1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
15 #define pr_fmt(fmt) "SVM: " fmt
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
41 #include <linux/rwsem.h>
44 #include <asm/perf_event.h>
45 #include <asm/tlbflush.h>
47 #include <asm/debugreg.h>
48 #include <asm/kvm_para.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/spec-ctrl.h>
52 #include <asm/virtext.h>
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
57 MODULE_AUTHOR("Qumranet");
58 MODULE_LICENSE("GPL");
61 static const struct x86_cpu_id svm_cpu_id[] = {
62 X86_FEATURE_MATCH(X86_FEATURE_SVM),
65 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
74 #define SVM_FEATURE_LBRV (1 << 1)
75 #define SVM_FEATURE_SVML (1 << 2)
76 #define SVM_FEATURE_TSC_RATE (1 << 4)
77 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
78 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
79 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
80 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
82 #define SVM_AVIC_DOORBELL 0xc001011b
84 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
85 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
86 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
88 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
90 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
91 #define TSC_RATIO_MIN 0x0000000000000001ULL
92 #define TSC_RATIO_MAX 0x000000ffffffffffULL
94 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
97 * 0xff is broadcast, so the max index allowed for physical APIC ID
98 * table is 0xfe. APIC IDs above 0xff are reserved.
100 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
102 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
103 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
104 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
106 /* AVIC GATAG is encoded using VM and VCPU IDs */
107 #define AVIC_VCPU_ID_BITS 8
108 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
110 #define AVIC_VM_ID_BITS 24
111 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
112 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
114 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
115 (y & AVIC_VCPU_ID_MASK))
116 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
117 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
119 static bool erratum_383_found __read_mostly;
121 static const u32 host_save_user_msrs[] = {
123 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
130 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
132 struct kvm_sev_info {
133 bool active; /* SEV enabled guest */
134 unsigned int asid; /* ASID used for this guest */
135 unsigned int handle; /* SEV firmware handle */
136 int fd; /* SEV device fd */
137 unsigned long pages_locked; /* Number of pages locked */
138 struct list_head regions_list; /* List of registered regions */
144 /* Struct members for AVIC */
146 struct page *avic_logical_id_table_page;
147 struct page *avic_physical_id_table_page;
148 struct hlist_node hnode;
150 struct kvm_sev_info sev_info;
155 struct nested_state {
161 /* These are the merged vectors */
164 /* gpa pointers to the real vectors */
168 /* A VMEXIT is required but not yet emulated */
171 /* cache for intercepts of the guest */
174 u32 intercept_exceptions;
177 /* Nested Paging related state */
181 #define MSRPM_OFFSETS 16
182 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
185 * Set osvw_len to higher value when updated Revision Guides
186 * are published and we know what the new status bits are
188 static uint64_t osvw_len = 4, osvw_status;
191 struct kvm_vcpu vcpu;
193 unsigned long vmcb_pa;
194 struct svm_cpu_data *svm_data;
195 uint64_t asid_generation;
196 uint64_t sysenter_esp;
197 uint64_t sysenter_eip;
204 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
214 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
215 * translated into the appropriate L2_CFG bits on the host to
216 * perform speculative control.
224 struct nested_state nested;
227 u64 nmi_singlestep_guest_rflags;
229 unsigned int3_injected;
230 unsigned long int3_rip;
232 /* cached guest cpuid flags for faster access */
233 bool nrips_enabled : 1;
237 struct page *avic_backing_page;
238 u64 *avic_physical_id_cache;
239 bool avic_is_running;
242 * Per-vcpu list of struct amd_svm_iommu_ir:
243 * This is used mainly to store interrupt remapping information used
244 * when update the vcpu affinity. This avoids the need to scan for
245 * IRTE and try to match ga_tag in the IOMMU driver.
247 struct list_head ir_list;
248 spinlock_t ir_list_lock;
250 /* which host CPU was used for running this vcpu */
251 unsigned int last_cpu;
255 * This is a wrapper of struct amd_iommu_ir_data.
257 struct amd_svm_iommu_ir {
258 struct list_head node; /* Used by SVM for per-vcpu ir_list */
259 void *data; /* Storing pointer to struct amd_ir_data */
262 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
263 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
264 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
266 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
267 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
268 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
269 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
271 static DEFINE_PER_CPU(u64, current_tsc_ratio);
272 #define TSC_RATIO_DEFAULT 0x0100000000ULL
274 #define MSR_INVALID 0xffffffffU
276 static const struct svm_direct_access_msrs {
277 u32 index; /* Index of the MSR */
278 bool always; /* True if intercept is always on */
279 } direct_access_msrs[] = {
280 { .index = MSR_STAR, .always = true },
281 { .index = MSR_IA32_SYSENTER_CS, .always = true },
283 { .index = MSR_GS_BASE, .always = true },
284 { .index = MSR_FS_BASE, .always = true },
285 { .index = MSR_KERNEL_GS_BASE, .always = true },
286 { .index = MSR_LSTAR, .always = true },
287 { .index = MSR_CSTAR, .always = true },
288 { .index = MSR_SYSCALL_MASK, .always = true },
290 { .index = MSR_IA32_SPEC_CTRL, .always = false },
291 { .index = MSR_IA32_PRED_CMD, .always = false },
292 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
293 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
294 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
295 { .index = MSR_IA32_LASTINTTOIP, .always = false },
296 { .index = MSR_INVALID, .always = false },
299 /* enable NPT for AMD64 and X86 with PAE */
300 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
301 static bool npt_enabled = true;
303 static bool npt_enabled;
307 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
308 * pause_filter_count: On processors that support Pause filtering(indicated
309 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
310 * count value. On VMRUN this value is loaded into an internal counter.
311 * Each time a pause instruction is executed, this counter is decremented
312 * until it reaches zero at which time a #VMEXIT is generated if pause
313 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
314 * Intercept Filtering for more details.
315 * This also indicate if ple logic enabled.
317 * pause_filter_thresh: In addition, some processor families support advanced
318 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
319 * the amount of time a guest is allowed to execute in a pause loop.
320 * In this mode, a 16-bit pause filter threshold field is added in the
321 * VMCB. The threshold value is a cycle count that is used to reset the
322 * pause counter. As with simple pause filtering, VMRUN loads the pause
323 * count value from VMCB into an internal counter. Then, on each pause
324 * instruction the hardware checks the elapsed number of cycles since
325 * the most recent pause instruction against the pause filter threshold.
326 * If the elapsed cycle count is greater than the pause filter threshold,
327 * then the internal pause count is reloaded from the VMCB and execution
328 * continues. If the elapsed cycle count is less than the pause filter
329 * threshold, then the internal pause count is decremented. If the count
330 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
331 * triggered. If advanced pause filtering is supported and pause filter
332 * threshold field is set to zero, the filter will operate in the simpler,
336 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
337 module_param(pause_filter_thresh, ushort, 0444);
339 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
340 module_param(pause_filter_count, ushort, 0444);
342 /* Default doubles per-vcpu window every exit. */
343 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
344 module_param(pause_filter_count_grow, ushort, 0444);
346 /* Default resets per-vcpu window every exit to pause_filter_count. */
347 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
348 module_param(pause_filter_count_shrink, ushort, 0444);
350 /* Default is to compute the maximum so we can never overflow. */
351 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
352 module_param(pause_filter_count_max, ushort, 0444);
354 /* allow nested paging (virtualized MMU) for all guests */
355 static int npt = true;
356 module_param(npt, int, S_IRUGO);
358 /* allow nested virtualization in KVM/SVM */
359 static int nested = true;
360 module_param(nested, int, S_IRUGO);
362 /* enable / disable AVIC */
364 #ifdef CONFIG_X86_LOCAL_APIC
365 module_param(avic, int, S_IRUGO);
368 /* enable/disable Next RIP Save */
369 static int nrips = true;
370 module_param(nrips, int, 0444);
372 /* enable/disable Virtual VMLOAD VMSAVE */
373 static int vls = true;
374 module_param(vls, int, 0444);
376 /* enable/disable Virtual GIF */
377 static int vgif = true;
378 module_param(vgif, int, 0444);
380 /* enable/disable SEV support */
381 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
382 module_param(sev, int, 0444);
384 static bool __read_mostly dump_invalid_vmcb = 0;
385 module_param(dump_invalid_vmcb, bool, 0644);
387 static u8 rsm_ins_bytes[] = "\x0f\xaa";
389 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
390 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
391 static void svm_complete_interrupts(struct vcpu_svm *svm);
392 static void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate);
393 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu);
395 static int nested_svm_exit_handled(struct vcpu_svm *svm);
396 static int nested_svm_intercept(struct vcpu_svm *svm);
397 static int nested_svm_vmexit(struct vcpu_svm *svm);
398 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
399 bool has_error_code, u32 error_code);
402 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
403 pause filter count */
404 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
405 VMCB_ASID, /* ASID */
406 VMCB_INTR, /* int_ctl, int_vector */
407 VMCB_NPT, /* npt_en, nCR3, gPAT */
408 VMCB_CR, /* CR0, CR3, CR4, EFER */
409 VMCB_DR, /* DR6, DR7 */
410 VMCB_DT, /* GDT, IDT */
411 VMCB_SEG, /* CS, DS, SS, ES, CPL */
412 VMCB_CR2, /* CR2 only */
413 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
414 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
415 * AVIC PHYSICAL_TABLE pointer,
416 * AVIC LOGICAL_TABLE pointer
421 /* TPR and CR2 are always written before VMRUN */
422 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
424 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
426 static int sev_flush_asids(void);
427 static DECLARE_RWSEM(sev_deactivate_lock);
428 static DEFINE_MUTEX(sev_bitmap_lock);
429 static unsigned int max_sev_asid;
430 static unsigned int min_sev_asid;
431 static unsigned long *sev_asid_bitmap;
432 static unsigned long *sev_reclaim_asid_bitmap;
433 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
436 struct list_head list;
437 unsigned long npages;
444 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
446 return container_of(kvm, struct kvm_svm, kvm);
449 static inline bool svm_sev_enabled(void)
451 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
454 static inline bool sev_guest(struct kvm *kvm)
456 #ifdef CONFIG_KVM_AMD_SEV
457 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
465 static inline int sev_get_asid(struct kvm *kvm)
467 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
472 static inline void mark_all_dirty(struct vmcb *vmcb)
474 vmcb->control.clean = 0;
477 static inline void mark_all_clean(struct vmcb *vmcb)
479 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
480 & ~VMCB_ALWAYS_DIRTY_MASK;
483 static inline void mark_dirty(struct vmcb *vmcb, int bit)
485 vmcb->control.clean &= ~(1 << bit);
488 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
490 return container_of(vcpu, struct vcpu_svm, vcpu);
493 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
495 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
496 mark_dirty(svm->vmcb, VMCB_AVIC);
499 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
501 struct vcpu_svm *svm = to_svm(vcpu);
502 u64 *entry = svm->avic_physical_id_cache;
507 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
510 static void recalc_intercepts(struct vcpu_svm *svm)
512 struct vmcb_control_area *c, *h;
513 struct nested_state *g;
515 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
517 if (!is_guest_mode(&svm->vcpu))
520 c = &svm->vmcb->control;
521 h = &svm->nested.hsave->control;
524 c->intercept_cr = h->intercept_cr | g->intercept_cr;
525 c->intercept_dr = h->intercept_dr | g->intercept_dr;
526 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
527 c->intercept = h->intercept | g->intercept;
530 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
532 if (is_guest_mode(&svm->vcpu))
533 return svm->nested.hsave;
538 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
540 struct vmcb *vmcb = get_host_vmcb(svm);
542 vmcb->control.intercept_cr |= (1U << bit);
544 recalc_intercepts(svm);
547 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
549 struct vmcb *vmcb = get_host_vmcb(svm);
551 vmcb->control.intercept_cr &= ~(1U << bit);
553 recalc_intercepts(svm);
556 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
558 struct vmcb *vmcb = get_host_vmcb(svm);
560 return vmcb->control.intercept_cr & (1U << bit);
563 static inline void set_dr_intercepts(struct vcpu_svm *svm)
565 struct vmcb *vmcb = get_host_vmcb(svm);
567 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
568 | (1 << INTERCEPT_DR1_READ)
569 | (1 << INTERCEPT_DR2_READ)
570 | (1 << INTERCEPT_DR3_READ)
571 | (1 << INTERCEPT_DR4_READ)
572 | (1 << INTERCEPT_DR5_READ)
573 | (1 << INTERCEPT_DR6_READ)
574 | (1 << INTERCEPT_DR7_READ)
575 | (1 << INTERCEPT_DR0_WRITE)
576 | (1 << INTERCEPT_DR1_WRITE)
577 | (1 << INTERCEPT_DR2_WRITE)
578 | (1 << INTERCEPT_DR3_WRITE)
579 | (1 << INTERCEPT_DR4_WRITE)
580 | (1 << INTERCEPT_DR5_WRITE)
581 | (1 << INTERCEPT_DR6_WRITE)
582 | (1 << INTERCEPT_DR7_WRITE);
584 recalc_intercepts(svm);
587 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
589 struct vmcb *vmcb = get_host_vmcb(svm);
591 vmcb->control.intercept_dr = 0;
593 recalc_intercepts(svm);
596 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
598 struct vmcb *vmcb = get_host_vmcb(svm);
600 vmcb->control.intercept_exceptions |= (1U << bit);
602 recalc_intercepts(svm);
605 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
607 struct vmcb *vmcb = get_host_vmcb(svm);
609 vmcb->control.intercept_exceptions &= ~(1U << bit);
611 recalc_intercepts(svm);
614 static inline void set_intercept(struct vcpu_svm *svm, int bit)
616 struct vmcb *vmcb = get_host_vmcb(svm);
618 vmcb->control.intercept |= (1ULL << bit);
620 recalc_intercepts(svm);
623 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
625 struct vmcb *vmcb = get_host_vmcb(svm);
627 vmcb->control.intercept &= ~(1ULL << bit);
629 recalc_intercepts(svm);
632 static inline bool vgif_enabled(struct vcpu_svm *svm)
634 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
637 static inline void enable_gif(struct vcpu_svm *svm)
639 if (vgif_enabled(svm))
640 svm->vmcb->control.int_ctl |= V_GIF_MASK;
642 svm->vcpu.arch.hflags |= HF_GIF_MASK;
645 static inline void disable_gif(struct vcpu_svm *svm)
647 if (vgif_enabled(svm))
648 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
650 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
653 static inline bool gif_set(struct vcpu_svm *svm)
655 if (vgif_enabled(svm))
656 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
658 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
661 static unsigned long iopm_base;
663 struct kvm_ldttss_desc {
666 unsigned base1:8, type:5, dpl:2, p:1;
667 unsigned limit1:4, zero0:3, g:1, base2:8;
670 } __attribute__((packed));
672 struct svm_cpu_data {
679 struct kvm_ldttss_desc *tss_desc;
681 struct page *save_area;
682 struct vmcb *current_vmcb;
684 /* index = sev_asid, value = vmcb pointer */
685 struct vmcb **sev_vmcbs;
688 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
690 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
692 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
693 #define MSRS_RANGE_SIZE 2048
694 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
696 static u32 svm_msrpm_offset(u32 msr)
701 for (i = 0; i < NUM_MSR_MAPS; i++) {
702 if (msr < msrpm_ranges[i] ||
703 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
706 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
707 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
709 /* Now we have the u8 offset - but need the u32 offset */
713 /* MSR not in any range */
717 #define MAX_INST_SIZE 15
719 static inline void clgi(void)
721 asm volatile (__ex("clgi"));
724 static inline void stgi(void)
726 asm volatile (__ex("stgi"));
729 static inline void invlpga(unsigned long addr, u32 asid)
731 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
734 static int get_npt_level(struct kvm_vcpu *vcpu)
737 return PT64_ROOT_4LEVEL;
739 return PT32E_ROOT_LEVEL;
743 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
745 vcpu->arch.efer = efer;
748 /* Shadow paging assumes NX to be available. */
751 if (!(efer & EFER_LMA))
755 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
756 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
759 static int is_external_interrupt(u32 info)
761 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
762 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
765 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
767 struct vcpu_svm *svm = to_svm(vcpu);
770 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
771 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
775 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
777 struct vcpu_svm *svm = to_svm(vcpu);
780 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
782 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
786 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
788 struct vcpu_svm *svm = to_svm(vcpu);
790 if (nrips && svm->vmcb->control.next_rip != 0) {
791 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
792 svm->next_rip = svm->vmcb->control.next_rip;
795 if (!svm->next_rip) {
796 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
799 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
800 pr_err("%s: ip 0x%lx next 0x%llx\n",
801 __func__, kvm_rip_read(vcpu), svm->next_rip);
802 kvm_rip_write(vcpu, svm->next_rip);
804 svm_set_interrupt_shadow(vcpu, 0);
809 static void svm_queue_exception(struct kvm_vcpu *vcpu)
811 struct vcpu_svm *svm = to_svm(vcpu);
812 unsigned nr = vcpu->arch.exception.nr;
813 bool has_error_code = vcpu->arch.exception.has_error_code;
814 bool reinject = vcpu->arch.exception.injected;
815 u32 error_code = vcpu->arch.exception.error_code;
818 * If we are within a nested VM we'd better #VMEXIT and let the guest
819 * handle the exception
822 nested_svm_check_exception(svm, nr, has_error_code, error_code))
825 kvm_deliver_exception_payload(&svm->vcpu);
827 if (nr == BP_VECTOR && !nrips) {
828 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
831 * For guest debugging where we have to reinject #BP if some
832 * INT3 is guest-owned:
833 * Emulate nRIP by moving RIP forward. Will fail if injection
834 * raises a fault that is not intercepted. Still better than
835 * failing in all cases.
837 (void)skip_emulated_instruction(&svm->vcpu);
838 rip = kvm_rip_read(&svm->vcpu);
839 svm->int3_rip = rip + svm->vmcb->save.cs.base;
840 svm->int3_injected = rip - old_rip;
843 svm->vmcb->control.event_inj = nr
845 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
846 | SVM_EVTINJ_TYPE_EXEPT;
847 svm->vmcb->control.event_inj_err = error_code;
850 static void svm_init_erratum_383(void)
856 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
859 /* Use _safe variants to not break nested virtualization */
860 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
866 low = lower_32_bits(val);
867 high = upper_32_bits(val);
869 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
871 erratum_383_found = true;
874 static void svm_init_osvw(struct kvm_vcpu *vcpu)
877 * Guests should see errata 400 and 415 as fixed (assuming that
878 * HLT and IO instructions are intercepted).
880 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
881 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
884 * By increasing VCPU's osvw.length to 3 we are telling the guest that
885 * all osvw.status bits inside that length, including bit 0 (which is
886 * reserved for erratum 298), are valid. However, if host processor's
887 * osvw_len is 0 then osvw_status[0] carries no information. We need to
888 * be conservative here and therefore we tell the guest that erratum 298
889 * is present (because we really don't know).
891 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
892 vcpu->arch.osvw.status |= 1;
895 static int has_svm(void)
899 if (!cpu_has_svm(&msg)) {
900 printk(KERN_INFO "has_svm: %s\n", msg);
907 static void svm_hardware_disable(void)
909 /* Make sure we clean up behind us */
910 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
911 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
915 amd_pmu_disable_virt();
918 static int svm_hardware_enable(void)
921 struct svm_cpu_data *sd;
923 struct desc_struct *gdt;
924 int me = raw_smp_processor_id();
926 rdmsrl(MSR_EFER, efer);
927 if (efer & EFER_SVME)
931 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
934 sd = per_cpu(svm_data, me);
936 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
940 sd->asid_generation = 1;
941 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
942 sd->next_asid = sd->max_asid + 1;
943 sd->min_asid = max_sev_asid + 1;
945 gdt = get_current_gdt_rw();
946 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
948 wrmsrl(MSR_EFER, efer | EFER_SVME);
950 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
952 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
953 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
954 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
961 * Note that it is possible to have a system with mixed processor
962 * revisions and therefore different OSVW bits. If bits are not the same
963 * on different processors then choose the worst case (i.e. if erratum
964 * is present on one processor and not on another then assume that the
965 * erratum is present everywhere).
967 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
968 uint64_t len, status = 0;
971 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
973 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
977 osvw_status = osvw_len = 0;
981 osvw_status |= status;
982 osvw_status &= (1ULL << osvw_len) - 1;
985 osvw_status = osvw_len = 0;
987 svm_init_erratum_383();
989 amd_pmu_enable_virt();
994 static void svm_cpu_uninit(int cpu)
996 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
1001 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
1002 kfree(sd->sev_vmcbs);
1003 __free_page(sd->save_area);
1007 static int svm_cpu_init(int cpu)
1009 struct svm_cpu_data *sd;
1011 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1015 sd->save_area = alloc_page(GFP_KERNEL);
1019 if (svm_sev_enabled()) {
1020 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1024 goto free_save_area;
1027 per_cpu(svm_data, cpu) = sd;
1032 __free_page(sd->save_area);
1039 static bool valid_msr_intercept(u32 index)
1043 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1044 if (direct_access_msrs[i].index == index)
1050 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1057 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1058 to_svm(vcpu)->msrpm;
1060 offset = svm_msrpm_offset(msr);
1061 bit_write = 2 * (msr & 0x0f) + 1;
1062 tmp = msrpm[offset];
1064 BUG_ON(offset == MSR_INVALID);
1066 return !!test_bit(bit_write, &tmp);
1069 static void set_msr_interception(u32 *msrpm, unsigned msr,
1070 int read, int write)
1072 u8 bit_read, bit_write;
1077 * If this warning triggers extend the direct_access_msrs list at the
1078 * beginning of the file
1080 WARN_ON(!valid_msr_intercept(msr));
1082 offset = svm_msrpm_offset(msr);
1083 bit_read = 2 * (msr & 0x0f);
1084 bit_write = 2 * (msr & 0x0f) + 1;
1085 tmp = msrpm[offset];
1087 BUG_ON(offset == MSR_INVALID);
1089 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1090 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1092 msrpm[offset] = tmp;
1095 static void svm_vcpu_init_msrpm(u32 *msrpm)
1099 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1101 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1102 if (!direct_access_msrs[i].always)
1105 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1109 static void add_msr_offset(u32 offset)
1113 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1115 /* Offset already in list? */
1116 if (msrpm_offsets[i] == offset)
1119 /* Slot used by another offset? */
1120 if (msrpm_offsets[i] != MSR_INVALID)
1123 /* Add offset to list */
1124 msrpm_offsets[i] = offset;
1130 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1131 * increase MSRPM_OFFSETS in this case.
1136 static void init_msrpm_offsets(void)
1140 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1142 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1145 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1146 BUG_ON(offset == MSR_INVALID);
1148 add_msr_offset(offset);
1152 static void svm_enable_lbrv(struct vcpu_svm *svm)
1154 u32 *msrpm = svm->msrpm;
1156 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1157 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1158 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1159 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1160 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1163 static void svm_disable_lbrv(struct vcpu_svm *svm)
1165 u32 *msrpm = svm->msrpm;
1167 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1168 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1169 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1170 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1171 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1174 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1176 svm->nmi_singlestep = false;
1178 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1179 /* Clear our flags if they were not set by the guest */
1180 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1181 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1182 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1183 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1188 * This hash table is used to map VM_ID to a struct kvm_svm,
1189 * when handling AMD IOMMU GALOG notification to schedule in
1190 * a particular vCPU.
1192 #define SVM_VM_DATA_HASH_BITS 8
1193 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1194 static u32 next_vm_id = 0;
1195 static bool next_vm_id_wrapped = 0;
1196 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1199 * This function is called from IOMMU driver to notify
1200 * SVM to schedule in a particular vCPU of a particular VM.
1202 static int avic_ga_log_notifier(u32 ga_tag)
1204 unsigned long flags;
1205 struct kvm_svm *kvm_svm;
1206 struct kvm_vcpu *vcpu = NULL;
1207 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1208 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1210 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1212 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1213 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1214 if (kvm_svm->avic_vm_id != vm_id)
1216 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1219 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1222 * At this point, the IOMMU should have already set the pending
1223 * bit in the vAPIC backing page. So, we just need to schedule
1227 kvm_vcpu_wake_up(vcpu);
1232 static __init int sev_hardware_setup(void)
1234 struct sev_user_data_status *status;
1237 /* Maximum number of encrypted guests supported simultaneously */
1238 max_sev_asid = cpuid_ecx(0x8000001F);
1243 /* Minimum ASID value that should be used for SEV guest */
1244 min_sev_asid = cpuid_edx(0x8000001F);
1246 /* Initialize SEV ASID bitmaps */
1247 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1248 if (!sev_asid_bitmap)
1251 sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1252 if (!sev_reclaim_asid_bitmap)
1255 status = kmalloc(sizeof(*status), GFP_KERNEL);
1260 * Check SEV platform status.
1262 * PLATFORM_STATUS can be called in any state, if we failed to query
1263 * the PLATFORM status then either PSP firmware does not support SEV
1264 * feature or SEV firmware is dead.
1266 rc = sev_platform_status(status, NULL);
1270 pr_info("SEV supported\n");
1277 static void grow_ple_window(struct kvm_vcpu *vcpu)
1279 struct vcpu_svm *svm = to_svm(vcpu);
1280 struct vmcb_control_area *control = &svm->vmcb->control;
1281 int old = control->pause_filter_count;
1283 control->pause_filter_count = __grow_ple_window(old,
1285 pause_filter_count_grow,
1286 pause_filter_count_max);
1288 if (control->pause_filter_count != old) {
1289 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1290 trace_kvm_ple_window_update(vcpu->vcpu_id,
1291 control->pause_filter_count, old);
1295 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1297 struct vcpu_svm *svm = to_svm(vcpu);
1298 struct vmcb_control_area *control = &svm->vmcb->control;
1299 int old = control->pause_filter_count;
1301 control->pause_filter_count =
1302 __shrink_ple_window(old,
1304 pause_filter_count_shrink,
1305 pause_filter_count);
1306 if (control->pause_filter_count != old) {
1307 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1308 trace_kvm_ple_window_update(vcpu->vcpu_id,
1309 control->pause_filter_count, old);
1314 * The default MMIO mask is a single bit (excluding the present bit),
1315 * which could conflict with the memory encryption bit. Check for
1316 * memory encryption support and override the default MMIO mask if
1317 * memory encryption is enabled.
1319 static __init void svm_adjust_mmio_mask(void)
1321 unsigned int enc_bit, mask_bit;
1324 /* If there is no memory encryption support, use existing mask */
1325 if (cpuid_eax(0x80000000) < 0x8000001f)
1328 /* If memory encryption is not enabled, use existing mask */
1329 rdmsrl(MSR_K8_SYSCFG, msr);
1330 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
1333 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
1334 mask_bit = boot_cpu_data.x86_phys_bits;
1336 /* Increment the mask bit if it is the same as the encryption bit */
1337 if (enc_bit == mask_bit)
1341 * If the mask bit location is below 52, then some bits above the
1342 * physical addressing limit will always be reserved, so use the
1343 * rsvd_bits() function to generate the mask. This mask, along with
1344 * the present bit, will be used to generate a page fault with
1347 * If the mask bit location is 52 (or above), then clear the mask.
1349 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
1351 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
1354 static void svm_hardware_teardown(void)
1358 if (svm_sev_enabled()) {
1359 bitmap_free(sev_asid_bitmap);
1360 bitmap_free(sev_reclaim_asid_bitmap);
1365 for_each_possible_cpu(cpu)
1366 svm_cpu_uninit(cpu);
1368 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1372 static __init int svm_hardware_setup(void)
1375 struct page *iopm_pages;
1379 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1384 iopm_va = page_address(iopm_pages);
1385 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1386 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1388 init_msrpm_offsets();
1390 if (boot_cpu_has(X86_FEATURE_NX))
1391 kvm_enable_efer_bits(EFER_NX);
1393 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1394 kvm_enable_efer_bits(EFER_FFXSR);
1396 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1397 kvm_has_tsc_control = true;
1398 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1399 kvm_tsc_scaling_ratio_frac_bits = 32;
1402 /* Check for pause filtering support */
1403 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1404 pause_filter_count = 0;
1405 pause_filter_thresh = 0;
1406 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1407 pause_filter_thresh = 0;
1411 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1412 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1416 if (boot_cpu_has(X86_FEATURE_SEV) &&
1417 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1418 r = sev_hardware_setup();
1426 svm_adjust_mmio_mask();
1428 for_each_possible_cpu(cpu) {
1429 r = svm_cpu_init(cpu);
1434 if (!boot_cpu_has(X86_FEATURE_NPT))
1435 npt_enabled = false;
1437 if (npt_enabled && !npt) {
1438 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1439 npt_enabled = false;
1443 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1449 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1455 !boot_cpu_has(X86_FEATURE_AVIC) ||
1456 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1459 pr_info("AVIC enabled\n");
1461 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1467 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1468 !IS_ENABLED(CONFIG_X86_64)) {
1471 pr_info("Virtual VMLOAD VMSAVE supported\n");
1476 if (!boot_cpu_has(X86_FEATURE_VGIF))
1479 pr_info("Virtual GIF supported\n");
1485 svm_hardware_teardown();
1489 static void init_seg(struct vmcb_seg *seg)
1492 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1493 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1494 seg->limit = 0xffff;
1498 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1501 seg->attrib = SVM_SELECTOR_P_MASK | type;
1502 seg->limit = 0xffff;
1506 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1508 struct vcpu_svm *svm = to_svm(vcpu);
1510 if (is_guest_mode(vcpu))
1511 return svm->nested.hsave->control.tsc_offset;
1513 return vcpu->arch.tsc_offset;
1516 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1518 struct vcpu_svm *svm = to_svm(vcpu);
1519 u64 g_tsc_offset = 0;
1521 if (is_guest_mode(vcpu)) {
1522 /* Write L1's TSC offset. */
1523 g_tsc_offset = svm->vmcb->control.tsc_offset -
1524 svm->nested.hsave->control.tsc_offset;
1525 svm->nested.hsave->control.tsc_offset = offset;
1528 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1529 svm->vmcb->control.tsc_offset - g_tsc_offset,
1532 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1534 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1535 return svm->vmcb->control.tsc_offset;
1538 static void avic_init_vmcb(struct vcpu_svm *svm)
1540 struct vmcb *vmcb = svm->vmcb;
1541 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1542 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1543 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1544 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1546 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1547 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1548 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1549 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1550 if (kvm_apicv_activated(svm->vcpu.kvm))
1551 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1553 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
1556 static void init_vmcb(struct vcpu_svm *svm)
1558 struct vmcb_control_area *control = &svm->vmcb->control;
1559 struct vmcb_save_area *save = &svm->vmcb->save;
1561 svm->vcpu.arch.hflags = 0;
1563 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1564 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1565 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1566 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1567 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1568 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1569 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1570 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1572 set_dr_intercepts(svm);
1574 set_exception_intercept(svm, PF_VECTOR);
1575 set_exception_intercept(svm, UD_VECTOR);
1576 set_exception_intercept(svm, MC_VECTOR);
1577 set_exception_intercept(svm, AC_VECTOR);
1578 set_exception_intercept(svm, DB_VECTOR);
1580 * Guest access to VMware backdoor ports could legitimately
1581 * trigger #GP because of TSS I/O permission bitmap.
1582 * We intercept those #GP and allow access to them anyway
1585 if (enable_vmware_backdoor)
1586 set_exception_intercept(svm, GP_VECTOR);
1588 set_intercept(svm, INTERCEPT_INTR);
1589 set_intercept(svm, INTERCEPT_NMI);
1590 set_intercept(svm, INTERCEPT_SMI);
1591 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1592 set_intercept(svm, INTERCEPT_RDPMC);
1593 set_intercept(svm, INTERCEPT_CPUID);
1594 set_intercept(svm, INTERCEPT_INVD);
1595 set_intercept(svm, INTERCEPT_INVLPG);
1596 set_intercept(svm, INTERCEPT_INVLPGA);
1597 set_intercept(svm, INTERCEPT_IOIO_PROT);
1598 set_intercept(svm, INTERCEPT_MSR_PROT);
1599 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1600 set_intercept(svm, INTERCEPT_SHUTDOWN);
1601 set_intercept(svm, INTERCEPT_VMRUN);
1602 set_intercept(svm, INTERCEPT_VMMCALL);
1603 set_intercept(svm, INTERCEPT_VMLOAD);
1604 set_intercept(svm, INTERCEPT_VMSAVE);
1605 set_intercept(svm, INTERCEPT_STGI);
1606 set_intercept(svm, INTERCEPT_CLGI);
1607 set_intercept(svm, INTERCEPT_SKINIT);
1608 set_intercept(svm, INTERCEPT_WBINVD);
1609 set_intercept(svm, INTERCEPT_XSETBV);
1610 set_intercept(svm, INTERCEPT_RDPRU);
1611 set_intercept(svm, INTERCEPT_RSM);
1613 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1614 set_intercept(svm, INTERCEPT_MONITOR);
1615 set_intercept(svm, INTERCEPT_MWAIT);
1618 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1619 set_intercept(svm, INTERCEPT_HLT);
1621 control->iopm_base_pa = __sme_set(iopm_base);
1622 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1623 control->int_ctl = V_INTR_MASKING_MASK;
1625 init_seg(&save->es);
1626 init_seg(&save->ss);
1627 init_seg(&save->ds);
1628 init_seg(&save->fs);
1629 init_seg(&save->gs);
1631 save->cs.selector = 0xf000;
1632 save->cs.base = 0xffff0000;
1633 /* Executable/Readable Code Segment */
1634 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1635 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1636 save->cs.limit = 0xffff;
1638 save->gdtr.limit = 0xffff;
1639 save->idtr.limit = 0xffff;
1641 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1642 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1644 svm_set_efer(&svm->vcpu, 0);
1645 save->dr6 = 0xffff0ff0;
1646 kvm_set_rflags(&svm->vcpu, 2);
1647 save->rip = 0x0000fff0;
1648 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1651 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1652 * It also updates the guest-visible cr0 value.
1654 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1655 kvm_mmu_reset_context(&svm->vcpu);
1657 save->cr4 = X86_CR4_PAE;
1661 /* Setup VMCB for Nested Paging */
1662 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1663 clr_intercept(svm, INTERCEPT_INVLPG);
1664 clr_exception_intercept(svm, PF_VECTOR);
1665 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1666 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1667 save->g_pat = svm->vcpu.arch.pat;
1671 svm->asid_generation = 0;
1673 svm->nested.vmcb = 0;
1674 svm->vcpu.arch.hflags = 0;
1676 if (pause_filter_count) {
1677 control->pause_filter_count = pause_filter_count;
1678 if (pause_filter_thresh)
1679 control->pause_filter_thresh = pause_filter_thresh;
1680 set_intercept(svm, INTERCEPT_PAUSE);
1682 clr_intercept(svm, INTERCEPT_PAUSE);
1685 if (kvm_vcpu_apicv_active(&svm->vcpu))
1686 avic_init_vmcb(svm);
1689 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1690 * in VMCB and clear intercepts to avoid #VMEXIT.
1693 clr_intercept(svm, INTERCEPT_VMLOAD);
1694 clr_intercept(svm, INTERCEPT_VMSAVE);
1695 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1699 clr_intercept(svm, INTERCEPT_STGI);
1700 clr_intercept(svm, INTERCEPT_CLGI);
1701 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1704 if (sev_guest(svm->vcpu.kvm)) {
1705 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1706 clr_exception_intercept(svm, UD_VECTOR);
1709 mark_all_dirty(svm->vmcb);
1715 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1718 u64 *avic_physical_id_table;
1719 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1721 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1724 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1726 return &avic_physical_id_table[index];
1731 * AVIC hardware walks the nested page table to check permissions,
1732 * but does not use the SPA address specified in the leaf page
1733 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1734 * field of the VMCB. Therefore, we set up the
1735 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1737 static int avic_update_access_page(struct kvm *kvm, bool activate)
1741 mutex_lock(&kvm->slots_lock);
1743 * During kvm_destroy_vm(), kvm_pit_set_reinject() could trigger
1744 * APICv mode change, which update APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
1745 * memory region. So, we need to ensure that kvm->mm == current->mm.
1747 if ((kvm->arch.apic_access_page_done == activate) ||
1748 (kvm->mm != current->mm))
1751 ret = __x86_set_memory_region(kvm,
1752 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1753 APIC_DEFAULT_PHYS_BASE,
1754 activate ? PAGE_SIZE : 0);
1758 kvm->arch.apic_access_page_done = activate;
1760 mutex_unlock(&kvm->slots_lock);
1764 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1766 u64 *entry, new_entry;
1767 int id = vcpu->vcpu_id;
1768 struct vcpu_svm *svm = to_svm(vcpu);
1770 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1773 if (!svm->vcpu.arch.apic->regs)
1776 if (kvm_apicv_activated(vcpu->kvm)) {
1779 ret = avic_update_access_page(vcpu->kvm, true);
1784 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1786 /* Setting AVIC backing page address in the phy APIC ID table */
1787 entry = avic_get_physical_id_entry(vcpu, id);
1791 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1792 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1793 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1794 WRITE_ONCE(*entry, new_entry);
1796 svm->avic_physical_id_cache = entry;
1801 static void sev_asid_free(int asid)
1803 struct svm_cpu_data *sd;
1806 mutex_lock(&sev_bitmap_lock);
1809 __set_bit(pos, sev_reclaim_asid_bitmap);
1811 for_each_possible_cpu(cpu) {
1812 sd = per_cpu(svm_data, cpu);
1813 sd->sev_vmcbs[pos] = NULL;
1816 mutex_unlock(&sev_bitmap_lock);
1819 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1821 struct sev_data_decommission *decommission;
1822 struct sev_data_deactivate *data;
1827 data = kzalloc(sizeof(*data), GFP_KERNEL);
1831 /* deactivate handle */
1832 data->handle = handle;
1834 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
1835 down_read(&sev_deactivate_lock);
1836 sev_guest_deactivate(data, NULL);
1837 up_read(&sev_deactivate_lock);
1841 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1845 /* decommission handle */
1846 decommission->handle = handle;
1847 sev_guest_decommission(decommission, NULL);
1849 kfree(decommission);
1852 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1853 unsigned long ulen, unsigned long *n,
1856 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1857 unsigned long npages, npinned, size;
1858 unsigned long locked, lock_limit;
1859 struct page **pages;
1860 unsigned long first, last;
1862 if (ulen == 0 || uaddr + ulen < uaddr)
1865 /* Calculate number of pages. */
1866 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1867 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1868 npages = (last - first + 1);
1870 locked = sev->pages_locked + npages;
1871 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1872 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1873 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1877 /* Avoid using vmalloc for smaller buffers. */
1878 size = npages * sizeof(struct page *);
1879 if (size > PAGE_SIZE)
1880 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1883 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1888 /* Pin the user virtual address. */
1889 npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1890 if (npinned != npages) {
1891 pr_err("SEV: Failure locking %lu pages.\n", npages);
1896 sev->pages_locked = locked;
1902 release_pages(pages, npinned);
1908 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1909 unsigned long npages)
1911 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1913 release_pages(pages, npages);
1915 sev->pages_locked -= npages;
1918 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1920 uint8_t *page_virtual;
1923 if (npages == 0 || pages == NULL)
1926 for (i = 0; i < npages; i++) {
1927 page_virtual = kmap_atomic(pages[i]);
1928 clflush_cache_range(page_virtual, PAGE_SIZE);
1929 kunmap_atomic(page_virtual);
1933 static void __unregister_enc_region_locked(struct kvm *kvm,
1934 struct enc_region *region)
1937 * The guest may change the memory encryption attribute from C=0 -> C=1
1938 * or vice versa for this memory range. Lets make sure caches are
1939 * flushed to ensure that guest data gets written into memory with
1942 sev_clflush_pages(region->pages, region->npages);
1944 sev_unpin_memory(kvm, region->pages, region->npages);
1945 list_del(®ion->list);
1949 static struct kvm *svm_vm_alloc(void)
1951 struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1952 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1954 return &kvm_svm->kvm;
1957 static void svm_vm_free(struct kvm *kvm)
1959 vfree(to_kvm_svm(kvm));
1962 static void sev_vm_destroy(struct kvm *kvm)
1964 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1965 struct list_head *head = &sev->regions_list;
1966 struct list_head *pos, *q;
1968 if (!sev_guest(kvm))
1971 mutex_lock(&kvm->lock);
1974 * if userspace was terminated before unregistering the memory regions
1975 * then lets unpin all the registered memory.
1977 if (!list_empty(head)) {
1978 list_for_each_safe(pos, q, head) {
1979 __unregister_enc_region_locked(kvm,
1980 list_entry(pos, struct enc_region, list));
1984 mutex_unlock(&kvm->lock);
1986 sev_unbind_asid(kvm, sev->handle);
1987 sev_asid_free(sev->asid);
1990 static void avic_vm_destroy(struct kvm *kvm)
1992 unsigned long flags;
1993 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1998 if (kvm_svm->avic_logical_id_table_page)
1999 __free_page(kvm_svm->avic_logical_id_table_page);
2000 if (kvm_svm->avic_physical_id_table_page)
2001 __free_page(kvm_svm->avic_physical_id_table_page);
2003 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
2004 hash_del(&kvm_svm->hnode);
2005 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
2008 static void svm_vm_destroy(struct kvm *kvm)
2010 avic_vm_destroy(kvm);
2011 sev_vm_destroy(kvm);
2014 static int avic_vm_init(struct kvm *kvm)
2016 unsigned long flags;
2018 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
2020 struct page *p_page;
2021 struct page *l_page;
2027 /* Allocating physical APIC ID table (4KB) */
2028 p_page = alloc_page(GFP_KERNEL_ACCOUNT);
2032 kvm_svm->avic_physical_id_table_page = p_page;
2033 clear_page(page_address(p_page));
2035 /* Allocating logical APIC ID table (4KB) */
2036 l_page = alloc_page(GFP_KERNEL_ACCOUNT);
2040 kvm_svm->avic_logical_id_table_page = l_page;
2041 clear_page(page_address(l_page));
2043 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
2045 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
2046 if (vm_id == 0) { /* id is 1-based, zero is not okay */
2047 next_vm_id_wrapped = 1;
2050 /* Is it still in use? Only possible if wrapped at least once */
2051 if (next_vm_id_wrapped) {
2052 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
2053 if (k2->avic_vm_id == vm_id)
2057 kvm_svm->avic_vm_id = vm_id;
2058 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
2059 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
2064 avic_vm_destroy(kvm);
2068 static int svm_vm_init(struct kvm *kvm)
2071 int ret = avic_vm_init(kvm);
2076 kvm_apicv_init(kvm, avic);
2081 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
2084 unsigned long flags;
2085 struct amd_svm_iommu_ir *ir;
2086 struct vcpu_svm *svm = to_svm(vcpu);
2088 if (!kvm_arch_has_assigned_device(vcpu->kvm))
2092 * Here, we go through the per-vcpu ir_list to update all existing
2093 * interrupt remapping table entry targeting this vcpu.
2095 spin_lock_irqsave(&svm->ir_list_lock, flags);
2097 if (list_empty(&svm->ir_list))
2100 list_for_each_entry(ir, &svm->ir_list, node) {
2101 ret = amd_iommu_update_ga(cpu, r, ir->data);
2106 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2110 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2113 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2114 int h_physical_id = kvm_cpu_get_apicid(cpu);
2115 struct vcpu_svm *svm = to_svm(vcpu);
2117 if (!kvm_vcpu_apicv_active(vcpu))
2121 * Since the host physical APIC id is 8 bits,
2122 * we can support host APIC ID upto 255.
2124 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2127 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2128 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2130 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2131 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2133 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2134 if (svm->avic_is_running)
2135 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2137 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2138 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2139 svm->avic_is_running);
2142 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2145 struct vcpu_svm *svm = to_svm(vcpu);
2147 if (!kvm_vcpu_apicv_active(vcpu))
2150 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2151 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2152 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2154 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2155 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2159 * This function is called during VCPU halt/unhalt.
2161 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2163 struct vcpu_svm *svm = to_svm(vcpu);
2165 svm->avic_is_running = is_run;
2167 avic_vcpu_load(vcpu, vcpu->cpu);
2169 avic_vcpu_put(vcpu);
2172 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2174 struct vcpu_svm *svm = to_svm(vcpu);
2179 svm->virt_spec_ctrl = 0;
2182 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2183 MSR_IA32_APICBASE_ENABLE;
2184 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2185 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2189 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2190 kvm_rdx_write(vcpu, eax);
2192 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2193 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2196 static int avic_init_vcpu(struct vcpu_svm *svm)
2199 struct kvm_vcpu *vcpu = &svm->vcpu;
2201 if (!avic || !irqchip_in_kernel(vcpu->kvm))
2204 ret = avic_init_backing_page(&svm->vcpu);
2208 INIT_LIST_HEAD(&svm->ir_list);
2209 spin_lock_init(&svm->ir_list_lock);
2210 svm->dfr_reg = APIC_DFR_FLAT;
2215 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
2217 struct vcpu_svm *svm;
2219 struct page *msrpm_pages;
2220 struct page *hsave_page;
2221 struct page *nested_msrpm_pages;
2224 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
2228 page = alloc_page(GFP_KERNEL_ACCOUNT);
2232 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2236 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2237 if (!nested_msrpm_pages)
2240 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2244 err = avic_init_vcpu(svm);
2248 /* We initialize this flag to true to make sure that the is_running
2249 * bit would be set the first time the vcpu is loaded.
2251 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
2252 svm->avic_is_running = true;
2254 svm->nested.hsave = page_address(hsave_page);
2256 svm->msrpm = page_address(msrpm_pages);
2257 svm_vcpu_init_msrpm(svm->msrpm);
2259 svm->nested.msrpm = page_address(nested_msrpm_pages);
2260 svm_vcpu_init_msrpm(svm->nested.msrpm);
2262 svm->vmcb = page_address(page);
2263 clear_page(svm->vmcb);
2264 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2265 svm->asid_generation = 0;
2268 svm_init_osvw(vcpu);
2269 vcpu->arch.microcode_version = 0x01000065;
2274 __free_page(hsave_page);
2276 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2278 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2285 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2289 for_each_online_cpu(i)
2290 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2293 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2295 struct vcpu_svm *svm = to_svm(vcpu);
2298 * The vmcb page can be recycled, causing a false negative in
2299 * svm_vcpu_load(). So, ensure that no logical CPU has this
2300 * vmcb page recorded as its current vmcb.
2302 svm_clear_current_vmcb(svm->vmcb);
2304 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2305 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2306 __free_page(virt_to_page(svm->nested.hsave));
2307 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2310 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2312 struct vcpu_svm *svm = to_svm(vcpu);
2313 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2316 if (unlikely(cpu != vcpu->cpu)) {
2317 svm->asid_generation = 0;
2318 mark_all_dirty(svm->vmcb);
2321 #ifdef CONFIG_X86_64
2322 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2324 savesegment(fs, svm->host.fs);
2325 savesegment(gs, svm->host.gs);
2326 svm->host.ldt = kvm_read_ldt();
2328 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2329 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2331 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2332 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2333 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2334 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2335 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2338 /* This assumes that the kernel never uses MSR_TSC_AUX */
2339 if (static_cpu_has(X86_FEATURE_RDTSCP))
2340 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2342 if (sd->current_vmcb != svm->vmcb) {
2343 sd->current_vmcb = svm->vmcb;
2344 indirect_branch_prediction_barrier();
2346 avic_vcpu_load(vcpu, cpu);
2349 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2351 struct vcpu_svm *svm = to_svm(vcpu);
2354 avic_vcpu_put(vcpu);
2356 ++vcpu->stat.host_state_reload;
2357 kvm_load_ldt(svm->host.ldt);
2358 #ifdef CONFIG_X86_64
2359 loadsegment(fs, svm->host.fs);
2360 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2361 load_gs_index(svm->host.gs);
2363 #ifdef CONFIG_X86_32_LAZY_GS
2364 loadsegment(gs, svm->host.gs);
2367 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2368 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2371 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2373 avic_set_running(vcpu, false);
2376 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2378 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
2379 kvm_vcpu_update_apicv(vcpu);
2380 avic_set_running(vcpu, true);
2383 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2385 struct vcpu_svm *svm = to_svm(vcpu);
2386 unsigned long rflags = svm->vmcb->save.rflags;
2388 if (svm->nmi_singlestep) {
2389 /* Hide our flags if they were not set by the guest */
2390 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2391 rflags &= ~X86_EFLAGS_TF;
2392 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2393 rflags &= ~X86_EFLAGS_RF;
2398 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2400 if (to_svm(vcpu)->nmi_singlestep)
2401 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2404 * Any change of EFLAGS.VM is accompanied by a reload of SS
2405 * (caused by either a task switch or an inter-privilege IRET),
2406 * so we do not need to update the CPL here.
2408 to_svm(vcpu)->vmcb->save.rflags = rflags;
2411 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2414 case VCPU_EXREG_PDPTR:
2415 BUG_ON(!npt_enabled);
2416 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2423 static void svm_set_vintr(struct vcpu_svm *svm)
2425 set_intercept(svm, INTERCEPT_VINTR);
2428 static void svm_clear_vintr(struct vcpu_svm *svm)
2430 clr_intercept(svm, INTERCEPT_VINTR);
2433 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2435 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2438 case VCPU_SREG_CS: return &save->cs;
2439 case VCPU_SREG_DS: return &save->ds;
2440 case VCPU_SREG_ES: return &save->es;
2441 case VCPU_SREG_FS: return &save->fs;
2442 case VCPU_SREG_GS: return &save->gs;
2443 case VCPU_SREG_SS: return &save->ss;
2444 case VCPU_SREG_TR: return &save->tr;
2445 case VCPU_SREG_LDTR: return &save->ldtr;
2451 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2453 struct vmcb_seg *s = svm_seg(vcpu, seg);
2458 static void svm_get_segment(struct kvm_vcpu *vcpu,
2459 struct kvm_segment *var, int seg)
2461 struct vmcb_seg *s = svm_seg(vcpu, seg);
2463 var->base = s->base;
2464 var->limit = s->limit;
2465 var->selector = s->selector;
2466 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2467 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2468 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2469 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2470 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2471 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2472 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2475 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2476 * However, the SVM spec states that the G bit is not observed by the
2477 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2478 * So let's synthesize a legal G bit for all segments, this helps
2479 * running KVM nested. It also helps cross-vendor migration, because
2480 * Intel's vmentry has a check on the 'G' bit.
2482 var->g = s->limit > 0xfffff;
2485 * AMD's VMCB does not have an explicit unusable field, so emulate it
2486 * for cross vendor migration purposes by "not present"
2488 var->unusable = !var->present;
2493 * Work around a bug where the busy flag in the tr selector
2503 * The accessed bit must always be set in the segment
2504 * descriptor cache, although it can be cleared in the
2505 * descriptor, the cached bit always remains at 1. Since
2506 * Intel has a check on this, set it here to support
2507 * cross-vendor migration.
2514 * On AMD CPUs sometimes the DB bit in the segment
2515 * descriptor is left as 1, although the whole segment has
2516 * been made unusable. Clear it here to pass an Intel VMX
2517 * entry check when cross vendor migrating.
2521 /* This is symmetric with svm_set_segment() */
2522 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2527 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2529 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2534 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2536 struct vcpu_svm *svm = to_svm(vcpu);
2538 dt->size = svm->vmcb->save.idtr.limit;
2539 dt->address = svm->vmcb->save.idtr.base;
2542 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2544 struct vcpu_svm *svm = to_svm(vcpu);
2546 svm->vmcb->save.idtr.limit = dt->size;
2547 svm->vmcb->save.idtr.base = dt->address ;
2548 mark_dirty(svm->vmcb, VMCB_DT);
2551 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2553 struct vcpu_svm *svm = to_svm(vcpu);
2555 dt->size = svm->vmcb->save.gdtr.limit;
2556 dt->address = svm->vmcb->save.gdtr.base;
2559 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2561 struct vcpu_svm *svm = to_svm(vcpu);
2563 svm->vmcb->save.gdtr.limit = dt->size;
2564 svm->vmcb->save.gdtr.base = dt->address ;
2565 mark_dirty(svm->vmcb, VMCB_DT);
2568 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2572 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2576 static void update_cr0_intercept(struct vcpu_svm *svm)
2578 ulong gcr0 = svm->vcpu.arch.cr0;
2579 u64 *hcr0 = &svm->vmcb->save.cr0;
2581 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2582 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2584 mark_dirty(svm->vmcb, VMCB_CR);
2586 if (gcr0 == *hcr0) {
2587 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2588 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2590 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2591 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2595 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2597 struct vcpu_svm *svm = to_svm(vcpu);
2599 #ifdef CONFIG_X86_64
2600 if (vcpu->arch.efer & EFER_LME) {
2601 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2602 vcpu->arch.efer |= EFER_LMA;
2603 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2606 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2607 vcpu->arch.efer &= ~EFER_LMA;
2608 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2612 vcpu->arch.cr0 = cr0;
2615 cr0 |= X86_CR0_PG | X86_CR0_WP;
2618 * re-enable caching here because the QEMU bios
2619 * does not do it - this results in some delay at
2622 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2623 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2624 svm->vmcb->save.cr0 = cr0;
2625 mark_dirty(svm->vmcb, VMCB_CR);
2626 update_cr0_intercept(svm);
2629 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2631 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2632 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2634 if (cr4 & X86_CR4_VMXE)
2637 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2638 svm_flush_tlb(vcpu, true);
2640 vcpu->arch.cr4 = cr4;
2643 cr4 |= host_cr4_mce;
2644 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2645 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2649 static void svm_set_segment(struct kvm_vcpu *vcpu,
2650 struct kvm_segment *var, int seg)
2652 struct vcpu_svm *svm = to_svm(vcpu);
2653 struct vmcb_seg *s = svm_seg(vcpu, seg);
2655 s->base = var->base;
2656 s->limit = var->limit;
2657 s->selector = var->selector;
2658 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2659 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2660 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2661 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2662 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2663 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2664 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2665 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2668 * This is always accurate, except if SYSRET returned to a segment
2669 * with SS.DPL != 3. Intel does not have this quirk, and always
2670 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2671 * would entail passing the CPL to userspace and back.
2673 if (seg == VCPU_SREG_SS)
2674 /* This is symmetric with svm_get_segment() */
2675 svm->vmcb->save.cpl = (var->dpl & 3);
2677 mark_dirty(svm->vmcb, VMCB_SEG);
2680 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2682 struct vcpu_svm *svm = to_svm(vcpu);
2684 clr_exception_intercept(svm, BP_VECTOR);
2686 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2687 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2688 set_exception_intercept(svm, BP_VECTOR);
2690 vcpu->guest_debug = 0;
2693 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2695 if (sd->next_asid > sd->max_asid) {
2696 ++sd->asid_generation;
2697 sd->next_asid = sd->min_asid;
2698 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2701 svm->asid_generation = sd->asid_generation;
2702 svm->vmcb->control.asid = sd->next_asid++;
2704 mark_dirty(svm->vmcb, VMCB_ASID);
2707 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2709 return to_svm(vcpu)->vmcb->save.dr6;
2712 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2714 struct vcpu_svm *svm = to_svm(vcpu);
2716 svm->vmcb->save.dr6 = value;
2717 mark_dirty(svm->vmcb, VMCB_DR);
2720 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2722 struct vcpu_svm *svm = to_svm(vcpu);
2724 get_debugreg(vcpu->arch.db[0], 0);
2725 get_debugreg(vcpu->arch.db[1], 1);
2726 get_debugreg(vcpu->arch.db[2], 2);
2727 get_debugreg(vcpu->arch.db[3], 3);
2728 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2729 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2731 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2732 set_dr_intercepts(svm);
2735 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2737 struct vcpu_svm *svm = to_svm(vcpu);
2739 svm->vmcb->save.dr7 = value;
2740 mark_dirty(svm->vmcb, VMCB_DR);
2743 static int pf_interception(struct vcpu_svm *svm)
2745 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2746 u64 error_code = svm->vmcb->control.exit_info_1;
2748 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2749 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2750 svm->vmcb->control.insn_bytes : NULL,
2751 svm->vmcb->control.insn_len);
2754 static int npf_interception(struct vcpu_svm *svm)
2756 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2757 u64 error_code = svm->vmcb->control.exit_info_1;
2759 trace_kvm_page_fault(fault_address, error_code);
2760 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2761 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2762 svm->vmcb->control.insn_bytes : NULL,
2763 svm->vmcb->control.insn_len);
2766 static int db_interception(struct vcpu_svm *svm)
2768 struct kvm_run *kvm_run = svm->vcpu.run;
2769 struct kvm_vcpu *vcpu = &svm->vcpu;
2771 if (!(svm->vcpu.guest_debug &
2772 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2773 !svm->nmi_singlestep) {
2774 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2778 if (svm->nmi_singlestep) {
2779 disable_nmi_singlestep(svm);
2780 /* Make sure we check for pending NMIs upon entry */
2781 kvm_make_request(KVM_REQ_EVENT, vcpu);
2784 if (svm->vcpu.guest_debug &
2785 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2786 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2787 kvm_run->debug.arch.pc =
2788 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2789 kvm_run->debug.arch.exception = DB_VECTOR;
2796 static int bp_interception(struct vcpu_svm *svm)
2798 struct kvm_run *kvm_run = svm->vcpu.run;
2800 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2801 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2802 kvm_run->debug.arch.exception = BP_VECTOR;
2806 static int ud_interception(struct vcpu_svm *svm)
2808 return handle_ud(&svm->vcpu);
2811 static int ac_interception(struct vcpu_svm *svm)
2813 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2817 static int gp_interception(struct vcpu_svm *svm)
2819 struct kvm_vcpu *vcpu = &svm->vcpu;
2820 u32 error_code = svm->vmcb->control.exit_info_1;
2822 WARN_ON_ONCE(!enable_vmware_backdoor);
2825 * VMware backdoor emulation on #GP interception only handles IN{S},
2826 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2829 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2832 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
2835 static bool is_erratum_383(void)
2840 if (!erratum_383_found)
2843 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2847 /* Bit 62 may or may not be set for this mce */
2848 value &= ~(1ULL << 62);
2850 if (value != 0xb600000000010015ULL)
2853 /* Clear MCi_STATUS registers */
2854 for (i = 0; i < 6; ++i)
2855 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2857 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2861 value &= ~(1ULL << 2);
2862 low = lower_32_bits(value);
2863 high = upper_32_bits(value);
2865 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2868 /* Flush tlb to evict multi-match entries */
2874 static void svm_handle_mce(struct vcpu_svm *svm)
2876 if (is_erratum_383()) {
2878 * Erratum 383 triggered. Guest state is corrupt so kill the
2881 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2883 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2889 * On an #MC intercept the MCE handler is not called automatically in
2890 * the host. So do it by hand here.
2894 /* not sure if we ever come back to this point */
2899 static int mc_interception(struct vcpu_svm *svm)
2904 static int shutdown_interception(struct vcpu_svm *svm)
2906 struct kvm_run *kvm_run = svm->vcpu.run;
2909 * VMCB is undefined after a SHUTDOWN intercept
2910 * so reinitialize it.
2912 clear_page(svm->vmcb);
2915 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2919 static int io_interception(struct vcpu_svm *svm)
2921 struct kvm_vcpu *vcpu = &svm->vcpu;
2922 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2923 int size, in, string;
2926 ++svm->vcpu.stat.io_exits;
2927 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2928 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2930 return kvm_emulate_instruction(vcpu, 0);
2932 port = io_info >> 16;
2933 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2934 svm->next_rip = svm->vmcb->control.exit_info_2;
2936 return kvm_fast_pio(&svm->vcpu, size, port, in);
2939 static int nmi_interception(struct vcpu_svm *svm)
2944 static int intr_interception(struct vcpu_svm *svm)
2946 ++svm->vcpu.stat.irq_exits;
2950 static int nop_on_interception(struct vcpu_svm *svm)
2955 static int halt_interception(struct vcpu_svm *svm)
2957 return kvm_emulate_halt(&svm->vcpu);
2960 static int vmmcall_interception(struct vcpu_svm *svm)
2962 return kvm_emulate_hypercall(&svm->vcpu);
2965 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2967 struct vcpu_svm *svm = to_svm(vcpu);
2969 return svm->nested.nested_cr3;
2972 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2974 struct vcpu_svm *svm = to_svm(vcpu);
2975 u64 cr3 = svm->nested.nested_cr3;
2979 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2980 offset_in_page(cr3) + index * 8, 8);
2986 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2989 struct vcpu_svm *svm = to_svm(vcpu);
2991 svm->vmcb->control.nested_cr3 = __sme_set(root);
2992 mark_dirty(svm->vmcb, VMCB_NPT);
2995 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2996 struct x86_exception *fault)
2998 struct vcpu_svm *svm = to_svm(vcpu);
3000 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
3002 * TODO: track the cause of the nested page fault, and
3003 * correctly fill in the high bits of exit_info_1.
3005 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
3006 svm->vmcb->control.exit_code_hi = 0;
3007 svm->vmcb->control.exit_info_1 = (1ULL << 32);
3008 svm->vmcb->control.exit_info_2 = fault->address;
3011 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
3012 svm->vmcb->control.exit_info_1 |= fault->error_code;
3015 * The present bit is always zero for page structure faults on real
3018 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
3019 svm->vmcb->control.exit_info_1 &= ~1;
3021 nested_svm_vmexit(svm);
3024 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
3026 WARN_ON(mmu_is_nested(vcpu));
3028 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
3029 kvm_init_shadow_mmu(vcpu);
3030 vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
3031 vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
3032 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
3033 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
3034 vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
3035 reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
3036 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
3039 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
3041 vcpu->arch.mmu = &vcpu->arch.root_mmu;
3042 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
3045 static int nested_svm_check_permissions(struct vcpu_svm *svm)
3047 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3048 !is_paging(&svm->vcpu)) {
3049 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3053 if (svm->vmcb->save.cpl) {
3054 kvm_inject_gp(&svm->vcpu, 0);
3061 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3062 bool has_error_code, u32 error_code)
3066 if (!is_guest_mode(&svm->vcpu))
3069 vmexit = nested_svm_intercept(svm);
3070 if (vmexit != NESTED_EXIT_DONE)
3073 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3074 svm->vmcb->control.exit_code_hi = 0;
3075 svm->vmcb->control.exit_info_1 = error_code;
3078 * EXITINFO2 is undefined for all exception intercepts other
3081 if (svm->vcpu.arch.exception.nested_apf)
3082 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3083 else if (svm->vcpu.arch.exception.has_payload)
3084 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3086 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3088 svm->nested.exit_required = true;
3092 /* This function returns true if it is save to enable the irq window */
3093 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3095 if (!is_guest_mode(&svm->vcpu))
3098 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3101 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3105 * if vmexit was already requested (by intercepted exception
3106 * for instance) do not overwrite it with "external interrupt"
3109 if (svm->nested.exit_required)
3112 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3113 svm->vmcb->control.exit_info_1 = 0;
3114 svm->vmcb->control.exit_info_2 = 0;
3116 if (svm->nested.intercept & 1ULL) {
3118 * The #vmexit can't be emulated here directly because this
3119 * code path runs with irqs and preemption disabled. A
3120 * #vmexit emulation might sleep. Only signal request for
3123 svm->nested.exit_required = true;
3124 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3131 /* This function returns true if it is save to enable the nmi window */
3132 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3134 if (!is_guest_mode(&svm->vcpu))
3137 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3140 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3141 svm->nested.exit_required = true;
3146 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3148 unsigned port, size, iopm_len;
3153 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3154 return NESTED_EXIT_HOST;
3156 port = svm->vmcb->control.exit_info_1 >> 16;
3157 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3158 SVM_IOIO_SIZE_SHIFT;
3159 gpa = svm->nested.vmcb_iopm + (port / 8);
3160 start_bit = port % 8;
3161 iopm_len = (start_bit + size > 8) ? 2 : 1;
3162 mask = (0xf >> (4 - size)) << start_bit;
3165 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3166 return NESTED_EXIT_DONE;
3168 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3171 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3173 u32 offset, msr, value;
3176 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3177 return NESTED_EXIT_HOST;
3179 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3180 offset = svm_msrpm_offset(msr);
3181 write = svm->vmcb->control.exit_info_1 & 1;
3182 mask = 1 << ((2 * (msr & 0xf)) + write);
3184 if (offset == MSR_INVALID)
3185 return NESTED_EXIT_DONE;
3187 /* Offset is in 32 bit units but need in 8 bit units */
3190 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3191 return NESTED_EXIT_DONE;
3193 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3196 /* DB exceptions for our internal use must not cause vmexit */
3197 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3201 /* if we're not singlestepping, it's not ours */
3202 if (!svm->nmi_singlestep)
3203 return NESTED_EXIT_DONE;
3205 /* if it's not a singlestep exception, it's not ours */
3206 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3207 return NESTED_EXIT_DONE;
3208 if (!(dr6 & DR6_BS))
3209 return NESTED_EXIT_DONE;
3211 /* if the guest is singlestepping, it should get the vmexit */
3212 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3213 disable_nmi_singlestep(svm);
3214 return NESTED_EXIT_DONE;
3217 /* it's ours, the nested hypervisor must not see this one */
3218 return NESTED_EXIT_HOST;
3221 static int nested_svm_exit_special(struct vcpu_svm *svm)
3223 u32 exit_code = svm->vmcb->control.exit_code;
3225 switch (exit_code) {
3228 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3229 return NESTED_EXIT_HOST;
3231 /* For now we are always handling NPFs when using them */
3233 return NESTED_EXIT_HOST;
3235 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3236 /* When we're shadowing, trap PFs, but not async PF */
3237 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3238 return NESTED_EXIT_HOST;
3244 return NESTED_EXIT_CONTINUE;
3248 * If this function returns true, this #vmexit was already handled
3250 static int nested_svm_intercept(struct vcpu_svm *svm)
3252 u32 exit_code = svm->vmcb->control.exit_code;
3253 int vmexit = NESTED_EXIT_HOST;
3255 switch (exit_code) {
3257 vmexit = nested_svm_exit_handled_msr(svm);
3260 vmexit = nested_svm_intercept_ioio(svm);
3262 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3263 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3264 if (svm->nested.intercept_cr & bit)
3265 vmexit = NESTED_EXIT_DONE;
3268 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3269 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3270 if (svm->nested.intercept_dr & bit)
3271 vmexit = NESTED_EXIT_DONE;
3274 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3275 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3276 if (svm->nested.intercept_exceptions & excp_bits) {
3277 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3278 vmexit = nested_svm_intercept_db(svm);
3280 vmexit = NESTED_EXIT_DONE;
3282 /* async page fault always cause vmexit */
3283 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3284 svm->vcpu.arch.exception.nested_apf != 0)
3285 vmexit = NESTED_EXIT_DONE;
3288 case SVM_EXIT_ERR: {
3289 vmexit = NESTED_EXIT_DONE;
3293 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3294 if (svm->nested.intercept & exit_bits)
3295 vmexit = NESTED_EXIT_DONE;
3302 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3306 vmexit = nested_svm_intercept(svm);
3308 if (vmexit == NESTED_EXIT_DONE)
3309 nested_svm_vmexit(svm);
3314 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3316 struct vmcb_control_area *dst = &dst_vmcb->control;
3317 struct vmcb_control_area *from = &from_vmcb->control;
3319 dst->intercept_cr = from->intercept_cr;
3320 dst->intercept_dr = from->intercept_dr;
3321 dst->intercept_exceptions = from->intercept_exceptions;
3322 dst->intercept = from->intercept;
3323 dst->iopm_base_pa = from->iopm_base_pa;
3324 dst->msrpm_base_pa = from->msrpm_base_pa;
3325 dst->tsc_offset = from->tsc_offset;
3326 dst->asid = from->asid;
3327 dst->tlb_ctl = from->tlb_ctl;
3328 dst->int_ctl = from->int_ctl;
3329 dst->int_vector = from->int_vector;
3330 dst->int_state = from->int_state;
3331 dst->exit_code = from->exit_code;
3332 dst->exit_code_hi = from->exit_code_hi;
3333 dst->exit_info_1 = from->exit_info_1;
3334 dst->exit_info_2 = from->exit_info_2;
3335 dst->exit_int_info = from->exit_int_info;
3336 dst->exit_int_info_err = from->exit_int_info_err;
3337 dst->nested_ctl = from->nested_ctl;
3338 dst->event_inj = from->event_inj;
3339 dst->event_inj_err = from->event_inj_err;
3340 dst->nested_cr3 = from->nested_cr3;
3341 dst->virt_ext = from->virt_ext;
3342 dst->pause_filter_count = from->pause_filter_count;
3343 dst->pause_filter_thresh = from->pause_filter_thresh;
3346 static int nested_svm_vmexit(struct vcpu_svm *svm)
3349 struct vmcb *nested_vmcb;
3350 struct vmcb *hsave = svm->nested.hsave;
3351 struct vmcb *vmcb = svm->vmcb;
3352 struct kvm_host_map map;
3354 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3355 vmcb->control.exit_info_1,
3356 vmcb->control.exit_info_2,
3357 vmcb->control.exit_int_info,
3358 vmcb->control.exit_int_info_err,
3361 rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3364 kvm_inject_gp(&svm->vcpu, 0);
3368 nested_vmcb = map.hva;
3370 /* Exit Guest-Mode */
3371 leave_guest_mode(&svm->vcpu);
3372 svm->nested.vmcb = 0;
3374 /* Give the current vmcb to the guest */
3377 nested_vmcb->save.es = vmcb->save.es;
3378 nested_vmcb->save.cs = vmcb->save.cs;
3379 nested_vmcb->save.ss = vmcb->save.ss;
3380 nested_vmcb->save.ds = vmcb->save.ds;
3381 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3382 nested_vmcb->save.idtr = vmcb->save.idtr;
3383 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3384 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3385 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3386 nested_vmcb->save.cr2 = vmcb->save.cr2;
3387 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3388 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3389 nested_vmcb->save.rip = vmcb->save.rip;
3390 nested_vmcb->save.rsp = vmcb->save.rsp;
3391 nested_vmcb->save.rax = vmcb->save.rax;
3392 nested_vmcb->save.dr7 = vmcb->save.dr7;
3393 nested_vmcb->save.dr6 = vmcb->save.dr6;
3394 nested_vmcb->save.cpl = vmcb->save.cpl;
3396 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3397 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3398 nested_vmcb->control.int_state = vmcb->control.int_state;
3399 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3400 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3401 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3402 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3403 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3404 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3406 if (svm->nrips_enabled)
3407 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3410 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3411 * to make sure that we do not lose injected events. So check event_inj
3412 * here and copy it to exit_int_info if it is valid.
3413 * Exit_int_info and event_inj can't be both valid because the case
3414 * below only happens on a VMRUN instruction intercept which has
3415 * no valid exit_int_info set.
3417 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3418 struct vmcb_control_area *nc = &nested_vmcb->control;
3420 nc->exit_int_info = vmcb->control.event_inj;
3421 nc->exit_int_info_err = vmcb->control.event_inj_err;
3424 nested_vmcb->control.tlb_ctl = 0;
3425 nested_vmcb->control.event_inj = 0;
3426 nested_vmcb->control.event_inj_err = 0;
3428 nested_vmcb->control.pause_filter_count =
3429 svm->vmcb->control.pause_filter_count;
3430 nested_vmcb->control.pause_filter_thresh =
3431 svm->vmcb->control.pause_filter_thresh;
3433 /* We always set V_INTR_MASKING and remember the old value in hflags */
3434 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3435 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3437 /* Restore the original control entries */
3438 copy_vmcb_control_area(vmcb, hsave);
3440 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3441 kvm_clear_exception_queue(&svm->vcpu);
3442 kvm_clear_interrupt_queue(&svm->vcpu);
3444 svm->nested.nested_cr3 = 0;
3446 /* Restore selected save entries */
3447 svm->vmcb->save.es = hsave->save.es;
3448 svm->vmcb->save.cs = hsave->save.cs;
3449 svm->vmcb->save.ss = hsave->save.ss;
3450 svm->vmcb->save.ds = hsave->save.ds;
3451 svm->vmcb->save.gdtr = hsave->save.gdtr;
3452 svm->vmcb->save.idtr = hsave->save.idtr;
3453 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3454 svm_set_efer(&svm->vcpu, hsave->save.efer);
3455 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3456 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3458 svm->vmcb->save.cr3 = hsave->save.cr3;
3459 svm->vcpu.arch.cr3 = hsave->save.cr3;
3461 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3463 kvm_rax_write(&svm->vcpu, hsave->save.rax);
3464 kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3465 kvm_rip_write(&svm->vcpu, hsave->save.rip);
3466 svm->vmcb->save.dr7 = 0;
3467 svm->vmcb->save.cpl = 0;
3468 svm->vmcb->control.exit_int_info = 0;
3470 mark_all_dirty(svm->vmcb);
3472 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3474 nested_svm_uninit_mmu_context(&svm->vcpu);
3475 kvm_mmu_reset_context(&svm->vcpu);
3476 kvm_mmu_load(&svm->vcpu);
3479 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3480 * doesn't end up in L1.
3482 svm->vcpu.arch.nmi_injected = false;
3483 kvm_clear_exception_queue(&svm->vcpu);
3484 kvm_clear_interrupt_queue(&svm->vcpu);
3489 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3492 * This function merges the msr permission bitmaps of kvm and the
3493 * nested vmcb. It is optimized in that it only merges the parts where
3494 * the kvm msr permission bitmap may contain zero bits
3498 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3501 for (i = 0; i < MSRPM_OFFSETS; i++) {
3505 if (msrpm_offsets[i] == 0xffffffff)
3508 p = msrpm_offsets[i];
3509 offset = svm->nested.vmcb_msrpm + (p * 4);
3511 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3514 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3517 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3522 static bool nested_vmcb_checks(struct vmcb *vmcb)
3524 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3527 if (vmcb->control.asid == 0)
3530 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3537 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3538 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3540 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3541 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3543 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3545 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3546 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3547 nested_svm_init_mmu_context(&svm->vcpu);
3550 /* Load the nested guest state */
3551 svm->vmcb->save.es = nested_vmcb->save.es;
3552 svm->vmcb->save.cs = nested_vmcb->save.cs;
3553 svm->vmcb->save.ss = nested_vmcb->save.ss;
3554 svm->vmcb->save.ds = nested_vmcb->save.ds;
3555 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3556 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3557 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3558 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3559 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3560 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3562 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3563 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3565 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3567 /* Guest paging mode is active - reset mmu */
3568 kvm_mmu_reset_context(&svm->vcpu);
3570 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3571 kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3572 kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3573 kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3575 /* In case we don't even reach vcpu_run, the fields are not updated */
3576 svm->vmcb->save.rax = nested_vmcb->save.rax;
3577 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3578 svm->vmcb->save.rip = nested_vmcb->save.rip;
3579 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3580 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3581 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3583 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3584 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3586 /* cache intercepts */
3587 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3588 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3589 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3590 svm->nested.intercept = nested_vmcb->control.intercept;
3592 svm_flush_tlb(&svm->vcpu, true);
3593 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3594 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3595 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3597 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3599 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3600 /* We only want the cr8 intercept bits of the guest */
3601 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3602 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3605 /* We don't want to see VMMCALLs from a nested guest */
3606 clr_intercept(svm, INTERCEPT_VMMCALL);
3608 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3609 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3611 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3612 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3613 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3614 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3615 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3617 svm->vmcb->control.pause_filter_count =
3618 nested_vmcb->control.pause_filter_count;
3619 svm->vmcb->control.pause_filter_thresh =
3620 nested_vmcb->control.pause_filter_thresh;
3622 kvm_vcpu_unmap(&svm->vcpu, map, true);
3624 /* Enter Guest-Mode */
3625 enter_guest_mode(&svm->vcpu);
3628 * Merge guest and host intercepts - must be called with vcpu in
3629 * guest-mode to take affect here
3631 recalc_intercepts(svm);
3633 svm->nested.vmcb = vmcb_gpa;
3637 mark_all_dirty(svm->vmcb);
3640 static int nested_svm_vmrun(struct vcpu_svm *svm)
3643 struct vmcb *nested_vmcb;
3644 struct vmcb *hsave = svm->nested.hsave;
3645 struct vmcb *vmcb = svm->vmcb;
3646 struct kvm_host_map map;
3649 vmcb_gpa = svm->vmcb->save.rax;
3651 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3652 if (ret == -EINVAL) {
3653 kvm_inject_gp(&svm->vcpu, 0);
3656 return kvm_skip_emulated_instruction(&svm->vcpu);
3659 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3661 nested_vmcb = map.hva;
3663 if (!nested_vmcb_checks(nested_vmcb)) {
3664 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3665 nested_vmcb->control.exit_code_hi = 0;
3666 nested_vmcb->control.exit_info_1 = 0;
3667 nested_vmcb->control.exit_info_2 = 0;
3669 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3674 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3675 nested_vmcb->save.rip,
3676 nested_vmcb->control.int_ctl,
3677 nested_vmcb->control.event_inj,
3678 nested_vmcb->control.nested_ctl);
3680 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3681 nested_vmcb->control.intercept_cr >> 16,
3682 nested_vmcb->control.intercept_exceptions,
3683 nested_vmcb->control.intercept);
3685 /* Clear internal status */
3686 kvm_clear_exception_queue(&svm->vcpu);
3687 kvm_clear_interrupt_queue(&svm->vcpu);
3690 * Save the old vmcb, so we don't need to pick what we save, but can
3691 * restore everything when a VMEXIT occurs
3693 hsave->save.es = vmcb->save.es;
3694 hsave->save.cs = vmcb->save.cs;
3695 hsave->save.ss = vmcb->save.ss;
3696 hsave->save.ds = vmcb->save.ds;
3697 hsave->save.gdtr = vmcb->save.gdtr;
3698 hsave->save.idtr = vmcb->save.idtr;
3699 hsave->save.efer = svm->vcpu.arch.efer;
3700 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3701 hsave->save.cr4 = svm->vcpu.arch.cr4;
3702 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3703 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3704 hsave->save.rsp = vmcb->save.rsp;
3705 hsave->save.rax = vmcb->save.rax;
3707 hsave->save.cr3 = vmcb->save.cr3;
3709 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3711 copy_vmcb_control_area(hsave, vmcb);
3713 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3715 if (!nested_svm_vmrun_msrpm(svm)) {
3716 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3717 svm->vmcb->control.exit_code_hi = 0;
3718 svm->vmcb->control.exit_info_1 = 0;
3719 svm->vmcb->control.exit_info_2 = 0;
3721 nested_svm_vmexit(svm);
3727 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3729 to_vmcb->save.fs = from_vmcb->save.fs;
3730 to_vmcb->save.gs = from_vmcb->save.gs;
3731 to_vmcb->save.tr = from_vmcb->save.tr;
3732 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3733 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3734 to_vmcb->save.star = from_vmcb->save.star;
3735 to_vmcb->save.lstar = from_vmcb->save.lstar;
3736 to_vmcb->save.cstar = from_vmcb->save.cstar;
3737 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3738 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3739 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3740 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3743 static int vmload_interception(struct vcpu_svm *svm)
3745 struct vmcb *nested_vmcb;
3746 struct kvm_host_map map;
3749 if (nested_svm_check_permissions(svm))
3752 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3755 kvm_inject_gp(&svm->vcpu, 0);
3759 nested_vmcb = map.hva;
3761 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3763 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3764 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3769 static int vmsave_interception(struct vcpu_svm *svm)
3771 struct vmcb *nested_vmcb;
3772 struct kvm_host_map map;
3775 if (nested_svm_check_permissions(svm))
3778 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3781 kvm_inject_gp(&svm->vcpu, 0);
3785 nested_vmcb = map.hva;
3787 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3789 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3790 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3795 static int vmrun_interception(struct vcpu_svm *svm)
3797 if (nested_svm_check_permissions(svm))
3800 return nested_svm_vmrun(svm);
3803 static int stgi_interception(struct vcpu_svm *svm)
3807 if (nested_svm_check_permissions(svm))
3811 * If VGIF is enabled, the STGI intercept is only added to
3812 * detect the opening of the SMI/NMI window; remove it now.
3814 if (vgif_enabled(svm))
3815 clr_intercept(svm, INTERCEPT_STGI);
3817 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3818 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3825 static int clgi_interception(struct vcpu_svm *svm)
3829 if (nested_svm_check_permissions(svm))
3832 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3836 /* After a CLGI no interrupts should come */
3837 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3838 svm_clear_vintr(svm);
3839 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3840 mark_dirty(svm->vmcb, VMCB_INTR);
3846 static int invlpga_interception(struct vcpu_svm *svm)
3848 struct kvm_vcpu *vcpu = &svm->vcpu;
3850 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3851 kvm_rax_read(&svm->vcpu));
3853 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3854 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3856 return kvm_skip_emulated_instruction(&svm->vcpu);
3859 static int skinit_interception(struct vcpu_svm *svm)
3861 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3863 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3867 static int wbinvd_interception(struct vcpu_svm *svm)
3869 return kvm_emulate_wbinvd(&svm->vcpu);
3872 static int xsetbv_interception(struct vcpu_svm *svm)
3874 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3875 u32 index = kvm_rcx_read(&svm->vcpu);
3877 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3878 return kvm_skip_emulated_instruction(&svm->vcpu);
3884 static int rdpru_interception(struct vcpu_svm *svm)
3886 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3890 static int task_switch_interception(struct vcpu_svm *svm)
3894 int int_type = svm->vmcb->control.exit_int_info &
3895 SVM_EXITINTINFO_TYPE_MASK;
3896 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3898 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3900 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3901 bool has_error_code = false;
3904 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3906 if (svm->vmcb->control.exit_info_2 &
3907 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3908 reason = TASK_SWITCH_IRET;
3909 else if (svm->vmcb->control.exit_info_2 &
3910 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3911 reason = TASK_SWITCH_JMP;
3913 reason = TASK_SWITCH_GATE;
3915 reason = TASK_SWITCH_CALL;
3917 if (reason == TASK_SWITCH_GATE) {
3919 case SVM_EXITINTINFO_TYPE_NMI:
3920 svm->vcpu.arch.nmi_injected = false;
3922 case SVM_EXITINTINFO_TYPE_EXEPT:
3923 if (svm->vmcb->control.exit_info_2 &
3924 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3925 has_error_code = true;
3927 (u32)svm->vmcb->control.exit_info_2;
3929 kvm_clear_exception_queue(&svm->vcpu);
3931 case SVM_EXITINTINFO_TYPE_INTR:
3932 kvm_clear_interrupt_queue(&svm->vcpu);
3939 if (reason != TASK_SWITCH_GATE ||
3940 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3941 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3942 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
3943 if (!skip_emulated_instruction(&svm->vcpu))
3947 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3950 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3951 has_error_code, error_code);
3954 static int cpuid_interception(struct vcpu_svm *svm)
3956 return kvm_emulate_cpuid(&svm->vcpu);
3959 static int iret_interception(struct vcpu_svm *svm)
3961 ++svm->vcpu.stat.nmi_window_exits;
3962 clr_intercept(svm, INTERCEPT_IRET);
3963 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3964 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3965 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3969 static int invlpg_interception(struct vcpu_svm *svm)
3971 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3972 return kvm_emulate_instruction(&svm->vcpu, 0);
3974 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3975 return kvm_skip_emulated_instruction(&svm->vcpu);
3978 static int emulate_on_interception(struct vcpu_svm *svm)
3980 return kvm_emulate_instruction(&svm->vcpu, 0);
3983 static int rsm_interception(struct vcpu_svm *svm)
3985 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
3988 static int rdpmc_interception(struct vcpu_svm *svm)
3993 return emulate_on_interception(svm);
3995 err = kvm_rdpmc(&svm->vcpu);
3996 return kvm_complete_insn_gp(&svm->vcpu, err);
3999 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
4002 unsigned long cr0 = svm->vcpu.arch.cr0;
4006 intercept = svm->nested.intercept;
4008 if (!is_guest_mode(&svm->vcpu) ||
4009 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
4012 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
4013 val &= ~SVM_CR0_SELECTIVE_MASK;
4016 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4017 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
4023 #define CR_VALID (1ULL << 63)
4025 static int cr_interception(struct vcpu_svm *svm)
4031 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
4032 return emulate_on_interception(svm);
4034 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
4035 return emulate_on_interception(svm);
4037 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4038 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
4039 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
4041 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4044 if (cr >= 16) { /* mov to cr */
4046 val = kvm_register_read(&svm->vcpu, reg);
4049 if (!check_selective_cr0_intercepted(svm, val))
4050 err = kvm_set_cr0(&svm->vcpu, val);
4056 err = kvm_set_cr3(&svm->vcpu, val);
4059 err = kvm_set_cr4(&svm->vcpu, val);
4062 err = kvm_set_cr8(&svm->vcpu, val);
4065 WARN(1, "unhandled write to CR%d", cr);
4066 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4069 } else { /* mov from cr */
4072 val = kvm_read_cr0(&svm->vcpu);
4075 val = svm->vcpu.arch.cr2;
4078 val = kvm_read_cr3(&svm->vcpu);
4081 val = kvm_read_cr4(&svm->vcpu);
4084 val = kvm_get_cr8(&svm->vcpu);
4087 WARN(1, "unhandled read from CR%d", cr);
4088 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4091 kvm_register_write(&svm->vcpu, reg, val);
4093 return kvm_complete_insn_gp(&svm->vcpu, err);
4096 static int dr_interception(struct vcpu_svm *svm)
4101 if (svm->vcpu.guest_debug == 0) {
4103 * No more DR vmexits; force a reload of the debug registers
4104 * and reenter on this instruction. The next vmexit will
4105 * retrieve the full state of the debug registers.
4107 clr_dr_intercepts(svm);
4108 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4112 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4113 return emulate_on_interception(svm);
4115 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4116 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4118 if (dr >= 16) { /* mov to DRn */
4119 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4121 val = kvm_register_read(&svm->vcpu, reg);
4122 kvm_set_dr(&svm->vcpu, dr - 16, val);
4124 if (!kvm_require_dr(&svm->vcpu, dr))
4126 kvm_get_dr(&svm->vcpu, dr, &val);
4127 kvm_register_write(&svm->vcpu, reg, val);
4130 return kvm_skip_emulated_instruction(&svm->vcpu);
4133 static int cr8_write_interception(struct vcpu_svm *svm)
4135 struct kvm_run *kvm_run = svm->vcpu.run;
4138 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4139 /* instruction emulation calls kvm_set_cr8() */
4140 r = cr_interception(svm);
4141 if (lapic_in_kernel(&svm->vcpu))
4143 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4145 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4149 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4153 switch (msr->index) {
4154 case MSR_F10H_DECFG:
4155 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4156 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4165 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4167 struct vcpu_svm *svm = to_svm(vcpu);
4169 switch (msr_info->index) {
4171 msr_info->data = svm->vmcb->save.star;
4173 #ifdef CONFIG_X86_64
4175 msr_info->data = svm->vmcb->save.lstar;
4178 msr_info->data = svm->vmcb->save.cstar;
4180 case MSR_KERNEL_GS_BASE:
4181 msr_info->data = svm->vmcb->save.kernel_gs_base;
4183 case MSR_SYSCALL_MASK:
4184 msr_info->data = svm->vmcb->save.sfmask;
4187 case MSR_IA32_SYSENTER_CS:
4188 msr_info->data = svm->vmcb->save.sysenter_cs;
4190 case MSR_IA32_SYSENTER_EIP:
4191 msr_info->data = svm->sysenter_eip;
4193 case MSR_IA32_SYSENTER_ESP:
4194 msr_info->data = svm->sysenter_esp;
4197 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4199 msr_info->data = svm->tsc_aux;
4202 * Nobody will change the following 5 values in the VMCB so we can
4203 * safely return them on rdmsr. They will always be 0 until LBRV is
4206 case MSR_IA32_DEBUGCTLMSR:
4207 msr_info->data = svm->vmcb->save.dbgctl;
4209 case MSR_IA32_LASTBRANCHFROMIP:
4210 msr_info->data = svm->vmcb->save.br_from;
4212 case MSR_IA32_LASTBRANCHTOIP:
4213 msr_info->data = svm->vmcb->save.br_to;
4215 case MSR_IA32_LASTINTFROMIP:
4216 msr_info->data = svm->vmcb->save.last_excp_from;
4218 case MSR_IA32_LASTINTTOIP:
4219 msr_info->data = svm->vmcb->save.last_excp_to;
4221 case MSR_VM_HSAVE_PA:
4222 msr_info->data = svm->nested.hsave_msr;
4225 msr_info->data = svm->nested.vm_cr_msr;
4227 case MSR_IA32_SPEC_CTRL:
4228 if (!msr_info->host_initiated &&
4229 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
4230 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
4231 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4232 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4235 msr_info->data = svm->spec_ctrl;
4237 case MSR_AMD64_VIRT_SPEC_CTRL:
4238 if (!msr_info->host_initiated &&
4239 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4242 msr_info->data = svm->virt_spec_ctrl;
4244 case MSR_F15H_IC_CFG: {
4248 family = guest_cpuid_family(vcpu);
4249 model = guest_cpuid_model(vcpu);
4251 if (family < 0 || model < 0)
4252 return kvm_get_msr_common(vcpu, msr_info);
4256 if (family == 0x15 &&
4257 (model >= 0x2 && model < 0x20))
4258 msr_info->data = 0x1E;
4261 case MSR_F10H_DECFG:
4262 msr_info->data = svm->msr_decfg;
4265 return kvm_get_msr_common(vcpu, msr_info);
4270 static int rdmsr_interception(struct vcpu_svm *svm)
4272 return kvm_emulate_rdmsr(&svm->vcpu);
4275 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4277 struct vcpu_svm *svm = to_svm(vcpu);
4278 int svm_dis, chg_mask;
4280 if (data & ~SVM_VM_CR_VALID_MASK)
4283 chg_mask = SVM_VM_CR_VALID_MASK;
4285 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4286 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4288 svm->nested.vm_cr_msr &= ~chg_mask;
4289 svm->nested.vm_cr_msr |= (data & chg_mask);
4291 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4293 /* check for svm_disable while efer.svme is set */
4294 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4300 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4302 struct vcpu_svm *svm = to_svm(vcpu);
4304 u32 ecx = msr->index;
4305 u64 data = msr->data;
4307 case MSR_IA32_CR_PAT:
4308 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4310 vcpu->arch.pat = data;
4311 svm->vmcb->save.g_pat = data;
4312 mark_dirty(svm->vmcb, VMCB_NPT);
4314 case MSR_IA32_SPEC_CTRL:
4315 if (!msr->host_initiated &&
4316 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
4317 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
4318 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4319 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4322 if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
4325 svm->spec_ctrl = data;
4331 * When it's written (to non-zero) for the first time, pass
4335 * The handling of the MSR bitmap for L2 guests is done in
4336 * nested_svm_vmrun_msrpm.
4337 * We update the L1 MSR bit as well since it will end up
4338 * touching the MSR anyway now.
4340 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4342 case MSR_IA32_PRED_CMD:
4343 if (!msr->host_initiated &&
4344 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4347 if (data & ~PRED_CMD_IBPB)
4349 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
4354 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4355 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4357 case MSR_AMD64_VIRT_SPEC_CTRL:
4358 if (!msr->host_initiated &&
4359 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4362 if (data & ~SPEC_CTRL_SSBD)
4365 svm->virt_spec_ctrl = data;
4368 svm->vmcb->save.star = data;
4370 #ifdef CONFIG_X86_64
4372 svm->vmcb->save.lstar = data;
4375 svm->vmcb->save.cstar = data;
4377 case MSR_KERNEL_GS_BASE:
4378 svm->vmcb->save.kernel_gs_base = data;
4380 case MSR_SYSCALL_MASK:
4381 svm->vmcb->save.sfmask = data;
4384 case MSR_IA32_SYSENTER_CS:
4385 svm->vmcb->save.sysenter_cs = data;
4387 case MSR_IA32_SYSENTER_EIP:
4388 svm->sysenter_eip = data;
4389 svm->vmcb->save.sysenter_eip = data;
4391 case MSR_IA32_SYSENTER_ESP:
4392 svm->sysenter_esp = data;
4393 svm->vmcb->save.sysenter_esp = data;
4396 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4400 * This is rare, so we update the MSR here instead of using
4401 * direct_access_msrs. Doing that would require a rdmsr in
4404 svm->tsc_aux = data;
4405 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4407 case MSR_IA32_DEBUGCTLMSR:
4408 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4409 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4413 if (data & DEBUGCTL_RESERVED_BITS)
4416 svm->vmcb->save.dbgctl = data;
4417 mark_dirty(svm->vmcb, VMCB_LBR);
4418 if (data & (1ULL<<0))
4419 svm_enable_lbrv(svm);
4421 svm_disable_lbrv(svm);
4423 case MSR_VM_HSAVE_PA:
4424 svm->nested.hsave_msr = data;
4427 return svm_set_vm_cr(vcpu, data);
4429 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4431 case MSR_F10H_DECFG: {
4432 struct kvm_msr_entry msr_entry;
4434 msr_entry.index = msr->index;
4435 if (svm_get_msr_feature(&msr_entry))
4438 /* Check the supported bits */
4439 if (data & ~msr_entry.data)
4442 /* Don't allow the guest to change a bit, #GP */
4443 if (!msr->host_initiated && (data ^ msr_entry.data))
4446 svm->msr_decfg = data;
4449 case MSR_IA32_APICBASE:
4450 if (kvm_vcpu_apicv_active(vcpu))
4451 avic_update_vapic_bar(to_svm(vcpu), data);
4454 return kvm_set_msr_common(vcpu, msr);
4459 static int wrmsr_interception(struct vcpu_svm *svm)
4461 return kvm_emulate_wrmsr(&svm->vcpu);
4464 static int msr_interception(struct vcpu_svm *svm)
4466 if (svm->vmcb->control.exit_info_1)
4467 return wrmsr_interception(svm);
4469 return rdmsr_interception(svm);
4472 static int interrupt_window_interception(struct vcpu_svm *svm)
4474 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4475 svm_clear_vintr(svm);
4478 * For AVIC, the only reason to end up here is ExtINTs.
4479 * In this case AVIC was temporarily disabled for
4480 * requesting the IRQ window and we have to re-enable it.
4482 svm_toggle_avic_for_irq_window(&svm->vcpu, true);
4484 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4485 mark_dirty(svm->vmcb, VMCB_INTR);
4486 ++svm->vcpu.stat.irq_window_exits;
4490 static int pause_interception(struct vcpu_svm *svm)
4492 struct kvm_vcpu *vcpu = &svm->vcpu;
4493 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4495 if (pause_filter_thresh)
4496 grow_ple_window(vcpu);
4498 kvm_vcpu_on_spin(vcpu, in_kernel);
4502 static int nop_interception(struct vcpu_svm *svm)
4504 return kvm_skip_emulated_instruction(&(svm->vcpu));
4507 static int monitor_interception(struct vcpu_svm *svm)
4509 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4510 return nop_interception(svm);
4513 static int mwait_interception(struct vcpu_svm *svm)
4515 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4516 return nop_interception(svm);
4519 enum avic_ipi_failure_cause {
4520 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4521 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4522 AVIC_IPI_FAILURE_INVALID_TARGET,
4523 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4526 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4528 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4529 u32 icrl = svm->vmcb->control.exit_info_1;
4530 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4531 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4532 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4534 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4537 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4539 * AVIC hardware handles the generation of
4540 * IPIs when the specified Message Type is Fixed
4541 * (also known as fixed delivery mode) and
4542 * the Trigger Mode is edge-triggered. The hardware
4543 * also supports self and broadcast delivery modes
4544 * specified via the Destination Shorthand(DSH)
4545 * field of the ICRL. Logical and physical APIC ID
4546 * formats are supported. All other IPI types cause
4547 * a #VMEXIT, which needs to emulated.
4549 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4550 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4552 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4554 struct kvm_vcpu *vcpu;
4555 struct kvm *kvm = svm->vcpu.kvm;
4556 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4559 * At this point, we expect that the AVIC HW has already
4560 * set the appropriate IRR bits on the valid target
4561 * vcpus. So, we just need to kick the appropriate vcpu.
4563 kvm_for_each_vcpu(i, vcpu, kvm) {
4564 bool m = kvm_apic_match_dest(vcpu, apic,
4565 icrl & APIC_SHORT_MASK,
4566 GET_APIC_DEST_FIELD(icrh),
4567 icrl & APIC_DEST_MASK);
4569 if (m && !avic_vcpu_is_running(vcpu))
4570 kvm_vcpu_wake_up(vcpu);
4574 case AVIC_IPI_FAILURE_INVALID_TARGET:
4575 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4576 index, svm->vcpu.vcpu_id, icrh, icrl);
4578 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4579 WARN_ONCE(1, "Invalid backing page\n");
4582 pr_err("Unknown IPI interception\n");
4588 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4590 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4592 u32 *logical_apic_id_table;
4593 int dlid = GET_APIC_LOGICAL_ID(ldr);
4598 if (flat) { /* flat */
4599 index = ffs(dlid) - 1;
4602 } else { /* cluster */
4603 int cluster = (dlid & 0xf0) >> 4;
4604 int apic = ffs(dlid & 0x0f) - 1;
4606 if ((apic < 0) || (apic > 7) ||
4609 index = (cluster << 2) + apic;
4612 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4614 return &logical_apic_id_table[index];
4617 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4620 u32 *entry, new_entry;
4622 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4623 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4627 new_entry = READ_ONCE(*entry);
4628 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4629 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4630 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4631 WRITE_ONCE(*entry, new_entry);
4636 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4638 struct vcpu_svm *svm = to_svm(vcpu);
4639 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4640 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4643 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4646 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4649 struct vcpu_svm *svm = to_svm(vcpu);
4650 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4651 u32 id = kvm_xapic_id(vcpu->arch.apic);
4653 if (ldr == svm->ldr_reg)
4656 avic_invalidate_logical_id_entry(vcpu);
4659 ret = avic_ldr_write(vcpu, id, ldr);
4667 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4670 struct vcpu_svm *svm = to_svm(vcpu);
4671 u32 id = kvm_xapic_id(vcpu->arch.apic);
4673 if (vcpu->vcpu_id == id)
4676 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4677 new = avic_get_physical_id_entry(vcpu, id);
4681 /* We need to move physical_id_entry to new offset */
4684 to_svm(vcpu)->avic_physical_id_cache = new;
4687 * Also update the guest physical APIC ID in the logical
4688 * APIC ID table entry if already setup the LDR.
4691 avic_handle_ldr_update(vcpu);
4696 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4698 struct vcpu_svm *svm = to_svm(vcpu);
4699 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4701 if (svm->dfr_reg == dfr)
4704 avic_invalidate_logical_id_entry(vcpu);
4708 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4710 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4711 u32 offset = svm->vmcb->control.exit_info_1 &
4712 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4716 if (avic_handle_apic_id_update(&svm->vcpu))
4720 if (avic_handle_ldr_update(&svm->vcpu))
4724 avic_handle_dfr_update(&svm->vcpu);
4730 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4735 static bool is_avic_unaccelerated_access_trap(u32 offset)
4764 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4767 u32 offset = svm->vmcb->control.exit_info_1 &
4768 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4769 u32 vector = svm->vmcb->control.exit_info_2 &
4770 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4771 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4772 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4773 bool trap = is_avic_unaccelerated_access_trap(offset);
4775 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4776 trap, write, vector);
4779 WARN_ONCE(!write, "svm: Handling trap read.\n");
4780 ret = avic_unaccel_trap_write(svm);
4782 /* Handling Fault */
4783 ret = kvm_emulate_instruction(&svm->vcpu, 0);
4789 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4790 [SVM_EXIT_READ_CR0] = cr_interception,
4791 [SVM_EXIT_READ_CR3] = cr_interception,
4792 [SVM_EXIT_READ_CR4] = cr_interception,
4793 [SVM_EXIT_READ_CR8] = cr_interception,
4794 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4795 [SVM_EXIT_WRITE_CR0] = cr_interception,
4796 [SVM_EXIT_WRITE_CR3] = cr_interception,
4797 [SVM_EXIT_WRITE_CR4] = cr_interception,
4798 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4799 [SVM_EXIT_READ_DR0] = dr_interception,
4800 [SVM_EXIT_READ_DR1] = dr_interception,
4801 [SVM_EXIT_READ_DR2] = dr_interception,
4802 [SVM_EXIT_READ_DR3] = dr_interception,
4803 [SVM_EXIT_READ_DR4] = dr_interception,
4804 [SVM_EXIT_READ_DR5] = dr_interception,
4805 [SVM_EXIT_READ_DR6] = dr_interception,
4806 [SVM_EXIT_READ_DR7] = dr_interception,
4807 [SVM_EXIT_WRITE_DR0] = dr_interception,
4808 [SVM_EXIT_WRITE_DR1] = dr_interception,
4809 [SVM_EXIT_WRITE_DR2] = dr_interception,
4810 [SVM_EXIT_WRITE_DR3] = dr_interception,
4811 [SVM_EXIT_WRITE_DR4] = dr_interception,
4812 [SVM_EXIT_WRITE_DR5] = dr_interception,
4813 [SVM_EXIT_WRITE_DR6] = dr_interception,
4814 [SVM_EXIT_WRITE_DR7] = dr_interception,
4815 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4816 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4817 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4818 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4819 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4820 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4821 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4822 [SVM_EXIT_INTR] = intr_interception,
4823 [SVM_EXIT_NMI] = nmi_interception,
4824 [SVM_EXIT_SMI] = nop_on_interception,
4825 [SVM_EXIT_INIT] = nop_on_interception,
4826 [SVM_EXIT_VINTR] = interrupt_window_interception,
4827 [SVM_EXIT_RDPMC] = rdpmc_interception,
4828 [SVM_EXIT_CPUID] = cpuid_interception,
4829 [SVM_EXIT_IRET] = iret_interception,
4830 [SVM_EXIT_INVD] = emulate_on_interception,
4831 [SVM_EXIT_PAUSE] = pause_interception,
4832 [SVM_EXIT_HLT] = halt_interception,
4833 [SVM_EXIT_INVLPG] = invlpg_interception,
4834 [SVM_EXIT_INVLPGA] = invlpga_interception,
4835 [SVM_EXIT_IOIO] = io_interception,
4836 [SVM_EXIT_MSR] = msr_interception,
4837 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4838 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4839 [SVM_EXIT_VMRUN] = vmrun_interception,
4840 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4841 [SVM_EXIT_VMLOAD] = vmload_interception,
4842 [SVM_EXIT_VMSAVE] = vmsave_interception,
4843 [SVM_EXIT_STGI] = stgi_interception,
4844 [SVM_EXIT_CLGI] = clgi_interception,
4845 [SVM_EXIT_SKINIT] = skinit_interception,
4846 [SVM_EXIT_WBINVD] = wbinvd_interception,
4847 [SVM_EXIT_MONITOR] = monitor_interception,
4848 [SVM_EXIT_MWAIT] = mwait_interception,
4849 [SVM_EXIT_XSETBV] = xsetbv_interception,
4850 [SVM_EXIT_RDPRU] = rdpru_interception,
4851 [SVM_EXIT_NPF] = npf_interception,
4852 [SVM_EXIT_RSM] = rsm_interception,
4853 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4854 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4857 static void dump_vmcb(struct kvm_vcpu *vcpu)
4859 struct vcpu_svm *svm = to_svm(vcpu);
4860 struct vmcb_control_area *control = &svm->vmcb->control;
4861 struct vmcb_save_area *save = &svm->vmcb->save;
4863 if (!dump_invalid_vmcb) {
4864 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4868 pr_err("VMCB Control Area:\n");
4869 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4870 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4871 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4872 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4873 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4874 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4875 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4876 pr_err("%-20s%d\n", "pause filter threshold:",
4877 control->pause_filter_thresh);
4878 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4879 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4880 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4881 pr_err("%-20s%d\n", "asid:", control->asid);
4882 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4883 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4884 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4885 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4886 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4887 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4888 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4889 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4890 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4891 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4892 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4893 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4894 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4895 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4896 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4897 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4898 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4899 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4900 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4901 pr_err("VMCB State Save Area:\n");
4902 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4904 save->es.selector, save->es.attrib,
4905 save->es.limit, save->es.base);
4906 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4908 save->cs.selector, save->cs.attrib,
4909 save->cs.limit, save->cs.base);
4910 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4912 save->ss.selector, save->ss.attrib,
4913 save->ss.limit, save->ss.base);
4914 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4916 save->ds.selector, save->ds.attrib,
4917 save->ds.limit, save->ds.base);
4918 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4920 save->fs.selector, save->fs.attrib,
4921 save->fs.limit, save->fs.base);
4922 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4924 save->gs.selector, save->gs.attrib,
4925 save->gs.limit, save->gs.base);
4926 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4928 save->gdtr.selector, save->gdtr.attrib,
4929 save->gdtr.limit, save->gdtr.base);
4930 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4932 save->ldtr.selector, save->ldtr.attrib,
4933 save->ldtr.limit, save->ldtr.base);
4934 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4936 save->idtr.selector, save->idtr.attrib,
4937 save->idtr.limit, save->idtr.base);
4938 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4940 save->tr.selector, save->tr.attrib,
4941 save->tr.limit, save->tr.base);
4942 pr_err("cpl: %d efer: %016llx\n",
4943 save->cpl, save->efer);
4944 pr_err("%-15s %016llx %-13s %016llx\n",
4945 "cr0:", save->cr0, "cr2:", save->cr2);
4946 pr_err("%-15s %016llx %-13s %016llx\n",
4947 "cr3:", save->cr3, "cr4:", save->cr4);
4948 pr_err("%-15s %016llx %-13s %016llx\n",
4949 "dr6:", save->dr6, "dr7:", save->dr7);
4950 pr_err("%-15s %016llx %-13s %016llx\n",
4951 "rip:", save->rip, "rflags:", save->rflags);
4952 pr_err("%-15s %016llx %-13s %016llx\n",
4953 "rsp:", save->rsp, "rax:", save->rax);
4954 pr_err("%-15s %016llx %-13s %016llx\n",
4955 "star:", save->star, "lstar:", save->lstar);
4956 pr_err("%-15s %016llx %-13s %016llx\n",
4957 "cstar:", save->cstar, "sfmask:", save->sfmask);
4958 pr_err("%-15s %016llx %-13s %016llx\n",
4959 "kernel_gs_base:", save->kernel_gs_base,
4960 "sysenter_cs:", save->sysenter_cs);
4961 pr_err("%-15s %016llx %-13s %016llx\n",
4962 "sysenter_esp:", save->sysenter_esp,
4963 "sysenter_eip:", save->sysenter_eip);
4964 pr_err("%-15s %016llx %-13s %016llx\n",
4965 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4966 pr_err("%-15s %016llx %-13s %016llx\n",
4967 "br_from:", save->br_from, "br_to:", save->br_to);
4968 pr_err("%-15s %016llx %-13s %016llx\n",
4969 "excp_from:", save->last_excp_from,
4970 "excp_to:", save->last_excp_to);
4973 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4975 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4977 *info1 = control->exit_info_1;
4978 *info2 = control->exit_info_2;
4981 static int handle_exit(struct kvm_vcpu *vcpu,
4982 enum exit_fastpath_completion exit_fastpath)
4984 struct vcpu_svm *svm = to_svm(vcpu);
4985 struct kvm_run *kvm_run = vcpu->run;
4986 u32 exit_code = svm->vmcb->control.exit_code;
4988 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4990 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4991 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4993 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4995 if (unlikely(svm->nested.exit_required)) {
4996 nested_svm_vmexit(svm);
4997 svm->nested.exit_required = false;
5002 if (is_guest_mode(vcpu)) {
5005 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
5006 svm->vmcb->control.exit_info_1,
5007 svm->vmcb->control.exit_info_2,
5008 svm->vmcb->control.exit_int_info,
5009 svm->vmcb->control.exit_int_info_err,
5012 vmexit = nested_svm_exit_special(svm);
5014 if (vmexit == NESTED_EXIT_CONTINUE)
5015 vmexit = nested_svm_exit_handled(svm);
5017 if (vmexit == NESTED_EXIT_DONE)
5021 svm_complete_interrupts(svm);
5023 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
5024 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5025 kvm_run->fail_entry.hardware_entry_failure_reason
5026 = svm->vmcb->control.exit_code;
5031 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
5032 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
5033 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
5034 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
5035 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
5037 __func__, svm->vmcb->control.exit_int_info,
5040 if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
5041 kvm_skip_emulated_instruction(vcpu);
5043 } else if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
5044 || !svm_exit_handlers[exit_code]) {
5045 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
5047 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5048 vcpu->run->internal.suberror =
5049 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5050 vcpu->run->internal.ndata = 1;
5051 vcpu->run->internal.data[0] = exit_code;
5055 #ifdef CONFIG_RETPOLINE
5056 if (exit_code == SVM_EXIT_MSR)
5057 return msr_interception(svm);
5058 else if (exit_code == SVM_EXIT_VINTR)
5059 return interrupt_window_interception(svm);
5060 else if (exit_code == SVM_EXIT_INTR)
5061 return intr_interception(svm);
5062 else if (exit_code == SVM_EXIT_HLT)
5063 return halt_interception(svm);
5064 else if (exit_code == SVM_EXIT_NPF)
5065 return npf_interception(svm);
5067 return svm_exit_handlers[exit_code](svm);
5070 static void reload_tss(struct kvm_vcpu *vcpu)
5072 int cpu = raw_smp_processor_id();
5074 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5075 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5079 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5081 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5082 int asid = sev_get_asid(svm->vcpu.kvm);
5084 /* Assign the asid allocated with this SEV guest */
5085 svm->vmcb->control.asid = asid;
5090 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5091 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5093 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5094 svm->last_cpu == cpu)
5097 svm->last_cpu = cpu;
5098 sd->sev_vmcbs[asid] = svm->vmcb;
5099 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5100 mark_dirty(svm->vmcb, VMCB_ASID);
5103 static void pre_svm_run(struct vcpu_svm *svm)
5105 int cpu = raw_smp_processor_id();
5107 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5109 if (sev_guest(svm->vcpu.kvm))
5110 return pre_sev_run(svm, cpu);
5112 /* FIXME: handle wraparound of asid_generation */
5113 if (svm->asid_generation != sd->asid_generation)
5117 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5119 struct vcpu_svm *svm = to_svm(vcpu);
5121 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5122 vcpu->arch.hflags |= HF_NMI_MASK;
5123 set_intercept(svm, INTERCEPT_IRET);
5124 ++vcpu->stat.nmi_injections;
5127 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5129 struct vmcb_control_area *control;
5131 /* The following fields are ignored when AVIC is enabled */
5132 control = &svm->vmcb->control;
5133 control->int_vector = irq;
5134 control->int_ctl &= ~V_INTR_PRIO_MASK;
5135 control->int_ctl |= V_IRQ_MASK |
5136 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5137 mark_dirty(svm->vmcb, VMCB_INTR);
5140 static void svm_set_irq(struct kvm_vcpu *vcpu)
5142 struct vcpu_svm *svm = to_svm(vcpu);
5144 BUG_ON(!(gif_set(svm)));
5146 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5147 ++vcpu->stat.irq_injections;
5149 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5150 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5153 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5155 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5158 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5160 struct vcpu_svm *svm = to_svm(vcpu);
5162 if (svm_nested_virtualize_tpr(vcpu))
5165 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5171 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5174 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5179 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5183 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5187 static void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate)
5189 if (!avic || !lapic_in_kernel(vcpu))
5192 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5193 kvm_request_apicv_update(vcpu->kvm, activate,
5194 APICV_INHIBIT_REASON_IRQWIN);
5195 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5198 static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
5201 unsigned long flags;
5202 struct amd_svm_iommu_ir *ir;
5203 struct vcpu_svm *svm = to_svm(vcpu);
5205 if (!kvm_arch_has_assigned_device(vcpu->kvm))
5209 * Here, we go through the per-vcpu ir_list to update all existing
5210 * interrupt remapping table entry targeting this vcpu.
5212 spin_lock_irqsave(&svm->ir_list_lock, flags);
5214 if (list_empty(&svm->ir_list))
5217 list_for_each_entry(ir, &svm->ir_list, node) {
5219 ret = amd_iommu_activate_guest_mode(ir->data);
5221 ret = amd_iommu_deactivate_guest_mode(ir->data);
5226 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5230 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5232 struct vcpu_svm *svm = to_svm(vcpu);
5233 struct vmcb *vmcb = svm->vmcb;
5234 bool activated = kvm_vcpu_apicv_active(vcpu);
5241 * During AVIC temporary deactivation, guest could update
5242 * APIC ID, DFR and LDR registers, which would not be trapped
5243 * by avic_unaccelerated_access_interception(). In this case,
5244 * we need to check and update the AVIC logical APIC ID table
5245 * accordingly before re-activating.
5247 avic_post_state_restore(vcpu);
5248 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5250 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5252 mark_dirty(vmcb, VMCB_AVIC);
5254 svm_set_pi_irte_mode(vcpu, activated);
5257 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5262 static int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5264 if (!vcpu->arch.apicv_active)
5267 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5268 smp_mb__after_atomic();
5270 if (avic_vcpu_is_running(vcpu)) {
5271 int cpuid = vcpu->cpu;
5273 if (cpuid != get_cpu())
5274 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5277 kvm_vcpu_wake_up(vcpu);
5282 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5287 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5289 unsigned long flags;
5290 struct amd_svm_iommu_ir *cur;
5292 spin_lock_irqsave(&svm->ir_list_lock, flags);
5293 list_for_each_entry(cur, &svm->ir_list, node) {
5294 if (cur->data != pi->ir_data)
5296 list_del(&cur->node);
5300 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5303 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5306 unsigned long flags;
5307 struct amd_svm_iommu_ir *ir;
5310 * In some cases, the existing irte is updaed and re-set,
5311 * so we need to check here if it's already been * added
5314 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5315 struct kvm *kvm = svm->vcpu.kvm;
5316 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5317 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5318 struct vcpu_svm *prev_svm;
5325 prev_svm = to_svm(prev_vcpu);
5326 svm_ir_list_del(prev_svm, pi);
5330 * Allocating new amd_iommu_pi_data, which will get
5331 * add to the per-vcpu ir_list.
5333 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5338 ir->data = pi->ir_data;
5340 spin_lock_irqsave(&svm->ir_list_lock, flags);
5341 list_add(&ir->node, &svm->ir_list);
5342 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5349 * The HW cannot support posting multicast/broadcast
5350 * interrupts to a vCPU. So, we still use legacy interrupt
5351 * remapping for these kind of interrupts.
5353 * For lowest-priority interrupts, we only support
5354 * those with single CPU as the destination, e.g. user
5355 * configures the interrupts via /proc/irq or uses
5356 * irqbalance to make the interrupts single-CPU.
5359 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5360 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5362 struct kvm_lapic_irq irq;
5363 struct kvm_vcpu *vcpu = NULL;
5365 kvm_set_msi_irq(kvm, e, &irq);
5367 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
5368 !kvm_irq_is_postable(&irq)) {
5369 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5370 __func__, irq.vector);
5374 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5376 *svm = to_svm(vcpu);
5377 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5378 vcpu_info->vector = irq.vector;
5384 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5387 * @host_irq: host irq of the interrupt
5388 * @guest_irq: gsi of the interrupt
5389 * @set: set or unset PI
5390 * returns 0 on success, < 0 on failure
5392 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5393 uint32_t guest_irq, bool set)
5395 struct kvm_kernel_irq_routing_entry *e;
5396 struct kvm_irq_routing_table *irq_rt;
5397 int idx, ret = -EINVAL;
5399 if (!kvm_arch_has_assigned_device(kvm) ||
5400 !irq_remapping_cap(IRQ_POSTING_CAP))
5403 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5404 __func__, host_irq, guest_irq, set);
5406 idx = srcu_read_lock(&kvm->irq_srcu);
5407 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5408 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5410 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5411 struct vcpu_data vcpu_info;
5412 struct vcpu_svm *svm = NULL;
5414 if (e->type != KVM_IRQ_ROUTING_MSI)
5418 * Here, we setup with legacy mode in the following cases:
5419 * 1. When cannot target interrupt to a specific vcpu.
5420 * 2. Unsetting posted interrupt.
5421 * 3. APIC virtialization is disabled for the vcpu.
5422 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5424 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5425 kvm_vcpu_apicv_active(&svm->vcpu)) {
5426 struct amd_iommu_pi_data pi;
5428 /* Try to enable guest_mode in IRTE */
5429 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5431 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5433 pi.is_guest_mode = true;
5434 pi.vcpu_data = &vcpu_info;
5435 ret = irq_set_vcpu_affinity(host_irq, &pi);
5438 * Here, we successfully setting up vcpu affinity in
5439 * IOMMU guest mode. Now, we need to store the posted
5440 * interrupt information in a per-vcpu ir_list so that
5441 * we can reference to them directly when we update vcpu
5442 * scheduling information in IOMMU irte.
5444 if (!ret && pi.is_guest_mode)
5445 svm_ir_list_add(svm, &pi);
5447 /* Use legacy mode in IRTE */
5448 struct amd_iommu_pi_data pi;
5451 * Here, pi is used to:
5452 * - Tell IOMMU to use legacy mode for this interrupt.
5453 * - Retrieve ga_tag of prior interrupt remapping data.
5455 pi.is_guest_mode = false;
5456 ret = irq_set_vcpu_affinity(host_irq, &pi);
5459 * Check if the posted interrupt was previously
5460 * setup with the guest_mode by checking if the ga_tag
5461 * was cached. If so, we need to clean up the per-vcpu
5464 if (!ret && pi.prev_ga_tag) {
5465 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5466 struct kvm_vcpu *vcpu;
5468 vcpu = kvm_get_vcpu_by_id(kvm, id);
5470 svm_ir_list_del(to_svm(vcpu), &pi);
5475 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5476 e->gsi, vcpu_info.vector,
5477 vcpu_info.pi_desc_addr, set);
5481 pr_err("%s: failed to update PI IRTE\n", __func__);
5488 srcu_read_unlock(&kvm->irq_srcu, idx);
5492 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5494 struct vcpu_svm *svm = to_svm(vcpu);
5495 struct vmcb *vmcb = svm->vmcb;
5497 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5498 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5499 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5504 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5506 struct vcpu_svm *svm = to_svm(vcpu);
5508 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5511 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5513 struct vcpu_svm *svm = to_svm(vcpu);
5516 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5517 set_intercept(svm, INTERCEPT_IRET);
5519 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5520 clr_intercept(svm, INTERCEPT_IRET);
5524 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5526 struct vcpu_svm *svm = to_svm(vcpu);
5527 struct vmcb *vmcb = svm->vmcb;
5530 if (!gif_set(svm) ||
5531 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5534 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5536 if (is_guest_mode(vcpu))
5537 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5542 static void enable_irq_window(struct kvm_vcpu *vcpu)
5544 struct vcpu_svm *svm = to_svm(vcpu);
5547 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5548 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5549 * get that intercept, this function will be called again though and
5550 * we'll get the vintr intercept. However, if the vGIF feature is
5551 * enabled, the STGI interception will not occur. Enable the irq
5552 * window under the assumption that the hardware will set the GIF.
5554 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5556 * IRQ window is not needed when AVIC is enabled,
5557 * unless we have pending ExtINT since it cannot be injected
5558 * via AVIC. In such case, we need to temporarily disable AVIC,
5559 * and fallback to injecting IRQ via V_IRQ.
5561 svm_toggle_avic_for_irq_window(vcpu, false);
5563 svm_inject_irq(svm, 0x0);
5567 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5569 struct vcpu_svm *svm = to_svm(vcpu);
5571 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5573 return; /* IRET will cause a vm exit */
5575 if (!gif_set(svm)) {
5576 if (vgif_enabled(svm))
5577 set_intercept(svm, INTERCEPT_STGI);
5578 return; /* STGI will cause a vm exit */
5581 if (svm->nested.exit_required)
5582 return; /* we're not going to run the guest yet */
5585 * Something prevents NMI from been injected. Single step over possible
5586 * problem (IRET or exception injection or interrupt shadow)
5588 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5589 svm->nmi_singlestep = true;
5590 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5593 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5598 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5603 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5605 struct vcpu_svm *svm = to_svm(vcpu);
5607 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5608 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5610 svm->asid_generation--;
5613 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5615 struct vcpu_svm *svm = to_svm(vcpu);
5617 invlpga(gva, svm->vmcb->control.asid);
5620 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5624 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5626 struct vcpu_svm *svm = to_svm(vcpu);
5628 if (svm_nested_virtualize_tpr(vcpu))
5631 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5632 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5633 kvm_set_cr8(vcpu, cr8);
5637 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5639 struct vcpu_svm *svm = to_svm(vcpu);
5642 if (svm_nested_virtualize_tpr(vcpu) ||
5643 kvm_vcpu_apicv_active(vcpu))
5646 cr8 = kvm_get_cr8(vcpu);
5647 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5648 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5651 static void svm_complete_interrupts(struct vcpu_svm *svm)
5655 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5656 unsigned int3_injected = svm->int3_injected;
5658 svm->int3_injected = 0;
5661 * If we've made progress since setting HF_IRET_MASK, we've
5662 * executed an IRET and can allow NMI injection.
5664 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5665 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5666 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5667 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5670 svm->vcpu.arch.nmi_injected = false;
5671 kvm_clear_exception_queue(&svm->vcpu);
5672 kvm_clear_interrupt_queue(&svm->vcpu);
5674 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5677 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5679 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5680 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5683 case SVM_EXITINTINFO_TYPE_NMI:
5684 svm->vcpu.arch.nmi_injected = true;
5686 case SVM_EXITINTINFO_TYPE_EXEPT:
5688 * In case of software exceptions, do not reinject the vector,
5689 * but re-execute the instruction instead. Rewind RIP first
5690 * if we emulated INT3 before.
5692 if (kvm_exception_is_soft(vector)) {
5693 if (vector == BP_VECTOR && int3_injected &&
5694 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5695 kvm_rip_write(&svm->vcpu,
5696 kvm_rip_read(&svm->vcpu) -
5700 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5701 u32 err = svm->vmcb->control.exit_int_info_err;
5702 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5705 kvm_requeue_exception(&svm->vcpu, vector);
5707 case SVM_EXITINTINFO_TYPE_INTR:
5708 kvm_queue_interrupt(&svm->vcpu, vector, false);
5715 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5717 struct vcpu_svm *svm = to_svm(vcpu);
5718 struct vmcb_control_area *control = &svm->vmcb->control;
5720 control->exit_int_info = control->event_inj;
5721 control->exit_int_info_err = control->event_inj_err;
5722 control->event_inj = 0;
5723 svm_complete_interrupts(svm);
5726 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5728 struct vcpu_svm *svm = to_svm(vcpu);
5730 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5731 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5732 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5735 * A vmexit emulation is required before the vcpu can be executed
5738 if (unlikely(svm->nested.exit_required))
5742 * Disable singlestep if we're injecting an interrupt/exception.
5743 * We don't want our modified rflags to be pushed on the stack where
5744 * we might not be able to easily reset them if we disabled NMI
5747 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5749 * Event injection happens before external interrupts cause a
5750 * vmexit and interrupts are disabled here, so smp_send_reschedule
5751 * is enough to force an immediate vmexit.
5753 disable_nmi_singlestep(svm);
5754 smp_send_reschedule(vcpu->cpu);
5759 sync_lapic_to_cr8(vcpu);
5761 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5764 kvm_load_guest_xsave_state(vcpu);
5766 if (lapic_in_kernel(vcpu) &&
5767 vcpu->arch.apic->lapic_timer.timer_advance_ns)
5768 kvm_wait_lapic_expire(vcpu);
5771 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5772 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5773 * is no need to worry about the conditional branch over the wrmsr
5774 * being speculatively taken.
5776 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5781 "push %%" _ASM_BP "; \n\t"
5782 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5783 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5784 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5785 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5786 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5787 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5788 #ifdef CONFIG_X86_64
5789 "mov %c[r8](%[svm]), %%r8 \n\t"
5790 "mov %c[r9](%[svm]), %%r9 \n\t"
5791 "mov %c[r10](%[svm]), %%r10 \n\t"
5792 "mov %c[r11](%[svm]), %%r11 \n\t"
5793 "mov %c[r12](%[svm]), %%r12 \n\t"
5794 "mov %c[r13](%[svm]), %%r13 \n\t"
5795 "mov %c[r14](%[svm]), %%r14 \n\t"
5796 "mov %c[r15](%[svm]), %%r15 \n\t"
5799 /* Enter guest mode */
5800 "push %%" _ASM_AX " \n\t"
5801 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5802 __ex("vmload %%" _ASM_AX) "\n\t"
5803 __ex("vmrun %%" _ASM_AX) "\n\t"
5804 __ex("vmsave %%" _ASM_AX) "\n\t"
5805 "pop %%" _ASM_AX " \n\t"
5807 /* Save guest registers, load host registers */
5808 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5809 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5810 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5811 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5812 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5813 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5814 #ifdef CONFIG_X86_64
5815 "mov %%r8, %c[r8](%[svm]) \n\t"
5816 "mov %%r9, %c[r9](%[svm]) \n\t"
5817 "mov %%r10, %c[r10](%[svm]) \n\t"
5818 "mov %%r11, %c[r11](%[svm]) \n\t"
5819 "mov %%r12, %c[r12](%[svm]) \n\t"
5820 "mov %%r13, %c[r13](%[svm]) \n\t"
5821 "mov %%r14, %c[r14](%[svm]) \n\t"
5822 "mov %%r15, %c[r15](%[svm]) \n\t"
5824 * Clear host registers marked as clobbered to prevent
5827 "xor %%r8d, %%r8d \n\t"
5828 "xor %%r9d, %%r9d \n\t"
5829 "xor %%r10d, %%r10d \n\t"
5830 "xor %%r11d, %%r11d \n\t"
5831 "xor %%r12d, %%r12d \n\t"
5832 "xor %%r13d, %%r13d \n\t"
5833 "xor %%r14d, %%r14d \n\t"
5834 "xor %%r15d, %%r15d \n\t"
5836 "xor %%ebx, %%ebx \n\t"
5837 "xor %%ecx, %%ecx \n\t"
5838 "xor %%edx, %%edx \n\t"
5839 "xor %%esi, %%esi \n\t"
5840 "xor %%edi, %%edi \n\t"
5844 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5845 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5846 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5847 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5848 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5849 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5850 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5851 #ifdef CONFIG_X86_64
5852 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5853 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5854 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5855 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5856 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5857 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5858 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5859 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5862 #ifdef CONFIG_X86_64
5863 , "rbx", "rcx", "rdx", "rsi", "rdi"
5864 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5866 , "ebx", "ecx", "edx", "esi", "edi"
5870 /* Eliminate branch target predictions from guest mode */
5873 #ifdef CONFIG_X86_64
5874 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5876 loadsegment(fs, svm->host.fs);
5877 #ifndef CONFIG_X86_32_LAZY_GS
5878 loadsegment(gs, svm->host.gs);
5883 * We do not use IBRS in the kernel. If this vCPU has used the
5884 * SPEC_CTRL MSR it may have left it on; save the value and
5885 * turn it off. This is much more efficient than blindly adding
5886 * it to the atomic save/restore list. Especially as the former
5887 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5889 * For non-nested case:
5890 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5894 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5897 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5898 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5902 local_irq_disable();
5904 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5906 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5907 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5908 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5909 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5911 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5912 kvm_before_interrupt(&svm->vcpu);
5914 kvm_load_host_xsave_state(vcpu);
5917 /* Any pending NMI will happen here */
5919 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5920 kvm_after_interrupt(&svm->vcpu);
5922 sync_cr8_to_lapic(vcpu);
5926 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5928 /* if exit due to PF check for async PF */
5929 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5930 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5933 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5934 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5938 * We need to handle MC intercepts here before the vcpu has a chance to
5939 * change the physical cpu
5941 if (unlikely(svm->vmcb->control.exit_code ==
5942 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5943 svm_handle_mce(svm);
5945 mark_all_clean(svm->vmcb);
5947 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5949 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5951 struct vcpu_svm *svm = to_svm(vcpu);
5953 svm->vmcb->save.cr3 = __sme_set(root);
5954 mark_dirty(svm->vmcb, VMCB_CR);
5957 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5959 struct vcpu_svm *svm = to_svm(vcpu);
5961 svm->vmcb->control.nested_cr3 = __sme_set(root);
5962 mark_dirty(svm->vmcb, VMCB_NPT);
5964 /* Also sync guest cr3 here in case we live migrate */
5965 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5966 mark_dirty(svm->vmcb, VMCB_CR);
5969 static int is_disabled(void)
5973 rdmsrl(MSR_VM_CR, vm_cr);
5974 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5981 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5984 * Patch in the VMMCALL instruction:
5986 hypercall[0] = 0x0f;
5987 hypercall[1] = 0x01;
5988 hypercall[2] = 0xd9;
5991 static int __init svm_check_processor_compat(void)
5996 static bool svm_cpu_has_accelerated_tpr(void)
6001 static bool svm_has_emulated_msr(int index)
6004 case MSR_IA32_MCG_EXT_CTL:
6005 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6014 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6019 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
6021 struct vcpu_svm *svm = to_svm(vcpu);
6023 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
6024 boot_cpu_has(X86_FEATURE_XSAVE) &&
6025 boot_cpu_has(X86_FEATURE_XSAVES);
6027 /* Update nrips enabled cache */
6028 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
6030 if (!kvm_vcpu_apicv_active(vcpu))
6033 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
6036 * Currently, AVIC does not work with nested virtualization.
6037 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
6039 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
6040 kvm_request_apicv_update(vcpu->kvm, false,
6041 APICV_INHIBIT_REASON_NESTED);
6044 #define F feature_bit
6046 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6051 entry->ecx &= ~F(X2APIC);
6055 entry->ecx |= (1 << 2); /* Set SVM bit */
6058 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
6059 boot_cpu_has(X86_FEATURE_AMD_SSBD))
6060 entry->ebx |= F(VIRT_SSBD);
6063 entry->eax = 1; /* SVM revision 1 */
6064 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
6065 ASID emulation to nested SVM */
6066 entry->ecx = 0; /* Reserved */
6067 entry->edx = 0; /* Per default do not support any
6068 additional features */
6070 /* Support next_rip if host supports it */
6071 if (boot_cpu_has(X86_FEATURE_NRIPS))
6072 entry->edx |= F(NRIPS);
6074 /* Support NPT for the guest if enabled */
6076 entry->edx |= F(NPT);
6081 static int svm_get_lpage_level(void)
6083 return PT_PDPE_LEVEL;
6086 static bool svm_rdtscp_supported(void)
6088 return boot_cpu_has(X86_FEATURE_RDTSCP);
6091 static bool svm_invpcid_supported(void)
6096 static bool svm_mpx_supported(void)
6101 static bool svm_xsaves_supported(void)
6103 return boot_cpu_has(X86_FEATURE_XSAVES);
6106 static bool svm_umip_emulated(void)
6111 static bool svm_pt_supported(void)
6116 static bool svm_has_wbinvd_exit(void)
6121 static bool svm_pku_supported(void)
6126 #define PRE_EX(exit) { .exit_code = (exit), \
6127 .stage = X86_ICPT_PRE_EXCEPT, }
6128 #define POST_EX(exit) { .exit_code = (exit), \
6129 .stage = X86_ICPT_POST_EXCEPT, }
6130 #define POST_MEM(exit) { .exit_code = (exit), \
6131 .stage = X86_ICPT_POST_MEMACCESS, }
6133 static const struct __x86_intercept {
6135 enum x86_intercept_stage stage;
6136 } x86_intercept_map[] = {
6137 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
6138 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
6139 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
6140 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
6141 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
6142 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
6143 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
6144 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
6145 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
6146 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
6147 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
6148 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
6149 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
6150 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
6151 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
6152 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
6153 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
6154 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
6155 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
6156 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
6157 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
6158 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
6159 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
6160 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
6161 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
6162 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
6163 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
6164 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
6165 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
6166 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
6167 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
6168 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
6169 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
6170 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
6171 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
6172 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
6173 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
6174 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
6175 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
6176 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
6177 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
6178 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
6179 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
6180 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
6181 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
6182 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
6183 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
6190 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6191 struct x86_instruction_info *info,
6192 enum x86_intercept_stage stage)
6194 struct vcpu_svm *svm = to_svm(vcpu);
6195 int vmexit, ret = X86EMUL_CONTINUE;
6196 struct __x86_intercept icpt_info;
6197 struct vmcb *vmcb = svm->vmcb;
6199 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6202 icpt_info = x86_intercept_map[info->intercept];
6204 if (stage != icpt_info.stage)
6207 switch (icpt_info.exit_code) {
6208 case SVM_EXIT_READ_CR0:
6209 if (info->intercept == x86_intercept_cr_read)
6210 icpt_info.exit_code += info->modrm_reg;
6212 case SVM_EXIT_WRITE_CR0: {
6213 unsigned long cr0, val;
6216 if (info->intercept == x86_intercept_cr_write)
6217 icpt_info.exit_code += info->modrm_reg;
6219 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6220 info->intercept == x86_intercept_clts)
6223 intercept = svm->nested.intercept;
6225 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6228 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6229 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6231 if (info->intercept == x86_intercept_lmsw) {
6234 /* lmsw can't clear PE - catch this here */
6235 if (cr0 & X86_CR0_PE)
6240 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6244 case SVM_EXIT_READ_DR0:
6245 case SVM_EXIT_WRITE_DR0:
6246 icpt_info.exit_code += info->modrm_reg;
6249 if (info->intercept == x86_intercept_wrmsr)
6250 vmcb->control.exit_info_1 = 1;
6252 vmcb->control.exit_info_1 = 0;
6254 case SVM_EXIT_PAUSE:
6256 * We get this for NOP only, but pause
6257 * is rep not, check this here
6259 if (info->rep_prefix != REPE_PREFIX)
6262 case SVM_EXIT_IOIO: {
6266 if (info->intercept == x86_intercept_in ||
6267 info->intercept == x86_intercept_ins) {
6268 exit_info = ((info->src_val & 0xffff) << 16) |
6270 bytes = info->dst_bytes;
6272 exit_info = (info->dst_val & 0xffff) << 16;
6273 bytes = info->src_bytes;
6276 if (info->intercept == x86_intercept_outs ||
6277 info->intercept == x86_intercept_ins)
6278 exit_info |= SVM_IOIO_STR_MASK;
6280 if (info->rep_prefix)
6281 exit_info |= SVM_IOIO_REP_MASK;
6283 bytes = min(bytes, 4u);
6285 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6287 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6289 vmcb->control.exit_info_1 = exit_info;
6290 vmcb->control.exit_info_2 = info->next_rip;
6298 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6299 if (static_cpu_has(X86_FEATURE_NRIPS))
6300 vmcb->control.next_rip = info->next_rip;
6301 vmcb->control.exit_code = icpt_info.exit_code;
6302 vmexit = nested_svm_exit_handled(svm);
6304 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6311 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu,
6312 enum exit_fastpath_completion *exit_fastpath)
6314 if (!is_guest_mode(vcpu) &&
6315 to_svm(vcpu)->vmcb->control.exit_code == EXIT_REASON_MSR_WRITE)
6316 *exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
6319 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6321 if (pause_filter_thresh)
6322 shrink_ple_window(vcpu);
6325 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6327 if (avic_handle_apic_id_update(vcpu) != 0)
6329 avic_handle_dfr_update(vcpu);
6330 avic_handle_ldr_update(vcpu);
6333 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6335 /* [63:9] are reserved. */
6336 vcpu->arch.mcg_cap &= 0x1ff;
6339 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6341 struct vcpu_svm *svm = to_svm(vcpu);
6343 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6347 if (is_guest_mode(&svm->vcpu) &&
6348 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6349 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6350 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6351 svm->nested.exit_required = true;
6358 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6360 struct vcpu_svm *svm = to_svm(vcpu);
6363 if (is_guest_mode(vcpu)) {
6364 /* FED8h - SVM Guest */
6365 put_smstate(u64, smstate, 0x7ed8, 1);
6366 /* FEE0h - SVM Guest VMCB Physical Address */
6367 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6369 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6370 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6371 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6373 ret = nested_svm_vmexit(svm);
6380 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6382 struct vcpu_svm *svm = to_svm(vcpu);
6383 struct vmcb *nested_vmcb;
6384 struct kvm_host_map map;
6388 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6389 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6392 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6394 nested_vmcb = map.hva;
6395 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6400 static int enable_smi_window(struct kvm_vcpu *vcpu)
6402 struct vcpu_svm *svm = to_svm(vcpu);
6404 if (!gif_set(svm)) {
6405 if (vgif_enabled(svm))
6406 set_intercept(svm, INTERCEPT_STGI);
6407 /* STGI will cause a vm exit */
6413 static int sev_flush_asids(void)
6418 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
6419 * so it must be guarded.
6421 down_write(&sev_deactivate_lock);
6423 wbinvd_on_all_cpus();
6424 ret = sev_guest_df_flush(&error);
6426 up_write(&sev_deactivate_lock);
6429 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
6434 /* Must be called with the sev_bitmap_lock held */
6435 static bool __sev_recycle_asids(void)
6439 /* Check if there are any ASIDs to reclaim before performing a flush */
6440 pos = find_next_bit(sev_reclaim_asid_bitmap,
6441 max_sev_asid, min_sev_asid - 1);
6442 if (pos >= max_sev_asid)
6445 if (sev_flush_asids())
6448 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
6450 bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
6455 static int sev_asid_new(void)
6460 mutex_lock(&sev_bitmap_lock);
6463 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6466 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6467 if (pos >= max_sev_asid) {
6468 if (retry && __sev_recycle_asids()) {
6472 mutex_unlock(&sev_bitmap_lock);
6476 __set_bit(pos, sev_asid_bitmap);
6478 mutex_unlock(&sev_bitmap_lock);
6483 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6485 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6489 if (unlikely(sev->active))
6492 asid = sev_asid_new();
6496 ret = sev_platform_init(&argp->error);
6502 INIT_LIST_HEAD(&sev->regions_list);
6507 sev_asid_free(asid);
6511 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6513 struct sev_data_activate *data;
6514 int asid = sev_get_asid(kvm);
6517 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6521 /* activate ASID on the given handle */
6522 data->handle = handle;
6524 ret = sev_guest_activate(data, error);
6530 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6539 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6545 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6547 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6549 return __sev_issue_cmd(sev->fd, id, data, error);
6552 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6554 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6555 struct sev_data_launch_start *start;
6556 struct kvm_sev_launch_start params;
6557 void *dh_blob, *session_blob;
6558 int *error = &argp->error;
6561 if (!sev_guest(kvm))
6564 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6567 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6572 if (params.dh_uaddr) {
6573 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6574 if (IS_ERR(dh_blob)) {
6575 ret = PTR_ERR(dh_blob);
6579 start->dh_cert_address = __sme_set(__pa(dh_blob));
6580 start->dh_cert_len = params.dh_len;
6583 session_blob = NULL;
6584 if (params.session_uaddr) {
6585 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6586 if (IS_ERR(session_blob)) {
6587 ret = PTR_ERR(session_blob);
6591 start->session_address = __sme_set(__pa(session_blob));
6592 start->session_len = params.session_len;
6595 start->handle = params.handle;
6596 start->policy = params.policy;
6598 /* create memory encryption context */
6599 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6601 goto e_free_session;
6603 /* Bind ASID to this guest */
6604 ret = sev_bind_asid(kvm, start->handle, error);
6606 goto e_free_session;
6608 /* return handle to userspace */
6609 params.handle = start->handle;
6610 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
6611 sev_unbind_asid(kvm, start->handle);
6613 goto e_free_session;
6616 sev->handle = start->handle;
6617 sev->fd = argp->sev_fd;
6620 kfree(session_blob);
6628 static unsigned long get_num_contig_pages(unsigned long idx,
6629 struct page **inpages, unsigned long npages)
6631 unsigned long paddr, next_paddr;
6632 unsigned long i = idx + 1, pages = 1;
6634 /* find the number of contiguous pages starting from idx */
6635 paddr = __sme_page_pa(inpages[idx]);
6636 while (i < npages) {
6637 next_paddr = __sme_page_pa(inpages[i++]);
6638 if ((paddr + PAGE_SIZE) == next_paddr) {
6649 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6651 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6652 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6653 struct kvm_sev_launch_update_data params;
6654 struct sev_data_launch_update_data *data;
6655 struct page **inpages;
6658 if (!sev_guest(kvm))
6661 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6664 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6668 vaddr = params.uaddr;
6670 vaddr_end = vaddr + size;
6672 /* Lock the user memory. */
6673 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6680 * The LAUNCH_UPDATE command will perform in-place encryption of the
6681 * memory content (i.e it will write the same memory region with C=1).
6682 * It's possible that the cache may contain the data with C=0, i.e.,
6683 * unencrypted so invalidate it first.
6685 sev_clflush_pages(inpages, npages);
6687 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6691 * If the user buffer is not page-aligned, calculate the offset
6694 offset = vaddr & (PAGE_SIZE - 1);
6696 /* Calculate the number of pages that can be encrypted in one go. */
6697 pages = get_num_contig_pages(i, inpages, npages);
6699 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6701 data->handle = sev->handle;
6703 data->address = __sme_page_pa(inpages[i]) + offset;
6704 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6709 next_vaddr = vaddr + len;
6713 /* content of memory is updated, mark pages dirty */
6714 for (i = 0; i < npages; i++) {
6715 set_page_dirty_lock(inpages[i]);
6716 mark_page_accessed(inpages[i]);
6718 /* unlock the user pages */
6719 sev_unpin_memory(kvm, inpages, npages);
6725 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6727 void __user *measure = (void __user *)(uintptr_t)argp->data;
6728 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6729 struct sev_data_launch_measure *data;
6730 struct kvm_sev_launch_measure params;
6731 void __user *p = NULL;
6735 if (!sev_guest(kvm))
6738 if (copy_from_user(¶ms, measure, sizeof(params)))
6741 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6745 /* User wants to query the blob length */
6749 p = (void __user *)(uintptr_t)params.uaddr;
6751 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6757 blob = kmalloc(params.len, GFP_KERNEL);
6761 data->address = __psp_pa(blob);
6762 data->len = params.len;
6766 data->handle = sev->handle;
6767 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6770 * If we query the session length, FW responded with expected data.
6779 if (copy_to_user(p, blob, params.len))
6784 params.len = data->len;
6785 if (copy_to_user(measure, ¶ms, sizeof(params)))
6794 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6796 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6797 struct sev_data_launch_finish *data;
6800 if (!sev_guest(kvm))
6803 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6807 data->handle = sev->handle;
6808 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6814 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6816 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6817 struct kvm_sev_guest_status params;
6818 struct sev_data_guest_status *data;
6821 if (!sev_guest(kvm))
6824 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6828 data->handle = sev->handle;
6829 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6833 params.policy = data->policy;
6834 params.state = data->state;
6835 params.handle = data->handle;
6837 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
6844 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6845 unsigned long dst, int size,
6846 int *error, bool enc)
6848 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6849 struct sev_data_dbg *data;
6852 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6856 data->handle = sev->handle;
6857 data->dst_addr = dst;
6858 data->src_addr = src;
6861 ret = sev_issue_cmd(kvm,
6862 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6868 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6869 unsigned long dst_paddr, int sz, int *err)
6874 * Its safe to read more than we are asked, caller should ensure that
6875 * destination has enough space.
6877 src_paddr = round_down(src_paddr, 16);
6878 offset = src_paddr & 15;
6879 sz = round_up(sz + offset, 16);
6881 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6884 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6885 unsigned long __user dst_uaddr,
6886 unsigned long dst_paddr,
6889 struct page *tpage = NULL;
6892 /* if inputs are not 16-byte then use intermediate buffer */
6893 if (!IS_ALIGNED(dst_paddr, 16) ||
6894 !IS_ALIGNED(paddr, 16) ||
6895 !IS_ALIGNED(size, 16)) {
6896 tpage = (void *)alloc_page(GFP_KERNEL);
6900 dst_paddr = __sme_page_pa(tpage);
6903 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6908 offset = paddr & 15;
6909 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6910 page_address(tpage) + offset, size))
6921 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6922 unsigned long __user vaddr,
6923 unsigned long dst_paddr,
6924 unsigned long __user dst_vaddr,
6925 int size, int *error)
6927 struct page *src_tpage = NULL;
6928 struct page *dst_tpage = NULL;
6929 int ret, len = size;
6931 /* If source buffer is not aligned then use an intermediate buffer */
6932 if (!IS_ALIGNED(vaddr, 16)) {
6933 src_tpage = alloc_page(GFP_KERNEL);
6937 if (copy_from_user(page_address(src_tpage),
6938 (void __user *)(uintptr_t)vaddr, size)) {
6939 __free_page(src_tpage);
6943 paddr = __sme_page_pa(src_tpage);
6947 * If destination buffer or length is not aligned then do read-modify-write:
6948 * - decrypt destination in an intermediate buffer
6949 * - copy the source buffer in an intermediate buffer
6950 * - use the intermediate buffer as source buffer
6952 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6955 dst_tpage = alloc_page(GFP_KERNEL);
6961 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6962 __sme_page_pa(dst_tpage), size, error);
6967 * If source is kernel buffer then use memcpy() otherwise
6970 dst_offset = dst_paddr & 15;
6973 memcpy(page_address(dst_tpage) + dst_offset,
6974 page_address(src_tpage), size);
6976 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6977 (void __user *)(uintptr_t)vaddr, size)) {
6983 paddr = __sme_page_pa(dst_tpage);
6984 dst_paddr = round_down(dst_paddr, 16);
6985 len = round_up(size, 16);
6988 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6992 __free_page(src_tpage);
6994 __free_page(dst_tpage);
6998 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
7000 unsigned long vaddr, vaddr_end, next_vaddr;
7001 unsigned long dst_vaddr;
7002 struct page **src_p, **dst_p;
7003 struct kvm_sev_dbg debug;
7008 if (!sev_guest(kvm))
7011 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
7014 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
7016 if (!debug.dst_uaddr)
7019 vaddr = debug.src_uaddr;
7021 vaddr_end = vaddr + size;
7022 dst_vaddr = debug.dst_uaddr;
7024 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
7025 int len, s_off, d_off;
7027 /* lock userspace source and destination page */
7028 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
7032 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
7034 sev_unpin_memory(kvm, src_p, n);
7039 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
7040 * memory content (i.e it will write the same memory region with C=1).
7041 * It's possible that the cache may contain the data with C=0, i.e.,
7042 * unencrypted so invalidate it first.
7044 sev_clflush_pages(src_p, 1);
7045 sev_clflush_pages(dst_p, 1);
7048 * Since user buffer may not be page aligned, calculate the
7049 * offset within the page.
7051 s_off = vaddr & ~PAGE_MASK;
7052 d_off = dst_vaddr & ~PAGE_MASK;
7053 len = min_t(size_t, (PAGE_SIZE - s_off), size);
7056 ret = __sev_dbg_decrypt_user(kvm,
7057 __sme_page_pa(src_p[0]) + s_off,
7059 __sme_page_pa(dst_p[0]) + d_off,
7062 ret = __sev_dbg_encrypt_user(kvm,
7063 __sme_page_pa(src_p[0]) + s_off,
7065 __sme_page_pa(dst_p[0]) + d_off,
7069 sev_unpin_memory(kvm, src_p, n);
7070 sev_unpin_memory(kvm, dst_p, n);
7075 next_vaddr = vaddr + len;
7076 dst_vaddr = dst_vaddr + len;
7083 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
7085 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7086 struct sev_data_launch_secret *data;
7087 struct kvm_sev_launch_secret params;
7088 struct page **pages;
7093 if (!sev_guest(kvm))
7096 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
7099 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
7104 * The secret must be copied into contiguous memory region, lets verify
7105 * that userspace memory pages are contiguous before we issue command.
7107 if (get_num_contig_pages(0, pages, n) != n) {
7109 goto e_unpin_memory;
7113 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
7115 goto e_unpin_memory;
7117 offset = params.guest_uaddr & (PAGE_SIZE - 1);
7118 data->guest_address = __sme_page_pa(pages[0]) + offset;
7119 data->guest_len = params.guest_len;
7121 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
7123 ret = PTR_ERR(blob);
7127 data->trans_address = __psp_pa(blob);
7128 data->trans_len = params.trans_len;
7130 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
7135 data->hdr_address = __psp_pa(hdr);
7136 data->hdr_len = params.hdr_len;
7138 data->handle = sev->handle;
7139 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
7148 sev_unpin_memory(kvm, pages, n);
7152 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
7154 struct kvm_sev_cmd sev_cmd;
7157 if (!svm_sev_enabled())
7160 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
7163 mutex_lock(&kvm->lock);
7165 switch (sev_cmd.id) {
7167 r = sev_guest_init(kvm, &sev_cmd);
7169 case KVM_SEV_LAUNCH_START:
7170 r = sev_launch_start(kvm, &sev_cmd);
7172 case KVM_SEV_LAUNCH_UPDATE_DATA:
7173 r = sev_launch_update_data(kvm, &sev_cmd);
7175 case KVM_SEV_LAUNCH_MEASURE:
7176 r = sev_launch_measure(kvm, &sev_cmd);
7178 case KVM_SEV_LAUNCH_FINISH:
7179 r = sev_launch_finish(kvm, &sev_cmd);
7181 case KVM_SEV_GUEST_STATUS:
7182 r = sev_guest_status(kvm, &sev_cmd);
7184 case KVM_SEV_DBG_DECRYPT:
7185 r = sev_dbg_crypt(kvm, &sev_cmd, true);
7187 case KVM_SEV_DBG_ENCRYPT:
7188 r = sev_dbg_crypt(kvm, &sev_cmd, false);
7190 case KVM_SEV_LAUNCH_SECRET:
7191 r = sev_launch_secret(kvm, &sev_cmd);
7198 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7202 mutex_unlock(&kvm->lock);
7206 static int svm_register_enc_region(struct kvm *kvm,
7207 struct kvm_enc_region *range)
7209 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7210 struct enc_region *region;
7213 if (!sev_guest(kvm))
7216 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7219 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7223 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
7224 if (!region->pages) {
7230 * The guest may change the memory encryption attribute from C=0 -> C=1
7231 * or vice versa for this memory range. Lets make sure caches are
7232 * flushed to ensure that guest data gets written into memory with
7235 sev_clflush_pages(region->pages, region->npages);
7237 region->uaddr = range->addr;
7238 region->size = range->size;
7240 mutex_lock(&kvm->lock);
7241 list_add_tail(®ion->list, &sev->regions_list);
7242 mutex_unlock(&kvm->lock);
7251 static struct enc_region *
7252 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7254 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7255 struct list_head *head = &sev->regions_list;
7256 struct enc_region *i;
7258 list_for_each_entry(i, head, list) {
7259 if (i->uaddr == range->addr &&
7260 i->size == range->size)
7268 static int svm_unregister_enc_region(struct kvm *kvm,
7269 struct kvm_enc_region *range)
7271 struct enc_region *region;
7274 mutex_lock(&kvm->lock);
7276 if (!sev_guest(kvm)) {
7281 region = find_enc_region(kvm, range);
7287 __unregister_enc_region_locked(kvm, region);
7289 mutex_unlock(&kvm->lock);
7293 mutex_unlock(&kvm->lock);
7297 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7299 unsigned long cr4 = kvm_read_cr4(vcpu);
7300 bool smep = cr4 & X86_CR4_SMEP;
7301 bool smap = cr4 & X86_CR4_SMAP;
7302 bool is_user = svm_get_cpl(vcpu) == 3;
7305 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7308 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7309 * possible that CPU microcode implementing DecodeAssist will fail
7310 * to read bytes of instruction which caused #NPF. In this case,
7311 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7312 * return 0 instead of the correct guest instruction bytes.
7314 * This happens because CPU microcode reading instruction bytes
7315 * uses a special opcode which attempts to read data using CPL=0
7316 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7317 * fault, it gives up and returns no instruction bytes.
7320 * We reach here in case CPU supports DecodeAssist, raised #NPF and
7321 * returned 0 in GuestIntrBytes field of the VMCB.
7322 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7323 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7324 * in case vCPU CPL==3 (Because otherwise guest would have triggered
7325 * a SMEP fault instead of #NPF).
7326 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7327 * As most guests enable SMAP if they have also enabled SMEP, use above
7328 * logic in order to attempt minimize false-positive of detecting errata
7329 * while still preserving all cases semantic correctness.
7332 * To determine what instruction the guest was executing, the hypervisor
7333 * will have to decode the instruction at the instruction pointer.
7335 * In non SEV guest, hypervisor will be able to read the guest
7336 * memory to decode the instruction pointer when insn_len is zero
7337 * so we return true to indicate that decoding is possible.
7339 * But in the SEV guest, the guest memory is encrypted with the
7340 * guest specific key and hypervisor will not be able to decode the
7341 * instruction pointer so we will not able to workaround it. Lets
7342 * print the error and request to kill the guest.
7344 if (smap && (!smep || is_user)) {
7345 if (!sev_guest(vcpu->kvm))
7348 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7349 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7355 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7357 struct vcpu_svm *svm = to_svm(vcpu);
7360 * TODO: Last condition latch INIT signals on vCPU when
7361 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7362 * To properly emulate the INIT intercept, SVM should implement
7363 * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7364 * there if an INIT signal is pending.
7366 return !gif_set(svm) ||
7367 (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
7370 static bool svm_check_apicv_inhibit_reasons(ulong bit)
7372 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7373 BIT(APICV_INHIBIT_REASON_HYPERV) |
7374 BIT(APICV_INHIBIT_REASON_NESTED) |
7375 BIT(APICV_INHIBIT_REASON_IRQWIN) |
7376 BIT(APICV_INHIBIT_REASON_PIT_REINJ);
7378 return supported & BIT(bit);
7381 static void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate)
7383 avic_update_access_page(kvm, activate);
7386 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7387 .cpu_has_kvm_support = has_svm,
7388 .disabled_by_bios = is_disabled,
7389 .hardware_setup = svm_hardware_setup,
7390 .hardware_unsetup = svm_hardware_teardown,
7391 .check_processor_compatibility = svm_check_processor_compat,
7392 .hardware_enable = svm_hardware_enable,
7393 .hardware_disable = svm_hardware_disable,
7394 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7395 .has_emulated_msr = svm_has_emulated_msr,
7397 .vcpu_create = svm_create_vcpu,
7398 .vcpu_free = svm_free_vcpu,
7399 .vcpu_reset = svm_vcpu_reset,
7401 .vm_alloc = svm_vm_alloc,
7402 .vm_free = svm_vm_free,
7403 .vm_init = svm_vm_init,
7404 .vm_destroy = svm_vm_destroy,
7406 .prepare_guest_switch = svm_prepare_guest_switch,
7407 .vcpu_load = svm_vcpu_load,
7408 .vcpu_put = svm_vcpu_put,
7409 .vcpu_blocking = svm_vcpu_blocking,
7410 .vcpu_unblocking = svm_vcpu_unblocking,
7412 .update_bp_intercept = update_bp_intercept,
7413 .get_msr_feature = svm_get_msr_feature,
7414 .get_msr = svm_get_msr,
7415 .set_msr = svm_set_msr,
7416 .get_segment_base = svm_get_segment_base,
7417 .get_segment = svm_get_segment,
7418 .set_segment = svm_set_segment,
7419 .get_cpl = svm_get_cpl,
7420 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7421 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7422 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7423 .set_cr0 = svm_set_cr0,
7424 .set_cr3 = svm_set_cr3,
7425 .set_cr4 = svm_set_cr4,
7426 .set_efer = svm_set_efer,
7427 .get_idt = svm_get_idt,
7428 .set_idt = svm_set_idt,
7429 .get_gdt = svm_get_gdt,
7430 .set_gdt = svm_set_gdt,
7431 .get_dr6 = svm_get_dr6,
7432 .set_dr6 = svm_set_dr6,
7433 .set_dr7 = svm_set_dr7,
7434 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7435 .cache_reg = svm_cache_reg,
7436 .get_rflags = svm_get_rflags,
7437 .set_rflags = svm_set_rflags,
7439 .tlb_flush = svm_flush_tlb,
7440 .tlb_flush_gva = svm_flush_tlb_gva,
7442 .run = svm_vcpu_run,
7443 .handle_exit = handle_exit,
7444 .skip_emulated_instruction = skip_emulated_instruction,
7445 .update_emulated_instruction = NULL,
7446 .set_interrupt_shadow = svm_set_interrupt_shadow,
7447 .get_interrupt_shadow = svm_get_interrupt_shadow,
7448 .patch_hypercall = svm_patch_hypercall,
7449 .set_irq = svm_set_irq,
7450 .set_nmi = svm_inject_nmi,
7451 .queue_exception = svm_queue_exception,
7452 .cancel_injection = svm_cancel_injection,
7453 .interrupt_allowed = svm_interrupt_allowed,
7454 .nmi_allowed = svm_nmi_allowed,
7455 .get_nmi_mask = svm_get_nmi_mask,
7456 .set_nmi_mask = svm_set_nmi_mask,
7457 .enable_nmi_window = enable_nmi_window,
7458 .enable_irq_window = enable_irq_window,
7459 .update_cr8_intercept = update_cr8_intercept,
7460 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7461 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7462 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
7463 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
7464 .load_eoi_exitmap = svm_load_eoi_exitmap,
7465 .hwapic_irr_update = svm_hwapic_irr_update,
7466 .hwapic_isr_update = svm_hwapic_isr_update,
7467 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7468 .apicv_post_state_restore = avic_post_state_restore,
7470 .set_tss_addr = svm_set_tss_addr,
7471 .set_identity_map_addr = svm_set_identity_map_addr,
7472 .get_tdp_level = get_npt_level,
7473 .get_mt_mask = svm_get_mt_mask,
7475 .get_exit_info = svm_get_exit_info,
7477 .get_lpage_level = svm_get_lpage_level,
7479 .cpuid_update = svm_cpuid_update,
7481 .rdtscp_supported = svm_rdtscp_supported,
7482 .invpcid_supported = svm_invpcid_supported,
7483 .mpx_supported = svm_mpx_supported,
7484 .xsaves_supported = svm_xsaves_supported,
7485 .umip_emulated = svm_umip_emulated,
7486 .pt_supported = svm_pt_supported,
7487 .pku_supported = svm_pku_supported,
7489 .set_supported_cpuid = svm_set_supported_cpuid,
7491 .has_wbinvd_exit = svm_has_wbinvd_exit,
7493 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7494 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7496 .set_tdp_cr3 = set_tdp_cr3,
7498 .check_intercept = svm_check_intercept,
7499 .handle_exit_irqoff = svm_handle_exit_irqoff,
7501 .request_immediate_exit = __kvm_request_immediate_exit,
7503 .sched_in = svm_sched_in,
7505 .pmu_ops = &amd_pmu_ops,
7506 .deliver_posted_interrupt = svm_deliver_avic_intr,
7507 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7508 .update_pi_irte = svm_update_pi_irte,
7509 .setup_mce = svm_setup_mce,
7511 .smi_allowed = svm_smi_allowed,
7512 .pre_enter_smm = svm_pre_enter_smm,
7513 .pre_leave_smm = svm_pre_leave_smm,
7514 .enable_smi_window = enable_smi_window,
7516 .mem_enc_op = svm_mem_enc_op,
7517 .mem_enc_reg_region = svm_register_enc_region,
7518 .mem_enc_unreg_region = svm_unregister_enc_region,
7520 .nested_enable_evmcs = NULL,
7521 .nested_get_evmcs_version = NULL,
7523 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7525 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
7528 static int __init svm_init(void)
7530 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7531 __alignof__(struct vcpu_svm), THIS_MODULE);
7534 static void __exit svm_exit(void)
7539 module_init(svm_init)
7540 module_exit(svm_exit)