
3914 else if (svm->vmcb->control.exit_info_2 &
3915 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3916 reason = TASK_SWITCH_JMP;
3918 reason = TASK_SWITCH_GATE;
3920 reason = TASK_SWITCH_CALL;
3922 if (reason == TASK_SWITCH_GATE) {
3924 case SVM_EXITINTINFO_TYPE_NMI:
3925 svm->vcpu.arch.nmi_injected = false;
3927 case SVM_EXITINTINFO_TYPE_EXEPT:
3928 if (svm->vmcb->control.exit_info_2 &
3929 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3930 has_error_code = true;
3932 (u32)svm->vmcb->control.exit_info_2;
3934 kvm_clear_exception_queue(&svm->vcpu);
3936 case SVM_EXITINTINFO_TYPE_INTR:
3937 kvm_clear_interrupt_queue(&svm->vcpu);
3944 if (reason != TASK_SWITCH_GATE ||
3945 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3946 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3947 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
3948 if (!skip_emulated_instruction(&svm->vcpu))
3952 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3955 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3956 has_error_code, error_code);
3959 static int cpuid_interception(struct vcpu_svm *svm)
3961 return kvm_emulate_cpuid(&svm->vcpu);
3964 static int iret_interception(struct vcpu_svm *svm)
3966 ++svm->vcpu.stat.nmi_window_exits;
3967 clr_intercept(svm, INTERCEPT_IRET);
3968 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3969 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3970 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3974 static int invlpg_interception(struct vcpu_svm *svm)
3976 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3977 return kvm_emulate_instruction(&svm->vcpu, 0);
3979 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3980 return kvm_skip_emulated_instruction(&svm->vcpu);
3983 static int emulate_on_interception(struct vcpu_svm *svm)
3985 return kvm_emulate_instruction(&svm->vcpu, 0);
3988 static int rsm_interception(struct vcpu_svm *svm)
3990 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
3993 static int rdpmc_interception(struct vcpu_svm *svm)
3998 return emulate_on_interception(svm);
4000 err = kvm_rdpmc(&svm->vcpu);
4001 return kvm_complete_insn_gp(&svm->vcpu, err);
4004 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
4007 unsigned long cr0 = svm->vcpu.arch.cr0;
4011 intercept = svm->nested.intercept;
4013 if (!is_guest_mode(&svm->vcpu) ||
4014 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
4017 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
4018 val &= ~SVM_CR0_SELECTIVE_MASK;
4021 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4022 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
4028 #define CR_VALID (1ULL << 63)
4030 static int cr_interception(struct vcpu_svm *svm)
4036 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
4037 return emulate_on_interception(svm);
4039 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
4040 return emulate_on_interception(svm);
4042 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4043 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
4044 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
4046 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4049 if (cr >= 16) { /* mov to cr */
4051 val = kvm_register_read(&svm->vcpu, reg);
4054 if (!check_selective_cr0_intercepted(svm, val))
4055 err = kvm_set_cr0(&svm->vcpu, val);
4061 err = kvm_set_cr3(&svm->vcpu, val);
4064 err = kvm_set_cr4(&svm->vcpu, val);
4067 err = kvm_set_cr8(&svm->vcpu, val);
4070 WARN(1, "unhandled write to CR%d", cr);
4071 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4074 } else { /* mov from cr */
4077 val = kvm_read_cr0(&svm->vcpu);
4080 val = svm->vcpu.arch.cr2;
4083 val = kvm_read_cr3(&svm->vcpu);
4086 val = kvm_read_cr4(&svm->vcpu);
4089 val = kvm_get_cr8(&svm->vcpu);
4092 WARN(1, "unhandled read from CR%d", cr);
4093 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4096 kvm_register_write(&svm->vcpu, reg, val);
4098 return kvm_complete_insn_gp(&svm->vcpu, err);
4101 static int dr_interception(struct vcpu_svm *svm)
4106 if (svm->vcpu.guest_debug == 0) {
4108 * No more DR vmexits; force a reload of the debug registers
4109 * and reenter on this instruction. The next vmexit will
4110 * retrieve the full state of the debug registers.
4112 clr_dr_intercepts(svm);
4113 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4117 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4118 return emulate_on_interception(svm);
4120 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4121 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4123 if (dr >= 16) { /* mov to DRn */
4124 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4126 val = kvm_register_read(&svm->vcpu, reg);
4127 kvm_set_dr(&svm->vcpu, dr - 16, val);
4129 if (!kvm_require_dr(&svm->vcpu, dr))
4131 kvm_get_dr(&svm->vcpu, dr, &val);
4132 kvm_register_write(&svm->vcpu, reg, val);
4135 return kvm_skip_emulated_instruction(&svm->vcpu);
4138 static int cr8_write_interception(struct vcpu_svm *svm)
4140 struct kvm_run *kvm_run = svm->vcpu.run;
4143 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4144 /* instruction emulation calls kvm_set_cr8() */
4145 r = cr_interception(svm);
4146 if (lapic_in_kernel(&svm->vcpu))
4148 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4150 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4154 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4158 switch (msr->index) {
4159 case MSR_F10H_DECFG:
4160 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4161 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4170 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4172 struct vcpu_svm *svm = to_svm(vcpu);
4174 switch (msr_info->index) {
4176 msr_info->data = svm->vmcb->save.star;
4178 #ifdef CONFIG_X86_64
4180 msr_info->data = svm->vmcb->save.lstar;
4183 msr_info->data = svm->vmcb->save.cstar;
4185 case MSR_KERNEL_GS_BASE:
4186 msr_info->data = svm->vmcb->save.kernel_gs_base;
4188 case MSR_SYSCALL_MASK:
4189 msr_info->data = svm->vmcb->save.sfmask;
4192 case MSR_IA32_SYSENTER_CS:
4193 msr_info->data = svm->vmcb->save.sysenter_cs;
4195 case MSR_IA32_SYSENTER_EIP:
4196 msr_info->data = svm->sysenter_eip;
4198 case MSR_IA32_SYSENTER_ESP:
4199 msr_info->data = svm->sysenter_esp;
4202 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4204 msr_info->data = svm->tsc_aux;
4207 * Nobody will change the following 5 values in the VMCB so we can
4208 * safely return them on rdmsr. They will always be 0 until LBRV is
4211 case MSR_IA32_DEBUGCTLMSR:
4212 msr_info->data = svm->vmcb->save.dbgctl;
4214 case MSR_IA32_LASTBRANCHFROMIP:
4215 msr_info->data = svm->vmcb->save.br_from;
4217 case MSR_IA32_LASTBRANCHTOIP:
4218 msr_info->data = svm->vmcb->save.br_to;
4220 case MSR_IA32_LASTINTFROMIP:
4221 msr_info->data = svm->vmcb->save.last_excp_from;
4223 case MSR_IA32_LASTINTTOIP:
4224 msr_info->data = svm->vmcb->save.last_excp_to;
4226 case MSR_VM_HSAVE_PA:
4227 msr_info->data = svm->nested.hsave_msr;
4230 msr_info->data = svm->nested.vm_cr_msr;
4232 case MSR_IA32_SPEC_CTRL:
4233 if (!msr_info->host_initiated &&
4234 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4235 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4238 msr_info->data = svm->spec_ctrl;
4240 case MSR_AMD64_VIRT_SPEC_CTRL:
4241 if (!msr_info->host_initiated &&
4242 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4245 msr_info->data = svm->virt_spec_ctrl;
4247 case MSR_F15H_IC_CFG: {
4251 family = guest_cpuid_family(vcpu);
4252 model = guest_cpuid_model(vcpu);
4254 if (family < 0 || model < 0)
4255 return kvm_get_msr_common(vcpu, msr_info);
4259 if (family == 0x15 &&
4260 (model >= 0x2 && model < 0x20))
4261 msr_info->data = 0x1E;
4264 case MSR_F10H_DECFG:
4265 msr_info->data = svm->msr_decfg;
4268 return kvm_get_msr_common(vcpu, msr_info);
4273 static int rdmsr_interception(struct vcpu_svm *svm)
4275 return kvm_emulate_rdmsr(&svm->vcpu);
4278 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4280 struct vcpu_svm *svm = to_svm(vcpu);
4281 int svm_dis, chg_mask;
4283 if (data & ~SVM_VM_CR_VALID_MASK)
4286 chg_mask = SVM_VM_CR_VALID_MASK;
4288 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4289 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4291 svm->nested.vm_cr_msr &= ~chg_mask;
4292 svm->nested.vm_cr_msr |= (data & chg_mask);
4294 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4296 /* check for svm_disable while efer.svme is set */
4297 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4303 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4305 struct vcpu_svm *svm = to_svm(vcpu);
4307 u32 ecx = msr->index;
4308 u64 data = msr->data;
4310 case MSR_IA32_CR_PAT:
4311 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4313 vcpu->arch.pat = data;
4314 svm->vmcb->save.g_pat = data;
4315 mark_dirty(svm->vmcb, VMCB_NPT);
4317 case MSR_IA32_SPEC_CTRL:
4318 if (!msr->host_initiated &&
4319 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4320 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4323 /* The STIBP bit doesn't fault even if it's not advertised */
4324 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4327 svm->spec_ctrl = data;
4334 * When it's written (to non-zero) for the first time, pass
4338 * The handling of the MSR bitmap for L2 guests is done in
4339 * nested_svm_vmrun_msrpm.
4340 * We update the L1 MSR bit as well since it will end up
4341 * touching the MSR anyway now.
4343 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4345 case MSR_IA32_PRED_CMD:
4346 if (!msr->host_initiated &&
4347 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4350 if (data & ~PRED_CMD_IBPB)
4356 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4357 if (is_guest_mode(vcpu))
4359 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4361 case MSR_AMD64_VIRT_SPEC_CTRL:
4362 if (!msr->host_initiated &&
4363 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4366 if (data & ~SPEC_CTRL_SSBD)
4369 svm->virt_spec_ctrl = data;
4372 svm->vmcb->save.star = data;
4374 #ifdef CONFIG_X86_64
4376 svm->vmcb->save.lstar = data;
4379 svm->vmcb->save.cstar = data;
4381 case MSR_KERNEL_GS_BASE:
4382 svm->vmcb->save.kernel_gs_base = data;
4384 case MSR_SYSCALL_MASK:
4385 svm->vmcb->save.sfmask = data;
4388 case MSR_IA32_SYSENTER_CS:
4389 svm->vmcb->save.sysenter_cs = data;
4391 case MSR_IA32_SYSENTER_EIP:
4392 svm->sysenter_eip = data;
4393 svm->vmcb->save.sysenter_eip = data;
4395 case MSR_IA32_SYSENTER_ESP:
4396 svm->sysenter_esp = data;
4397 svm->vmcb->save.sysenter_esp = data;
4400 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4404 * This is rare, so we update the MSR here instead of using
4405 * direct_access_msrs. Doing that would require a rdmsr in
4408 svm->tsc_aux = data;
4409 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4411 case MSR_IA32_DEBUGCTLMSR:
4412 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4413 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4417 if (data & DEBUGCTL_RESERVED_BITS)
4420 svm->vmcb->save.dbgctl = data;
4421 mark_dirty(svm->vmcb, VMCB_LBR);
4422 if (data & (1ULL<<0))
4423 svm_enable_lbrv(svm);
4425 svm_disable_lbrv(svm);
4427 case MSR_VM_HSAVE_PA:
4428 svm->nested.hsave_msr = data;
4431 return svm_set_vm_cr(vcpu, data);
4433 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4435 case MSR_F10H_DECFG: {
4436 struct kvm_msr_entry msr_entry;
4438 msr_entry.index = msr->index;
4439 if (svm_get_msr_feature(&msr_entry))
4442 /* Check the supported bits */
4443 if (data & ~msr_entry.data)
4446 /* Don't allow the guest to change a bit, #GP */
4447 if (!msr->host_initiated && (data ^ msr_entry.data))
4450 svm->msr_decfg = data;
4453 case MSR_IA32_APICBASE:
4454 if (kvm_vcpu_apicv_active(vcpu))
4455 avic_update_vapic_bar(to_svm(vcpu), data);
4458 return kvm_set_msr_common(vcpu, msr);
4463 static int wrmsr_interception(struct vcpu_svm *svm)
4465 return kvm_emulate_wrmsr(&svm->vcpu);
4468 static int msr_interception(struct vcpu_svm *svm)
4470 if (svm->vmcb->control.exit_info_1)
4471 return wrmsr_interception(svm);
4473 return rdmsr_interception(svm);
4476 static int interrupt_window_interception(struct vcpu_svm *svm)
4478 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4479 svm_clear_vintr(svm);
4480 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4481 mark_dirty(svm->vmcb, VMCB_INTR);
4482 ++svm->vcpu.stat.irq_window_exits;
4486 static int pause_interception(struct vcpu_svm *svm)
4488 struct kvm_vcpu *vcpu = &svm->vcpu;
4489 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4491 if (pause_filter_thresh)
4492 grow_ple_window(vcpu);
4494 kvm_vcpu_on_spin(vcpu, in_kernel);
4498 static int nop_interception(struct vcpu_svm *svm)
4500 return kvm_skip_emulated_instruction(&(svm->vcpu));
4503 static int monitor_interception(struct vcpu_svm *svm)
4505 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4506 return nop_interception(svm);
4509 static int mwait_interception(struct vcpu_svm *svm)
4511 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4512 return nop_interception(svm);
4515 enum avic_ipi_failure_cause {
4516 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4517 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4518 AVIC_IPI_FAILURE_INVALID_TARGET,
4519 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4522 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4524 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4525 u32 icrl = svm->vmcb->control.exit_info_1;
4526 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4527 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4528 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4530 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4533 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4535 * AVIC hardware handles the generation of
4536 * IPIs when the specified Message Type is Fixed
4537 * (also known as fixed delivery mode) and
4538 * the Trigger Mode is edge-triggered. The hardware
4539 * also supports self and broadcast delivery modes
4540 * specified via the Destination Shorthand(DSH)
4541 * field of the ICRL. Logical and physical APIC ID
4542 * formats are supported. All other IPI types cause
4543 * a #VMEXIT, which needs to emulated.
4545 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4546 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4548 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4550 struct kvm_vcpu *vcpu;
4551 struct kvm *kvm = svm->vcpu.kvm;
4552 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4555 * At this point, we expect that the AVIC HW has already
4556 * set the appropriate IRR bits on the valid target
4557 * vcpus. So, we just need to kick the appropriate vcpu.
4559 kvm_for_each_vcpu(i, vcpu, kvm) {
4560 bool m = kvm_apic_match_dest(vcpu, apic,
4561 icrl & KVM_APIC_SHORT_MASK,
4562 GET_APIC_DEST_FIELD(icrh),
4563 icrl & KVM_APIC_DEST_MASK);
4565 if (m && !avic_vcpu_is_running(vcpu))
4566 kvm_vcpu_wake_up(vcpu);
4570 case AVIC_IPI_FAILURE_INVALID_TARGET:
4571 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4572 index, svm->vcpu.vcpu_id, icrh, icrl);
4574 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4575 WARN_ONCE(1, "Invalid backing page\n");
4578 pr_err("Unknown IPI interception\n");
4584 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4586 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4588 u32 *logical_apic_id_table;
4589 int dlid = GET_APIC_LOGICAL_ID(ldr);
4594 if (flat) { /* flat */
4595 index = ffs(dlid) - 1;
4598 } else { /* cluster */
4599 int cluster = (dlid & 0xf0) >> 4;
4600 int apic = ffs(dlid & 0x0f) - 1;
4602 if ((apic < 0) || (apic > 7) ||
4605 index = (cluster << 2) + apic;
4608 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4610 return &logical_apic_id_table[index];
4613 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4616 u32 *entry, new_entry;
4618 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4619 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4623 new_entry = READ_ONCE(*entry);
4624 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4625 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4626 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4627 WRITE_ONCE(*entry, new_entry);
4632 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4634 struct vcpu_svm *svm = to_svm(vcpu);
4635 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4636 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4639 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4642 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4645 struct vcpu_svm *svm = to_svm(vcpu);
4646 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4647 u32 id = kvm_xapic_id(vcpu->arch.apic);
4649 if (ldr == svm->ldr_reg)
4652 avic_invalidate_logical_id_entry(vcpu);
4655 ret = avic_ldr_write(vcpu, id, ldr);
4663 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4666 struct vcpu_svm *svm = to_svm(vcpu);
4667 u32 id = kvm_xapic_id(vcpu->arch.apic);
4669 if (vcpu->vcpu_id == id)
4672 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4673 new = avic_get_physical_id_entry(vcpu, id);
4677 /* We need to move physical_id_entry to new offset */
4680 to_svm(vcpu)->avic_physical_id_cache = new;
4683 * Also update the guest physical APIC ID in the logical
4684 * APIC ID table entry if already setup the LDR.
4687 avic_handle_ldr_update(vcpu);
4692 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4694 struct vcpu_svm *svm = to_svm(vcpu);
4695 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4697 if (svm->dfr_reg == dfr)
4700 avic_invalidate_logical_id_entry(vcpu);
4704 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4706 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4707 u32 offset = svm->vmcb->control.exit_info_1 &
4708 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4712 if (avic_handle_apic_id_update(&svm->vcpu))
4716 if (avic_handle_ldr_update(&svm->vcpu))
4720 avic_handle_dfr_update(&svm->vcpu);
4726 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4731 static bool is_avic_unaccelerated_access_trap(u32 offset)
4760 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4763 u32 offset = svm->vmcb->control.exit_info_1 &
4764 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4765 u32 vector = svm->vmcb->control.exit_info_2 &
4766 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4767 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4768 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4769 bool trap = is_avic_unaccelerated_access_trap(offset);
4771 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4772 trap, write, vector);
4775 WARN_ONCE(!write, "svm: Handling trap read.\n");
4776 ret = avic_unaccel_trap_write(svm);
4778 /* Handling Fault */
4779 ret = kvm_emulate_instruction(&svm->vcpu, 0);
4785 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4786 [SVM_EXIT_READ_CR0] = cr_interception,
4787 [SVM_EXIT_READ_CR3] = cr_interception,
4788 [SVM_EXIT_READ_CR4] = cr_interception,
4789 [SVM_EXIT_READ_CR8] = cr_interception,
4790 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4791 [SVM_EXIT_WRITE_CR0] = cr_interception,
4792 [SVM_EXIT_WRITE_CR3] = cr_interception,
4793 [SVM_EXIT_WRITE_CR4] = cr_interception,
4794 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4795 [SVM_EXIT_READ_DR0] = dr_interception,
4796 [SVM_EXIT_READ_DR1] = dr_interception,
4797 [SVM_EXIT_READ_DR2] = dr_interception,
4798 [SVM_EXIT_READ_DR3] = dr_interception,
4799 [SVM_EXIT_READ_DR4] = dr_interception,
4800 [SVM_EXIT_READ_DR5] = dr_interception,
4801 [SVM_EXIT_READ_DR6] = dr_interception,
4802 [SVM_EXIT_READ_DR7] = dr_interception,
4803 [SVM_EXIT_WRITE_DR0] = dr_interception,
4804 [SVM_EXIT_WRITE_DR1] = dr_interception,
4805 [SVM_EXIT_WRITE_DR2] = dr_interception,
4806 [SVM_EXIT_WRITE_DR3] = dr_interception,
4807 [SVM_EXIT_WRITE_DR4] = dr_interception,
4808 [SVM_EXIT_WRITE_DR5] = dr_interception,
4809 [SVM_EXIT_WRITE_DR6] = dr_interception,
4810 [SVM_EXIT_WRITE_DR7] = dr_interception,
4811 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4812 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4813 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4814 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4815 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4816 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4817 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4818 [SVM_EXIT_INTR] = intr_interception,
4819 [SVM_EXIT_NMI] = nmi_interception,
4820 [SVM_EXIT_SMI] = nop_on_interception,
4821 [SVM_EXIT_INIT] = nop_on_interception,
4822 [SVM_EXIT_VINTR] = interrupt_window_interception,
4823 [SVM_EXIT_RDPMC] = rdpmc_interception,
4824 [SVM_EXIT_CPUID] = cpuid_interception,
4825 [SVM_EXIT_IRET] = iret_interception,
4826 [SVM_EXIT_INVD] = emulate_on_interception,
4827 [SVM_EXIT_PAUSE] = pause_interception,
4828 [SVM_EXIT_HLT] = halt_interception,
4829 [SVM_EXIT_INVLPG] = invlpg_interception,
4830 [SVM_EXIT_INVLPGA] = invlpga_interception,
4831 [SVM_EXIT_IOIO] = io_interception,
4832 [SVM_EXIT_MSR] = msr_interception,
4833 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4834 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4835 [SVM_EXIT_VMRUN] = vmrun_interception,
4836 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4837 [SVM_EXIT_VMLOAD] = vmload_interception,
4838 [SVM_EXIT_VMSAVE] = vmsave_interception,
4839 [SVM_EXIT_STGI] = stgi_interception,
4840 [SVM_EXIT_CLGI] = clgi_interception,
4841 [SVM_EXIT_SKINIT] = skinit_interception,
4842 [SVM_EXIT_WBINVD] = wbinvd_interception,
4843 [SVM_EXIT_MONITOR] = monitor_interception,
4844 [SVM_EXIT_MWAIT] = mwait_interception,
4845 [SVM_EXIT_XSETBV] = xsetbv_interception,
4846 [SVM_EXIT_RDPRU] = rdpru_interception,
4847 [SVM_EXIT_NPF] = npf_interception,
4848 [SVM_EXIT_RSM] = rsm_interception,
4849 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4850 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4853 static void dump_vmcb(struct kvm_vcpu *vcpu)
4855 struct vcpu_svm *svm = to_svm(vcpu);
4856 struct vmcb_control_area *control = &svm->vmcb->control;
4857 struct vmcb_save_area *save = &svm->vmcb->save;
4859 if (!dump_invalid_vmcb) {
4860 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4864 pr_err("VMCB Control Area:\n");
4865 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4866 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4867 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4868 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4869 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4870 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4871 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4872 pr_err("%-20s%d\n", "pause filter threshold:",
4873 control->pause_filter_thresh);
4874 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4875 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4876 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4877 pr_err("%-20s%d\n", "asid:", control->asid);
4878 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4879 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4880 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4881 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4882 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4883 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4884 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4885 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4886 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4887 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4888 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4889 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4890 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4891 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4892 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4893 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4894 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4895 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4896 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4897 pr_err("VMCB State Save Area:\n");
4898 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4900 save->es.selector, save->es.attrib,
4901 save->es.limit, save->es.base);
4902 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4904 save->cs.selector, save->cs.attrib,
4905 save->cs.limit, save->cs.base);
4906 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4908 save->ss.selector, save->ss.attrib,
4909 save->ss.limit, save->ss.base);
4910 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4912 save->ds.selector, save->ds.attrib,
4913 save->ds.limit, save->ds.base);
4914 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4916 save->fs.selector, save->fs.attrib,
4917 save->fs.limit, save->fs.base);
4918 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4920 save->gs.selector, save->gs.attrib,
4921 save->gs.limit, save->gs.base);
4922 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4924 save->gdtr.selector, save->gdtr.attrib,
4925 save->gdtr.limit, save->gdtr.base);
4926 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4928 save->ldtr.selector, save->ldtr.attrib,
4929 save->ldtr.limit, save->ldtr.base);
4930 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4932 save->idtr.selector, save->idtr.attrib,
4933 save->idtr.limit, save->idtr.base);
4934 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4936 save->tr.selector, save->tr.attrib,
4937 save->tr.limit, save->tr.base);
4938 pr_err("cpl: %d efer: %016llx\n",
4939 save->cpl, save->efer);
4940 pr_err("%-15s %016llx %-13s %016llx\n",
4941 "cr0:", save->cr0, "cr2:", save->cr2);
4942 pr_err("%-15s %016llx %-13s %016llx\n",
4943 "cr3:", save->cr3, "cr4:", save->cr4);
4944 pr_err("%-15s %016llx %-13s %016llx\n",
4945 "dr6:", save->dr6, "dr7:", save->dr7);
4946 pr_err("%-15s %016llx %-13s %016llx\n",
4947 "rip:", save->rip, "rflags:", save->rflags);
4948 pr_err("%-15s %016llx %-13s %016llx\n",
4949 "rsp:", save->rsp, "rax:", save->rax);
4950 pr_err("%-15s %016llx %-13s %016llx\n",
4951 "star:", save->star, "lstar:", save->lstar);
4952 pr_err("%-15s %016llx %-13s %016llx\n",
4953 "cstar:", save->cstar, "sfmask:", save->sfmask);
4954 pr_err("%-15s %016llx %-13s %016llx\n",
4955 "kernel_gs_base:", save->kernel_gs_base,
4956 "sysenter_cs:", save->sysenter_cs);
4957 pr_err("%-15s %016llx %-13s %016llx\n",
4958 "sysenter_esp:", save->sysenter_esp,
4959 "sysenter_eip:", save->sysenter_eip);
4960 pr_err("%-15s %016llx %-13s %016llx\n",
4961 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4962 pr_err("%-15s %016llx %-13s %016llx\n",
4963 "br_from:", save->br_from, "br_to:", save->br_to);
4964 pr_err("%-15s %016llx %-13s %016llx\n",
4965 "excp_from:", save->last_excp_from,
4966 "excp_to:", save->last_excp_to);
4969 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4971 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4973 *info1 = control->exit_info_1;
4974 *info2 = control->exit_info_2;
4977 static int handle_exit(struct kvm_vcpu *vcpu)
4979 struct vcpu_svm *svm = to_svm(vcpu);
4980 struct kvm_run *kvm_run = vcpu->run;
4981 u32 exit_code = svm->vmcb->control.exit_code;
4983 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4985 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4986 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4988 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4990 if (unlikely(svm->nested.exit_required)) {
4991 nested_svm_vmexit(svm);
4992 svm->nested.exit_required = false;
4997 if (is_guest_mode(vcpu)) {
5000 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
5001 svm->vmcb->control.exit_info_1,
5002 svm->vmcb->control.exit_info_2,
5003 svm->vmcb->control.exit_int_info,
5004 svm->vmcb->control.exit_int_info_err,
5007 vmexit = nested_svm_exit_special(svm);
5009 if (vmexit == NESTED_EXIT_CONTINUE)
5010 vmexit = nested_svm_exit_handled(svm);
5012 if (vmexit == NESTED_EXIT_DONE)
5016 svm_complete_interrupts(svm);
5018 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
5019 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5020 kvm_run->fail_entry.hardware_entry_failure_reason
5021 = svm->vmcb->control.exit_code;
5026 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
5027 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
5028 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
5029 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
5030 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
5032 __func__, svm->vmcb->control.exit_int_info,
5035 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
5036 || !svm_exit_handlers[exit_code]) {
5037 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
5039 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5040 vcpu->run->internal.suberror =
5041 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5042 vcpu->run->internal.ndata = 1;
5043 vcpu->run->internal.data[0] = exit_code;
5047 return svm_exit_handlers[exit_code](svm);
5050 static void reload_tss(struct kvm_vcpu *vcpu)
5052 int cpu = raw_smp_processor_id();
5054 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5055 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5059 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5061 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5062 int asid = sev_get_asid(svm->vcpu.kvm);
5064 /* Assign the asid allocated with this SEV guest */
5065 svm->vmcb->control.asid = asid;
5070 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5071 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5073 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5074 svm->last_cpu == cpu)
5077 svm->last_cpu = cpu;
5078 sd->sev_vmcbs[asid] = svm->vmcb;
5079 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5080 mark_dirty(svm->vmcb, VMCB_ASID);
5083 static void pre_svm_run(struct vcpu_svm *svm)
5085 int cpu = raw_smp_processor_id();
5087 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5089 if (sev_guest(svm->vcpu.kvm))
5090 return pre_sev_run(svm, cpu);
5092 /* FIXME: handle wraparound of asid_generation */
5093 if (svm->asid_generation != sd->asid_generation)
5097 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5099 struct vcpu_svm *svm = to_svm(vcpu);
5101 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5102 vcpu->arch.hflags |= HF_NMI_MASK;
5103 set_intercept(svm, INTERCEPT_IRET);
5104 ++vcpu->stat.nmi_injections;
5107 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5109 struct vmcb_control_area *control;
5111 /* The following fields are ignored when AVIC is enabled */
5112 control = &svm->vmcb->control;
5113 control->int_vector = irq;
5114 control->int_ctl &= ~V_INTR_PRIO_MASK;
5115 control->int_ctl |= V_IRQ_MASK |
5116 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5117 mark_dirty(svm->vmcb, VMCB_INTR);
5120 static void svm_set_irq(struct kvm_vcpu *vcpu)
5122 struct vcpu_svm *svm = to_svm(vcpu);
5124 BUG_ON(!(gif_set(svm)));
5126 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5127 ++vcpu->stat.irq_injections;
5129 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5130 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5133 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5135 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5138 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5140 struct vcpu_svm *svm = to_svm(vcpu);
5142 if (svm_nested_virtualize_tpr(vcpu) ||
5143 kvm_vcpu_apicv_active(vcpu))
5146 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5152 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5155 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5160 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5162 return avic && irqchip_split(vcpu->kvm);
5165 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5169 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5173 /* Note: Currently only used by Hyper-V. */
5174 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5176 struct vcpu_svm *svm = to_svm(vcpu);
5177 struct vmcb *vmcb = svm->vmcb;
5179 if (kvm_vcpu_apicv_active(vcpu))
5180 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5182 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5183 mark_dirty(vmcb, VMCB_AVIC);
5186 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5191 static int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5193 if (!vcpu->arch.apicv_active)
5196 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5197 smp_mb__after_atomic();
5199 if (avic_vcpu_is_running(vcpu)) {
5200 int cpuid = vcpu->cpu;
5202 if (cpuid != get_cpu())
5203 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5206 kvm_vcpu_wake_up(vcpu);
5211 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5216 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5218 unsigned long flags;
5219 struct amd_svm_iommu_ir *cur;
5221 spin_lock_irqsave(&svm->ir_list_lock, flags);
5222 list_for_each_entry(cur, &svm->ir_list, node) {
5223 if (cur->data != pi->ir_data)
5225 list_del(&cur->node);
5229 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5232 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5235 unsigned long flags;
5236 struct amd_svm_iommu_ir *ir;
5239 * In some cases, the existing irte is updaed and re-set,
5240 * so we need to check here if it's already been * added
5243 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5244 struct kvm *kvm = svm->vcpu.kvm;
5245 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5246 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5247 struct vcpu_svm *prev_svm;
5254 prev_svm = to_svm(prev_vcpu);
5255 svm_ir_list_del(prev_svm, pi);
5259 * Allocating new amd_iommu_pi_data, which will get
5260 * add to the per-vcpu ir_list.
5262 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5267 ir->data = pi->ir_data;
5269 spin_lock_irqsave(&svm->ir_list_lock, flags);
5270 list_add(&ir->node, &svm->ir_list);
5271 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5278 * The HW cannot support posting multicast/broadcast
5279 * interrupts to a vCPU. So, we still use legacy interrupt
5280 * remapping for these kind of interrupts.
5282 * For lowest-priority interrupts, we only support
5283 * those with single CPU as the destination, e.g. user
5284 * configures the interrupts via /proc/irq or uses
5285 * irqbalance to make the interrupts single-CPU.
5288 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5289 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5291 struct kvm_lapic_irq irq;
5292 struct kvm_vcpu *vcpu = NULL;
5294 kvm_set_msi_irq(kvm, e, &irq);
5296 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
5297 !kvm_irq_is_postable(&irq)) {
5298 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5299 __func__, irq.vector);
5303 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5305 *svm = to_svm(vcpu);
5306 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5307 vcpu_info->vector = irq.vector;
5313 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5316 * @host_irq: host irq of the interrupt
5317 * @guest_irq: gsi of the interrupt
5318 * @set: set or unset PI
5319 * returns 0 on success, < 0 on failure
5321 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5322 uint32_t guest_irq, bool set)
5324 struct kvm_kernel_irq_routing_entry *e;
5325 struct kvm_irq_routing_table *irq_rt;
5326 int idx, ret = -EINVAL;
5328 if (!kvm_arch_has_assigned_device(kvm) ||
5329 !irq_remapping_cap(IRQ_POSTING_CAP))
5332 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5333 __func__, host_irq, guest_irq, set);
5335 idx = srcu_read_lock(&kvm->irq_srcu);
5336 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5337 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5339 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5340 struct vcpu_data vcpu_info;
5341 struct vcpu_svm *svm = NULL;
5343 if (e->type != KVM_IRQ_ROUTING_MSI)
5347 * Here, we setup with legacy mode in the following cases:
5348 * 1. When cannot target interrupt to a specific vcpu.
5349 * 2. Unsetting posted interrupt.
5350 * 3. APIC virtialization is disabled for the vcpu.
5351 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5353 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5354 kvm_vcpu_apicv_active(&svm->vcpu)) {
5355 struct amd_iommu_pi_data pi;
5357 /* Try to enable guest_mode in IRTE */
5358 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5360 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5362 pi.is_guest_mode = true;
5363 pi.vcpu_data = &vcpu_info;
5364 ret = irq_set_vcpu_affinity(host_irq, &pi);
5367 * Here, we successfully setting up vcpu affinity in
5368 * IOMMU guest mode. Now, we need to store the posted
5369 * interrupt information in a per-vcpu ir_list so that
5370 * we can reference to them directly when we update vcpu
5371 * scheduling information in IOMMU irte.
5373 if (!ret && pi.is_guest_mode)
5374 svm_ir_list_add(svm, &pi);
5376 /* Use legacy mode in IRTE */
5377 struct amd_iommu_pi_data pi;
5380 * Here, pi is used to:
5381 * - Tell IOMMU to use legacy mode for this interrupt.
5382 * - Retrieve ga_tag of prior interrupt remapping data.
5384 pi.is_guest_mode = false;
5385 ret = irq_set_vcpu_affinity(host_irq, &pi);
5388 * Check if the posted interrupt was previously
5389 * setup with the guest_mode by checking if the ga_tag
5390 * was cached. If so, we need to clean up the per-vcpu
5393 if (!ret && pi.prev_ga_tag) {
5394 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5395 struct kvm_vcpu *vcpu;
5397 vcpu = kvm_get_vcpu_by_id(kvm, id);
5399 svm_ir_list_del(to_svm(vcpu), &pi);
5404 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5405 e->gsi, vcpu_info.vector,
5406 vcpu_info.pi_desc_addr, set);
5410 pr_err("%s: failed to update PI IRTE\n", __func__);
5417 srcu_read_unlock(&kvm->irq_srcu, idx);
5421 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5423 struct vcpu_svm *svm = to_svm(vcpu);
5424 struct vmcb *vmcb = svm->vmcb;
5426 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5427 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5428 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5433 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5435 struct vcpu_svm *svm = to_svm(vcpu);
5437 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5440 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5442 struct vcpu_svm *svm = to_svm(vcpu);
5445 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5446 set_intercept(svm, INTERCEPT_IRET);
5448 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5449 clr_intercept(svm, INTERCEPT_IRET);
5453 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5455 struct vcpu_svm *svm = to_svm(vcpu);
5456 struct vmcb *vmcb = svm->vmcb;
5459 if (!gif_set(svm) ||
5460 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5463 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5465 if (is_guest_mode(vcpu))
5466 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5471 static void enable_irq_window(struct kvm_vcpu *vcpu)
5473 struct vcpu_svm *svm = to_svm(vcpu);
5475 if (kvm_vcpu_apicv_active(vcpu))
5479 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5480 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5481 * get that intercept, this function will be called again though and
5482 * we'll get the vintr intercept. However, if the vGIF feature is
5483 * enabled, the STGI interception will not occur. Enable the irq
5484 * window under the assumption that the hardware will set the GIF.
5486 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5488 svm_inject_irq(svm, 0x0);
5492 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5494 struct vcpu_svm *svm = to_svm(vcpu);
5496 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5498 return; /* IRET will cause a vm exit */
5500 if (!gif_set(svm)) {
5501 if (vgif_enabled(svm))
5502 set_intercept(svm, INTERCEPT_STGI);
5503 return; /* STGI will cause a vm exit */
5506 if (svm->nested.exit_required)
5507 return; /* we're not going to run the guest yet */
5510 * Something prevents NMI from been injected. Single step over possible
5511 * problem (IRET or exception injection or interrupt shadow)
5513 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5514 svm->nmi_singlestep = true;
5515 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5518 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5523 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5528 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5530 struct vcpu_svm *svm = to_svm(vcpu);
5532 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5533 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5535 svm->asid_generation--;
5538 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5540 struct vcpu_svm *svm = to_svm(vcpu);
5542 invlpga(gva, svm->vmcb->control.asid);
5545 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5549 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5551 struct vcpu_svm *svm = to_svm(vcpu);
5553 if (svm_nested_virtualize_tpr(vcpu))
5556 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5557 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5558 kvm_set_cr8(vcpu, cr8);
5562 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5564 struct vcpu_svm *svm = to_svm(vcpu);
5567 if (svm_nested_virtualize_tpr(vcpu) ||
5568 kvm_vcpu_apicv_active(vcpu))
5571 cr8 = kvm_get_cr8(vcpu);
5572 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5573 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5576 static void svm_complete_interrupts(struct vcpu_svm *svm)
5580 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5581 unsigned int3_injected = svm->int3_injected;
5583 svm->int3_injected = 0;
5586 * If we've made progress since setting HF_IRET_MASK, we've
5587 * executed an IRET and can allow NMI injection.
5589 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5590 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5591 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5592 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5595 svm->vcpu.arch.nmi_injected = false;
5596 kvm_clear_exception_queue(&svm->vcpu);
5597 kvm_clear_interrupt_queue(&svm->vcpu);
5599 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5602 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5604 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5605 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5608 case SVM_EXITINTINFO_TYPE_NMI:
5609 svm->vcpu.arch.nmi_injected = true;
5611 case SVM_EXITINTINFO_TYPE_EXEPT:
5613 * In case of software exceptions, do not reinject the vector,
5614 * but re-execute the instruction instead. Rewind RIP first
5615 * if we emulated INT3 before.
5617 if (kvm_exception_is_soft(vector)) {
5618 if (vector == BP_VECTOR && int3_injected &&
5619 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5620 kvm_rip_write(&svm->vcpu,
5621 kvm_rip_read(&svm->vcpu) -
5625 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5626 u32 err = svm->vmcb->control.exit_int_info_err;
5627 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5630 kvm_requeue_exception(&svm->vcpu, vector);
5632 case SVM_EXITINTINFO_TYPE_INTR:
5633 kvm_queue_interrupt(&svm->vcpu, vector, false);
5640 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5642 struct vcpu_svm *svm = to_svm(vcpu);
5643 struct vmcb_control_area *control = &svm->vmcb->control;
5645 control->exit_int_info = control->event_inj;
5646 control->exit_int_info_err = control->event_inj_err;
5647 control->event_inj = 0;
5648 svm_complete_interrupts(svm);
5651 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5653 struct vcpu_svm *svm = to_svm(vcpu);
5655 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5656 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5657 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5660 * A vmexit emulation is required before the vcpu can be executed
5663 if (unlikely(svm->nested.exit_required))
5667 * Disable singlestep if we're injecting an interrupt/exception.
5668 * We don't want our modified rflags to be pushed on the stack where
5669 * we might not be able to easily reset them if we disabled NMI
5672 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5674 * Event injection happens before external interrupts cause a
5675 * vmexit and interrupts are disabled here, so smp_send_reschedule
5676 * is enough to force an immediate vmexit.
5678 disable_nmi_singlestep(svm);
5679 smp_send_reschedule(vcpu->cpu);
5684 sync_lapic_to_cr8(vcpu);
5686 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5689 kvm_load_guest_xcr0(vcpu);
5691 if (lapic_in_kernel(vcpu) &&
5692 vcpu->arch.apic->lapic_timer.timer_advance_ns)
5693 kvm_wait_lapic_expire(vcpu);
5696 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5697 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5698 * is no need to worry about the conditional branch over the wrmsr
5699 * being speculatively taken.
5701 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5706 "push %%" _ASM_BP "; \n\t"
5707 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5708 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5709 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5710 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5711 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5712 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5713 #ifdef CONFIG_X86_64
5714 "mov %c[r8](%[svm]), %%r8 \n\t"
5715 "mov %c[r9](%[svm]), %%r9 \n\t"
5716 "mov %c[r10](%[svm]), %%r10 \n\t"
5717 "mov %c[r11](%[svm]), %%r11 \n\t"
5718 "mov %c[r12](%[svm]), %%r12 \n\t"
5719 "mov %c[r13](%[svm]), %%r13 \n\t"
5720 "mov %c[r14](%[svm]), %%r14 \n\t"
5721 "mov %c[r15](%[svm]), %%r15 \n\t"
5724 /* Enter guest mode */
5725 "push %%" _ASM_AX " \n\t"
5726 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5727 __ex("vmload %%" _ASM_AX) "\n\t"
5728 __ex("vmrun %%" _ASM_AX) "\n\t"
5729 __ex("vmsave %%" _ASM_AX) "\n\t"
5730 "pop %%" _ASM_AX " \n\t"
5732 /* Save guest registers, load host registers */
5733 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5734 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5735 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5736 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5737 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5738 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5739 #ifdef CONFIG_X86_64
5740 "mov %%r8, %c[r8](%[svm]) \n\t"
5741 "mov %%r9, %c[r9](%[svm]) \n\t"
5742 "mov %%r10, %c[r10](%[svm]) \n\t"
5743 "mov %%r11, %c[r11](%[svm]) \n\t"
5744 "mov %%r12, %c[r12](%[svm]) \n\t"
5745 "mov %%r13, %c[r13](%[svm]) \n\t"
5746 "mov %%r14, %c[r14](%[svm]) \n\t"
5747 "mov %%r15, %c[r15](%[svm]) \n\t"
5749 * Clear host registers marked as clobbered to prevent
5752 "xor %%r8d, %%r8d \n\t"
5753 "xor %%r9d, %%r9d \n\t"
5754 "xor %%r10d, %%r10d \n\t"
5755 "xor %%r11d, %%r11d \n\t"
5756 "xor %%r12d, %%r12d \n\t"
5757 "xor %%r13d, %%r13d \n\t"
5758 "xor %%r14d, %%r14d \n\t"
5759 "xor %%r15d, %%r15d \n\t"
5761 "xor %%ebx, %%ebx \n\t"
5762 "xor %%ecx, %%ecx \n\t"
5763 "xor %%edx, %%edx \n\t"
5764 "xor %%esi, %%esi \n\t"
5765 "xor %%edi, %%edi \n\t"
5769 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5770 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5771 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5772 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5773 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5774 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5775 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5776 #ifdef CONFIG_X86_64
5777 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5778 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5779 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5780 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5781 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5782 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5783 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5784 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5787 #ifdef CONFIG_X86_64
5788 , "rbx", "rcx", "rdx", "rsi", "rdi"
5789 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5791 , "ebx", "ecx", "edx", "esi", "edi"
5795 /* Eliminate branch target predictions from guest mode */
5798 #ifdef CONFIG_X86_64
5799 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5801 loadsegment(fs, svm->host.fs);
5802 #ifndef CONFIG_X86_32_LAZY_GS
5803 loadsegment(gs, svm->host.gs);
5808 * We do not use IBRS in the kernel. If this vCPU has used the
5809 * SPEC_CTRL MSR it may have left it on; save the value and
5810 * turn it off. This is much more efficient than blindly adding
5811 * it to the atomic save/restore list. Especially as the former
5812 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5814 * For non-nested case:
5815 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5819 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5822 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5823 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5827 local_irq_disable();
5829 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5831 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5832 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5833 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5834 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5836 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5837 kvm_before_interrupt(&svm->vcpu);
5839 kvm_put_guest_xcr0(vcpu);
5842 /* Any pending NMI will happen here */
5844 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5845 kvm_after_interrupt(&svm->vcpu);
5847 sync_cr8_to_lapic(vcpu);
5851 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5853 /* if exit due to PF check for async PF */
5854 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5855 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5858 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5859 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5863 * We need to handle MC intercepts here before the vcpu has a chance to
5864 * change the physical cpu
5866 if (unlikely(svm->vmcb->control.exit_code ==
5867 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5868 svm_handle_mce(svm);
5870 mark_all_clean(svm->vmcb);
5872 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5874 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5876 struct vcpu_svm *svm = to_svm(vcpu);
5878 svm->vmcb->save.cr3 = __sme_set(root);
5879 mark_dirty(svm->vmcb, VMCB_CR);
5882 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5884 struct vcpu_svm *svm = to_svm(vcpu);
5886 svm->vmcb->control.nested_cr3 = __sme_set(root);
5887 mark_dirty(svm->vmcb, VMCB_NPT);
5889 /* Also sync guest cr3 here in case we live migrate */
5890 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5891 mark_dirty(svm->vmcb, VMCB_CR);
5894 static int is_disabled(void)
5898 rdmsrl(MSR_VM_CR, vm_cr);
5899 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5906 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5909 * Patch in the VMMCALL instruction:
5911 hypercall[0] = 0x0f;
5912 hypercall[1] = 0x01;
5913 hypercall[2] = 0xd9;
5916 static int __init svm_check_processor_compat(void)
5921 static bool svm_cpu_has_accelerated_tpr(void)
5926 static bool svm_has_emulated_msr(int index)
5929 case MSR_IA32_MCG_EXT_CTL:
5930 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5939 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5944 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5946 struct vcpu_svm *svm = to_svm(vcpu);
5948 /* Update nrips enabled cache */
5949 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5951 if (!kvm_vcpu_apicv_active(vcpu))
5954 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5957 #define F(x) bit(X86_FEATURE_##x)
5959 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5964 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5968 entry->ecx |= (1 << 2); /* Set SVM bit */
5971 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5972 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5973 entry->ebx |= F(VIRT_SSBD);
5976 entry->eax = 1; /* SVM revision 1 */
5977 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5978 ASID emulation to nested SVM */
5979 entry->ecx = 0; /* Reserved */
5980 entry->edx = 0; /* Per default do not support any
5981 additional features */
5983 /* Support next_rip if host supports it */
5984 if (boot_cpu_has(X86_FEATURE_NRIPS))
5985 entry->edx |= F(NRIPS);
5987 /* Support NPT for the guest if enabled */
5989 entry->edx |= F(NPT);
5993 /* Support memory encryption cpuid if host supports it */
5994 if (boot_cpu_has(X86_FEATURE_SEV))
5995 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5996 &entry->ecx, &entry->edx);
6001 static int svm_get_lpage_level(void)
6003 return PT_PDPE_LEVEL;
6006 static bool svm_rdtscp_supported(void)
6008 return boot_cpu_has(X86_FEATURE_RDTSCP);
6011 static bool svm_invpcid_supported(void)
6016 static bool svm_mpx_supported(void)
6021 static bool svm_xsaves_supported(void)
6026 static bool svm_umip_emulated(void)
6031 static bool svm_pt_supported(void)
6036 static bool svm_has_wbinvd_exit(void)
6041 static bool svm_pku_supported(void)
6046 #define PRE_EX(exit) { .exit_code = (exit), \
6047 .stage = X86_ICPT_PRE_EXCEPT, }
6048 #define POST_EX(exit) { .exit_code = (exit), \
6049 .stage = X86_ICPT_POST_EXCEPT, }
6050 #define POST_MEM(exit) { .exit_code = (exit), \
6051 .stage = X86_ICPT_POST_MEMACCESS, }
6053 static const struct __x86_intercept {
6055 enum x86_intercept_stage stage;
6056 } x86_intercept_map[] = {
6057 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
6058 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
6059 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
6060 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
6061 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
6062 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
6063 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
6064 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
6065 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
6066 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
6067 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
6068 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
6069 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
6070 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
6071 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
6072 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
6073 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
6074 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
6075 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
6076 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
6077 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
6078 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
6079 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
6080 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
6081 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
6082 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
6083 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
6084 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
6085 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
6086 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
6087 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
6088 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
6089 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
6090 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
6091 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
6092 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
6093 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
6094 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
6095 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
6096 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
6097 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
6098 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
6099 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
6100 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
6101 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
6102 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
6103 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
6110 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6111 struct x86_instruction_info *info,
6112 enum x86_intercept_stage stage)
6114 struct vcpu_svm *svm = to_svm(vcpu);
6115 int vmexit, ret = X86EMUL_CONTINUE;
6116 struct __x86_intercept icpt_info;
6117 struct vmcb *vmcb = svm->vmcb;
6119 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6122 icpt_info = x86_intercept_map[info->intercept];
6124 if (stage != icpt_info.stage)
6127 switch (icpt_info.exit_code) {
6128 case SVM_EXIT_READ_CR0:
6129 if (info->intercept == x86_intercept_cr_read)
6130 icpt_info.exit_code += info->modrm_reg;
6132 case SVM_EXIT_WRITE_CR0: {
6133 unsigned long cr0, val;
6136 if (info->intercept == x86_intercept_cr_write)
6137 icpt_info.exit_code += info->modrm_reg;
6139 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6140 info->intercept == x86_intercept_clts)
6143 intercept = svm->nested.intercept;
6145 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6148 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6149 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6151 if (info->intercept == x86_intercept_lmsw) {
6154 /* lmsw can't clear PE - catch this here */
6155 if (cr0 & X86_CR0_PE)
6160 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6164 case SVM_EXIT_READ_DR0:
6165 case SVM_EXIT_WRITE_DR0:
6166 icpt_info.exit_code += info->modrm_reg;
6169 if (info->intercept == x86_intercept_wrmsr)
6170 vmcb->control.exit_info_1 = 1;
6172 vmcb->control.exit_info_1 = 0;
6174 case SVM_EXIT_PAUSE:
6176 * We get this for NOP only, but pause
6177 * is rep not, check this here
6179 if (info->rep_prefix != REPE_PREFIX)
6182 case SVM_EXIT_IOIO: {
6186 if (info->intercept == x86_intercept_in ||
6187 info->intercept == x86_intercept_ins) {
6188 exit_info = ((info->src_val & 0xffff) << 16) |
6190 bytes = info->dst_bytes;
6192 exit_info = (info->dst_val & 0xffff) << 16;
6193 bytes = info->src_bytes;
6196 if (info->intercept == x86_intercept_outs ||
6197 info->intercept == x86_intercept_ins)
6198 exit_info |= SVM_IOIO_STR_MASK;
6200 if (info->rep_prefix)
6201 exit_info |= SVM_IOIO_REP_MASK;
6203 bytes = min(bytes, 4u);
6205 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6207 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6209 vmcb->control.exit_info_1 = exit_info;
6210 vmcb->control.exit_info_2 = info->next_rip;
6218 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6219 if (static_cpu_has(X86_FEATURE_NRIPS))
6220 vmcb->control.next_rip = info->next_rip;
6221 vmcb->control.exit_code = icpt_info.exit_code;
6222 vmexit = nested_svm_exit_handled(svm);
6224 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6231 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6236 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6238 if (pause_filter_thresh)
6239 shrink_ple_window(vcpu);
6242 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6244 if (avic_handle_apic_id_update(vcpu) != 0)
6246 avic_handle_dfr_update(vcpu);
6247 avic_handle_ldr_update(vcpu);
6250 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6252 /* [63:9] are reserved. */
6253 vcpu->arch.mcg_cap &= 0x1ff;
6256 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6258 struct vcpu_svm *svm = to_svm(vcpu);
6260 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6264 if (is_guest_mode(&svm->vcpu) &&
6265 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6266 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6267 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6268 svm->nested.exit_required = true;
6275 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6277 struct vcpu_svm *svm = to_svm(vcpu);
6280 if (is_guest_mode(vcpu)) {
6281 /* FED8h - SVM Guest */
6282 put_smstate(u64, smstate, 0x7ed8, 1);
6283 /* FEE0h - SVM Guest VMCB Physical Address */
6284 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6286 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6287 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6288 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6290 ret = nested_svm_vmexit(svm);
6297 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6299 struct vcpu_svm *svm = to_svm(vcpu);
6300 struct vmcb *nested_vmcb;
6301 struct kvm_host_map map;
6305 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6306 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6309 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6311 nested_vmcb = map.hva;
6312 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6317 static int enable_smi_window(struct kvm_vcpu *vcpu)
6319 struct vcpu_svm *svm = to_svm(vcpu);
6321 if (!gif_set(svm)) {
6322 if (vgif_enabled(svm))
6323 set_intercept(svm, INTERCEPT_STGI);
6324 /* STGI will cause a vm exit */
6330 static int sev_asid_new(void)
6335 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6337 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6338 if (pos >= max_sev_asid)
6341 set_bit(pos, sev_asid_bitmap);
6345 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6347 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6351 if (unlikely(sev->active))
6354 asid = sev_asid_new();
6358 ret = sev_platform_init(&argp->error);
6364 INIT_LIST_HEAD(&sev->regions_list);
6369 __sev_asid_free(asid);
6373 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6375 struct sev_data_activate *data;
6376 int asid = sev_get_asid(kvm);
6379 wbinvd_on_all_cpus();
6381 ret = sev_guest_df_flush(error);
6385 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6389 /* activate ASID on the given handle */
6390 data->handle = handle;
6392 ret = sev_guest_activate(data, error);
6398 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6407 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6413 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6415 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6417 return __sev_issue_cmd(sev->fd, id, data, error);
6420 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6422 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6423 struct sev_data_launch_start *start;
6424 struct kvm_sev_launch_start params;
6425 void *dh_blob, *session_blob;
6426 int *error = &argp->error;
6429 if (!sev_guest(kvm))
6432 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6435 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6440 if (params.dh_uaddr) {
6441 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6442 if (IS_ERR(dh_blob)) {
6443 ret = PTR_ERR(dh_blob);
6447 start->dh_cert_address = __sme_set(__pa(dh_blob));
6448 start->dh_cert_len = params.dh_len;
6451 session_blob = NULL;
6452 if (params.session_uaddr) {
6453 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6454 if (IS_ERR(session_blob)) {
6455 ret = PTR_ERR(session_blob);
6459 start->session_address = __sme_set(__pa(session_blob));
6460 start->session_len = params.session_len;
6463 start->handle = params.handle;
6464 start->policy = params.policy;
6466 /* create memory encryption context */
6467 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6469 goto e_free_session;
6471 /* Bind ASID to this guest */
6472 ret = sev_bind_asid(kvm, start->handle, error);
6474 goto e_free_session;
6476 /* return handle to userspace */
6477 params.handle = start->handle;
6478 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
6479 sev_unbind_asid(kvm, start->handle);
6481 goto e_free_session;
6484 sev->handle = start->handle;
6485 sev->fd = argp->sev_fd;
6488 kfree(session_blob);
6496 static unsigned long get_num_contig_pages(unsigned long idx,
6497 struct page **inpages, unsigned long npages)
6499 unsigned long paddr, next_paddr;
6500 unsigned long i = idx + 1, pages = 1;
6502 /* find the number of contiguous pages starting from idx */
6503 paddr = __sme_page_pa(inpages[idx]);
6504 while (i < npages) {
6505 next_paddr = __sme_page_pa(inpages[i++]);
6506 if ((paddr + PAGE_SIZE) == next_paddr) {
6517 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6519 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6520 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6521 struct kvm_sev_launch_update_data params;
6522 struct sev_data_launch_update_data *data;
6523 struct page **inpages;
6526 if (!sev_guest(kvm))
6529 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6532 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6536 vaddr = params.uaddr;
6538 vaddr_end = vaddr + size;
6540 /* Lock the user memory. */
6541 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6548 * The LAUNCH_UPDATE command will perform in-place encryption of the
6549 * memory content (i.e it will write the same memory region with C=1).
6550 * It's possible that the cache may contain the data with C=0, i.e.,
6551 * unencrypted so invalidate it first.
6553 sev_clflush_pages(inpages, npages);
6555 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6559 * If the user buffer is not page-aligned, calculate the offset
6562 offset = vaddr & (PAGE_SIZE - 1);
6564 /* Calculate the number of pages that can be encrypted in one go. */
6565 pages = get_num_contig_pages(i, inpages, npages);
6567 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6569 data->handle = sev->handle;
6571 data->address = __sme_page_pa(inpages[i]) + offset;
6572 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6577 next_vaddr = vaddr + len;
6581 /* content of memory is updated, mark pages dirty */
6582 for (i = 0; i < npages; i++) {
6583 set_page_dirty_lock(inpages[i]);
6584 mark_page_accessed(inpages[i]);
6586 /* unlock the user pages */
6587 sev_unpin_memory(kvm, inpages, npages);
6593 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6595 void __user *measure = (void __user *)(uintptr_t)argp->data;
6596 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6597 struct sev_data_launch_measure *data;
6598 struct kvm_sev_launch_measure params;
6599 void __user *p = NULL;
6603 if (!sev_guest(kvm))
6606 if (copy_from_user(¶ms, measure, sizeof(params)))
6609 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6613 /* User wants to query the blob length */
6617 p = (void __user *)(uintptr_t)params.uaddr;
6619 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6625 blob = kmalloc(params.len, GFP_KERNEL);
6629 data->address = __psp_pa(blob);
6630 data->len = params.len;
6634 data->handle = sev->handle;
6635 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6638 * If we query the session length, FW responded with expected data.
6647 if (copy_to_user(p, blob, params.len))
6652 params.len = data->len;
6653 if (copy_to_user(measure, ¶ms, sizeof(params)))
6662 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6664 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6665 struct sev_data_launch_finish *data;
6668 if (!sev_guest(kvm))
6671 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6675 data->handle = sev->handle;
6676 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6682 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6684 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6685 struct kvm_sev_guest_status params;
6686 struct sev_data_guest_status *data;
6689 if (!sev_guest(kvm))
6692 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6696 data->handle = sev->handle;
6697 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6701 params.policy = data->policy;
6702 params.state = data->state;
6703 params.handle = data->handle;
6705 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
6712 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6713 unsigned long dst, int size,
6714 int *error, bool enc)
6716 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6717 struct sev_data_dbg *data;
6720 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6724 data->handle = sev->handle;
6725 data->dst_addr = dst;
6726 data->src_addr = src;
6729 ret = sev_issue_cmd(kvm,
6730 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6736 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6737 unsigned long dst_paddr, int sz, int *err)
6742 * Its safe to read more than we are asked, caller should ensure that
6743 * destination has enough space.
6745 src_paddr = round_down(src_paddr, 16);
6746 offset = src_paddr & 15;
6747 sz = round_up(sz + offset, 16);
6749 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6752 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6753 unsigned long __user dst_uaddr,
6754 unsigned long dst_paddr,
6757 struct page *tpage = NULL;
6760 /* if inputs are not 16-byte then use intermediate buffer */
6761 if (!IS_ALIGNED(dst_paddr, 16) ||
6762 !IS_ALIGNED(paddr, 16) ||
6763 !IS_ALIGNED(size, 16)) {
6764 tpage = (void *)alloc_page(GFP_KERNEL);
6768 dst_paddr = __sme_page_pa(tpage);
6771 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6776 offset = paddr & 15;
6777 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6778 page_address(tpage) + offset, size))
6789 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6790 unsigned long __user vaddr,
6791 unsigned long dst_paddr,
6792 unsigned long __user dst_vaddr,
6793 int size, int *error)
6795 struct page *src_tpage = NULL;
6796 struct page *dst_tpage = NULL;
6797 int ret, len = size;
6799 /* If source buffer is not aligned then use an intermediate buffer */
6800 if (!IS_ALIGNED(vaddr, 16)) {
6801 src_tpage = alloc_page(GFP_KERNEL);
6805 if (copy_from_user(page_address(src_tpage),
6806 (void __user *)(uintptr_t)vaddr, size)) {
6807 __free_page(src_tpage);
6811 paddr = __sme_page_pa(src_tpage);
6815 * If destination buffer or length is not aligned then do read-modify-write:
6816 * - decrypt destination in an intermediate buffer
6817 * - copy the source buffer in an intermediate buffer
6818 * - use the intermediate buffer as source buffer
6820 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6823 dst_tpage = alloc_page(GFP_KERNEL);
6829 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6830 __sme_page_pa(dst_tpage), size, error);
6835 * If source is kernel buffer then use memcpy() otherwise
6838 dst_offset = dst_paddr & 15;
6841 memcpy(page_address(dst_tpage) + dst_offset,
6842 page_address(src_tpage), size);
6844 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6845 (void __user *)(uintptr_t)vaddr, size)) {
6851 paddr = __sme_page_pa(dst_tpage);
6852 dst_paddr = round_down(dst_paddr, 16);
6853 len = round_up(size, 16);
6856 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6860 __free_page(src_tpage);
6862 __free_page(dst_tpage);
6866 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6868 unsigned long vaddr, vaddr_end, next_vaddr;
6869 unsigned long dst_vaddr;
6870 struct page **src_p, **dst_p;
6871 struct kvm_sev_dbg debug;
6876 if (!sev_guest(kvm))
6879 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6882 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6884 if (!debug.dst_uaddr)
6887 vaddr = debug.src_uaddr;
6889 vaddr_end = vaddr + size;
6890 dst_vaddr = debug.dst_uaddr;
6892 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6893 int len, s_off, d_off;
6895 /* lock userspace source and destination page */
6896 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6900 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6902 sev_unpin_memory(kvm, src_p, n);
6907 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6908 * memory content (i.e it will write the same memory region with C=1).
6909 * It's possible that the cache may contain the data with C=0, i.e.,
6910 * unencrypted so invalidate it first.
6912 sev_clflush_pages(src_p, 1);
6913 sev_clflush_pages(dst_p, 1);
6916 * Since user buffer may not be page aligned, calculate the
6917 * offset within the page.
6919 s_off = vaddr & ~PAGE_MASK;
6920 d_off = dst_vaddr & ~PAGE_MASK;
6921 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6924 ret = __sev_dbg_decrypt_user(kvm,
6925 __sme_page_pa(src_p[0]) + s_off,
6927 __sme_page_pa(dst_p[0]) + d_off,
6930 ret = __sev_dbg_encrypt_user(kvm,
6931 __sme_page_pa(src_p[0]) + s_off,
6933 __sme_page_pa(dst_p[0]) + d_off,
6937 sev_unpin_memory(kvm, src_p, n);
6938 sev_unpin_memory(kvm, dst_p, n);
6943 next_vaddr = vaddr + len;
6944 dst_vaddr = dst_vaddr + len;
6951 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6953 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6954 struct sev_data_launch_secret *data;
6955 struct kvm_sev_launch_secret params;
6956 struct page **pages;
6961 if (!sev_guest(kvm))
6964 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6967 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6972 * The secret must be copied into contiguous memory region, lets verify
6973 * that userspace memory pages are contiguous before we issue command.
6975 if (get_num_contig_pages(0, pages, n) != n) {
6977 goto e_unpin_memory;
6981 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6983 goto e_unpin_memory;
6985 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6986 data->guest_address = __sme_page_pa(pages[0]) + offset;
6987 data->guest_len = params.guest_len;
6989 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6991 ret = PTR_ERR(blob);
6995 data->trans_address = __psp_pa(blob);
6996 data->trans_len = params.trans_len;
6998 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
7003 data->hdr_address = __psp_pa(hdr);
7004 data->hdr_len = params.hdr_len;
7006 data->handle = sev->handle;
7007 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
7016 sev_unpin_memory(kvm, pages, n);
7020 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
7022 struct kvm_sev_cmd sev_cmd;
7025 if (!svm_sev_enabled())
7028 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
7031 mutex_lock(&kvm->lock);
7033 switch (sev_cmd.id) {
7035 r = sev_guest_init(kvm, &sev_cmd);
7037 case KVM_SEV_LAUNCH_START:
7038 r = sev_launch_start(kvm, &sev_cmd);
7040 case KVM_SEV_LAUNCH_UPDATE_DATA:
7041 r = sev_launch_update_data(kvm, &sev_cmd);
7043 case KVM_SEV_LAUNCH_MEASURE:
7044 r = sev_launch_measure(kvm, &sev_cmd);
7046 case KVM_SEV_LAUNCH_FINISH:
7047 r = sev_launch_finish(kvm, &sev_cmd);
7049 case KVM_SEV_GUEST_STATUS:
7050 r = sev_guest_status(kvm, &sev_cmd);
7052 case KVM_SEV_DBG_DECRYPT:
7053 r = sev_dbg_crypt(kvm, &sev_cmd, true);
7055 case KVM_SEV_DBG_ENCRYPT:
7056 r = sev_dbg_crypt(kvm, &sev_cmd, false);
7058 case KVM_SEV_LAUNCH_SECRET:
7059 r = sev_launch_secret(kvm, &sev_cmd);
7066 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7070 mutex_unlock(&kvm->lock);
7074 static int svm_register_enc_region(struct kvm *kvm,
7075 struct kvm_enc_region *range)
7077 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7078 struct enc_region *region;
7081 if (!sev_guest(kvm))
7084 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7087 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7091 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
7092 if (!region->pages) {
7098 * The guest may change the memory encryption attribute from C=0 -> C=1
7099 * or vice versa for this memory range. Lets make sure caches are
7100 * flushed to ensure that guest data gets written into memory with
7103 sev_clflush_pages(region->pages, region->npages);
7105 region->uaddr = range->addr;
7106 region->size = range->size;
7108 mutex_lock(&kvm->lock);
7109 list_add_tail(®ion->list, &sev->regions_list);
7110 mutex_unlock(&kvm->lock);
7119 static struct enc_region *
7120 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7122 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7123 struct list_head *head = &sev->regions_list;
7124 struct enc_region *i;
7126 list_for_each_entry(i, head, list) {
7127 if (i->uaddr == range->addr &&
7128 i->size == range->size)
7136 static int svm_unregister_enc_region(struct kvm *kvm,
7137 struct kvm_enc_region *range)
7139 struct enc_region *region;
7142 mutex_lock(&kvm->lock);
7144 if (!sev_guest(kvm)) {
7149 region = find_enc_region(kvm, range);
7155 __unregister_enc_region_locked(kvm, region);
7157 mutex_unlock(&kvm->lock);
7161 mutex_unlock(&kvm->lock);
7165 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7167 unsigned long cr4 = kvm_read_cr4(vcpu);
7168 bool smep = cr4 & X86_CR4_SMEP;
7169 bool smap = cr4 & X86_CR4_SMAP;
7170 bool is_user = svm_get_cpl(vcpu) == 3;
7173 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7176 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7177 * possible that CPU microcode implementing DecodeAssist will fail
7178 * to read bytes of instruction which caused #NPF. In this case,
7179 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7180 * return 0 instead of the correct guest instruction bytes.
7182 * This happens because CPU microcode reading instruction bytes
7183 * uses a special opcode which attempts to read data using CPL=0
7184 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7185 * fault, it gives up and returns no instruction bytes.
7188 * We reach here in case CPU supports DecodeAssist, raised #NPF and
7189 * returned 0 in GuestIntrBytes field of the VMCB.
7190 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7191 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7192 * in case vCPU CPL==3 (Because otherwise guest would have triggered
7193 * a SMEP fault instead of #NPF).
7194 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7195 * As most guests enable SMAP if they have also enabled SMEP, use above
7196 * logic in order to attempt minimize false-positive of detecting errata
7197 * while still preserving all cases semantic correctness.
7200 * To determine what instruction the guest was executing, the hypervisor
7201 * will have to decode the instruction at the instruction pointer.
7203 * In non SEV guest, hypervisor will be able to read the guest
7204 * memory to decode the instruction pointer when insn_len is zero
7205 * so we return true to indicate that decoding is possible.
7207 * But in the SEV guest, the guest memory is encrypted with the
7208 * guest specific key and hypervisor will not be able to decode the
7209 * instruction pointer so we will not able to workaround it. Lets
7210 * print the error and request to kill the guest.
7212 if (smap && (!smep || is_user)) {
7213 if (!sev_guest(vcpu->kvm))
7216 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7217 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7223 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7225 struct vcpu_svm *svm = to_svm(vcpu);
7228 * TODO: Last condition latch INIT signals on vCPU when
7229 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7230 * To properly emulate the INIT intercept, SVM should implement
7231 * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7232 * there if an INIT signal is pending.
7234 return !gif_set(svm) ||
7235 (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
7238 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7239 .cpu_has_kvm_support = has_svm,
7240 .disabled_by_bios = is_disabled,
7241 .hardware_setup = svm_hardware_setup,
7242 .hardware_unsetup = svm_hardware_unsetup,
7243 .check_processor_compatibility = svm_check_processor_compat,
7244 .hardware_enable = svm_hardware_enable,
7245 .hardware_disable = svm_hardware_disable,
7246 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7247 .has_emulated_msr = svm_has_emulated_msr,
7249 .vcpu_create = svm_create_vcpu,
7250 .vcpu_free = svm_free_vcpu,
7251 .vcpu_reset = svm_vcpu_reset,
7253 .vm_alloc = svm_vm_alloc,
7254 .vm_free = svm_vm_free,
7255 .vm_init = avic_vm_init,
7256 .vm_destroy = svm_vm_destroy,
7258 .prepare_guest_switch = svm_prepare_guest_switch,
7259 .vcpu_load = svm_vcpu_load,
7260 .vcpu_put = svm_vcpu_put,
7261 .vcpu_blocking = svm_vcpu_blocking,
7262 .vcpu_unblocking = svm_vcpu_unblocking,
7264 .update_bp_intercept = update_bp_intercept,
7265 .get_msr_feature = svm_get_msr_feature,
7266 .get_msr = svm_get_msr,
7267 .set_msr = svm_set_msr,
7268 .get_segment_base = svm_get_segment_base,
7269 .get_segment = svm_get_segment,
7270 .set_segment = svm_set_segment,
7271 .get_cpl = svm_get_cpl,
7272 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7273 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7274 .decache_cr3 = svm_decache_cr3,
7275 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7276 .set_cr0 = svm_set_cr0,
7277 .set_cr3 = svm_set_cr3,
7278 .set_cr4 = svm_set_cr4,
7279 .set_efer = svm_set_efer,
7280 .get_idt = svm_get_idt,
7281 .set_idt = svm_set_idt,
7282 .get_gdt = svm_get_gdt,
7283 .set_gdt = svm_set_gdt,
7284 .get_dr6 = svm_get_dr6,
7285 .set_dr6 = svm_set_dr6,
7286 .set_dr7 = svm_set_dr7,
7287 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7288 .cache_reg = svm_cache_reg,
7289 .get_rflags = svm_get_rflags,
7290 .set_rflags = svm_set_rflags,
7292 .tlb_flush = svm_flush_tlb,
7293 .tlb_flush_gva = svm_flush_tlb_gva,
7295 .run = svm_vcpu_run,
7296 .handle_exit = handle_exit,
7297 .skip_emulated_instruction = skip_emulated_instruction,
7298 .set_interrupt_shadow = svm_set_interrupt_shadow,
7299 .get_interrupt_shadow = svm_get_interrupt_shadow,
7300 .patch_hypercall = svm_patch_hypercall,
7301 .set_irq = svm_set_irq,
7302 .set_nmi = svm_inject_nmi,
7303 .queue_exception = svm_queue_exception,
7304 .cancel_injection = svm_cancel_injection,
7305 .interrupt_allowed = svm_interrupt_allowed,
7306 .nmi_allowed = svm_nmi_allowed,
7307 .get_nmi_mask = svm_get_nmi_mask,
7308 .set_nmi_mask = svm_set_nmi_mask,
7309 .enable_nmi_window = enable_nmi_window,
7310 .enable_irq_window = enable_irq_window,
7311 .update_cr8_intercept = update_cr8_intercept,
7312 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7313 .get_enable_apicv = svm_get_enable_apicv,
7314 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7315 .load_eoi_exitmap = svm_load_eoi_exitmap,
7316 .hwapic_irr_update = svm_hwapic_irr_update,
7317 .hwapic_isr_update = svm_hwapic_isr_update,
7318 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7319 .apicv_post_state_restore = avic_post_state_restore,
7321 .set_tss_addr = svm_set_tss_addr,
7322 .set_identity_map_addr = svm_set_identity_map_addr,
7323 .get_tdp_level = get_npt_level,
7324 .get_mt_mask = svm_get_mt_mask,
7326 .get_exit_info = svm_get_exit_info,
7328 .get_lpage_level = svm_get_lpage_level,
7330 .cpuid_update = svm_cpuid_update,
7332 .rdtscp_supported = svm_rdtscp_supported,
7333 .invpcid_supported = svm_invpcid_supported,
7334 .mpx_supported = svm_mpx_supported,
7335 .xsaves_supported = svm_xsaves_supported,
7336 .umip_emulated = svm_umip_emulated,
7337 .pt_supported = svm_pt_supported,
7338 .pku_supported = svm_pku_supported,
7340 .set_supported_cpuid = svm_set_supported_cpuid,
7342 .has_wbinvd_exit = svm_has_wbinvd_exit,
7344 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7345 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7347 .set_tdp_cr3 = set_tdp_cr3,
7349 .check_intercept = svm_check_intercept,
7350 .handle_exit_irqoff = svm_handle_exit_irqoff,
7352 .request_immediate_exit = __kvm_request_immediate_exit,
7354 .sched_in = svm_sched_in,
7356 .pmu_ops = &amd_pmu_ops,
7357 .deliver_posted_interrupt = svm_deliver_avic_intr,
7358 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7359 .update_pi_irte = svm_update_pi_irte,
7360 .setup_mce = svm_setup_mce,
7362 .smi_allowed = svm_smi_allowed,
7363 .pre_enter_smm = svm_pre_enter_smm,
7364 .pre_leave_smm = svm_pre_leave_smm,
7365 .enable_smi_window = enable_smi_window,
7367 .mem_enc_op = svm_mem_enc_op,
7368 .mem_enc_reg_region = svm_register_enc_region,
7369 .mem_enc_unreg_region = svm_unregister_enc_region,
7371 .nested_enable_evmcs = NULL,
7372 .nested_get_evmcs_version = NULL,
7374 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7376 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
7379 static int __init svm_init(void)
7381 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7382 __alignof__(struct vcpu_svm), THIS_MODULE);
7385 static void __exit svm_exit(void)
7390 module_init(svm_init)
7391 module_exit(svm_exit)