Merge tag 'powerpc-6.6-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-starfive.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/reboot.h>
43 #include <asm/fpu/api.h>
44
45 #include <trace/events/ipi.h>
46
47 #include "trace.h"
48
49 #include "svm.h"
50 #include "svm_ops.h"
51
52 #include "kvm_onhyperv.h"
53 #include "svm_onhyperv.h"
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 #ifdef MODULE
59 static const struct x86_cpu_id svm_cpu_id[] = {
60         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
61         {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64 #endif
65
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68
69 static bool erratum_383_found __read_mostly;
70
71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
72
73 /*
74  * Set osvw_len to higher value when updated Revision Guides
75  * are published and we know what the new status bits are
76  */
77 static uint64_t osvw_len = 4, osvw_status;
78
79 static DEFINE_PER_CPU(u64, current_tsc_ratio);
80
81 #define X2APIC_MSR(x)   (APIC_BASE_MSR + (x >> 4))
82
83 static const struct svm_direct_access_msrs {
84         u32 index;   /* Index of the MSR */
85         bool always; /* True if intercept is initially cleared */
86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
87         { .index = MSR_STAR,                            .always = true  },
88         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
89         { .index = MSR_IA32_SYSENTER_EIP,               .always = false },
90         { .index = MSR_IA32_SYSENTER_ESP,               .always = false },
91 #ifdef CONFIG_X86_64
92         { .index = MSR_GS_BASE,                         .always = true  },
93         { .index = MSR_FS_BASE,                         .always = true  },
94         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
95         { .index = MSR_LSTAR,                           .always = true  },
96         { .index = MSR_CSTAR,                           .always = true  },
97         { .index = MSR_SYSCALL_MASK,                    .always = true  },
98 #endif
99         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
100         { .index = MSR_IA32_PRED_CMD,                   .always = false },
101         { .index = MSR_IA32_FLUSH_CMD,                  .always = false },
102         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
103         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
104         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
105         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
106         { .index = MSR_EFER,                            .always = false },
107         { .index = MSR_IA32_CR_PAT,                     .always = false },
108         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
109         { .index = MSR_TSC_AUX,                         .always = false },
110         { .index = X2APIC_MSR(APIC_ID),                 .always = false },
111         { .index = X2APIC_MSR(APIC_LVR),                .always = false },
112         { .index = X2APIC_MSR(APIC_TASKPRI),            .always = false },
113         { .index = X2APIC_MSR(APIC_ARBPRI),             .always = false },
114         { .index = X2APIC_MSR(APIC_PROCPRI),            .always = false },
115         { .index = X2APIC_MSR(APIC_EOI),                .always = false },
116         { .index = X2APIC_MSR(APIC_RRR),                .always = false },
117         { .index = X2APIC_MSR(APIC_LDR),                .always = false },
118         { .index = X2APIC_MSR(APIC_DFR),                .always = false },
119         { .index = X2APIC_MSR(APIC_SPIV),               .always = false },
120         { .index = X2APIC_MSR(APIC_ISR),                .always = false },
121         { .index = X2APIC_MSR(APIC_TMR),                .always = false },
122         { .index = X2APIC_MSR(APIC_IRR),                .always = false },
123         { .index = X2APIC_MSR(APIC_ESR),                .always = false },
124         { .index = X2APIC_MSR(APIC_ICR),                .always = false },
125         { .index = X2APIC_MSR(APIC_ICR2),               .always = false },
126
127         /*
128          * Note:
129          * AMD does not virtualize APIC TSC-deadline timer mode, but it is
130          * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
131          * the AVIC hardware would generate GP fault. Therefore, always
132          * intercept the MSR 0x832, and do not setup direct_access_msr.
133          */
134         { .index = X2APIC_MSR(APIC_LVTTHMR),            .always = false },
135         { .index = X2APIC_MSR(APIC_LVTPC),              .always = false },
136         { .index = X2APIC_MSR(APIC_LVT0),               .always = false },
137         { .index = X2APIC_MSR(APIC_LVT1),               .always = false },
138         { .index = X2APIC_MSR(APIC_LVTERR),             .always = false },
139         { .index = X2APIC_MSR(APIC_TMICT),              .always = false },
140         { .index = X2APIC_MSR(APIC_TMCCT),              .always = false },
141         { .index = X2APIC_MSR(APIC_TDCR),               .always = false },
142         { .index = MSR_INVALID,                         .always = false },
143 };
144
145 /*
146  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
147  * pause_filter_count: On processors that support Pause filtering(indicated
148  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
149  *      count value. On VMRUN this value is loaded into an internal counter.
150  *      Each time a pause instruction is executed, this counter is decremented
151  *      until it reaches zero at which time a #VMEXIT is generated if pause
152  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
153  *      Intercept Filtering for more details.
154  *      This also indicate if ple logic enabled.
155  *
156  * pause_filter_thresh: In addition, some processor families support advanced
157  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
158  *      the amount of time a guest is allowed to execute in a pause loop.
159  *      In this mode, a 16-bit pause filter threshold field is added in the
160  *      VMCB. The threshold value is a cycle count that is used to reset the
161  *      pause counter. As with simple pause filtering, VMRUN loads the pause
162  *      count value from VMCB into an internal counter. Then, on each pause
163  *      instruction the hardware checks the elapsed number of cycles since
164  *      the most recent pause instruction against the pause filter threshold.
165  *      If the elapsed cycle count is greater than the pause filter threshold,
166  *      then the internal pause count is reloaded from the VMCB and execution
167  *      continues. If the elapsed cycle count is less than the pause filter
168  *      threshold, then the internal pause count is decremented. If the count
169  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
170  *      triggered. If advanced pause filtering is supported and pause filter
171  *      threshold field is set to zero, the filter will operate in the simpler,
172  *      count only mode.
173  */
174
175 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
176 module_param(pause_filter_thresh, ushort, 0444);
177
178 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
179 module_param(pause_filter_count, ushort, 0444);
180
181 /* Default doubles per-vcpu window every exit. */
182 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
183 module_param(pause_filter_count_grow, ushort, 0444);
184
185 /* Default resets per-vcpu window every exit to pause_filter_count. */
186 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
187 module_param(pause_filter_count_shrink, ushort, 0444);
188
189 /* Default is to compute the maximum so we can never overflow. */
190 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
191 module_param(pause_filter_count_max, ushort, 0444);
192
193 /*
194  * Use nested page tables by default.  Note, NPT may get forced off by
195  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
196  */
197 bool npt_enabled = true;
198 module_param_named(npt, npt_enabled, bool, 0444);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 /* enable/disable Next RIP Save */
205 int nrips = true;
206 module_param(nrips, int, 0444);
207
208 /* enable/disable Virtual VMLOAD VMSAVE */
209 static int vls = true;
210 module_param(vls, int, 0444);
211
212 /* enable/disable Virtual GIF */
213 int vgif = true;
214 module_param(vgif, int, 0444);
215
216 /* enable/disable LBR virtualization */
217 static int lbrv = true;
218 module_param(lbrv, int, 0444);
219
220 static int tsc_scaling = true;
221 module_param(tsc_scaling, int, 0444);
222
223 /*
224  * enable / disable AVIC.  Because the defaults differ for APICv
225  * support between VMX and SVM we cannot use module_param_named.
226  */
227 static bool avic;
228 module_param(avic, bool, 0444);
229
230 bool __read_mostly dump_invalid_vmcb;
231 module_param(dump_invalid_vmcb, bool, 0644);
232
233
234 bool intercept_smi = true;
235 module_param(intercept_smi, bool, 0444);
236
237 bool vnmi = true;
238 module_param(vnmi, bool, 0444);
239
240 static bool svm_gp_erratum_intercept = true;
241
242 static u8 rsm_ins_bytes[] = "\x0f\xaa";
243
244 static unsigned long iopm_base;
245
246 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
247
248 /*
249  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
250  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
251  *
252  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
253  * defer the restoration of TSC_AUX until the CPU returns to userspace.
254  */
255 static int tsc_aux_uret_slot __read_mostly = -1;
256
257 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
258
259 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
260 #define MSRS_RANGE_SIZE 2048
261 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
262
263 u32 svm_msrpm_offset(u32 msr)
264 {
265         u32 offset;
266         int i;
267
268         for (i = 0; i < NUM_MSR_MAPS; i++) {
269                 if (msr < msrpm_ranges[i] ||
270                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
271                         continue;
272
273                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
274                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
275
276                 /* Now we have the u8 offset - but need the u32 offset */
277                 return offset / 4;
278         }
279
280         /* MSR not in any range */
281         return MSR_INVALID;
282 }
283
284 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
285
286 static int get_npt_level(void)
287 {
288 #ifdef CONFIG_X86_64
289         return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
290 #else
291         return PT32E_ROOT_LEVEL;
292 #endif
293 }
294
295 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
296 {
297         struct vcpu_svm *svm = to_svm(vcpu);
298         u64 old_efer = vcpu->arch.efer;
299         vcpu->arch.efer = efer;
300
301         if (!npt_enabled) {
302                 /* Shadow paging assumes NX to be available.  */
303                 efer |= EFER_NX;
304
305                 if (!(efer & EFER_LMA))
306                         efer &= ~EFER_LME;
307         }
308
309         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
310                 if (!(efer & EFER_SVME)) {
311                         svm_leave_nested(vcpu);
312                         svm_set_gif(svm, true);
313                         /* #GP intercept is still needed for vmware backdoor */
314                         if (!enable_vmware_backdoor)
315                                 clr_exception_intercept(svm, GP_VECTOR);
316
317                         /*
318                          * Free the nested guest state, unless we are in SMM.
319                          * In this case we will return to the nested guest
320                          * as soon as we leave SMM.
321                          */
322                         if (!is_smm(vcpu))
323                                 svm_free_nested(svm);
324
325                 } else {
326                         int ret = svm_allocate_nested(svm);
327
328                         if (ret) {
329                                 vcpu->arch.efer = old_efer;
330                                 return ret;
331                         }
332
333                         /*
334                          * Never intercept #GP for SEV guests, KVM can't
335                          * decrypt guest memory to workaround the erratum.
336                          */
337                         if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
338                                 set_exception_intercept(svm, GP_VECTOR);
339                 }
340         }
341
342         svm->vmcb->save.efer = efer | EFER_SVME;
343         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
344         return 0;
345 }
346
347 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
348 {
349         struct vcpu_svm *svm = to_svm(vcpu);
350         u32 ret = 0;
351
352         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
353                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
354         return ret;
355 }
356
357 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
358 {
359         struct vcpu_svm *svm = to_svm(vcpu);
360
361         if (mask == 0)
362                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
363         else
364                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
365
366 }
367 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
368                                         void *insn, int insn_len);
369
370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
371                                            bool commit_side_effects)
372 {
373         struct vcpu_svm *svm = to_svm(vcpu);
374         unsigned long old_rflags;
375
376         /*
377          * SEV-ES does not expose the next RIP. The RIP update is controlled by
378          * the type of exit and the #VC handler in the guest.
379          */
380         if (sev_es_guest(vcpu->kvm))
381                 goto done;
382
383         if (nrips && svm->vmcb->control.next_rip != 0) {
384                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
385                 svm->next_rip = svm->vmcb->control.next_rip;
386         }
387
388         if (!svm->next_rip) {
389                 /*
390                  * FIXME: Drop this when kvm_emulate_instruction() does the
391                  * right thing and treats "can't emulate" as outright failure
392                  * for EMULTYPE_SKIP.
393                  */
394                 if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0))
395                         return 0;
396
397                 if (unlikely(!commit_side_effects))
398                         old_rflags = svm->vmcb->save.rflags;
399
400                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
401                         return 0;
402
403                 if (unlikely(!commit_side_effects))
404                         svm->vmcb->save.rflags = old_rflags;
405         } else {
406                 kvm_rip_write(vcpu, svm->next_rip);
407         }
408
409 done:
410         if (likely(commit_side_effects))
411                 svm_set_interrupt_shadow(vcpu, 0);
412
413         return 1;
414 }
415
416 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
417 {
418         return __svm_skip_emulated_instruction(vcpu, true);
419 }
420
421 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
422 {
423         unsigned long rip, old_rip = kvm_rip_read(vcpu);
424         struct vcpu_svm *svm = to_svm(vcpu);
425
426         /*
427          * Due to architectural shortcomings, the CPU doesn't always provide
428          * NextRIP, e.g. if KVM intercepted an exception that occurred while
429          * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
430          * the instruction even if NextRIP is supported to acquire the next
431          * RIP so that it can be shoved into the NextRIP field, otherwise
432          * hardware will fail to advance guest RIP during event injection.
433          * Drop the exception/interrupt if emulation fails and effectively
434          * retry the instruction, it's the least awful option.  If NRIPS is
435          * in use, the skip must not commit any side effects such as clearing
436          * the interrupt shadow or RFLAGS.RF.
437          */
438         if (!__svm_skip_emulated_instruction(vcpu, !nrips))
439                 return -EIO;
440
441         rip = kvm_rip_read(vcpu);
442
443         /*
444          * Save the injection information, even when using next_rip, as the
445          * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
446          * doesn't complete due to a VM-Exit occurring while the CPU is
447          * vectoring the event.   Decoding the instruction isn't guaranteed to
448          * work as there may be no backing instruction, e.g. if the event is
449          * being injected by L1 for L2, or if the guest is patching INT3 into
450          * a different instruction.
451          */
452         svm->soft_int_injected = true;
453         svm->soft_int_csbase = svm->vmcb->save.cs.base;
454         svm->soft_int_old_rip = old_rip;
455         svm->soft_int_next_rip = rip;
456
457         if (nrips)
458                 kvm_rip_write(vcpu, old_rip);
459
460         if (static_cpu_has(X86_FEATURE_NRIPS))
461                 svm->vmcb->control.next_rip = rip;
462
463         return 0;
464 }
465
466 static void svm_inject_exception(struct kvm_vcpu *vcpu)
467 {
468         struct kvm_queued_exception *ex = &vcpu->arch.exception;
469         struct vcpu_svm *svm = to_svm(vcpu);
470
471         kvm_deliver_exception_payload(vcpu, ex);
472
473         if (kvm_exception_is_soft(ex->vector) &&
474             svm_update_soft_interrupt_rip(vcpu))
475                 return;
476
477         svm->vmcb->control.event_inj = ex->vector
478                 | SVM_EVTINJ_VALID
479                 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
480                 | SVM_EVTINJ_TYPE_EXEPT;
481         svm->vmcb->control.event_inj_err = ex->error_code;
482 }
483
484 static void svm_init_erratum_383(void)
485 {
486         u32 low, high;
487         int err;
488         u64 val;
489
490         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
491                 return;
492
493         /* Use _safe variants to not break nested virtualization */
494         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
495         if (err)
496                 return;
497
498         val |= (1ULL << 47);
499
500         low  = lower_32_bits(val);
501         high = upper_32_bits(val);
502
503         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
504
505         erratum_383_found = true;
506 }
507
508 static void svm_init_osvw(struct kvm_vcpu *vcpu)
509 {
510         /*
511          * Guests should see errata 400 and 415 as fixed (assuming that
512          * HLT and IO instructions are intercepted).
513          */
514         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
515         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
516
517         /*
518          * By increasing VCPU's osvw.length to 3 we are telling the guest that
519          * all osvw.status bits inside that length, including bit 0 (which is
520          * reserved for erratum 298), are valid. However, if host processor's
521          * osvw_len is 0 then osvw_status[0] carries no information. We need to
522          * be conservative here and therefore we tell the guest that erratum 298
523          * is present (because we really don't know).
524          */
525         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
526                 vcpu->arch.osvw.status |= 1;
527 }
528
529 static bool __kvm_is_svm_supported(void)
530 {
531         int cpu = smp_processor_id();
532         struct cpuinfo_x86 *c = &cpu_data(cpu);
533
534         u64 vm_cr;
535
536         if (c->x86_vendor != X86_VENDOR_AMD &&
537             c->x86_vendor != X86_VENDOR_HYGON) {
538                 pr_err("CPU %d isn't AMD or Hygon\n", cpu);
539                 return false;
540         }
541
542         if (!cpu_has(c, X86_FEATURE_SVM)) {
543                 pr_err("SVM not supported by CPU %d\n", cpu);
544                 return false;
545         }
546
547         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
548                 pr_info("KVM is unsupported when running as an SEV guest\n");
549                 return false;
550         }
551
552         rdmsrl(MSR_VM_CR, vm_cr);
553         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) {
554                 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu);
555                 return false;
556         }
557
558         return true;
559 }
560
561 static bool kvm_is_svm_supported(void)
562 {
563         bool supported;
564
565         migrate_disable();
566         supported = __kvm_is_svm_supported();
567         migrate_enable();
568
569         return supported;
570 }
571
572 static int svm_check_processor_compat(void)
573 {
574         if (!__kvm_is_svm_supported())
575                 return -EIO;
576
577         return 0;
578 }
579
580 static void __svm_write_tsc_multiplier(u64 multiplier)
581 {
582         if (multiplier == __this_cpu_read(current_tsc_ratio))
583                 return;
584
585         wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
586         __this_cpu_write(current_tsc_ratio, multiplier);
587 }
588
589 static inline void kvm_cpu_svm_disable(void)
590 {
591         uint64_t efer;
592
593         wrmsrl(MSR_VM_HSAVE_PA, 0);
594         rdmsrl(MSR_EFER, efer);
595         if (efer & EFER_SVME) {
596                 /*
597                  * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
598                  * NMI aren't blocked.
599                  */
600                 stgi();
601                 wrmsrl(MSR_EFER, efer & ~EFER_SVME);
602         }
603 }
604
605 static void svm_emergency_disable(void)
606 {
607         kvm_rebooting = true;
608
609         kvm_cpu_svm_disable();
610 }
611
612 static void svm_hardware_disable(void)
613 {
614         /* Make sure we clean up behind us */
615         if (tsc_scaling)
616                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
617
618         kvm_cpu_svm_disable();
619
620         amd_pmu_disable_virt();
621 }
622
623 static int svm_hardware_enable(void)
624 {
625
626         struct svm_cpu_data *sd;
627         uint64_t efer;
628         int me = raw_smp_processor_id();
629
630         rdmsrl(MSR_EFER, efer);
631         if (efer & EFER_SVME)
632                 return -EBUSY;
633
634         sd = per_cpu_ptr(&svm_data, me);
635         sd->asid_generation = 1;
636         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
637         sd->next_asid = sd->max_asid + 1;
638         sd->min_asid = max_sev_asid + 1;
639
640         wrmsrl(MSR_EFER, efer | EFER_SVME);
641
642         wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
643
644         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
645                 /*
646                  * Set the default value, even if we don't use TSC scaling
647                  * to avoid having stale value in the msr
648                  */
649                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
650         }
651
652
653         /*
654          * Get OSVW bits.
655          *
656          * Note that it is possible to have a system with mixed processor
657          * revisions and therefore different OSVW bits. If bits are not the same
658          * on different processors then choose the worst case (i.e. if erratum
659          * is present on one processor and not on another then assume that the
660          * erratum is present everywhere).
661          */
662         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
663                 uint64_t len, status = 0;
664                 int err;
665
666                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
667                 if (!err)
668                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
669                                                       &err);
670
671                 if (err)
672                         osvw_status = osvw_len = 0;
673                 else {
674                         if (len < osvw_len)
675                                 osvw_len = len;
676                         osvw_status |= status;
677                         osvw_status &= (1ULL << osvw_len) - 1;
678                 }
679         } else
680                 osvw_status = osvw_len = 0;
681
682         svm_init_erratum_383();
683
684         amd_pmu_enable_virt();
685
686         /*
687          * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
688          * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
689          * Since Linux does not change the value of TSC_AUX once set, prime the
690          * TSC_AUX field now to avoid a RDMSR on every vCPU run.
691          */
692         if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
693                 struct sev_es_save_area *hostsa;
694                 u32 __maybe_unused msr_hi;
695
696                 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
697
698                 rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi);
699         }
700
701         return 0;
702 }
703
704 static void svm_cpu_uninit(int cpu)
705 {
706         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
707
708         if (!sd->save_area)
709                 return;
710
711         kfree(sd->sev_vmcbs);
712         __free_page(sd->save_area);
713         sd->save_area_pa = 0;
714         sd->save_area = NULL;
715 }
716
717 static int svm_cpu_init(int cpu)
718 {
719         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
720         int ret = -ENOMEM;
721
722         memset(sd, 0, sizeof(struct svm_cpu_data));
723         sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
724         if (!sd->save_area)
725                 return ret;
726
727         ret = sev_cpu_init(sd);
728         if (ret)
729                 goto free_save_area;
730
731         sd->save_area_pa = __sme_page_pa(sd->save_area);
732         return 0;
733
734 free_save_area:
735         __free_page(sd->save_area);
736         sd->save_area = NULL;
737         return ret;
738
739 }
740
741 static void set_dr_intercepts(struct vcpu_svm *svm)
742 {
743         struct vmcb *vmcb = svm->vmcb01.ptr;
744
745         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
746         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
747         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
748         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
749         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
750         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
751         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
752         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
753         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
754         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
755         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
756         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
757         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
758         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
759         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
760         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
761
762         recalc_intercepts(svm);
763 }
764
765 static void clr_dr_intercepts(struct vcpu_svm *svm)
766 {
767         struct vmcb *vmcb = svm->vmcb01.ptr;
768
769         vmcb->control.intercepts[INTERCEPT_DR] = 0;
770
771         recalc_intercepts(svm);
772 }
773
774 static int direct_access_msr_slot(u32 msr)
775 {
776         u32 i;
777
778         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
779                 if (direct_access_msrs[i].index == msr)
780                         return i;
781
782         return -ENOENT;
783 }
784
785 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
786                                      int write)
787 {
788         struct vcpu_svm *svm = to_svm(vcpu);
789         int slot = direct_access_msr_slot(msr);
790
791         if (slot == -ENOENT)
792                 return;
793
794         /* Set the shadow bitmaps to the desired intercept states */
795         if (read)
796                 set_bit(slot, svm->shadow_msr_intercept.read);
797         else
798                 clear_bit(slot, svm->shadow_msr_intercept.read);
799
800         if (write)
801                 set_bit(slot, svm->shadow_msr_intercept.write);
802         else
803                 clear_bit(slot, svm->shadow_msr_intercept.write);
804 }
805
806 static bool valid_msr_intercept(u32 index)
807 {
808         return direct_access_msr_slot(index) != -ENOENT;
809 }
810
811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
812 {
813         u8 bit_write;
814         unsigned long tmp;
815         u32 offset;
816         u32 *msrpm;
817
818         /*
819          * For non-nested case:
820          * If the L01 MSR bitmap does not intercept the MSR, then we need to
821          * save it.
822          *
823          * For nested case:
824          * If the L02 MSR bitmap does not intercept the MSR, then we need to
825          * save it.
826          */
827         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
828                                       to_svm(vcpu)->msrpm;
829
830         offset    = svm_msrpm_offset(msr);
831         bit_write = 2 * (msr & 0x0f) + 1;
832         tmp       = msrpm[offset];
833
834         BUG_ON(offset == MSR_INVALID);
835
836         return test_bit(bit_write, &tmp);
837 }
838
839 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
840                                         u32 msr, int read, int write)
841 {
842         struct vcpu_svm *svm = to_svm(vcpu);
843         u8 bit_read, bit_write;
844         unsigned long tmp;
845         u32 offset;
846
847         /*
848          * If this warning triggers extend the direct_access_msrs list at the
849          * beginning of the file
850          */
851         WARN_ON(!valid_msr_intercept(msr));
852
853         /* Enforce non allowed MSRs to trap */
854         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
855                 read = 0;
856
857         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
858                 write = 0;
859
860         offset    = svm_msrpm_offset(msr);
861         bit_read  = 2 * (msr & 0x0f);
862         bit_write = 2 * (msr & 0x0f) + 1;
863         tmp       = msrpm[offset];
864
865         BUG_ON(offset == MSR_INVALID);
866
867         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
868         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
869
870         msrpm[offset] = tmp;
871
872         svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
873         svm->nested.force_msr_bitmap_recalc = true;
874 }
875
876 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
877                           int read, int write)
878 {
879         set_shadow_msr_intercept(vcpu, msr, read, write);
880         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
881 }
882
883 u32 *svm_vcpu_alloc_msrpm(void)
884 {
885         unsigned int order = get_order(MSRPM_SIZE);
886         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
887         u32 *msrpm;
888
889         if (!pages)
890                 return NULL;
891
892         msrpm = page_address(pages);
893         memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
894
895         return msrpm;
896 }
897
898 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
899 {
900         int i;
901
902         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
903                 if (!direct_access_msrs[i].always)
904                         continue;
905                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
906         }
907 }
908
909 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
910 {
911         int i;
912
913         if (intercept == svm->x2avic_msrs_intercepted)
914                 return;
915
916         if (!x2avic_enabled)
917                 return;
918
919         for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
920                 int index = direct_access_msrs[i].index;
921
922                 if ((index < APIC_BASE_MSR) ||
923                     (index > APIC_BASE_MSR + 0xff))
924                         continue;
925                 set_msr_interception(&svm->vcpu, svm->msrpm, index,
926                                      !intercept, !intercept);
927         }
928
929         svm->x2avic_msrs_intercepted = intercept;
930 }
931
932 void svm_vcpu_free_msrpm(u32 *msrpm)
933 {
934         __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
935 }
936
937 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
938 {
939         struct vcpu_svm *svm = to_svm(vcpu);
940         u32 i;
941
942         /*
943          * Set intercept permissions for all direct access MSRs again. They
944          * will automatically get filtered through the MSR filter, so we are
945          * back in sync after this.
946          */
947         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
948                 u32 msr = direct_access_msrs[i].index;
949                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
950                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
951
952                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
953         }
954 }
955
956 static void add_msr_offset(u32 offset)
957 {
958         int i;
959
960         for (i = 0; i < MSRPM_OFFSETS; ++i) {
961
962                 /* Offset already in list? */
963                 if (msrpm_offsets[i] == offset)
964                         return;
965
966                 /* Slot used by another offset? */
967                 if (msrpm_offsets[i] != MSR_INVALID)
968                         continue;
969
970                 /* Add offset to list */
971                 msrpm_offsets[i] = offset;
972
973                 return;
974         }
975
976         /*
977          * If this BUG triggers the msrpm_offsets table has an overflow. Just
978          * increase MSRPM_OFFSETS in this case.
979          */
980         BUG();
981 }
982
983 static void init_msrpm_offsets(void)
984 {
985         int i;
986
987         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
988
989         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
990                 u32 offset;
991
992                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
993                 BUG_ON(offset == MSR_INVALID);
994
995                 add_msr_offset(offset);
996         }
997 }
998
999 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
1000 {
1001         to_vmcb->save.dbgctl            = from_vmcb->save.dbgctl;
1002         to_vmcb->save.br_from           = from_vmcb->save.br_from;
1003         to_vmcb->save.br_to             = from_vmcb->save.br_to;
1004         to_vmcb->save.last_excp_from    = from_vmcb->save.last_excp_from;
1005         to_vmcb->save.last_excp_to      = from_vmcb->save.last_excp_to;
1006
1007         vmcb_mark_dirty(to_vmcb, VMCB_LBR);
1008 }
1009
1010 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
1011 {
1012         struct vcpu_svm *svm = to_svm(vcpu);
1013
1014         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1015         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1016         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1017         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1018         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1019
1020         /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1021         if (is_guest_mode(vcpu))
1022                 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1023 }
1024
1025 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1026 {
1027         struct vcpu_svm *svm = to_svm(vcpu);
1028
1029         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1030         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1031         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1032         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1033         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1034
1035         /*
1036          * Move the LBR msrs back to the vmcb01 to avoid copying them
1037          * on nested guest entries.
1038          */
1039         if (is_guest_mode(vcpu))
1040                 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1041 }
1042
1043 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1044 {
1045         /*
1046          * If LBR virtualization is disabled, the LBR MSRs are always kept in
1047          * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
1048          * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1049          */
1050         return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1051                                                                    svm->vmcb01.ptr;
1052 }
1053
1054 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1055 {
1056         struct vcpu_svm *svm = to_svm(vcpu);
1057         bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1058         bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1059                             (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1060                             (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1061
1062         if (enable_lbrv == current_enable_lbrv)
1063                 return;
1064
1065         if (enable_lbrv)
1066                 svm_enable_lbrv(vcpu);
1067         else
1068                 svm_disable_lbrv(vcpu);
1069 }
1070
1071 void disable_nmi_singlestep(struct vcpu_svm *svm)
1072 {
1073         svm->nmi_singlestep = false;
1074
1075         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1076                 /* Clear our flags if they were not set by the guest */
1077                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1078                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1079                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1080                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1081         }
1082 }
1083
1084 static void grow_ple_window(struct kvm_vcpu *vcpu)
1085 {
1086         struct vcpu_svm *svm = to_svm(vcpu);
1087         struct vmcb_control_area *control = &svm->vmcb->control;
1088         int old = control->pause_filter_count;
1089
1090         if (kvm_pause_in_guest(vcpu->kvm))
1091                 return;
1092
1093         control->pause_filter_count = __grow_ple_window(old,
1094                                                         pause_filter_count,
1095                                                         pause_filter_count_grow,
1096                                                         pause_filter_count_max);
1097
1098         if (control->pause_filter_count != old) {
1099                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1100                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1101                                             control->pause_filter_count, old);
1102         }
1103 }
1104
1105 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1106 {
1107         struct vcpu_svm *svm = to_svm(vcpu);
1108         struct vmcb_control_area *control = &svm->vmcb->control;
1109         int old = control->pause_filter_count;
1110
1111         if (kvm_pause_in_guest(vcpu->kvm))
1112                 return;
1113
1114         control->pause_filter_count =
1115                                 __shrink_ple_window(old,
1116                                                     pause_filter_count,
1117                                                     pause_filter_count_shrink,
1118                                                     pause_filter_count);
1119         if (control->pause_filter_count != old) {
1120                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1121                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1122                                             control->pause_filter_count, old);
1123         }
1124 }
1125
1126 static void svm_hardware_unsetup(void)
1127 {
1128         int cpu;
1129
1130         sev_hardware_unsetup();
1131
1132         for_each_possible_cpu(cpu)
1133                 svm_cpu_uninit(cpu);
1134
1135         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1136         get_order(IOPM_SIZE));
1137         iopm_base = 0;
1138 }
1139
1140 static void init_seg(struct vmcb_seg *seg)
1141 {
1142         seg->selector = 0;
1143         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1144                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1145         seg->limit = 0xffff;
1146         seg->base = 0;
1147 }
1148
1149 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1150 {
1151         seg->selector = 0;
1152         seg->attrib = SVM_SELECTOR_P_MASK | type;
1153         seg->limit = 0xffff;
1154         seg->base = 0;
1155 }
1156
1157 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1158 {
1159         struct vcpu_svm *svm = to_svm(vcpu);
1160
1161         return svm->nested.ctl.tsc_offset;
1162 }
1163
1164 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1165 {
1166         struct vcpu_svm *svm = to_svm(vcpu);
1167
1168         return svm->tsc_ratio_msr;
1169 }
1170
1171 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1172 {
1173         struct vcpu_svm *svm = to_svm(vcpu);
1174
1175         svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1176         svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1177         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1178 }
1179
1180 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1181 {
1182         preempt_disable();
1183         if (to_svm(vcpu)->guest_state_loaded)
1184                 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1185         preempt_enable();
1186 }
1187
1188 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1189 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1190                                               struct vcpu_svm *svm)
1191 {
1192         /*
1193          * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1194          * roots, or if INVPCID is disabled in the guest to inject #UD.
1195          */
1196         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1197                 if (!npt_enabled ||
1198                     !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1199                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1200                 else
1201                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1202         }
1203
1204         if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1205                 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1206                         svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1207                 else
1208                         svm_set_intercept(svm, INTERCEPT_RDTSCP);
1209         }
1210 }
1211
1212 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1213 {
1214         struct vcpu_svm *svm = to_svm(vcpu);
1215
1216         if (guest_cpuid_is_intel(vcpu)) {
1217                 /*
1218                  * We must intercept SYSENTER_EIP and SYSENTER_ESP
1219                  * accesses because the processor only stores 32 bits.
1220                  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1221                  */
1222                 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1223                 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1224                 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1225
1226                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1227                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1228         } else {
1229                 /*
1230                  * If hardware supports Virtual VMLOAD VMSAVE then enable it
1231                  * in VMCB and clear intercepts to avoid #VMEXIT.
1232                  */
1233                 if (vls) {
1234                         svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1235                         svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1236                         svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1237                 }
1238                 /* No need to intercept these MSRs */
1239                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1240                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1241         }
1242 }
1243
1244 static void init_vmcb(struct kvm_vcpu *vcpu)
1245 {
1246         struct vcpu_svm *svm = to_svm(vcpu);
1247         struct vmcb *vmcb = svm->vmcb01.ptr;
1248         struct vmcb_control_area *control = &vmcb->control;
1249         struct vmcb_save_area *save = &vmcb->save;
1250
1251         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1252         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1253         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1254         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1255         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1256         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1257         if (!kvm_vcpu_apicv_active(vcpu))
1258                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1259
1260         set_dr_intercepts(svm);
1261
1262         set_exception_intercept(svm, PF_VECTOR);
1263         set_exception_intercept(svm, UD_VECTOR);
1264         set_exception_intercept(svm, MC_VECTOR);
1265         set_exception_intercept(svm, AC_VECTOR);
1266         set_exception_intercept(svm, DB_VECTOR);
1267         /*
1268          * Guest access to VMware backdoor ports could legitimately
1269          * trigger #GP because of TSS I/O permission bitmap.
1270          * We intercept those #GP and allow access to them anyway
1271          * as VMware does.
1272          */
1273         if (enable_vmware_backdoor)
1274                 set_exception_intercept(svm, GP_VECTOR);
1275
1276         svm_set_intercept(svm, INTERCEPT_INTR);
1277         svm_set_intercept(svm, INTERCEPT_NMI);
1278
1279         if (intercept_smi)
1280                 svm_set_intercept(svm, INTERCEPT_SMI);
1281
1282         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1283         svm_set_intercept(svm, INTERCEPT_RDPMC);
1284         svm_set_intercept(svm, INTERCEPT_CPUID);
1285         svm_set_intercept(svm, INTERCEPT_INVD);
1286         svm_set_intercept(svm, INTERCEPT_INVLPG);
1287         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1288         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1289         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1290         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1291         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1292         svm_set_intercept(svm, INTERCEPT_VMRUN);
1293         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1294         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1295         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1296         svm_set_intercept(svm, INTERCEPT_STGI);
1297         svm_set_intercept(svm, INTERCEPT_CLGI);
1298         svm_set_intercept(svm, INTERCEPT_SKINIT);
1299         svm_set_intercept(svm, INTERCEPT_WBINVD);
1300         svm_set_intercept(svm, INTERCEPT_XSETBV);
1301         svm_set_intercept(svm, INTERCEPT_RDPRU);
1302         svm_set_intercept(svm, INTERCEPT_RSM);
1303
1304         if (!kvm_mwait_in_guest(vcpu->kvm)) {
1305                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1306                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1307         }
1308
1309         if (!kvm_hlt_in_guest(vcpu->kvm))
1310                 svm_set_intercept(svm, INTERCEPT_HLT);
1311
1312         control->iopm_base_pa = __sme_set(iopm_base);
1313         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1314         control->int_ctl = V_INTR_MASKING_MASK;
1315
1316         init_seg(&save->es);
1317         init_seg(&save->ss);
1318         init_seg(&save->ds);
1319         init_seg(&save->fs);
1320         init_seg(&save->gs);
1321
1322         save->cs.selector = 0xf000;
1323         save->cs.base = 0xffff0000;
1324         /* Executable/Readable Code Segment */
1325         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1326                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1327         save->cs.limit = 0xffff;
1328
1329         save->gdtr.base = 0;
1330         save->gdtr.limit = 0xffff;
1331         save->idtr.base = 0;
1332         save->idtr.limit = 0xffff;
1333
1334         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1335         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1336
1337         if (npt_enabled) {
1338                 /* Setup VMCB for Nested Paging */
1339                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1340                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1341                 clr_exception_intercept(svm, PF_VECTOR);
1342                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1343                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1344                 save->g_pat = vcpu->arch.pat;
1345                 save->cr3 = 0;
1346         }
1347         svm->current_vmcb->asid_generation = 0;
1348         svm->asid = 0;
1349
1350         svm->nested.vmcb12_gpa = INVALID_GPA;
1351         svm->nested.last_vmcb12_gpa = INVALID_GPA;
1352
1353         if (!kvm_pause_in_guest(vcpu->kvm)) {
1354                 control->pause_filter_count = pause_filter_count;
1355                 if (pause_filter_thresh)
1356                         control->pause_filter_thresh = pause_filter_thresh;
1357                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1358         } else {
1359                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1360         }
1361
1362         svm_recalc_instruction_intercepts(vcpu, svm);
1363
1364         /*
1365          * If the host supports V_SPEC_CTRL then disable the interception
1366          * of MSR_IA32_SPEC_CTRL.
1367          */
1368         if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1369                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1370
1371         if (kvm_vcpu_apicv_active(vcpu))
1372                 avic_init_vmcb(svm, vmcb);
1373
1374         if (vnmi)
1375                 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1376
1377         if (vgif) {
1378                 svm_clr_intercept(svm, INTERCEPT_STGI);
1379                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1380                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1381         }
1382
1383         if (sev_guest(vcpu->kvm))
1384                 sev_init_vmcb(svm);
1385
1386         svm_hv_init_vmcb(vmcb);
1387         init_vmcb_after_set_cpuid(vcpu);
1388
1389         vmcb_mark_all_dirty(vmcb);
1390
1391         enable_gif(svm);
1392 }
1393
1394 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1395 {
1396         struct vcpu_svm *svm = to_svm(vcpu);
1397
1398         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1399
1400         svm_init_osvw(vcpu);
1401         vcpu->arch.microcode_version = 0x01000065;
1402         svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1403
1404         svm->nmi_masked = false;
1405         svm->awaiting_iret_completion = false;
1406
1407         if (sev_es_guest(vcpu->kvm))
1408                 sev_es_vcpu_reset(svm);
1409 }
1410
1411 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1412 {
1413         struct vcpu_svm *svm = to_svm(vcpu);
1414
1415         svm->spec_ctrl = 0;
1416         svm->virt_spec_ctrl = 0;
1417
1418         init_vmcb(vcpu);
1419
1420         if (!init_event)
1421                 __svm_vcpu_reset(vcpu);
1422 }
1423
1424 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1425 {
1426         svm->current_vmcb = target_vmcb;
1427         svm->vmcb = target_vmcb->ptr;
1428 }
1429
1430 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1431 {
1432         struct vcpu_svm *svm;
1433         struct page *vmcb01_page;
1434         struct page *vmsa_page = NULL;
1435         int err;
1436
1437         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1438         svm = to_svm(vcpu);
1439
1440         err = -ENOMEM;
1441         vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1442         if (!vmcb01_page)
1443                 goto out;
1444
1445         if (sev_es_guest(vcpu->kvm)) {
1446                 /*
1447                  * SEV-ES guests require a separate VMSA page used to contain
1448                  * the encrypted register state of the guest.
1449                  */
1450                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1451                 if (!vmsa_page)
1452                         goto error_free_vmcb_page;
1453
1454                 /*
1455                  * SEV-ES guests maintain an encrypted version of their FPU
1456                  * state which is restored and saved on VMRUN and VMEXIT.
1457                  * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1458                  * do xsave/xrstor on it.
1459                  */
1460                 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1461         }
1462
1463         err = avic_init_vcpu(svm);
1464         if (err)
1465                 goto error_free_vmsa_page;
1466
1467         svm->msrpm = svm_vcpu_alloc_msrpm();
1468         if (!svm->msrpm) {
1469                 err = -ENOMEM;
1470                 goto error_free_vmsa_page;
1471         }
1472
1473         svm->x2avic_msrs_intercepted = true;
1474
1475         svm->vmcb01.ptr = page_address(vmcb01_page);
1476         svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1477         svm_switch_vmcb(svm, &svm->vmcb01);
1478
1479         if (vmsa_page)
1480                 svm->sev_es.vmsa = page_address(vmsa_page);
1481
1482         svm->guest_state_loaded = false;
1483
1484         return 0;
1485
1486 error_free_vmsa_page:
1487         if (vmsa_page)
1488                 __free_page(vmsa_page);
1489 error_free_vmcb_page:
1490         __free_page(vmcb01_page);
1491 out:
1492         return err;
1493 }
1494
1495 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1496 {
1497         int i;
1498
1499         for_each_online_cpu(i)
1500                 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1501 }
1502
1503 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1504 {
1505         struct vcpu_svm *svm = to_svm(vcpu);
1506
1507         /*
1508          * The vmcb page can be recycled, causing a false negative in
1509          * svm_vcpu_load(). So, ensure that no logical CPU has this
1510          * vmcb page recorded as its current vmcb.
1511          */
1512         svm_clear_current_vmcb(svm->vmcb);
1513
1514         svm_leave_nested(vcpu);
1515         svm_free_nested(svm);
1516
1517         sev_free_vcpu(vcpu);
1518
1519         __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1520         __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1521 }
1522
1523 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1524 {
1525         struct vcpu_svm *svm = to_svm(vcpu);
1526         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1527
1528         if (sev_es_guest(vcpu->kvm))
1529                 sev_es_unmap_ghcb(svm);
1530
1531         if (svm->guest_state_loaded)
1532                 return;
1533
1534         /*
1535          * Save additional host state that will be restored on VMEXIT (sev-es)
1536          * or subsequent vmload of host save area.
1537          */
1538         vmsave(sd->save_area_pa);
1539         if (sev_es_guest(vcpu->kvm)) {
1540                 struct sev_es_save_area *hostsa;
1541                 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1542
1543                 sev_es_prepare_switch_to_guest(hostsa);
1544         }
1545
1546         if (tsc_scaling)
1547                 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1548
1549         /*
1550          * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1551          * available. The user return MSR support is not required in this case
1552          * because TSC_AUX is restored on #VMEXIT from the host save area
1553          * (which has been initialized in svm_hardware_enable()).
1554          */
1555         if (likely(tsc_aux_uret_slot >= 0) &&
1556             (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1557                 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1558
1559         svm->guest_state_loaded = true;
1560 }
1561
1562 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1563 {
1564         to_svm(vcpu)->guest_state_loaded = false;
1565 }
1566
1567 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1568 {
1569         struct vcpu_svm *svm = to_svm(vcpu);
1570         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1571
1572         if (sd->current_vmcb != svm->vmcb) {
1573                 sd->current_vmcb = svm->vmcb;
1574
1575                 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1576                         indirect_branch_prediction_barrier();
1577         }
1578         if (kvm_vcpu_apicv_active(vcpu))
1579                 avic_vcpu_load(vcpu, cpu);
1580 }
1581
1582 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1583 {
1584         if (kvm_vcpu_apicv_active(vcpu))
1585                 avic_vcpu_put(vcpu);
1586
1587         svm_prepare_host_switch(vcpu);
1588
1589         ++vcpu->stat.host_state_reload;
1590 }
1591
1592 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1593 {
1594         struct vcpu_svm *svm = to_svm(vcpu);
1595         unsigned long rflags = svm->vmcb->save.rflags;
1596
1597         if (svm->nmi_singlestep) {
1598                 /* Hide our flags if they were not set by the guest */
1599                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1600                         rflags &= ~X86_EFLAGS_TF;
1601                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1602                         rflags &= ~X86_EFLAGS_RF;
1603         }
1604         return rflags;
1605 }
1606
1607 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1608 {
1609         if (to_svm(vcpu)->nmi_singlestep)
1610                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1611
1612        /*
1613         * Any change of EFLAGS.VM is accompanied by a reload of SS
1614         * (caused by either a task switch or an inter-privilege IRET),
1615         * so we do not need to update the CPL here.
1616         */
1617         to_svm(vcpu)->vmcb->save.rflags = rflags;
1618 }
1619
1620 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1621 {
1622         struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1623
1624         return sev_es_guest(vcpu->kvm)
1625                 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1626                 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1627 }
1628
1629 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1630 {
1631         kvm_register_mark_available(vcpu, reg);
1632
1633         switch (reg) {
1634         case VCPU_EXREG_PDPTR:
1635                 /*
1636                  * When !npt_enabled, mmu->pdptrs[] is already available since
1637                  * it is always updated per SDM when moving to CRs.
1638                  */
1639                 if (npt_enabled)
1640                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1641                 break;
1642         default:
1643                 KVM_BUG_ON(1, vcpu->kvm);
1644         }
1645 }
1646
1647 static void svm_set_vintr(struct vcpu_svm *svm)
1648 {
1649         struct vmcb_control_area *control;
1650
1651         /*
1652          * The following fields are ignored when AVIC is enabled
1653          */
1654         WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1655
1656         svm_set_intercept(svm, INTERCEPT_VINTR);
1657
1658         /*
1659          * Recalculating intercepts may have cleared the VINTR intercept.  If
1660          * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1661          * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1662          * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1663          * interrupts will never be unblocked while L2 is running.
1664          */
1665         if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1666                 return;
1667
1668         /*
1669          * This is just a dummy VINTR to actually cause a vmexit to happen.
1670          * Actual injection of virtual interrupts happens through EVENTINJ.
1671          */
1672         control = &svm->vmcb->control;
1673         control->int_vector = 0x0;
1674         control->int_ctl &= ~V_INTR_PRIO_MASK;
1675         control->int_ctl |= V_IRQ_MASK |
1676                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1677         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1678 }
1679
1680 static void svm_clear_vintr(struct vcpu_svm *svm)
1681 {
1682         svm_clr_intercept(svm, INTERCEPT_VINTR);
1683
1684         /* Drop int_ctl fields related to VINTR injection.  */
1685         svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1686         if (is_guest_mode(&svm->vcpu)) {
1687                 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1688
1689                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1690                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1691
1692                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1693                         V_IRQ_INJECTION_BITS_MASK;
1694
1695                 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1696         }
1697
1698         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1699 }
1700
1701 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1702 {
1703         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1704         struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1705
1706         switch (seg) {
1707         case VCPU_SREG_CS: return &save->cs;
1708         case VCPU_SREG_DS: return &save->ds;
1709         case VCPU_SREG_ES: return &save->es;
1710         case VCPU_SREG_FS: return &save01->fs;
1711         case VCPU_SREG_GS: return &save01->gs;
1712         case VCPU_SREG_SS: return &save->ss;
1713         case VCPU_SREG_TR: return &save01->tr;
1714         case VCPU_SREG_LDTR: return &save01->ldtr;
1715         }
1716         BUG();
1717         return NULL;
1718 }
1719
1720 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1721 {
1722         struct vmcb_seg *s = svm_seg(vcpu, seg);
1723
1724         return s->base;
1725 }
1726
1727 static void svm_get_segment(struct kvm_vcpu *vcpu,
1728                             struct kvm_segment *var, int seg)
1729 {
1730         struct vmcb_seg *s = svm_seg(vcpu, seg);
1731
1732         var->base = s->base;
1733         var->limit = s->limit;
1734         var->selector = s->selector;
1735         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1736         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1737         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1738         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1739         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1740         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1741         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1742
1743         /*
1744          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1745          * However, the SVM spec states that the G bit is not observed by the
1746          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1747          * So let's synthesize a legal G bit for all segments, this helps
1748          * running KVM nested. It also helps cross-vendor migration, because
1749          * Intel's vmentry has a check on the 'G' bit.
1750          */
1751         var->g = s->limit > 0xfffff;
1752
1753         /*
1754          * AMD's VMCB does not have an explicit unusable field, so emulate it
1755          * for cross vendor migration purposes by "not present"
1756          */
1757         var->unusable = !var->present;
1758
1759         switch (seg) {
1760         case VCPU_SREG_TR:
1761                 /*
1762                  * Work around a bug where the busy flag in the tr selector
1763                  * isn't exposed
1764                  */
1765                 var->type |= 0x2;
1766                 break;
1767         case VCPU_SREG_DS:
1768         case VCPU_SREG_ES:
1769         case VCPU_SREG_FS:
1770         case VCPU_SREG_GS:
1771                 /*
1772                  * The accessed bit must always be set in the segment
1773                  * descriptor cache, although it can be cleared in the
1774                  * descriptor, the cached bit always remains at 1. Since
1775                  * Intel has a check on this, set it here to support
1776                  * cross-vendor migration.
1777                  */
1778                 if (!var->unusable)
1779                         var->type |= 0x1;
1780                 break;
1781         case VCPU_SREG_SS:
1782                 /*
1783                  * On AMD CPUs sometimes the DB bit in the segment
1784                  * descriptor is left as 1, although the whole segment has
1785                  * been made unusable. Clear it here to pass an Intel VMX
1786                  * entry check when cross vendor migrating.
1787                  */
1788                 if (var->unusable)
1789                         var->db = 0;
1790                 /* This is symmetric with svm_set_segment() */
1791                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1792                 break;
1793         }
1794 }
1795
1796 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1797 {
1798         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1799
1800         return save->cpl;
1801 }
1802
1803 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1804 {
1805         struct kvm_segment cs;
1806
1807         svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1808         *db = cs.db;
1809         *l = cs.l;
1810 }
1811
1812 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1813 {
1814         struct vcpu_svm *svm = to_svm(vcpu);
1815
1816         dt->size = svm->vmcb->save.idtr.limit;
1817         dt->address = svm->vmcb->save.idtr.base;
1818 }
1819
1820 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1821 {
1822         struct vcpu_svm *svm = to_svm(vcpu);
1823
1824         svm->vmcb->save.idtr.limit = dt->size;
1825         svm->vmcb->save.idtr.base = dt->address ;
1826         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1827 }
1828
1829 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1830 {
1831         struct vcpu_svm *svm = to_svm(vcpu);
1832
1833         dt->size = svm->vmcb->save.gdtr.limit;
1834         dt->address = svm->vmcb->save.gdtr.base;
1835 }
1836
1837 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1838 {
1839         struct vcpu_svm *svm = to_svm(vcpu);
1840
1841         svm->vmcb->save.gdtr.limit = dt->size;
1842         svm->vmcb->save.gdtr.base = dt->address ;
1843         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1844 }
1845
1846 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1847 {
1848         struct vcpu_svm *svm = to_svm(vcpu);
1849
1850         /*
1851          * For guests that don't set guest_state_protected, the cr3 update is
1852          * handled via kvm_mmu_load() while entering the guest. For guests
1853          * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1854          * VMCB save area now, since the save area will become the initial
1855          * contents of the VMSA, and future VMCB save area updates won't be
1856          * seen.
1857          */
1858         if (sev_es_guest(vcpu->kvm)) {
1859                 svm->vmcb->save.cr3 = cr3;
1860                 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1861         }
1862 }
1863
1864 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1865 {
1866         return true;
1867 }
1868
1869 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1870 {
1871         struct vcpu_svm *svm = to_svm(vcpu);
1872         u64 hcr0 = cr0;
1873         bool old_paging = is_paging(vcpu);
1874
1875 #ifdef CONFIG_X86_64
1876         if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1877                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1878                         vcpu->arch.efer |= EFER_LMA;
1879                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1880                 }
1881
1882                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1883                         vcpu->arch.efer &= ~EFER_LMA;
1884                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1885                 }
1886         }
1887 #endif
1888         vcpu->arch.cr0 = cr0;
1889
1890         if (!npt_enabled) {
1891                 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1892                 if (old_paging != is_paging(vcpu))
1893                         svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1894         }
1895
1896         /*
1897          * re-enable caching here because the QEMU bios
1898          * does not do it - this results in some delay at
1899          * reboot
1900          */
1901         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1902                 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1903
1904         svm->vmcb->save.cr0 = hcr0;
1905         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1906
1907         /*
1908          * SEV-ES guests must always keep the CR intercepts cleared. CR
1909          * tracking is done using the CR write traps.
1910          */
1911         if (sev_es_guest(vcpu->kvm))
1912                 return;
1913
1914         if (hcr0 == cr0) {
1915                 /* Selective CR0 write remains on.  */
1916                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1917                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1918         } else {
1919                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1920                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1921         }
1922 }
1923
1924 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1925 {
1926         return true;
1927 }
1928
1929 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1930 {
1931         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1932         unsigned long old_cr4 = vcpu->arch.cr4;
1933
1934         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1935                 svm_flush_tlb_current(vcpu);
1936
1937         vcpu->arch.cr4 = cr4;
1938         if (!npt_enabled) {
1939                 cr4 |= X86_CR4_PAE;
1940
1941                 if (!is_paging(vcpu))
1942                         cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1943         }
1944         cr4 |= host_cr4_mce;
1945         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1946         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1947
1948         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1949                 kvm_update_cpuid_runtime(vcpu);
1950 }
1951
1952 static void svm_set_segment(struct kvm_vcpu *vcpu,
1953                             struct kvm_segment *var, int seg)
1954 {
1955         struct vcpu_svm *svm = to_svm(vcpu);
1956         struct vmcb_seg *s = svm_seg(vcpu, seg);
1957
1958         s->base = var->base;
1959         s->limit = var->limit;
1960         s->selector = var->selector;
1961         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1962         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1963         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1964         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1965         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1966         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1967         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1968         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1969
1970         /*
1971          * This is always accurate, except if SYSRET returned to a segment
1972          * with SS.DPL != 3.  Intel does not have this quirk, and always
1973          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1974          * would entail passing the CPL to userspace and back.
1975          */
1976         if (seg == VCPU_SREG_SS)
1977                 /* This is symmetric with svm_get_segment() */
1978                 svm->vmcb->save.cpl = (var->dpl & 3);
1979
1980         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1981 }
1982
1983 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1984 {
1985         struct vcpu_svm *svm = to_svm(vcpu);
1986
1987         clr_exception_intercept(svm, BP_VECTOR);
1988
1989         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1990                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1991                         set_exception_intercept(svm, BP_VECTOR);
1992         }
1993 }
1994
1995 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1996 {
1997         if (sd->next_asid > sd->max_asid) {
1998                 ++sd->asid_generation;
1999                 sd->next_asid = sd->min_asid;
2000                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2001                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2002         }
2003
2004         svm->current_vmcb->asid_generation = sd->asid_generation;
2005         svm->asid = sd->next_asid++;
2006 }
2007
2008 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
2009 {
2010         struct vmcb *vmcb = svm->vmcb;
2011
2012         if (svm->vcpu.arch.guest_state_protected)
2013                 return;
2014
2015         if (unlikely(value != vmcb->save.dr6)) {
2016                 vmcb->save.dr6 = value;
2017                 vmcb_mark_dirty(vmcb, VMCB_DR);
2018         }
2019 }
2020
2021 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2022 {
2023         struct vcpu_svm *svm = to_svm(vcpu);
2024
2025         if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2026                 return;
2027
2028         get_debugreg(vcpu->arch.db[0], 0);
2029         get_debugreg(vcpu->arch.db[1], 1);
2030         get_debugreg(vcpu->arch.db[2], 2);
2031         get_debugreg(vcpu->arch.db[3], 3);
2032         /*
2033          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2034          * because db_interception might need it.  We can do it before vmentry.
2035          */
2036         vcpu->arch.dr6 = svm->vmcb->save.dr6;
2037         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2038         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2039         set_dr_intercepts(svm);
2040 }
2041
2042 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2043 {
2044         struct vcpu_svm *svm = to_svm(vcpu);
2045
2046         if (vcpu->arch.guest_state_protected)
2047                 return;
2048
2049         svm->vmcb->save.dr7 = value;
2050         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2051 }
2052
2053 static int pf_interception(struct kvm_vcpu *vcpu)
2054 {
2055         struct vcpu_svm *svm = to_svm(vcpu);
2056
2057         u64 fault_address = svm->vmcb->control.exit_info_2;
2058         u64 error_code = svm->vmcb->control.exit_info_1;
2059
2060         return kvm_handle_page_fault(vcpu, error_code, fault_address,
2061                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2062                         svm->vmcb->control.insn_bytes : NULL,
2063                         svm->vmcb->control.insn_len);
2064 }
2065
2066 static int npf_interception(struct kvm_vcpu *vcpu)
2067 {
2068         struct vcpu_svm *svm = to_svm(vcpu);
2069
2070         u64 fault_address = svm->vmcb->control.exit_info_2;
2071         u64 error_code = svm->vmcb->control.exit_info_1;
2072
2073         trace_kvm_page_fault(vcpu, fault_address, error_code);
2074         return kvm_mmu_page_fault(vcpu, fault_address, error_code,
2075                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2076                         svm->vmcb->control.insn_bytes : NULL,
2077                         svm->vmcb->control.insn_len);
2078 }
2079
2080 static int db_interception(struct kvm_vcpu *vcpu)
2081 {
2082         struct kvm_run *kvm_run = vcpu->run;
2083         struct vcpu_svm *svm = to_svm(vcpu);
2084
2085         if (!(vcpu->guest_debug &
2086               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2087                 !svm->nmi_singlestep) {
2088                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2089                 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2090                 return 1;
2091         }
2092
2093         if (svm->nmi_singlestep) {
2094                 disable_nmi_singlestep(svm);
2095                 /* Make sure we check for pending NMIs upon entry */
2096                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2097         }
2098
2099         if (vcpu->guest_debug &
2100             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2101                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2102                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2103                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2104                 kvm_run->debug.arch.pc =
2105                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2106                 kvm_run->debug.arch.exception = DB_VECTOR;
2107                 return 0;
2108         }
2109
2110         return 1;
2111 }
2112
2113 static int bp_interception(struct kvm_vcpu *vcpu)
2114 {
2115         struct vcpu_svm *svm = to_svm(vcpu);
2116         struct kvm_run *kvm_run = vcpu->run;
2117
2118         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2119         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2120         kvm_run->debug.arch.exception = BP_VECTOR;
2121         return 0;
2122 }
2123
2124 static int ud_interception(struct kvm_vcpu *vcpu)
2125 {
2126         return handle_ud(vcpu);
2127 }
2128
2129 static int ac_interception(struct kvm_vcpu *vcpu)
2130 {
2131         kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2132         return 1;
2133 }
2134
2135 static bool is_erratum_383(void)
2136 {
2137         int err, i;
2138         u64 value;
2139
2140         if (!erratum_383_found)
2141                 return false;
2142
2143         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2144         if (err)
2145                 return false;
2146
2147         /* Bit 62 may or may not be set for this mce */
2148         value &= ~(1ULL << 62);
2149
2150         if (value != 0xb600000000010015ULL)
2151                 return false;
2152
2153         /* Clear MCi_STATUS registers */
2154         for (i = 0; i < 6; ++i)
2155                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2156
2157         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2158         if (!err) {
2159                 u32 low, high;
2160
2161                 value &= ~(1ULL << 2);
2162                 low    = lower_32_bits(value);
2163                 high   = upper_32_bits(value);
2164
2165                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2166         }
2167
2168         /* Flush tlb to evict multi-match entries */
2169         __flush_tlb_all();
2170
2171         return true;
2172 }
2173
2174 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2175 {
2176         if (is_erratum_383()) {
2177                 /*
2178                  * Erratum 383 triggered. Guest state is corrupt so kill the
2179                  * guest.
2180                  */
2181                 pr_err("Guest triggered AMD Erratum 383\n");
2182
2183                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2184
2185                 return;
2186         }
2187
2188         /*
2189          * On an #MC intercept the MCE handler is not called automatically in
2190          * the host. So do it by hand here.
2191          */
2192         kvm_machine_check();
2193 }
2194
2195 static int mc_interception(struct kvm_vcpu *vcpu)
2196 {
2197         return 1;
2198 }
2199
2200 static int shutdown_interception(struct kvm_vcpu *vcpu)
2201 {
2202         struct kvm_run *kvm_run = vcpu->run;
2203         struct vcpu_svm *svm = to_svm(vcpu);
2204
2205         /*
2206          * The VM save area has already been encrypted so it
2207          * cannot be reinitialized - just terminate.
2208          */
2209         if (sev_es_guest(vcpu->kvm))
2210                 return -EINVAL;
2211
2212         /*
2213          * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2214          * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2215          * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2216          * userspace.  At a platform view, INIT is acceptable behavior as
2217          * there exist bare metal platforms that automatically INIT the CPU
2218          * in response to shutdown.
2219          */
2220         clear_page(svm->vmcb);
2221         kvm_vcpu_reset(vcpu, true);
2222
2223         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2224         return 0;
2225 }
2226
2227 static int io_interception(struct kvm_vcpu *vcpu)
2228 {
2229         struct vcpu_svm *svm = to_svm(vcpu);
2230         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2231         int size, in, string;
2232         unsigned port;
2233
2234         ++vcpu->stat.io_exits;
2235         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2236         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2237         port = io_info >> 16;
2238         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2239
2240         if (string) {
2241                 if (sev_es_guest(vcpu->kvm))
2242                         return sev_es_string_io(svm, size, port, in);
2243                 else
2244                         return kvm_emulate_instruction(vcpu, 0);
2245         }
2246
2247         svm->next_rip = svm->vmcb->control.exit_info_2;
2248
2249         return kvm_fast_pio(vcpu, size, port, in);
2250 }
2251
2252 static int nmi_interception(struct kvm_vcpu *vcpu)
2253 {
2254         return 1;
2255 }
2256
2257 static int smi_interception(struct kvm_vcpu *vcpu)
2258 {
2259         return 1;
2260 }
2261
2262 static int intr_interception(struct kvm_vcpu *vcpu)
2263 {
2264         ++vcpu->stat.irq_exits;
2265         return 1;
2266 }
2267
2268 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2269 {
2270         struct vcpu_svm *svm = to_svm(vcpu);
2271         struct vmcb *vmcb12;
2272         struct kvm_host_map map;
2273         int ret;
2274
2275         if (nested_svm_check_permissions(vcpu))
2276                 return 1;
2277
2278         ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2279         if (ret) {
2280                 if (ret == -EINVAL)
2281                         kvm_inject_gp(vcpu, 0);
2282                 return 1;
2283         }
2284
2285         vmcb12 = map.hva;
2286
2287         ret = kvm_skip_emulated_instruction(vcpu);
2288
2289         if (vmload) {
2290                 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2291                 svm->sysenter_eip_hi = 0;
2292                 svm->sysenter_esp_hi = 0;
2293         } else {
2294                 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2295         }
2296
2297         kvm_vcpu_unmap(vcpu, &map, true);
2298
2299         return ret;
2300 }
2301
2302 static int vmload_interception(struct kvm_vcpu *vcpu)
2303 {
2304         return vmload_vmsave_interception(vcpu, true);
2305 }
2306
2307 static int vmsave_interception(struct kvm_vcpu *vcpu)
2308 {
2309         return vmload_vmsave_interception(vcpu, false);
2310 }
2311
2312 static int vmrun_interception(struct kvm_vcpu *vcpu)
2313 {
2314         if (nested_svm_check_permissions(vcpu))
2315                 return 1;
2316
2317         return nested_svm_vmrun(vcpu);
2318 }
2319
2320 enum {
2321         NONE_SVM_INSTR,
2322         SVM_INSTR_VMRUN,
2323         SVM_INSTR_VMLOAD,
2324         SVM_INSTR_VMSAVE,
2325 };
2326
2327 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2328 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2329 {
2330         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2331
2332         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2333                 return NONE_SVM_INSTR;
2334
2335         switch (ctxt->modrm) {
2336         case 0xd8: /* VMRUN */
2337                 return SVM_INSTR_VMRUN;
2338         case 0xda: /* VMLOAD */
2339                 return SVM_INSTR_VMLOAD;
2340         case 0xdb: /* VMSAVE */
2341                 return SVM_INSTR_VMSAVE;
2342         default:
2343                 break;
2344         }
2345
2346         return NONE_SVM_INSTR;
2347 }
2348
2349 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2350 {
2351         const int guest_mode_exit_codes[] = {
2352                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2353                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2354                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2355         };
2356         int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2357                 [SVM_INSTR_VMRUN] = vmrun_interception,
2358                 [SVM_INSTR_VMLOAD] = vmload_interception,
2359                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2360         };
2361         struct vcpu_svm *svm = to_svm(vcpu);
2362         int ret;
2363
2364         if (is_guest_mode(vcpu)) {
2365                 /* Returns '1' or -errno on failure, '0' on success. */
2366                 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2367                 if (ret)
2368                         return ret;
2369                 return 1;
2370         }
2371         return svm_instr_handlers[opcode](vcpu);
2372 }
2373
2374 /*
2375  * #GP handling code. Note that #GP can be triggered under the following two
2376  * cases:
2377  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2378  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2379  *      regions (e.g. SMM memory on host).
2380  *   2) VMware backdoor
2381  */
2382 static int gp_interception(struct kvm_vcpu *vcpu)
2383 {
2384         struct vcpu_svm *svm = to_svm(vcpu);
2385         u32 error_code = svm->vmcb->control.exit_info_1;
2386         int opcode;
2387
2388         /* Both #GP cases have zero error_code */
2389         if (error_code)
2390                 goto reinject;
2391
2392         /* Decode the instruction for usage later */
2393         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2394                 goto reinject;
2395
2396         opcode = svm_instr_opcode(vcpu);
2397
2398         if (opcode == NONE_SVM_INSTR) {
2399                 if (!enable_vmware_backdoor)
2400                         goto reinject;
2401
2402                 /*
2403                  * VMware backdoor emulation on #GP interception only handles
2404                  * IN{S}, OUT{S}, and RDPMC.
2405                  */
2406                 if (!is_guest_mode(vcpu))
2407                         return kvm_emulate_instruction(vcpu,
2408                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2409         } else {
2410                 /* All SVM instructions expect page aligned RAX */
2411                 if (svm->vmcb->save.rax & ~PAGE_MASK)
2412                         goto reinject;
2413
2414                 return emulate_svm_instr(vcpu, opcode);
2415         }
2416
2417 reinject:
2418         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2419         return 1;
2420 }
2421
2422 void svm_set_gif(struct vcpu_svm *svm, bool value)
2423 {
2424         if (value) {
2425                 /*
2426                  * If VGIF is enabled, the STGI intercept is only added to
2427                  * detect the opening of the SMI/NMI window; remove it now.
2428                  * Likewise, clear the VINTR intercept, we will set it
2429                  * again while processing KVM_REQ_EVENT if needed.
2430                  */
2431                 if (vgif)
2432                         svm_clr_intercept(svm, INTERCEPT_STGI);
2433                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2434                         svm_clear_vintr(svm);
2435
2436                 enable_gif(svm);
2437                 if (svm->vcpu.arch.smi_pending ||
2438                     svm->vcpu.arch.nmi_pending ||
2439                     kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2440                     kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2441                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2442         } else {
2443                 disable_gif(svm);
2444
2445                 /*
2446                  * After a CLGI no interrupts should come.  But if vGIF is
2447                  * in use, we still rely on the VINTR intercept (rather than
2448                  * STGI) to detect an open interrupt window.
2449                 */
2450                 if (!vgif)
2451                         svm_clear_vintr(svm);
2452         }
2453 }
2454
2455 static int stgi_interception(struct kvm_vcpu *vcpu)
2456 {
2457         int ret;
2458
2459         if (nested_svm_check_permissions(vcpu))
2460                 return 1;
2461
2462         ret = kvm_skip_emulated_instruction(vcpu);
2463         svm_set_gif(to_svm(vcpu), true);
2464         return ret;
2465 }
2466
2467 static int clgi_interception(struct kvm_vcpu *vcpu)
2468 {
2469         int ret;
2470
2471         if (nested_svm_check_permissions(vcpu))
2472                 return 1;
2473
2474         ret = kvm_skip_emulated_instruction(vcpu);
2475         svm_set_gif(to_svm(vcpu), false);
2476         return ret;
2477 }
2478
2479 static int invlpga_interception(struct kvm_vcpu *vcpu)
2480 {
2481         gva_t gva = kvm_rax_read(vcpu);
2482         u32 asid = kvm_rcx_read(vcpu);
2483
2484         /* FIXME: Handle an address size prefix. */
2485         if (!is_long_mode(vcpu))
2486                 gva = (u32)gva;
2487
2488         trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2489
2490         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2491         kvm_mmu_invlpg(vcpu, gva);
2492
2493         return kvm_skip_emulated_instruction(vcpu);
2494 }
2495
2496 static int skinit_interception(struct kvm_vcpu *vcpu)
2497 {
2498         trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2499
2500         kvm_queue_exception(vcpu, UD_VECTOR);
2501         return 1;
2502 }
2503
2504 static int task_switch_interception(struct kvm_vcpu *vcpu)
2505 {
2506         struct vcpu_svm *svm = to_svm(vcpu);
2507         u16 tss_selector;
2508         int reason;
2509         int int_type = svm->vmcb->control.exit_int_info &
2510                 SVM_EXITINTINFO_TYPE_MASK;
2511         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2512         uint32_t type =
2513                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2514         uint32_t idt_v =
2515                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2516         bool has_error_code = false;
2517         u32 error_code = 0;
2518
2519         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2520
2521         if (svm->vmcb->control.exit_info_2 &
2522             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2523                 reason = TASK_SWITCH_IRET;
2524         else if (svm->vmcb->control.exit_info_2 &
2525                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2526                 reason = TASK_SWITCH_JMP;
2527         else if (idt_v)
2528                 reason = TASK_SWITCH_GATE;
2529         else
2530                 reason = TASK_SWITCH_CALL;
2531
2532         if (reason == TASK_SWITCH_GATE) {
2533                 switch (type) {
2534                 case SVM_EXITINTINFO_TYPE_NMI:
2535                         vcpu->arch.nmi_injected = false;
2536                         break;
2537                 case SVM_EXITINTINFO_TYPE_EXEPT:
2538                         if (svm->vmcb->control.exit_info_2 &
2539                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2540                                 has_error_code = true;
2541                                 error_code =
2542                                         (u32)svm->vmcb->control.exit_info_2;
2543                         }
2544                         kvm_clear_exception_queue(vcpu);
2545                         break;
2546                 case SVM_EXITINTINFO_TYPE_INTR:
2547                 case SVM_EXITINTINFO_TYPE_SOFT:
2548                         kvm_clear_interrupt_queue(vcpu);
2549                         break;
2550                 default:
2551                         break;
2552                 }
2553         }
2554
2555         if (reason != TASK_SWITCH_GATE ||
2556             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2557             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2558              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2559                 if (!svm_skip_emulated_instruction(vcpu))
2560                         return 0;
2561         }
2562
2563         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2564                 int_vec = -1;
2565
2566         return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2567                                has_error_code, error_code);
2568 }
2569
2570 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2571 {
2572         if (!sev_es_guest(svm->vcpu.kvm))
2573                 svm_clr_intercept(svm, INTERCEPT_IRET);
2574 }
2575
2576 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2577 {
2578         if (!sev_es_guest(svm->vcpu.kvm))
2579                 svm_set_intercept(svm, INTERCEPT_IRET);
2580 }
2581
2582 static int iret_interception(struct kvm_vcpu *vcpu)
2583 {
2584         struct vcpu_svm *svm = to_svm(vcpu);
2585
2586         WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2587
2588         ++vcpu->stat.nmi_window_exits;
2589         svm->awaiting_iret_completion = true;
2590
2591         svm_clr_iret_intercept(svm);
2592         svm->nmi_iret_rip = kvm_rip_read(vcpu);
2593
2594         kvm_make_request(KVM_REQ_EVENT, vcpu);
2595         return 1;
2596 }
2597
2598 static int invlpg_interception(struct kvm_vcpu *vcpu)
2599 {
2600         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2601                 return kvm_emulate_instruction(vcpu, 0);
2602
2603         kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2604         return kvm_skip_emulated_instruction(vcpu);
2605 }
2606
2607 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2608 {
2609         return kvm_emulate_instruction(vcpu, 0);
2610 }
2611
2612 static int rsm_interception(struct kvm_vcpu *vcpu)
2613 {
2614         return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2615 }
2616
2617 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2618                                             unsigned long val)
2619 {
2620         struct vcpu_svm *svm = to_svm(vcpu);
2621         unsigned long cr0 = vcpu->arch.cr0;
2622         bool ret = false;
2623
2624         if (!is_guest_mode(vcpu) ||
2625             (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2626                 return false;
2627
2628         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2629         val &= ~SVM_CR0_SELECTIVE_MASK;
2630
2631         if (cr0 ^ val) {
2632                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2633                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2634         }
2635
2636         return ret;
2637 }
2638
2639 #define CR_VALID (1ULL << 63)
2640
2641 static int cr_interception(struct kvm_vcpu *vcpu)
2642 {
2643         struct vcpu_svm *svm = to_svm(vcpu);
2644         int reg, cr;
2645         unsigned long val;
2646         int err;
2647
2648         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2649                 return emulate_on_interception(vcpu);
2650
2651         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2652                 return emulate_on_interception(vcpu);
2653
2654         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2655         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2656                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2657         else
2658                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2659
2660         err = 0;
2661         if (cr >= 16) { /* mov to cr */
2662                 cr -= 16;
2663                 val = kvm_register_read(vcpu, reg);
2664                 trace_kvm_cr_write(cr, val);
2665                 switch (cr) {
2666                 case 0:
2667                         if (!check_selective_cr0_intercepted(vcpu, val))
2668                                 err = kvm_set_cr0(vcpu, val);
2669                         else
2670                                 return 1;
2671
2672                         break;
2673                 case 3:
2674                         err = kvm_set_cr3(vcpu, val);
2675                         break;
2676                 case 4:
2677                         err = kvm_set_cr4(vcpu, val);
2678                         break;
2679                 case 8:
2680                         err = kvm_set_cr8(vcpu, val);
2681                         break;
2682                 default:
2683                         WARN(1, "unhandled write to CR%d", cr);
2684                         kvm_queue_exception(vcpu, UD_VECTOR);
2685                         return 1;
2686                 }
2687         } else { /* mov from cr */
2688                 switch (cr) {
2689                 case 0:
2690                         val = kvm_read_cr0(vcpu);
2691                         break;
2692                 case 2:
2693                         val = vcpu->arch.cr2;
2694                         break;
2695                 case 3:
2696                         val = kvm_read_cr3(vcpu);
2697                         break;
2698                 case 4:
2699                         val = kvm_read_cr4(vcpu);
2700                         break;
2701                 case 8:
2702                         val = kvm_get_cr8(vcpu);
2703                         break;
2704                 default:
2705                         WARN(1, "unhandled read from CR%d", cr);
2706                         kvm_queue_exception(vcpu, UD_VECTOR);
2707                         return 1;
2708                 }
2709                 kvm_register_write(vcpu, reg, val);
2710                 trace_kvm_cr_read(cr, val);
2711         }
2712         return kvm_complete_insn_gp(vcpu, err);
2713 }
2714
2715 static int cr_trap(struct kvm_vcpu *vcpu)
2716 {
2717         struct vcpu_svm *svm = to_svm(vcpu);
2718         unsigned long old_value, new_value;
2719         unsigned int cr;
2720         int ret = 0;
2721
2722         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2723
2724         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2725         switch (cr) {
2726         case 0:
2727                 old_value = kvm_read_cr0(vcpu);
2728                 svm_set_cr0(vcpu, new_value);
2729
2730                 kvm_post_set_cr0(vcpu, old_value, new_value);
2731                 break;
2732         case 4:
2733                 old_value = kvm_read_cr4(vcpu);
2734                 svm_set_cr4(vcpu, new_value);
2735
2736                 kvm_post_set_cr4(vcpu, old_value, new_value);
2737                 break;
2738         case 8:
2739                 ret = kvm_set_cr8(vcpu, new_value);
2740                 break;
2741         default:
2742                 WARN(1, "unhandled CR%d write trap", cr);
2743                 kvm_queue_exception(vcpu, UD_VECTOR);
2744                 return 1;
2745         }
2746
2747         return kvm_complete_insn_gp(vcpu, ret);
2748 }
2749
2750 static int dr_interception(struct kvm_vcpu *vcpu)
2751 {
2752         struct vcpu_svm *svm = to_svm(vcpu);
2753         int reg, dr;
2754         unsigned long val;
2755         int err = 0;
2756
2757         /*
2758          * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2759          * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2760          */
2761         if (sev_es_guest(vcpu->kvm))
2762                 return 1;
2763
2764         if (vcpu->guest_debug == 0) {
2765                 /*
2766                  * No more DR vmexits; force a reload of the debug registers
2767                  * and reenter on this instruction.  The next vmexit will
2768                  * retrieve the full state of the debug registers.
2769                  */
2770                 clr_dr_intercepts(svm);
2771                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2772                 return 1;
2773         }
2774
2775         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2776                 return emulate_on_interception(vcpu);
2777
2778         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2779         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2780         if (dr >= 16) { /* mov to DRn  */
2781                 dr -= 16;
2782                 val = kvm_register_read(vcpu, reg);
2783                 err = kvm_set_dr(vcpu, dr, val);
2784         } else {
2785                 kvm_get_dr(vcpu, dr, &val);
2786                 kvm_register_write(vcpu, reg, val);
2787         }
2788
2789         return kvm_complete_insn_gp(vcpu, err);
2790 }
2791
2792 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2793 {
2794         int r;
2795
2796         u8 cr8_prev = kvm_get_cr8(vcpu);
2797         /* instruction emulation calls kvm_set_cr8() */
2798         r = cr_interception(vcpu);
2799         if (lapic_in_kernel(vcpu))
2800                 return r;
2801         if (cr8_prev <= kvm_get_cr8(vcpu))
2802                 return r;
2803         vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2804         return 0;
2805 }
2806
2807 static int efer_trap(struct kvm_vcpu *vcpu)
2808 {
2809         struct msr_data msr_info;
2810         int ret;
2811
2812         /*
2813          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2814          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2815          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2816          * the guest doesn't have X86_FEATURE_SVM.
2817          */
2818         msr_info.host_initiated = false;
2819         msr_info.index = MSR_EFER;
2820         msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2821         ret = kvm_set_msr_common(vcpu, &msr_info);
2822
2823         return kvm_complete_insn_gp(vcpu, ret);
2824 }
2825
2826 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2827 {
2828         msr->data = 0;
2829
2830         switch (msr->index) {
2831         case MSR_AMD64_DE_CFG:
2832                 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2833                         msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2834                 break;
2835         default:
2836                 return KVM_MSR_RET_INVALID;
2837         }
2838
2839         return 0;
2840 }
2841
2842 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2843 {
2844         struct vcpu_svm *svm = to_svm(vcpu);
2845
2846         switch (msr_info->index) {
2847         case MSR_AMD64_TSC_RATIO:
2848                 if (!msr_info->host_initiated &&
2849                     !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2850                         return 1;
2851                 msr_info->data = svm->tsc_ratio_msr;
2852                 break;
2853         case MSR_STAR:
2854                 msr_info->data = svm->vmcb01.ptr->save.star;
2855                 break;
2856 #ifdef CONFIG_X86_64
2857         case MSR_LSTAR:
2858                 msr_info->data = svm->vmcb01.ptr->save.lstar;
2859                 break;
2860         case MSR_CSTAR:
2861                 msr_info->data = svm->vmcb01.ptr->save.cstar;
2862                 break;
2863         case MSR_KERNEL_GS_BASE:
2864                 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2865                 break;
2866         case MSR_SYSCALL_MASK:
2867                 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2868                 break;
2869 #endif
2870         case MSR_IA32_SYSENTER_CS:
2871                 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2872                 break;
2873         case MSR_IA32_SYSENTER_EIP:
2874                 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2875                 if (guest_cpuid_is_intel(vcpu))
2876                         msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2877                 break;
2878         case MSR_IA32_SYSENTER_ESP:
2879                 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2880                 if (guest_cpuid_is_intel(vcpu))
2881                         msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2882                 break;
2883         case MSR_TSC_AUX:
2884                 msr_info->data = svm->tsc_aux;
2885                 break;
2886         case MSR_IA32_DEBUGCTLMSR:
2887                 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2888                 break;
2889         case MSR_IA32_LASTBRANCHFROMIP:
2890                 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2891                 break;
2892         case MSR_IA32_LASTBRANCHTOIP:
2893                 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2894                 break;
2895         case MSR_IA32_LASTINTFROMIP:
2896                 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2897                 break;
2898         case MSR_IA32_LASTINTTOIP:
2899                 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2900                 break;
2901         case MSR_VM_HSAVE_PA:
2902                 msr_info->data = svm->nested.hsave_msr;
2903                 break;
2904         case MSR_VM_CR:
2905                 msr_info->data = svm->nested.vm_cr_msr;
2906                 break;
2907         case MSR_IA32_SPEC_CTRL:
2908                 if (!msr_info->host_initiated &&
2909                     !guest_has_spec_ctrl_msr(vcpu))
2910                         return 1;
2911
2912                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2913                         msr_info->data = svm->vmcb->save.spec_ctrl;
2914                 else
2915                         msr_info->data = svm->spec_ctrl;
2916                 break;
2917         case MSR_AMD64_VIRT_SPEC_CTRL:
2918                 if (!msr_info->host_initiated &&
2919                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2920                         return 1;
2921
2922                 msr_info->data = svm->virt_spec_ctrl;
2923                 break;
2924         case MSR_F15H_IC_CFG: {
2925
2926                 int family, model;
2927
2928                 family = guest_cpuid_family(vcpu);
2929                 model  = guest_cpuid_model(vcpu);
2930
2931                 if (family < 0 || model < 0)
2932                         return kvm_get_msr_common(vcpu, msr_info);
2933
2934                 msr_info->data = 0;
2935
2936                 if (family == 0x15 &&
2937                     (model >= 0x2 && model < 0x20))
2938                         msr_info->data = 0x1E;
2939                 }
2940                 break;
2941         case MSR_AMD64_DE_CFG:
2942                 msr_info->data = svm->msr_decfg;
2943                 break;
2944         default:
2945                 return kvm_get_msr_common(vcpu, msr_info);
2946         }
2947         return 0;
2948 }
2949
2950 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2951 {
2952         struct vcpu_svm *svm = to_svm(vcpu);
2953         if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2954                 return kvm_complete_insn_gp(vcpu, err);
2955
2956         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2957         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2958                                 X86_TRAP_GP |
2959                                 SVM_EVTINJ_TYPE_EXEPT |
2960                                 SVM_EVTINJ_VALID);
2961         return 1;
2962 }
2963
2964 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2965 {
2966         struct vcpu_svm *svm = to_svm(vcpu);
2967         int svm_dis, chg_mask;
2968
2969         if (data & ~SVM_VM_CR_VALID_MASK)
2970                 return 1;
2971
2972         chg_mask = SVM_VM_CR_VALID_MASK;
2973
2974         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2975                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2976
2977         svm->nested.vm_cr_msr &= ~chg_mask;
2978         svm->nested.vm_cr_msr |= (data & chg_mask);
2979
2980         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2981
2982         /* check for svm_disable while efer.svme is set */
2983         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2984                 return 1;
2985
2986         return 0;
2987 }
2988
2989 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2990 {
2991         struct vcpu_svm *svm = to_svm(vcpu);
2992         int ret = 0;
2993
2994         u32 ecx = msr->index;
2995         u64 data = msr->data;
2996         switch (ecx) {
2997         case MSR_AMD64_TSC_RATIO:
2998
2999                 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
3000
3001                         if (!msr->host_initiated)
3002                                 return 1;
3003                         /*
3004                          * In case TSC scaling is not enabled, always
3005                          * leave this MSR at the default value.
3006                          *
3007                          * Due to bug in qemu 6.2.0, it would try to set
3008                          * this msr to 0 if tsc scaling is not enabled.
3009                          * Ignore this value as well.
3010                          */
3011                         if (data != 0 && data != svm->tsc_ratio_msr)
3012                                 return 1;
3013                         break;
3014                 }
3015
3016                 if (data & SVM_TSC_RATIO_RSVD)
3017                         return 1;
3018
3019                 svm->tsc_ratio_msr = data;
3020
3021                 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3022                     is_guest_mode(vcpu))
3023                         nested_svm_update_tsc_ratio_msr(vcpu);
3024
3025                 break;
3026         case MSR_IA32_CR_PAT:
3027                 ret = kvm_set_msr_common(vcpu, msr);
3028                 if (ret)
3029                         break;
3030
3031                 svm->vmcb01.ptr->save.g_pat = data;
3032                 if (is_guest_mode(vcpu))
3033                         nested_vmcb02_compute_g_pat(svm);
3034                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3035                 break;
3036         case MSR_IA32_SPEC_CTRL:
3037                 if (!msr->host_initiated &&
3038                     !guest_has_spec_ctrl_msr(vcpu))
3039                         return 1;
3040
3041                 if (kvm_spec_ctrl_test_value(data))
3042                         return 1;
3043
3044                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3045                         svm->vmcb->save.spec_ctrl = data;
3046                 else
3047                         svm->spec_ctrl = data;
3048                 if (!data)
3049                         break;
3050
3051                 /*
3052                  * For non-nested:
3053                  * When it's written (to non-zero) for the first time, pass
3054                  * it through.
3055                  *
3056                  * For nested:
3057                  * The handling of the MSR bitmap for L2 guests is done in
3058                  * nested_svm_vmrun_msrpm.
3059                  * We update the L1 MSR bit as well since it will end up
3060                  * touching the MSR anyway now.
3061                  */
3062                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3063                 break;
3064         case MSR_AMD64_VIRT_SPEC_CTRL:
3065                 if (!msr->host_initiated &&
3066                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3067                         return 1;
3068
3069                 if (data & ~SPEC_CTRL_SSBD)
3070                         return 1;
3071
3072                 svm->virt_spec_ctrl = data;
3073                 break;
3074         case MSR_STAR:
3075                 svm->vmcb01.ptr->save.star = data;
3076                 break;
3077 #ifdef CONFIG_X86_64
3078         case MSR_LSTAR:
3079                 svm->vmcb01.ptr->save.lstar = data;
3080                 break;
3081         case MSR_CSTAR:
3082                 svm->vmcb01.ptr->save.cstar = data;
3083                 break;
3084         case MSR_KERNEL_GS_BASE:
3085                 svm->vmcb01.ptr->save.kernel_gs_base = data;
3086                 break;
3087         case MSR_SYSCALL_MASK:
3088                 svm->vmcb01.ptr->save.sfmask = data;
3089                 break;
3090 #endif
3091         case MSR_IA32_SYSENTER_CS:
3092                 svm->vmcb01.ptr->save.sysenter_cs = data;
3093                 break;
3094         case MSR_IA32_SYSENTER_EIP:
3095                 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3096                 /*
3097                  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3098                  * when we spoof an Intel vendor ID (for cross vendor migration).
3099                  * In this case we use this intercept to track the high
3100                  * 32 bit part of these msrs to support Intel's
3101                  * implementation of SYSENTER/SYSEXIT.
3102                  */
3103                 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3104                 break;
3105         case MSR_IA32_SYSENTER_ESP:
3106                 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3107                 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3108                 break;
3109         case MSR_TSC_AUX:
3110                 /*
3111                  * TSC_AUX is always virtualized for SEV-ES guests when the
3112                  * feature is available. The user return MSR support is not
3113                  * required in this case because TSC_AUX is restored on #VMEXIT
3114                  * from the host save area (which has been initialized in
3115                  * svm_hardware_enable()).
3116                  */
3117                 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3118                         break;
3119
3120                 /*
3121                  * TSC_AUX is usually changed only during boot and never read
3122                  * directly.  Intercept TSC_AUX instead of exposing it to the
3123                  * guest via direct_access_msrs, and switch it via user return.
3124                  */
3125                 preempt_disable();
3126                 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3127                 preempt_enable();
3128                 if (ret)
3129                         break;
3130
3131                 svm->tsc_aux = data;
3132                 break;
3133         case MSR_IA32_DEBUGCTLMSR:
3134                 if (!lbrv) {
3135                         kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3136                         break;
3137                 }
3138                 if (data & DEBUGCTL_RESERVED_BITS)
3139                         return 1;
3140
3141                 svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3142                 svm_update_lbrv(vcpu);
3143                 break;
3144         case MSR_VM_HSAVE_PA:
3145                 /*
3146                  * Old kernels did not validate the value written to
3147                  * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3148                  * value to allow live migrating buggy or malicious guests
3149                  * originating from those kernels.
3150                  */
3151                 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3152                         return 1;
3153
3154                 svm->nested.hsave_msr = data & PAGE_MASK;
3155                 break;
3156         case MSR_VM_CR:
3157                 return svm_set_vm_cr(vcpu, data);
3158         case MSR_VM_IGNNE:
3159                 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3160                 break;
3161         case MSR_AMD64_DE_CFG: {
3162                 struct kvm_msr_entry msr_entry;
3163
3164                 msr_entry.index = msr->index;
3165                 if (svm_get_msr_feature(&msr_entry))
3166                         return 1;
3167
3168                 /* Check the supported bits */
3169                 if (data & ~msr_entry.data)
3170                         return 1;
3171
3172                 /* Don't allow the guest to change a bit, #GP */
3173                 if (!msr->host_initiated && (data ^ msr_entry.data))
3174                         return 1;
3175
3176                 svm->msr_decfg = data;
3177                 break;
3178         }
3179         default:
3180                 return kvm_set_msr_common(vcpu, msr);
3181         }
3182         return ret;
3183 }
3184
3185 static int msr_interception(struct kvm_vcpu *vcpu)
3186 {
3187         if (to_svm(vcpu)->vmcb->control.exit_info_1)
3188                 return kvm_emulate_wrmsr(vcpu);
3189         else
3190                 return kvm_emulate_rdmsr(vcpu);
3191 }
3192
3193 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3194 {
3195         kvm_make_request(KVM_REQ_EVENT, vcpu);
3196         svm_clear_vintr(to_svm(vcpu));
3197
3198         /*
3199          * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3200          * In this case AVIC was temporarily disabled for
3201          * requesting the IRQ window and we have to re-enable it.
3202          *
3203          * If running nested, still remove the VM wide AVIC inhibit to
3204          * support case in which the interrupt window was requested when the
3205          * vCPU was not running nested.
3206
3207          * All vCPUs which run still run nested, will remain to have their
3208          * AVIC still inhibited due to per-cpu AVIC inhibition.
3209          */
3210         kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3211
3212         ++vcpu->stat.irq_window_exits;
3213         return 1;
3214 }
3215
3216 static int pause_interception(struct kvm_vcpu *vcpu)
3217 {
3218         bool in_kernel;
3219         /*
3220          * CPL is not made available for an SEV-ES guest, therefore
3221          * vcpu->arch.preempted_in_kernel can never be true.  Just
3222          * set in_kernel to false as well.
3223          */
3224         in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3225
3226         grow_ple_window(vcpu);
3227
3228         kvm_vcpu_on_spin(vcpu, in_kernel);
3229         return kvm_skip_emulated_instruction(vcpu);
3230 }
3231
3232 static int invpcid_interception(struct kvm_vcpu *vcpu)
3233 {
3234         struct vcpu_svm *svm = to_svm(vcpu);
3235         unsigned long type;
3236         gva_t gva;
3237
3238         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3239                 kvm_queue_exception(vcpu, UD_VECTOR);
3240                 return 1;
3241         }
3242
3243         /*
3244          * For an INVPCID intercept:
3245          * EXITINFO1 provides the linear address of the memory operand.
3246          * EXITINFO2 provides the contents of the register operand.
3247          */
3248         type = svm->vmcb->control.exit_info_2;
3249         gva = svm->vmcb->control.exit_info_1;
3250
3251         return kvm_handle_invpcid(vcpu, type, gva);
3252 }
3253
3254 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3255         [SVM_EXIT_READ_CR0]                     = cr_interception,
3256         [SVM_EXIT_READ_CR3]                     = cr_interception,
3257         [SVM_EXIT_READ_CR4]                     = cr_interception,
3258         [SVM_EXIT_READ_CR8]                     = cr_interception,
3259         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3260         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3261         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3262         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3263         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3264         [SVM_EXIT_READ_DR0]                     = dr_interception,
3265         [SVM_EXIT_READ_DR1]                     = dr_interception,
3266         [SVM_EXIT_READ_DR2]                     = dr_interception,
3267         [SVM_EXIT_READ_DR3]                     = dr_interception,
3268         [SVM_EXIT_READ_DR4]                     = dr_interception,
3269         [SVM_EXIT_READ_DR5]                     = dr_interception,
3270         [SVM_EXIT_READ_DR6]                     = dr_interception,
3271         [SVM_EXIT_READ_DR7]                     = dr_interception,
3272         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3273         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3274         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3275         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3276         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3277         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3278         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3279         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3280         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3281         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3282         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3283         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3284         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3285         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3286         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
3287         [SVM_EXIT_INTR]                         = intr_interception,
3288         [SVM_EXIT_NMI]                          = nmi_interception,
3289         [SVM_EXIT_SMI]                          = smi_interception,
3290         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3291         [SVM_EXIT_RDPMC]                        = kvm_emulate_rdpmc,
3292         [SVM_EXIT_CPUID]                        = kvm_emulate_cpuid,
3293         [SVM_EXIT_IRET]                         = iret_interception,
3294         [SVM_EXIT_INVD]                         = kvm_emulate_invd,
3295         [SVM_EXIT_PAUSE]                        = pause_interception,
3296         [SVM_EXIT_HLT]                          = kvm_emulate_halt,
3297         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3298         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3299         [SVM_EXIT_IOIO]                         = io_interception,
3300         [SVM_EXIT_MSR]                          = msr_interception,
3301         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3302         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3303         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3304         [SVM_EXIT_VMMCALL]                      = kvm_emulate_hypercall,
3305         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3306         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3307         [SVM_EXIT_STGI]                         = stgi_interception,
3308         [SVM_EXIT_CLGI]                         = clgi_interception,
3309         [SVM_EXIT_SKINIT]                       = skinit_interception,
3310         [SVM_EXIT_RDTSCP]                       = kvm_handle_invalid_op,
3311         [SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3312         [SVM_EXIT_MONITOR]                      = kvm_emulate_monitor,
3313         [SVM_EXIT_MWAIT]                        = kvm_emulate_mwait,
3314         [SVM_EXIT_XSETBV]                       = kvm_emulate_xsetbv,
3315         [SVM_EXIT_RDPRU]                        = kvm_handle_invalid_op,
3316         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3317         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3318         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3319         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3320         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3321         [SVM_EXIT_NPF]                          = npf_interception,
3322         [SVM_EXIT_RSM]                          = rsm_interception,
3323         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3324         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3325         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3326 };
3327
3328 static void dump_vmcb(struct kvm_vcpu *vcpu)
3329 {
3330         struct vcpu_svm *svm = to_svm(vcpu);
3331         struct vmcb_control_area *control = &svm->vmcb->control;
3332         struct vmcb_save_area *save = &svm->vmcb->save;
3333         struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3334
3335         if (!dump_invalid_vmcb) {
3336                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3337                 return;
3338         }
3339
3340         pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3341                svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3342         pr_err("VMCB Control Area:\n");
3343         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3344         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3345         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3346         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3347         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3348         pr_err("%-20s%08x %08x\n", "intercepts:",
3349               control->intercepts[INTERCEPT_WORD3],
3350                control->intercepts[INTERCEPT_WORD4]);
3351         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3352         pr_err("%-20s%d\n", "pause filter threshold:",
3353                control->pause_filter_thresh);
3354         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3355         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3356         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3357         pr_err("%-20s%d\n", "asid:", control->asid);
3358         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3359         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3360         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3361         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3362         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3363         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3364         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3365         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3366         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3367         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3368         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3369         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3370         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3371         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3372         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3373         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3374         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3375         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3376         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3377         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3378         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3379         pr_err("VMCB State Save Area:\n");
3380         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3381                "es:",
3382                save->es.selector, save->es.attrib,
3383                save->es.limit, save->es.base);
3384         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3385                "cs:",
3386                save->cs.selector, save->cs.attrib,
3387                save->cs.limit, save->cs.base);
3388         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3389                "ss:",
3390                save->ss.selector, save->ss.attrib,
3391                save->ss.limit, save->ss.base);
3392         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3393                "ds:",
3394                save->ds.selector, save->ds.attrib,
3395                save->ds.limit, save->ds.base);
3396         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3397                "fs:",
3398                save01->fs.selector, save01->fs.attrib,
3399                save01->fs.limit, save01->fs.base);
3400         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3401                "gs:",
3402                save01->gs.selector, save01->gs.attrib,
3403                save01->gs.limit, save01->gs.base);
3404         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3405                "gdtr:",
3406                save->gdtr.selector, save->gdtr.attrib,
3407                save->gdtr.limit, save->gdtr.base);
3408         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3409                "ldtr:",
3410                save01->ldtr.selector, save01->ldtr.attrib,
3411                save01->ldtr.limit, save01->ldtr.base);
3412         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3413                "idtr:",
3414                save->idtr.selector, save->idtr.attrib,
3415                save->idtr.limit, save->idtr.base);
3416         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3417                "tr:",
3418                save01->tr.selector, save01->tr.attrib,
3419                save01->tr.limit, save01->tr.base);
3420         pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3421                save->vmpl, save->cpl, save->efer);
3422         pr_err("%-15s %016llx %-13s %016llx\n",
3423                "cr0:", save->cr0, "cr2:", save->cr2);
3424         pr_err("%-15s %016llx %-13s %016llx\n",
3425                "cr3:", save->cr3, "cr4:", save->cr4);
3426         pr_err("%-15s %016llx %-13s %016llx\n",
3427                "dr6:", save->dr6, "dr7:", save->dr7);
3428         pr_err("%-15s %016llx %-13s %016llx\n",
3429                "rip:", save->rip, "rflags:", save->rflags);
3430         pr_err("%-15s %016llx %-13s %016llx\n",
3431                "rsp:", save->rsp, "rax:", save->rax);
3432         pr_err("%-15s %016llx %-13s %016llx\n",
3433                "star:", save01->star, "lstar:", save01->lstar);
3434         pr_err("%-15s %016llx %-13s %016llx\n",
3435                "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3436         pr_err("%-15s %016llx %-13s %016llx\n",
3437                "kernel_gs_base:", save01->kernel_gs_base,
3438                "sysenter_cs:", save01->sysenter_cs);
3439         pr_err("%-15s %016llx %-13s %016llx\n",
3440                "sysenter_esp:", save01->sysenter_esp,
3441                "sysenter_eip:", save01->sysenter_eip);
3442         pr_err("%-15s %016llx %-13s %016llx\n",
3443                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3444         pr_err("%-15s %016llx %-13s %016llx\n",
3445                "br_from:", save->br_from, "br_to:", save->br_to);
3446         pr_err("%-15s %016llx %-13s %016llx\n",
3447                "excp_from:", save->last_excp_from,
3448                "excp_to:", save->last_excp_to);
3449 }
3450
3451 static bool svm_check_exit_valid(u64 exit_code)
3452 {
3453         return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3454                 svm_exit_handlers[exit_code]);
3455 }
3456
3457 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3458 {
3459         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3460         dump_vmcb(vcpu);
3461         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3462         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3463         vcpu->run->internal.ndata = 2;
3464         vcpu->run->internal.data[0] = exit_code;
3465         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3466         return 0;
3467 }
3468
3469 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3470 {
3471         if (!svm_check_exit_valid(exit_code))
3472                 return svm_handle_invalid_exit(vcpu, exit_code);
3473
3474 #ifdef CONFIG_RETPOLINE
3475         if (exit_code == SVM_EXIT_MSR)
3476                 return msr_interception(vcpu);
3477         else if (exit_code == SVM_EXIT_VINTR)
3478                 return interrupt_window_interception(vcpu);
3479         else if (exit_code == SVM_EXIT_INTR)
3480                 return intr_interception(vcpu);
3481         else if (exit_code == SVM_EXIT_HLT)
3482                 return kvm_emulate_halt(vcpu);
3483         else if (exit_code == SVM_EXIT_NPF)
3484                 return npf_interception(vcpu);
3485 #endif
3486         return svm_exit_handlers[exit_code](vcpu);
3487 }
3488
3489 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3490                               u64 *info1, u64 *info2,
3491                               u32 *intr_info, u32 *error_code)
3492 {
3493         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3494
3495         *reason = control->exit_code;
3496         *info1 = control->exit_info_1;
3497         *info2 = control->exit_info_2;
3498         *intr_info = control->exit_int_info;
3499         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3500             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3501                 *error_code = control->exit_int_info_err;
3502         else
3503                 *error_code = 0;
3504 }
3505
3506 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3507 {
3508         struct vcpu_svm *svm = to_svm(vcpu);
3509         struct kvm_run *kvm_run = vcpu->run;
3510         u32 exit_code = svm->vmcb->control.exit_code;
3511
3512         /* SEV-ES guests must use the CR write traps to track CR registers. */
3513         if (!sev_es_guest(vcpu->kvm)) {
3514                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3515                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3516                 if (npt_enabled)
3517                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3518         }
3519
3520         if (is_guest_mode(vcpu)) {
3521                 int vmexit;
3522
3523                 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3524
3525                 vmexit = nested_svm_exit_special(svm);
3526
3527                 if (vmexit == NESTED_EXIT_CONTINUE)
3528                         vmexit = nested_svm_exit_handled(svm);
3529
3530                 if (vmexit == NESTED_EXIT_DONE)
3531                         return 1;
3532         }
3533
3534         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3535                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3536                 kvm_run->fail_entry.hardware_entry_failure_reason
3537                         = svm->vmcb->control.exit_code;
3538                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3539                 dump_vmcb(vcpu);
3540                 return 0;
3541         }
3542
3543         if (exit_fastpath != EXIT_FASTPATH_NONE)
3544                 return 1;
3545
3546         return svm_invoke_exit_handler(vcpu, exit_code);
3547 }
3548
3549 static void pre_svm_run(struct kvm_vcpu *vcpu)
3550 {
3551         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3552         struct vcpu_svm *svm = to_svm(vcpu);
3553
3554         /*
3555          * If the previous vmrun of the vmcb occurred on a different physical
3556          * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3557          * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3558          */
3559         if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3560                 svm->current_vmcb->asid_generation = 0;
3561                 vmcb_mark_all_dirty(svm->vmcb);
3562                 svm->current_vmcb->cpu = vcpu->cpu;
3563         }
3564
3565         if (sev_guest(vcpu->kvm))
3566                 return pre_sev_run(svm, vcpu->cpu);
3567
3568         /* FIXME: handle wraparound of asid_generation */
3569         if (svm->current_vmcb->asid_generation != sd->asid_generation)
3570                 new_asid(svm, sd);
3571 }
3572
3573 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3574 {
3575         struct vcpu_svm *svm = to_svm(vcpu);
3576
3577         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3578
3579         if (svm->nmi_l1_to_l2)
3580                 return;
3581
3582         svm->nmi_masked = true;
3583         svm_set_iret_intercept(svm);
3584         ++vcpu->stat.nmi_injections;
3585 }
3586
3587 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3588 {
3589         struct vcpu_svm *svm = to_svm(vcpu);
3590
3591         if (!is_vnmi_enabled(svm))
3592                 return false;
3593
3594         return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3595 }
3596
3597 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3598 {
3599         struct vcpu_svm *svm = to_svm(vcpu);
3600
3601         if (!is_vnmi_enabled(svm))
3602                 return false;
3603
3604         if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3605                 return false;
3606
3607         svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3608         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3609
3610         /*
3611          * Because the pending NMI is serviced by hardware, KVM can't know when
3612          * the NMI is "injected", but for all intents and purposes, passing the
3613          * NMI off to hardware counts as injection.
3614          */
3615         ++vcpu->stat.nmi_injections;
3616
3617         return true;
3618 }
3619
3620 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3621 {
3622         struct vcpu_svm *svm = to_svm(vcpu);
3623         u32 type;
3624
3625         if (vcpu->arch.interrupt.soft) {
3626                 if (svm_update_soft_interrupt_rip(vcpu))
3627                         return;
3628
3629                 type = SVM_EVTINJ_TYPE_SOFT;
3630         } else {
3631                 type = SVM_EVTINJ_TYPE_INTR;
3632         }
3633
3634         trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3635                            vcpu->arch.interrupt.soft, reinjected);
3636         ++vcpu->stat.irq_injections;
3637
3638         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3639                                        SVM_EVTINJ_VALID | type;
3640 }
3641
3642 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3643                                      int trig_mode, int vector)
3644 {
3645         /*
3646          * apic->apicv_active must be read after vcpu->mode.
3647          * Pairs with smp_store_release in vcpu_enter_guest.
3648          */
3649         bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3650
3651         /* Note, this is called iff the local APIC is in-kernel. */
3652         if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3653                 /* Process the interrupt via kvm_check_and_inject_events(). */
3654                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3655                 kvm_vcpu_kick(vcpu);
3656                 return;
3657         }
3658
3659         trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3660         if (in_guest_mode) {
3661                 /*
3662                  * Signal the doorbell to tell hardware to inject the IRQ.  If
3663                  * the vCPU exits the guest before the doorbell chimes, hardware
3664                  * will automatically process AVIC interrupts at the next VMRUN.
3665                  */
3666                 avic_ring_doorbell(vcpu);
3667         } else {
3668                 /*
3669                  * Wake the vCPU if it was blocking.  KVM will then detect the
3670                  * pending IRQ when checking if the vCPU has a wake event.
3671                  */
3672                 kvm_vcpu_wake_up(vcpu);
3673         }
3674 }
3675
3676 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3677                                   int trig_mode, int vector)
3678 {
3679         kvm_lapic_set_irr(vector, apic);
3680
3681         /*
3682          * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3683          * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3684          * the read of guest_mode.  This guarantees that either VMRUN will see
3685          * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3686          * will signal the doorbell if the CPU has already entered the guest.
3687          */
3688         smp_mb__after_atomic();
3689         svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3690 }
3691
3692 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3693 {
3694         struct vcpu_svm *svm = to_svm(vcpu);
3695
3696         /*
3697          * SEV-ES guests must always keep the CR intercepts cleared. CR
3698          * tracking is done using the CR write traps.
3699          */
3700         if (sev_es_guest(vcpu->kvm))
3701                 return;
3702
3703         if (nested_svm_virtualize_tpr(vcpu))
3704                 return;
3705
3706         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3707
3708         if (irr == -1)
3709                 return;
3710
3711         if (tpr >= irr)
3712                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3713 }
3714
3715 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3716 {
3717         struct vcpu_svm *svm = to_svm(vcpu);
3718
3719         if (is_vnmi_enabled(svm))
3720                 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3721         else
3722                 return svm->nmi_masked;
3723 }
3724
3725 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3726 {
3727         struct vcpu_svm *svm = to_svm(vcpu);
3728
3729         if (is_vnmi_enabled(svm)) {
3730                 if (masked)
3731                         svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3732                 else
3733                         svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3734
3735         } else {
3736                 svm->nmi_masked = masked;
3737                 if (masked)
3738                         svm_set_iret_intercept(svm);
3739                 else
3740                         svm_clr_iret_intercept(svm);
3741         }
3742 }
3743
3744 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3745 {
3746         struct vcpu_svm *svm = to_svm(vcpu);
3747         struct vmcb *vmcb = svm->vmcb;
3748
3749         if (!gif_set(svm))
3750                 return true;
3751
3752         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3753                 return false;
3754
3755         if (svm_get_nmi_mask(vcpu))
3756                 return true;
3757
3758         return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3759 }
3760
3761 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3762 {
3763         struct vcpu_svm *svm = to_svm(vcpu);
3764         if (svm->nested.nested_run_pending)
3765                 return -EBUSY;
3766
3767         if (svm_nmi_blocked(vcpu))
3768                 return 0;
3769
3770         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3771         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3772                 return -EBUSY;
3773         return 1;
3774 }
3775
3776 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3777 {
3778         struct vcpu_svm *svm = to_svm(vcpu);
3779         struct vmcb *vmcb = svm->vmcb;
3780
3781         if (!gif_set(svm))
3782                 return true;
3783
3784         if (is_guest_mode(vcpu)) {
3785                 /* As long as interrupts are being delivered...  */
3786                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3787                     ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3788                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3789                         return true;
3790
3791                 /* ... vmexits aren't blocked by the interrupt shadow  */
3792                 if (nested_exit_on_intr(svm))
3793                         return false;
3794         } else {
3795                 if (!svm_get_if_flag(vcpu))
3796                         return true;
3797         }
3798
3799         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3800 }
3801
3802 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3803 {
3804         struct vcpu_svm *svm = to_svm(vcpu);
3805
3806         if (svm->nested.nested_run_pending)
3807                 return -EBUSY;
3808
3809         if (svm_interrupt_blocked(vcpu))
3810                 return 0;
3811
3812         /*
3813          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3814          * e.g. if the IRQ arrived asynchronously after checking nested events.
3815          */
3816         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3817                 return -EBUSY;
3818
3819         return 1;
3820 }
3821
3822 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3823 {
3824         struct vcpu_svm *svm = to_svm(vcpu);
3825
3826         /*
3827          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3828          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3829          * get that intercept, this function will be called again though and
3830          * we'll get the vintr intercept. However, if the vGIF feature is
3831          * enabled, the STGI interception will not occur. Enable the irq
3832          * window under the assumption that the hardware will set the GIF.
3833          */
3834         if (vgif || gif_set(svm)) {
3835                 /*
3836                  * IRQ window is not needed when AVIC is enabled,
3837                  * unless we have pending ExtINT since it cannot be injected
3838                  * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3839                  * and fallback to injecting IRQ via V_IRQ.
3840                  *
3841                  * If running nested, AVIC is already locally inhibited
3842                  * on this vCPU, therefore there is no need to request
3843                  * the VM wide AVIC inhibition.
3844                  */
3845                 if (!is_guest_mode(vcpu))
3846                         kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3847
3848                 svm_set_vintr(svm);
3849         }
3850 }
3851
3852 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3853 {
3854         struct vcpu_svm *svm = to_svm(vcpu);
3855
3856         /*
3857          * KVM should never request an NMI window when vNMI is enabled, as KVM
3858          * allows at most one to-be-injected NMI and one pending NMI, i.e. if
3859          * two NMIs arrive simultaneously, KVM will inject one and set
3860          * V_NMI_PENDING for the other.  WARN, but continue with the standard
3861          * single-step approach to try and salvage the pending NMI.
3862          */
3863         WARN_ON_ONCE(is_vnmi_enabled(svm));
3864
3865         if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion)
3866                 return; /* IRET will cause a vm exit */
3867
3868         /*
3869          * SEV-ES guests are responsible for signaling when a vCPU is ready to
3870          * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3871          * KVM can't intercept and single-step IRET to detect when NMIs are
3872          * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3873          *
3874          * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3875          * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3876          * supported NAEs in the GHCB protocol.
3877          */
3878         if (sev_es_guest(vcpu->kvm))
3879                 return;
3880
3881         if (!gif_set(svm)) {
3882                 if (vgif)
3883                         svm_set_intercept(svm, INTERCEPT_STGI);
3884                 return; /* STGI will cause a vm exit */
3885         }
3886
3887         /*
3888          * Something prevents NMI from been injected. Single step over possible
3889          * problem (IRET or exception injection or interrupt shadow)
3890          */
3891         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3892         svm->nmi_singlestep = true;
3893         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3894 }
3895
3896 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3897 {
3898         struct vcpu_svm *svm = to_svm(vcpu);
3899
3900         /*
3901          * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3902          * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3903          * entries, and thus is a superset of Hyper-V's fine grained flushing.
3904          */
3905         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3906
3907         /*
3908          * Flush only the current ASID even if the TLB flush was invoked via
3909          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3910          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3911          * unconditionally does a TLB flush on both nested VM-Enter and nested
3912          * VM-Exit (via kvm_mmu_reset_context()).
3913          */
3914         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3915                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3916         else
3917                 svm->current_vmcb->asid_generation--;
3918 }
3919
3920 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3921 {
3922         hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3923
3924         /*
3925          * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3926          * flush the NPT mappings via hypercall as flushing the ASID only
3927          * affects virtual to physical mappings, it does not invalidate guest
3928          * physical to host physical mappings.
3929          */
3930         if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3931                 hyperv_flush_guest_mapping(root_tdp);
3932
3933         svm_flush_tlb_asid(vcpu);
3934 }
3935
3936 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3937 {
3938         /*
3939          * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3940          * flushes should be routed to hv_flush_remote_tlbs() without requesting
3941          * a "regular" remote flush.  Reaching this point means either there's
3942          * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3943          * which might be fatal to the guest.  Yell, but try to recover.
3944          */
3945         if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3946                 hv_flush_remote_tlbs(vcpu->kvm);
3947
3948         svm_flush_tlb_asid(vcpu);
3949 }
3950
3951 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3952 {
3953         struct vcpu_svm *svm = to_svm(vcpu);
3954
3955         invlpga(gva, svm->vmcb->control.asid);
3956 }
3957
3958 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3959 {
3960         struct vcpu_svm *svm = to_svm(vcpu);
3961
3962         if (nested_svm_virtualize_tpr(vcpu))
3963                 return;
3964
3965         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3966                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3967                 kvm_set_cr8(vcpu, cr8);
3968         }
3969 }
3970
3971 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3972 {
3973         struct vcpu_svm *svm = to_svm(vcpu);
3974         u64 cr8;
3975
3976         if (nested_svm_virtualize_tpr(vcpu) ||
3977             kvm_vcpu_apicv_active(vcpu))
3978                 return;
3979
3980         cr8 = kvm_get_cr8(vcpu);
3981         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3982         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3983 }
3984
3985 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3986                                         int type)
3987 {
3988         bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3989         bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3990         struct vcpu_svm *svm = to_svm(vcpu);
3991
3992         /*
3993          * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3994          * associated with the original soft exception/interrupt.  next_rip is
3995          * cleared on all exits that can occur while vectoring an event, so KVM
3996          * needs to manually set next_rip for re-injection.  Unlike the !nrips
3997          * case below, this needs to be done if and only if KVM is re-injecting
3998          * the same event, i.e. if the event is a soft exception/interrupt,
3999          * otherwise next_rip is unused on VMRUN.
4000          */
4001         if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4002             kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4003                 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4004         /*
4005          * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4006          * injecting the soft exception/interrupt.  That advancement needs to
4007          * be unwound if vectoring didn't complete.  Note, the new event may
4008          * not be the injected event, e.g. if KVM injected an INTn, the INTn
4009          * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4010          * be the reported vectored event, but RIP still needs to be unwound.
4011          */
4012         else if (!nrips && (is_soft || is_exception) &&
4013                  kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4014                 kvm_rip_write(vcpu, svm->soft_int_old_rip);
4015 }
4016
4017 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4018 {
4019         struct vcpu_svm *svm = to_svm(vcpu);
4020         u8 vector;
4021         int type;
4022         u32 exitintinfo = svm->vmcb->control.exit_int_info;
4023         bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4024         bool soft_int_injected = svm->soft_int_injected;
4025
4026         svm->nmi_l1_to_l2 = false;
4027         svm->soft_int_injected = false;
4028
4029         /*
4030          * If we've made progress since setting awaiting_iret_completion, we've
4031          * executed an IRET and can allow NMI injection.
4032          */
4033         if (svm->awaiting_iret_completion &&
4034             kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4035                 svm->awaiting_iret_completion = false;
4036                 svm->nmi_masked = false;
4037                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4038         }
4039
4040         vcpu->arch.nmi_injected = false;
4041         kvm_clear_exception_queue(vcpu);
4042         kvm_clear_interrupt_queue(vcpu);
4043
4044         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4045                 return;
4046
4047         kvm_make_request(KVM_REQ_EVENT, vcpu);
4048
4049         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4050         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4051
4052         if (soft_int_injected)
4053                 svm_complete_soft_interrupt(vcpu, vector, type);
4054
4055         switch (type) {
4056         case SVM_EXITINTINFO_TYPE_NMI:
4057                 vcpu->arch.nmi_injected = true;
4058                 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4059                 break;
4060         case SVM_EXITINTINFO_TYPE_EXEPT:
4061                 /*
4062                  * Never re-inject a #VC exception.
4063                  */
4064                 if (vector == X86_TRAP_VC)
4065                         break;
4066
4067                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4068                         u32 err = svm->vmcb->control.exit_int_info_err;
4069                         kvm_requeue_exception_e(vcpu, vector, err);
4070
4071                 } else
4072                         kvm_requeue_exception(vcpu, vector);
4073                 break;
4074         case SVM_EXITINTINFO_TYPE_INTR:
4075                 kvm_queue_interrupt(vcpu, vector, false);
4076                 break;
4077         case SVM_EXITINTINFO_TYPE_SOFT:
4078                 kvm_queue_interrupt(vcpu, vector, true);
4079                 break;
4080         default:
4081                 break;
4082         }
4083
4084 }
4085
4086 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4087 {
4088         struct vcpu_svm *svm = to_svm(vcpu);
4089         struct vmcb_control_area *control = &svm->vmcb->control;
4090
4091         control->exit_int_info = control->event_inj;
4092         control->exit_int_info_err = control->event_inj_err;
4093         control->event_inj = 0;
4094         svm_complete_interrupts(vcpu);
4095 }
4096
4097 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4098 {
4099         return 1;
4100 }
4101
4102 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4103 {
4104         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
4105             to_svm(vcpu)->vmcb->control.exit_info_1)
4106                 return handle_fastpath_set_msr_irqoff(vcpu);
4107
4108         return EXIT_FASTPATH_NONE;
4109 }
4110
4111 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4112 {
4113         struct vcpu_svm *svm = to_svm(vcpu);
4114
4115         guest_state_enter_irqoff();
4116
4117         amd_clear_divider();
4118
4119         if (sev_es_guest(vcpu->kvm))
4120                 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4121         else
4122                 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4123
4124         guest_state_exit_irqoff();
4125 }
4126
4127 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
4128 {
4129         struct vcpu_svm *svm = to_svm(vcpu);
4130         bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4131
4132         trace_kvm_entry(vcpu);
4133
4134         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4135         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4136         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4137
4138         /*
4139          * Disable singlestep if we're injecting an interrupt/exception.
4140          * We don't want our modified rflags to be pushed on the stack where
4141          * we might not be able to easily reset them if we disabled NMI
4142          * singlestep later.
4143          */
4144         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4145                 /*
4146                  * Event injection happens before external interrupts cause a
4147                  * vmexit and interrupts are disabled here, so smp_send_reschedule
4148                  * is enough to force an immediate vmexit.
4149                  */
4150                 disable_nmi_singlestep(svm);
4151                 smp_send_reschedule(vcpu->cpu);
4152         }
4153
4154         pre_svm_run(vcpu);
4155
4156         sync_lapic_to_cr8(vcpu);
4157
4158         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4159                 svm->vmcb->control.asid = svm->asid;
4160                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4161         }
4162         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4163
4164         svm_hv_update_vp_id(svm->vmcb, vcpu);
4165
4166         /*
4167          * Run with all-zero DR6 unless needed, so that we can get the exact cause
4168          * of a #DB.
4169          */
4170         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4171                 svm_set_dr6(svm, vcpu->arch.dr6);
4172         else
4173                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
4174
4175         clgi();
4176         kvm_load_guest_xsave_state(vcpu);
4177
4178         kvm_wait_lapic_expire(vcpu);
4179
4180         /*
4181          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4182          * it's non-zero. Since vmentry is serialising on affected CPUs, there
4183          * is no need to worry about the conditional branch over the wrmsr
4184          * being speculatively taken.
4185          */
4186         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4187                 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4188
4189         svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4190
4191         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4192                 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4193
4194         if (!sev_es_guest(vcpu->kvm)) {
4195                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4196                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4197                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4198                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4199         }
4200         vcpu->arch.regs_dirty = 0;
4201
4202         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4203                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4204
4205         kvm_load_host_xsave_state(vcpu);
4206         stgi();
4207
4208         /* Any pending NMI will happen here */
4209
4210         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4211                 kvm_after_interrupt(vcpu);
4212
4213         sync_cr8_to_lapic(vcpu);
4214
4215         svm->next_rip = 0;
4216         if (is_guest_mode(vcpu)) {
4217                 nested_sync_control_from_vmcb02(svm);
4218
4219                 /* Track VMRUNs that have made past consistency checking */
4220                 if (svm->nested.nested_run_pending &&
4221                     svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4222                         ++vcpu->stat.nested_run;
4223
4224                 svm->nested.nested_run_pending = 0;
4225         }
4226
4227         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4228         vmcb_mark_all_clean(svm->vmcb);
4229
4230         /* if exit due to PF check for async PF */
4231         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4232                 vcpu->arch.apf.host_apf_flags =
4233                         kvm_read_and_reset_apf_flags();
4234
4235         vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4236
4237         /*
4238          * We need to handle MC intercepts here before the vcpu has a chance to
4239          * change the physical cpu
4240          */
4241         if (unlikely(svm->vmcb->control.exit_code ==
4242                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4243                 svm_handle_mce(vcpu);
4244
4245         trace_kvm_exit(vcpu, KVM_ISA_SVM);
4246
4247         svm_complete_interrupts(vcpu);
4248
4249         if (is_guest_mode(vcpu))
4250                 return EXIT_FASTPATH_NONE;
4251
4252         return svm_exit_handlers_fastpath(vcpu);
4253 }
4254
4255 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4256                              int root_level)
4257 {
4258         struct vcpu_svm *svm = to_svm(vcpu);
4259         unsigned long cr3;
4260
4261         if (npt_enabled) {
4262                 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4263                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4264
4265                 hv_track_root_tdp(vcpu, root_hpa);
4266
4267                 cr3 = vcpu->arch.cr3;
4268         } else if (root_level >= PT64_ROOT_4LEVEL) {
4269                 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4270         } else {
4271                 /* PCID in the guest should be impossible with a 32-bit MMU. */
4272                 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4273                 cr3 = root_hpa;
4274         }
4275
4276         svm->vmcb->save.cr3 = cr3;
4277         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4278 }
4279
4280 static void
4281 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4282 {
4283         /*
4284          * Patch in the VMMCALL instruction:
4285          */
4286         hypercall[0] = 0x0f;
4287         hypercall[1] = 0x01;
4288         hypercall[2] = 0xd9;
4289 }
4290
4291 /*
4292  * The kvm parameter can be NULL (module initialization, or invocation before
4293  * VM creation). Be sure to check the kvm parameter before using it.
4294  */
4295 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4296 {
4297         switch (index) {
4298         case MSR_IA32_MCG_EXT_CTL:
4299         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4300                 return false;
4301         case MSR_IA32_SMBASE:
4302                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4303                         return false;
4304                 /* SEV-ES guests do not support SMM, so report false */
4305                 if (kvm && sev_es_guest(kvm))
4306                         return false;
4307                 break;
4308         default:
4309                 break;
4310         }
4311
4312         return true;
4313 }
4314
4315 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4316 {
4317         struct vcpu_svm *svm = to_svm(vcpu);
4318
4319         /*
4320          * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4321          * can only disable all variants of by disallowing CR4.OSXSAVE from
4322          * being set.  As a result, if the host has XSAVE and XSAVES, and the
4323          * guest has XSAVE enabled, the guest can execute XSAVES without
4324          * faulting.  Treat XSAVES as enabled in this case regardless of
4325          * whether it's advertised to the guest so that KVM context switches
4326          * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4327          * the guest read/write access to the host's XSS.
4328          */
4329         if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4330             boot_cpu_has(X86_FEATURE_XSAVES) &&
4331             guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4332                 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4333
4334         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4335         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4336         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4337
4338         /*
4339          * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that
4340          * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4341          * SVM on Intel is bonkers and extremely unlikely to work).
4342          */
4343         if (!guest_cpuid_is_intel(vcpu))
4344                 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4345
4346         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4347         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4348         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4349         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4350
4351         svm_recalc_instruction_intercepts(vcpu, svm);
4352
4353         if (boot_cpu_has(X86_FEATURE_IBPB))
4354                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4355                                      !!guest_has_pred_cmd_msr(vcpu));
4356
4357         if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4358                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4359                                      !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4360
4361         if (sev_guest(vcpu->kvm))
4362                 sev_vcpu_after_set_cpuid(svm);
4363
4364         init_vmcb_after_set_cpuid(vcpu);
4365 }
4366
4367 static bool svm_has_wbinvd_exit(void)
4368 {
4369         return true;
4370 }
4371
4372 #define PRE_EX(exit)  { .exit_code = (exit), \
4373                         .stage = X86_ICPT_PRE_EXCEPT, }
4374 #define POST_EX(exit) { .exit_code = (exit), \
4375                         .stage = X86_ICPT_POST_EXCEPT, }
4376 #define POST_MEM(exit) { .exit_code = (exit), \
4377                         .stage = X86_ICPT_POST_MEMACCESS, }
4378
4379 static const struct __x86_intercept {
4380         u32 exit_code;
4381         enum x86_intercept_stage stage;
4382 } x86_intercept_map[] = {
4383         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4384         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4385         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4386         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4387         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4388         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4389         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4390         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4391         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4392         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4393         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4394         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4395         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4396         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4397         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4398         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4399         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4400         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4401         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4402         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4403         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4404         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4405         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4406         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4407         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4408         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4409         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4410         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4411         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4412         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4413         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4414         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4415         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4416         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4417         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4418         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4419         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4420         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4421         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4422         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4423         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4424         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4425         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4426         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4427         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4428         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4429         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4430 };
4431
4432 #undef PRE_EX
4433 #undef POST_EX
4434 #undef POST_MEM
4435
4436 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4437                                struct x86_instruction_info *info,
4438                                enum x86_intercept_stage stage,
4439                                struct x86_exception *exception)
4440 {
4441         struct vcpu_svm *svm = to_svm(vcpu);
4442         int vmexit, ret = X86EMUL_CONTINUE;
4443         struct __x86_intercept icpt_info;
4444         struct vmcb *vmcb = svm->vmcb;
4445
4446         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4447                 goto out;
4448
4449         icpt_info = x86_intercept_map[info->intercept];
4450
4451         if (stage != icpt_info.stage)
4452                 goto out;
4453
4454         switch (icpt_info.exit_code) {
4455         case SVM_EXIT_READ_CR0:
4456                 if (info->intercept == x86_intercept_cr_read)
4457                         icpt_info.exit_code += info->modrm_reg;
4458                 break;
4459         case SVM_EXIT_WRITE_CR0: {
4460                 unsigned long cr0, val;
4461
4462                 if (info->intercept == x86_intercept_cr_write)
4463                         icpt_info.exit_code += info->modrm_reg;
4464
4465                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4466                     info->intercept == x86_intercept_clts)
4467                         break;
4468
4469                 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4470                                         INTERCEPT_SELECTIVE_CR0)))
4471                         break;
4472
4473                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4474                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4475
4476                 if (info->intercept == x86_intercept_lmsw) {
4477                         cr0 &= 0xfUL;
4478                         val &= 0xfUL;
4479                         /* lmsw can't clear PE - catch this here */
4480                         if (cr0 & X86_CR0_PE)
4481                                 val |= X86_CR0_PE;
4482                 }
4483
4484                 if (cr0 ^ val)
4485                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4486
4487                 break;
4488         }
4489         case SVM_EXIT_READ_DR0:
4490         case SVM_EXIT_WRITE_DR0:
4491                 icpt_info.exit_code += info->modrm_reg;
4492                 break;
4493         case SVM_EXIT_MSR:
4494                 if (info->intercept == x86_intercept_wrmsr)
4495                         vmcb->control.exit_info_1 = 1;
4496                 else
4497                         vmcb->control.exit_info_1 = 0;
4498                 break;
4499         case SVM_EXIT_PAUSE:
4500                 /*
4501                  * We get this for NOP only, but pause
4502                  * is rep not, check this here
4503                  */
4504                 if (info->rep_prefix != REPE_PREFIX)
4505                         goto out;
4506                 break;
4507         case SVM_EXIT_IOIO: {
4508                 u64 exit_info;
4509                 u32 bytes;
4510
4511                 if (info->intercept == x86_intercept_in ||
4512                     info->intercept == x86_intercept_ins) {
4513                         exit_info = ((info->src_val & 0xffff) << 16) |
4514                                 SVM_IOIO_TYPE_MASK;
4515                         bytes = info->dst_bytes;
4516                 } else {
4517                         exit_info = (info->dst_val & 0xffff) << 16;
4518                         bytes = info->src_bytes;
4519                 }
4520
4521                 if (info->intercept == x86_intercept_outs ||
4522                     info->intercept == x86_intercept_ins)
4523                         exit_info |= SVM_IOIO_STR_MASK;
4524
4525                 if (info->rep_prefix)
4526                         exit_info |= SVM_IOIO_REP_MASK;
4527
4528                 bytes = min(bytes, 4u);
4529
4530                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4531
4532                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4533
4534                 vmcb->control.exit_info_1 = exit_info;
4535                 vmcb->control.exit_info_2 = info->next_rip;
4536
4537                 break;
4538         }
4539         default:
4540                 break;
4541         }
4542
4543         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4544         if (static_cpu_has(X86_FEATURE_NRIPS))
4545                 vmcb->control.next_rip  = info->next_rip;
4546         vmcb->control.exit_code = icpt_info.exit_code;
4547         vmexit = nested_svm_exit_handled(svm);
4548
4549         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4550                                            : X86EMUL_CONTINUE;
4551
4552 out:
4553         return ret;
4554 }
4555
4556 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4557 {
4558         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4559                 vcpu->arch.at_instruction_boundary = true;
4560 }
4561
4562 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4563 {
4564         if (!kvm_pause_in_guest(vcpu->kvm))
4565                 shrink_ple_window(vcpu);
4566 }
4567
4568 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4569 {
4570         /* [63:9] are reserved. */
4571         vcpu->arch.mcg_cap &= 0x1ff;
4572 }
4573
4574 #ifdef CONFIG_KVM_SMM
4575 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4576 {
4577         struct vcpu_svm *svm = to_svm(vcpu);
4578
4579         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4580         if (!gif_set(svm))
4581                 return true;
4582
4583         return is_smm(vcpu);
4584 }
4585
4586 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4587 {
4588         struct vcpu_svm *svm = to_svm(vcpu);
4589         if (svm->nested.nested_run_pending)
4590                 return -EBUSY;
4591
4592         if (svm_smi_blocked(vcpu))
4593                 return 0;
4594
4595         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4596         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4597                 return -EBUSY;
4598
4599         return 1;
4600 }
4601
4602 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4603 {
4604         struct vcpu_svm *svm = to_svm(vcpu);
4605         struct kvm_host_map map_save;
4606         int ret;
4607
4608         if (!is_guest_mode(vcpu))
4609                 return 0;
4610
4611         /*
4612          * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4613          * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4614          */
4615
4616         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4617                 return 1;
4618
4619         smram->smram64.svm_guest_flag = 1;
4620         smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4621
4622         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4623         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4624         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4625
4626         ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4627         if (ret)
4628                 return ret;
4629
4630         /*
4631          * KVM uses VMCB01 to store L1 host state while L2 runs but
4632          * VMCB01 is going to be used during SMM and thus the state will
4633          * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4634          * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4635          * format of the area is identical to guest save area offsetted
4636          * by 0x400 (matches the offset of 'struct vmcb_save_area'
4637          * within 'struct vmcb'). Note: HSAVE area may also be used by
4638          * L1 hypervisor to save additional host context (e.g. KVM does
4639          * that, see svm_prepare_switch_to_guest()) which must be
4640          * preserved.
4641          */
4642         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4643                 return 1;
4644
4645         BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4646
4647         svm_copy_vmrun_state(map_save.hva + 0x400,
4648                              &svm->vmcb01.ptr->save);
4649
4650         kvm_vcpu_unmap(vcpu, &map_save, true);
4651         return 0;
4652 }
4653
4654 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4655 {
4656         struct vcpu_svm *svm = to_svm(vcpu);
4657         struct kvm_host_map map, map_save;
4658         struct vmcb *vmcb12;
4659         int ret;
4660
4661         const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4662
4663         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4664                 return 0;
4665
4666         /* Non-zero if SMI arrived while vCPU was in guest mode. */
4667         if (!smram64->svm_guest_flag)
4668                 return 0;
4669
4670         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4671                 return 1;
4672
4673         if (!(smram64->efer & EFER_SVME))
4674                 return 1;
4675
4676         if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4677                 return 1;
4678
4679         ret = 1;
4680         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4681                 goto unmap_map;
4682
4683         if (svm_allocate_nested(svm))
4684                 goto unmap_save;
4685
4686         /*
4687          * Restore L1 host state from L1 HSAVE area as VMCB01 was
4688          * used during SMM (see svm_enter_smm())
4689          */
4690
4691         svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4692
4693         /*
4694          * Enter the nested guest now
4695          */
4696
4697         vmcb_mark_all_dirty(svm->vmcb01.ptr);
4698
4699         vmcb12 = map.hva;
4700         nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4701         nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4702         ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4703
4704         if (ret)
4705                 goto unmap_save;
4706
4707         svm->nested.nested_run_pending = 1;
4708
4709 unmap_save:
4710         kvm_vcpu_unmap(vcpu, &map_save, true);
4711 unmap_map:
4712         kvm_vcpu_unmap(vcpu, &map, true);
4713         return ret;
4714 }
4715
4716 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4717 {
4718         struct vcpu_svm *svm = to_svm(vcpu);
4719
4720         if (!gif_set(svm)) {
4721                 if (vgif)
4722                         svm_set_intercept(svm, INTERCEPT_STGI);
4723                 /* STGI will cause a vm exit */
4724         } else {
4725                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4726         }
4727 }
4728 #endif
4729
4730 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4731                                         void *insn, int insn_len)
4732 {
4733         bool smep, smap, is_user;
4734         u64 error_code;
4735
4736         /* Emulation is always possible when KVM has access to all guest state. */
4737         if (!sev_guest(vcpu->kvm))
4738                 return true;
4739
4740         /* #UD and #GP should never be intercepted for SEV guests. */
4741         WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4742                                   EMULTYPE_TRAP_UD_FORCED |
4743                                   EMULTYPE_VMWARE_GP));
4744
4745         /*
4746          * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4747          * to guest register state.
4748          */
4749         if (sev_es_guest(vcpu->kvm))
4750                 return false;
4751
4752         /*
4753          * Emulation is possible if the instruction is already decoded, e.g.
4754          * when completing I/O after returning from userspace.
4755          */
4756         if (emul_type & EMULTYPE_NO_DECODE)
4757                 return true;
4758
4759         /*
4760          * Emulation is possible for SEV guests if and only if a prefilled
4761          * buffer containing the bytes of the intercepted instruction is
4762          * available. SEV guest memory is encrypted with a guest specific key
4763          * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4764          * decode garbage.
4765          *
4766          * If KVM is NOT trying to simply skip an instruction, inject #UD if
4767          * KVM reached this point without an instruction buffer.  In practice,
4768          * this path should never be hit by a well-behaved guest, e.g. KVM
4769          * doesn't intercept #UD or #GP for SEV guests, but this path is still
4770          * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4771          * access, and needs to be handled by KVM to avoid putting the guest
4772          * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4773          * its the least awful option given lack of insight into the guest.
4774          *
4775          * If KVM is trying to skip an instruction, simply resume the guest.
4776          * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4777          * will attempt to re-inject the INT3/INTO and skip the instruction.
4778          * In that scenario, retrying the INT3/INTO and hoping the guest will
4779          * make forward progress is the only option that has a chance of
4780          * success (and in practice it will work the vast majority of the time).
4781          */
4782         if (unlikely(!insn)) {
4783                 if (!(emul_type & EMULTYPE_SKIP))
4784                         kvm_queue_exception(vcpu, UD_VECTOR);
4785                 return false;
4786         }
4787
4788         /*
4789          * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4790          * will be empty if the DecodeAssist microcode cannot fetch bytes for
4791          * the faulting instruction because the code fetch itself faulted, e.g.
4792          * the guest attempted to fetch from emulated MMIO or a guest page
4793          * table used to translate CS:RIP resides in emulated MMIO.
4794          */
4795         if (likely(insn_len))
4796                 return true;
4797
4798         /*
4799          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4800          *
4801          * Errata:
4802          * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4803          * possible that CPU microcode implementing DecodeAssist will fail to
4804          * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4805          * be '0'.  This happens because microcode reads CS:RIP using a _data_
4806          * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4807          * gives up and does not fill the instruction bytes buffer.
4808          *
4809          * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4810          * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4811          * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4812          * GuestIntrBytes field of the VMCB.
4813          *
4814          * This does _not_ mean that the erratum has been encountered, as the
4815          * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4816          * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4817          * encountered a reserved/not-present #PF.
4818          *
4819          * To hit the erratum, the following conditions must be true:
4820          *    1. CR4.SMAP=1 (obviously).
4821          *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4822          *       have been hit as the guest would have encountered a SMEP
4823          *       violation #PF, not a #NPF.
4824          *    3. The #NPF is not due to a code fetch, in which case failure to
4825          *       retrieve the instruction bytes is legitimate (see abvoe).
4826          *
4827          * In addition, don't apply the erratum workaround if the #NPF occurred
4828          * while translating guest page tables (see below).
4829          */
4830         error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4831         if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4832                 goto resume_guest;
4833
4834         smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4835         smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4836         is_user = svm_get_cpl(vcpu) == 3;
4837         if (smap && (!smep || is_user)) {
4838                 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4839
4840                 /*
4841                  * If the fault occurred in userspace, arbitrarily inject #GP
4842                  * to avoid killing the guest and to hopefully avoid confusing
4843                  * the guest kernel too much, e.g. injecting #PF would not be
4844                  * coherent with respect to the guest's page tables.  Request
4845                  * triple fault if the fault occurred in the kernel as there's
4846                  * no fault that KVM can inject without confusing the guest.
4847                  * In practice, the triple fault is moot as no sane SEV kernel
4848                  * will execute from user memory while also running with SMAP=1.
4849                  */
4850                 if (is_user)
4851                         kvm_inject_gp(vcpu, 0);
4852                 else
4853                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4854         }
4855
4856 resume_guest:
4857         /*
4858          * If the erratum was not hit, simply resume the guest and let it fault
4859          * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4860          * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4861          * userspace will kill the guest, and letting the emulator read garbage
4862          * will yield random behavior and potentially corrupt the guest.
4863          *
4864          * Simply resuming the guest is technically not a violation of the SEV
4865          * architecture.  AMD's APM states that all code fetches and page table
4866          * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4867          * APM also states that encrypted accesses to MMIO are "ignored", but
4868          * doesn't explicitly define "ignored", i.e. doing nothing and letting
4869          * the guest spin is technically "ignoring" the access.
4870          */
4871         return false;
4872 }
4873
4874 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4875 {
4876         struct vcpu_svm *svm = to_svm(vcpu);
4877
4878         return !gif_set(svm);
4879 }
4880
4881 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4882 {
4883         if (!sev_es_guest(vcpu->kvm))
4884                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4885
4886         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4887 }
4888
4889 static void svm_vm_destroy(struct kvm *kvm)
4890 {
4891         avic_vm_destroy(kvm);
4892         sev_vm_destroy(kvm);
4893 }
4894
4895 static int svm_vm_init(struct kvm *kvm)
4896 {
4897         if (!pause_filter_count || !pause_filter_thresh)
4898                 kvm->arch.pause_in_guest = true;
4899
4900         if (enable_apicv) {
4901                 int ret = avic_vm_init(kvm);
4902                 if (ret)
4903                         return ret;
4904         }
4905
4906         return 0;
4907 }
4908
4909 static struct kvm_x86_ops svm_x86_ops __initdata = {
4910         .name = KBUILD_MODNAME,
4911
4912         .check_processor_compatibility = svm_check_processor_compat,
4913
4914         .hardware_unsetup = svm_hardware_unsetup,
4915         .hardware_enable = svm_hardware_enable,
4916         .hardware_disable = svm_hardware_disable,
4917         .has_emulated_msr = svm_has_emulated_msr,
4918
4919         .vcpu_create = svm_vcpu_create,
4920         .vcpu_free = svm_vcpu_free,
4921         .vcpu_reset = svm_vcpu_reset,
4922
4923         .vm_size = sizeof(struct kvm_svm),
4924         .vm_init = svm_vm_init,
4925         .vm_destroy = svm_vm_destroy,
4926
4927         .prepare_switch_to_guest = svm_prepare_switch_to_guest,
4928         .vcpu_load = svm_vcpu_load,
4929         .vcpu_put = svm_vcpu_put,
4930         .vcpu_blocking = avic_vcpu_blocking,
4931         .vcpu_unblocking = avic_vcpu_unblocking,
4932
4933         .update_exception_bitmap = svm_update_exception_bitmap,
4934         .get_msr_feature = svm_get_msr_feature,
4935         .get_msr = svm_get_msr,
4936         .set_msr = svm_set_msr,
4937         .get_segment_base = svm_get_segment_base,
4938         .get_segment = svm_get_segment,
4939         .set_segment = svm_set_segment,
4940         .get_cpl = svm_get_cpl,
4941         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
4942         .is_valid_cr0 = svm_is_valid_cr0,
4943         .set_cr0 = svm_set_cr0,
4944         .post_set_cr3 = sev_post_set_cr3,
4945         .is_valid_cr4 = svm_is_valid_cr4,
4946         .set_cr4 = svm_set_cr4,
4947         .set_efer = svm_set_efer,
4948         .get_idt = svm_get_idt,
4949         .set_idt = svm_set_idt,
4950         .get_gdt = svm_get_gdt,
4951         .set_gdt = svm_set_gdt,
4952         .set_dr7 = svm_set_dr7,
4953         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4954         .cache_reg = svm_cache_reg,
4955         .get_rflags = svm_get_rflags,
4956         .set_rflags = svm_set_rflags,
4957         .get_if_flag = svm_get_if_flag,
4958
4959         .flush_tlb_all = svm_flush_tlb_all,
4960         .flush_tlb_current = svm_flush_tlb_current,
4961         .flush_tlb_gva = svm_flush_tlb_gva,
4962         .flush_tlb_guest = svm_flush_tlb_asid,
4963
4964         .vcpu_pre_run = svm_vcpu_pre_run,
4965         .vcpu_run = svm_vcpu_run,
4966         .handle_exit = svm_handle_exit,
4967         .skip_emulated_instruction = svm_skip_emulated_instruction,
4968         .update_emulated_instruction = NULL,
4969         .set_interrupt_shadow = svm_set_interrupt_shadow,
4970         .get_interrupt_shadow = svm_get_interrupt_shadow,
4971         .patch_hypercall = svm_patch_hypercall,
4972         .inject_irq = svm_inject_irq,
4973         .inject_nmi = svm_inject_nmi,
4974         .is_vnmi_pending = svm_is_vnmi_pending,
4975         .set_vnmi_pending = svm_set_vnmi_pending,
4976         .inject_exception = svm_inject_exception,
4977         .cancel_injection = svm_cancel_injection,
4978         .interrupt_allowed = svm_interrupt_allowed,
4979         .nmi_allowed = svm_nmi_allowed,
4980         .get_nmi_mask = svm_get_nmi_mask,
4981         .set_nmi_mask = svm_set_nmi_mask,
4982         .enable_nmi_window = svm_enable_nmi_window,
4983         .enable_irq_window = svm_enable_irq_window,
4984         .update_cr8_intercept = svm_update_cr8_intercept,
4985         .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4986         .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4987         .apicv_post_state_restore = avic_apicv_post_state_restore,
4988         .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4989
4990         .get_exit_info = svm_get_exit_info,
4991
4992         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4993
4994         .has_wbinvd_exit = svm_has_wbinvd_exit,
4995
4996         .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4997         .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4998         .write_tsc_offset = svm_write_tsc_offset,
4999         .write_tsc_multiplier = svm_write_tsc_multiplier,
5000
5001         .load_mmu_pgd = svm_load_mmu_pgd,
5002
5003         .check_intercept = svm_check_intercept,
5004         .handle_exit_irqoff = svm_handle_exit_irqoff,
5005
5006         .request_immediate_exit = __kvm_request_immediate_exit,
5007
5008         .sched_in = svm_sched_in,
5009
5010         .nested_ops = &svm_nested_ops,
5011
5012         .deliver_interrupt = svm_deliver_interrupt,
5013         .pi_update_irte = avic_pi_update_irte,
5014         .setup_mce = svm_setup_mce,
5015
5016 #ifdef CONFIG_KVM_SMM
5017         .smi_allowed = svm_smi_allowed,
5018         .enter_smm = svm_enter_smm,
5019         .leave_smm = svm_leave_smm,
5020         .enable_smi_window = svm_enable_smi_window,
5021 #endif
5022
5023         .mem_enc_ioctl = sev_mem_enc_ioctl,
5024         .mem_enc_register_region = sev_mem_enc_register_region,
5025         .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5026         .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5027
5028         .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5029         .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5030
5031         .can_emulate_instruction = svm_can_emulate_instruction,
5032
5033         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5034
5035         .msr_filter_changed = svm_msr_filter_changed,
5036         .complete_emulated_msr = svm_complete_emulated_msr,
5037
5038         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5039         .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5040 };
5041
5042 /*
5043  * The default MMIO mask is a single bit (excluding the present bit),
5044  * which could conflict with the memory encryption bit. Check for
5045  * memory encryption support and override the default MMIO mask if
5046  * memory encryption is enabled.
5047  */
5048 static __init void svm_adjust_mmio_mask(void)
5049 {
5050         unsigned int enc_bit, mask_bit;
5051         u64 msr, mask;
5052
5053         /* If there is no memory encryption support, use existing mask */
5054         if (cpuid_eax(0x80000000) < 0x8000001f)
5055                 return;
5056
5057         /* If memory encryption is not enabled, use existing mask */
5058         rdmsrl(MSR_AMD64_SYSCFG, msr);
5059         if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5060                 return;
5061
5062         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5063         mask_bit = boot_cpu_data.x86_phys_bits;
5064
5065         /* Increment the mask bit if it is the same as the encryption bit */
5066         if (enc_bit == mask_bit)
5067                 mask_bit++;
5068
5069         /*
5070          * If the mask bit location is below 52, then some bits above the
5071          * physical addressing limit will always be reserved, so use the
5072          * rsvd_bits() function to generate the mask. This mask, along with
5073          * the present bit, will be used to generate a page fault with
5074          * PFER.RSV = 1.
5075          *
5076          * If the mask bit location is 52 (or above), then clear the mask.
5077          */
5078         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5079
5080         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5081 }
5082
5083 static __init void svm_set_cpu_caps(void)
5084 {
5085         kvm_set_cpu_caps();
5086
5087         kvm_caps.supported_perf_cap = 0;
5088         kvm_caps.supported_xss = 0;
5089
5090         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5091         if (nested) {
5092                 kvm_cpu_cap_set(X86_FEATURE_SVM);
5093                 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5094
5095                 if (nrips)
5096                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5097
5098                 if (npt_enabled)
5099                         kvm_cpu_cap_set(X86_FEATURE_NPT);
5100
5101                 if (tsc_scaling)
5102                         kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5103
5104                 if (vls)
5105                         kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5106                 if (lbrv)
5107                         kvm_cpu_cap_set(X86_FEATURE_LBRV);
5108
5109                 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5110                         kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5111
5112                 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5113                         kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5114
5115                 if (vgif)
5116                         kvm_cpu_cap_set(X86_FEATURE_VGIF);
5117
5118                 if (vnmi)
5119                         kvm_cpu_cap_set(X86_FEATURE_VNMI);
5120
5121                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5122                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5123         }
5124
5125         /* CPUID 0x80000008 */
5126         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5127             boot_cpu_has(X86_FEATURE_AMD_SSBD))
5128                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5129
5130         if (enable_pmu) {
5131                 /*
5132                  * Enumerate support for PERFCTR_CORE if and only if KVM has
5133                  * access to enough counters to virtualize "core" support,
5134                  * otherwise limit vPMU support to the legacy number of counters.
5135                  */
5136                 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5137                         kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5138                                                           kvm_pmu_cap.num_counters_gp);
5139                 else
5140                         kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5141
5142                 if (kvm_pmu_cap.version != 2 ||
5143                     !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5144                         kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5145         }
5146
5147         /* CPUID 0x8000001F (SME/SEV features) */
5148         sev_set_cpu_caps();
5149 }
5150
5151 static __init int svm_hardware_setup(void)
5152 {
5153         int cpu;
5154         struct page *iopm_pages;
5155         void *iopm_va;
5156         int r;
5157         unsigned int order = get_order(IOPM_SIZE);
5158
5159         /*
5160          * NX is required for shadow paging and for NPT if the NX huge pages
5161          * mitigation is enabled.
5162          */
5163         if (!boot_cpu_has(X86_FEATURE_NX)) {
5164                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5165                 return -EOPNOTSUPP;
5166         }
5167         kvm_enable_efer_bits(EFER_NX);
5168
5169         iopm_pages = alloc_pages(GFP_KERNEL, order);
5170
5171         if (!iopm_pages)
5172                 return -ENOMEM;
5173
5174         iopm_va = page_address(iopm_pages);
5175         memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5176         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5177
5178         init_msrpm_offsets();
5179
5180         kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5181                                      XFEATURE_MASK_BNDCSR);
5182
5183         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5184                 kvm_enable_efer_bits(EFER_FFXSR);
5185
5186         if (tsc_scaling) {
5187                 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5188                         tsc_scaling = false;
5189                 } else {
5190                         pr_info("TSC scaling supported\n");
5191                         kvm_caps.has_tsc_control = true;
5192                 }
5193         }
5194         kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5195         kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5196
5197         tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5198
5199         if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5200                 kvm_enable_efer_bits(EFER_AUTOIBRS);
5201
5202         /* Check for pause filtering support */
5203         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5204                 pause_filter_count = 0;
5205                 pause_filter_thresh = 0;
5206         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5207                 pause_filter_thresh = 0;
5208         }
5209
5210         if (nested) {
5211                 pr_info("Nested Virtualization enabled\n");
5212                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5213         }
5214
5215         /*
5216          * KVM's MMU doesn't support using 2-level paging for itself, and thus
5217          * NPT isn't supported if the host is using 2-level paging since host
5218          * CR4 is unchanged on VMRUN.
5219          */
5220         if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5221                 npt_enabled = false;
5222
5223         if (!boot_cpu_has(X86_FEATURE_NPT))
5224                 npt_enabled = false;
5225
5226         /* Force VM NPT level equal to the host's paging level */
5227         kvm_configure_mmu(npt_enabled, get_npt_level(),
5228                           get_npt_level(), PG_LEVEL_1G);
5229         pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5230
5231         /* Setup shadow_me_value and shadow_me_mask */
5232         kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5233
5234         svm_adjust_mmio_mask();
5235
5236         nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5237
5238         /*
5239          * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5240          * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5241          */
5242         sev_hardware_setup();
5243
5244         svm_hv_hardware_setup();
5245
5246         for_each_possible_cpu(cpu) {
5247                 r = svm_cpu_init(cpu);
5248                 if (r)
5249                         goto err;
5250         }
5251
5252         enable_apicv = avic = avic && avic_hardware_setup();
5253
5254         if (!enable_apicv) {
5255                 svm_x86_ops.vcpu_blocking = NULL;
5256                 svm_x86_ops.vcpu_unblocking = NULL;
5257                 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5258         } else if (!x2avic_enabled) {
5259                 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5260         }
5261
5262         if (vls) {
5263                 if (!npt_enabled ||
5264                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5265                     !IS_ENABLED(CONFIG_X86_64)) {
5266                         vls = false;
5267                 } else {
5268                         pr_info("Virtual VMLOAD VMSAVE supported\n");
5269                 }
5270         }
5271
5272         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5273                 svm_gp_erratum_intercept = false;
5274
5275         if (vgif) {
5276                 if (!boot_cpu_has(X86_FEATURE_VGIF))
5277                         vgif = false;
5278                 else
5279                         pr_info("Virtual GIF supported\n");
5280         }
5281
5282         vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5283         if (vnmi)
5284                 pr_info("Virtual NMI enabled\n");
5285
5286         if (!vnmi) {
5287                 svm_x86_ops.is_vnmi_pending = NULL;
5288                 svm_x86_ops.set_vnmi_pending = NULL;
5289         }
5290
5291
5292         if (lbrv) {
5293                 if (!boot_cpu_has(X86_FEATURE_LBRV))
5294                         lbrv = false;
5295                 else
5296                         pr_info("LBR virtualization supported\n");
5297         }
5298
5299         if (!enable_pmu)
5300                 pr_info("PMU virtualization is disabled\n");
5301
5302         svm_set_cpu_caps();
5303
5304         /*
5305          * It seems that on AMD processors PTE's accessed bit is
5306          * being set by the CPU hardware before the NPF vmexit.
5307          * This is not expected behaviour and our tests fail because
5308          * of it.
5309          * A workaround here is to disable support for
5310          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5311          * In this case userspace can know if there is support using
5312          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5313          * it
5314          * If future AMD CPU models change the behaviour described above,
5315          * this variable can be changed accordingly
5316          */
5317         allow_smaller_maxphyaddr = !npt_enabled;
5318
5319         return 0;
5320
5321 err:
5322         svm_hardware_unsetup();
5323         return r;
5324 }
5325
5326
5327 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5328         .hardware_setup = svm_hardware_setup,
5329
5330         .runtime_ops = &svm_x86_ops,
5331         .pmu_ops = &amd_pmu_ops,
5332 };
5333
5334 static void __svm_exit(void)
5335 {
5336         kvm_x86_vendor_exit();
5337
5338         cpu_emergency_unregister_virt_callback(svm_emergency_disable);
5339 }
5340
5341 static int __init svm_init(void)
5342 {
5343         int r;
5344
5345         __unused_size_checks();
5346
5347         if (!kvm_is_svm_supported())
5348                 return -EOPNOTSUPP;
5349
5350         r = kvm_x86_vendor_init(&svm_init_ops);
5351         if (r)
5352                 return r;
5353
5354         cpu_emergency_register_virt_callback(svm_emergency_disable);
5355
5356         /*
5357          * Common KVM initialization _must_ come last, after this, /dev/kvm is
5358          * exposed to userspace!
5359          */
5360         r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5361                      THIS_MODULE);
5362         if (r)
5363                 goto err_kvm_init;
5364
5365         return 0;
5366
5367 err_kvm_init:
5368         __svm_exit();
5369         return r;
5370 }
5371
5372 static void __exit svm_exit(void)
5373 {
5374         kvm_exit();
5375         __svm_exit();
5376 }
5377
5378 module_init(svm_init)
5379 module_exit(svm_exit)