Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 #include <linux/cc_platform.h>
29
30 #include <asm/apic.h>
31 #include <asm/perf_event.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/debugreg.h>
35 #include <asm/kvm_para.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/traps.h>
40 #include <asm/fpu/api.h>
41
42 #include <asm/virtext.h>
43 #include "trace.h"
44
45 #include "svm.h"
46 #include "svm_ops.h"
47
48 #include "kvm_onhyperv.h"
49 #include "svm_onhyperv.h"
50
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57         {}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64
65 static bool erratum_383_found __read_mostly;
66
67 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
68
69 /*
70  * Set osvw_len to higher value when updated Revision Guides
71  * are published and we know what the new status bits are
72  */
73 static uint64_t osvw_len = 4, osvw_status;
74
75 static DEFINE_PER_CPU(u64, current_tsc_ratio);
76
77 static const struct svm_direct_access_msrs {
78         u32 index;   /* Index of the MSR */
79         bool always; /* True if intercept is initially cleared */
80 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
81         { .index = MSR_STAR,                            .always = true  },
82         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
83         { .index = MSR_IA32_SYSENTER_EIP,               .always = false },
84         { .index = MSR_IA32_SYSENTER_ESP,               .always = false },
85 #ifdef CONFIG_X86_64
86         { .index = MSR_GS_BASE,                         .always = true  },
87         { .index = MSR_FS_BASE,                         .always = true  },
88         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
89         { .index = MSR_LSTAR,                           .always = true  },
90         { .index = MSR_CSTAR,                           .always = true  },
91         { .index = MSR_SYSCALL_MASK,                    .always = true  },
92 #endif
93         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
94         { .index = MSR_IA32_PRED_CMD,                   .always = false },
95         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
96         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
97         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
98         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
99         { .index = MSR_EFER,                            .always = false },
100         { .index = MSR_IA32_CR_PAT,                     .always = false },
101         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
102         { .index = MSR_TSC_AUX,                         .always = false },
103         { .index = MSR_INVALID,                         .always = false },
104 };
105
106 /*
107  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
108  * pause_filter_count: On processors that support Pause filtering(indicated
109  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
110  *      count value. On VMRUN this value is loaded into an internal counter.
111  *      Each time a pause instruction is executed, this counter is decremented
112  *      until it reaches zero at which time a #VMEXIT is generated if pause
113  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
114  *      Intercept Filtering for more details.
115  *      This also indicate if ple logic enabled.
116  *
117  * pause_filter_thresh: In addition, some processor families support advanced
118  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
119  *      the amount of time a guest is allowed to execute in a pause loop.
120  *      In this mode, a 16-bit pause filter threshold field is added in the
121  *      VMCB. The threshold value is a cycle count that is used to reset the
122  *      pause counter. As with simple pause filtering, VMRUN loads the pause
123  *      count value from VMCB into an internal counter. Then, on each pause
124  *      instruction the hardware checks the elapsed number of cycles since
125  *      the most recent pause instruction against the pause filter threshold.
126  *      If the elapsed cycle count is greater than the pause filter threshold,
127  *      then the internal pause count is reloaded from the VMCB and execution
128  *      continues. If the elapsed cycle count is less than the pause filter
129  *      threshold, then the internal pause count is decremented. If the count
130  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
131  *      triggered. If advanced pause filtering is supported and pause filter
132  *      threshold field is set to zero, the filter will operate in the simpler,
133  *      count only mode.
134  */
135
136 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
137 module_param(pause_filter_thresh, ushort, 0444);
138
139 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
140 module_param(pause_filter_count, ushort, 0444);
141
142 /* Default doubles per-vcpu window every exit. */
143 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
144 module_param(pause_filter_count_grow, ushort, 0444);
145
146 /* Default resets per-vcpu window every exit to pause_filter_count. */
147 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
148 module_param(pause_filter_count_shrink, ushort, 0444);
149
150 /* Default is to compute the maximum so we can never overflow. */
151 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
152 module_param(pause_filter_count_max, ushort, 0444);
153
154 /*
155  * Use nested page tables by default.  Note, NPT may get forced off by
156  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
157  */
158 bool npt_enabled = true;
159 module_param_named(npt, npt_enabled, bool, 0444);
160
161 /* allow nested virtualization in KVM/SVM */
162 static int nested = true;
163 module_param(nested, int, S_IRUGO);
164
165 /* enable/disable Next RIP Save */
166 static int nrips = true;
167 module_param(nrips, int, 0444);
168
169 /* enable/disable Virtual VMLOAD VMSAVE */
170 static int vls = true;
171 module_param(vls, int, 0444);
172
173 /* enable/disable Virtual GIF */
174 int vgif = true;
175 module_param(vgif, int, 0444);
176
177 /* enable/disable LBR virtualization */
178 static int lbrv = true;
179 module_param(lbrv, int, 0444);
180
181 static int tsc_scaling = true;
182 module_param(tsc_scaling, int, 0444);
183
184 /*
185  * enable / disable AVIC.  Because the defaults differ for APICv
186  * support between VMX and SVM we cannot use module_param_named.
187  */
188 static bool avic;
189 module_param(avic, bool, 0444);
190
191 static bool force_avic;
192 module_param_unsafe(force_avic, bool, 0444);
193
194 bool __read_mostly dump_invalid_vmcb;
195 module_param(dump_invalid_vmcb, bool, 0644);
196
197
198 bool intercept_smi = true;
199 module_param(intercept_smi, bool, 0444);
200
201
202 static bool svm_gp_erratum_intercept = true;
203
204 static u8 rsm_ins_bytes[] = "\x0f\xaa";
205
206 static unsigned long iopm_base;
207
208 struct kvm_ldttss_desc {
209         u16 limit0;
210         u16 base0;
211         unsigned base1:8, type:5, dpl:2, p:1;
212         unsigned limit1:4, zero0:3, g:1, base2:8;
213         u32 base3;
214         u32 zero1;
215 } __attribute__((packed));
216
217 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
218
219 /*
220  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
221  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
222  *
223  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
224  * defer the restoration of TSC_AUX until the CPU returns to userspace.
225  */
226 static int tsc_aux_uret_slot __read_mostly = -1;
227
228 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
229
230 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
231 #define MSRS_RANGE_SIZE 2048
232 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
233
234 u32 svm_msrpm_offset(u32 msr)
235 {
236         u32 offset;
237         int i;
238
239         for (i = 0; i < NUM_MSR_MAPS; i++) {
240                 if (msr < msrpm_ranges[i] ||
241                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
242                         continue;
243
244                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
245                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
246
247                 /* Now we have the u8 offset - but need the u32 offset */
248                 return offset / 4;
249         }
250
251         /* MSR not in any range */
252         return MSR_INVALID;
253 }
254
255 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
256
257 static int get_npt_level(void)
258 {
259 #ifdef CONFIG_X86_64
260         return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
261 #else
262         return PT32E_ROOT_LEVEL;
263 #endif
264 }
265
266 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268         struct vcpu_svm *svm = to_svm(vcpu);
269         u64 old_efer = vcpu->arch.efer;
270         vcpu->arch.efer = efer;
271
272         if (!npt_enabled) {
273                 /* Shadow paging assumes NX to be available.  */
274                 efer |= EFER_NX;
275
276                 if (!(efer & EFER_LMA))
277                         efer &= ~EFER_LME;
278         }
279
280         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
281                 if (!(efer & EFER_SVME)) {
282                         svm_leave_nested(vcpu);
283                         svm_set_gif(svm, true);
284                         /* #GP intercept is still needed for vmware backdoor */
285                         if (!enable_vmware_backdoor)
286                                 clr_exception_intercept(svm, GP_VECTOR);
287
288                         /*
289                          * Free the nested guest state, unless we are in SMM.
290                          * In this case we will return to the nested guest
291                          * as soon as we leave SMM.
292                          */
293                         if (!is_smm(vcpu))
294                                 svm_free_nested(svm);
295
296                 } else {
297                         int ret = svm_allocate_nested(svm);
298
299                         if (ret) {
300                                 vcpu->arch.efer = old_efer;
301                                 return ret;
302                         }
303
304                         /*
305                          * Never intercept #GP for SEV guests, KVM can't
306                          * decrypt guest memory to workaround the erratum.
307                          */
308                         if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
309                                 set_exception_intercept(svm, GP_VECTOR);
310                 }
311         }
312
313         svm->vmcb->save.efer = efer | EFER_SVME;
314         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
315         return 0;
316 }
317
318 static int is_external_interrupt(u32 info)
319 {
320         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
321         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
322 }
323
324 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
325 {
326         struct vcpu_svm *svm = to_svm(vcpu);
327         u32 ret = 0;
328
329         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
330                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
331         return ret;
332 }
333
334 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
335 {
336         struct vcpu_svm *svm = to_svm(vcpu);
337
338         if (mask == 0)
339                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
340         else
341                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
342
343 }
344
345 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
346 {
347         struct vcpu_svm *svm = to_svm(vcpu);
348
349         /*
350          * SEV-ES does not expose the next RIP. The RIP update is controlled by
351          * the type of exit and the #VC handler in the guest.
352          */
353         if (sev_es_guest(vcpu->kvm))
354                 goto done;
355
356         if (nrips && svm->vmcb->control.next_rip != 0) {
357                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
358                 svm->next_rip = svm->vmcb->control.next_rip;
359         }
360
361         if (!svm->next_rip) {
362                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
363                         return 0;
364         } else {
365                 kvm_rip_write(vcpu, svm->next_rip);
366         }
367
368 done:
369         svm_set_interrupt_shadow(vcpu, 0);
370
371         return 1;
372 }
373
374 static void svm_queue_exception(struct kvm_vcpu *vcpu)
375 {
376         struct vcpu_svm *svm = to_svm(vcpu);
377         unsigned nr = vcpu->arch.exception.nr;
378         bool has_error_code = vcpu->arch.exception.has_error_code;
379         u32 error_code = vcpu->arch.exception.error_code;
380
381         kvm_deliver_exception_payload(vcpu);
382
383         if (nr == BP_VECTOR && !nrips) {
384                 unsigned long rip, old_rip = kvm_rip_read(vcpu);
385
386                 /*
387                  * For guest debugging where we have to reinject #BP if some
388                  * INT3 is guest-owned:
389                  * Emulate nRIP by moving RIP forward. Will fail if injection
390                  * raises a fault that is not intercepted. Still better than
391                  * failing in all cases.
392                  */
393                 (void)svm_skip_emulated_instruction(vcpu);
394                 rip = kvm_rip_read(vcpu);
395                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
396                 svm->int3_injected = rip - old_rip;
397         }
398
399         svm->vmcb->control.event_inj = nr
400                 | SVM_EVTINJ_VALID
401                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
402                 | SVM_EVTINJ_TYPE_EXEPT;
403         svm->vmcb->control.event_inj_err = error_code;
404 }
405
406 static void svm_init_erratum_383(void)
407 {
408         u32 low, high;
409         int err;
410         u64 val;
411
412         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
413                 return;
414
415         /* Use _safe variants to not break nested virtualization */
416         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
417         if (err)
418                 return;
419
420         val |= (1ULL << 47);
421
422         low  = lower_32_bits(val);
423         high = upper_32_bits(val);
424
425         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
426
427         erratum_383_found = true;
428 }
429
430 static void svm_init_osvw(struct kvm_vcpu *vcpu)
431 {
432         /*
433          * Guests should see errata 400 and 415 as fixed (assuming that
434          * HLT and IO instructions are intercepted).
435          */
436         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
437         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
438
439         /*
440          * By increasing VCPU's osvw.length to 3 we are telling the guest that
441          * all osvw.status bits inside that length, including bit 0 (which is
442          * reserved for erratum 298), are valid. However, if host processor's
443          * osvw_len is 0 then osvw_status[0] carries no information. We need to
444          * be conservative here and therefore we tell the guest that erratum 298
445          * is present (because we really don't know).
446          */
447         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
448                 vcpu->arch.osvw.status |= 1;
449 }
450
451 static int has_svm(void)
452 {
453         const char *msg;
454
455         if (!cpu_has_svm(&msg)) {
456                 printk(KERN_INFO "has_svm: %s\n", msg);
457                 return 0;
458         }
459
460         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
461                 pr_info("KVM is unsupported when running as an SEV guest\n");
462                 return 0;
463         }
464
465         return 1;
466 }
467
468 static void svm_hardware_disable(void)
469 {
470         /* Make sure we clean up behind us */
471         if (tsc_scaling)
472                 wrmsrl(MSR_AMD64_TSC_RATIO, SVM_TSC_RATIO_DEFAULT);
473
474         cpu_svm_disable();
475
476         amd_pmu_disable_virt();
477 }
478
479 static int svm_hardware_enable(void)
480 {
481
482         struct svm_cpu_data *sd;
483         uint64_t efer;
484         struct desc_struct *gdt;
485         int me = raw_smp_processor_id();
486
487         rdmsrl(MSR_EFER, efer);
488         if (efer & EFER_SVME)
489                 return -EBUSY;
490
491         if (!has_svm()) {
492                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
493                 return -EINVAL;
494         }
495         sd = per_cpu(svm_data, me);
496         if (!sd) {
497                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
498                 return -EINVAL;
499         }
500
501         sd->asid_generation = 1;
502         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
503         sd->next_asid = sd->max_asid + 1;
504         sd->min_asid = max_sev_asid + 1;
505
506         gdt = get_current_gdt_rw();
507         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
508
509         wrmsrl(MSR_EFER, efer | EFER_SVME);
510
511         wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
512
513         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
514                 /*
515                  * Set the default value, even if we don't use TSC scaling
516                  * to avoid having stale value in the msr
517                  */
518                 wrmsrl(MSR_AMD64_TSC_RATIO, SVM_TSC_RATIO_DEFAULT);
519                 __this_cpu_write(current_tsc_ratio, SVM_TSC_RATIO_DEFAULT);
520         }
521
522
523         /*
524          * Get OSVW bits.
525          *
526          * Note that it is possible to have a system with mixed processor
527          * revisions and therefore different OSVW bits. If bits are not the same
528          * on different processors then choose the worst case (i.e. if erratum
529          * is present on one processor and not on another then assume that the
530          * erratum is present everywhere).
531          */
532         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
533                 uint64_t len, status = 0;
534                 int err;
535
536                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
537                 if (!err)
538                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
539                                                       &err);
540
541                 if (err)
542                         osvw_status = osvw_len = 0;
543                 else {
544                         if (len < osvw_len)
545                                 osvw_len = len;
546                         osvw_status |= status;
547                         osvw_status &= (1ULL << osvw_len) - 1;
548                 }
549         } else
550                 osvw_status = osvw_len = 0;
551
552         svm_init_erratum_383();
553
554         amd_pmu_enable_virt();
555
556         return 0;
557 }
558
559 static void svm_cpu_uninit(int cpu)
560 {
561         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
562
563         if (!sd)
564                 return;
565
566         per_cpu(svm_data, cpu) = NULL;
567         kfree(sd->sev_vmcbs);
568         __free_page(sd->save_area);
569         kfree(sd);
570 }
571
572 static int svm_cpu_init(int cpu)
573 {
574         struct svm_cpu_data *sd;
575         int ret = -ENOMEM;
576
577         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
578         if (!sd)
579                 return ret;
580         sd->cpu = cpu;
581         sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
582         if (!sd->save_area)
583                 goto free_cpu_data;
584
585         ret = sev_cpu_init(sd);
586         if (ret)
587                 goto free_save_area;
588
589         per_cpu(svm_data, cpu) = sd;
590
591         return 0;
592
593 free_save_area:
594         __free_page(sd->save_area);
595 free_cpu_data:
596         kfree(sd);
597         return ret;
598
599 }
600
601 static int direct_access_msr_slot(u32 msr)
602 {
603         u32 i;
604
605         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
606                 if (direct_access_msrs[i].index == msr)
607                         return i;
608
609         return -ENOENT;
610 }
611
612 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
613                                      int write)
614 {
615         struct vcpu_svm *svm = to_svm(vcpu);
616         int slot = direct_access_msr_slot(msr);
617
618         if (slot == -ENOENT)
619                 return;
620
621         /* Set the shadow bitmaps to the desired intercept states */
622         if (read)
623                 set_bit(slot, svm->shadow_msr_intercept.read);
624         else
625                 clear_bit(slot, svm->shadow_msr_intercept.read);
626
627         if (write)
628                 set_bit(slot, svm->shadow_msr_intercept.write);
629         else
630                 clear_bit(slot, svm->shadow_msr_intercept.write);
631 }
632
633 static bool valid_msr_intercept(u32 index)
634 {
635         return direct_access_msr_slot(index) != -ENOENT;
636 }
637
638 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
639 {
640         u8 bit_write;
641         unsigned long tmp;
642         u32 offset;
643         u32 *msrpm;
644
645         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
646                                       to_svm(vcpu)->msrpm;
647
648         offset    = svm_msrpm_offset(msr);
649         bit_write = 2 * (msr & 0x0f) + 1;
650         tmp       = msrpm[offset];
651
652         BUG_ON(offset == MSR_INVALID);
653
654         return !!test_bit(bit_write,  &tmp);
655 }
656
657 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
658                                         u32 msr, int read, int write)
659 {
660         struct vcpu_svm *svm = to_svm(vcpu);
661         u8 bit_read, bit_write;
662         unsigned long tmp;
663         u32 offset;
664
665         /*
666          * If this warning triggers extend the direct_access_msrs list at the
667          * beginning of the file
668          */
669         WARN_ON(!valid_msr_intercept(msr));
670
671         /* Enforce non allowed MSRs to trap */
672         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
673                 read = 0;
674
675         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
676                 write = 0;
677
678         offset    = svm_msrpm_offset(msr);
679         bit_read  = 2 * (msr & 0x0f);
680         bit_write = 2 * (msr & 0x0f) + 1;
681         tmp       = msrpm[offset];
682
683         BUG_ON(offset == MSR_INVALID);
684
685         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
686         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
687
688         msrpm[offset] = tmp;
689
690         svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
691         svm->nested.force_msr_bitmap_recalc = true;
692 }
693
694 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
695                           int read, int write)
696 {
697         set_shadow_msr_intercept(vcpu, msr, read, write);
698         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
699 }
700
701 u32 *svm_vcpu_alloc_msrpm(void)
702 {
703         unsigned int order = get_order(MSRPM_SIZE);
704         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
705         u32 *msrpm;
706
707         if (!pages)
708                 return NULL;
709
710         msrpm = page_address(pages);
711         memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
712
713         return msrpm;
714 }
715
716 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
717 {
718         int i;
719
720         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
721                 if (!direct_access_msrs[i].always)
722                         continue;
723                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
724         }
725 }
726
727
728 void svm_vcpu_free_msrpm(u32 *msrpm)
729 {
730         __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
731 }
732
733 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
734 {
735         struct vcpu_svm *svm = to_svm(vcpu);
736         u32 i;
737
738         /*
739          * Set intercept permissions for all direct access MSRs again. They
740          * will automatically get filtered through the MSR filter, so we are
741          * back in sync after this.
742          */
743         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
744                 u32 msr = direct_access_msrs[i].index;
745                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
746                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
747
748                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
749         }
750 }
751
752 static void add_msr_offset(u32 offset)
753 {
754         int i;
755
756         for (i = 0; i < MSRPM_OFFSETS; ++i) {
757
758                 /* Offset already in list? */
759                 if (msrpm_offsets[i] == offset)
760                         return;
761
762                 /* Slot used by another offset? */
763                 if (msrpm_offsets[i] != MSR_INVALID)
764                         continue;
765
766                 /* Add offset to list */
767                 msrpm_offsets[i] = offset;
768
769                 return;
770         }
771
772         /*
773          * If this BUG triggers the msrpm_offsets table has an overflow. Just
774          * increase MSRPM_OFFSETS in this case.
775          */
776         BUG();
777 }
778
779 static void init_msrpm_offsets(void)
780 {
781         int i;
782
783         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
784
785         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
786                 u32 offset;
787
788                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
789                 BUG_ON(offset == MSR_INVALID);
790
791                 add_msr_offset(offset);
792         }
793 }
794
795 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
796 {
797         to_vmcb->save.dbgctl            = from_vmcb->save.dbgctl;
798         to_vmcb->save.br_from           = from_vmcb->save.br_from;
799         to_vmcb->save.br_to             = from_vmcb->save.br_to;
800         to_vmcb->save.last_excp_from    = from_vmcb->save.last_excp_from;
801         to_vmcb->save.last_excp_to      = from_vmcb->save.last_excp_to;
802
803         vmcb_mark_dirty(to_vmcb, VMCB_LBR);
804 }
805
806 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
807 {
808         struct vcpu_svm *svm = to_svm(vcpu);
809
810         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
811         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
812         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
813         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
814         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
815
816         /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
817         if (is_guest_mode(vcpu))
818                 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
819 }
820
821 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
822 {
823         struct vcpu_svm *svm = to_svm(vcpu);
824
825         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
826         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
827         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
828         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
829         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
830
831         /*
832          * Move the LBR msrs back to the vmcb01 to avoid copying them
833          * on nested guest entries.
834          */
835         if (is_guest_mode(vcpu))
836                 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
837 }
838
839 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
840 {
841         /*
842          * If the LBR virtualization is disabled, the LBR msrs are always
843          * kept in the vmcb01 to avoid copying them on nested guest entries.
844          *
845          * If nested, and the LBR virtualization is enabled/disabled, the msrs
846          * are moved between the vmcb01 and vmcb02 as needed.
847          */
848         struct vmcb *vmcb =
849                 (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
850                         svm->vmcb : svm->vmcb01.ptr;
851
852         switch (index) {
853         case MSR_IA32_DEBUGCTLMSR:
854                 return vmcb->save.dbgctl;
855         case MSR_IA32_LASTBRANCHFROMIP:
856                 return vmcb->save.br_from;
857         case MSR_IA32_LASTBRANCHTOIP:
858                 return vmcb->save.br_to;
859         case MSR_IA32_LASTINTFROMIP:
860                 return vmcb->save.last_excp_from;
861         case MSR_IA32_LASTINTTOIP:
862                 return vmcb->save.last_excp_to;
863         default:
864                 KVM_BUG(false, svm->vcpu.kvm,
865                         "%s: Unknown MSR 0x%x", __func__, index);
866                 return 0;
867         }
868 }
869
870 void svm_update_lbrv(struct kvm_vcpu *vcpu)
871 {
872         struct vcpu_svm *svm = to_svm(vcpu);
873
874         bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
875                                            DEBUGCTLMSR_LBR;
876
877         bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
878                                       LBR_CTL_ENABLE_MASK);
879
880         if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
881                 if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
882                         enable_lbrv = true;
883
884         if (enable_lbrv == current_enable_lbrv)
885                 return;
886
887         if (enable_lbrv)
888                 svm_enable_lbrv(vcpu);
889         else
890                 svm_disable_lbrv(vcpu);
891 }
892
893 void disable_nmi_singlestep(struct vcpu_svm *svm)
894 {
895         svm->nmi_singlestep = false;
896
897         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
898                 /* Clear our flags if they were not set by the guest */
899                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
900                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
901                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
902                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
903         }
904 }
905
906 static void grow_ple_window(struct kvm_vcpu *vcpu)
907 {
908         struct vcpu_svm *svm = to_svm(vcpu);
909         struct vmcb_control_area *control = &svm->vmcb->control;
910         int old = control->pause_filter_count;
911
912         if (kvm_pause_in_guest(vcpu->kvm) || !old)
913                 return;
914
915         control->pause_filter_count = __grow_ple_window(old,
916                                                         pause_filter_count,
917                                                         pause_filter_count_grow,
918                                                         pause_filter_count_max);
919
920         if (control->pause_filter_count != old) {
921                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
922                 trace_kvm_ple_window_update(vcpu->vcpu_id,
923                                             control->pause_filter_count, old);
924         }
925 }
926
927 static void shrink_ple_window(struct kvm_vcpu *vcpu)
928 {
929         struct vcpu_svm *svm = to_svm(vcpu);
930         struct vmcb_control_area *control = &svm->vmcb->control;
931         int old = control->pause_filter_count;
932
933         if (kvm_pause_in_guest(vcpu->kvm) || !old)
934                 return;
935
936         control->pause_filter_count =
937                                 __shrink_ple_window(old,
938                                                     pause_filter_count,
939                                                     pause_filter_count_shrink,
940                                                     pause_filter_count);
941         if (control->pause_filter_count != old) {
942                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
943                 trace_kvm_ple_window_update(vcpu->vcpu_id,
944                                             control->pause_filter_count, old);
945         }
946 }
947
948 static void svm_hardware_unsetup(void)
949 {
950         int cpu;
951
952         sev_hardware_unsetup();
953
954         for_each_possible_cpu(cpu)
955                 svm_cpu_uninit(cpu);
956
957         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
958         get_order(IOPM_SIZE));
959         iopm_base = 0;
960 }
961
962 static void init_seg(struct vmcb_seg *seg)
963 {
964         seg->selector = 0;
965         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
966                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
967         seg->limit = 0xffff;
968         seg->base = 0;
969 }
970
971 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
972 {
973         seg->selector = 0;
974         seg->attrib = SVM_SELECTOR_P_MASK | type;
975         seg->limit = 0xffff;
976         seg->base = 0;
977 }
978
979 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
980 {
981         struct vcpu_svm *svm = to_svm(vcpu);
982
983         return svm->nested.ctl.tsc_offset;
984 }
985
986 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
987 {
988         struct vcpu_svm *svm = to_svm(vcpu);
989
990         return svm->tsc_ratio_msr;
991 }
992
993 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
994 {
995         struct vcpu_svm *svm = to_svm(vcpu);
996
997         svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
998         svm->vmcb->control.tsc_offset = offset;
999         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1000 }
1001
1002 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1003 {
1004         wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
1005 }
1006
1007 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1008 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1009                                               struct vcpu_svm *svm)
1010 {
1011         /*
1012          * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1013          * roots, or if INVPCID is disabled in the guest to inject #UD.
1014          */
1015         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1016                 if (!npt_enabled ||
1017                     !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1018                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1019                 else
1020                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1021         }
1022
1023         if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1024                 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1025                         svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1026                 else
1027                         svm_set_intercept(svm, INTERCEPT_RDTSCP);
1028         }
1029 }
1030
1031 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1032 {
1033         struct vcpu_svm *svm = to_svm(vcpu);
1034
1035         if (guest_cpuid_is_intel(vcpu)) {
1036                 /*
1037                  * We must intercept SYSENTER_EIP and SYSENTER_ESP
1038                  * accesses because the processor only stores 32 bits.
1039                  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1040                  */
1041                 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1042                 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1043                 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1044
1045                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1046                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1047
1048                 svm->v_vmload_vmsave_enabled = false;
1049         } else {
1050                 /*
1051                  * If hardware supports Virtual VMLOAD VMSAVE then enable it
1052                  * in VMCB and clear intercepts to avoid #VMEXIT.
1053                  */
1054                 if (vls) {
1055                         svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1056                         svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1057                         svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1058                 }
1059                 /* No need to intercept these MSRs */
1060                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1061                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1062         }
1063 }
1064
1065 static void init_vmcb(struct kvm_vcpu *vcpu)
1066 {
1067         struct vcpu_svm *svm = to_svm(vcpu);
1068         struct vmcb *vmcb = svm->vmcb01.ptr;
1069         struct vmcb_control_area *control = &vmcb->control;
1070         struct vmcb_save_area *save = &vmcb->save;
1071
1072         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1073         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1074         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1075         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1076         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1077         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1078         if (!kvm_vcpu_apicv_active(vcpu))
1079                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1080
1081         set_dr_intercepts(svm);
1082
1083         set_exception_intercept(svm, PF_VECTOR);
1084         set_exception_intercept(svm, UD_VECTOR);
1085         set_exception_intercept(svm, MC_VECTOR);
1086         set_exception_intercept(svm, AC_VECTOR);
1087         set_exception_intercept(svm, DB_VECTOR);
1088         /*
1089          * Guest access to VMware backdoor ports could legitimately
1090          * trigger #GP because of TSS I/O permission bitmap.
1091          * We intercept those #GP and allow access to them anyway
1092          * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1093          * decrypt guest memory to decode the faulting instruction.
1094          */
1095         if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1096                 set_exception_intercept(svm, GP_VECTOR);
1097
1098         svm_set_intercept(svm, INTERCEPT_INTR);
1099         svm_set_intercept(svm, INTERCEPT_NMI);
1100
1101         if (intercept_smi)
1102                 svm_set_intercept(svm, INTERCEPT_SMI);
1103
1104         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1105         svm_set_intercept(svm, INTERCEPT_RDPMC);
1106         svm_set_intercept(svm, INTERCEPT_CPUID);
1107         svm_set_intercept(svm, INTERCEPT_INVD);
1108         svm_set_intercept(svm, INTERCEPT_INVLPG);
1109         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1110         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1111         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1112         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1113         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1114         svm_set_intercept(svm, INTERCEPT_VMRUN);
1115         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1116         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1117         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1118         svm_set_intercept(svm, INTERCEPT_STGI);
1119         svm_set_intercept(svm, INTERCEPT_CLGI);
1120         svm_set_intercept(svm, INTERCEPT_SKINIT);
1121         svm_set_intercept(svm, INTERCEPT_WBINVD);
1122         svm_set_intercept(svm, INTERCEPT_XSETBV);
1123         svm_set_intercept(svm, INTERCEPT_RDPRU);
1124         svm_set_intercept(svm, INTERCEPT_RSM);
1125
1126         if (!kvm_mwait_in_guest(vcpu->kvm)) {
1127                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1128                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1129         }
1130
1131         if (!kvm_hlt_in_guest(vcpu->kvm))
1132                 svm_set_intercept(svm, INTERCEPT_HLT);
1133
1134         control->iopm_base_pa = __sme_set(iopm_base);
1135         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1136         control->int_ctl = V_INTR_MASKING_MASK;
1137
1138         init_seg(&save->es);
1139         init_seg(&save->ss);
1140         init_seg(&save->ds);
1141         init_seg(&save->fs);
1142         init_seg(&save->gs);
1143
1144         save->cs.selector = 0xf000;
1145         save->cs.base = 0xffff0000;
1146         /* Executable/Readable Code Segment */
1147         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1148                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1149         save->cs.limit = 0xffff;
1150
1151         save->gdtr.base = 0;
1152         save->gdtr.limit = 0xffff;
1153         save->idtr.base = 0;
1154         save->idtr.limit = 0xffff;
1155
1156         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1157         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1158
1159         if (npt_enabled) {
1160                 /* Setup VMCB for Nested Paging */
1161                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1162                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1163                 clr_exception_intercept(svm, PF_VECTOR);
1164                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1165                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1166                 save->g_pat = vcpu->arch.pat;
1167                 save->cr3 = 0;
1168         }
1169         svm->current_vmcb->asid_generation = 0;
1170         svm->asid = 0;
1171
1172         svm->nested.vmcb12_gpa = INVALID_GPA;
1173         svm->nested.last_vmcb12_gpa = INVALID_GPA;
1174
1175         if (!kvm_pause_in_guest(vcpu->kvm)) {
1176                 control->pause_filter_count = pause_filter_count;
1177                 if (pause_filter_thresh)
1178                         control->pause_filter_thresh = pause_filter_thresh;
1179                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1180         } else {
1181                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1182         }
1183
1184         svm_recalc_instruction_intercepts(vcpu, svm);
1185
1186         /*
1187          * If the host supports V_SPEC_CTRL then disable the interception
1188          * of MSR_IA32_SPEC_CTRL.
1189          */
1190         if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1191                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1192
1193         if (kvm_vcpu_apicv_active(vcpu))
1194                 avic_init_vmcb(svm, vmcb);
1195
1196         if (vgif) {
1197                 svm_clr_intercept(svm, INTERCEPT_STGI);
1198                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1199                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1200         }
1201
1202         if (sev_guest(vcpu->kvm)) {
1203                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1204                 clr_exception_intercept(svm, UD_VECTOR);
1205
1206                 if (sev_es_guest(vcpu->kvm)) {
1207                         /* Perform SEV-ES specific VMCB updates */
1208                         sev_es_init_vmcb(svm);
1209                 }
1210         }
1211
1212         svm_hv_init_vmcb(vmcb);
1213         init_vmcb_after_set_cpuid(vcpu);
1214
1215         vmcb_mark_all_dirty(vmcb);
1216
1217         enable_gif(svm);
1218 }
1219
1220 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1221 {
1222         struct vcpu_svm *svm = to_svm(vcpu);
1223
1224         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1225
1226         svm_init_osvw(vcpu);
1227         vcpu->arch.microcode_version = 0x01000065;
1228         svm->tsc_ratio_msr = kvm_default_tsc_scaling_ratio;
1229
1230         if (sev_es_guest(vcpu->kvm))
1231                 sev_es_vcpu_reset(svm);
1232 }
1233
1234 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1235 {
1236         struct vcpu_svm *svm = to_svm(vcpu);
1237
1238         svm->spec_ctrl = 0;
1239         svm->virt_spec_ctrl = 0;
1240
1241         init_vmcb(vcpu);
1242
1243         if (!init_event)
1244                 __svm_vcpu_reset(vcpu);
1245 }
1246
1247 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1248 {
1249         svm->current_vmcb = target_vmcb;
1250         svm->vmcb = target_vmcb->ptr;
1251 }
1252
1253 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1254 {
1255         struct vcpu_svm *svm;
1256         struct page *vmcb01_page;
1257         struct page *vmsa_page = NULL;
1258         int err;
1259
1260         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1261         svm = to_svm(vcpu);
1262
1263         err = -ENOMEM;
1264         vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1265         if (!vmcb01_page)
1266                 goto out;
1267
1268         if (sev_es_guest(vcpu->kvm)) {
1269                 /*
1270                  * SEV-ES guests require a separate VMSA page used to contain
1271                  * the encrypted register state of the guest.
1272                  */
1273                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1274                 if (!vmsa_page)
1275                         goto error_free_vmcb_page;
1276
1277                 /*
1278                  * SEV-ES guests maintain an encrypted version of their FPU
1279                  * state which is restored and saved on VMRUN and VMEXIT.
1280                  * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1281                  * do xsave/xrstor on it.
1282                  */
1283                 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1284         }
1285
1286         err = avic_init_vcpu(svm);
1287         if (err)
1288                 goto error_free_vmsa_page;
1289
1290         svm->msrpm = svm_vcpu_alloc_msrpm();
1291         if (!svm->msrpm) {
1292                 err = -ENOMEM;
1293                 goto error_free_vmsa_page;
1294         }
1295
1296         svm->vmcb01.ptr = page_address(vmcb01_page);
1297         svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1298         svm_switch_vmcb(svm, &svm->vmcb01);
1299
1300         if (vmsa_page)
1301                 svm->sev_es.vmsa = page_address(vmsa_page);
1302
1303         svm->guest_state_loaded = false;
1304
1305         return 0;
1306
1307 error_free_vmsa_page:
1308         if (vmsa_page)
1309                 __free_page(vmsa_page);
1310 error_free_vmcb_page:
1311         __free_page(vmcb01_page);
1312 out:
1313         return err;
1314 }
1315
1316 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1317 {
1318         int i;
1319
1320         for_each_online_cpu(i)
1321                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1322 }
1323
1324 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1325 {
1326         struct vcpu_svm *svm = to_svm(vcpu);
1327
1328         /*
1329          * The vmcb page can be recycled, causing a false negative in
1330          * svm_vcpu_load(). So, ensure that no logical CPU has this
1331          * vmcb page recorded as its current vmcb.
1332          */
1333         svm_clear_current_vmcb(svm->vmcb);
1334
1335         svm_free_nested(svm);
1336
1337         sev_free_vcpu(vcpu);
1338
1339         __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1340         __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1341 }
1342
1343 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1344 {
1345         struct vcpu_svm *svm = to_svm(vcpu);
1346         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1347
1348         if (sev_es_guest(vcpu->kvm))
1349                 sev_es_unmap_ghcb(svm);
1350
1351         if (svm->guest_state_loaded)
1352                 return;
1353
1354         /*
1355          * Save additional host state that will be restored on VMEXIT (sev-es)
1356          * or subsequent vmload of host save area.
1357          */
1358         vmsave(__sme_page_pa(sd->save_area));
1359         if (sev_es_guest(vcpu->kvm)) {
1360                 struct sev_es_save_area *hostsa;
1361                 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1362
1363                 sev_es_prepare_switch_to_guest(hostsa);
1364         }
1365
1366         if (tsc_scaling) {
1367                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1368                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1369                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1370                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1371                 }
1372         }
1373
1374         if (likely(tsc_aux_uret_slot >= 0))
1375                 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1376
1377         svm->guest_state_loaded = true;
1378 }
1379
1380 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1381 {
1382         to_svm(vcpu)->guest_state_loaded = false;
1383 }
1384
1385 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1386 {
1387         struct vcpu_svm *svm = to_svm(vcpu);
1388         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1389
1390         if (sd->current_vmcb != svm->vmcb) {
1391                 sd->current_vmcb = svm->vmcb;
1392                 indirect_branch_prediction_barrier();
1393         }
1394         if (kvm_vcpu_apicv_active(vcpu))
1395                 __avic_vcpu_load(vcpu, cpu);
1396 }
1397
1398 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1399 {
1400         if (kvm_vcpu_apicv_active(vcpu))
1401                 __avic_vcpu_put(vcpu);
1402
1403         svm_prepare_host_switch(vcpu);
1404
1405         ++vcpu->stat.host_state_reload;
1406 }
1407
1408 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1409 {
1410         struct vcpu_svm *svm = to_svm(vcpu);
1411         unsigned long rflags = svm->vmcb->save.rflags;
1412
1413         if (svm->nmi_singlestep) {
1414                 /* Hide our flags if they were not set by the guest */
1415                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1416                         rflags &= ~X86_EFLAGS_TF;
1417                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1418                         rflags &= ~X86_EFLAGS_RF;
1419         }
1420         return rflags;
1421 }
1422
1423 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1424 {
1425         if (to_svm(vcpu)->nmi_singlestep)
1426                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1427
1428        /*
1429         * Any change of EFLAGS.VM is accompanied by a reload of SS
1430         * (caused by either a task switch or an inter-privilege IRET),
1431         * so we do not need to update the CPL here.
1432         */
1433         to_svm(vcpu)->vmcb->save.rflags = rflags;
1434 }
1435
1436 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1437 {
1438         struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1439
1440         return sev_es_guest(vcpu->kvm)
1441                 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1442                 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1443 }
1444
1445 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1446 {
1447         kvm_register_mark_available(vcpu, reg);
1448
1449         switch (reg) {
1450         case VCPU_EXREG_PDPTR:
1451                 /*
1452                  * When !npt_enabled, mmu->pdptrs[] is already available since
1453                  * it is always updated per SDM when moving to CRs.
1454                  */
1455                 if (npt_enabled)
1456                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1457                 break;
1458         default:
1459                 KVM_BUG_ON(1, vcpu->kvm);
1460         }
1461 }
1462
1463 static void svm_set_vintr(struct vcpu_svm *svm)
1464 {
1465         struct vmcb_control_area *control;
1466
1467         /*
1468          * The following fields are ignored when AVIC is enabled
1469          */
1470         WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1471
1472         svm_set_intercept(svm, INTERCEPT_VINTR);
1473
1474         /*
1475          * This is just a dummy VINTR to actually cause a vmexit to happen.
1476          * Actual injection of virtual interrupts happens through EVENTINJ.
1477          */
1478         control = &svm->vmcb->control;
1479         control->int_vector = 0x0;
1480         control->int_ctl &= ~V_INTR_PRIO_MASK;
1481         control->int_ctl |= V_IRQ_MASK |
1482                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1483         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1484 }
1485
1486 static void svm_clear_vintr(struct vcpu_svm *svm)
1487 {
1488         svm_clr_intercept(svm, INTERCEPT_VINTR);
1489
1490         /* Drop int_ctl fields related to VINTR injection.  */
1491         svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1492         if (is_guest_mode(&svm->vcpu)) {
1493                 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1494
1495                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1496                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1497
1498                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1499                         V_IRQ_INJECTION_BITS_MASK;
1500
1501                 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1502         }
1503
1504         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1505 }
1506
1507 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1508 {
1509         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1510         struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1511
1512         switch (seg) {
1513         case VCPU_SREG_CS: return &save->cs;
1514         case VCPU_SREG_DS: return &save->ds;
1515         case VCPU_SREG_ES: return &save->es;
1516         case VCPU_SREG_FS: return &save01->fs;
1517         case VCPU_SREG_GS: return &save01->gs;
1518         case VCPU_SREG_SS: return &save->ss;
1519         case VCPU_SREG_TR: return &save01->tr;
1520         case VCPU_SREG_LDTR: return &save01->ldtr;
1521         }
1522         BUG();
1523         return NULL;
1524 }
1525
1526 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1527 {
1528         struct vmcb_seg *s = svm_seg(vcpu, seg);
1529
1530         return s->base;
1531 }
1532
1533 static void svm_get_segment(struct kvm_vcpu *vcpu,
1534                             struct kvm_segment *var, int seg)
1535 {
1536         struct vmcb_seg *s = svm_seg(vcpu, seg);
1537
1538         var->base = s->base;
1539         var->limit = s->limit;
1540         var->selector = s->selector;
1541         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1542         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1543         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1544         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1545         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1546         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1547         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1548
1549         /*
1550          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1551          * However, the SVM spec states that the G bit is not observed by the
1552          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1553          * So let's synthesize a legal G bit for all segments, this helps
1554          * running KVM nested. It also helps cross-vendor migration, because
1555          * Intel's vmentry has a check on the 'G' bit.
1556          */
1557         var->g = s->limit > 0xfffff;
1558
1559         /*
1560          * AMD's VMCB does not have an explicit unusable field, so emulate it
1561          * for cross vendor migration purposes by "not present"
1562          */
1563         var->unusable = !var->present;
1564
1565         switch (seg) {
1566         case VCPU_SREG_TR:
1567                 /*
1568                  * Work around a bug where the busy flag in the tr selector
1569                  * isn't exposed
1570                  */
1571                 var->type |= 0x2;
1572                 break;
1573         case VCPU_SREG_DS:
1574         case VCPU_SREG_ES:
1575         case VCPU_SREG_FS:
1576         case VCPU_SREG_GS:
1577                 /*
1578                  * The accessed bit must always be set in the segment
1579                  * descriptor cache, although it can be cleared in the
1580                  * descriptor, the cached bit always remains at 1. Since
1581                  * Intel has a check on this, set it here to support
1582                  * cross-vendor migration.
1583                  */
1584                 if (!var->unusable)
1585                         var->type |= 0x1;
1586                 break;
1587         case VCPU_SREG_SS:
1588                 /*
1589                  * On AMD CPUs sometimes the DB bit in the segment
1590                  * descriptor is left as 1, although the whole segment has
1591                  * been made unusable. Clear it here to pass an Intel VMX
1592                  * entry check when cross vendor migrating.
1593                  */
1594                 if (var->unusable)
1595                         var->db = 0;
1596                 /* This is symmetric with svm_set_segment() */
1597                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1598                 break;
1599         }
1600 }
1601
1602 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1603 {
1604         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1605
1606         return save->cpl;
1607 }
1608
1609 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1610 {
1611         struct kvm_segment cs;
1612
1613         svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1614         *db = cs.db;
1615         *l = cs.l;
1616 }
1617
1618 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1619 {
1620         struct vcpu_svm *svm = to_svm(vcpu);
1621
1622         dt->size = svm->vmcb->save.idtr.limit;
1623         dt->address = svm->vmcb->save.idtr.base;
1624 }
1625
1626 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1627 {
1628         struct vcpu_svm *svm = to_svm(vcpu);
1629
1630         svm->vmcb->save.idtr.limit = dt->size;
1631         svm->vmcb->save.idtr.base = dt->address ;
1632         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1633 }
1634
1635 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1636 {
1637         struct vcpu_svm *svm = to_svm(vcpu);
1638
1639         dt->size = svm->vmcb->save.gdtr.limit;
1640         dt->address = svm->vmcb->save.gdtr.base;
1641 }
1642
1643 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1644 {
1645         struct vcpu_svm *svm = to_svm(vcpu);
1646
1647         svm->vmcb->save.gdtr.limit = dt->size;
1648         svm->vmcb->save.gdtr.base = dt->address ;
1649         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1650 }
1651
1652 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1653 {
1654         struct vcpu_svm *svm = to_svm(vcpu);
1655
1656         /*
1657          * For guests that don't set guest_state_protected, the cr3 update is
1658          * handled via kvm_mmu_load() while entering the guest. For guests
1659          * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1660          * VMCB save area now, since the save area will become the initial
1661          * contents of the VMSA, and future VMCB save area updates won't be
1662          * seen.
1663          */
1664         if (sev_es_guest(vcpu->kvm)) {
1665                 svm->vmcb->save.cr3 = cr3;
1666                 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1667         }
1668 }
1669
1670 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1671 {
1672         struct vcpu_svm *svm = to_svm(vcpu);
1673         u64 hcr0 = cr0;
1674         bool old_paging = is_paging(vcpu);
1675
1676 #ifdef CONFIG_X86_64
1677         if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1678                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1679                         vcpu->arch.efer |= EFER_LMA;
1680                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1681                 }
1682
1683                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1684                         vcpu->arch.efer &= ~EFER_LMA;
1685                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1686                 }
1687         }
1688 #endif
1689         vcpu->arch.cr0 = cr0;
1690
1691         if (!npt_enabled) {
1692                 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1693                 if (old_paging != is_paging(vcpu))
1694                         svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1695         }
1696
1697         /*
1698          * re-enable caching here because the QEMU bios
1699          * does not do it - this results in some delay at
1700          * reboot
1701          */
1702         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1703                 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1704
1705         svm->vmcb->save.cr0 = hcr0;
1706         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1707
1708         /*
1709          * SEV-ES guests must always keep the CR intercepts cleared. CR
1710          * tracking is done using the CR write traps.
1711          */
1712         if (sev_es_guest(vcpu->kvm))
1713                 return;
1714
1715         if (hcr0 == cr0) {
1716                 /* Selective CR0 write remains on.  */
1717                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1718                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1719         } else {
1720                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1721                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1722         }
1723 }
1724
1725 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1726 {
1727         return true;
1728 }
1729
1730 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1731 {
1732         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1733         unsigned long old_cr4 = vcpu->arch.cr4;
1734
1735         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1736                 svm_flush_tlb_current(vcpu);
1737
1738         vcpu->arch.cr4 = cr4;
1739         if (!npt_enabled) {
1740                 cr4 |= X86_CR4_PAE;
1741
1742                 if (!is_paging(vcpu))
1743                         cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1744         }
1745         cr4 |= host_cr4_mce;
1746         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1747         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1748
1749         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1750                 kvm_update_cpuid_runtime(vcpu);
1751 }
1752
1753 static void svm_set_segment(struct kvm_vcpu *vcpu,
1754                             struct kvm_segment *var, int seg)
1755 {
1756         struct vcpu_svm *svm = to_svm(vcpu);
1757         struct vmcb_seg *s = svm_seg(vcpu, seg);
1758
1759         s->base = var->base;
1760         s->limit = var->limit;
1761         s->selector = var->selector;
1762         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1763         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1764         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1765         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1766         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1767         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1768         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1769         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1770
1771         /*
1772          * This is always accurate, except if SYSRET returned to a segment
1773          * with SS.DPL != 3.  Intel does not have this quirk, and always
1774          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1775          * would entail passing the CPL to userspace and back.
1776          */
1777         if (seg == VCPU_SREG_SS)
1778                 /* This is symmetric with svm_get_segment() */
1779                 svm->vmcb->save.cpl = (var->dpl & 3);
1780
1781         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1782 }
1783
1784 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1785 {
1786         struct vcpu_svm *svm = to_svm(vcpu);
1787
1788         clr_exception_intercept(svm, BP_VECTOR);
1789
1790         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1791                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1792                         set_exception_intercept(svm, BP_VECTOR);
1793         }
1794 }
1795
1796 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1797 {
1798         if (sd->next_asid > sd->max_asid) {
1799                 ++sd->asid_generation;
1800                 sd->next_asid = sd->min_asid;
1801                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1802                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1803         }
1804
1805         svm->current_vmcb->asid_generation = sd->asid_generation;
1806         svm->asid = sd->next_asid++;
1807 }
1808
1809 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1810 {
1811         struct vmcb *vmcb = svm->vmcb;
1812
1813         if (svm->vcpu.arch.guest_state_protected)
1814                 return;
1815
1816         if (unlikely(value != vmcb->save.dr6)) {
1817                 vmcb->save.dr6 = value;
1818                 vmcb_mark_dirty(vmcb, VMCB_DR);
1819         }
1820 }
1821
1822 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1823 {
1824         struct vcpu_svm *svm = to_svm(vcpu);
1825
1826         if (vcpu->arch.guest_state_protected)
1827                 return;
1828
1829         get_debugreg(vcpu->arch.db[0], 0);
1830         get_debugreg(vcpu->arch.db[1], 1);
1831         get_debugreg(vcpu->arch.db[2], 2);
1832         get_debugreg(vcpu->arch.db[3], 3);
1833         /*
1834          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1835          * because db_interception might need it.  We can do it before vmentry.
1836          */
1837         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1838         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1839         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1840         set_dr_intercepts(svm);
1841 }
1842
1843 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1844 {
1845         struct vcpu_svm *svm = to_svm(vcpu);
1846
1847         if (vcpu->arch.guest_state_protected)
1848                 return;
1849
1850         svm->vmcb->save.dr7 = value;
1851         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1852 }
1853
1854 static int pf_interception(struct kvm_vcpu *vcpu)
1855 {
1856         struct vcpu_svm *svm = to_svm(vcpu);
1857
1858         u64 fault_address = svm->vmcb->control.exit_info_2;
1859         u64 error_code = svm->vmcb->control.exit_info_1;
1860
1861         return kvm_handle_page_fault(vcpu, error_code, fault_address,
1862                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1863                         svm->vmcb->control.insn_bytes : NULL,
1864                         svm->vmcb->control.insn_len);
1865 }
1866
1867 static int npf_interception(struct kvm_vcpu *vcpu)
1868 {
1869         struct vcpu_svm *svm = to_svm(vcpu);
1870
1871         u64 fault_address = svm->vmcb->control.exit_info_2;
1872         u64 error_code = svm->vmcb->control.exit_info_1;
1873
1874         trace_kvm_page_fault(fault_address, error_code);
1875         return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1876                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1877                         svm->vmcb->control.insn_bytes : NULL,
1878                         svm->vmcb->control.insn_len);
1879 }
1880
1881 static int db_interception(struct kvm_vcpu *vcpu)
1882 {
1883         struct kvm_run *kvm_run = vcpu->run;
1884         struct vcpu_svm *svm = to_svm(vcpu);
1885
1886         if (!(vcpu->guest_debug &
1887               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1888                 !svm->nmi_singlestep) {
1889                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1890                 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1891                 return 1;
1892         }
1893
1894         if (svm->nmi_singlestep) {
1895                 disable_nmi_singlestep(svm);
1896                 /* Make sure we check for pending NMIs upon entry */
1897                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1898         }
1899
1900         if (vcpu->guest_debug &
1901             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1902                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1903                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1904                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1905                 kvm_run->debug.arch.pc =
1906                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1907                 kvm_run->debug.arch.exception = DB_VECTOR;
1908                 return 0;
1909         }
1910
1911         return 1;
1912 }
1913
1914 static int bp_interception(struct kvm_vcpu *vcpu)
1915 {
1916         struct vcpu_svm *svm = to_svm(vcpu);
1917         struct kvm_run *kvm_run = vcpu->run;
1918
1919         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1920         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1921         kvm_run->debug.arch.exception = BP_VECTOR;
1922         return 0;
1923 }
1924
1925 static int ud_interception(struct kvm_vcpu *vcpu)
1926 {
1927         return handle_ud(vcpu);
1928 }
1929
1930 static int ac_interception(struct kvm_vcpu *vcpu)
1931 {
1932         kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1933         return 1;
1934 }
1935
1936 static bool is_erratum_383(void)
1937 {
1938         int err, i;
1939         u64 value;
1940
1941         if (!erratum_383_found)
1942                 return false;
1943
1944         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1945         if (err)
1946                 return false;
1947
1948         /* Bit 62 may or may not be set for this mce */
1949         value &= ~(1ULL << 62);
1950
1951         if (value != 0xb600000000010015ULL)
1952                 return false;
1953
1954         /* Clear MCi_STATUS registers */
1955         for (i = 0; i < 6; ++i)
1956                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1957
1958         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1959         if (!err) {
1960                 u32 low, high;
1961
1962                 value &= ~(1ULL << 2);
1963                 low    = lower_32_bits(value);
1964                 high   = upper_32_bits(value);
1965
1966                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1967         }
1968
1969         /* Flush tlb to evict multi-match entries */
1970         __flush_tlb_all();
1971
1972         return true;
1973 }
1974
1975 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1976 {
1977         if (is_erratum_383()) {
1978                 /*
1979                  * Erratum 383 triggered. Guest state is corrupt so kill the
1980                  * guest.
1981                  */
1982                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1983
1984                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1985
1986                 return;
1987         }
1988
1989         /*
1990          * On an #MC intercept the MCE handler is not called automatically in
1991          * the host. So do it by hand here.
1992          */
1993         kvm_machine_check();
1994 }
1995
1996 static int mc_interception(struct kvm_vcpu *vcpu)
1997 {
1998         return 1;
1999 }
2000
2001 static int shutdown_interception(struct kvm_vcpu *vcpu)
2002 {
2003         struct kvm_run *kvm_run = vcpu->run;
2004         struct vcpu_svm *svm = to_svm(vcpu);
2005
2006         /*
2007          * The VM save area has already been encrypted so it
2008          * cannot be reinitialized - just terminate.
2009          */
2010         if (sev_es_guest(vcpu->kvm))
2011                 return -EINVAL;
2012
2013         /*
2014          * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2015          * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2016          * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2017          * userspace.  At a platform view, INIT is acceptable behavior as
2018          * there exist bare metal platforms that automatically INIT the CPU
2019          * in response to shutdown.
2020          */
2021         clear_page(svm->vmcb);
2022         kvm_vcpu_reset(vcpu, true);
2023
2024         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2025         return 0;
2026 }
2027
2028 static int io_interception(struct kvm_vcpu *vcpu)
2029 {
2030         struct vcpu_svm *svm = to_svm(vcpu);
2031         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2032         int size, in, string;
2033         unsigned port;
2034
2035         ++vcpu->stat.io_exits;
2036         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2037         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2038         port = io_info >> 16;
2039         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2040
2041         if (string) {
2042                 if (sev_es_guest(vcpu->kvm))
2043                         return sev_es_string_io(svm, size, port, in);
2044                 else
2045                         return kvm_emulate_instruction(vcpu, 0);
2046         }
2047
2048         svm->next_rip = svm->vmcb->control.exit_info_2;
2049
2050         return kvm_fast_pio(vcpu, size, port, in);
2051 }
2052
2053 static int nmi_interception(struct kvm_vcpu *vcpu)
2054 {
2055         return 1;
2056 }
2057
2058 static int smi_interception(struct kvm_vcpu *vcpu)
2059 {
2060         return 1;
2061 }
2062
2063 static int intr_interception(struct kvm_vcpu *vcpu)
2064 {
2065         ++vcpu->stat.irq_exits;
2066         return 1;
2067 }
2068
2069 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2070 {
2071         struct vcpu_svm *svm = to_svm(vcpu);
2072         struct vmcb *vmcb12;
2073         struct kvm_host_map map;
2074         int ret;
2075
2076         if (nested_svm_check_permissions(vcpu))
2077                 return 1;
2078
2079         ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2080         if (ret) {
2081                 if (ret == -EINVAL)
2082                         kvm_inject_gp(vcpu, 0);
2083                 return 1;
2084         }
2085
2086         vmcb12 = map.hva;
2087
2088         ret = kvm_skip_emulated_instruction(vcpu);
2089
2090         if (vmload) {
2091                 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2092                 svm->sysenter_eip_hi = 0;
2093                 svm->sysenter_esp_hi = 0;
2094         } else {
2095                 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2096         }
2097
2098         kvm_vcpu_unmap(vcpu, &map, true);
2099
2100         return ret;
2101 }
2102
2103 static int vmload_interception(struct kvm_vcpu *vcpu)
2104 {
2105         return vmload_vmsave_interception(vcpu, true);
2106 }
2107
2108 static int vmsave_interception(struct kvm_vcpu *vcpu)
2109 {
2110         return vmload_vmsave_interception(vcpu, false);
2111 }
2112
2113 static int vmrun_interception(struct kvm_vcpu *vcpu)
2114 {
2115         if (nested_svm_check_permissions(vcpu))
2116                 return 1;
2117
2118         return nested_svm_vmrun(vcpu);
2119 }
2120
2121 enum {
2122         NONE_SVM_INSTR,
2123         SVM_INSTR_VMRUN,
2124         SVM_INSTR_VMLOAD,
2125         SVM_INSTR_VMSAVE,
2126 };
2127
2128 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2129 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2130 {
2131         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2132
2133         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2134                 return NONE_SVM_INSTR;
2135
2136         switch (ctxt->modrm) {
2137         case 0xd8: /* VMRUN */
2138                 return SVM_INSTR_VMRUN;
2139         case 0xda: /* VMLOAD */
2140                 return SVM_INSTR_VMLOAD;
2141         case 0xdb: /* VMSAVE */
2142                 return SVM_INSTR_VMSAVE;
2143         default:
2144                 break;
2145         }
2146
2147         return NONE_SVM_INSTR;
2148 }
2149
2150 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2151 {
2152         const int guest_mode_exit_codes[] = {
2153                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2154                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2155                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2156         };
2157         int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2158                 [SVM_INSTR_VMRUN] = vmrun_interception,
2159                 [SVM_INSTR_VMLOAD] = vmload_interception,
2160                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2161         };
2162         struct vcpu_svm *svm = to_svm(vcpu);
2163         int ret;
2164
2165         if (is_guest_mode(vcpu)) {
2166                 /* Returns '1' or -errno on failure, '0' on success. */
2167                 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2168                 if (ret)
2169                         return ret;
2170                 return 1;
2171         }
2172         return svm_instr_handlers[opcode](vcpu);
2173 }
2174
2175 /*
2176  * #GP handling code. Note that #GP can be triggered under the following two
2177  * cases:
2178  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2179  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2180  *      regions (e.g. SMM memory on host).
2181  *   2) VMware backdoor
2182  */
2183 static int gp_interception(struct kvm_vcpu *vcpu)
2184 {
2185         struct vcpu_svm *svm = to_svm(vcpu);
2186         u32 error_code = svm->vmcb->control.exit_info_1;
2187         int opcode;
2188
2189         /* Both #GP cases have zero error_code */
2190         if (error_code)
2191                 goto reinject;
2192
2193         /* Decode the instruction for usage later */
2194         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2195                 goto reinject;
2196
2197         opcode = svm_instr_opcode(vcpu);
2198
2199         if (opcode == NONE_SVM_INSTR) {
2200                 if (!enable_vmware_backdoor)
2201                         goto reinject;
2202
2203                 /*
2204                  * VMware backdoor emulation on #GP interception only handles
2205                  * IN{S}, OUT{S}, and RDPMC.
2206                  */
2207                 if (!is_guest_mode(vcpu))
2208                         return kvm_emulate_instruction(vcpu,
2209                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2210         } else {
2211                 /* All SVM instructions expect page aligned RAX */
2212                 if (svm->vmcb->save.rax & ~PAGE_MASK)
2213                         goto reinject;
2214
2215                 return emulate_svm_instr(vcpu, opcode);
2216         }
2217
2218 reinject:
2219         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2220         return 1;
2221 }
2222
2223 void svm_set_gif(struct vcpu_svm *svm, bool value)
2224 {
2225         if (value) {
2226                 /*
2227                  * If VGIF is enabled, the STGI intercept is only added to
2228                  * detect the opening of the SMI/NMI window; remove it now.
2229                  * Likewise, clear the VINTR intercept, we will set it
2230                  * again while processing KVM_REQ_EVENT if needed.
2231                  */
2232                 if (vgif)
2233                         svm_clr_intercept(svm, INTERCEPT_STGI);
2234                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2235                         svm_clear_vintr(svm);
2236
2237                 enable_gif(svm);
2238                 if (svm->vcpu.arch.smi_pending ||
2239                     svm->vcpu.arch.nmi_pending ||
2240                     kvm_cpu_has_injectable_intr(&svm->vcpu))
2241                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2242         } else {
2243                 disable_gif(svm);
2244
2245                 /*
2246                  * After a CLGI no interrupts should come.  But if vGIF is
2247                  * in use, we still rely on the VINTR intercept (rather than
2248                  * STGI) to detect an open interrupt window.
2249                 */
2250                 if (!vgif)
2251                         svm_clear_vintr(svm);
2252         }
2253 }
2254
2255 static int stgi_interception(struct kvm_vcpu *vcpu)
2256 {
2257         int ret;
2258
2259         if (nested_svm_check_permissions(vcpu))
2260                 return 1;
2261
2262         ret = kvm_skip_emulated_instruction(vcpu);
2263         svm_set_gif(to_svm(vcpu), true);
2264         return ret;
2265 }
2266
2267 static int clgi_interception(struct kvm_vcpu *vcpu)
2268 {
2269         int ret;
2270
2271         if (nested_svm_check_permissions(vcpu))
2272                 return 1;
2273
2274         ret = kvm_skip_emulated_instruction(vcpu);
2275         svm_set_gif(to_svm(vcpu), false);
2276         return ret;
2277 }
2278
2279 static int invlpga_interception(struct kvm_vcpu *vcpu)
2280 {
2281         gva_t gva = kvm_rax_read(vcpu);
2282         u32 asid = kvm_rcx_read(vcpu);
2283
2284         /* FIXME: Handle an address size prefix. */
2285         if (!is_long_mode(vcpu))
2286                 gva = (u32)gva;
2287
2288         trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2289
2290         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2291         kvm_mmu_invlpg(vcpu, gva);
2292
2293         return kvm_skip_emulated_instruction(vcpu);
2294 }
2295
2296 static int skinit_interception(struct kvm_vcpu *vcpu)
2297 {
2298         trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2299
2300         kvm_queue_exception(vcpu, UD_VECTOR);
2301         return 1;
2302 }
2303
2304 static int task_switch_interception(struct kvm_vcpu *vcpu)
2305 {
2306         struct vcpu_svm *svm = to_svm(vcpu);
2307         u16 tss_selector;
2308         int reason;
2309         int int_type = svm->vmcb->control.exit_int_info &
2310                 SVM_EXITINTINFO_TYPE_MASK;
2311         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2312         uint32_t type =
2313                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2314         uint32_t idt_v =
2315                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2316         bool has_error_code = false;
2317         u32 error_code = 0;
2318
2319         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2320
2321         if (svm->vmcb->control.exit_info_2 &
2322             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2323                 reason = TASK_SWITCH_IRET;
2324         else if (svm->vmcb->control.exit_info_2 &
2325                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2326                 reason = TASK_SWITCH_JMP;
2327         else if (idt_v)
2328                 reason = TASK_SWITCH_GATE;
2329         else
2330                 reason = TASK_SWITCH_CALL;
2331
2332         if (reason == TASK_SWITCH_GATE) {
2333                 switch (type) {
2334                 case SVM_EXITINTINFO_TYPE_NMI:
2335                         vcpu->arch.nmi_injected = false;
2336                         break;
2337                 case SVM_EXITINTINFO_TYPE_EXEPT:
2338                         if (svm->vmcb->control.exit_info_2 &
2339                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2340                                 has_error_code = true;
2341                                 error_code =
2342                                         (u32)svm->vmcb->control.exit_info_2;
2343                         }
2344                         kvm_clear_exception_queue(vcpu);
2345                         break;
2346                 case SVM_EXITINTINFO_TYPE_INTR:
2347                         kvm_clear_interrupt_queue(vcpu);
2348                         break;
2349                 default:
2350                         break;
2351                 }
2352         }
2353
2354         if (reason != TASK_SWITCH_GATE ||
2355             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2356             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2357              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2358                 if (!svm_skip_emulated_instruction(vcpu))
2359                         return 0;
2360         }
2361
2362         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2363                 int_vec = -1;
2364
2365         return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2366                                has_error_code, error_code);
2367 }
2368
2369 static int iret_interception(struct kvm_vcpu *vcpu)
2370 {
2371         struct vcpu_svm *svm = to_svm(vcpu);
2372
2373         ++vcpu->stat.nmi_window_exits;
2374         vcpu->arch.hflags |= HF_IRET_MASK;
2375         if (!sev_es_guest(vcpu->kvm)) {
2376                 svm_clr_intercept(svm, INTERCEPT_IRET);
2377                 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2378         }
2379         kvm_make_request(KVM_REQ_EVENT, vcpu);
2380         return 1;
2381 }
2382
2383 static int invlpg_interception(struct kvm_vcpu *vcpu)
2384 {
2385         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2386                 return kvm_emulate_instruction(vcpu, 0);
2387
2388         kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2389         return kvm_skip_emulated_instruction(vcpu);
2390 }
2391
2392 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2393 {
2394         return kvm_emulate_instruction(vcpu, 0);
2395 }
2396
2397 static int rsm_interception(struct kvm_vcpu *vcpu)
2398 {
2399         return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2400 }
2401
2402 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2403                                             unsigned long val)
2404 {
2405         struct vcpu_svm *svm = to_svm(vcpu);
2406         unsigned long cr0 = vcpu->arch.cr0;
2407         bool ret = false;
2408
2409         if (!is_guest_mode(vcpu) ||
2410             (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2411                 return false;
2412
2413         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2414         val &= ~SVM_CR0_SELECTIVE_MASK;
2415
2416         if (cr0 ^ val) {
2417                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2418                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2419         }
2420
2421         return ret;
2422 }
2423
2424 #define CR_VALID (1ULL << 63)
2425
2426 static int cr_interception(struct kvm_vcpu *vcpu)
2427 {
2428         struct vcpu_svm *svm = to_svm(vcpu);
2429         int reg, cr;
2430         unsigned long val;
2431         int err;
2432
2433         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2434                 return emulate_on_interception(vcpu);
2435
2436         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2437                 return emulate_on_interception(vcpu);
2438
2439         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2440         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2441                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2442         else
2443                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2444
2445         err = 0;
2446         if (cr >= 16) { /* mov to cr */
2447                 cr -= 16;
2448                 val = kvm_register_read(vcpu, reg);
2449                 trace_kvm_cr_write(cr, val);
2450                 switch (cr) {
2451                 case 0:
2452                         if (!check_selective_cr0_intercepted(vcpu, val))
2453                                 err = kvm_set_cr0(vcpu, val);
2454                         else
2455                                 return 1;
2456
2457                         break;
2458                 case 3:
2459                         err = kvm_set_cr3(vcpu, val);
2460                         break;
2461                 case 4:
2462                         err = kvm_set_cr4(vcpu, val);
2463                         break;
2464                 case 8:
2465                         err = kvm_set_cr8(vcpu, val);
2466                         break;
2467                 default:
2468                         WARN(1, "unhandled write to CR%d", cr);
2469                         kvm_queue_exception(vcpu, UD_VECTOR);
2470                         return 1;
2471                 }
2472         } else { /* mov from cr */
2473                 switch (cr) {
2474                 case 0:
2475                         val = kvm_read_cr0(vcpu);
2476                         break;
2477                 case 2:
2478                         val = vcpu->arch.cr2;
2479                         break;
2480                 case 3:
2481                         val = kvm_read_cr3(vcpu);
2482                         break;
2483                 case 4:
2484                         val = kvm_read_cr4(vcpu);
2485                         break;
2486                 case 8:
2487                         val = kvm_get_cr8(vcpu);
2488                         break;
2489                 default:
2490                         WARN(1, "unhandled read from CR%d", cr);
2491                         kvm_queue_exception(vcpu, UD_VECTOR);
2492                         return 1;
2493                 }
2494                 kvm_register_write(vcpu, reg, val);
2495                 trace_kvm_cr_read(cr, val);
2496         }
2497         return kvm_complete_insn_gp(vcpu, err);
2498 }
2499
2500 static int cr_trap(struct kvm_vcpu *vcpu)
2501 {
2502         struct vcpu_svm *svm = to_svm(vcpu);
2503         unsigned long old_value, new_value;
2504         unsigned int cr;
2505         int ret = 0;
2506
2507         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2508
2509         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2510         switch (cr) {
2511         case 0:
2512                 old_value = kvm_read_cr0(vcpu);
2513                 svm_set_cr0(vcpu, new_value);
2514
2515                 kvm_post_set_cr0(vcpu, old_value, new_value);
2516                 break;
2517         case 4:
2518                 old_value = kvm_read_cr4(vcpu);
2519                 svm_set_cr4(vcpu, new_value);
2520
2521                 kvm_post_set_cr4(vcpu, old_value, new_value);
2522                 break;
2523         case 8:
2524                 ret = kvm_set_cr8(vcpu, new_value);
2525                 break;
2526         default:
2527                 WARN(1, "unhandled CR%d write trap", cr);
2528                 kvm_queue_exception(vcpu, UD_VECTOR);
2529                 return 1;
2530         }
2531
2532         return kvm_complete_insn_gp(vcpu, ret);
2533 }
2534
2535 static int dr_interception(struct kvm_vcpu *vcpu)
2536 {
2537         struct vcpu_svm *svm = to_svm(vcpu);
2538         int reg, dr;
2539         unsigned long val;
2540         int err = 0;
2541
2542         if (vcpu->guest_debug == 0) {
2543                 /*
2544                  * No more DR vmexits; force a reload of the debug registers
2545                  * and reenter on this instruction.  The next vmexit will
2546                  * retrieve the full state of the debug registers.
2547                  */
2548                 clr_dr_intercepts(svm);
2549                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2550                 return 1;
2551         }
2552
2553         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2554                 return emulate_on_interception(vcpu);
2555
2556         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2557         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2558         if (dr >= 16) { /* mov to DRn  */
2559                 dr -= 16;
2560                 val = kvm_register_read(vcpu, reg);
2561                 err = kvm_set_dr(vcpu, dr, val);
2562         } else {
2563                 kvm_get_dr(vcpu, dr, &val);
2564                 kvm_register_write(vcpu, reg, val);
2565         }
2566
2567         return kvm_complete_insn_gp(vcpu, err);
2568 }
2569
2570 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2571 {
2572         int r;
2573
2574         u8 cr8_prev = kvm_get_cr8(vcpu);
2575         /* instruction emulation calls kvm_set_cr8() */
2576         r = cr_interception(vcpu);
2577         if (lapic_in_kernel(vcpu))
2578                 return r;
2579         if (cr8_prev <= kvm_get_cr8(vcpu))
2580                 return r;
2581         vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2582         return 0;
2583 }
2584
2585 static int efer_trap(struct kvm_vcpu *vcpu)
2586 {
2587         struct msr_data msr_info;
2588         int ret;
2589
2590         /*
2591          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2592          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2593          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2594          * the guest doesn't have X86_FEATURE_SVM.
2595          */
2596         msr_info.host_initiated = false;
2597         msr_info.index = MSR_EFER;
2598         msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2599         ret = kvm_set_msr_common(vcpu, &msr_info);
2600
2601         return kvm_complete_insn_gp(vcpu, ret);
2602 }
2603
2604 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2605 {
2606         msr->data = 0;
2607
2608         switch (msr->index) {
2609         case MSR_F10H_DECFG:
2610                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2611                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2612                 break;
2613         case MSR_IA32_PERF_CAPABILITIES:
2614                 return 0;
2615         default:
2616                 return KVM_MSR_RET_INVALID;
2617         }
2618
2619         return 0;
2620 }
2621
2622 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2623 {
2624         struct vcpu_svm *svm = to_svm(vcpu);
2625
2626         switch (msr_info->index) {
2627         case MSR_AMD64_TSC_RATIO:
2628                 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2629                         return 1;
2630                 msr_info->data = svm->tsc_ratio_msr;
2631                 break;
2632         case MSR_STAR:
2633                 msr_info->data = svm->vmcb01.ptr->save.star;
2634                 break;
2635 #ifdef CONFIG_X86_64
2636         case MSR_LSTAR:
2637                 msr_info->data = svm->vmcb01.ptr->save.lstar;
2638                 break;
2639         case MSR_CSTAR:
2640                 msr_info->data = svm->vmcb01.ptr->save.cstar;
2641                 break;
2642         case MSR_KERNEL_GS_BASE:
2643                 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2644                 break;
2645         case MSR_SYSCALL_MASK:
2646                 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2647                 break;
2648 #endif
2649         case MSR_IA32_SYSENTER_CS:
2650                 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2651                 break;
2652         case MSR_IA32_SYSENTER_EIP:
2653                 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2654                 if (guest_cpuid_is_intel(vcpu))
2655                         msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2656                 break;
2657         case MSR_IA32_SYSENTER_ESP:
2658                 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2659                 if (guest_cpuid_is_intel(vcpu))
2660                         msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2661                 break;
2662         case MSR_TSC_AUX:
2663                 msr_info->data = svm->tsc_aux;
2664                 break;
2665         case MSR_IA32_DEBUGCTLMSR:
2666         case MSR_IA32_LASTBRANCHFROMIP:
2667         case MSR_IA32_LASTBRANCHTOIP:
2668         case MSR_IA32_LASTINTFROMIP:
2669         case MSR_IA32_LASTINTTOIP:
2670                 msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2671                 break;
2672         case MSR_VM_HSAVE_PA:
2673                 msr_info->data = svm->nested.hsave_msr;
2674                 break;
2675         case MSR_VM_CR:
2676                 msr_info->data = svm->nested.vm_cr_msr;
2677                 break;
2678         case MSR_IA32_SPEC_CTRL:
2679                 if (!msr_info->host_initiated &&
2680                     !guest_has_spec_ctrl_msr(vcpu))
2681                         return 1;
2682
2683                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2684                         msr_info->data = svm->vmcb->save.spec_ctrl;
2685                 else
2686                         msr_info->data = svm->spec_ctrl;
2687                 break;
2688         case MSR_AMD64_VIRT_SPEC_CTRL:
2689                 if (!msr_info->host_initiated &&
2690                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2691                         return 1;
2692
2693                 msr_info->data = svm->virt_spec_ctrl;
2694                 break;
2695         case MSR_F15H_IC_CFG: {
2696
2697                 int family, model;
2698
2699                 family = guest_cpuid_family(vcpu);
2700                 model  = guest_cpuid_model(vcpu);
2701
2702                 if (family < 0 || model < 0)
2703                         return kvm_get_msr_common(vcpu, msr_info);
2704
2705                 msr_info->data = 0;
2706
2707                 if (family == 0x15 &&
2708                     (model >= 0x2 && model < 0x20))
2709                         msr_info->data = 0x1E;
2710                 }
2711                 break;
2712         case MSR_F10H_DECFG:
2713                 msr_info->data = svm->msr_decfg;
2714                 break;
2715         default:
2716                 return kvm_get_msr_common(vcpu, msr_info);
2717         }
2718         return 0;
2719 }
2720
2721 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2722 {
2723         struct vcpu_svm *svm = to_svm(vcpu);
2724         if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2725                 return kvm_complete_insn_gp(vcpu, err);
2726
2727         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2728         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2729                                 X86_TRAP_GP |
2730                                 SVM_EVTINJ_TYPE_EXEPT |
2731                                 SVM_EVTINJ_VALID);
2732         return 1;
2733 }
2734
2735 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2736 {
2737         struct vcpu_svm *svm = to_svm(vcpu);
2738         int svm_dis, chg_mask;
2739
2740         if (data & ~SVM_VM_CR_VALID_MASK)
2741                 return 1;
2742
2743         chg_mask = SVM_VM_CR_VALID_MASK;
2744
2745         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2746                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2747
2748         svm->nested.vm_cr_msr &= ~chg_mask;
2749         svm->nested.vm_cr_msr |= (data & chg_mask);
2750
2751         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2752
2753         /* check for svm_disable while efer.svme is set */
2754         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2755                 return 1;
2756
2757         return 0;
2758 }
2759
2760 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2761 {
2762         struct vcpu_svm *svm = to_svm(vcpu);
2763         int r;
2764
2765         u32 ecx = msr->index;
2766         u64 data = msr->data;
2767         switch (ecx) {
2768         case MSR_AMD64_TSC_RATIO:
2769
2770                 if (!svm->tsc_scaling_enabled) {
2771
2772                         if (!msr->host_initiated)
2773                                 return 1;
2774                         /*
2775                          * In case TSC scaling is not enabled, always
2776                          * leave this MSR at the default value.
2777                          *
2778                          * Due to bug in qemu 6.2.0, it would try to set
2779                          * this msr to 0 if tsc scaling is not enabled.
2780                          * Ignore this value as well.
2781                          */
2782                         if (data != 0 && data != svm->tsc_ratio_msr)
2783                                 return 1;
2784                         break;
2785                 }
2786
2787                 if (data & SVM_TSC_RATIO_RSVD)
2788                         return 1;
2789
2790                 svm->tsc_ratio_msr = data;
2791
2792                 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2793                         nested_svm_update_tsc_ratio_msr(vcpu);
2794
2795                 break;
2796         case MSR_IA32_CR_PAT:
2797                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2798                         return 1;
2799                 vcpu->arch.pat = data;
2800                 svm->vmcb01.ptr->save.g_pat = data;
2801                 if (is_guest_mode(vcpu))
2802                         nested_vmcb02_compute_g_pat(svm);
2803                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2804                 break;
2805         case MSR_IA32_SPEC_CTRL:
2806                 if (!msr->host_initiated &&
2807                     !guest_has_spec_ctrl_msr(vcpu))
2808                         return 1;
2809
2810                 if (kvm_spec_ctrl_test_value(data))
2811                         return 1;
2812
2813                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2814                         svm->vmcb->save.spec_ctrl = data;
2815                 else
2816                         svm->spec_ctrl = data;
2817                 if (!data)
2818                         break;
2819
2820                 /*
2821                  * For non-nested:
2822                  * When it's written (to non-zero) for the first time, pass
2823                  * it through.
2824                  *
2825                  * For nested:
2826                  * The handling of the MSR bitmap for L2 guests is done in
2827                  * nested_svm_vmrun_msrpm.
2828                  * We update the L1 MSR bit as well since it will end up
2829                  * touching the MSR anyway now.
2830                  */
2831                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2832                 break;
2833         case MSR_IA32_PRED_CMD:
2834                 if (!msr->host_initiated &&
2835                     !guest_has_pred_cmd_msr(vcpu))
2836                         return 1;
2837
2838                 if (data & ~PRED_CMD_IBPB)
2839                         return 1;
2840                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2841                         return 1;
2842                 if (!data)
2843                         break;
2844
2845                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2846                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2847                 break;
2848         case MSR_AMD64_VIRT_SPEC_CTRL:
2849                 if (!msr->host_initiated &&
2850                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2851                         return 1;
2852
2853                 if (data & ~SPEC_CTRL_SSBD)
2854                         return 1;
2855
2856                 svm->virt_spec_ctrl = data;
2857                 break;
2858         case MSR_STAR:
2859                 svm->vmcb01.ptr->save.star = data;
2860                 break;
2861 #ifdef CONFIG_X86_64
2862         case MSR_LSTAR:
2863                 svm->vmcb01.ptr->save.lstar = data;
2864                 break;
2865         case MSR_CSTAR:
2866                 svm->vmcb01.ptr->save.cstar = data;
2867                 break;
2868         case MSR_KERNEL_GS_BASE:
2869                 svm->vmcb01.ptr->save.kernel_gs_base = data;
2870                 break;
2871         case MSR_SYSCALL_MASK:
2872                 svm->vmcb01.ptr->save.sfmask = data;
2873                 break;
2874 #endif
2875         case MSR_IA32_SYSENTER_CS:
2876                 svm->vmcb01.ptr->save.sysenter_cs = data;
2877                 break;
2878         case MSR_IA32_SYSENTER_EIP:
2879                 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2880                 /*
2881                  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2882                  * when we spoof an Intel vendor ID (for cross vendor migration).
2883                  * In this case we use this intercept to track the high
2884                  * 32 bit part of these msrs to support Intel's
2885                  * implementation of SYSENTER/SYSEXIT.
2886                  */
2887                 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2888                 break;
2889         case MSR_IA32_SYSENTER_ESP:
2890                 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2891                 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2892                 break;
2893         case MSR_TSC_AUX:
2894                 /*
2895                  * TSC_AUX is usually changed only during boot and never read
2896                  * directly.  Intercept TSC_AUX instead of exposing it to the
2897                  * guest via direct_access_msrs, and switch it via user return.
2898                  */
2899                 preempt_disable();
2900                 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2901                 preempt_enable();
2902                 if (r)
2903                         return 1;
2904
2905                 svm->tsc_aux = data;
2906                 break;
2907         case MSR_IA32_DEBUGCTLMSR:
2908                 if (!lbrv) {
2909                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2910                                     __func__, data);
2911                         break;
2912                 }
2913                 if (data & DEBUGCTL_RESERVED_BITS)
2914                         return 1;
2915
2916                 if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
2917                         svm->vmcb->save.dbgctl = data;
2918                 else
2919                         svm->vmcb01.ptr->save.dbgctl = data;
2920
2921                 svm_update_lbrv(vcpu);
2922
2923                 break;
2924         case MSR_VM_HSAVE_PA:
2925                 /*
2926                  * Old kernels did not validate the value written to
2927                  * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
2928                  * value to allow live migrating buggy or malicious guests
2929                  * originating from those kernels.
2930                  */
2931                 if (!msr->host_initiated && !page_address_valid(vcpu, data))
2932                         return 1;
2933
2934                 svm->nested.hsave_msr = data & PAGE_MASK;
2935                 break;
2936         case MSR_VM_CR:
2937                 return svm_set_vm_cr(vcpu, data);
2938         case MSR_VM_IGNNE:
2939                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2940                 break;
2941         case MSR_F10H_DECFG: {
2942                 struct kvm_msr_entry msr_entry;
2943
2944                 msr_entry.index = msr->index;
2945                 if (svm_get_msr_feature(&msr_entry))
2946                         return 1;
2947
2948                 /* Check the supported bits */
2949                 if (data & ~msr_entry.data)
2950                         return 1;
2951
2952                 /* Don't allow the guest to change a bit, #GP */
2953                 if (!msr->host_initiated && (data ^ msr_entry.data))
2954                         return 1;
2955
2956                 svm->msr_decfg = data;
2957                 break;
2958         }
2959         default:
2960                 return kvm_set_msr_common(vcpu, msr);
2961         }
2962         return 0;
2963 }
2964
2965 static int msr_interception(struct kvm_vcpu *vcpu)
2966 {
2967         if (to_svm(vcpu)->vmcb->control.exit_info_1)
2968                 return kvm_emulate_wrmsr(vcpu);
2969         else
2970                 return kvm_emulate_rdmsr(vcpu);
2971 }
2972
2973 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
2974 {
2975         kvm_make_request(KVM_REQ_EVENT, vcpu);
2976         svm_clear_vintr(to_svm(vcpu));
2977
2978         /*
2979          * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
2980          * In this case AVIC was temporarily disabled for
2981          * requesting the IRQ window and we have to re-enable it.
2982          *
2983          * If running nested, still remove the VM wide AVIC inhibit to
2984          * support case in which the interrupt window was requested when the
2985          * vCPU was not running nested.
2986
2987          * All vCPUs which run still run nested, will remain to have their
2988          * AVIC still inhibited due to per-cpu AVIC inhibition.
2989          */
2990         kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
2991
2992         ++vcpu->stat.irq_window_exits;
2993         return 1;
2994 }
2995
2996 static int pause_interception(struct kvm_vcpu *vcpu)
2997 {
2998         bool in_kernel;
2999         /*
3000          * CPL is not made available for an SEV-ES guest, therefore
3001          * vcpu->arch.preempted_in_kernel can never be true.  Just
3002          * set in_kernel to false as well.
3003          */
3004         in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3005
3006         grow_ple_window(vcpu);
3007
3008         kvm_vcpu_on_spin(vcpu, in_kernel);
3009         return kvm_skip_emulated_instruction(vcpu);
3010 }
3011
3012 static int invpcid_interception(struct kvm_vcpu *vcpu)
3013 {
3014         struct vcpu_svm *svm = to_svm(vcpu);
3015         unsigned long type;
3016         gva_t gva;
3017
3018         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3019                 kvm_queue_exception(vcpu, UD_VECTOR);
3020                 return 1;
3021         }
3022
3023         /*
3024          * For an INVPCID intercept:
3025          * EXITINFO1 provides the linear address of the memory operand.
3026          * EXITINFO2 provides the contents of the register operand.
3027          */
3028         type = svm->vmcb->control.exit_info_2;
3029         gva = svm->vmcb->control.exit_info_1;
3030
3031         return kvm_handle_invpcid(vcpu, type, gva);
3032 }
3033
3034 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3035         [SVM_EXIT_READ_CR0]                     = cr_interception,
3036         [SVM_EXIT_READ_CR3]                     = cr_interception,
3037         [SVM_EXIT_READ_CR4]                     = cr_interception,
3038         [SVM_EXIT_READ_CR8]                     = cr_interception,
3039         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3040         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3041         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3042         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3043         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3044         [SVM_EXIT_READ_DR0]                     = dr_interception,
3045         [SVM_EXIT_READ_DR1]                     = dr_interception,
3046         [SVM_EXIT_READ_DR2]                     = dr_interception,
3047         [SVM_EXIT_READ_DR3]                     = dr_interception,
3048         [SVM_EXIT_READ_DR4]                     = dr_interception,
3049         [SVM_EXIT_READ_DR5]                     = dr_interception,
3050         [SVM_EXIT_READ_DR6]                     = dr_interception,
3051         [SVM_EXIT_READ_DR7]                     = dr_interception,
3052         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3053         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3054         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3055         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3056         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3057         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3058         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3059         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3060         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3061         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3062         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3063         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3064         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3065         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3066         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
3067         [SVM_EXIT_INTR]                         = intr_interception,
3068         [SVM_EXIT_NMI]                          = nmi_interception,
3069         [SVM_EXIT_SMI]                          = smi_interception,
3070         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3071         [SVM_EXIT_RDPMC]                        = kvm_emulate_rdpmc,
3072         [SVM_EXIT_CPUID]                        = kvm_emulate_cpuid,
3073         [SVM_EXIT_IRET]                         = iret_interception,
3074         [SVM_EXIT_INVD]                         = kvm_emulate_invd,
3075         [SVM_EXIT_PAUSE]                        = pause_interception,
3076         [SVM_EXIT_HLT]                          = kvm_emulate_halt,
3077         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3078         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3079         [SVM_EXIT_IOIO]                         = io_interception,
3080         [SVM_EXIT_MSR]                          = msr_interception,
3081         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3082         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3083         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3084         [SVM_EXIT_VMMCALL]                      = kvm_emulate_hypercall,
3085         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3086         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3087         [SVM_EXIT_STGI]                         = stgi_interception,
3088         [SVM_EXIT_CLGI]                         = clgi_interception,
3089         [SVM_EXIT_SKINIT]                       = skinit_interception,
3090         [SVM_EXIT_RDTSCP]                       = kvm_handle_invalid_op,
3091         [SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3092         [SVM_EXIT_MONITOR]                      = kvm_emulate_monitor,
3093         [SVM_EXIT_MWAIT]                        = kvm_emulate_mwait,
3094         [SVM_EXIT_XSETBV]                       = kvm_emulate_xsetbv,
3095         [SVM_EXIT_RDPRU]                        = kvm_handle_invalid_op,
3096         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3097         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3098         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3099         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3100         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3101         [SVM_EXIT_NPF]                          = npf_interception,
3102         [SVM_EXIT_RSM]                          = rsm_interception,
3103         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3104         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3105         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3106 };
3107
3108 static void dump_vmcb(struct kvm_vcpu *vcpu)
3109 {
3110         struct vcpu_svm *svm = to_svm(vcpu);
3111         struct vmcb_control_area *control = &svm->vmcb->control;
3112         struct vmcb_save_area *save = &svm->vmcb->save;
3113         struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3114
3115         if (!dump_invalid_vmcb) {
3116                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3117                 return;
3118         }
3119
3120         pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3121                svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3122         pr_err("VMCB Control Area:\n");
3123         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3124         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3125         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3126         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3127         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3128         pr_err("%-20s%08x %08x\n", "intercepts:",
3129               control->intercepts[INTERCEPT_WORD3],
3130                control->intercepts[INTERCEPT_WORD4]);
3131         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3132         pr_err("%-20s%d\n", "pause filter threshold:",
3133                control->pause_filter_thresh);
3134         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3135         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3136         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3137         pr_err("%-20s%d\n", "asid:", control->asid);
3138         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3139         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3140         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3141         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3142         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3143         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3144         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3145         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3146         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3147         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3148         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3149         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3150         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3151         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3152         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3153         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3154         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3155         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3156         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3157         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3158         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3159         pr_err("VMCB State Save Area:\n");
3160         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3161                "es:",
3162                save->es.selector, save->es.attrib,
3163                save->es.limit, save->es.base);
3164         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3165                "cs:",
3166                save->cs.selector, save->cs.attrib,
3167                save->cs.limit, save->cs.base);
3168         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3169                "ss:",
3170                save->ss.selector, save->ss.attrib,
3171                save->ss.limit, save->ss.base);
3172         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3173                "ds:",
3174                save->ds.selector, save->ds.attrib,
3175                save->ds.limit, save->ds.base);
3176         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3177                "fs:",
3178                save01->fs.selector, save01->fs.attrib,
3179                save01->fs.limit, save01->fs.base);
3180         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3181                "gs:",
3182                save01->gs.selector, save01->gs.attrib,
3183                save01->gs.limit, save01->gs.base);
3184         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3185                "gdtr:",
3186                save->gdtr.selector, save->gdtr.attrib,
3187                save->gdtr.limit, save->gdtr.base);
3188         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3189                "ldtr:",
3190                save01->ldtr.selector, save01->ldtr.attrib,
3191                save01->ldtr.limit, save01->ldtr.base);
3192         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3193                "idtr:",
3194                save->idtr.selector, save->idtr.attrib,
3195                save->idtr.limit, save->idtr.base);
3196         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3197                "tr:",
3198                save01->tr.selector, save01->tr.attrib,
3199                save01->tr.limit, save01->tr.base);
3200         pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3201                save->vmpl, save->cpl, save->efer);
3202         pr_err("%-15s %016llx %-13s %016llx\n",
3203                "cr0:", save->cr0, "cr2:", save->cr2);
3204         pr_err("%-15s %016llx %-13s %016llx\n",
3205                "cr3:", save->cr3, "cr4:", save->cr4);
3206         pr_err("%-15s %016llx %-13s %016llx\n",
3207                "dr6:", save->dr6, "dr7:", save->dr7);
3208         pr_err("%-15s %016llx %-13s %016llx\n",
3209                "rip:", save->rip, "rflags:", save->rflags);
3210         pr_err("%-15s %016llx %-13s %016llx\n",
3211                "rsp:", save->rsp, "rax:", save->rax);
3212         pr_err("%-15s %016llx %-13s %016llx\n",
3213                "star:", save01->star, "lstar:", save01->lstar);
3214         pr_err("%-15s %016llx %-13s %016llx\n",
3215                "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3216         pr_err("%-15s %016llx %-13s %016llx\n",
3217                "kernel_gs_base:", save01->kernel_gs_base,
3218                "sysenter_cs:", save01->sysenter_cs);
3219         pr_err("%-15s %016llx %-13s %016llx\n",
3220                "sysenter_esp:", save01->sysenter_esp,
3221                "sysenter_eip:", save01->sysenter_eip);
3222         pr_err("%-15s %016llx %-13s %016llx\n",
3223                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3224         pr_err("%-15s %016llx %-13s %016llx\n",
3225                "br_from:", save->br_from, "br_to:", save->br_to);
3226         pr_err("%-15s %016llx %-13s %016llx\n",
3227                "excp_from:", save->last_excp_from,
3228                "excp_to:", save->last_excp_to);
3229 }
3230
3231 static bool svm_check_exit_valid(u64 exit_code)
3232 {
3233         return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3234                 svm_exit_handlers[exit_code]);
3235 }
3236
3237 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3238 {
3239         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3240         dump_vmcb(vcpu);
3241         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3242         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3243         vcpu->run->internal.ndata = 2;
3244         vcpu->run->internal.data[0] = exit_code;
3245         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3246         return 0;
3247 }
3248
3249 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3250 {
3251         if (!svm_check_exit_valid(exit_code))
3252                 return svm_handle_invalid_exit(vcpu, exit_code);
3253
3254 #ifdef CONFIG_RETPOLINE
3255         if (exit_code == SVM_EXIT_MSR)
3256                 return msr_interception(vcpu);
3257         else if (exit_code == SVM_EXIT_VINTR)
3258                 return interrupt_window_interception(vcpu);
3259         else if (exit_code == SVM_EXIT_INTR)
3260                 return intr_interception(vcpu);
3261         else if (exit_code == SVM_EXIT_HLT)
3262                 return kvm_emulate_halt(vcpu);
3263         else if (exit_code == SVM_EXIT_NPF)
3264                 return npf_interception(vcpu);
3265 #endif
3266         return svm_exit_handlers[exit_code](vcpu);
3267 }
3268
3269 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3270                               u64 *info1, u64 *info2,
3271                               u32 *intr_info, u32 *error_code)
3272 {
3273         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3274
3275         *reason = control->exit_code;
3276         *info1 = control->exit_info_1;
3277         *info2 = control->exit_info_2;
3278         *intr_info = control->exit_int_info;
3279         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3280             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3281                 *error_code = control->exit_int_info_err;
3282         else
3283                 *error_code = 0;
3284 }
3285
3286 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3287 {
3288         struct vcpu_svm *svm = to_svm(vcpu);
3289         struct kvm_run *kvm_run = vcpu->run;
3290         u32 exit_code = svm->vmcb->control.exit_code;
3291
3292         trace_kvm_exit(vcpu, KVM_ISA_SVM);
3293
3294         /* SEV-ES guests must use the CR write traps to track CR registers. */
3295         if (!sev_es_guest(vcpu->kvm)) {
3296                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3297                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3298                 if (npt_enabled)
3299                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3300         }
3301
3302         if (is_guest_mode(vcpu)) {
3303                 int vmexit;
3304
3305                 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3306
3307                 vmexit = nested_svm_exit_special(svm);
3308
3309                 if (vmexit == NESTED_EXIT_CONTINUE)
3310                         vmexit = nested_svm_exit_handled(svm);
3311
3312                 if (vmexit == NESTED_EXIT_DONE)
3313                         return 1;
3314         }
3315
3316         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3317                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3318                 kvm_run->fail_entry.hardware_entry_failure_reason
3319                         = svm->vmcb->control.exit_code;
3320                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3321                 dump_vmcb(vcpu);
3322                 return 0;
3323         }
3324
3325         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3326             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3327             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3328             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3329                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3330                        "exit_code 0x%x\n",
3331                        __func__, svm->vmcb->control.exit_int_info,
3332                        exit_code);
3333
3334         if (exit_fastpath != EXIT_FASTPATH_NONE)
3335                 return 1;
3336
3337         return svm_invoke_exit_handler(vcpu, exit_code);
3338 }
3339
3340 static void reload_tss(struct kvm_vcpu *vcpu)
3341 {
3342         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3343
3344         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3345         load_TR_desc();
3346 }
3347
3348 static void pre_svm_run(struct kvm_vcpu *vcpu)
3349 {
3350         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3351         struct vcpu_svm *svm = to_svm(vcpu);
3352
3353         /*
3354          * If the previous vmrun of the vmcb occurred on a different physical
3355          * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3356          * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3357          */
3358         if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3359                 svm->current_vmcb->asid_generation = 0;
3360                 vmcb_mark_all_dirty(svm->vmcb);
3361                 svm->current_vmcb->cpu = vcpu->cpu;
3362         }
3363
3364         if (sev_guest(vcpu->kvm))
3365                 return pre_sev_run(svm, vcpu->cpu);
3366
3367         /* FIXME: handle wraparound of asid_generation */
3368         if (svm->current_vmcb->asid_generation != sd->asid_generation)
3369                 new_asid(svm, sd);
3370 }
3371
3372 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3373 {
3374         struct vcpu_svm *svm = to_svm(vcpu);
3375
3376         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3377         vcpu->arch.hflags |= HF_NMI_MASK;
3378         if (!sev_es_guest(vcpu->kvm))
3379                 svm_set_intercept(svm, INTERCEPT_IRET);
3380         ++vcpu->stat.nmi_injections;
3381 }
3382
3383 static void svm_inject_irq(struct kvm_vcpu *vcpu)
3384 {
3385         struct vcpu_svm *svm = to_svm(vcpu);
3386
3387         BUG_ON(!(gif_set(svm)));
3388
3389         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3390         ++vcpu->stat.irq_injections;
3391
3392         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3393                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3394 }
3395
3396 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3397                                      int trig_mode, int vector)
3398 {
3399         /*
3400          * vcpu->arch.apicv_active must be read after vcpu->mode.
3401          * Pairs with smp_store_release in vcpu_enter_guest.
3402          */
3403         bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3404
3405         if (!READ_ONCE(vcpu->arch.apicv_active)) {
3406                 /* Process the interrupt via inject_pending_event */
3407                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3408                 kvm_vcpu_kick(vcpu);
3409                 return;
3410         }
3411
3412         trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3413         if (in_guest_mode) {
3414                 /*
3415                  * Signal the doorbell to tell hardware to inject the IRQ.  If
3416                  * the vCPU exits the guest before the doorbell chimes, hardware
3417                  * will automatically process AVIC interrupts at the next VMRUN.
3418                  */
3419                 avic_ring_doorbell(vcpu);
3420         } else {
3421                 /*
3422                  * Wake the vCPU if it was blocking.  KVM will then detect the
3423                  * pending IRQ when checking if the vCPU has a wake event.
3424                  */
3425                 kvm_vcpu_wake_up(vcpu);
3426         }
3427 }
3428
3429 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3430                                   int trig_mode, int vector)
3431 {
3432         kvm_lapic_set_irr(vector, apic);
3433
3434         /*
3435          * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3436          * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3437          * the read of guest_mode.  This guarantees that either VMRUN will see
3438          * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3439          * will signal the doorbell if the CPU has already entered the guest.
3440          */
3441         smp_mb__after_atomic();
3442         svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3443 }
3444
3445 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3446 {
3447         struct vcpu_svm *svm = to_svm(vcpu);
3448
3449         /*
3450          * SEV-ES guests must always keep the CR intercepts cleared. CR
3451          * tracking is done using the CR write traps.
3452          */
3453         if (sev_es_guest(vcpu->kvm))
3454                 return;
3455
3456         if (nested_svm_virtualize_tpr(vcpu))
3457                 return;
3458
3459         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3460
3461         if (irr == -1)
3462                 return;
3463
3464         if (tpr >= irr)
3465                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3466 }
3467
3468 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3469 {
3470         struct vcpu_svm *svm = to_svm(vcpu);
3471         struct vmcb *vmcb = svm->vmcb;
3472         bool ret;
3473
3474         if (!gif_set(svm))
3475                 return true;
3476
3477         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3478                 return false;
3479
3480         ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3481               (vcpu->arch.hflags & HF_NMI_MASK);
3482
3483         return ret;
3484 }
3485
3486 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3487 {
3488         struct vcpu_svm *svm = to_svm(vcpu);
3489         if (svm->nested.nested_run_pending)
3490                 return -EBUSY;
3491
3492         if (svm_nmi_blocked(vcpu))
3493                 return 0;
3494
3495         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3496         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3497                 return -EBUSY;
3498         return 1;
3499 }
3500
3501 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3502 {
3503         return !!(vcpu->arch.hflags & HF_NMI_MASK);
3504 }
3505
3506 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3507 {
3508         struct vcpu_svm *svm = to_svm(vcpu);
3509
3510         if (masked) {
3511                 vcpu->arch.hflags |= HF_NMI_MASK;
3512                 if (!sev_es_guest(vcpu->kvm))
3513                         svm_set_intercept(svm, INTERCEPT_IRET);
3514         } else {
3515                 vcpu->arch.hflags &= ~HF_NMI_MASK;
3516                 if (!sev_es_guest(vcpu->kvm))
3517                         svm_clr_intercept(svm, INTERCEPT_IRET);
3518         }
3519 }
3520
3521 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3522 {
3523         struct vcpu_svm *svm = to_svm(vcpu);
3524         struct vmcb *vmcb = svm->vmcb;
3525
3526         if (!gif_set(svm))
3527                 return true;
3528
3529         if (is_guest_mode(vcpu)) {
3530                 /* As long as interrupts are being delivered...  */
3531                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3532                     ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3533                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3534                         return true;
3535
3536                 /* ... vmexits aren't blocked by the interrupt shadow  */
3537                 if (nested_exit_on_intr(svm))
3538                         return false;
3539         } else {
3540                 if (!svm_get_if_flag(vcpu))
3541                         return true;
3542         }
3543
3544         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3545 }
3546
3547 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3548 {
3549         struct vcpu_svm *svm = to_svm(vcpu);
3550
3551         if (svm->nested.nested_run_pending)
3552                 return -EBUSY;
3553
3554         if (svm_interrupt_blocked(vcpu))
3555                 return 0;
3556
3557         /*
3558          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3559          * e.g. if the IRQ arrived asynchronously after checking nested events.
3560          */
3561         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3562                 return -EBUSY;
3563
3564         return 1;
3565 }
3566
3567 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3568 {
3569         struct vcpu_svm *svm = to_svm(vcpu);
3570
3571         /*
3572          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3573          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3574          * get that intercept, this function will be called again though and
3575          * we'll get the vintr intercept. However, if the vGIF feature is
3576          * enabled, the STGI interception will not occur. Enable the irq
3577          * window under the assumption that the hardware will set the GIF.
3578          */
3579         if (vgif || gif_set(svm)) {
3580                 /*
3581                  * IRQ window is not needed when AVIC is enabled,
3582                  * unless we have pending ExtINT since it cannot be injected
3583                  * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3584                  * and fallback to injecting IRQ via V_IRQ.
3585                  *
3586                  * If running nested, AVIC is already locally inhibited
3587                  * on this vCPU, therefore there is no need to request
3588                  * the VM wide AVIC inhibition.
3589                  */
3590                 if (!is_guest_mode(vcpu))
3591                         kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3592
3593                 svm_set_vintr(svm);
3594         }
3595 }
3596
3597 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3598 {
3599         struct vcpu_svm *svm = to_svm(vcpu);
3600
3601         if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3602                 return; /* IRET will cause a vm exit */
3603
3604         if (!gif_set(svm)) {
3605                 if (vgif)
3606                         svm_set_intercept(svm, INTERCEPT_STGI);
3607                 return; /* STGI will cause a vm exit */
3608         }
3609
3610         /*
3611          * Something prevents NMI from been injected. Single step over possible
3612          * problem (IRET or exception injection or interrupt shadow)
3613          */
3614         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3615         svm->nmi_singlestep = true;
3616         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3617 }
3618
3619 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3620 {
3621         struct vcpu_svm *svm = to_svm(vcpu);
3622
3623         /*
3624          * Flush only the current ASID even if the TLB flush was invoked via
3625          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3626          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3627          * unconditionally does a TLB flush on both nested VM-Enter and nested
3628          * VM-Exit (via kvm_mmu_reset_context()).
3629          */
3630         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3631                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3632         else
3633                 svm->current_vmcb->asid_generation--;
3634 }
3635
3636 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3637 {
3638         struct vcpu_svm *svm = to_svm(vcpu);
3639
3640         invlpga(gva, svm->vmcb->control.asid);
3641 }
3642
3643 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3644 {
3645         struct vcpu_svm *svm = to_svm(vcpu);
3646
3647         if (nested_svm_virtualize_tpr(vcpu))
3648                 return;
3649
3650         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3651                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3652                 kvm_set_cr8(vcpu, cr8);
3653         }
3654 }
3655
3656 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3657 {
3658         struct vcpu_svm *svm = to_svm(vcpu);
3659         u64 cr8;
3660
3661         if (nested_svm_virtualize_tpr(vcpu) ||
3662             kvm_vcpu_apicv_active(vcpu))
3663                 return;
3664
3665         cr8 = kvm_get_cr8(vcpu);
3666         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3667         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3668 }
3669
3670 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3671 {
3672         struct vcpu_svm *svm = to_svm(vcpu);
3673         u8 vector;
3674         int type;
3675         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3676         unsigned int3_injected = svm->int3_injected;
3677
3678         svm->int3_injected = 0;
3679
3680         /*
3681          * If we've made progress since setting HF_IRET_MASK, we've
3682          * executed an IRET and can allow NMI injection.
3683          */
3684         if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3685             (sev_es_guest(vcpu->kvm) ||
3686              kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3687                 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3688                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3689         }
3690
3691         vcpu->arch.nmi_injected = false;
3692         kvm_clear_exception_queue(vcpu);
3693         kvm_clear_interrupt_queue(vcpu);
3694
3695         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3696                 return;
3697
3698         kvm_make_request(KVM_REQ_EVENT, vcpu);
3699
3700         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3701         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3702
3703         switch (type) {
3704         case SVM_EXITINTINFO_TYPE_NMI:
3705                 vcpu->arch.nmi_injected = true;
3706                 break;
3707         case SVM_EXITINTINFO_TYPE_EXEPT:
3708                 /*
3709                  * Never re-inject a #VC exception.
3710                  */
3711                 if (vector == X86_TRAP_VC)
3712                         break;
3713
3714                 /*
3715                  * In case of software exceptions, do not reinject the vector,
3716                  * but re-execute the instruction instead. Rewind RIP first
3717                  * if we emulated INT3 before.
3718                  */
3719                 if (kvm_exception_is_soft(vector)) {
3720                         if (vector == BP_VECTOR && int3_injected &&
3721                             kvm_is_linear_rip(vcpu, svm->int3_rip))
3722                                 kvm_rip_write(vcpu,
3723                                               kvm_rip_read(vcpu) - int3_injected);
3724                         break;
3725                 }
3726                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3727                         u32 err = svm->vmcb->control.exit_int_info_err;
3728                         kvm_requeue_exception_e(vcpu, vector, err);
3729
3730                 } else
3731                         kvm_requeue_exception(vcpu, vector);
3732                 break;
3733         case SVM_EXITINTINFO_TYPE_INTR:
3734                 kvm_queue_interrupt(vcpu, vector, false);
3735                 break;
3736         default:
3737                 break;
3738         }
3739 }
3740
3741 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3742 {
3743         struct vcpu_svm *svm = to_svm(vcpu);
3744         struct vmcb_control_area *control = &svm->vmcb->control;
3745
3746         control->exit_int_info = control->event_inj;
3747         control->exit_int_info_err = control->event_inj_err;
3748         control->event_inj = 0;
3749         svm_complete_interrupts(vcpu);
3750 }
3751
3752 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3753 {
3754         return 1;
3755 }
3756
3757 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3758 {
3759         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3760             to_svm(vcpu)->vmcb->control.exit_info_1)
3761                 return handle_fastpath_set_msr_irqoff(vcpu);
3762
3763         return EXIT_FASTPATH_NONE;
3764 }
3765
3766 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3767 {
3768         struct vcpu_svm *svm = to_svm(vcpu);
3769         unsigned long vmcb_pa = svm->current_vmcb->pa;
3770
3771         guest_state_enter_irqoff();
3772
3773         if (sev_es_guest(vcpu->kvm)) {
3774                 __svm_sev_es_vcpu_run(vmcb_pa);
3775         } else {
3776                 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3777
3778                 /*
3779                  * Use a single vmcb (vmcb01 because it's always valid) for
3780                  * context switching guest state via VMLOAD/VMSAVE, that way
3781                  * the state doesn't need to be copied between vmcb01 and
3782                  * vmcb02 when switching vmcbs for nested virtualization.
3783                  */
3784                 vmload(svm->vmcb01.pa);
3785                 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3786                 vmsave(svm->vmcb01.pa);
3787
3788                 vmload(__sme_page_pa(sd->save_area));
3789         }
3790
3791         guest_state_exit_irqoff();
3792 }
3793
3794 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3795 {
3796         struct vcpu_svm *svm = to_svm(vcpu);
3797
3798         trace_kvm_entry(vcpu);
3799
3800         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3801         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3802         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3803
3804         /*
3805          * Disable singlestep if we're injecting an interrupt/exception.
3806          * We don't want our modified rflags to be pushed on the stack where
3807          * we might not be able to easily reset them if we disabled NMI
3808          * singlestep later.
3809          */
3810         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3811                 /*
3812                  * Event injection happens before external interrupts cause a
3813                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3814                  * is enough to force an immediate vmexit.
3815                  */
3816                 disable_nmi_singlestep(svm);
3817                 smp_send_reschedule(vcpu->cpu);
3818         }
3819
3820         pre_svm_run(vcpu);
3821
3822         sync_lapic_to_cr8(vcpu);
3823
3824         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3825                 svm->vmcb->control.asid = svm->asid;
3826                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3827         }
3828         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3829
3830         svm_hv_update_vp_id(svm->vmcb, vcpu);
3831
3832         /*
3833          * Run with all-zero DR6 unless needed, so that we can get the exact cause
3834          * of a #DB.
3835          */
3836         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3837                 svm_set_dr6(svm, vcpu->arch.dr6);
3838         else
3839                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
3840
3841         clgi();
3842         kvm_load_guest_xsave_state(vcpu);
3843
3844         kvm_wait_lapic_expire(vcpu);
3845
3846         /*
3847          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3848          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3849          * is no need to worry about the conditional branch over the wrmsr
3850          * being speculatively taken.
3851          */
3852         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3853                 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3854
3855         svm_vcpu_enter_exit(vcpu);
3856
3857         /*
3858          * We do not use IBRS in the kernel. If this vCPU has used the
3859          * SPEC_CTRL MSR it may have left it on; save the value and
3860          * turn it off. This is much more efficient than blindly adding
3861          * it to the atomic save/restore list. Especially as the former
3862          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3863          *
3864          * For non-nested case:
3865          * If the L01 MSR bitmap does not intercept the MSR, then we need to
3866          * save it.
3867          *
3868          * For nested case:
3869          * If the L02 MSR bitmap does not intercept the MSR, then we need to
3870          * save it.
3871          */
3872         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3873             unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3874                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3875
3876         if (!sev_es_guest(vcpu->kvm))
3877                 reload_tss(vcpu);
3878
3879         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3880                 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3881
3882         if (!sev_es_guest(vcpu->kvm)) {
3883                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3884                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3885                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3886                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3887         }
3888         vcpu->arch.regs_dirty = 0;
3889
3890         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3891                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
3892
3893         kvm_load_host_xsave_state(vcpu);
3894         stgi();
3895
3896         /* Any pending NMI will happen here */
3897
3898         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3899                 kvm_after_interrupt(vcpu);
3900
3901         sync_cr8_to_lapic(vcpu);
3902
3903         svm->next_rip = 0;
3904         if (is_guest_mode(vcpu)) {
3905                 nested_sync_control_from_vmcb02(svm);
3906
3907                 /* Track VMRUNs that have made past consistency checking */
3908                 if (svm->nested.nested_run_pending &&
3909                     svm->vmcb->control.exit_code != SVM_EXIT_ERR)
3910                         ++vcpu->stat.nested_run;
3911
3912                 svm->nested.nested_run_pending = 0;
3913         }
3914
3915         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3916         vmcb_mark_all_clean(svm->vmcb);
3917
3918         /* if exit due to PF check for async PF */
3919         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3920                 vcpu->arch.apf.host_apf_flags =
3921                         kvm_read_and_reset_apf_flags();
3922
3923         vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
3924
3925         /*
3926          * We need to handle MC intercepts here before the vcpu has a chance to
3927          * change the physical cpu
3928          */
3929         if (unlikely(svm->vmcb->control.exit_code ==
3930                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3931                 svm_handle_mce(vcpu);
3932
3933         svm_complete_interrupts(vcpu);
3934
3935         if (is_guest_mode(vcpu))
3936                 return EXIT_FASTPATH_NONE;
3937
3938         return svm_exit_handlers_fastpath(vcpu);
3939 }
3940
3941 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3942                              int root_level)
3943 {
3944         struct vcpu_svm *svm = to_svm(vcpu);
3945         unsigned long cr3;
3946
3947         if (npt_enabled) {
3948                 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3949                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3950
3951                 hv_track_root_tdp(vcpu, root_hpa);
3952
3953                 cr3 = vcpu->arch.cr3;
3954         } else if (vcpu->arch.mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3955                 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3956         } else {
3957                 /* PCID in the guest should be impossible with a 32-bit MMU. */
3958                 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3959                 cr3 = root_hpa;
3960         }
3961
3962         svm->vmcb->save.cr3 = cr3;
3963         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3964 }
3965
3966 static int is_disabled(void)
3967 {
3968         u64 vm_cr;
3969
3970         rdmsrl(MSR_VM_CR, vm_cr);
3971         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3972                 return 1;
3973
3974         return 0;
3975 }
3976
3977 static void
3978 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3979 {
3980         /*
3981          * Patch in the VMMCALL instruction:
3982          */
3983         hypercall[0] = 0x0f;
3984         hypercall[1] = 0x01;
3985         hypercall[2] = 0xd9;
3986 }
3987
3988 static int __init svm_check_processor_compat(void)
3989 {
3990         return 0;
3991 }
3992
3993 /*
3994  * The kvm parameter can be NULL (module initialization, or invocation before
3995  * VM creation). Be sure to check the kvm parameter before using it.
3996  */
3997 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3998 {
3999         switch (index) {
4000         case MSR_IA32_MCG_EXT_CTL:
4001         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4002                 return false;
4003         case MSR_IA32_SMBASE:
4004                 /* SEV-ES guests do not support SMM, so report false */
4005                 if (kvm && sev_es_guest(kvm))
4006                         return false;
4007                 break;
4008         default:
4009                 break;
4010         }
4011
4012         return true;
4013 }
4014
4015 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4016 {
4017         return 0;
4018 }
4019
4020 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4021 {
4022         struct vcpu_svm *svm = to_svm(vcpu);
4023         struct kvm_cpuid_entry2 *best;
4024         struct kvm *kvm = vcpu->kvm;
4025
4026         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4027                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
4028                                     boot_cpu_has(X86_FEATURE_XSAVES);
4029
4030         /* Update nrips enabled cache */
4031         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4032                              guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4033
4034         svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4035         svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4036
4037         svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4038
4039         svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4040                         guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4041
4042         svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4043                         guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4044
4045         svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4046
4047         svm_recalc_instruction_intercepts(vcpu, svm);
4048
4049         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
4050         if (sev_guest(vcpu->kvm)) {
4051                 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
4052                 if (best)
4053                         vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4054         }
4055
4056         if (kvm_vcpu_apicv_active(vcpu)) {
4057                 /*
4058                  * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
4059                  * is exposed to the guest, disable AVIC.
4060                  */
4061                 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
4062                         kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_X2APIC);
4063         }
4064         init_vmcb_after_set_cpuid(vcpu);
4065 }
4066
4067 static bool svm_has_wbinvd_exit(void)
4068 {
4069         return true;
4070 }
4071
4072 #define PRE_EX(exit)  { .exit_code = (exit), \
4073                         .stage = X86_ICPT_PRE_EXCEPT, }
4074 #define POST_EX(exit) { .exit_code = (exit), \
4075                         .stage = X86_ICPT_POST_EXCEPT, }
4076 #define POST_MEM(exit) { .exit_code = (exit), \
4077                         .stage = X86_ICPT_POST_MEMACCESS, }
4078
4079 static const struct __x86_intercept {
4080         u32 exit_code;
4081         enum x86_intercept_stage stage;
4082 } x86_intercept_map[] = {
4083         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4084         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4085         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4086         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4087         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4088         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4089         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4090         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4091         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4092         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4093         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4094         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4095         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4096         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4097         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4098         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4099         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4100         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4101         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4102         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4103         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4104         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4105         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4106         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4107         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4108         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4109         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4110         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4111         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4112         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4113         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4114         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4115         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4116         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4117         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4118         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4119         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4120         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4121         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4122         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4123         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4124         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4125         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4126         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4127         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4128         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4129         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4130 };
4131
4132 #undef PRE_EX
4133 #undef POST_EX
4134 #undef POST_MEM
4135
4136 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4137                                struct x86_instruction_info *info,
4138                                enum x86_intercept_stage stage,
4139                                struct x86_exception *exception)
4140 {
4141         struct vcpu_svm *svm = to_svm(vcpu);
4142         int vmexit, ret = X86EMUL_CONTINUE;
4143         struct __x86_intercept icpt_info;
4144         struct vmcb *vmcb = svm->vmcb;
4145
4146         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4147                 goto out;
4148
4149         icpt_info = x86_intercept_map[info->intercept];
4150
4151         if (stage != icpt_info.stage)
4152                 goto out;
4153
4154         switch (icpt_info.exit_code) {
4155         case SVM_EXIT_READ_CR0:
4156                 if (info->intercept == x86_intercept_cr_read)
4157                         icpt_info.exit_code += info->modrm_reg;
4158                 break;
4159         case SVM_EXIT_WRITE_CR0: {
4160                 unsigned long cr0, val;
4161
4162                 if (info->intercept == x86_intercept_cr_write)
4163                         icpt_info.exit_code += info->modrm_reg;
4164
4165                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4166                     info->intercept == x86_intercept_clts)
4167                         break;
4168
4169                 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4170                                         INTERCEPT_SELECTIVE_CR0)))
4171                         break;
4172
4173                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4174                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4175
4176                 if (info->intercept == x86_intercept_lmsw) {
4177                         cr0 &= 0xfUL;
4178                         val &= 0xfUL;
4179                         /* lmsw can't clear PE - catch this here */
4180                         if (cr0 & X86_CR0_PE)
4181                                 val |= X86_CR0_PE;
4182                 }
4183
4184                 if (cr0 ^ val)
4185                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4186
4187                 break;
4188         }
4189         case SVM_EXIT_READ_DR0:
4190         case SVM_EXIT_WRITE_DR0:
4191                 icpt_info.exit_code += info->modrm_reg;
4192                 break;
4193         case SVM_EXIT_MSR:
4194                 if (info->intercept == x86_intercept_wrmsr)
4195                         vmcb->control.exit_info_1 = 1;
4196                 else
4197                         vmcb->control.exit_info_1 = 0;
4198                 break;
4199         case SVM_EXIT_PAUSE:
4200                 /*
4201                  * We get this for NOP only, but pause
4202                  * is rep not, check this here
4203                  */
4204                 if (info->rep_prefix != REPE_PREFIX)
4205                         goto out;
4206                 break;
4207         case SVM_EXIT_IOIO: {
4208                 u64 exit_info;
4209                 u32 bytes;
4210
4211                 if (info->intercept == x86_intercept_in ||
4212                     info->intercept == x86_intercept_ins) {
4213                         exit_info = ((info->src_val & 0xffff) << 16) |
4214                                 SVM_IOIO_TYPE_MASK;
4215                         bytes = info->dst_bytes;
4216                 } else {
4217                         exit_info = (info->dst_val & 0xffff) << 16;
4218                         bytes = info->src_bytes;
4219                 }
4220
4221                 if (info->intercept == x86_intercept_outs ||
4222                     info->intercept == x86_intercept_ins)
4223                         exit_info |= SVM_IOIO_STR_MASK;
4224
4225                 if (info->rep_prefix)
4226                         exit_info |= SVM_IOIO_REP_MASK;
4227
4228                 bytes = min(bytes, 4u);
4229
4230                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4231
4232                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4233
4234                 vmcb->control.exit_info_1 = exit_info;
4235                 vmcb->control.exit_info_2 = info->next_rip;
4236
4237                 break;
4238         }
4239         default:
4240                 break;
4241         }
4242
4243         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4244         if (static_cpu_has(X86_FEATURE_NRIPS))
4245                 vmcb->control.next_rip  = info->next_rip;
4246         vmcb->control.exit_code = icpt_info.exit_code;
4247         vmexit = nested_svm_exit_handled(svm);
4248
4249         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4250                                            : X86EMUL_CONTINUE;
4251
4252 out:
4253         return ret;
4254 }
4255
4256 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4257 {
4258 }
4259
4260 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4261 {
4262         if (!kvm_pause_in_guest(vcpu->kvm))
4263                 shrink_ple_window(vcpu);
4264 }
4265
4266 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4267 {
4268         /* [63:9] are reserved. */
4269         vcpu->arch.mcg_cap &= 0x1ff;
4270 }
4271
4272 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4273 {
4274         struct vcpu_svm *svm = to_svm(vcpu);
4275
4276         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4277         if (!gif_set(svm))
4278                 return true;
4279
4280         return is_smm(vcpu);
4281 }
4282
4283 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4284 {
4285         struct vcpu_svm *svm = to_svm(vcpu);
4286         if (svm->nested.nested_run_pending)
4287                 return -EBUSY;
4288
4289         if (svm_smi_blocked(vcpu))
4290                 return 0;
4291
4292         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4293         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4294                 return -EBUSY;
4295
4296         return 1;
4297 }
4298
4299 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4300 {
4301         struct vcpu_svm *svm = to_svm(vcpu);
4302         struct kvm_host_map map_save;
4303         int ret;
4304
4305         if (!is_guest_mode(vcpu))
4306                 return 0;
4307
4308         /* FED8h - SVM Guest */
4309         put_smstate(u64, smstate, 0x7ed8, 1);
4310         /* FEE0h - SVM Guest VMCB Physical Address */
4311         put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4312
4313         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4314         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4315         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4316
4317         ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4318         if (ret)
4319                 return ret;
4320
4321         /*
4322          * KVM uses VMCB01 to store L1 host state while L2 runs but
4323          * VMCB01 is going to be used during SMM and thus the state will
4324          * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4325          * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4326          * format of the area is identical to guest save area offsetted
4327          * by 0x400 (matches the offset of 'struct vmcb_save_area'
4328          * within 'struct vmcb'). Note: HSAVE area may also be used by
4329          * L1 hypervisor to save additional host context (e.g. KVM does
4330          * that, see svm_prepare_switch_to_guest()) which must be
4331          * preserved.
4332          */
4333         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4334                          &map_save) == -EINVAL)
4335                 return 1;
4336
4337         BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4338
4339         svm_copy_vmrun_state(map_save.hva + 0x400,
4340                              &svm->vmcb01.ptr->save);
4341
4342         kvm_vcpu_unmap(vcpu, &map_save, true);
4343         return 0;
4344 }
4345
4346 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4347 {
4348         struct vcpu_svm *svm = to_svm(vcpu);
4349         struct kvm_host_map map, map_save;
4350         u64 saved_efer, vmcb12_gpa;
4351         struct vmcb *vmcb12;
4352         int ret;
4353
4354         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4355                 return 0;
4356
4357         /* Non-zero if SMI arrived while vCPU was in guest mode. */
4358         if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4359                 return 0;
4360
4361         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4362                 return 1;
4363
4364         saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4365         if (!(saved_efer & EFER_SVME))
4366                 return 1;
4367
4368         vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4369         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4370                 return 1;
4371
4372         ret = 1;
4373         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4374                 goto unmap_map;
4375
4376         if (svm_allocate_nested(svm))
4377                 goto unmap_save;
4378
4379         /*
4380          * Restore L1 host state from L1 HSAVE area as VMCB01 was
4381          * used during SMM (see svm_enter_smm())
4382          */
4383
4384         svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4385
4386         /*
4387          * Enter the nested guest now
4388          */
4389
4390         vmcb_mark_all_dirty(svm->vmcb01.ptr);
4391
4392         vmcb12 = map.hva;
4393         nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4394         nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4395         ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4396
4397         if (ret)
4398                 goto unmap_save;
4399
4400         svm->nested.nested_run_pending = 1;
4401
4402 unmap_save:
4403         kvm_vcpu_unmap(vcpu, &map_save, true);
4404 unmap_map:
4405         kvm_vcpu_unmap(vcpu, &map, true);
4406         return ret;
4407 }
4408
4409 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4410 {
4411         struct vcpu_svm *svm = to_svm(vcpu);
4412
4413         if (!gif_set(svm)) {
4414                 if (vgif)
4415                         svm_set_intercept(svm, INTERCEPT_STGI);
4416                 /* STGI will cause a vm exit */
4417         } else {
4418                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4419         }
4420 }
4421
4422 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4423                                         void *insn, int insn_len)
4424 {
4425         bool smep, smap, is_user;
4426         unsigned long cr4;
4427         u64 error_code;
4428
4429         /* Emulation is always possible when KVM has access to all guest state. */
4430         if (!sev_guest(vcpu->kvm))
4431                 return true;
4432
4433         /* #UD and #GP should never be intercepted for SEV guests. */
4434         WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4435                                   EMULTYPE_TRAP_UD_FORCED |
4436                                   EMULTYPE_VMWARE_GP));
4437
4438         /*
4439          * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4440          * to guest register state.
4441          */
4442         if (sev_es_guest(vcpu->kvm))
4443                 return false;
4444
4445         /*
4446          * Emulation is possible if the instruction is already decoded, e.g.
4447          * when completing I/O after returning from userspace.
4448          */
4449         if (emul_type & EMULTYPE_NO_DECODE)
4450                 return true;
4451
4452         /*
4453          * Emulation is possible for SEV guests if and only if a prefilled
4454          * buffer containing the bytes of the intercepted instruction is
4455          * available. SEV guest memory is encrypted with a guest specific key
4456          * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4457          * decode garbage.
4458          *
4459          * Inject #UD if KVM reached this point without an instruction buffer.
4460          * In practice, this path should never be hit by a well-behaved guest,
4461          * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4462          * is still theoretically reachable, e.g. via unaccelerated fault-like
4463          * AVIC access, and needs to be handled by KVM to avoid putting the
4464          * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4465          * but its the least awful option given lack of insight into the guest.
4466          */
4467         if (unlikely(!insn)) {
4468                 kvm_queue_exception(vcpu, UD_VECTOR);
4469                 return false;
4470         }
4471
4472         /*
4473          * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4474          * will be empty if the DecodeAssist microcode cannot fetch bytes for
4475          * the faulting instruction because the code fetch itself faulted, e.g.
4476          * the guest attempted to fetch from emulated MMIO or a guest page
4477          * table used to translate CS:RIP resides in emulated MMIO.
4478          */
4479         if (likely(insn_len))
4480                 return true;
4481
4482         /*
4483          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4484          *
4485          * Errata:
4486          * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4487          * possible that CPU microcode implementing DecodeAssist will fail to
4488          * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4489          * be '0'.  This happens because microcode reads CS:RIP using a _data_
4490          * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4491          * gives up and does not fill the instruction bytes buffer.
4492          *
4493          * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4494          * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4495          * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4496          * GuestIntrBytes field of the VMCB.
4497          *
4498          * This does _not_ mean that the erratum has been encountered, as the
4499          * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4500          * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4501          * encountered a reserved/not-present #PF.
4502          *
4503          * To hit the erratum, the following conditions must be true:
4504          *    1. CR4.SMAP=1 (obviously).
4505          *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4506          *       have been hit as the guest would have encountered a SMEP
4507          *       violation #PF, not a #NPF.
4508          *    3. The #NPF is not due to a code fetch, in which case failure to
4509          *       retrieve the instruction bytes is legitimate (see abvoe).
4510          *
4511          * In addition, don't apply the erratum workaround if the #NPF occurred
4512          * while translating guest page tables (see below).
4513          */
4514         error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4515         if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4516                 goto resume_guest;
4517
4518         cr4 = kvm_read_cr4(vcpu);
4519         smep = cr4 & X86_CR4_SMEP;
4520         smap = cr4 & X86_CR4_SMAP;
4521         is_user = svm_get_cpl(vcpu) == 3;
4522         if (smap && (!smep || is_user)) {
4523                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4524
4525                 /*
4526                  * If the fault occurred in userspace, arbitrarily inject #GP
4527                  * to avoid killing the guest and to hopefully avoid confusing
4528                  * the guest kernel too much, e.g. injecting #PF would not be
4529                  * coherent with respect to the guest's page tables.  Request
4530                  * triple fault if the fault occurred in the kernel as there's
4531                  * no fault that KVM can inject without confusing the guest.
4532                  * In practice, the triple fault is moot as no sane SEV kernel
4533                  * will execute from user memory while also running with SMAP=1.
4534                  */
4535                 if (is_user)
4536                         kvm_inject_gp(vcpu, 0);
4537                 else
4538                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4539         }
4540
4541 resume_guest:
4542         /*
4543          * If the erratum was not hit, simply resume the guest and let it fault
4544          * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4545          * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4546          * userspace will kill the guest, and letting the emulator read garbage
4547          * will yield random behavior and potentially corrupt the guest.
4548          *
4549          * Simply resuming the guest is technically not a violation of the SEV
4550          * architecture.  AMD's APM states that all code fetches and page table
4551          * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4552          * APM also states that encrypted accesses to MMIO are "ignored", but
4553          * doesn't explicitly define "ignored", i.e. doing nothing and letting
4554          * the guest spin is technically "ignoring" the access.
4555          */
4556         return false;
4557 }
4558
4559 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4560 {
4561         struct vcpu_svm *svm = to_svm(vcpu);
4562
4563         /*
4564          * TODO: Last condition latch INIT signals on vCPU when
4565          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4566          * To properly emulate the INIT intercept,
4567          * svm_check_nested_events() should call nested_svm_vmexit()
4568          * if an INIT signal is pending.
4569          */
4570         return !gif_set(svm) ||
4571                    (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4572 }
4573
4574 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4575 {
4576         if (!sev_es_guest(vcpu->kvm))
4577                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4578
4579         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4580 }
4581
4582 static void svm_vm_destroy(struct kvm *kvm)
4583 {
4584         avic_vm_destroy(kvm);
4585         sev_vm_destroy(kvm);
4586 }
4587
4588 static int svm_vm_init(struct kvm *kvm)
4589 {
4590         if (!pause_filter_count || !pause_filter_thresh)
4591                 kvm->arch.pause_in_guest = true;
4592
4593         if (enable_apicv) {
4594                 int ret = avic_vm_init(kvm);
4595                 if (ret)
4596                         return ret;
4597         }
4598
4599         return 0;
4600 }
4601
4602 static struct kvm_x86_ops svm_x86_ops __initdata = {
4603         .name = "kvm_amd",
4604
4605         .hardware_unsetup = svm_hardware_unsetup,
4606         .hardware_enable = svm_hardware_enable,
4607         .hardware_disable = svm_hardware_disable,
4608         .has_emulated_msr = svm_has_emulated_msr,
4609
4610         .vcpu_create = svm_vcpu_create,
4611         .vcpu_free = svm_vcpu_free,
4612         .vcpu_reset = svm_vcpu_reset,
4613
4614         .vm_size = sizeof(struct kvm_svm),
4615         .vm_init = svm_vm_init,
4616         .vm_destroy = svm_vm_destroy,
4617
4618         .prepare_switch_to_guest = svm_prepare_switch_to_guest,
4619         .vcpu_load = svm_vcpu_load,
4620         .vcpu_put = svm_vcpu_put,
4621         .vcpu_blocking = avic_vcpu_blocking,
4622         .vcpu_unblocking = avic_vcpu_unblocking,
4623
4624         .update_exception_bitmap = svm_update_exception_bitmap,
4625         .get_msr_feature = svm_get_msr_feature,
4626         .get_msr = svm_get_msr,
4627         .set_msr = svm_set_msr,
4628         .get_segment_base = svm_get_segment_base,
4629         .get_segment = svm_get_segment,
4630         .set_segment = svm_set_segment,
4631         .get_cpl = svm_get_cpl,
4632         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
4633         .set_cr0 = svm_set_cr0,
4634         .post_set_cr3 = sev_post_set_cr3,
4635         .is_valid_cr4 = svm_is_valid_cr4,
4636         .set_cr4 = svm_set_cr4,
4637         .set_efer = svm_set_efer,
4638         .get_idt = svm_get_idt,
4639         .set_idt = svm_set_idt,
4640         .get_gdt = svm_get_gdt,
4641         .set_gdt = svm_set_gdt,
4642         .set_dr7 = svm_set_dr7,
4643         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4644         .cache_reg = svm_cache_reg,
4645         .get_rflags = svm_get_rflags,
4646         .set_rflags = svm_set_rflags,
4647         .get_if_flag = svm_get_if_flag,
4648
4649         .flush_tlb_all = svm_flush_tlb_current,
4650         .flush_tlb_current = svm_flush_tlb_current,
4651         .flush_tlb_gva = svm_flush_tlb_gva,
4652         .flush_tlb_guest = svm_flush_tlb_current,
4653
4654         .vcpu_pre_run = svm_vcpu_pre_run,
4655         .vcpu_run = svm_vcpu_run,
4656         .handle_exit = svm_handle_exit,
4657         .skip_emulated_instruction = svm_skip_emulated_instruction,
4658         .update_emulated_instruction = NULL,
4659         .set_interrupt_shadow = svm_set_interrupt_shadow,
4660         .get_interrupt_shadow = svm_get_interrupt_shadow,
4661         .patch_hypercall = svm_patch_hypercall,
4662         .inject_irq = svm_inject_irq,
4663         .inject_nmi = svm_inject_nmi,
4664         .queue_exception = svm_queue_exception,
4665         .cancel_injection = svm_cancel_injection,
4666         .interrupt_allowed = svm_interrupt_allowed,
4667         .nmi_allowed = svm_nmi_allowed,
4668         .get_nmi_mask = svm_get_nmi_mask,
4669         .set_nmi_mask = svm_set_nmi_mask,
4670         .enable_nmi_window = svm_enable_nmi_window,
4671         .enable_irq_window = svm_enable_irq_window,
4672         .update_cr8_intercept = svm_update_cr8_intercept,
4673         .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4674         .check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
4675         .apicv_post_state_restore = avic_apicv_post_state_restore,
4676
4677         .get_mt_mask = svm_get_mt_mask,
4678         .get_exit_info = svm_get_exit_info,
4679
4680         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4681
4682         .has_wbinvd_exit = svm_has_wbinvd_exit,
4683
4684         .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4685         .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4686         .write_tsc_offset = svm_write_tsc_offset,
4687         .write_tsc_multiplier = svm_write_tsc_multiplier,
4688
4689         .load_mmu_pgd = svm_load_mmu_pgd,
4690
4691         .check_intercept = svm_check_intercept,
4692         .handle_exit_irqoff = svm_handle_exit_irqoff,
4693
4694         .request_immediate_exit = __kvm_request_immediate_exit,
4695
4696         .sched_in = svm_sched_in,
4697
4698         .nested_ops = &svm_nested_ops,
4699
4700         .deliver_interrupt = svm_deliver_interrupt,
4701         .pi_update_irte = avic_pi_update_irte,
4702         .setup_mce = svm_setup_mce,
4703
4704         .smi_allowed = svm_smi_allowed,
4705         .enter_smm = svm_enter_smm,
4706         .leave_smm = svm_leave_smm,
4707         .enable_smi_window = svm_enable_smi_window,
4708
4709         .mem_enc_ioctl = sev_mem_enc_ioctl,
4710         .mem_enc_register_region = sev_mem_enc_register_region,
4711         .mem_enc_unregister_region = sev_mem_enc_unregister_region,
4712         .guest_memory_reclaimed = sev_guest_memory_reclaimed,
4713
4714         .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4715         .vm_move_enc_context_from = sev_vm_move_enc_context_from,
4716
4717         .can_emulate_instruction = svm_can_emulate_instruction,
4718
4719         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4720
4721         .msr_filter_changed = svm_msr_filter_changed,
4722         .complete_emulated_msr = svm_complete_emulated_msr,
4723
4724         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4725         .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4726 };
4727
4728 /*
4729  * The default MMIO mask is a single bit (excluding the present bit),
4730  * which could conflict with the memory encryption bit. Check for
4731  * memory encryption support and override the default MMIO mask if
4732  * memory encryption is enabled.
4733  */
4734 static __init void svm_adjust_mmio_mask(void)
4735 {
4736         unsigned int enc_bit, mask_bit;
4737         u64 msr, mask;
4738
4739         /* If there is no memory encryption support, use existing mask */
4740         if (cpuid_eax(0x80000000) < 0x8000001f)
4741                 return;
4742
4743         /* If memory encryption is not enabled, use existing mask */
4744         rdmsrl(MSR_AMD64_SYSCFG, msr);
4745         if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4746                 return;
4747
4748         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4749         mask_bit = boot_cpu_data.x86_phys_bits;
4750
4751         /* Increment the mask bit if it is the same as the encryption bit */
4752         if (enc_bit == mask_bit)
4753                 mask_bit++;
4754
4755         /*
4756          * If the mask bit location is below 52, then some bits above the
4757          * physical addressing limit will always be reserved, so use the
4758          * rsvd_bits() function to generate the mask. This mask, along with
4759          * the present bit, will be used to generate a page fault with
4760          * PFER.RSV = 1.
4761          *
4762          * If the mask bit location is 52 (or above), then clear the mask.
4763          */
4764         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4765
4766         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4767 }
4768
4769 static __init void svm_set_cpu_caps(void)
4770 {
4771         kvm_set_cpu_caps();
4772
4773         supported_xss = 0;
4774
4775         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
4776         if (nested) {
4777                 kvm_cpu_cap_set(X86_FEATURE_SVM);
4778                 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4779
4780                 if (nrips)
4781                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4782
4783                 if (npt_enabled)
4784                         kvm_cpu_cap_set(X86_FEATURE_NPT);
4785
4786                 if (tsc_scaling)
4787                         kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4788
4789                 if (vls)
4790                         kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4791                 if (lbrv)
4792                         kvm_cpu_cap_set(X86_FEATURE_LBRV);
4793
4794                 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4795                         kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4796
4797                 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4798                         kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4799
4800                 if (vgif)
4801                         kvm_cpu_cap_set(X86_FEATURE_VGIF);
4802
4803                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
4804                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4805         }
4806
4807         /* CPUID 0x80000008 */
4808         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4809             boot_cpu_has(X86_FEATURE_AMD_SSBD))
4810                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4811
4812         /* AMD PMU PERFCTR_CORE CPUID */
4813         if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4814                 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4815
4816         /* CPUID 0x8000001F (SME/SEV features) */
4817         sev_set_cpu_caps();
4818 }
4819
4820 static __init int svm_hardware_setup(void)
4821 {
4822         int cpu;
4823         struct page *iopm_pages;
4824         void *iopm_va;
4825         int r;
4826         unsigned int order = get_order(IOPM_SIZE);
4827
4828         /*
4829          * NX is required for shadow paging and for NPT if the NX huge pages
4830          * mitigation is enabled.
4831          */
4832         if (!boot_cpu_has(X86_FEATURE_NX)) {
4833                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
4834                 return -EOPNOTSUPP;
4835         }
4836         kvm_enable_efer_bits(EFER_NX);
4837
4838         iopm_pages = alloc_pages(GFP_KERNEL, order);
4839
4840         if (!iopm_pages)
4841                 return -ENOMEM;
4842
4843         iopm_va = page_address(iopm_pages);
4844         memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4845         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4846
4847         init_msrpm_offsets();
4848
4849         supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
4850
4851         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4852                 kvm_enable_efer_bits(EFER_FFXSR);
4853
4854         if (tsc_scaling) {
4855                 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4856                         tsc_scaling = false;
4857                 } else {
4858                         pr_info("TSC scaling supported\n");
4859                         kvm_has_tsc_control = true;
4860                 }
4861         }
4862         kvm_max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
4863         kvm_tsc_scaling_ratio_frac_bits = 32;
4864
4865         tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
4866
4867         /* Check for pause filtering support */
4868         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
4869                 pause_filter_count = 0;
4870                 pause_filter_thresh = 0;
4871         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
4872                 pause_filter_thresh = 0;
4873         }
4874
4875         if (nested) {
4876                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
4877                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
4878         }
4879
4880         /*
4881          * KVM's MMU doesn't support using 2-level paging for itself, and thus
4882          * NPT isn't supported if the host is using 2-level paging since host
4883          * CR4 is unchanged on VMRUN.
4884          */
4885         if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
4886                 npt_enabled = false;
4887
4888         if (!boot_cpu_has(X86_FEATURE_NPT))
4889                 npt_enabled = false;
4890
4891         /* Force VM NPT level equal to the host's paging level */
4892         kvm_configure_mmu(npt_enabled, get_npt_level(),
4893                           get_npt_level(), PG_LEVEL_1G);
4894         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
4895
4896         /* Setup shadow_me_value and shadow_me_mask */
4897         kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
4898
4899         /* Note, SEV setup consumes npt_enabled. */
4900         sev_hardware_setup();
4901
4902         svm_hv_hardware_setup();
4903
4904         svm_adjust_mmio_mask();
4905
4906         for_each_possible_cpu(cpu) {
4907                 r = svm_cpu_init(cpu);
4908                 if (r)
4909                         goto err;
4910         }
4911
4912         if (nrips) {
4913                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
4914                         nrips = false;
4915         }
4916
4917         enable_apicv = avic = avic && npt_enabled && (boot_cpu_has(X86_FEATURE_AVIC) || force_avic);
4918
4919         if (enable_apicv) {
4920                 if (!boot_cpu_has(X86_FEATURE_AVIC)) {
4921                         pr_warn("AVIC is not supported in CPUID but force enabled");
4922                         pr_warn("Your system might crash and burn");
4923                 } else
4924                         pr_info("AVIC enabled\n");
4925
4926                 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
4927         } else {
4928                 svm_x86_ops.vcpu_blocking = NULL;
4929                 svm_x86_ops.vcpu_unblocking = NULL;
4930                 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
4931         }
4932
4933         if (vls) {
4934                 if (!npt_enabled ||
4935                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
4936                     !IS_ENABLED(CONFIG_X86_64)) {
4937                         vls = false;
4938                 } else {
4939                         pr_info("Virtual VMLOAD VMSAVE supported\n");
4940                 }
4941         }
4942
4943         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
4944                 svm_gp_erratum_intercept = false;
4945
4946         if (vgif) {
4947                 if (!boot_cpu_has(X86_FEATURE_VGIF))
4948                         vgif = false;
4949                 else
4950                         pr_info("Virtual GIF supported\n");
4951         }
4952
4953         if (lbrv) {
4954                 if (!boot_cpu_has(X86_FEATURE_LBRV))
4955                         lbrv = false;
4956                 else
4957                         pr_info("LBR virtualization supported\n");
4958         }
4959
4960         if (!enable_pmu)
4961                 pr_info("PMU virtualization is disabled\n");
4962
4963         svm_set_cpu_caps();
4964
4965         /*
4966          * It seems that on AMD processors PTE's accessed bit is
4967          * being set by the CPU hardware before the NPF vmexit.
4968          * This is not expected behaviour and our tests fail because
4969          * of it.
4970          * A workaround here is to disable support for
4971          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
4972          * In this case userspace can know if there is support using
4973          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
4974          * it
4975          * If future AMD CPU models change the behaviour described above,
4976          * this variable can be changed accordingly
4977          */
4978         allow_smaller_maxphyaddr = !npt_enabled;
4979
4980         return 0;
4981
4982 err:
4983         svm_hardware_unsetup();
4984         return r;
4985 }
4986
4987
4988 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4989         .cpu_has_kvm_support = has_svm,
4990         .disabled_by_bios = is_disabled,
4991         .hardware_setup = svm_hardware_setup,
4992         .check_processor_compatibility = svm_check_processor_compat,
4993
4994         .runtime_ops = &svm_x86_ops,
4995         .pmu_ops = &amd_pmu_ops,
4996 };
4997
4998 static int __init svm_init(void)
4999 {
5000         __unused_size_checks();
5001
5002         return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
5003                         __alignof__(struct vcpu_svm), THIS_MODULE);
5004 }
5005
5006 static void __exit svm_exit(void)
5007 {
5008         kvm_exit();
5009 }
5010
5011 module_init(svm_init)
5012 module_exit(svm_exit)