3629dd979667c5be6a59bc256aaec83b590391b3
[platform/kernel/linux-starfive.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 #include <linux/cc_platform.h>
29
30 #include <asm/apic.h>
31 #include <asm/perf_event.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/debugreg.h>
35 #include <asm/kvm_para.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/traps.h>
40 #include <asm/fpu/api.h>
41
42 #include <asm/virtext.h>
43 #include "trace.h"
44
45 #include "svm.h"
46 #include "svm_ops.h"
47
48 #include "kvm_onhyperv.h"
49 #include "svm_onhyperv.h"
50
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57         {}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64
65 static bool erratum_383_found __read_mostly;
66
67 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
68
69 /*
70  * Set osvw_len to higher value when updated Revision Guides
71  * are published and we know what the new status bits are
72  */
73 static uint64_t osvw_len = 4, osvw_status;
74
75 static DEFINE_PER_CPU(u64, current_tsc_ratio);
76
77 #define X2APIC_MSR(x)   (APIC_BASE_MSR + (x >> 4))
78
79 static const struct svm_direct_access_msrs {
80         u32 index;   /* Index of the MSR */
81         bool always; /* True if intercept is initially cleared */
82 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
83         { .index = MSR_STAR,                            .always = true  },
84         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
85         { .index = MSR_IA32_SYSENTER_EIP,               .always = false },
86         { .index = MSR_IA32_SYSENTER_ESP,               .always = false },
87 #ifdef CONFIG_X86_64
88         { .index = MSR_GS_BASE,                         .always = true  },
89         { .index = MSR_FS_BASE,                         .always = true  },
90         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
91         { .index = MSR_LSTAR,                           .always = true  },
92         { .index = MSR_CSTAR,                           .always = true  },
93         { .index = MSR_SYSCALL_MASK,                    .always = true  },
94 #endif
95         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
96         { .index = MSR_IA32_PRED_CMD,                   .always = false },
97         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
98         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
99         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
100         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
101         { .index = MSR_EFER,                            .always = false },
102         { .index = MSR_IA32_CR_PAT,                     .always = false },
103         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
104         { .index = MSR_TSC_AUX,                         .always = false },
105         { .index = X2APIC_MSR(APIC_ID),                 .always = false },
106         { .index = X2APIC_MSR(APIC_LVR),                .always = false },
107         { .index = X2APIC_MSR(APIC_TASKPRI),            .always = false },
108         { .index = X2APIC_MSR(APIC_ARBPRI),             .always = false },
109         { .index = X2APIC_MSR(APIC_PROCPRI),            .always = false },
110         { .index = X2APIC_MSR(APIC_EOI),                .always = false },
111         { .index = X2APIC_MSR(APIC_RRR),                .always = false },
112         { .index = X2APIC_MSR(APIC_LDR),                .always = false },
113         { .index = X2APIC_MSR(APIC_DFR),                .always = false },
114         { .index = X2APIC_MSR(APIC_SPIV),               .always = false },
115         { .index = X2APIC_MSR(APIC_ISR),                .always = false },
116         { .index = X2APIC_MSR(APIC_TMR),                .always = false },
117         { .index = X2APIC_MSR(APIC_IRR),                .always = false },
118         { .index = X2APIC_MSR(APIC_ESR),                .always = false },
119         { .index = X2APIC_MSR(APIC_ICR),                .always = false },
120         { .index = X2APIC_MSR(APIC_ICR2),               .always = false },
121
122         /*
123          * Note:
124          * AMD does not virtualize APIC TSC-deadline timer mode, but it is
125          * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
126          * the AVIC hardware would generate GP fault. Therefore, always
127          * intercept the MSR 0x832, and do not setup direct_access_msr.
128          */
129         { .index = X2APIC_MSR(APIC_LVTTHMR),            .always = false },
130         { .index = X2APIC_MSR(APIC_LVTPC),              .always = false },
131         { .index = X2APIC_MSR(APIC_LVT0),               .always = false },
132         { .index = X2APIC_MSR(APIC_LVT1),               .always = false },
133         { .index = X2APIC_MSR(APIC_LVTERR),             .always = false },
134         { .index = X2APIC_MSR(APIC_TMICT),              .always = false },
135         { .index = X2APIC_MSR(APIC_TMCCT),              .always = false },
136         { .index = X2APIC_MSR(APIC_TDCR),               .always = false },
137         { .index = MSR_INVALID,                         .always = false },
138 };
139
140 /*
141  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
142  * pause_filter_count: On processors that support Pause filtering(indicated
143  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
144  *      count value. On VMRUN this value is loaded into an internal counter.
145  *      Each time a pause instruction is executed, this counter is decremented
146  *      until it reaches zero at which time a #VMEXIT is generated if pause
147  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
148  *      Intercept Filtering for more details.
149  *      This also indicate if ple logic enabled.
150  *
151  * pause_filter_thresh: In addition, some processor families support advanced
152  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
153  *      the amount of time a guest is allowed to execute in a pause loop.
154  *      In this mode, a 16-bit pause filter threshold field is added in the
155  *      VMCB. The threshold value is a cycle count that is used to reset the
156  *      pause counter. As with simple pause filtering, VMRUN loads the pause
157  *      count value from VMCB into an internal counter. Then, on each pause
158  *      instruction the hardware checks the elapsed number of cycles since
159  *      the most recent pause instruction against the pause filter threshold.
160  *      If the elapsed cycle count is greater than the pause filter threshold,
161  *      then the internal pause count is reloaded from the VMCB and execution
162  *      continues. If the elapsed cycle count is less than the pause filter
163  *      threshold, then the internal pause count is decremented. If the count
164  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
165  *      triggered. If advanced pause filtering is supported and pause filter
166  *      threshold field is set to zero, the filter will operate in the simpler,
167  *      count only mode.
168  */
169
170 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
171 module_param(pause_filter_thresh, ushort, 0444);
172
173 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
174 module_param(pause_filter_count, ushort, 0444);
175
176 /* Default doubles per-vcpu window every exit. */
177 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
178 module_param(pause_filter_count_grow, ushort, 0444);
179
180 /* Default resets per-vcpu window every exit to pause_filter_count. */
181 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
182 module_param(pause_filter_count_shrink, ushort, 0444);
183
184 /* Default is to compute the maximum so we can never overflow. */
185 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
186 module_param(pause_filter_count_max, ushort, 0444);
187
188 /*
189  * Use nested page tables by default.  Note, NPT may get forced off by
190  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
191  */
192 bool npt_enabled = true;
193 module_param_named(npt, npt_enabled, bool, 0444);
194
195 /* allow nested virtualization in KVM/SVM */
196 static int nested = true;
197 module_param(nested, int, S_IRUGO);
198
199 /* enable/disable Next RIP Save */
200 static int nrips = true;
201 module_param(nrips, int, 0444);
202
203 /* enable/disable Virtual VMLOAD VMSAVE */
204 static int vls = true;
205 module_param(vls, int, 0444);
206
207 /* enable/disable Virtual GIF */
208 int vgif = true;
209 module_param(vgif, int, 0444);
210
211 /* enable/disable LBR virtualization */
212 static int lbrv = true;
213 module_param(lbrv, int, 0444);
214
215 static int tsc_scaling = true;
216 module_param(tsc_scaling, int, 0444);
217
218 /*
219  * enable / disable AVIC.  Because the defaults differ for APICv
220  * support between VMX and SVM we cannot use module_param_named.
221  */
222 static bool avic;
223 module_param(avic, bool, 0444);
224
225 bool __read_mostly dump_invalid_vmcb;
226 module_param(dump_invalid_vmcb, bool, 0644);
227
228
229 bool intercept_smi = true;
230 module_param(intercept_smi, bool, 0444);
231
232
233 static bool svm_gp_erratum_intercept = true;
234
235 static u8 rsm_ins_bytes[] = "\x0f\xaa";
236
237 static unsigned long iopm_base;
238
239 struct kvm_ldttss_desc {
240         u16 limit0;
241         u16 base0;
242         unsigned base1:8, type:5, dpl:2, p:1;
243         unsigned limit1:4, zero0:3, g:1, base2:8;
244         u32 base3;
245         u32 zero1;
246 } __attribute__((packed));
247
248 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
249
250 /*
251  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
252  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
253  *
254  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
255  * defer the restoration of TSC_AUX until the CPU returns to userspace.
256  */
257 static int tsc_aux_uret_slot __read_mostly = -1;
258
259 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
260
261 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
262 #define MSRS_RANGE_SIZE 2048
263 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
264
265 u32 svm_msrpm_offset(u32 msr)
266 {
267         u32 offset;
268         int i;
269
270         for (i = 0; i < NUM_MSR_MAPS; i++) {
271                 if (msr < msrpm_ranges[i] ||
272                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
273                         continue;
274
275                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
276                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
277
278                 /* Now we have the u8 offset - but need the u32 offset */
279                 return offset / 4;
280         }
281
282         /* MSR not in any range */
283         return MSR_INVALID;
284 }
285
286 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
287
288 static int get_npt_level(void)
289 {
290 #ifdef CONFIG_X86_64
291         return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
292 #else
293         return PT32E_ROOT_LEVEL;
294 #endif
295 }
296
297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
298 {
299         struct vcpu_svm *svm = to_svm(vcpu);
300         u64 old_efer = vcpu->arch.efer;
301         vcpu->arch.efer = efer;
302
303         if (!npt_enabled) {
304                 /* Shadow paging assumes NX to be available.  */
305                 efer |= EFER_NX;
306
307                 if (!(efer & EFER_LMA))
308                         efer &= ~EFER_LME;
309         }
310
311         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
312                 if (!(efer & EFER_SVME)) {
313                         svm_leave_nested(vcpu);
314                         svm_set_gif(svm, true);
315                         /* #GP intercept is still needed for vmware backdoor */
316                         if (!enable_vmware_backdoor)
317                                 clr_exception_intercept(svm, GP_VECTOR);
318
319                         /*
320                          * Free the nested guest state, unless we are in SMM.
321                          * In this case we will return to the nested guest
322                          * as soon as we leave SMM.
323                          */
324                         if (!is_smm(vcpu))
325                                 svm_free_nested(svm);
326
327                 } else {
328                         int ret = svm_allocate_nested(svm);
329
330                         if (ret) {
331                                 vcpu->arch.efer = old_efer;
332                                 return ret;
333                         }
334
335                         /*
336                          * Never intercept #GP for SEV guests, KVM can't
337                          * decrypt guest memory to workaround the erratum.
338                          */
339                         if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
340                                 set_exception_intercept(svm, GP_VECTOR);
341                 }
342         }
343
344         svm->vmcb->save.efer = efer | EFER_SVME;
345         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
346         return 0;
347 }
348
349 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
350 {
351         struct vcpu_svm *svm = to_svm(vcpu);
352         u32 ret = 0;
353
354         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
355                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
356         return ret;
357 }
358
359 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
360 {
361         struct vcpu_svm *svm = to_svm(vcpu);
362
363         if (mask == 0)
364                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
365         else
366                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
367
368 }
369
370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
371                                            bool commit_side_effects)
372 {
373         struct vcpu_svm *svm = to_svm(vcpu);
374         unsigned long old_rflags;
375
376         /*
377          * SEV-ES does not expose the next RIP. The RIP update is controlled by
378          * the type of exit and the #VC handler in the guest.
379          */
380         if (sev_es_guest(vcpu->kvm))
381                 goto done;
382
383         if (nrips && svm->vmcb->control.next_rip != 0) {
384                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
385                 svm->next_rip = svm->vmcb->control.next_rip;
386         }
387
388         if (!svm->next_rip) {
389                 if (unlikely(!commit_side_effects))
390                         old_rflags = svm->vmcb->save.rflags;
391
392                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
393                         return 0;
394
395                 if (unlikely(!commit_side_effects))
396                         svm->vmcb->save.rflags = old_rflags;
397         } else {
398                 kvm_rip_write(vcpu, svm->next_rip);
399         }
400
401 done:
402         if (likely(commit_side_effects))
403                 svm_set_interrupt_shadow(vcpu, 0);
404
405         return 1;
406 }
407
408 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
409 {
410         return __svm_skip_emulated_instruction(vcpu, true);
411 }
412
413 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
414 {
415         unsigned long rip, old_rip = kvm_rip_read(vcpu);
416         struct vcpu_svm *svm = to_svm(vcpu);
417
418         /*
419          * Due to architectural shortcomings, the CPU doesn't always provide
420          * NextRIP, e.g. if KVM intercepted an exception that occurred while
421          * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
422          * the instruction even if NextRIP is supported to acquire the next
423          * RIP so that it can be shoved into the NextRIP field, otherwise
424          * hardware will fail to advance guest RIP during event injection.
425          * Drop the exception/interrupt if emulation fails and effectively
426          * retry the instruction, it's the least awful option.  If NRIPS is
427          * in use, the skip must not commit any side effects such as clearing
428          * the interrupt shadow or RFLAGS.RF.
429          */
430         if (!__svm_skip_emulated_instruction(vcpu, !nrips))
431                 return -EIO;
432
433         rip = kvm_rip_read(vcpu);
434
435         /*
436          * Save the injection information, even when using next_rip, as the
437          * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
438          * doesn't complete due to a VM-Exit occurring while the CPU is
439          * vectoring the event.   Decoding the instruction isn't guaranteed to
440          * work as there may be no backing instruction, e.g. if the event is
441          * being injected by L1 for L2, or if the guest is patching INT3 into
442          * a different instruction.
443          */
444         svm->soft_int_injected = true;
445         svm->soft_int_csbase = svm->vmcb->save.cs.base;
446         svm->soft_int_old_rip = old_rip;
447         svm->soft_int_next_rip = rip;
448
449         if (nrips)
450                 kvm_rip_write(vcpu, old_rip);
451
452         if (static_cpu_has(X86_FEATURE_NRIPS))
453                 svm->vmcb->control.next_rip = rip;
454
455         return 0;
456 }
457
458 static void svm_inject_exception(struct kvm_vcpu *vcpu)
459 {
460         struct kvm_queued_exception *ex = &vcpu->arch.exception;
461         struct vcpu_svm *svm = to_svm(vcpu);
462
463         kvm_deliver_exception_payload(vcpu, ex);
464
465         if (kvm_exception_is_soft(ex->vector) &&
466             svm_update_soft_interrupt_rip(vcpu))
467                 return;
468
469         svm->vmcb->control.event_inj = ex->vector
470                 | SVM_EVTINJ_VALID
471                 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
472                 | SVM_EVTINJ_TYPE_EXEPT;
473         svm->vmcb->control.event_inj_err = ex->error_code;
474 }
475
476 static void svm_init_erratum_383(void)
477 {
478         u32 low, high;
479         int err;
480         u64 val;
481
482         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
483                 return;
484
485         /* Use _safe variants to not break nested virtualization */
486         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
487         if (err)
488                 return;
489
490         val |= (1ULL << 47);
491
492         low  = lower_32_bits(val);
493         high = upper_32_bits(val);
494
495         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
496
497         erratum_383_found = true;
498 }
499
500 static void svm_init_osvw(struct kvm_vcpu *vcpu)
501 {
502         /*
503          * Guests should see errata 400 and 415 as fixed (assuming that
504          * HLT and IO instructions are intercepted).
505          */
506         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
507         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
508
509         /*
510          * By increasing VCPU's osvw.length to 3 we are telling the guest that
511          * all osvw.status bits inside that length, including bit 0 (which is
512          * reserved for erratum 298), are valid. However, if host processor's
513          * osvw_len is 0 then osvw_status[0] carries no information. We need to
514          * be conservative here and therefore we tell the guest that erratum 298
515          * is present (because we really don't know).
516          */
517         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
518                 vcpu->arch.osvw.status |= 1;
519 }
520
521 static int has_svm(void)
522 {
523         const char *msg;
524
525         if (!cpu_has_svm(&msg)) {
526                 printk(KERN_INFO "has_svm: %s\n", msg);
527                 return 0;
528         }
529
530         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
531                 pr_info("KVM is unsupported when running as an SEV guest\n");
532                 return 0;
533         }
534
535         return 1;
536 }
537
538 void __svm_write_tsc_multiplier(u64 multiplier)
539 {
540         preempt_disable();
541
542         if (multiplier == __this_cpu_read(current_tsc_ratio))
543                 goto out;
544
545         wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
546         __this_cpu_write(current_tsc_ratio, multiplier);
547 out:
548         preempt_enable();
549 }
550
551 static void svm_hardware_disable(void)
552 {
553         /* Make sure we clean up behind us */
554         if (tsc_scaling)
555                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
556
557         cpu_svm_disable();
558
559         amd_pmu_disable_virt();
560 }
561
562 static int svm_hardware_enable(void)
563 {
564
565         struct svm_cpu_data *sd;
566         uint64_t efer;
567         struct desc_struct *gdt;
568         int me = raw_smp_processor_id();
569
570         rdmsrl(MSR_EFER, efer);
571         if (efer & EFER_SVME)
572                 return -EBUSY;
573
574         if (!has_svm()) {
575                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
576                 return -EINVAL;
577         }
578         sd = per_cpu_ptr(&svm_data, me);
579         sd->asid_generation = 1;
580         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
581         sd->next_asid = sd->max_asid + 1;
582         sd->min_asid = max_sev_asid + 1;
583
584         gdt = get_current_gdt_rw();
585         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
586
587         wrmsrl(MSR_EFER, efer | EFER_SVME);
588
589         wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
590
591         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
592                 /*
593                  * Set the default value, even if we don't use TSC scaling
594                  * to avoid having stale value in the msr
595                  */
596                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
597         }
598
599
600         /*
601          * Get OSVW bits.
602          *
603          * Note that it is possible to have a system with mixed processor
604          * revisions and therefore different OSVW bits. If bits are not the same
605          * on different processors then choose the worst case (i.e. if erratum
606          * is present on one processor and not on another then assume that the
607          * erratum is present everywhere).
608          */
609         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
610                 uint64_t len, status = 0;
611                 int err;
612
613                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
614                 if (!err)
615                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
616                                                       &err);
617
618                 if (err)
619                         osvw_status = osvw_len = 0;
620                 else {
621                         if (len < osvw_len)
622                                 osvw_len = len;
623                         osvw_status |= status;
624                         osvw_status &= (1ULL << osvw_len) - 1;
625                 }
626         } else
627                 osvw_status = osvw_len = 0;
628
629         svm_init_erratum_383();
630
631         amd_pmu_enable_virt();
632
633         return 0;
634 }
635
636 static void svm_cpu_uninit(int cpu)
637 {
638         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
639
640         if (!sd->save_area)
641                 return;
642
643         kfree(sd->sev_vmcbs);
644         __free_page(sd->save_area);
645         sd->save_area_pa = 0;
646         sd->save_area = NULL;
647 }
648
649 static int svm_cpu_init(int cpu)
650 {
651         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
652         int ret = -ENOMEM;
653
654         memset(sd, 0, sizeof(struct svm_cpu_data));
655         sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
656         if (!sd->save_area)
657                 return ret;
658
659         ret = sev_cpu_init(sd);
660         if (ret)
661                 goto free_save_area;
662
663         sd->save_area_pa = __sme_page_pa(sd->save_area);
664         return 0;
665
666 free_save_area:
667         __free_page(sd->save_area);
668         sd->save_area = NULL;
669         return ret;
670
671 }
672
673 static int direct_access_msr_slot(u32 msr)
674 {
675         u32 i;
676
677         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
678                 if (direct_access_msrs[i].index == msr)
679                         return i;
680
681         return -ENOENT;
682 }
683
684 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
685                                      int write)
686 {
687         struct vcpu_svm *svm = to_svm(vcpu);
688         int slot = direct_access_msr_slot(msr);
689
690         if (slot == -ENOENT)
691                 return;
692
693         /* Set the shadow bitmaps to the desired intercept states */
694         if (read)
695                 set_bit(slot, svm->shadow_msr_intercept.read);
696         else
697                 clear_bit(slot, svm->shadow_msr_intercept.read);
698
699         if (write)
700                 set_bit(slot, svm->shadow_msr_intercept.write);
701         else
702                 clear_bit(slot, svm->shadow_msr_intercept.write);
703 }
704
705 static bool valid_msr_intercept(u32 index)
706 {
707         return direct_access_msr_slot(index) != -ENOENT;
708 }
709
710 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
711 {
712         u8 bit_write;
713         unsigned long tmp;
714         u32 offset;
715         u32 *msrpm;
716
717         /*
718          * For non-nested case:
719          * If the L01 MSR bitmap does not intercept the MSR, then we need to
720          * save it.
721          *
722          * For nested case:
723          * If the L02 MSR bitmap does not intercept the MSR, then we need to
724          * save it.
725          */
726         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
727                                       to_svm(vcpu)->msrpm;
728
729         offset    = svm_msrpm_offset(msr);
730         bit_write = 2 * (msr & 0x0f) + 1;
731         tmp       = msrpm[offset];
732
733         BUG_ON(offset == MSR_INVALID);
734
735         return !!test_bit(bit_write,  &tmp);
736 }
737
738 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
739                                         u32 msr, int read, int write)
740 {
741         struct vcpu_svm *svm = to_svm(vcpu);
742         u8 bit_read, bit_write;
743         unsigned long tmp;
744         u32 offset;
745
746         /*
747          * If this warning triggers extend the direct_access_msrs list at the
748          * beginning of the file
749          */
750         WARN_ON(!valid_msr_intercept(msr));
751
752         /* Enforce non allowed MSRs to trap */
753         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
754                 read = 0;
755
756         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
757                 write = 0;
758
759         offset    = svm_msrpm_offset(msr);
760         bit_read  = 2 * (msr & 0x0f);
761         bit_write = 2 * (msr & 0x0f) + 1;
762         tmp       = msrpm[offset];
763
764         BUG_ON(offset == MSR_INVALID);
765
766         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
767         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
768
769         msrpm[offset] = tmp;
770
771         svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
772         svm->nested.force_msr_bitmap_recalc = true;
773 }
774
775 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
776                           int read, int write)
777 {
778         set_shadow_msr_intercept(vcpu, msr, read, write);
779         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
780 }
781
782 u32 *svm_vcpu_alloc_msrpm(void)
783 {
784         unsigned int order = get_order(MSRPM_SIZE);
785         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
786         u32 *msrpm;
787
788         if (!pages)
789                 return NULL;
790
791         msrpm = page_address(pages);
792         memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
793
794         return msrpm;
795 }
796
797 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
798 {
799         int i;
800
801         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
802                 if (!direct_access_msrs[i].always)
803                         continue;
804                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
805         }
806 }
807
808 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
809 {
810         int i;
811
812         if (intercept == svm->x2avic_msrs_intercepted)
813                 return;
814
815         if (avic_mode != AVIC_MODE_X2 ||
816             !apic_x2apic_mode(svm->vcpu.arch.apic))
817                 return;
818
819         for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
820                 int index = direct_access_msrs[i].index;
821
822                 if ((index < APIC_BASE_MSR) ||
823                     (index > APIC_BASE_MSR + 0xff))
824                         continue;
825                 set_msr_interception(&svm->vcpu, svm->msrpm, index,
826                                      !intercept, !intercept);
827         }
828
829         svm->x2avic_msrs_intercepted = intercept;
830 }
831
832 void svm_vcpu_free_msrpm(u32 *msrpm)
833 {
834         __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
835 }
836
837 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
838 {
839         struct vcpu_svm *svm = to_svm(vcpu);
840         u32 i;
841
842         /*
843          * Set intercept permissions for all direct access MSRs again. They
844          * will automatically get filtered through the MSR filter, so we are
845          * back in sync after this.
846          */
847         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
848                 u32 msr = direct_access_msrs[i].index;
849                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
850                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
851
852                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
853         }
854 }
855
856 static void add_msr_offset(u32 offset)
857 {
858         int i;
859
860         for (i = 0; i < MSRPM_OFFSETS; ++i) {
861
862                 /* Offset already in list? */
863                 if (msrpm_offsets[i] == offset)
864                         return;
865
866                 /* Slot used by another offset? */
867                 if (msrpm_offsets[i] != MSR_INVALID)
868                         continue;
869
870                 /* Add offset to list */
871                 msrpm_offsets[i] = offset;
872
873                 return;
874         }
875
876         /*
877          * If this BUG triggers the msrpm_offsets table has an overflow. Just
878          * increase MSRPM_OFFSETS in this case.
879          */
880         BUG();
881 }
882
883 static void init_msrpm_offsets(void)
884 {
885         int i;
886
887         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
888
889         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
890                 u32 offset;
891
892                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
893                 BUG_ON(offset == MSR_INVALID);
894
895                 add_msr_offset(offset);
896         }
897 }
898
899 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
900 {
901         to_vmcb->save.dbgctl            = from_vmcb->save.dbgctl;
902         to_vmcb->save.br_from           = from_vmcb->save.br_from;
903         to_vmcb->save.br_to             = from_vmcb->save.br_to;
904         to_vmcb->save.last_excp_from    = from_vmcb->save.last_excp_from;
905         to_vmcb->save.last_excp_to      = from_vmcb->save.last_excp_to;
906
907         vmcb_mark_dirty(to_vmcb, VMCB_LBR);
908 }
909
910 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
911 {
912         struct vcpu_svm *svm = to_svm(vcpu);
913
914         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
915         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
916         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
917         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
918         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
919
920         /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
921         if (is_guest_mode(vcpu))
922                 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
923 }
924
925 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
926 {
927         struct vcpu_svm *svm = to_svm(vcpu);
928
929         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
930         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
931         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
932         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
933         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
934
935         /*
936          * Move the LBR msrs back to the vmcb01 to avoid copying them
937          * on nested guest entries.
938          */
939         if (is_guest_mode(vcpu))
940                 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
941 }
942
943 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
944 {
945         /*
946          * If the LBR virtualization is disabled, the LBR msrs are always
947          * kept in the vmcb01 to avoid copying them on nested guest entries.
948          *
949          * If nested, and the LBR virtualization is enabled/disabled, the msrs
950          * are moved between the vmcb01 and vmcb02 as needed.
951          */
952         struct vmcb *vmcb =
953                 (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
954                         svm->vmcb : svm->vmcb01.ptr;
955
956         switch (index) {
957         case MSR_IA32_DEBUGCTLMSR:
958                 return vmcb->save.dbgctl;
959         case MSR_IA32_LASTBRANCHFROMIP:
960                 return vmcb->save.br_from;
961         case MSR_IA32_LASTBRANCHTOIP:
962                 return vmcb->save.br_to;
963         case MSR_IA32_LASTINTFROMIP:
964                 return vmcb->save.last_excp_from;
965         case MSR_IA32_LASTINTTOIP:
966                 return vmcb->save.last_excp_to;
967         default:
968                 KVM_BUG(false, svm->vcpu.kvm,
969                         "%s: Unknown MSR 0x%x", __func__, index);
970                 return 0;
971         }
972 }
973
974 void svm_update_lbrv(struct kvm_vcpu *vcpu)
975 {
976         struct vcpu_svm *svm = to_svm(vcpu);
977
978         bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
979                                            DEBUGCTLMSR_LBR;
980
981         bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
982                                       LBR_CTL_ENABLE_MASK);
983
984         if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
985                 if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
986                         enable_lbrv = true;
987
988         if (enable_lbrv == current_enable_lbrv)
989                 return;
990
991         if (enable_lbrv)
992                 svm_enable_lbrv(vcpu);
993         else
994                 svm_disable_lbrv(vcpu);
995 }
996
997 void disable_nmi_singlestep(struct vcpu_svm *svm)
998 {
999         svm->nmi_singlestep = false;
1000
1001         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1002                 /* Clear our flags if they were not set by the guest */
1003                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1004                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1005                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1006                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1007         }
1008 }
1009
1010 static void grow_ple_window(struct kvm_vcpu *vcpu)
1011 {
1012         struct vcpu_svm *svm = to_svm(vcpu);
1013         struct vmcb_control_area *control = &svm->vmcb->control;
1014         int old = control->pause_filter_count;
1015
1016         if (kvm_pause_in_guest(vcpu->kvm))
1017                 return;
1018
1019         control->pause_filter_count = __grow_ple_window(old,
1020                                                         pause_filter_count,
1021                                                         pause_filter_count_grow,
1022                                                         pause_filter_count_max);
1023
1024         if (control->pause_filter_count != old) {
1025                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1026                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1027                                             control->pause_filter_count, old);
1028         }
1029 }
1030
1031 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1032 {
1033         struct vcpu_svm *svm = to_svm(vcpu);
1034         struct vmcb_control_area *control = &svm->vmcb->control;
1035         int old = control->pause_filter_count;
1036
1037         if (kvm_pause_in_guest(vcpu->kvm))
1038                 return;
1039
1040         control->pause_filter_count =
1041                                 __shrink_ple_window(old,
1042                                                     pause_filter_count,
1043                                                     pause_filter_count_shrink,
1044                                                     pause_filter_count);
1045         if (control->pause_filter_count != old) {
1046                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1047                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1048                                             control->pause_filter_count, old);
1049         }
1050 }
1051
1052 static void svm_hardware_unsetup(void)
1053 {
1054         int cpu;
1055
1056         sev_hardware_unsetup();
1057
1058         for_each_possible_cpu(cpu)
1059                 svm_cpu_uninit(cpu);
1060
1061         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1062         get_order(IOPM_SIZE));
1063         iopm_base = 0;
1064 }
1065
1066 static void init_seg(struct vmcb_seg *seg)
1067 {
1068         seg->selector = 0;
1069         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1070                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1071         seg->limit = 0xffff;
1072         seg->base = 0;
1073 }
1074
1075 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1076 {
1077         seg->selector = 0;
1078         seg->attrib = SVM_SELECTOR_P_MASK | type;
1079         seg->limit = 0xffff;
1080         seg->base = 0;
1081 }
1082
1083 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1084 {
1085         struct vcpu_svm *svm = to_svm(vcpu);
1086
1087         return svm->nested.ctl.tsc_offset;
1088 }
1089
1090 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1091 {
1092         struct vcpu_svm *svm = to_svm(vcpu);
1093
1094         return svm->tsc_ratio_msr;
1095 }
1096
1097 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1098 {
1099         struct vcpu_svm *svm = to_svm(vcpu);
1100
1101         svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1102         svm->vmcb->control.tsc_offset = offset;
1103         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1104 }
1105
1106 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1107 {
1108         __svm_write_tsc_multiplier(multiplier);
1109 }
1110
1111
1112 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1113 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1114                                               struct vcpu_svm *svm)
1115 {
1116         /*
1117          * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1118          * roots, or if INVPCID is disabled in the guest to inject #UD.
1119          */
1120         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1121                 if (!npt_enabled ||
1122                     !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1123                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1124                 else
1125                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1126         }
1127
1128         if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1129                 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1130                         svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1131                 else
1132                         svm_set_intercept(svm, INTERCEPT_RDTSCP);
1133         }
1134 }
1135
1136 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1137 {
1138         struct vcpu_svm *svm = to_svm(vcpu);
1139
1140         if (guest_cpuid_is_intel(vcpu)) {
1141                 /*
1142                  * We must intercept SYSENTER_EIP and SYSENTER_ESP
1143                  * accesses because the processor only stores 32 bits.
1144                  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1145                  */
1146                 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1147                 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1148                 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1149
1150                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1151                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1152
1153                 svm->v_vmload_vmsave_enabled = false;
1154         } else {
1155                 /*
1156                  * If hardware supports Virtual VMLOAD VMSAVE then enable it
1157                  * in VMCB and clear intercepts to avoid #VMEXIT.
1158                  */
1159                 if (vls) {
1160                         svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1161                         svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1162                         svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1163                 }
1164                 /* No need to intercept these MSRs */
1165                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1166                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1167         }
1168 }
1169
1170 static void init_vmcb(struct kvm_vcpu *vcpu)
1171 {
1172         struct vcpu_svm *svm = to_svm(vcpu);
1173         struct vmcb *vmcb = svm->vmcb01.ptr;
1174         struct vmcb_control_area *control = &vmcb->control;
1175         struct vmcb_save_area *save = &vmcb->save;
1176
1177         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1178         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1179         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1180         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1181         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1182         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1183         if (!kvm_vcpu_apicv_active(vcpu))
1184                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1185
1186         set_dr_intercepts(svm);
1187
1188         set_exception_intercept(svm, PF_VECTOR);
1189         set_exception_intercept(svm, UD_VECTOR);
1190         set_exception_intercept(svm, MC_VECTOR);
1191         set_exception_intercept(svm, AC_VECTOR);
1192         set_exception_intercept(svm, DB_VECTOR);
1193         /*
1194          * Guest access to VMware backdoor ports could legitimately
1195          * trigger #GP because of TSS I/O permission bitmap.
1196          * We intercept those #GP and allow access to them anyway
1197          * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1198          * decrypt guest memory to decode the faulting instruction.
1199          */
1200         if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1201                 set_exception_intercept(svm, GP_VECTOR);
1202
1203         svm_set_intercept(svm, INTERCEPT_INTR);
1204         svm_set_intercept(svm, INTERCEPT_NMI);
1205
1206         if (intercept_smi)
1207                 svm_set_intercept(svm, INTERCEPT_SMI);
1208
1209         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1210         svm_set_intercept(svm, INTERCEPT_RDPMC);
1211         svm_set_intercept(svm, INTERCEPT_CPUID);
1212         svm_set_intercept(svm, INTERCEPT_INVD);
1213         svm_set_intercept(svm, INTERCEPT_INVLPG);
1214         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1215         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1216         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1217         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1218         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1219         svm_set_intercept(svm, INTERCEPT_VMRUN);
1220         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1221         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1222         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1223         svm_set_intercept(svm, INTERCEPT_STGI);
1224         svm_set_intercept(svm, INTERCEPT_CLGI);
1225         svm_set_intercept(svm, INTERCEPT_SKINIT);
1226         svm_set_intercept(svm, INTERCEPT_WBINVD);
1227         svm_set_intercept(svm, INTERCEPT_XSETBV);
1228         svm_set_intercept(svm, INTERCEPT_RDPRU);
1229         svm_set_intercept(svm, INTERCEPT_RSM);
1230
1231         if (!kvm_mwait_in_guest(vcpu->kvm)) {
1232                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1233                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1234         }
1235
1236         if (!kvm_hlt_in_guest(vcpu->kvm))
1237                 svm_set_intercept(svm, INTERCEPT_HLT);
1238
1239         control->iopm_base_pa = __sme_set(iopm_base);
1240         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1241         control->int_ctl = V_INTR_MASKING_MASK;
1242
1243         init_seg(&save->es);
1244         init_seg(&save->ss);
1245         init_seg(&save->ds);
1246         init_seg(&save->fs);
1247         init_seg(&save->gs);
1248
1249         save->cs.selector = 0xf000;
1250         save->cs.base = 0xffff0000;
1251         /* Executable/Readable Code Segment */
1252         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1253                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1254         save->cs.limit = 0xffff;
1255
1256         save->gdtr.base = 0;
1257         save->gdtr.limit = 0xffff;
1258         save->idtr.base = 0;
1259         save->idtr.limit = 0xffff;
1260
1261         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1262         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1263
1264         if (npt_enabled) {
1265                 /* Setup VMCB for Nested Paging */
1266                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1267                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1268                 clr_exception_intercept(svm, PF_VECTOR);
1269                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1270                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1271                 save->g_pat = vcpu->arch.pat;
1272                 save->cr3 = 0;
1273         }
1274         svm->current_vmcb->asid_generation = 0;
1275         svm->asid = 0;
1276
1277         svm->nested.vmcb12_gpa = INVALID_GPA;
1278         svm->nested.last_vmcb12_gpa = INVALID_GPA;
1279
1280         if (!kvm_pause_in_guest(vcpu->kvm)) {
1281                 control->pause_filter_count = pause_filter_count;
1282                 if (pause_filter_thresh)
1283                         control->pause_filter_thresh = pause_filter_thresh;
1284                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1285         } else {
1286                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1287         }
1288
1289         svm_recalc_instruction_intercepts(vcpu, svm);
1290
1291         /*
1292          * If the host supports V_SPEC_CTRL then disable the interception
1293          * of MSR_IA32_SPEC_CTRL.
1294          */
1295         if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1296                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1297
1298         if (kvm_vcpu_apicv_active(vcpu))
1299                 avic_init_vmcb(svm, vmcb);
1300
1301         if (vgif) {
1302                 svm_clr_intercept(svm, INTERCEPT_STGI);
1303                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1304                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1305         }
1306
1307         if (sev_guest(vcpu->kvm))
1308                 sev_init_vmcb(svm);
1309
1310         svm_hv_init_vmcb(vmcb);
1311         init_vmcb_after_set_cpuid(vcpu);
1312
1313         vmcb_mark_all_dirty(vmcb);
1314
1315         enable_gif(svm);
1316 }
1317
1318 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1319 {
1320         struct vcpu_svm *svm = to_svm(vcpu);
1321
1322         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1323
1324         svm_init_osvw(vcpu);
1325         vcpu->arch.microcode_version = 0x01000065;
1326         svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1327
1328         if (sev_es_guest(vcpu->kvm))
1329                 sev_es_vcpu_reset(svm);
1330 }
1331
1332 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1333 {
1334         struct vcpu_svm *svm = to_svm(vcpu);
1335
1336         svm->spec_ctrl = 0;
1337         svm->virt_spec_ctrl = 0;
1338
1339         init_vmcb(vcpu);
1340
1341         if (!init_event)
1342                 __svm_vcpu_reset(vcpu);
1343 }
1344
1345 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1346 {
1347         svm->current_vmcb = target_vmcb;
1348         svm->vmcb = target_vmcb->ptr;
1349 }
1350
1351 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1352 {
1353         struct vcpu_svm *svm;
1354         struct page *vmcb01_page;
1355         struct page *vmsa_page = NULL;
1356         int err;
1357
1358         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1359         svm = to_svm(vcpu);
1360
1361         err = -ENOMEM;
1362         vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1363         if (!vmcb01_page)
1364                 goto out;
1365
1366         if (sev_es_guest(vcpu->kvm)) {
1367                 /*
1368                  * SEV-ES guests require a separate VMSA page used to contain
1369                  * the encrypted register state of the guest.
1370                  */
1371                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1372                 if (!vmsa_page)
1373                         goto error_free_vmcb_page;
1374
1375                 /*
1376                  * SEV-ES guests maintain an encrypted version of their FPU
1377                  * state which is restored and saved on VMRUN and VMEXIT.
1378                  * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1379                  * do xsave/xrstor on it.
1380                  */
1381                 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1382         }
1383
1384         err = avic_init_vcpu(svm);
1385         if (err)
1386                 goto error_free_vmsa_page;
1387
1388         svm->msrpm = svm_vcpu_alloc_msrpm();
1389         if (!svm->msrpm) {
1390                 err = -ENOMEM;
1391                 goto error_free_vmsa_page;
1392         }
1393
1394         svm->x2avic_msrs_intercepted = true;
1395
1396         svm->vmcb01.ptr = page_address(vmcb01_page);
1397         svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1398         svm_switch_vmcb(svm, &svm->vmcb01);
1399
1400         if (vmsa_page)
1401                 svm->sev_es.vmsa = page_address(vmsa_page);
1402
1403         svm->guest_state_loaded = false;
1404
1405         return 0;
1406
1407 error_free_vmsa_page:
1408         if (vmsa_page)
1409                 __free_page(vmsa_page);
1410 error_free_vmcb_page:
1411         __free_page(vmcb01_page);
1412 out:
1413         return err;
1414 }
1415
1416 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1417 {
1418         int i;
1419
1420         for_each_online_cpu(i)
1421                 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1422 }
1423
1424 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1425 {
1426         struct vcpu_svm *svm = to_svm(vcpu);
1427
1428         /*
1429          * The vmcb page can be recycled, causing a false negative in
1430          * svm_vcpu_load(). So, ensure that no logical CPU has this
1431          * vmcb page recorded as its current vmcb.
1432          */
1433         svm_clear_current_vmcb(svm->vmcb);
1434
1435         svm_leave_nested(vcpu);
1436         svm_free_nested(svm);
1437
1438         sev_free_vcpu(vcpu);
1439
1440         __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1441         __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1442 }
1443
1444 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1445 {
1446         struct vcpu_svm *svm = to_svm(vcpu);
1447         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1448
1449         if (sev_es_guest(vcpu->kvm))
1450                 sev_es_unmap_ghcb(svm);
1451
1452         if (svm->guest_state_loaded)
1453                 return;
1454
1455         /*
1456          * Save additional host state that will be restored on VMEXIT (sev-es)
1457          * or subsequent vmload of host save area.
1458          */
1459         vmsave(sd->save_area_pa);
1460         if (sev_es_guest(vcpu->kvm)) {
1461                 struct sev_es_save_area *hostsa;
1462                 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1463
1464                 sev_es_prepare_switch_to_guest(hostsa);
1465         }
1466
1467         if (tsc_scaling)
1468                 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1469
1470         if (likely(tsc_aux_uret_slot >= 0))
1471                 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1472
1473         svm->guest_state_loaded = true;
1474 }
1475
1476 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1477 {
1478         to_svm(vcpu)->guest_state_loaded = false;
1479 }
1480
1481 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1482 {
1483         struct vcpu_svm *svm = to_svm(vcpu);
1484         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1485
1486         if (sd->current_vmcb != svm->vmcb) {
1487                 sd->current_vmcb = svm->vmcb;
1488                 indirect_branch_prediction_barrier();
1489         }
1490         if (kvm_vcpu_apicv_active(vcpu))
1491                 avic_vcpu_load(vcpu, cpu);
1492 }
1493
1494 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1495 {
1496         if (kvm_vcpu_apicv_active(vcpu))
1497                 avic_vcpu_put(vcpu);
1498
1499         svm_prepare_host_switch(vcpu);
1500
1501         ++vcpu->stat.host_state_reload;
1502 }
1503
1504 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1505 {
1506         struct vcpu_svm *svm = to_svm(vcpu);
1507         unsigned long rflags = svm->vmcb->save.rflags;
1508
1509         if (svm->nmi_singlestep) {
1510                 /* Hide our flags if they were not set by the guest */
1511                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1512                         rflags &= ~X86_EFLAGS_TF;
1513                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1514                         rflags &= ~X86_EFLAGS_RF;
1515         }
1516         return rflags;
1517 }
1518
1519 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1520 {
1521         if (to_svm(vcpu)->nmi_singlestep)
1522                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1523
1524        /*
1525         * Any change of EFLAGS.VM is accompanied by a reload of SS
1526         * (caused by either a task switch or an inter-privilege IRET),
1527         * so we do not need to update the CPL here.
1528         */
1529         to_svm(vcpu)->vmcb->save.rflags = rflags;
1530 }
1531
1532 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1533 {
1534         struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1535
1536         return sev_es_guest(vcpu->kvm)
1537                 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1538                 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1539 }
1540
1541 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1542 {
1543         kvm_register_mark_available(vcpu, reg);
1544
1545         switch (reg) {
1546         case VCPU_EXREG_PDPTR:
1547                 /*
1548                  * When !npt_enabled, mmu->pdptrs[] is already available since
1549                  * it is always updated per SDM when moving to CRs.
1550                  */
1551                 if (npt_enabled)
1552                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1553                 break;
1554         default:
1555                 KVM_BUG_ON(1, vcpu->kvm);
1556         }
1557 }
1558
1559 static void svm_set_vintr(struct vcpu_svm *svm)
1560 {
1561         struct vmcb_control_area *control;
1562
1563         /*
1564          * The following fields are ignored when AVIC is enabled
1565          */
1566         WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1567
1568         svm_set_intercept(svm, INTERCEPT_VINTR);
1569
1570         /*
1571          * This is just a dummy VINTR to actually cause a vmexit to happen.
1572          * Actual injection of virtual interrupts happens through EVENTINJ.
1573          */
1574         control = &svm->vmcb->control;
1575         control->int_vector = 0x0;
1576         control->int_ctl &= ~V_INTR_PRIO_MASK;
1577         control->int_ctl |= V_IRQ_MASK |
1578                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1579         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1580 }
1581
1582 static void svm_clear_vintr(struct vcpu_svm *svm)
1583 {
1584         svm_clr_intercept(svm, INTERCEPT_VINTR);
1585
1586         /* Drop int_ctl fields related to VINTR injection.  */
1587         svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1588         if (is_guest_mode(&svm->vcpu)) {
1589                 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1590
1591                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1592                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1593
1594                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1595                         V_IRQ_INJECTION_BITS_MASK;
1596
1597                 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1598         }
1599
1600         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1601 }
1602
1603 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1604 {
1605         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1606         struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1607
1608         switch (seg) {
1609         case VCPU_SREG_CS: return &save->cs;
1610         case VCPU_SREG_DS: return &save->ds;
1611         case VCPU_SREG_ES: return &save->es;
1612         case VCPU_SREG_FS: return &save01->fs;
1613         case VCPU_SREG_GS: return &save01->gs;
1614         case VCPU_SREG_SS: return &save->ss;
1615         case VCPU_SREG_TR: return &save01->tr;
1616         case VCPU_SREG_LDTR: return &save01->ldtr;
1617         }
1618         BUG();
1619         return NULL;
1620 }
1621
1622 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1623 {
1624         struct vmcb_seg *s = svm_seg(vcpu, seg);
1625
1626         return s->base;
1627 }
1628
1629 static void svm_get_segment(struct kvm_vcpu *vcpu,
1630                             struct kvm_segment *var, int seg)
1631 {
1632         struct vmcb_seg *s = svm_seg(vcpu, seg);
1633
1634         var->base = s->base;
1635         var->limit = s->limit;
1636         var->selector = s->selector;
1637         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1638         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1639         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1640         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1641         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1642         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1643         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1644
1645         /*
1646          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1647          * However, the SVM spec states that the G bit is not observed by the
1648          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1649          * So let's synthesize a legal G bit for all segments, this helps
1650          * running KVM nested. It also helps cross-vendor migration, because
1651          * Intel's vmentry has a check on the 'G' bit.
1652          */
1653         var->g = s->limit > 0xfffff;
1654
1655         /*
1656          * AMD's VMCB does not have an explicit unusable field, so emulate it
1657          * for cross vendor migration purposes by "not present"
1658          */
1659         var->unusable = !var->present;
1660
1661         switch (seg) {
1662         case VCPU_SREG_TR:
1663                 /*
1664                  * Work around a bug where the busy flag in the tr selector
1665                  * isn't exposed
1666                  */
1667                 var->type |= 0x2;
1668                 break;
1669         case VCPU_SREG_DS:
1670         case VCPU_SREG_ES:
1671         case VCPU_SREG_FS:
1672         case VCPU_SREG_GS:
1673                 /*
1674                  * The accessed bit must always be set in the segment
1675                  * descriptor cache, although it can be cleared in the
1676                  * descriptor, the cached bit always remains at 1. Since
1677                  * Intel has a check on this, set it here to support
1678                  * cross-vendor migration.
1679                  */
1680                 if (!var->unusable)
1681                         var->type |= 0x1;
1682                 break;
1683         case VCPU_SREG_SS:
1684                 /*
1685                  * On AMD CPUs sometimes the DB bit in the segment
1686                  * descriptor is left as 1, although the whole segment has
1687                  * been made unusable. Clear it here to pass an Intel VMX
1688                  * entry check when cross vendor migrating.
1689                  */
1690                 if (var->unusable)
1691                         var->db = 0;
1692                 /* This is symmetric with svm_set_segment() */
1693                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1694                 break;
1695         }
1696 }
1697
1698 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1699 {
1700         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1701
1702         return save->cpl;
1703 }
1704
1705 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1706 {
1707         struct kvm_segment cs;
1708
1709         svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1710         *db = cs.db;
1711         *l = cs.l;
1712 }
1713
1714 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1715 {
1716         struct vcpu_svm *svm = to_svm(vcpu);
1717
1718         dt->size = svm->vmcb->save.idtr.limit;
1719         dt->address = svm->vmcb->save.idtr.base;
1720 }
1721
1722 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1723 {
1724         struct vcpu_svm *svm = to_svm(vcpu);
1725
1726         svm->vmcb->save.idtr.limit = dt->size;
1727         svm->vmcb->save.idtr.base = dt->address ;
1728         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1729 }
1730
1731 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1732 {
1733         struct vcpu_svm *svm = to_svm(vcpu);
1734
1735         dt->size = svm->vmcb->save.gdtr.limit;
1736         dt->address = svm->vmcb->save.gdtr.base;
1737 }
1738
1739 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1740 {
1741         struct vcpu_svm *svm = to_svm(vcpu);
1742
1743         svm->vmcb->save.gdtr.limit = dt->size;
1744         svm->vmcb->save.gdtr.base = dt->address ;
1745         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1746 }
1747
1748 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1749 {
1750         struct vcpu_svm *svm = to_svm(vcpu);
1751
1752         /*
1753          * For guests that don't set guest_state_protected, the cr3 update is
1754          * handled via kvm_mmu_load() while entering the guest. For guests
1755          * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1756          * VMCB save area now, since the save area will become the initial
1757          * contents of the VMSA, and future VMCB save area updates won't be
1758          * seen.
1759          */
1760         if (sev_es_guest(vcpu->kvm)) {
1761                 svm->vmcb->save.cr3 = cr3;
1762                 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1763         }
1764 }
1765
1766 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1767 {
1768         struct vcpu_svm *svm = to_svm(vcpu);
1769         u64 hcr0 = cr0;
1770         bool old_paging = is_paging(vcpu);
1771
1772 #ifdef CONFIG_X86_64
1773         if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1774                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1775                         vcpu->arch.efer |= EFER_LMA;
1776                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1777                 }
1778
1779                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1780                         vcpu->arch.efer &= ~EFER_LMA;
1781                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1782                 }
1783         }
1784 #endif
1785         vcpu->arch.cr0 = cr0;
1786
1787         if (!npt_enabled) {
1788                 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1789                 if (old_paging != is_paging(vcpu))
1790                         svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1791         }
1792
1793         /*
1794          * re-enable caching here because the QEMU bios
1795          * does not do it - this results in some delay at
1796          * reboot
1797          */
1798         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1799                 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1800
1801         svm->vmcb->save.cr0 = hcr0;
1802         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1803
1804         /*
1805          * SEV-ES guests must always keep the CR intercepts cleared. CR
1806          * tracking is done using the CR write traps.
1807          */
1808         if (sev_es_guest(vcpu->kvm))
1809                 return;
1810
1811         if (hcr0 == cr0) {
1812                 /* Selective CR0 write remains on.  */
1813                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1814                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1815         } else {
1816                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1817                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1818         }
1819 }
1820
1821 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1822 {
1823         return true;
1824 }
1825
1826 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1827 {
1828         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1829         unsigned long old_cr4 = vcpu->arch.cr4;
1830
1831         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1832                 svm_flush_tlb_current(vcpu);
1833
1834         vcpu->arch.cr4 = cr4;
1835         if (!npt_enabled) {
1836                 cr4 |= X86_CR4_PAE;
1837
1838                 if (!is_paging(vcpu))
1839                         cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1840         }
1841         cr4 |= host_cr4_mce;
1842         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1843         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1844
1845         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1846                 kvm_update_cpuid_runtime(vcpu);
1847 }
1848
1849 static void svm_set_segment(struct kvm_vcpu *vcpu,
1850                             struct kvm_segment *var, int seg)
1851 {
1852         struct vcpu_svm *svm = to_svm(vcpu);
1853         struct vmcb_seg *s = svm_seg(vcpu, seg);
1854
1855         s->base = var->base;
1856         s->limit = var->limit;
1857         s->selector = var->selector;
1858         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1859         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1860         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1861         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1862         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1863         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1864         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1865         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1866
1867         /*
1868          * This is always accurate, except if SYSRET returned to a segment
1869          * with SS.DPL != 3.  Intel does not have this quirk, and always
1870          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1871          * would entail passing the CPL to userspace and back.
1872          */
1873         if (seg == VCPU_SREG_SS)
1874                 /* This is symmetric with svm_get_segment() */
1875                 svm->vmcb->save.cpl = (var->dpl & 3);
1876
1877         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1878 }
1879
1880 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1881 {
1882         struct vcpu_svm *svm = to_svm(vcpu);
1883
1884         clr_exception_intercept(svm, BP_VECTOR);
1885
1886         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1887                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1888                         set_exception_intercept(svm, BP_VECTOR);
1889         }
1890 }
1891
1892 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1893 {
1894         if (sd->next_asid > sd->max_asid) {
1895                 ++sd->asid_generation;
1896                 sd->next_asid = sd->min_asid;
1897                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1898                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1899         }
1900
1901         svm->current_vmcb->asid_generation = sd->asid_generation;
1902         svm->asid = sd->next_asid++;
1903 }
1904
1905 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1906 {
1907         struct vmcb *vmcb = svm->vmcb;
1908
1909         if (svm->vcpu.arch.guest_state_protected)
1910                 return;
1911
1912         if (unlikely(value != vmcb->save.dr6)) {
1913                 vmcb->save.dr6 = value;
1914                 vmcb_mark_dirty(vmcb, VMCB_DR);
1915         }
1916 }
1917
1918 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1919 {
1920         struct vcpu_svm *svm = to_svm(vcpu);
1921
1922         if (vcpu->arch.guest_state_protected)
1923                 return;
1924
1925         get_debugreg(vcpu->arch.db[0], 0);
1926         get_debugreg(vcpu->arch.db[1], 1);
1927         get_debugreg(vcpu->arch.db[2], 2);
1928         get_debugreg(vcpu->arch.db[3], 3);
1929         /*
1930          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1931          * because db_interception might need it.  We can do it before vmentry.
1932          */
1933         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1934         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1935         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1936         set_dr_intercepts(svm);
1937 }
1938
1939 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1940 {
1941         struct vcpu_svm *svm = to_svm(vcpu);
1942
1943         if (vcpu->arch.guest_state_protected)
1944                 return;
1945
1946         svm->vmcb->save.dr7 = value;
1947         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1948 }
1949
1950 static int pf_interception(struct kvm_vcpu *vcpu)
1951 {
1952         struct vcpu_svm *svm = to_svm(vcpu);
1953
1954         u64 fault_address = svm->vmcb->control.exit_info_2;
1955         u64 error_code = svm->vmcb->control.exit_info_1;
1956
1957         return kvm_handle_page_fault(vcpu, error_code, fault_address,
1958                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1959                         svm->vmcb->control.insn_bytes : NULL,
1960                         svm->vmcb->control.insn_len);
1961 }
1962
1963 static int npf_interception(struct kvm_vcpu *vcpu)
1964 {
1965         struct vcpu_svm *svm = to_svm(vcpu);
1966
1967         u64 fault_address = svm->vmcb->control.exit_info_2;
1968         u64 error_code = svm->vmcb->control.exit_info_1;
1969
1970         trace_kvm_page_fault(vcpu, fault_address, error_code);
1971         return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1972                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1973                         svm->vmcb->control.insn_bytes : NULL,
1974                         svm->vmcb->control.insn_len);
1975 }
1976
1977 static int db_interception(struct kvm_vcpu *vcpu)
1978 {
1979         struct kvm_run *kvm_run = vcpu->run;
1980         struct vcpu_svm *svm = to_svm(vcpu);
1981
1982         if (!(vcpu->guest_debug &
1983               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1984                 !svm->nmi_singlestep) {
1985                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1986                 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1987                 return 1;
1988         }
1989
1990         if (svm->nmi_singlestep) {
1991                 disable_nmi_singlestep(svm);
1992                 /* Make sure we check for pending NMIs upon entry */
1993                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1994         }
1995
1996         if (vcpu->guest_debug &
1997             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1998                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1999                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2000                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2001                 kvm_run->debug.arch.pc =
2002                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2003                 kvm_run->debug.arch.exception = DB_VECTOR;
2004                 return 0;
2005         }
2006
2007         return 1;
2008 }
2009
2010 static int bp_interception(struct kvm_vcpu *vcpu)
2011 {
2012         struct vcpu_svm *svm = to_svm(vcpu);
2013         struct kvm_run *kvm_run = vcpu->run;
2014
2015         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2016         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2017         kvm_run->debug.arch.exception = BP_VECTOR;
2018         return 0;
2019 }
2020
2021 static int ud_interception(struct kvm_vcpu *vcpu)
2022 {
2023         return handle_ud(vcpu);
2024 }
2025
2026 static int ac_interception(struct kvm_vcpu *vcpu)
2027 {
2028         kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2029         return 1;
2030 }
2031
2032 static bool is_erratum_383(void)
2033 {
2034         int err, i;
2035         u64 value;
2036
2037         if (!erratum_383_found)
2038                 return false;
2039
2040         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2041         if (err)
2042                 return false;
2043
2044         /* Bit 62 may or may not be set for this mce */
2045         value &= ~(1ULL << 62);
2046
2047         if (value != 0xb600000000010015ULL)
2048                 return false;
2049
2050         /* Clear MCi_STATUS registers */
2051         for (i = 0; i < 6; ++i)
2052                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2053
2054         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2055         if (!err) {
2056                 u32 low, high;
2057
2058                 value &= ~(1ULL << 2);
2059                 low    = lower_32_bits(value);
2060                 high   = upper_32_bits(value);
2061
2062                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2063         }
2064
2065         /* Flush tlb to evict multi-match entries */
2066         __flush_tlb_all();
2067
2068         return true;
2069 }
2070
2071 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2072 {
2073         if (is_erratum_383()) {
2074                 /*
2075                  * Erratum 383 triggered. Guest state is corrupt so kill the
2076                  * guest.
2077                  */
2078                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2079
2080                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2081
2082                 return;
2083         }
2084
2085         /*
2086          * On an #MC intercept the MCE handler is not called automatically in
2087          * the host. So do it by hand here.
2088          */
2089         kvm_machine_check();
2090 }
2091
2092 static int mc_interception(struct kvm_vcpu *vcpu)
2093 {
2094         return 1;
2095 }
2096
2097 static int shutdown_interception(struct kvm_vcpu *vcpu)
2098 {
2099         struct kvm_run *kvm_run = vcpu->run;
2100         struct vcpu_svm *svm = to_svm(vcpu);
2101
2102         /*
2103          * The VM save area has already been encrypted so it
2104          * cannot be reinitialized - just terminate.
2105          */
2106         if (sev_es_guest(vcpu->kvm))
2107                 return -EINVAL;
2108
2109         /*
2110          * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2111          * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2112          * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2113          * userspace.  At a platform view, INIT is acceptable behavior as
2114          * there exist bare metal platforms that automatically INIT the CPU
2115          * in response to shutdown.
2116          */
2117         clear_page(svm->vmcb);
2118         kvm_vcpu_reset(vcpu, true);
2119
2120         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2121         return 0;
2122 }
2123
2124 static int io_interception(struct kvm_vcpu *vcpu)
2125 {
2126         struct vcpu_svm *svm = to_svm(vcpu);
2127         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2128         int size, in, string;
2129         unsigned port;
2130
2131         ++vcpu->stat.io_exits;
2132         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2133         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2134         port = io_info >> 16;
2135         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2136
2137         if (string) {
2138                 if (sev_es_guest(vcpu->kvm))
2139                         return sev_es_string_io(svm, size, port, in);
2140                 else
2141                         return kvm_emulate_instruction(vcpu, 0);
2142         }
2143
2144         svm->next_rip = svm->vmcb->control.exit_info_2;
2145
2146         return kvm_fast_pio(vcpu, size, port, in);
2147 }
2148
2149 static int nmi_interception(struct kvm_vcpu *vcpu)
2150 {
2151         return 1;
2152 }
2153
2154 static int smi_interception(struct kvm_vcpu *vcpu)
2155 {
2156         return 1;
2157 }
2158
2159 static int intr_interception(struct kvm_vcpu *vcpu)
2160 {
2161         ++vcpu->stat.irq_exits;
2162         return 1;
2163 }
2164
2165 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2166 {
2167         struct vcpu_svm *svm = to_svm(vcpu);
2168         struct vmcb *vmcb12;
2169         struct kvm_host_map map;
2170         int ret;
2171
2172         if (nested_svm_check_permissions(vcpu))
2173                 return 1;
2174
2175         ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2176         if (ret) {
2177                 if (ret == -EINVAL)
2178                         kvm_inject_gp(vcpu, 0);
2179                 return 1;
2180         }
2181
2182         vmcb12 = map.hva;
2183
2184         ret = kvm_skip_emulated_instruction(vcpu);
2185
2186         if (vmload) {
2187                 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2188                 svm->sysenter_eip_hi = 0;
2189                 svm->sysenter_esp_hi = 0;
2190         } else {
2191                 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2192         }
2193
2194         kvm_vcpu_unmap(vcpu, &map, true);
2195
2196         return ret;
2197 }
2198
2199 static int vmload_interception(struct kvm_vcpu *vcpu)
2200 {
2201         return vmload_vmsave_interception(vcpu, true);
2202 }
2203
2204 static int vmsave_interception(struct kvm_vcpu *vcpu)
2205 {
2206         return vmload_vmsave_interception(vcpu, false);
2207 }
2208
2209 static int vmrun_interception(struct kvm_vcpu *vcpu)
2210 {
2211         if (nested_svm_check_permissions(vcpu))
2212                 return 1;
2213
2214         return nested_svm_vmrun(vcpu);
2215 }
2216
2217 enum {
2218         NONE_SVM_INSTR,
2219         SVM_INSTR_VMRUN,
2220         SVM_INSTR_VMLOAD,
2221         SVM_INSTR_VMSAVE,
2222 };
2223
2224 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2225 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2226 {
2227         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2228
2229         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2230                 return NONE_SVM_INSTR;
2231
2232         switch (ctxt->modrm) {
2233         case 0xd8: /* VMRUN */
2234                 return SVM_INSTR_VMRUN;
2235         case 0xda: /* VMLOAD */
2236                 return SVM_INSTR_VMLOAD;
2237         case 0xdb: /* VMSAVE */
2238                 return SVM_INSTR_VMSAVE;
2239         default:
2240                 break;
2241         }
2242
2243         return NONE_SVM_INSTR;
2244 }
2245
2246 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2247 {
2248         const int guest_mode_exit_codes[] = {
2249                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2250                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2251                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2252         };
2253         int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2254                 [SVM_INSTR_VMRUN] = vmrun_interception,
2255                 [SVM_INSTR_VMLOAD] = vmload_interception,
2256                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2257         };
2258         struct vcpu_svm *svm = to_svm(vcpu);
2259         int ret;
2260
2261         if (is_guest_mode(vcpu)) {
2262                 /* Returns '1' or -errno on failure, '0' on success. */
2263                 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2264                 if (ret)
2265                         return ret;
2266                 return 1;
2267         }
2268         return svm_instr_handlers[opcode](vcpu);
2269 }
2270
2271 /*
2272  * #GP handling code. Note that #GP can be triggered under the following two
2273  * cases:
2274  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2275  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2276  *      regions (e.g. SMM memory on host).
2277  *   2) VMware backdoor
2278  */
2279 static int gp_interception(struct kvm_vcpu *vcpu)
2280 {
2281         struct vcpu_svm *svm = to_svm(vcpu);
2282         u32 error_code = svm->vmcb->control.exit_info_1;
2283         int opcode;
2284
2285         /* Both #GP cases have zero error_code */
2286         if (error_code)
2287                 goto reinject;
2288
2289         /* Decode the instruction for usage later */
2290         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2291                 goto reinject;
2292
2293         opcode = svm_instr_opcode(vcpu);
2294
2295         if (opcode == NONE_SVM_INSTR) {
2296                 if (!enable_vmware_backdoor)
2297                         goto reinject;
2298
2299                 /*
2300                  * VMware backdoor emulation on #GP interception only handles
2301                  * IN{S}, OUT{S}, and RDPMC.
2302                  */
2303                 if (!is_guest_mode(vcpu))
2304                         return kvm_emulate_instruction(vcpu,
2305                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2306         } else {
2307                 /* All SVM instructions expect page aligned RAX */
2308                 if (svm->vmcb->save.rax & ~PAGE_MASK)
2309                         goto reinject;
2310
2311                 return emulate_svm_instr(vcpu, opcode);
2312         }
2313
2314 reinject:
2315         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2316         return 1;
2317 }
2318
2319 void svm_set_gif(struct vcpu_svm *svm, bool value)
2320 {
2321         if (value) {
2322                 /*
2323                  * If VGIF is enabled, the STGI intercept is only added to
2324                  * detect the opening of the SMI/NMI window; remove it now.
2325                  * Likewise, clear the VINTR intercept, we will set it
2326                  * again while processing KVM_REQ_EVENT if needed.
2327                  */
2328                 if (vgif)
2329                         svm_clr_intercept(svm, INTERCEPT_STGI);
2330                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2331                         svm_clear_vintr(svm);
2332
2333                 enable_gif(svm);
2334                 if (svm->vcpu.arch.smi_pending ||
2335                     svm->vcpu.arch.nmi_pending ||
2336                     kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2337                     kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2338                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2339         } else {
2340                 disable_gif(svm);
2341
2342                 /*
2343                  * After a CLGI no interrupts should come.  But if vGIF is
2344                  * in use, we still rely on the VINTR intercept (rather than
2345                  * STGI) to detect an open interrupt window.
2346                 */
2347                 if (!vgif)
2348                         svm_clear_vintr(svm);
2349         }
2350 }
2351
2352 static int stgi_interception(struct kvm_vcpu *vcpu)
2353 {
2354         int ret;
2355
2356         if (nested_svm_check_permissions(vcpu))
2357                 return 1;
2358
2359         ret = kvm_skip_emulated_instruction(vcpu);
2360         svm_set_gif(to_svm(vcpu), true);
2361         return ret;
2362 }
2363
2364 static int clgi_interception(struct kvm_vcpu *vcpu)
2365 {
2366         int ret;
2367
2368         if (nested_svm_check_permissions(vcpu))
2369                 return 1;
2370
2371         ret = kvm_skip_emulated_instruction(vcpu);
2372         svm_set_gif(to_svm(vcpu), false);
2373         return ret;
2374 }
2375
2376 static int invlpga_interception(struct kvm_vcpu *vcpu)
2377 {
2378         gva_t gva = kvm_rax_read(vcpu);
2379         u32 asid = kvm_rcx_read(vcpu);
2380
2381         /* FIXME: Handle an address size prefix. */
2382         if (!is_long_mode(vcpu))
2383                 gva = (u32)gva;
2384
2385         trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2386
2387         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2388         kvm_mmu_invlpg(vcpu, gva);
2389
2390         return kvm_skip_emulated_instruction(vcpu);
2391 }
2392
2393 static int skinit_interception(struct kvm_vcpu *vcpu)
2394 {
2395         trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2396
2397         kvm_queue_exception(vcpu, UD_VECTOR);
2398         return 1;
2399 }
2400
2401 static int task_switch_interception(struct kvm_vcpu *vcpu)
2402 {
2403         struct vcpu_svm *svm = to_svm(vcpu);
2404         u16 tss_selector;
2405         int reason;
2406         int int_type = svm->vmcb->control.exit_int_info &
2407                 SVM_EXITINTINFO_TYPE_MASK;
2408         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2409         uint32_t type =
2410                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2411         uint32_t idt_v =
2412                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2413         bool has_error_code = false;
2414         u32 error_code = 0;
2415
2416         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2417
2418         if (svm->vmcb->control.exit_info_2 &
2419             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2420                 reason = TASK_SWITCH_IRET;
2421         else if (svm->vmcb->control.exit_info_2 &
2422                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2423                 reason = TASK_SWITCH_JMP;
2424         else if (idt_v)
2425                 reason = TASK_SWITCH_GATE;
2426         else
2427                 reason = TASK_SWITCH_CALL;
2428
2429         if (reason == TASK_SWITCH_GATE) {
2430                 switch (type) {
2431                 case SVM_EXITINTINFO_TYPE_NMI:
2432                         vcpu->arch.nmi_injected = false;
2433                         break;
2434                 case SVM_EXITINTINFO_TYPE_EXEPT:
2435                         if (svm->vmcb->control.exit_info_2 &
2436                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2437                                 has_error_code = true;
2438                                 error_code =
2439                                         (u32)svm->vmcb->control.exit_info_2;
2440                         }
2441                         kvm_clear_exception_queue(vcpu);
2442                         break;
2443                 case SVM_EXITINTINFO_TYPE_INTR:
2444                 case SVM_EXITINTINFO_TYPE_SOFT:
2445                         kvm_clear_interrupt_queue(vcpu);
2446                         break;
2447                 default:
2448                         break;
2449                 }
2450         }
2451
2452         if (reason != TASK_SWITCH_GATE ||
2453             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2454             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2455              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2456                 if (!svm_skip_emulated_instruction(vcpu))
2457                         return 0;
2458         }
2459
2460         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2461                 int_vec = -1;
2462
2463         return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2464                                has_error_code, error_code);
2465 }
2466
2467 static int iret_interception(struct kvm_vcpu *vcpu)
2468 {
2469         struct vcpu_svm *svm = to_svm(vcpu);
2470
2471         ++vcpu->stat.nmi_window_exits;
2472         vcpu->arch.hflags |= HF_IRET_MASK;
2473         if (!sev_es_guest(vcpu->kvm)) {
2474                 svm_clr_intercept(svm, INTERCEPT_IRET);
2475                 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2476         }
2477         kvm_make_request(KVM_REQ_EVENT, vcpu);
2478         return 1;
2479 }
2480
2481 static int invlpg_interception(struct kvm_vcpu *vcpu)
2482 {
2483         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2484                 return kvm_emulate_instruction(vcpu, 0);
2485
2486         kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2487         return kvm_skip_emulated_instruction(vcpu);
2488 }
2489
2490 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2491 {
2492         return kvm_emulate_instruction(vcpu, 0);
2493 }
2494
2495 static int rsm_interception(struct kvm_vcpu *vcpu)
2496 {
2497         return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2498 }
2499
2500 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2501                                             unsigned long val)
2502 {
2503         struct vcpu_svm *svm = to_svm(vcpu);
2504         unsigned long cr0 = vcpu->arch.cr0;
2505         bool ret = false;
2506
2507         if (!is_guest_mode(vcpu) ||
2508             (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2509                 return false;
2510
2511         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2512         val &= ~SVM_CR0_SELECTIVE_MASK;
2513
2514         if (cr0 ^ val) {
2515                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2516                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2517         }
2518
2519         return ret;
2520 }
2521
2522 #define CR_VALID (1ULL << 63)
2523
2524 static int cr_interception(struct kvm_vcpu *vcpu)
2525 {
2526         struct vcpu_svm *svm = to_svm(vcpu);
2527         int reg, cr;
2528         unsigned long val;
2529         int err;
2530
2531         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2532                 return emulate_on_interception(vcpu);
2533
2534         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2535                 return emulate_on_interception(vcpu);
2536
2537         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2538         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2539                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2540         else
2541                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2542
2543         err = 0;
2544         if (cr >= 16) { /* mov to cr */
2545                 cr -= 16;
2546                 val = kvm_register_read(vcpu, reg);
2547                 trace_kvm_cr_write(cr, val);
2548                 switch (cr) {
2549                 case 0:
2550                         if (!check_selective_cr0_intercepted(vcpu, val))
2551                                 err = kvm_set_cr0(vcpu, val);
2552                         else
2553                                 return 1;
2554
2555                         break;
2556                 case 3:
2557                         err = kvm_set_cr3(vcpu, val);
2558                         break;
2559                 case 4:
2560                         err = kvm_set_cr4(vcpu, val);
2561                         break;
2562                 case 8:
2563                         err = kvm_set_cr8(vcpu, val);
2564                         break;
2565                 default:
2566                         WARN(1, "unhandled write to CR%d", cr);
2567                         kvm_queue_exception(vcpu, UD_VECTOR);
2568                         return 1;
2569                 }
2570         } else { /* mov from cr */
2571                 switch (cr) {
2572                 case 0:
2573                         val = kvm_read_cr0(vcpu);
2574                         break;
2575                 case 2:
2576                         val = vcpu->arch.cr2;
2577                         break;
2578                 case 3:
2579                         val = kvm_read_cr3(vcpu);
2580                         break;
2581                 case 4:
2582                         val = kvm_read_cr4(vcpu);
2583                         break;
2584                 case 8:
2585                         val = kvm_get_cr8(vcpu);
2586                         break;
2587                 default:
2588                         WARN(1, "unhandled read from CR%d", cr);
2589                         kvm_queue_exception(vcpu, UD_VECTOR);
2590                         return 1;
2591                 }
2592                 kvm_register_write(vcpu, reg, val);
2593                 trace_kvm_cr_read(cr, val);
2594         }
2595         return kvm_complete_insn_gp(vcpu, err);
2596 }
2597
2598 static int cr_trap(struct kvm_vcpu *vcpu)
2599 {
2600         struct vcpu_svm *svm = to_svm(vcpu);
2601         unsigned long old_value, new_value;
2602         unsigned int cr;
2603         int ret = 0;
2604
2605         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2606
2607         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2608         switch (cr) {
2609         case 0:
2610                 old_value = kvm_read_cr0(vcpu);
2611                 svm_set_cr0(vcpu, new_value);
2612
2613                 kvm_post_set_cr0(vcpu, old_value, new_value);
2614                 break;
2615         case 4:
2616                 old_value = kvm_read_cr4(vcpu);
2617                 svm_set_cr4(vcpu, new_value);
2618
2619                 kvm_post_set_cr4(vcpu, old_value, new_value);
2620                 break;
2621         case 8:
2622                 ret = kvm_set_cr8(vcpu, new_value);
2623                 break;
2624         default:
2625                 WARN(1, "unhandled CR%d write trap", cr);
2626                 kvm_queue_exception(vcpu, UD_VECTOR);
2627                 return 1;
2628         }
2629
2630         return kvm_complete_insn_gp(vcpu, ret);
2631 }
2632
2633 static int dr_interception(struct kvm_vcpu *vcpu)
2634 {
2635         struct vcpu_svm *svm = to_svm(vcpu);
2636         int reg, dr;
2637         unsigned long val;
2638         int err = 0;
2639
2640         if (vcpu->guest_debug == 0) {
2641                 /*
2642                  * No more DR vmexits; force a reload of the debug registers
2643                  * and reenter on this instruction.  The next vmexit will
2644                  * retrieve the full state of the debug registers.
2645                  */
2646                 clr_dr_intercepts(svm);
2647                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2648                 return 1;
2649         }
2650
2651         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2652                 return emulate_on_interception(vcpu);
2653
2654         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2655         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2656         if (dr >= 16) { /* mov to DRn  */
2657                 dr -= 16;
2658                 val = kvm_register_read(vcpu, reg);
2659                 err = kvm_set_dr(vcpu, dr, val);
2660         } else {
2661                 kvm_get_dr(vcpu, dr, &val);
2662                 kvm_register_write(vcpu, reg, val);
2663         }
2664
2665         return kvm_complete_insn_gp(vcpu, err);
2666 }
2667
2668 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2669 {
2670         int r;
2671
2672         u8 cr8_prev = kvm_get_cr8(vcpu);
2673         /* instruction emulation calls kvm_set_cr8() */
2674         r = cr_interception(vcpu);
2675         if (lapic_in_kernel(vcpu))
2676                 return r;
2677         if (cr8_prev <= kvm_get_cr8(vcpu))
2678                 return r;
2679         vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2680         return 0;
2681 }
2682
2683 static int efer_trap(struct kvm_vcpu *vcpu)
2684 {
2685         struct msr_data msr_info;
2686         int ret;
2687
2688         /*
2689          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2690          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2691          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2692          * the guest doesn't have X86_FEATURE_SVM.
2693          */
2694         msr_info.host_initiated = false;
2695         msr_info.index = MSR_EFER;
2696         msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2697         ret = kvm_set_msr_common(vcpu, &msr_info);
2698
2699         return kvm_complete_insn_gp(vcpu, ret);
2700 }
2701
2702 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2703 {
2704         msr->data = 0;
2705
2706         switch (msr->index) {
2707         case MSR_AMD64_DE_CFG:
2708                 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2709                         msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2710                 break;
2711         case MSR_IA32_PERF_CAPABILITIES:
2712                 return 0;
2713         default:
2714                 return KVM_MSR_RET_INVALID;
2715         }
2716
2717         return 0;
2718 }
2719
2720 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2721 {
2722         struct vcpu_svm *svm = to_svm(vcpu);
2723
2724         switch (msr_info->index) {
2725         case MSR_AMD64_TSC_RATIO:
2726                 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2727                         return 1;
2728                 msr_info->data = svm->tsc_ratio_msr;
2729                 break;
2730         case MSR_STAR:
2731                 msr_info->data = svm->vmcb01.ptr->save.star;
2732                 break;
2733 #ifdef CONFIG_X86_64
2734         case MSR_LSTAR:
2735                 msr_info->data = svm->vmcb01.ptr->save.lstar;
2736                 break;
2737         case MSR_CSTAR:
2738                 msr_info->data = svm->vmcb01.ptr->save.cstar;
2739                 break;
2740         case MSR_KERNEL_GS_BASE:
2741                 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2742                 break;
2743         case MSR_SYSCALL_MASK:
2744                 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2745                 break;
2746 #endif
2747         case MSR_IA32_SYSENTER_CS:
2748                 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2749                 break;
2750         case MSR_IA32_SYSENTER_EIP:
2751                 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2752                 if (guest_cpuid_is_intel(vcpu))
2753                         msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2754                 break;
2755         case MSR_IA32_SYSENTER_ESP:
2756                 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2757                 if (guest_cpuid_is_intel(vcpu))
2758                         msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2759                 break;
2760         case MSR_TSC_AUX:
2761                 msr_info->data = svm->tsc_aux;
2762                 break;
2763         case MSR_IA32_DEBUGCTLMSR:
2764         case MSR_IA32_LASTBRANCHFROMIP:
2765         case MSR_IA32_LASTBRANCHTOIP:
2766         case MSR_IA32_LASTINTFROMIP:
2767         case MSR_IA32_LASTINTTOIP:
2768                 msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2769                 break;
2770         case MSR_VM_HSAVE_PA:
2771                 msr_info->data = svm->nested.hsave_msr;
2772                 break;
2773         case MSR_VM_CR:
2774                 msr_info->data = svm->nested.vm_cr_msr;
2775                 break;
2776         case MSR_IA32_SPEC_CTRL:
2777                 if (!msr_info->host_initiated &&
2778                     !guest_has_spec_ctrl_msr(vcpu))
2779                         return 1;
2780
2781                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2782                         msr_info->data = svm->vmcb->save.spec_ctrl;
2783                 else
2784                         msr_info->data = svm->spec_ctrl;
2785                 break;
2786         case MSR_AMD64_VIRT_SPEC_CTRL:
2787                 if (!msr_info->host_initiated &&
2788                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2789                         return 1;
2790
2791                 msr_info->data = svm->virt_spec_ctrl;
2792                 break;
2793         case MSR_F15H_IC_CFG: {
2794
2795                 int family, model;
2796
2797                 family = guest_cpuid_family(vcpu);
2798                 model  = guest_cpuid_model(vcpu);
2799
2800                 if (family < 0 || model < 0)
2801                         return kvm_get_msr_common(vcpu, msr_info);
2802
2803                 msr_info->data = 0;
2804
2805                 if (family == 0x15 &&
2806                     (model >= 0x2 && model < 0x20))
2807                         msr_info->data = 0x1E;
2808                 }
2809                 break;
2810         case MSR_AMD64_DE_CFG:
2811                 msr_info->data = svm->msr_decfg;
2812                 break;
2813         default:
2814                 return kvm_get_msr_common(vcpu, msr_info);
2815         }
2816         return 0;
2817 }
2818
2819 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2820 {
2821         struct vcpu_svm *svm = to_svm(vcpu);
2822         if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2823                 return kvm_complete_insn_gp(vcpu, err);
2824
2825         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2826         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2827                                 X86_TRAP_GP |
2828                                 SVM_EVTINJ_TYPE_EXEPT |
2829                                 SVM_EVTINJ_VALID);
2830         return 1;
2831 }
2832
2833 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2834 {
2835         struct vcpu_svm *svm = to_svm(vcpu);
2836         int svm_dis, chg_mask;
2837
2838         if (data & ~SVM_VM_CR_VALID_MASK)
2839                 return 1;
2840
2841         chg_mask = SVM_VM_CR_VALID_MASK;
2842
2843         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2844                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2845
2846         svm->nested.vm_cr_msr &= ~chg_mask;
2847         svm->nested.vm_cr_msr |= (data & chg_mask);
2848
2849         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2850
2851         /* check for svm_disable while efer.svme is set */
2852         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2853                 return 1;
2854
2855         return 0;
2856 }
2857
2858 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2859 {
2860         struct vcpu_svm *svm = to_svm(vcpu);
2861         int r;
2862
2863         u32 ecx = msr->index;
2864         u64 data = msr->data;
2865         switch (ecx) {
2866         case MSR_AMD64_TSC_RATIO:
2867
2868                 if (!svm->tsc_scaling_enabled) {
2869
2870                         if (!msr->host_initiated)
2871                                 return 1;
2872                         /*
2873                          * In case TSC scaling is not enabled, always
2874                          * leave this MSR at the default value.
2875                          *
2876                          * Due to bug in qemu 6.2.0, it would try to set
2877                          * this msr to 0 if tsc scaling is not enabled.
2878                          * Ignore this value as well.
2879                          */
2880                         if (data != 0 && data != svm->tsc_ratio_msr)
2881                                 return 1;
2882                         break;
2883                 }
2884
2885                 if (data & SVM_TSC_RATIO_RSVD)
2886                         return 1;
2887
2888                 svm->tsc_ratio_msr = data;
2889
2890                 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2891                         nested_svm_update_tsc_ratio_msr(vcpu);
2892
2893                 break;
2894         case MSR_IA32_CR_PAT:
2895                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2896                         return 1;
2897                 vcpu->arch.pat = data;
2898                 svm->vmcb01.ptr->save.g_pat = data;
2899                 if (is_guest_mode(vcpu))
2900                         nested_vmcb02_compute_g_pat(svm);
2901                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2902                 break;
2903         case MSR_IA32_SPEC_CTRL:
2904                 if (!msr->host_initiated &&
2905                     !guest_has_spec_ctrl_msr(vcpu))
2906                         return 1;
2907
2908                 if (kvm_spec_ctrl_test_value(data))
2909                         return 1;
2910
2911                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2912                         svm->vmcb->save.spec_ctrl = data;
2913                 else
2914                         svm->spec_ctrl = data;
2915                 if (!data)
2916                         break;
2917
2918                 /*
2919                  * For non-nested:
2920                  * When it's written (to non-zero) for the first time, pass
2921                  * it through.
2922                  *
2923                  * For nested:
2924                  * The handling of the MSR bitmap for L2 guests is done in
2925                  * nested_svm_vmrun_msrpm.
2926                  * We update the L1 MSR bit as well since it will end up
2927                  * touching the MSR anyway now.
2928                  */
2929                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2930                 break;
2931         case MSR_IA32_PRED_CMD:
2932                 if (!msr->host_initiated &&
2933                     !guest_has_pred_cmd_msr(vcpu))
2934                         return 1;
2935
2936                 if (data & ~PRED_CMD_IBPB)
2937                         return 1;
2938                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2939                         return 1;
2940                 if (!data)
2941                         break;
2942
2943                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2944                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2945                 break;
2946         case MSR_AMD64_VIRT_SPEC_CTRL:
2947                 if (!msr->host_initiated &&
2948                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2949                         return 1;
2950
2951                 if (data & ~SPEC_CTRL_SSBD)
2952                         return 1;
2953
2954                 svm->virt_spec_ctrl = data;
2955                 break;
2956         case MSR_STAR:
2957                 svm->vmcb01.ptr->save.star = data;
2958                 break;
2959 #ifdef CONFIG_X86_64
2960         case MSR_LSTAR:
2961                 svm->vmcb01.ptr->save.lstar = data;
2962                 break;
2963         case MSR_CSTAR:
2964                 svm->vmcb01.ptr->save.cstar = data;
2965                 break;
2966         case MSR_KERNEL_GS_BASE:
2967                 svm->vmcb01.ptr->save.kernel_gs_base = data;
2968                 break;
2969         case MSR_SYSCALL_MASK:
2970                 svm->vmcb01.ptr->save.sfmask = data;
2971                 break;
2972 #endif
2973         case MSR_IA32_SYSENTER_CS:
2974                 svm->vmcb01.ptr->save.sysenter_cs = data;
2975                 break;
2976         case MSR_IA32_SYSENTER_EIP:
2977                 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2978                 /*
2979                  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2980                  * when we spoof an Intel vendor ID (for cross vendor migration).
2981                  * In this case we use this intercept to track the high
2982                  * 32 bit part of these msrs to support Intel's
2983                  * implementation of SYSENTER/SYSEXIT.
2984                  */
2985                 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2986                 break;
2987         case MSR_IA32_SYSENTER_ESP:
2988                 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2989                 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2990                 break;
2991         case MSR_TSC_AUX:
2992                 /*
2993                  * TSC_AUX is usually changed only during boot and never read
2994                  * directly.  Intercept TSC_AUX instead of exposing it to the
2995                  * guest via direct_access_msrs, and switch it via user return.
2996                  */
2997                 preempt_disable();
2998                 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2999                 preempt_enable();
3000                 if (r)
3001                         return 1;
3002
3003                 svm->tsc_aux = data;
3004                 break;
3005         case MSR_IA32_DEBUGCTLMSR:
3006                 if (!lbrv) {
3007                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3008                                     __func__, data);
3009                         break;
3010                 }
3011                 if (data & DEBUGCTL_RESERVED_BITS)
3012                         return 1;
3013
3014                 if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
3015                         svm->vmcb->save.dbgctl = data;
3016                 else
3017                         svm->vmcb01.ptr->save.dbgctl = data;
3018
3019                 svm_update_lbrv(vcpu);
3020
3021                 break;
3022         case MSR_VM_HSAVE_PA:
3023                 /*
3024                  * Old kernels did not validate the value written to
3025                  * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3026                  * value to allow live migrating buggy or malicious guests
3027                  * originating from those kernels.
3028                  */
3029                 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3030                         return 1;
3031
3032                 svm->nested.hsave_msr = data & PAGE_MASK;
3033                 break;
3034         case MSR_VM_CR:
3035                 return svm_set_vm_cr(vcpu, data);
3036         case MSR_VM_IGNNE:
3037                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3038                 break;
3039         case MSR_AMD64_DE_CFG: {
3040                 struct kvm_msr_entry msr_entry;
3041
3042                 msr_entry.index = msr->index;
3043                 if (svm_get_msr_feature(&msr_entry))
3044                         return 1;
3045
3046                 /* Check the supported bits */
3047                 if (data & ~msr_entry.data)
3048                         return 1;
3049
3050                 /* Don't allow the guest to change a bit, #GP */
3051                 if (!msr->host_initiated && (data ^ msr_entry.data))
3052                         return 1;
3053
3054                 svm->msr_decfg = data;
3055                 break;
3056         }
3057         default:
3058                 return kvm_set_msr_common(vcpu, msr);
3059         }
3060         return 0;
3061 }
3062
3063 static int msr_interception(struct kvm_vcpu *vcpu)
3064 {
3065         if (to_svm(vcpu)->vmcb->control.exit_info_1)
3066                 return kvm_emulate_wrmsr(vcpu);
3067         else
3068                 return kvm_emulate_rdmsr(vcpu);
3069 }
3070
3071 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3072 {
3073         kvm_make_request(KVM_REQ_EVENT, vcpu);
3074         svm_clear_vintr(to_svm(vcpu));
3075
3076         /*
3077          * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3078          * In this case AVIC was temporarily disabled for
3079          * requesting the IRQ window and we have to re-enable it.
3080          *
3081          * If running nested, still remove the VM wide AVIC inhibit to
3082          * support case in which the interrupt window was requested when the
3083          * vCPU was not running nested.
3084
3085          * All vCPUs which run still run nested, will remain to have their
3086          * AVIC still inhibited due to per-cpu AVIC inhibition.
3087          */
3088         kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3089
3090         ++vcpu->stat.irq_window_exits;
3091         return 1;
3092 }
3093
3094 static int pause_interception(struct kvm_vcpu *vcpu)
3095 {
3096         bool in_kernel;
3097         /*
3098          * CPL is not made available for an SEV-ES guest, therefore
3099          * vcpu->arch.preempted_in_kernel can never be true.  Just
3100          * set in_kernel to false as well.
3101          */
3102         in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3103
3104         grow_ple_window(vcpu);
3105
3106         kvm_vcpu_on_spin(vcpu, in_kernel);
3107         return kvm_skip_emulated_instruction(vcpu);
3108 }
3109
3110 static int invpcid_interception(struct kvm_vcpu *vcpu)
3111 {
3112         struct vcpu_svm *svm = to_svm(vcpu);
3113         unsigned long type;
3114         gva_t gva;
3115
3116         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3117                 kvm_queue_exception(vcpu, UD_VECTOR);
3118                 return 1;
3119         }
3120
3121         /*
3122          * For an INVPCID intercept:
3123          * EXITINFO1 provides the linear address of the memory operand.
3124          * EXITINFO2 provides the contents of the register operand.
3125          */
3126         type = svm->vmcb->control.exit_info_2;
3127         gva = svm->vmcb->control.exit_info_1;
3128
3129         return kvm_handle_invpcid(vcpu, type, gva);
3130 }
3131
3132 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3133         [SVM_EXIT_READ_CR0]                     = cr_interception,
3134         [SVM_EXIT_READ_CR3]                     = cr_interception,
3135         [SVM_EXIT_READ_CR4]                     = cr_interception,
3136         [SVM_EXIT_READ_CR8]                     = cr_interception,
3137         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3138         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3139         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3140         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3141         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3142         [SVM_EXIT_READ_DR0]                     = dr_interception,
3143         [SVM_EXIT_READ_DR1]                     = dr_interception,
3144         [SVM_EXIT_READ_DR2]                     = dr_interception,
3145         [SVM_EXIT_READ_DR3]                     = dr_interception,
3146         [SVM_EXIT_READ_DR4]                     = dr_interception,
3147         [SVM_EXIT_READ_DR5]                     = dr_interception,
3148         [SVM_EXIT_READ_DR6]                     = dr_interception,
3149         [SVM_EXIT_READ_DR7]                     = dr_interception,
3150         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3151         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3152         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3153         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3154         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3155         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3156         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3157         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3158         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3159         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3160         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3161         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3162         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3163         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3164         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
3165         [SVM_EXIT_INTR]                         = intr_interception,
3166         [SVM_EXIT_NMI]                          = nmi_interception,
3167         [SVM_EXIT_SMI]                          = smi_interception,
3168         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3169         [SVM_EXIT_RDPMC]                        = kvm_emulate_rdpmc,
3170         [SVM_EXIT_CPUID]                        = kvm_emulate_cpuid,
3171         [SVM_EXIT_IRET]                         = iret_interception,
3172         [SVM_EXIT_INVD]                         = kvm_emulate_invd,
3173         [SVM_EXIT_PAUSE]                        = pause_interception,
3174         [SVM_EXIT_HLT]                          = kvm_emulate_halt,
3175         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3176         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3177         [SVM_EXIT_IOIO]                         = io_interception,
3178         [SVM_EXIT_MSR]                          = msr_interception,
3179         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3180         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3181         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3182         [SVM_EXIT_VMMCALL]                      = kvm_emulate_hypercall,
3183         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3184         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3185         [SVM_EXIT_STGI]                         = stgi_interception,
3186         [SVM_EXIT_CLGI]                         = clgi_interception,
3187         [SVM_EXIT_SKINIT]                       = skinit_interception,
3188         [SVM_EXIT_RDTSCP]                       = kvm_handle_invalid_op,
3189         [SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3190         [SVM_EXIT_MONITOR]                      = kvm_emulate_monitor,
3191         [SVM_EXIT_MWAIT]                        = kvm_emulate_mwait,
3192         [SVM_EXIT_XSETBV]                       = kvm_emulate_xsetbv,
3193         [SVM_EXIT_RDPRU]                        = kvm_handle_invalid_op,
3194         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3195         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3196         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3197         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3198         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3199         [SVM_EXIT_NPF]                          = npf_interception,
3200         [SVM_EXIT_RSM]                          = rsm_interception,
3201         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3202         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3203         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3204 };
3205
3206 static void dump_vmcb(struct kvm_vcpu *vcpu)
3207 {
3208         struct vcpu_svm *svm = to_svm(vcpu);
3209         struct vmcb_control_area *control = &svm->vmcb->control;
3210         struct vmcb_save_area *save = &svm->vmcb->save;
3211         struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3212
3213         if (!dump_invalid_vmcb) {
3214                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3215                 return;
3216         }
3217
3218         pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3219                svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3220         pr_err("VMCB Control Area:\n");
3221         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3222         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3223         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3224         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3225         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3226         pr_err("%-20s%08x %08x\n", "intercepts:",
3227               control->intercepts[INTERCEPT_WORD3],
3228                control->intercepts[INTERCEPT_WORD4]);
3229         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3230         pr_err("%-20s%d\n", "pause filter threshold:",
3231                control->pause_filter_thresh);
3232         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3233         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3234         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3235         pr_err("%-20s%d\n", "asid:", control->asid);
3236         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3237         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3238         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3239         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3240         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3241         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3242         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3243         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3244         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3245         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3246         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3247         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3248         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3249         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3250         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3251         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3252         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3253         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3254         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3255         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3256         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3257         pr_err("VMCB State Save Area:\n");
3258         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3259                "es:",
3260                save->es.selector, save->es.attrib,
3261                save->es.limit, save->es.base);
3262         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3263                "cs:",
3264                save->cs.selector, save->cs.attrib,
3265                save->cs.limit, save->cs.base);
3266         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3267                "ss:",
3268                save->ss.selector, save->ss.attrib,
3269                save->ss.limit, save->ss.base);
3270         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3271                "ds:",
3272                save->ds.selector, save->ds.attrib,
3273                save->ds.limit, save->ds.base);
3274         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3275                "fs:",
3276                save01->fs.selector, save01->fs.attrib,
3277                save01->fs.limit, save01->fs.base);
3278         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3279                "gs:",
3280                save01->gs.selector, save01->gs.attrib,
3281                save01->gs.limit, save01->gs.base);
3282         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3283                "gdtr:",
3284                save->gdtr.selector, save->gdtr.attrib,
3285                save->gdtr.limit, save->gdtr.base);
3286         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3287                "ldtr:",
3288                save01->ldtr.selector, save01->ldtr.attrib,
3289                save01->ldtr.limit, save01->ldtr.base);
3290         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3291                "idtr:",
3292                save->idtr.selector, save->idtr.attrib,
3293                save->idtr.limit, save->idtr.base);
3294         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3295                "tr:",
3296                save01->tr.selector, save01->tr.attrib,
3297                save01->tr.limit, save01->tr.base);
3298         pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3299                save->vmpl, save->cpl, save->efer);
3300         pr_err("%-15s %016llx %-13s %016llx\n",
3301                "cr0:", save->cr0, "cr2:", save->cr2);
3302         pr_err("%-15s %016llx %-13s %016llx\n",
3303                "cr3:", save->cr3, "cr4:", save->cr4);
3304         pr_err("%-15s %016llx %-13s %016llx\n",
3305                "dr6:", save->dr6, "dr7:", save->dr7);
3306         pr_err("%-15s %016llx %-13s %016llx\n",
3307                "rip:", save->rip, "rflags:", save->rflags);
3308         pr_err("%-15s %016llx %-13s %016llx\n",
3309                "rsp:", save->rsp, "rax:", save->rax);
3310         pr_err("%-15s %016llx %-13s %016llx\n",
3311                "star:", save01->star, "lstar:", save01->lstar);
3312         pr_err("%-15s %016llx %-13s %016llx\n",
3313                "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3314         pr_err("%-15s %016llx %-13s %016llx\n",
3315                "kernel_gs_base:", save01->kernel_gs_base,
3316                "sysenter_cs:", save01->sysenter_cs);
3317         pr_err("%-15s %016llx %-13s %016llx\n",
3318                "sysenter_esp:", save01->sysenter_esp,
3319                "sysenter_eip:", save01->sysenter_eip);
3320         pr_err("%-15s %016llx %-13s %016llx\n",
3321                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3322         pr_err("%-15s %016llx %-13s %016llx\n",
3323                "br_from:", save->br_from, "br_to:", save->br_to);
3324         pr_err("%-15s %016llx %-13s %016llx\n",
3325                "excp_from:", save->last_excp_from,
3326                "excp_to:", save->last_excp_to);
3327 }
3328
3329 static bool svm_check_exit_valid(u64 exit_code)
3330 {
3331         return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3332                 svm_exit_handlers[exit_code]);
3333 }
3334
3335 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3336 {
3337         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3338         dump_vmcb(vcpu);
3339         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3340         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3341         vcpu->run->internal.ndata = 2;
3342         vcpu->run->internal.data[0] = exit_code;
3343         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3344         return 0;
3345 }
3346
3347 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3348 {
3349         if (!svm_check_exit_valid(exit_code))
3350                 return svm_handle_invalid_exit(vcpu, exit_code);
3351
3352 #ifdef CONFIG_RETPOLINE
3353         if (exit_code == SVM_EXIT_MSR)
3354                 return msr_interception(vcpu);
3355         else if (exit_code == SVM_EXIT_VINTR)
3356                 return interrupt_window_interception(vcpu);
3357         else if (exit_code == SVM_EXIT_INTR)
3358                 return intr_interception(vcpu);
3359         else if (exit_code == SVM_EXIT_HLT)
3360                 return kvm_emulate_halt(vcpu);
3361         else if (exit_code == SVM_EXIT_NPF)
3362                 return npf_interception(vcpu);
3363 #endif
3364         return svm_exit_handlers[exit_code](vcpu);
3365 }
3366
3367 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3368                               u64 *info1, u64 *info2,
3369                               u32 *intr_info, u32 *error_code)
3370 {
3371         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3372
3373         *reason = control->exit_code;
3374         *info1 = control->exit_info_1;
3375         *info2 = control->exit_info_2;
3376         *intr_info = control->exit_int_info;
3377         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3378             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3379                 *error_code = control->exit_int_info_err;
3380         else
3381                 *error_code = 0;
3382 }
3383
3384 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3385 {
3386         struct vcpu_svm *svm = to_svm(vcpu);
3387         struct kvm_run *kvm_run = vcpu->run;
3388         u32 exit_code = svm->vmcb->control.exit_code;
3389
3390         trace_kvm_exit(vcpu, KVM_ISA_SVM);
3391
3392         /* SEV-ES guests must use the CR write traps to track CR registers. */
3393         if (!sev_es_guest(vcpu->kvm)) {
3394                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3395                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3396                 if (npt_enabled)
3397                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3398         }
3399
3400         if (is_guest_mode(vcpu)) {
3401                 int vmexit;
3402
3403                 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3404
3405                 vmexit = nested_svm_exit_special(svm);
3406
3407                 if (vmexit == NESTED_EXIT_CONTINUE)
3408                         vmexit = nested_svm_exit_handled(svm);
3409
3410                 if (vmexit == NESTED_EXIT_DONE)
3411                         return 1;
3412         }
3413
3414         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3415                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3416                 kvm_run->fail_entry.hardware_entry_failure_reason
3417                         = svm->vmcb->control.exit_code;
3418                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3419                 dump_vmcb(vcpu);
3420                 return 0;
3421         }
3422
3423         if (exit_fastpath != EXIT_FASTPATH_NONE)
3424                 return 1;
3425
3426         return svm_invoke_exit_handler(vcpu, exit_code);
3427 }
3428
3429 static void reload_tss(struct kvm_vcpu *vcpu)
3430 {
3431         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3432
3433         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3434         load_TR_desc();
3435 }
3436
3437 static void pre_svm_run(struct kvm_vcpu *vcpu)
3438 {
3439         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3440         struct vcpu_svm *svm = to_svm(vcpu);
3441
3442         /*
3443          * If the previous vmrun of the vmcb occurred on a different physical
3444          * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3445          * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3446          */
3447         if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3448                 svm->current_vmcb->asid_generation = 0;
3449                 vmcb_mark_all_dirty(svm->vmcb);
3450                 svm->current_vmcb->cpu = vcpu->cpu;
3451         }
3452
3453         if (sev_guest(vcpu->kvm))
3454                 return pre_sev_run(svm, vcpu->cpu);
3455
3456         /* FIXME: handle wraparound of asid_generation */
3457         if (svm->current_vmcb->asid_generation != sd->asid_generation)
3458                 new_asid(svm, sd);
3459 }
3460
3461 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3462 {
3463         struct vcpu_svm *svm = to_svm(vcpu);
3464
3465         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3466
3467         if (svm->nmi_l1_to_l2)
3468                 return;
3469
3470         vcpu->arch.hflags |= HF_NMI_MASK;
3471         if (!sev_es_guest(vcpu->kvm))
3472                 svm_set_intercept(svm, INTERCEPT_IRET);
3473         ++vcpu->stat.nmi_injections;
3474 }
3475
3476 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3477 {
3478         struct vcpu_svm *svm = to_svm(vcpu);
3479         u32 type;
3480
3481         if (vcpu->arch.interrupt.soft) {
3482                 if (svm_update_soft_interrupt_rip(vcpu))
3483                         return;
3484
3485                 type = SVM_EVTINJ_TYPE_SOFT;
3486         } else {
3487                 type = SVM_EVTINJ_TYPE_INTR;
3488         }
3489
3490         trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3491                            vcpu->arch.interrupt.soft, reinjected);
3492         ++vcpu->stat.irq_injections;
3493
3494         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3495                                        SVM_EVTINJ_VALID | type;
3496 }
3497
3498 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3499                                      int trig_mode, int vector)
3500 {
3501         /*
3502          * apic->apicv_active must be read after vcpu->mode.
3503          * Pairs with smp_store_release in vcpu_enter_guest.
3504          */
3505         bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3506
3507         /* Note, this is called iff the local APIC is in-kernel. */
3508         if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3509                 /* Process the interrupt via kvm_check_and_inject_events(). */
3510                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3511                 kvm_vcpu_kick(vcpu);
3512                 return;
3513         }
3514
3515         trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3516         if (in_guest_mode) {
3517                 /*
3518                  * Signal the doorbell to tell hardware to inject the IRQ.  If
3519                  * the vCPU exits the guest before the doorbell chimes, hardware
3520                  * will automatically process AVIC interrupts at the next VMRUN.
3521                  */
3522                 avic_ring_doorbell(vcpu);
3523         } else {
3524                 /*
3525                  * Wake the vCPU if it was blocking.  KVM will then detect the
3526                  * pending IRQ when checking if the vCPU has a wake event.
3527                  */
3528                 kvm_vcpu_wake_up(vcpu);
3529         }
3530 }
3531
3532 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3533                                   int trig_mode, int vector)
3534 {
3535         kvm_lapic_set_irr(vector, apic);
3536
3537         /*
3538          * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3539          * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3540          * the read of guest_mode.  This guarantees that either VMRUN will see
3541          * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3542          * will signal the doorbell if the CPU has already entered the guest.
3543          */
3544         smp_mb__after_atomic();
3545         svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3546 }
3547
3548 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3549 {
3550         struct vcpu_svm *svm = to_svm(vcpu);
3551
3552         /*
3553          * SEV-ES guests must always keep the CR intercepts cleared. CR
3554          * tracking is done using the CR write traps.
3555          */
3556         if (sev_es_guest(vcpu->kvm))
3557                 return;
3558
3559         if (nested_svm_virtualize_tpr(vcpu))
3560                 return;
3561
3562         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3563
3564         if (irr == -1)
3565                 return;
3566
3567         if (tpr >= irr)
3568                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3569 }
3570
3571 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3572 {
3573         struct vcpu_svm *svm = to_svm(vcpu);
3574         struct vmcb *vmcb = svm->vmcb;
3575         bool ret;
3576
3577         if (!gif_set(svm))
3578                 return true;
3579
3580         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3581                 return false;
3582
3583         ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3584               (vcpu->arch.hflags & HF_NMI_MASK);
3585
3586         return ret;
3587 }
3588
3589 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3590 {
3591         struct vcpu_svm *svm = to_svm(vcpu);
3592         if (svm->nested.nested_run_pending)
3593                 return -EBUSY;
3594
3595         if (svm_nmi_blocked(vcpu))
3596                 return 0;
3597
3598         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3599         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3600                 return -EBUSY;
3601         return 1;
3602 }
3603
3604 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3605 {
3606         return !!(vcpu->arch.hflags & HF_NMI_MASK);
3607 }
3608
3609 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3610 {
3611         struct vcpu_svm *svm = to_svm(vcpu);
3612
3613         if (masked) {
3614                 vcpu->arch.hflags |= HF_NMI_MASK;
3615                 if (!sev_es_guest(vcpu->kvm))
3616                         svm_set_intercept(svm, INTERCEPT_IRET);
3617         } else {
3618                 vcpu->arch.hflags &= ~HF_NMI_MASK;
3619                 if (!sev_es_guest(vcpu->kvm))
3620                         svm_clr_intercept(svm, INTERCEPT_IRET);
3621         }
3622 }
3623
3624 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3625 {
3626         struct vcpu_svm *svm = to_svm(vcpu);
3627         struct vmcb *vmcb = svm->vmcb;
3628
3629         if (!gif_set(svm))
3630                 return true;
3631
3632         if (is_guest_mode(vcpu)) {
3633                 /* As long as interrupts are being delivered...  */
3634                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3635                     ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3636                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3637                         return true;
3638
3639                 /* ... vmexits aren't blocked by the interrupt shadow  */
3640                 if (nested_exit_on_intr(svm))
3641                         return false;
3642         } else {
3643                 if (!svm_get_if_flag(vcpu))
3644                         return true;
3645         }
3646
3647         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3648 }
3649
3650 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3651 {
3652         struct vcpu_svm *svm = to_svm(vcpu);
3653
3654         if (svm->nested.nested_run_pending)
3655                 return -EBUSY;
3656
3657         if (svm_interrupt_blocked(vcpu))
3658                 return 0;
3659
3660         /*
3661          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3662          * e.g. if the IRQ arrived asynchronously after checking nested events.
3663          */
3664         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3665                 return -EBUSY;
3666
3667         return 1;
3668 }
3669
3670 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3671 {
3672         struct vcpu_svm *svm = to_svm(vcpu);
3673
3674         /*
3675          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3676          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3677          * get that intercept, this function will be called again though and
3678          * we'll get the vintr intercept. However, if the vGIF feature is
3679          * enabled, the STGI interception will not occur. Enable the irq
3680          * window under the assumption that the hardware will set the GIF.
3681          */
3682         if (vgif || gif_set(svm)) {
3683                 /*
3684                  * IRQ window is not needed when AVIC is enabled,
3685                  * unless we have pending ExtINT since it cannot be injected
3686                  * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3687                  * and fallback to injecting IRQ via V_IRQ.
3688                  *
3689                  * If running nested, AVIC is already locally inhibited
3690                  * on this vCPU, therefore there is no need to request
3691                  * the VM wide AVIC inhibition.
3692                  */
3693                 if (!is_guest_mode(vcpu))
3694                         kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3695
3696                 svm_set_vintr(svm);
3697         }
3698 }
3699
3700 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3701 {
3702         struct vcpu_svm *svm = to_svm(vcpu);
3703
3704         if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3705                 return; /* IRET will cause a vm exit */
3706
3707         if (!gif_set(svm)) {
3708                 if (vgif)
3709                         svm_set_intercept(svm, INTERCEPT_STGI);
3710                 return; /* STGI will cause a vm exit */
3711         }
3712
3713         /*
3714          * Something prevents NMI from been injected. Single step over possible
3715          * problem (IRET or exception injection or interrupt shadow)
3716          */
3717         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3718         svm->nmi_singlestep = true;
3719         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3720 }
3721
3722 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3723 {
3724         struct vcpu_svm *svm = to_svm(vcpu);
3725
3726         /*
3727          * Flush only the current ASID even if the TLB flush was invoked via
3728          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3729          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3730          * unconditionally does a TLB flush on both nested VM-Enter and nested
3731          * VM-Exit (via kvm_mmu_reset_context()).
3732          */
3733         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3734                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3735         else
3736                 svm->current_vmcb->asid_generation--;
3737 }
3738
3739 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3740 {
3741         struct vcpu_svm *svm = to_svm(vcpu);
3742
3743         invlpga(gva, svm->vmcb->control.asid);
3744 }
3745
3746 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3747 {
3748         struct vcpu_svm *svm = to_svm(vcpu);
3749
3750         if (nested_svm_virtualize_tpr(vcpu))
3751                 return;
3752
3753         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3754                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3755                 kvm_set_cr8(vcpu, cr8);
3756         }
3757 }
3758
3759 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3760 {
3761         struct vcpu_svm *svm = to_svm(vcpu);
3762         u64 cr8;
3763
3764         if (nested_svm_virtualize_tpr(vcpu) ||
3765             kvm_vcpu_apicv_active(vcpu))
3766                 return;
3767
3768         cr8 = kvm_get_cr8(vcpu);
3769         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3770         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3771 }
3772
3773 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3774                                         int type)
3775 {
3776         bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3777         bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3778         struct vcpu_svm *svm = to_svm(vcpu);
3779
3780         /*
3781          * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3782          * associated with the original soft exception/interrupt.  next_rip is
3783          * cleared on all exits that can occur while vectoring an event, so KVM
3784          * needs to manually set next_rip for re-injection.  Unlike the !nrips
3785          * case below, this needs to be done if and only if KVM is re-injecting
3786          * the same event, i.e. if the event is a soft exception/interrupt,
3787          * otherwise next_rip is unused on VMRUN.
3788          */
3789         if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3790             kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3791                 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3792         /*
3793          * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3794          * injecting the soft exception/interrupt.  That advancement needs to
3795          * be unwound if vectoring didn't complete.  Note, the new event may
3796          * not be the injected event, e.g. if KVM injected an INTn, the INTn
3797          * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3798          * be the reported vectored event, but RIP still needs to be unwound.
3799          */
3800         else if (!nrips && (is_soft || is_exception) &&
3801                  kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3802                 kvm_rip_write(vcpu, svm->soft_int_old_rip);
3803 }
3804
3805 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3806 {
3807         struct vcpu_svm *svm = to_svm(vcpu);
3808         u8 vector;
3809         int type;
3810         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3811         bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3812         bool soft_int_injected = svm->soft_int_injected;
3813
3814         svm->nmi_l1_to_l2 = false;
3815         svm->soft_int_injected = false;
3816
3817         /*
3818          * If we've made progress since setting HF_IRET_MASK, we've
3819          * executed an IRET and can allow NMI injection.
3820          */
3821         if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3822             (sev_es_guest(vcpu->kvm) ||
3823              kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3824                 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3825                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3826         }
3827
3828         vcpu->arch.nmi_injected = false;
3829         kvm_clear_exception_queue(vcpu);
3830         kvm_clear_interrupt_queue(vcpu);
3831
3832         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3833                 return;
3834
3835         kvm_make_request(KVM_REQ_EVENT, vcpu);
3836
3837         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3838         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3839
3840         if (soft_int_injected)
3841                 svm_complete_soft_interrupt(vcpu, vector, type);
3842
3843         switch (type) {
3844         case SVM_EXITINTINFO_TYPE_NMI:
3845                 vcpu->arch.nmi_injected = true;
3846                 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
3847                 break;
3848         case SVM_EXITINTINFO_TYPE_EXEPT:
3849                 /*
3850                  * Never re-inject a #VC exception.
3851                  */
3852                 if (vector == X86_TRAP_VC)
3853                         break;
3854
3855                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3856                         u32 err = svm->vmcb->control.exit_int_info_err;
3857                         kvm_requeue_exception_e(vcpu, vector, err);
3858
3859                 } else
3860                         kvm_requeue_exception(vcpu, vector);
3861                 break;
3862         case SVM_EXITINTINFO_TYPE_INTR:
3863                 kvm_queue_interrupt(vcpu, vector, false);
3864                 break;
3865         case SVM_EXITINTINFO_TYPE_SOFT:
3866                 kvm_queue_interrupt(vcpu, vector, true);
3867                 break;
3868         default:
3869                 break;
3870         }
3871
3872 }
3873
3874 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3875 {
3876         struct vcpu_svm *svm = to_svm(vcpu);
3877         struct vmcb_control_area *control = &svm->vmcb->control;
3878
3879         control->exit_int_info = control->event_inj;
3880         control->exit_int_info_err = control->event_inj_err;
3881         control->event_inj = 0;
3882         svm_complete_interrupts(vcpu);
3883 }
3884
3885 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3886 {
3887         return 1;
3888 }
3889
3890 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3891 {
3892         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3893
3894         /*
3895          * Note, the next RIP must be provided as SRCU isn't held, i.e. KVM
3896          * can't read guest memory (dereference memslots) to decode the WRMSR.
3897          */
3898         if (control->exit_code == SVM_EXIT_MSR && control->exit_info_1 &&
3899             nrips && control->next_rip)
3900                 return handle_fastpath_set_msr_irqoff(vcpu);
3901
3902         return EXIT_FASTPATH_NONE;
3903 }
3904
3905 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
3906 {
3907         struct vcpu_svm *svm = to_svm(vcpu);
3908
3909         guest_state_enter_irqoff();
3910
3911         if (sev_es_guest(vcpu->kvm))
3912                 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
3913         else
3914                 __svm_vcpu_run(svm, spec_ctrl_intercepted);
3915
3916         guest_state_exit_irqoff();
3917 }
3918
3919 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3920 {
3921         struct vcpu_svm *svm = to_svm(vcpu);
3922         bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
3923
3924         trace_kvm_entry(vcpu);
3925
3926         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3927         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3928         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3929
3930         /*
3931          * Disable singlestep if we're injecting an interrupt/exception.
3932          * We don't want our modified rflags to be pushed on the stack where
3933          * we might not be able to easily reset them if we disabled NMI
3934          * singlestep later.
3935          */
3936         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3937                 /*
3938                  * Event injection happens before external interrupts cause a
3939                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3940                  * is enough to force an immediate vmexit.
3941                  */
3942                 disable_nmi_singlestep(svm);
3943                 smp_send_reschedule(vcpu->cpu);
3944         }
3945
3946         pre_svm_run(vcpu);
3947
3948         sync_lapic_to_cr8(vcpu);
3949
3950         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3951                 svm->vmcb->control.asid = svm->asid;
3952                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3953         }
3954         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3955
3956         svm_hv_update_vp_id(svm->vmcb, vcpu);
3957
3958         /*
3959          * Run with all-zero DR6 unless needed, so that we can get the exact cause
3960          * of a #DB.
3961          */
3962         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3963                 svm_set_dr6(svm, vcpu->arch.dr6);
3964         else
3965                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
3966
3967         clgi();
3968         kvm_load_guest_xsave_state(vcpu);
3969
3970         kvm_wait_lapic_expire(vcpu);
3971
3972         /*
3973          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3974          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3975          * is no need to worry about the conditional branch over the wrmsr
3976          * being speculatively taken.
3977          */
3978         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3979                 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
3980
3981         svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
3982
3983         if (!sev_es_guest(vcpu->kvm))
3984                 reload_tss(vcpu);
3985
3986         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3987                 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
3988
3989         if (!sev_es_guest(vcpu->kvm)) {
3990                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3991                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3992                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3993                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3994         }
3995         vcpu->arch.regs_dirty = 0;
3996
3997         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3998                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
3999
4000         kvm_load_host_xsave_state(vcpu);
4001         stgi();
4002
4003         /* Any pending NMI will happen here */
4004
4005         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4006                 kvm_after_interrupt(vcpu);
4007
4008         sync_cr8_to_lapic(vcpu);
4009
4010         svm->next_rip = 0;
4011         if (is_guest_mode(vcpu)) {
4012                 nested_sync_control_from_vmcb02(svm);
4013
4014                 /* Track VMRUNs that have made past consistency checking */
4015                 if (svm->nested.nested_run_pending &&
4016                     svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4017                         ++vcpu->stat.nested_run;
4018
4019                 svm->nested.nested_run_pending = 0;
4020         }
4021
4022         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4023         vmcb_mark_all_clean(svm->vmcb);
4024
4025         /* if exit due to PF check for async PF */
4026         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4027                 vcpu->arch.apf.host_apf_flags =
4028                         kvm_read_and_reset_apf_flags();
4029
4030         vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4031
4032         /*
4033          * We need to handle MC intercepts here before the vcpu has a chance to
4034          * change the physical cpu
4035          */
4036         if (unlikely(svm->vmcb->control.exit_code ==
4037                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4038                 svm_handle_mce(vcpu);
4039
4040         svm_complete_interrupts(vcpu);
4041
4042         if (is_guest_mode(vcpu))
4043                 return EXIT_FASTPATH_NONE;
4044
4045         return svm_exit_handlers_fastpath(vcpu);
4046 }
4047
4048 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4049                              int root_level)
4050 {
4051         struct vcpu_svm *svm = to_svm(vcpu);
4052         unsigned long cr3;
4053
4054         if (npt_enabled) {
4055                 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4056                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4057
4058                 hv_track_root_tdp(vcpu, root_hpa);
4059
4060                 cr3 = vcpu->arch.cr3;
4061         } else if (root_level >= PT64_ROOT_4LEVEL) {
4062                 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4063         } else {
4064                 /* PCID in the guest should be impossible with a 32-bit MMU. */
4065                 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4066                 cr3 = root_hpa;
4067         }
4068
4069         svm->vmcb->save.cr3 = cr3;
4070         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4071 }
4072
4073 static int is_disabled(void)
4074 {
4075         u64 vm_cr;
4076
4077         rdmsrl(MSR_VM_CR, vm_cr);
4078         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4079                 return 1;
4080
4081         return 0;
4082 }
4083
4084 static void
4085 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4086 {
4087         /*
4088          * Patch in the VMMCALL instruction:
4089          */
4090         hypercall[0] = 0x0f;
4091         hypercall[1] = 0x01;
4092         hypercall[2] = 0xd9;
4093 }
4094
4095 static int __init svm_check_processor_compat(void)
4096 {
4097         return 0;
4098 }
4099
4100 /*
4101  * The kvm parameter can be NULL (module initialization, or invocation before
4102  * VM creation). Be sure to check the kvm parameter before using it.
4103  */
4104 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4105 {
4106         switch (index) {
4107         case MSR_IA32_MCG_EXT_CTL:
4108         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4109                 return false;
4110         case MSR_IA32_SMBASE:
4111                 /* SEV-ES guests do not support SMM, so report false */
4112                 if (kvm && sev_es_guest(kvm))
4113                         return false;
4114                 break;
4115         default:
4116                 break;
4117         }
4118
4119         return true;
4120 }
4121
4122 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4123 {
4124         struct vcpu_svm *svm = to_svm(vcpu);
4125         struct kvm_cpuid_entry2 *best;
4126
4127         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4128                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
4129                                     boot_cpu_has(X86_FEATURE_XSAVES);
4130
4131         /* Update nrips enabled cache */
4132         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4133                              guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4134
4135         svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4136         svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4137
4138         svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4139
4140         svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4141                         guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4142
4143         svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4144                         guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4145
4146         svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4147
4148         svm_recalc_instruction_intercepts(vcpu, svm);
4149
4150         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
4151         if (sev_guest(vcpu->kvm)) {
4152                 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4153                 if (best)
4154                         vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4155         }
4156
4157         init_vmcb_after_set_cpuid(vcpu);
4158 }
4159
4160 static bool svm_has_wbinvd_exit(void)
4161 {
4162         return true;
4163 }
4164
4165 #define PRE_EX(exit)  { .exit_code = (exit), \
4166                         .stage = X86_ICPT_PRE_EXCEPT, }
4167 #define POST_EX(exit) { .exit_code = (exit), \
4168                         .stage = X86_ICPT_POST_EXCEPT, }
4169 #define POST_MEM(exit) { .exit_code = (exit), \
4170                         .stage = X86_ICPT_POST_MEMACCESS, }
4171
4172 static const struct __x86_intercept {
4173         u32 exit_code;
4174         enum x86_intercept_stage stage;
4175 } x86_intercept_map[] = {
4176         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4177         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4178         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4179         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4180         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4181         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4182         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4183         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4184         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4185         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4186         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4187         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4188         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4189         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4190         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4191         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4192         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4193         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4194         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4195         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4196         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4197         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4198         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4199         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4200         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4201         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4202         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4203         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4204         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4205         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4206         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4207         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4208         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4209         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4210         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4211         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4212         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4213         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4214         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4215         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4216         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4217         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4218         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4219         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4220         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4221         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4222         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4223 };
4224
4225 #undef PRE_EX
4226 #undef POST_EX
4227 #undef POST_MEM
4228
4229 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4230                                struct x86_instruction_info *info,
4231                                enum x86_intercept_stage stage,
4232                                struct x86_exception *exception)
4233 {
4234         struct vcpu_svm *svm = to_svm(vcpu);
4235         int vmexit, ret = X86EMUL_CONTINUE;
4236         struct __x86_intercept icpt_info;
4237         struct vmcb *vmcb = svm->vmcb;
4238
4239         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4240                 goto out;
4241
4242         icpt_info = x86_intercept_map[info->intercept];
4243
4244         if (stage != icpt_info.stage)
4245                 goto out;
4246
4247         switch (icpt_info.exit_code) {
4248         case SVM_EXIT_READ_CR0:
4249                 if (info->intercept == x86_intercept_cr_read)
4250                         icpt_info.exit_code += info->modrm_reg;
4251                 break;
4252         case SVM_EXIT_WRITE_CR0: {
4253                 unsigned long cr0, val;
4254
4255                 if (info->intercept == x86_intercept_cr_write)
4256                         icpt_info.exit_code += info->modrm_reg;
4257
4258                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4259                     info->intercept == x86_intercept_clts)
4260                         break;
4261
4262                 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4263                                         INTERCEPT_SELECTIVE_CR0)))
4264                         break;
4265
4266                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4267                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4268
4269                 if (info->intercept == x86_intercept_lmsw) {
4270                         cr0 &= 0xfUL;
4271                         val &= 0xfUL;
4272                         /* lmsw can't clear PE - catch this here */
4273                         if (cr0 & X86_CR0_PE)
4274                                 val |= X86_CR0_PE;
4275                 }
4276
4277                 if (cr0 ^ val)
4278                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4279
4280                 break;
4281         }
4282         case SVM_EXIT_READ_DR0:
4283         case SVM_EXIT_WRITE_DR0:
4284                 icpt_info.exit_code += info->modrm_reg;
4285                 break;
4286         case SVM_EXIT_MSR:
4287                 if (info->intercept == x86_intercept_wrmsr)
4288                         vmcb->control.exit_info_1 = 1;
4289                 else
4290                         vmcb->control.exit_info_1 = 0;
4291                 break;
4292         case SVM_EXIT_PAUSE:
4293                 /*
4294                  * We get this for NOP only, but pause
4295                  * is rep not, check this here
4296                  */
4297                 if (info->rep_prefix != REPE_PREFIX)
4298                         goto out;
4299                 break;
4300         case SVM_EXIT_IOIO: {
4301                 u64 exit_info;
4302                 u32 bytes;
4303
4304                 if (info->intercept == x86_intercept_in ||
4305                     info->intercept == x86_intercept_ins) {
4306                         exit_info = ((info->src_val & 0xffff) << 16) |
4307                                 SVM_IOIO_TYPE_MASK;
4308                         bytes = info->dst_bytes;
4309                 } else {
4310                         exit_info = (info->dst_val & 0xffff) << 16;
4311                         bytes = info->src_bytes;
4312                 }
4313
4314                 if (info->intercept == x86_intercept_outs ||
4315                     info->intercept == x86_intercept_ins)
4316                         exit_info |= SVM_IOIO_STR_MASK;
4317
4318                 if (info->rep_prefix)
4319                         exit_info |= SVM_IOIO_REP_MASK;
4320
4321                 bytes = min(bytes, 4u);
4322
4323                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4324
4325                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4326
4327                 vmcb->control.exit_info_1 = exit_info;
4328                 vmcb->control.exit_info_2 = info->next_rip;
4329
4330                 break;
4331         }
4332         default:
4333                 break;
4334         }
4335
4336         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4337         if (static_cpu_has(X86_FEATURE_NRIPS))
4338                 vmcb->control.next_rip  = info->next_rip;
4339         vmcb->control.exit_code = icpt_info.exit_code;
4340         vmexit = nested_svm_exit_handled(svm);
4341
4342         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4343                                            : X86EMUL_CONTINUE;
4344
4345 out:
4346         return ret;
4347 }
4348
4349 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4350 {
4351         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4352                 vcpu->arch.at_instruction_boundary = true;
4353 }
4354
4355 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4356 {
4357         if (!kvm_pause_in_guest(vcpu->kvm))
4358                 shrink_ple_window(vcpu);
4359 }
4360
4361 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4362 {
4363         /* [63:9] are reserved. */
4364         vcpu->arch.mcg_cap &= 0x1ff;
4365 }
4366
4367 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4368 {
4369         struct vcpu_svm *svm = to_svm(vcpu);
4370
4371         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4372         if (!gif_set(svm))
4373                 return true;
4374
4375         return is_smm(vcpu);
4376 }
4377
4378 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4379 {
4380         struct vcpu_svm *svm = to_svm(vcpu);
4381         if (svm->nested.nested_run_pending)
4382                 return -EBUSY;
4383
4384         if (svm_smi_blocked(vcpu))
4385                 return 0;
4386
4387         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4388         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4389                 return -EBUSY;
4390
4391         return 1;
4392 }
4393
4394 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4395 {
4396         struct vcpu_svm *svm = to_svm(vcpu);
4397         struct kvm_host_map map_save;
4398         int ret;
4399
4400         if (!is_guest_mode(vcpu))
4401                 return 0;
4402
4403         /* FED8h - SVM Guest */
4404         put_smstate(u64, smstate, 0x7ed8, 1);
4405         /* FEE0h - SVM Guest VMCB Physical Address */
4406         put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4407
4408         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4409         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4410         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4411
4412         ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4413         if (ret)
4414                 return ret;
4415
4416         /*
4417          * KVM uses VMCB01 to store L1 host state while L2 runs but
4418          * VMCB01 is going to be used during SMM and thus the state will
4419          * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4420          * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4421          * format of the area is identical to guest save area offsetted
4422          * by 0x400 (matches the offset of 'struct vmcb_save_area'
4423          * within 'struct vmcb'). Note: HSAVE area may also be used by
4424          * L1 hypervisor to save additional host context (e.g. KVM does
4425          * that, see svm_prepare_switch_to_guest()) which must be
4426          * preserved.
4427          */
4428         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4429                          &map_save) == -EINVAL)
4430                 return 1;
4431
4432         BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4433
4434         svm_copy_vmrun_state(map_save.hva + 0x400,
4435                              &svm->vmcb01.ptr->save);
4436
4437         kvm_vcpu_unmap(vcpu, &map_save, true);
4438         return 0;
4439 }
4440
4441 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4442 {
4443         struct vcpu_svm *svm = to_svm(vcpu);
4444         struct kvm_host_map map, map_save;
4445         u64 saved_efer, vmcb12_gpa;
4446         struct vmcb *vmcb12;
4447         int ret;
4448
4449         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4450                 return 0;
4451
4452         /* Non-zero if SMI arrived while vCPU was in guest mode. */
4453         if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4454                 return 0;
4455
4456         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4457                 return 1;
4458
4459         saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4460         if (!(saved_efer & EFER_SVME))
4461                 return 1;
4462
4463         vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4464         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4465                 return 1;
4466
4467         ret = 1;
4468         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4469                 goto unmap_map;
4470
4471         if (svm_allocate_nested(svm))
4472                 goto unmap_save;
4473
4474         /*
4475          * Restore L1 host state from L1 HSAVE area as VMCB01 was
4476          * used during SMM (see svm_enter_smm())
4477          */
4478
4479         svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4480
4481         /*
4482          * Enter the nested guest now
4483          */
4484
4485         vmcb_mark_all_dirty(svm->vmcb01.ptr);
4486
4487         vmcb12 = map.hva;
4488         nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4489         nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4490         ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4491
4492         if (ret)
4493                 goto unmap_save;
4494
4495         svm->nested.nested_run_pending = 1;
4496
4497 unmap_save:
4498         kvm_vcpu_unmap(vcpu, &map_save, true);
4499 unmap_map:
4500         kvm_vcpu_unmap(vcpu, &map, true);
4501         return ret;
4502 }
4503
4504 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4505 {
4506         struct vcpu_svm *svm = to_svm(vcpu);
4507
4508         if (!gif_set(svm)) {
4509                 if (vgif)
4510                         svm_set_intercept(svm, INTERCEPT_STGI);
4511                 /* STGI will cause a vm exit */
4512         } else {
4513                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4514         }
4515 }
4516
4517 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4518                                         void *insn, int insn_len)
4519 {
4520         bool smep, smap, is_user;
4521         unsigned long cr4;
4522         u64 error_code;
4523
4524         /* Emulation is always possible when KVM has access to all guest state. */
4525         if (!sev_guest(vcpu->kvm))
4526                 return true;
4527
4528         /* #UD and #GP should never be intercepted for SEV guests. */
4529         WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4530                                   EMULTYPE_TRAP_UD_FORCED |
4531                                   EMULTYPE_VMWARE_GP));
4532
4533         /*
4534          * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4535          * to guest register state.
4536          */
4537         if (sev_es_guest(vcpu->kvm))
4538                 return false;
4539
4540         /*
4541          * Emulation is possible if the instruction is already decoded, e.g.
4542          * when completing I/O after returning from userspace.
4543          */
4544         if (emul_type & EMULTYPE_NO_DECODE)
4545                 return true;
4546
4547         /*
4548          * Emulation is possible for SEV guests if and only if a prefilled
4549          * buffer containing the bytes of the intercepted instruction is
4550          * available. SEV guest memory is encrypted with a guest specific key
4551          * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4552          * decode garbage.
4553          *
4554          * Inject #UD if KVM reached this point without an instruction buffer.
4555          * In practice, this path should never be hit by a well-behaved guest,
4556          * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4557          * is still theoretically reachable, e.g. via unaccelerated fault-like
4558          * AVIC access, and needs to be handled by KVM to avoid putting the
4559          * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4560          * but its the least awful option given lack of insight into the guest.
4561          */
4562         if (unlikely(!insn)) {
4563                 kvm_queue_exception(vcpu, UD_VECTOR);
4564                 return false;
4565         }
4566
4567         /*
4568          * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4569          * will be empty if the DecodeAssist microcode cannot fetch bytes for
4570          * the faulting instruction because the code fetch itself faulted, e.g.
4571          * the guest attempted to fetch from emulated MMIO or a guest page
4572          * table used to translate CS:RIP resides in emulated MMIO.
4573          */
4574         if (likely(insn_len))
4575                 return true;
4576
4577         /*
4578          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4579          *
4580          * Errata:
4581          * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4582          * possible that CPU microcode implementing DecodeAssist will fail to
4583          * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4584          * be '0'.  This happens because microcode reads CS:RIP using a _data_
4585          * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4586          * gives up and does not fill the instruction bytes buffer.
4587          *
4588          * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4589          * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4590          * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4591          * GuestIntrBytes field of the VMCB.
4592          *
4593          * This does _not_ mean that the erratum has been encountered, as the
4594          * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4595          * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4596          * encountered a reserved/not-present #PF.
4597          *
4598          * To hit the erratum, the following conditions must be true:
4599          *    1. CR4.SMAP=1 (obviously).
4600          *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4601          *       have been hit as the guest would have encountered a SMEP
4602          *       violation #PF, not a #NPF.
4603          *    3. The #NPF is not due to a code fetch, in which case failure to
4604          *       retrieve the instruction bytes is legitimate (see abvoe).
4605          *
4606          * In addition, don't apply the erratum workaround if the #NPF occurred
4607          * while translating guest page tables (see below).
4608          */
4609         error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4610         if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4611                 goto resume_guest;
4612
4613         cr4 = kvm_read_cr4(vcpu);
4614         smep = cr4 & X86_CR4_SMEP;
4615         smap = cr4 & X86_CR4_SMAP;
4616         is_user = svm_get_cpl(vcpu) == 3;
4617         if (smap && (!smep || is_user)) {
4618                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4619
4620                 /*
4621                  * If the fault occurred in userspace, arbitrarily inject #GP
4622                  * to avoid killing the guest and to hopefully avoid confusing
4623                  * the guest kernel too much, e.g. injecting #PF would not be
4624                  * coherent with respect to the guest's page tables.  Request
4625                  * triple fault if the fault occurred in the kernel as there's
4626                  * no fault that KVM can inject without confusing the guest.
4627                  * In practice, the triple fault is moot as no sane SEV kernel
4628                  * will execute from user memory while also running with SMAP=1.
4629                  */
4630                 if (is_user)
4631                         kvm_inject_gp(vcpu, 0);
4632                 else
4633                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4634         }
4635
4636 resume_guest:
4637         /*
4638          * If the erratum was not hit, simply resume the guest and let it fault
4639          * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4640          * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4641          * userspace will kill the guest, and letting the emulator read garbage
4642          * will yield random behavior and potentially corrupt the guest.
4643          *
4644          * Simply resuming the guest is technically not a violation of the SEV
4645          * architecture.  AMD's APM states that all code fetches and page table
4646          * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4647          * APM also states that encrypted accesses to MMIO are "ignored", but
4648          * doesn't explicitly define "ignored", i.e. doing nothing and letting
4649          * the guest spin is technically "ignoring" the access.
4650          */
4651         return false;
4652 }
4653
4654 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4655 {
4656         struct vcpu_svm *svm = to_svm(vcpu);
4657
4658         return !gif_set(svm);
4659 }
4660
4661 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4662 {
4663         if (!sev_es_guest(vcpu->kvm))
4664                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4665
4666         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4667 }
4668
4669 static void svm_vm_destroy(struct kvm *kvm)
4670 {
4671         avic_vm_destroy(kvm);
4672         sev_vm_destroy(kvm);
4673 }
4674
4675 static int svm_vm_init(struct kvm *kvm)
4676 {
4677         if (!pause_filter_count || !pause_filter_thresh)
4678                 kvm->arch.pause_in_guest = true;
4679
4680         if (enable_apicv) {
4681                 int ret = avic_vm_init(kvm);
4682                 if (ret)
4683                         return ret;
4684         }
4685
4686         return 0;
4687 }
4688
4689 static struct kvm_x86_ops svm_x86_ops __initdata = {
4690         .name = "kvm_amd",
4691
4692         .hardware_unsetup = svm_hardware_unsetup,
4693         .hardware_enable = svm_hardware_enable,
4694         .hardware_disable = svm_hardware_disable,
4695         .has_emulated_msr = svm_has_emulated_msr,
4696
4697         .vcpu_create = svm_vcpu_create,
4698         .vcpu_free = svm_vcpu_free,
4699         .vcpu_reset = svm_vcpu_reset,
4700
4701         .vm_size = sizeof(struct kvm_svm),
4702         .vm_init = svm_vm_init,
4703         .vm_destroy = svm_vm_destroy,
4704
4705         .prepare_switch_to_guest = svm_prepare_switch_to_guest,
4706         .vcpu_load = svm_vcpu_load,
4707         .vcpu_put = svm_vcpu_put,
4708         .vcpu_blocking = avic_vcpu_blocking,
4709         .vcpu_unblocking = avic_vcpu_unblocking,
4710
4711         .update_exception_bitmap = svm_update_exception_bitmap,
4712         .get_msr_feature = svm_get_msr_feature,
4713         .get_msr = svm_get_msr,
4714         .set_msr = svm_set_msr,
4715         .get_segment_base = svm_get_segment_base,
4716         .get_segment = svm_get_segment,
4717         .set_segment = svm_set_segment,
4718         .get_cpl = svm_get_cpl,
4719         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
4720         .set_cr0 = svm_set_cr0,
4721         .post_set_cr3 = sev_post_set_cr3,
4722         .is_valid_cr4 = svm_is_valid_cr4,
4723         .set_cr4 = svm_set_cr4,
4724         .set_efer = svm_set_efer,
4725         .get_idt = svm_get_idt,
4726         .set_idt = svm_set_idt,
4727         .get_gdt = svm_get_gdt,
4728         .set_gdt = svm_set_gdt,
4729         .set_dr7 = svm_set_dr7,
4730         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4731         .cache_reg = svm_cache_reg,
4732         .get_rflags = svm_get_rflags,
4733         .set_rflags = svm_set_rflags,
4734         .get_if_flag = svm_get_if_flag,
4735
4736         .flush_tlb_all = svm_flush_tlb_current,
4737         .flush_tlb_current = svm_flush_tlb_current,
4738         .flush_tlb_gva = svm_flush_tlb_gva,
4739         .flush_tlb_guest = svm_flush_tlb_current,
4740
4741         .vcpu_pre_run = svm_vcpu_pre_run,
4742         .vcpu_run = svm_vcpu_run,
4743         .handle_exit = svm_handle_exit,
4744         .skip_emulated_instruction = svm_skip_emulated_instruction,
4745         .update_emulated_instruction = NULL,
4746         .set_interrupt_shadow = svm_set_interrupt_shadow,
4747         .get_interrupt_shadow = svm_get_interrupt_shadow,
4748         .patch_hypercall = svm_patch_hypercall,
4749         .inject_irq = svm_inject_irq,
4750         .inject_nmi = svm_inject_nmi,
4751         .inject_exception = svm_inject_exception,
4752         .cancel_injection = svm_cancel_injection,
4753         .interrupt_allowed = svm_interrupt_allowed,
4754         .nmi_allowed = svm_nmi_allowed,
4755         .get_nmi_mask = svm_get_nmi_mask,
4756         .set_nmi_mask = svm_set_nmi_mask,
4757         .enable_nmi_window = svm_enable_nmi_window,
4758         .enable_irq_window = svm_enable_irq_window,
4759         .update_cr8_intercept = svm_update_cr8_intercept,
4760         .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4761         .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4762         .check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
4763         .apicv_post_state_restore = avic_apicv_post_state_restore,
4764
4765         .get_exit_info = svm_get_exit_info,
4766
4767         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4768
4769         .has_wbinvd_exit = svm_has_wbinvd_exit,
4770
4771         .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4772         .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4773         .write_tsc_offset = svm_write_tsc_offset,
4774         .write_tsc_multiplier = svm_write_tsc_multiplier,
4775
4776         .load_mmu_pgd = svm_load_mmu_pgd,
4777
4778         .check_intercept = svm_check_intercept,
4779         .handle_exit_irqoff = svm_handle_exit_irqoff,
4780
4781         .request_immediate_exit = __kvm_request_immediate_exit,
4782
4783         .sched_in = svm_sched_in,
4784
4785         .nested_ops = &svm_nested_ops,
4786
4787         .deliver_interrupt = svm_deliver_interrupt,
4788         .pi_update_irte = avic_pi_update_irte,
4789         .setup_mce = svm_setup_mce,
4790
4791         .smi_allowed = svm_smi_allowed,
4792         .enter_smm = svm_enter_smm,
4793         .leave_smm = svm_leave_smm,
4794         .enable_smi_window = svm_enable_smi_window,
4795
4796         .mem_enc_ioctl = sev_mem_enc_ioctl,
4797         .mem_enc_register_region = sev_mem_enc_register_region,
4798         .mem_enc_unregister_region = sev_mem_enc_unregister_region,
4799         .guest_memory_reclaimed = sev_guest_memory_reclaimed,
4800
4801         .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4802         .vm_move_enc_context_from = sev_vm_move_enc_context_from,
4803
4804         .can_emulate_instruction = svm_can_emulate_instruction,
4805
4806         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4807
4808         .msr_filter_changed = svm_msr_filter_changed,
4809         .complete_emulated_msr = svm_complete_emulated_msr,
4810
4811         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4812         .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4813 };
4814
4815 /*
4816  * The default MMIO mask is a single bit (excluding the present bit),
4817  * which could conflict with the memory encryption bit. Check for
4818  * memory encryption support and override the default MMIO mask if
4819  * memory encryption is enabled.
4820  */
4821 static __init void svm_adjust_mmio_mask(void)
4822 {
4823         unsigned int enc_bit, mask_bit;
4824         u64 msr, mask;
4825
4826         /* If there is no memory encryption support, use existing mask */
4827         if (cpuid_eax(0x80000000) < 0x8000001f)
4828                 return;
4829
4830         /* If memory encryption is not enabled, use existing mask */
4831         rdmsrl(MSR_AMD64_SYSCFG, msr);
4832         if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4833                 return;
4834
4835         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4836         mask_bit = boot_cpu_data.x86_phys_bits;
4837
4838         /* Increment the mask bit if it is the same as the encryption bit */
4839         if (enc_bit == mask_bit)
4840                 mask_bit++;
4841
4842         /*
4843          * If the mask bit location is below 52, then some bits above the
4844          * physical addressing limit will always be reserved, so use the
4845          * rsvd_bits() function to generate the mask. This mask, along with
4846          * the present bit, will be used to generate a page fault with
4847          * PFER.RSV = 1.
4848          *
4849          * If the mask bit location is 52 (or above), then clear the mask.
4850          */
4851         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4852
4853         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4854 }
4855
4856 static __init void svm_set_cpu_caps(void)
4857 {
4858         kvm_set_cpu_caps();
4859
4860         kvm_caps.supported_xss = 0;
4861
4862         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
4863         if (nested) {
4864                 kvm_cpu_cap_set(X86_FEATURE_SVM);
4865                 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4866
4867                 if (nrips)
4868                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4869
4870                 if (npt_enabled)
4871                         kvm_cpu_cap_set(X86_FEATURE_NPT);
4872
4873                 if (tsc_scaling)
4874                         kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4875
4876                 if (vls)
4877                         kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4878                 if (lbrv)
4879                         kvm_cpu_cap_set(X86_FEATURE_LBRV);
4880
4881                 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4882                         kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4883
4884                 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4885                         kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4886
4887                 if (vgif)
4888                         kvm_cpu_cap_set(X86_FEATURE_VGIF);
4889
4890                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
4891                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4892         }
4893
4894         /* CPUID 0x80000008 */
4895         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4896             boot_cpu_has(X86_FEATURE_AMD_SSBD))
4897                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4898
4899         /* AMD PMU PERFCTR_CORE CPUID */
4900         if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4901                 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4902
4903         /* CPUID 0x8000001F (SME/SEV features) */
4904         sev_set_cpu_caps();
4905 }
4906
4907 static __init int svm_hardware_setup(void)
4908 {
4909         int cpu;
4910         struct page *iopm_pages;
4911         void *iopm_va;
4912         int r;
4913         unsigned int order = get_order(IOPM_SIZE);
4914
4915         /*
4916          * NX is required for shadow paging and for NPT if the NX huge pages
4917          * mitigation is enabled.
4918          */
4919         if (!boot_cpu_has(X86_FEATURE_NX)) {
4920                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
4921                 return -EOPNOTSUPP;
4922         }
4923         kvm_enable_efer_bits(EFER_NX);
4924
4925         iopm_pages = alloc_pages(GFP_KERNEL, order);
4926
4927         if (!iopm_pages)
4928                 return -ENOMEM;
4929
4930         iopm_va = page_address(iopm_pages);
4931         memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4932         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4933
4934         init_msrpm_offsets();
4935
4936         kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
4937                                      XFEATURE_MASK_BNDCSR);
4938
4939         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4940                 kvm_enable_efer_bits(EFER_FFXSR);
4941
4942         if (tsc_scaling) {
4943                 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4944                         tsc_scaling = false;
4945                 } else {
4946                         pr_info("TSC scaling supported\n");
4947                         kvm_caps.has_tsc_control = true;
4948                 }
4949         }
4950         kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
4951         kvm_caps.tsc_scaling_ratio_frac_bits = 32;
4952
4953         tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
4954
4955         /* Check for pause filtering support */
4956         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
4957                 pause_filter_count = 0;
4958                 pause_filter_thresh = 0;
4959         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
4960                 pause_filter_thresh = 0;
4961         }
4962
4963         if (nested) {
4964                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
4965                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
4966         }
4967
4968         /*
4969          * KVM's MMU doesn't support using 2-level paging for itself, and thus
4970          * NPT isn't supported if the host is using 2-level paging since host
4971          * CR4 is unchanged on VMRUN.
4972          */
4973         if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
4974                 npt_enabled = false;
4975
4976         if (!boot_cpu_has(X86_FEATURE_NPT))
4977                 npt_enabled = false;
4978
4979         /* Force VM NPT level equal to the host's paging level */
4980         kvm_configure_mmu(npt_enabled, get_npt_level(),
4981                           get_npt_level(), PG_LEVEL_1G);
4982         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
4983
4984         /* Setup shadow_me_value and shadow_me_mask */
4985         kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
4986
4987         svm_adjust_mmio_mask();
4988
4989         /*
4990          * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
4991          * may be modified by svm_adjust_mmio_mask()).
4992          */
4993         sev_hardware_setup();
4994
4995         svm_hv_hardware_setup();
4996
4997         for_each_possible_cpu(cpu) {
4998                 r = svm_cpu_init(cpu);
4999                 if (r)
5000                         goto err;
5001         }
5002
5003         if (nrips) {
5004                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
5005                         nrips = false;
5006         }
5007
5008         enable_apicv = avic = avic && avic_hardware_setup(&svm_x86_ops);
5009
5010         if (!enable_apicv) {
5011                 svm_x86_ops.vcpu_blocking = NULL;
5012                 svm_x86_ops.vcpu_unblocking = NULL;
5013                 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5014         }
5015
5016         if (vls) {
5017                 if (!npt_enabled ||
5018                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5019                     !IS_ENABLED(CONFIG_X86_64)) {
5020                         vls = false;
5021                 } else {
5022                         pr_info("Virtual VMLOAD VMSAVE supported\n");
5023                 }
5024         }
5025
5026         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5027                 svm_gp_erratum_intercept = false;
5028
5029         if (vgif) {
5030                 if (!boot_cpu_has(X86_FEATURE_VGIF))
5031                         vgif = false;
5032                 else
5033                         pr_info("Virtual GIF supported\n");
5034         }
5035
5036         if (lbrv) {
5037                 if (!boot_cpu_has(X86_FEATURE_LBRV))
5038                         lbrv = false;
5039                 else
5040                         pr_info("LBR virtualization supported\n");
5041         }
5042
5043         if (!enable_pmu)
5044                 pr_info("PMU virtualization is disabled\n");
5045
5046         svm_set_cpu_caps();
5047
5048         /*
5049          * It seems that on AMD processors PTE's accessed bit is
5050          * being set by the CPU hardware before the NPF vmexit.
5051          * This is not expected behaviour and our tests fail because
5052          * of it.
5053          * A workaround here is to disable support for
5054          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5055          * In this case userspace can know if there is support using
5056          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5057          * it
5058          * If future AMD CPU models change the behaviour described above,
5059          * this variable can be changed accordingly
5060          */
5061         allow_smaller_maxphyaddr = !npt_enabled;
5062
5063         return 0;
5064
5065 err:
5066         svm_hardware_unsetup();
5067         return r;
5068 }
5069
5070
5071 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5072         .cpu_has_kvm_support = has_svm,
5073         .disabled_by_bios = is_disabled,
5074         .hardware_setup = svm_hardware_setup,
5075         .check_processor_compatibility = svm_check_processor_compat,
5076
5077         .runtime_ops = &svm_x86_ops,
5078         .pmu_ops = &amd_pmu_ops,
5079 };
5080
5081 static int __init svm_init(void)
5082 {
5083         int r;
5084
5085         __unused_size_checks();
5086
5087         r = kvm_x86_vendor_init(&svm_init_ops);
5088         if (r)
5089                 return r;
5090
5091         /*
5092          * Common KVM initialization _must_ come last, after this, /dev/kvm is
5093          * exposed to userspace!
5094          */
5095         r = kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
5096                      __alignof__(struct vcpu_svm), THIS_MODULE);
5097         if (r)
5098                 goto err_kvm_init;
5099
5100         return 0;
5101
5102 err_kvm_init:
5103         kvm_x86_vendor_exit();
5104         return r;
5105 }
5106
5107 static void __exit svm_exit(void)
5108 {
5109         kvm_exit();
5110         kvm_x86_vendor_exit();
5111 }
5112
5113 module_init(svm_init)
5114 module_exit(svm_exit)