ARM: 9148/1: handle CONFIG_CPU_ENDIAN_BE32 in arch/arm/kernel/head.S
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #include "svm.h"
44 #include "svm_ops.h"
45
46 #include "kvm_onhyperv.h"
47 #include "svm_onhyperv.h"
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 #ifdef MODULE
53 static const struct x86_cpu_id svm_cpu_id[] = {
54         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
55         {}
56 };
57 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
58 #endif
59
60 #define SEG_TYPE_LDT 2
61 #define SEG_TYPE_BUSY_TSS16 3
62
63 #define SVM_FEATURE_LBRV           (1 <<  1)
64 #define SVM_FEATURE_SVML           (1 <<  2)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
72
73 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
74 #define TSC_RATIO_MIN           0x0000000000000001ULL
75 #define TSC_RATIO_MAX           0x000000ffffffffffULL
76
77 static bool erratum_383_found __read_mostly;
78
79 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
80
81 /*
82  * Set osvw_len to higher value when updated Revision Guides
83  * are published and we know what the new status bits are
84  */
85 static uint64_t osvw_len = 4, osvw_status;
86
87 static DEFINE_PER_CPU(u64, current_tsc_ratio);
88 #define TSC_RATIO_DEFAULT       0x0100000000ULL
89
90 static const struct svm_direct_access_msrs {
91         u32 index;   /* Index of the MSR */
92         bool always; /* True if intercept is initially cleared */
93 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
94         { .index = MSR_STAR,                            .always = true  },
95         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
96         { .index = MSR_IA32_SYSENTER_EIP,               .always = false },
97         { .index = MSR_IA32_SYSENTER_ESP,               .always = false },
98 #ifdef CONFIG_X86_64
99         { .index = MSR_GS_BASE,                         .always = true  },
100         { .index = MSR_FS_BASE,                         .always = true  },
101         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
102         { .index = MSR_LSTAR,                           .always = true  },
103         { .index = MSR_CSTAR,                           .always = true  },
104         { .index = MSR_SYSCALL_MASK,                    .always = true  },
105 #endif
106         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
107         { .index = MSR_IA32_PRED_CMD,                   .always = false },
108         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
109         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
110         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
111         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
112         { .index = MSR_EFER,                            .always = false },
113         { .index = MSR_IA32_CR_PAT,                     .always = false },
114         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
115         { .index = MSR_INVALID,                         .always = false },
116 };
117
118 /*
119  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
120  * pause_filter_count: On processors that support Pause filtering(indicated
121  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
122  *      count value. On VMRUN this value is loaded into an internal counter.
123  *      Each time a pause instruction is executed, this counter is decremented
124  *      until it reaches zero at which time a #VMEXIT is generated if pause
125  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
126  *      Intercept Filtering for more details.
127  *      This also indicate if ple logic enabled.
128  *
129  * pause_filter_thresh: In addition, some processor families support advanced
130  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
131  *      the amount of time a guest is allowed to execute in a pause loop.
132  *      In this mode, a 16-bit pause filter threshold field is added in the
133  *      VMCB. The threshold value is a cycle count that is used to reset the
134  *      pause counter. As with simple pause filtering, VMRUN loads the pause
135  *      count value from VMCB into an internal counter. Then, on each pause
136  *      instruction the hardware checks the elapsed number of cycles since
137  *      the most recent pause instruction against the pause filter threshold.
138  *      If the elapsed cycle count is greater than the pause filter threshold,
139  *      then the internal pause count is reloaded from the VMCB and execution
140  *      continues. If the elapsed cycle count is less than the pause filter
141  *      threshold, then the internal pause count is decremented. If the count
142  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
143  *      triggered. If advanced pause filtering is supported and pause filter
144  *      threshold field is set to zero, the filter will operate in the simpler,
145  *      count only mode.
146  */
147
148 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
149 module_param(pause_filter_thresh, ushort, 0444);
150
151 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
152 module_param(pause_filter_count, ushort, 0444);
153
154 /* Default doubles per-vcpu window every exit. */
155 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
156 module_param(pause_filter_count_grow, ushort, 0444);
157
158 /* Default resets per-vcpu window every exit to pause_filter_count. */
159 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
160 module_param(pause_filter_count_shrink, ushort, 0444);
161
162 /* Default is to compute the maximum so we can never overflow. */
163 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
164 module_param(pause_filter_count_max, ushort, 0444);
165
166 /*
167  * Use nested page tables by default.  Note, NPT may get forced off by
168  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
169  */
170 bool npt_enabled = true;
171 module_param_named(npt, npt_enabled, bool, 0444);
172
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188
189 /*
190  * enable / disable AVIC.  Because the defaults differ for APICv
191  * support between VMX and SVM we cannot use module_param_named.
192  */
193 static bool avic;
194 module_param(avic, bool, 0444);
195
196 bool __read_mostly dump_invalid_vmcb;
197 module_param(dump_invalid_vmcb, bool, 0644);
198
199
200 bool intercept_smi = true;
201 module_param(intercept_smi, bool, 0444);
202
203
204 static bool svm_gp_erratum_intercept = true;
205
206 static u8 rsm_ins_bytes[] = "\x0f\xaa";
207
208 static unsigned long iopm_base;
209
210 struct kvm_ldttss_desc {
211         u16 limit0;
212         u16 base0;
213         unsigned base1:8, type:5, dpl:2, p:1;
214         unsigned limit1:4, zero0:3, g:1, base2:8;
215         u32 base3;
216         u32 zero1;
217 } __attribute__((packed));
218
219 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
220
221 /*
222  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
223  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
224  *
225  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
226  * defer the restoration of TSC_AUX until the CPU returns to userspace.
227  */
228 static int tsc_aux_uret_slot __read_mostly = -1;
229
230 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
231
232 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
233 #define MSRS_RANGE_SIZE 2048
234 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
235
236 u32 svm_msrpm_offset(u32 msr)
237 {
238         u32 offset;
239         int i;
240
241         for (i = 0; i < NUM_MSR_MAPS; i++) {
242                 if (msr < msrpm_ranges[i] ||
243                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
244                         continue;
245
246                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
247                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
248
249                 /* Now we have the u8 offset - but need the u32 offset */
250                 return offset / 4;
251         }
252
253         /* MSR not in any range */
254         return MSR_INVALID;
255 }
256
257 #define MAX_INST_SIZE 15
258
259 static int get_max_npt_level(void)
260 {
261 #ifdef CONFIG_X86_64
262         return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
263 #else
264         return PT32E_ROOT_LEVEL;
265 #endif
266 }
267
268 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
269 {
270         struct vcpu_svm *svm = to_svm(vcpu);
271         u64 old_efer = vcpu->arch.efer;
272         vcpu->arch.efer = efer;
273
274         if (!npt_enabled) {
275                 /* Shadow paging assumes NX to be available.  */
276                 efer |= EFER_NX;
277
278                 if (!(efer & EFER_LMA))
279                         efer &= ~EFER_LME;
280         }
281
282         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
283                 if (!(efer & EFER_SVME)) {
284                         svm_leave_nested(svm);
285                         svm_set_gif(svm, true);
286                         /* #GP intercept is still needed for vmware backdoor */
287                         if (!enable_vmware_backdoor)
288                                 clr_exception_intercept(svm, GP_VECTOR);
289
290                         /*
291                          * Free the nested guest state, unless we are in SMM.
292                          * In this case we will return to the nested guest
293                          * as soon as we leave SMM.
294                          */
295                         if (!is_smm(vcpu))
296                                 svm_free_nested(svm);
297
298                 } else {
299                         int ret = svm_allocate_nested(svm);
300
301                         if (ret) {
302                                 vcpu->arch.efer = old_efer;
303                                 return ret;
304                         }
305
306                         if (svm_gp_erratum_intercept)
307                                 set_exception_intercept(svm, GP_VECTOR);
308                 }
309         }
310
311         svm->vmcb->save.efer = efer | EFER_SVME;
312         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
313         return 0;
314 }
315
316 static int is_external_interrupt(u32 info)
317 {
318         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
319         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
320 }
321
322 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
323 {
324         struct vcpu_svm *svm = to_svm(vcpu);
325         u32 ret = 0;
326
327         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
328                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
329         return ret;
330 }
331
332 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
333 {
334         struct vcpu_svm *svm = to_svm(vcpu);
335
336         if (mask == 0)
337                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
338         else
339                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
340
341 }
342
343 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
344 {
345         struct vcpu_svm *svm = to_svm(vcpu);
346
347         /*
348          * SEV-ES does not expose the next RIP. The RIP update is controlled by
349          * the type of exit and the #VC handler in the guest.
350          */
351         if (sev_es_guest(vcpu->kvm))
352                 goto done;
353
354         if (nrips && svm->vmcb->control.next_rip != 0) {
355                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
356                 svm->next_rip = svm->vmcb->control.next_rip;
357         }
358
359         if (!svm->next_rip) {
360                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
361                         return 0;
362         } else {
363                 kvm_rip_write(vcpu, svm->next_rip);
364         }
365
366 done:
367         svm_set_interrupt_shadow(vcpu, 0);
368
369         return 1;
370 }
371
372 static void svm_queue_exception(struct kvm_vcpu *vcpu)
373 {
374         struct vcpu_svm *svm = to_svm(vcpu);
375         unsigned nr = vcpu->arch.exception.nr;
376         bool has_error_code = vcpu->arch.exception.has_error_code;
377         u32 error_code = vcpu->arch.exception.error_code;
378
379         kvm_deliver_exception_payload(vcpu);
380
381         if (nr == BP_VECTOR && !nrips) {
382                 unsigned long rip, old_rip = kvm_rip_read(vcpu);
383
384                 /*
385                  * For guest debugging where we have to reinject #BP if some
386                  * INT3 is guest-owned:
387                  * Emulate nRIP by moving RIP forward. Will fail if injection
388                  * raises a fault that is not intercepted. Still better than
389                  * failing in all cases.
390                  */
391                 (void)skip_emulated_instruction(vcpu);
392                 rip = kvm_rip_read(vcpu);
393                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
394                 svm->int3_injected = rip - old_rip;
395         }
396
397         svm->vmcb->control.event_inj = nr
398                 | SVM_EVTINJ_VALID
399                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
400                 | SVM_EVTINJ_TYPE_EXEPT;
401         svm->vmcb->control.event_inj_err = error_code;
402 }
403
404 static void svm_init_erratum_383(void)
405 {
406         u32 low, high;
407         int err;
408         u64 val;
409
410         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
411                 return;
412
413         /* Use _safe variants to not break nested virtualization */
414         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
415         if (err)
416                 return;
417
418         val |= (1ULL << 47);
419
420         low  = lower_32_bits(val);
421         high = upper_32_bits(val);
422
423         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
424
425         erratum_383_found = true;
426 }
427
428 static void svm_init_osvw(struct kvm_vcpu *vcpu)
429 {
430         /*
431          * Guests should see errata 400 and 415 as fixed (assuming that
432          * HLT and IO instructions are intercepted).
433          */
434         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
435         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
436
437         /*
438          * By increasing VCPU's osvw.length to 3 we are telling the guest that
439          * all osvw.status bits inside that length, including bit 0 (which is
440          * reserved for erratum 298), are valid. However, if host processor's
441          * osvw_len is 0 then osvw_status[0] carries no information. We need to
442          * be conservative here and therefore we tell the guest that erratum 298
443          * is present (because we really don't know).
444          */
445         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
446                 vcpu->arch.osvw.status |= 1;
447 }
448
449 static int has_svm(void)
450 {
451         const char *msg;
452
453         if (!cpu_has_svm(&msg)) {
454                 printk(KERN_INFO "has_svm: %s\n", msg);
455                 return 0;
456         }
457
458         if (sev_active()) {
459                 pr_info("KVM is unsupported when running as an SEV guest\n");
460                 return 0;
461         }
462
463         return 1;
464 }
465
466 static void svm_hardware_disable(void)
467 {
468         /* Make sure we clean up behind us */
469         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
470                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
471
472         cpu_svm_disable();
473
474         amd_pmu_disable_virt();
475 }
476
477 static int svm_hardware_enable(void)
478 {
479
480         struct svm_cpu_data *sd;
481         uint64_t efer;
482         struct desc_struct *gdt;
483         int me = raw_smp_processor_id();
484
485         rdmsrl(MSR_EFER, efer);
486         if (efer & EFER_SVME)
487                 return -EBUSY;
488
489         if (!has_svm()) {
490                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
491                 return -EINVAL;
492         }
493         sd = per_cpu(svm_data, me);
494         if (!sd) {
495                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
496                 return -EINVAL;
497         }
498
499         sd->asid_generation = 1;
500         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
501         sd->next_asid = sd->max_asid + 1;
502         sd->min_asid = max_sev_asid + 1;
503
504         gdt = get_current_gdt_rw();
505         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
506
507         wrmsrl(MSR_EFER, efer | EFER_SVME);
508
509         wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
510
511         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
512                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
513                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
514         }
515
516
517         /*
518          * Get OSVW bits.
519          *
520          * Note that it is possible to have a system with mixed processor
521          * revisions and therefore different OSVW bits. If bits are not the same
522          * on different processors then choose the worst case (i.e. if erratum
523          * is present on one processor and not on another then assume that the
524          * erratum is present everywhere).
525          */
526         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
527                 uint64_t len, status = 0;
528                 int err;
529
530                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
531                 if (!err)
532                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
533                                                       &err);
534
535                 if (err)
536                         osvw_status = osvw_len = 0;
537                 else {
538                         if (len < osvw_len)
539                                 osvw_len = len;
540                         osvw_status |= status;
541                         osvw_status &= (1ULL << osvw_len) - 1;
542                 }
543         } else
544                 osvw_status = osvw_len = 0;
545
546         svm_init_erratum_383();
547
548         amd_pmu_enable_virt();
549
550         return 0;
551 }
552
553 static void svm_cpu_uninit(int cpu)
554 {
555         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
556
557         if (!sd)
558                 return;
559
560         per_cpu(svm_data, cpu) = NULL;
561         kfree(sd->sev_vmcbs);
562         __free_page(sd->save_area);
563         kfree(sd);
564 }
565
566 static int svm_cpu_init(int cpu)
567 {
568         struct svm_cpu_data *sd;
569         int ret = -ENOMEM;
570
571         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
572         if (!sd)
573                 return ret;
574         sd->cpu = cpu;
575         sd->save_area = alloc_page(GFP_KERNEL);
576         if (!sd->save_area)
577                 goto free_cpu_data;
578
579         clear_page(page_address(sd->save_area));
580
581         ret = sev_cpu_init(sd);
582         if (ret)
583                 goto free_save_area;
584
585         per_cpu(svm_data, cpu) = sd;
586
587         return 0;
588
589 free_save_area:
590         __free_page(sd->save_area);
591 free_cpu_data:
592         kfree(sd);
593         return ret;
594
595 }
596
597 static int direct_access_msr_slot(u32 msr)
598 {
599         u32 i;
600
601         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
602                 if (direct_access_msrs[i].index == msr)
603                         return i;
604
605         return -ENOENT;
606 }
607
608 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
609                                      int write)
610 {
611         struct vcpu_svm *svm = to_svm(vcpu);
612         int slot = direct_access_msr_slot(msr);
613
614         if (slot == -ENOENT)
615                 return;
616
617         /* Set the shadow bitmaps to the desired intercept states */
618         if (read)
619                 set_bit(slot, svm->shadow_msr_intercept.read);
620         else
621                 clear_bit(slot, svm->shadow_msr_intercept.read);
622
623         if (write)
624                 set_bit(slot, svm->shadow_msr_intercept.write);
625         else
626                 clear_bit(slot, svm->shadow_msr_intercept.write);
627 }
628
629 static bool valid_msr_intercept(u32 index)
630 {
631         return direct_access_msr_slot(index) != -ENOENT;
632 }
633
634 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
635 {
636         u8 bit_write;
637         unsigned long tmp;
638         u32 offset;
639         u32 *msrpm;
640
641         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
642                                       to_svm(vcpu)->msrpm;
643
644         offset    = svm_msrpm_offset(msr);
645         bit_write = 2 * (msr & 0x0f) + 1;
646         tmp       = msrpm[offset];
647
648         BUG_ON(offset == MSR_INVALID);
649
650         return !!test_bit(bit_write,  &tmp);
651 }
652
653 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
654                                         u32 msr, int read, int write)
655 {
656         u8 bit_read, bit_write;
657         unsigned long tmp;
658         u32 offset;
659
660         /*
661          * If this warning triggers extend the direct_access_msrs list at the
662          * beginning of the file
663          */
664         WARN_ON(!valid_msr_intercept(msr));
665
666         /* Enforce non allowed MSRs to trap */
667         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
668                 read = 0;
669
670         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
671                 write = 0;
672
673         offset    = svm_msrpm_offset(msr);
674         bit_read  = 2 * (msr & 0x0f);
675         bit_write = 2 * (msr & 0x0f) + 1;
676         tmp       = msrpm[offset];
677
678         BUG_ON(offset == MSR_INVALID);
679
680         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
681         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
682
683         msrpm[offset] = tmp;
684
685         svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
686
687 }
688
689 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
690                           int read, int write)
691 {
692         set_shadow_msr_intercept(vcpu, msr, read, write);
693         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
694 }
695
696 u32 *svm_vcpu_alloc_msrpm(void)
697 {
698         unsigned int order = get_order(MSRPM_SIZE);
699         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
700         u32 *msrpm;
701
702         if (!pages)
703                 return NULL;
704
705         msrpm = page_address(pages);
706         memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
707
708         return msrpm;
709 }
710
711 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
712 {
713         int i;
714
715         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
716                 if (!direct_access_msrs[i].always)
717                         continue;
718                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
719         }
720 }
721
722
723 void svm_vcpu_free_msrpm(u32 *msrpm)
724 {
725         __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
726 }
727
728 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
729 {
730         struct vcpu_svm *svm = to_svm(vcpu);
731         u32 i;
732
733         /*
734          * Set intercept permissions for all direct access MSRs again. They
735          * will automatically get filtered through the MSR filter, so we are
736          * back in sync after this.
737          */
738         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
739                 u32 msr = direct_access_msrs[i].index;
740                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
741                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
742
743                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
744         }
745 }
746
747 static void add_msr_offset(u32 offset)
748 {
749         int i;
750
751         for (i = 0; i < MSRPM_OFFSETS; ++i) {
752
753                 /* Offset already in list? */
754                 if (msrpm_offsets[i] == offset)
755                         return;
756
757                 /* Slot used by another offset? */
758                 if (msrpm_offsets[i] != MSR_INVALID)
759                         continue;
760
761                 /* Add offset to list */
762                 msrpm_offsets[i] = offset;
763
764                 return;
765         }
766
767         /*
768          * If this BUG triggers the msrpm_offsets table has an overflow. Just
769          * increase MSRPM_OFFSETS in this case.
770          */
771         BUG();
772 }
773
774 static void init_msrpm_offsets(void)
775 {
776         int i;
777
778         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
779
780         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
781                 u32 offset;
782
783                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
784                 BUG_ON(offset == MSR_INVALID);
785
786                 add_msr_offset(offset);
787         }
788 }
789
790 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
791 {
792         struct vcpu_svm *svm = to_svm(vcpu);
793
794         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
795         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
796         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
797         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
798         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
799 }
800
801 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
802 {
803         struct vcpu_svm *svm = to_svm(vcpu);
804
805         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
806         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
807         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
808         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
809         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
810 }
811
812 void disable_nmi_singlestep(struct vcpu_svm *svm)
813 {
814         svm->nmi_singlestep = false;
815
816         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
817                 /* Clear our flags if they were not set by the guest */
818                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
819                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
820                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
821                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
822         }
823 }
824
825 static void grow_ple_window(struct kvm_vcpu *vcpu)
826 {
827         struct vcpu_svm *svm = to_svm(vcpu);
828         struct vmcb_control_area *control = &svm->vmcb->control;
829         int old = control->pause_filter_count;
830
831         control->pause_filter_count = __grow_ple_window(old,
832                                                         pause_filter_count,
833                                                         pause_filter_count_grow,
834                                                         pause_filter_count_max);
835
836         if (control->pause_filter_count != old) {
837                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
838                 trace_kvm_ple_window_update(vcpu->vcpu_id,
839                                             control->pause_filter_count, old);
840         }
841 }
842
843 static void shrink_ple_window(struct kvm_vcpu *vcpu)
844 {
845         struct vcpu_svm *svm = to_svm(vcpu);
846         struct vmcb_control_area *control = &svm->vmcb->control;
847         int old = control->pause_filter_count;
848
849         control->pause_filter_count =
850                                 __shrink_ple_window(old,
851                                                     pause_filter_count,
852                                                     pause_filter_count_shrink,
853                                                     pause_filter_count);
854         if (control->pause_filter_count != old) {
855                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
856                 trace_kvm_ple_window_update(vcpu->vcpu_id,
857                                             control->pause_filter_count, old);
858         }
859 }
860
861 /*
862  * The default MMIO mask is a single bit (excluding the present bit),
863  * which could conflict with the memory encryption bit. Check for
864  * memory encryption support and override the default MMIO mask if
865  * memory encryption is enabled.
866  */
867 static __init void svm_adjust_mmio_mask(void)
868 {
869         unsigned int enc_bit, mask_bit;
870         u64 msr, mask;
871
872         /* If there is no memory encryption support, use existing mask */
873         if (cpuid_eax(0x80000000) < 0x8000001f)
874                 return;
875
876         /* If memory encryption is not enabled, use existing mask */
877         rdmsrl(MSR_AMD64_SYSCFG, msr);
878         if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
879                 return;
880
881         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
882         mask_bit = boot_cpu_data.x86_phys_bits;
883
884         /* Increment the mask bit if it is the same as the encryption bit */
885         if (enc_bit == mask_bit)
886                 mask_bit++;
887
888         /*
889          * If the mask bit location is below 52, then some bits above the
890          * physical addressing limit will always be reserved, so use the
891          * rsvd_bits() function to generate the mask. This mask, along with
892          * the present bit, will be used to generate a page fault with
893          * PFER.RSV = 1.
894          *
895          * If the mask bit location is 52 (or above), then clear the mask.
896          */
897         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
898
899         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
900 }
901
902 static void svm_hardware_teardown(void)
903 {
904         int cpu;
905
906         sev_hardware_teardown();
907
908         for_each_possible_cpu(cpu)
909                 svm_cpu_uninit(cpu);
910
911         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
912         get_order(IOPM_SIZE));
913         iopm_base = 0;
914 }
915
916 static __init void svm_set_cpu_caps(void)
917 {
918         kvm_set_cpu_caps();
919
920         supported_xss = 0;
921
922         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
923         if (nested) {
924                 kvm_cpu_cap_set(X86_FEATURE_SVM);
925
926                 if (nrips)
927                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
928
929                 if (npt_enabled)
930                         kvm_cpu_cap_set(X86_FEATURE_NPT);
931
932                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
933                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
934         }
935
936         /* CPUID 0x80000008 */
937         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
938             boot_cpu_has(X86_FEATURE_AMD_SSBD))
939                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
940
941         /* CPUID 0x8000001F (SME/SEV features) */
942         sev_set_cpu_caps();
943 }
944
945 static __init int svm_hardware_setup(void)
946 {
947         int cpu;
948         struct page *iopm_pages;
949         void *iopm_va;
950         int r;
951         unsigned int order = get_order(IOPM_SIZE);
952
953         /*
954          * NX is required for shadow paging and for NPT if the NX huge pages
955          * mitigation is enabled.
956          */
957         if (!boot_cpu_has(X86_FEATURE_NX)) {
958                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
959                 return -EOPNOTSUPP;
960         }
961         kvm_enable_efer_bits(EFER_NX);
962
963         iopm_pages = alloc_pages(GFP_KERNEL, order);
964
965         if (!iopm_pages)
966                 return -ENOMEM;
967
968         iopm_va = page_address(iopm_pages);
969         memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
970         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
971
972         init_msrpm_offsets();
973
974         supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
975
976         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
977                 kvm_enable_efer_bits(EFER_FFXSR);
978
979         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
980                 kvm_has_tsc_control = true;
981                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
982                 kvm_tsc_scaling_ratio_frac_bits = 32;
983         }
984
985         tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
986
987         /* Check for pause filtering support */
988         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
989                 pause_filter_count = 0;
990                 pause_filter_thresh = 0;
991         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
992                 pause_filter_thresh = 0;
993         }
994
995         if (nested) {
996                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
997                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
998         }
999
1000         /*
1001          * KVM's MMU doesn't support using 2-level paging for itself, and thus
1002          * NPT isn't supported if the host is using 2-level paging since host
1003          * CR4 is unchanged on VMRUN.
1004          */
1005         if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
1006                 npt_enabled = false;
1007
1008         if (!boot_cpu_has(X86_FEATURE_NPT))
1009                 npt_enabled = false;
1010
1011         /* Force VM NPT level equal to the host's max NPT level */
1012         kvm_configure_mmu(npt_enabled, get_max_npt_level(),
1013                           get_max_npt_level(), PG_LEVEL_1G);
1014         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
1015
1016         /* Note, SEV setup consumes npt_enabled. */
1017         sev_hardware_setup();
1018
1019         svm_hv_hardware_setup();
1020
1021         svm_adjust_mmio_mask();
1022
1023         for_each_possible_cpu(cpu) {
1024                 r = svm_cpu_init(cpu);
1025                 if (r)
1026                         goto err;
1027         }
1028
1029         if (nrips) {
1030                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1031                         nrips = false;
1032         }
1033
1034         enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC);
1035
1036         if (enable_apicv) {
1037                 pr_info("AVIC enabled\n");
1038
1039                 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1040         }
1041
1042         if (vls) {
1043                 if (!npt_enabled ||
1044                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1045                     !IS_ENABLED(CONFIG_X86_64)) {
1046                         vls = false;
1047                 } else {
1048                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1049                 }
1050         }
1051
1052         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
1053                 svm_gp_erratum_intercept = false;
1054
1055         if (vgif) {
1056                 if (!boot_cpu_has(X86_FEATURE_VGIF))
1057                         vgif = false;
1058                 else
1059                         pr_info("Virtual GIF supported\n");
1060         }
1061
1062         svm_set_cpu_caps();
1063
1064         /*
1065          * It seems that on AMD processors PTE's accessed bit is
1066          * being set by the CPU hardware before the NPF vmexit.
1067          * This is not expected behaviour and our tests fail because
1068          * of it.
1069          * A workaround here is to disable support for
1070          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1071          * In this case userspace can know if there is support using
1072          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1073          * it
1074          * If future AMD CPU models change the behaviour described above,
1075          * this variable can be changed accordingly
1076          */
1077         allow_smaller_maxphyaddr = !npt_enabled;
1078
1079         return 0;
1080
1081 err:
1082         svm_hardware_teardown();
1083         return r;
1084 }
1085
1086 static void init_seg(struct vmcb_seg *seg)
1087 {
1088         seg->selector = 0;
1089         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1090                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1091         seg->limit = 0xffff;
1092         seg->base = 0;
1093 }
1094
1095 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1096 {
1097         seg->selector = 0;
1098         seg->attrib = SVM_SELECTOR_P_MASK | type;
1099         seg->limit = 0xffff;
1100         seg->base = 0;
1101 }
1102
1103 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1104 {
1105         struct vcpu_svm *svm = to_svm(vcpu);
1106
1107         return svm->nested.ctl.tsc_offset;
1108 }
1109
1110 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1111 {
1112         return kvm_default_tsc_scaling_ratio;
1113 }
1114
1115 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1116 {
1117         struct vcpu_svm *svm = to_svm(vcpu);
1118
1119         svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1120         svm->vmcb->control.tsc_offset = offset;
1121         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1122 }
1123
1124 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1125 {
1126         wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
1127 }
1128
1129 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1130 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1131                                               struct vcpu_svm *svm)
1132 {
1133         /*
1134          * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1135          * roots, or if INVPCID is disabled in the guest to inject #UD.
1136          */
1137         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1138                 if (!npt_enabled ||
1139                     !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1140                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1141                 else
1142                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1143         }
1144
1145         if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1146                 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1147                         svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1148                 else
1149                         svm_set_intercept(svm, INTERCEPT_RDTSCP);
1150         }
1151 }
1152
1153 static void init_vmcb(struct kvm_vcpu *vcpu)
1154 {
1155         struct vcpu_svm *svm = to_svm(vcpu);
1156         struct vmcb_control_area *control = &svm->vmcb->control;
1157         struct vmcb_save_area *save = &svm->vmcb->save;
1158
1159         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1160         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1161         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1162         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1163         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1164         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1165         if (!kvm_vcpu_apicv_active(vcpu))
1166                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1167
1168         set_dr_intercepts(svm);
1169
1170         set_exception_intercept(svm, PF_VECTOR);
1171         set_exception_intercept(svm, UD_VECTOR);
1172         set_exception_intercept(svm, MC_VECTOR);
1173         set_exception_intercept(svm, AC_VECTOR);
1174         set_exception_intercept(svm, DB_VECTOR);
1175         /*
1176          * Guest access to VMware backdoor ports could legitimately
1177          * trigger #GP because of TSS I/O permission bitmap.
1178          * We intercept those #GP and allow access to them anyway
1179          * as VMware does.
1180          */
1181         if (enable_vmware_backdoor)
1182                 set_exception_intercept(svm, GP_VECTOR);
1183
1184         svm_set_intercept(svm, INTERCEPT_INTR);
1185         svm_set_intercept(svm, INTERCEPT_NMI);
1186
1187         if (intercept_smi)
1188                 svm_set_intercept(svm, INTERCEPT_SMI);
1189
1190         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1191         svm_set_intercept(svm, INTERCEPT_RDPMC);
1192         svm_set_intercept(svm, INTERCEPT_CPUID);
1193         svm_set_intercept(svm, INTERCEPT_INVD);
1194         svm_set_intercept(svm, INTERCEPT_INVLPG);
1195         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1196         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1197         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1198         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1199         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1200         svm_set_intercept(svm, INTERCEPT_VMRUN);
1201         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1202         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1203         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1204         svm_set_intercept(svm, INTERCEPT_STGI);
1205         svm_set_intercept(svm, INTERCEPT_CLGI);
1206         svm_set_intercept(svm, INTERCEPT_SKINIT);
1207         svm_set_intercept(svm, INTERCEPT_WBINVD);
1208         svm_set_intercept(svm, INTERCEPT_XSETBV);
1209         svm_set_intercept(svm, INTERCEPT_RDPRU);
1210         svm_set_intercept(svm, INTERCEPT_RSM);
1211
1212         if (!kvm_mwait_in_guest(vcpu->kvm)) {
1213                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1214                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1215         }
1216
1217         if (!kvm_hlt_in_guest(vcpu->kvm))
1218                 svm_set_intercept(svm, INTERCEPT_HLT);
1219
1220         control->iopm_base_pa = __sme_set(iopm_base);
1221         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1222         control->int_ctl = V_INTR_MASKING_MASK;
1223
1224         init_seg(&save->es);
1225         init_seg(&save->ss);
1226         init_seg(&save->ds);
1227         init_seg(&save->fs);
1228         init_seg(&save->gs);
1229
1230         save->cs.selector = 0xf000;
1231         save->cs.base = 0xffff0000;
1232         /* Executable/Readable Code Segment */
1233         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1234                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1235         save->cs.limit = 0xffff;
1236
1237         save->gdtr.base = 0;
1238         save->gdtr.limit = 0xffff;
1239         save->idtr.base = 0;
1240         save->idtr.limit = 0xffff;
1241
1242         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1243         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1244
1245         if (npt_enabled) {
1246                 /* Setup VMCB for Nested Paging */
1247                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1248                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1249                 clr_exception_intercept(svm, PF_VECTOR);
1250                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1251                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1252                 save->g_pat = vcpu->arch.pat;
1253                 save->cr3 = 0;
1254         }
1255         svm->current_vmcb->asid_generation = 0;
1256         svm->asid = 0;
1257
1258         svm->nested.vmcb12_gpa = INVALID_GPA;
1259         svm->nested.last_vmcb12_gpa = INVALID_GPA;
1260
1261         if (!kvm_pause_in_guest(vcpu->kvm)) {
1262                 control->pause_filter_count = pause_filter_count;
1263                 if (pause_filter_thresh)
1264                         control->pause_filter_thresh = pause_filter_thresh;
1265                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1266         } else {
1267                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1268         }
1269
1270         svm_recalc_instruction_intercepts(vcpu, svm);
1271
1272         /*
1273          * If the host supports V_SPEC_CTRL then disable the interception
1274          * of MSR_IA32_SPEC_CTRL.
1275          */
1276         if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1277                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1278
1279         if (kvm_vcpu_apicv_active(vcpu))
1280                 avic_init_vmcb(svm);
1281
1282         if (vgif) {
1283                 svm_clr_intercept(svm, INTERCEPT_STGI);
1284                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1285                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1286         }
1287
1288         if (sev_guest(vcpu->kvm)) {
1289                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1290                 clr_exception_intercept(svm, UD_VECTOR);
1291
1292                 if (sev_es_guest(vcpu->kvm)) {
1293                         /* Perform SEV-ES specific VMCB updates */
1294                         sev_es_init_vmcb(svm);
1295                 }
1296         }
1297
1298         svm_hv_init_vmcb(svm->vmcb);
1299
1300         vmcb_mark_all_dirty(svm->vmcb);
1301
1302         enable_gif(svm);
1303
1304 }
1305
1306 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1307 {
1308         struct vcpu_svm *svm = to_svm(vcpu);
1309
1310         svm->spec_ctrl = 0;
1311         svm->virt_spec_ctrl = 0;
1312
1313         init_vmcb(vcpu);
1314 }
1315
1316 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1317 {
1318         svm->current_vmcb = target_vmcb;
1319         svm->vmcb = target_vmcb->ptr;
1320 }
1321
1322 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1323 {
1324         struct vcpu_svm *svm;
1325         struct page *vmcb01_page;
1326         struct page *vmsa_page = NULL;
1327         int err;
1328
1329         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1330         svm = to_svm(vcpu);
1331
1332         err = -ENOMEM;
1333         vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1334         if (!vmcb01_page)
1335                 goto out;
1336
1337         if (sev_es_guest(vcpu->kvm)) {
1338                 /*
1339                  * SEV-ES guests require a separate VMSA page used to contain
1340                  * the encrypted register state of the guest.
1341                  */
1342                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1343                 if (!vmsa_page)
1344                         goto error_free_vmcb_page;
1345
1346                 /*
1347                  * SEV-ES guests maintain an encrypted version of their FPU
1348                  * state which is restored and saved on VMRUN and VMEXIT.
1349                  * Free the fpu structure to prevent KVM from attempting to
1350                  * access the FPU state.
1351                  */
1352                 kvm_free_guest_fpu(vcpu);
1353         }
1354
1355         err = avic_init_vcpu(svm);
1356         if (err)
1357                 goto error_free_vmsa_page;
1358
1359         /* We initialize this flag to true to make sure that the is_running
1360          * bit would be set the first time the vcpu is loaded.
1361          */
1362         if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1363                 svm->avic_is_running = true;
1364
1365         svm->msrpm = svm_vcpu_alloc_msrpm();
1366         if (!svm->msrpm) {
1367                 err = -ENOMEM;
1368                 goto error_free_vmsa_page;
1369         }
1370
1371         svm->vmcb01.ptr = page_address(vmcb01_page);
1372         svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1373
1374         if (vmsa_page)
1375                 svm->vmsa = page_address(vmsa_page);
1376
1377         svm->guest_state_loaded = false;
1378
1379         svm_switch_vmcb(svm, &svm->vmcb01);
1380         init_vmcb(vcpu);
1381
1382         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1383
1384         svm_init_osvw(vcpu);
1385         vcpu->arch.microcode_version = 0x01000065;
1386
1387         if (sev_es_guest(vcpu->kvm))
1388                 /* Perform SEV-ES specific VMCB creation updates */
1389                 sev_es_create_vcpu(svm);
1390
1391         return 0;
1392
1393 error_free_vmsa_page:
1394         if (vmsa_page)
1395                 __free_page(vmsa_page);
1396 error_free_vmcb_page:
1397         __free_page(vmcb01_page);
1398 out:
1399         return err;
1400 }
1401
1402 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1403 {
1404         int i;
1405
1406         for_each_online_cpu(i)
1407                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1408 }
1409
1410 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1411 {
1412         struct vcpu_svm *svm = to_svm(vcpu);
1413
1414         /*
1415          * The vmcb page can be recycled, causing a false negative in
1416          * svm_vcpu_load(). So, ensure that no logical CPU has this
1417          * vmcb page recorded as its current vmcb.
1418          */
1419         svm_clear_current_vmcb(svm->vmcb);
1420
1421         svm_free_nested(svm);
1422
1423         sev_free_vcpu(vcpu);
1424
1425         __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1426         __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1427 }
1428
1429 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1430 {
1431         struct vcpu_svm *svm = to_svm(vcpu);
1432         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1433
1434         if (sev_es_guest(vcpu->kvm))
1435                 sev_es_unmap_ghcb(svm);
1436
1437         if (svm->guest_state_loaded)
1438                 return;
1439
1440         /*
1441          * Save additional host state that will be restored on VMEXIT (sev-es)
1442          * or subsequent vmload of host save area.
1443          */
1444         if (sev_es_guest(vcpu->kvm)) {
1445                 sev_es_prepare_guest_switch(svm, vcpu->cpu);
1446         } else {
1447                 vmsave(__sme_page_pa(sd->save_area));
1448         }
1449
1450         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1451                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1452                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1453                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1454                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1455                 }
1456         }
1457
1458         if (likely(tsc_aux_uret_slot >= 0))
1459                 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1460
1461         svm->guest_state_loaded = true;
1462 }
1463
1464 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1465 {
1466         to_svm(vcpu)->guest_state_loaded = false;
1467 }
1468
1469 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1470 {
1471         struct vcpu_svm *svm = to_svm(vcpu);
1472         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1473
1474         if (sd->current_vmcb != svm->vmcb) {
1475                 sd->current_vmcb = svm->vmcb;
1476                 indirect_branch_prediction_barrier();
1477         }
1478         if (kvm_vcpu_apicv_active(vcpu))
1479                 avic_vcpu_load(vcpu, cpu);
1480 }
1481
1482 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1483 {
1484         if (kvm_vcpu_apicv_active(vcpu))
1485                 avic_vcpu_put(vcpu);
1486
1487         svm_prepare_host_switch(vcpu);
1488
1489         ++vcpu->stat.host_state_reload;
1490 }
1491
1492 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1493 {
1494         struct vcpu_svm *svm = to_svm(vcpu);
1495         unsigned long rflags = svm->vmcb->save.rflags;
1496
1497         if (svm->nmi_singlestep) {
1498                 /* Hide our flags if they were not set by the guest */
1499                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1500                         rflags &= ~X86_EFLAGS_TF;
1501                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1502                         rflags &= ~X86_EFLAGS_RF;
1503         }
1504         return rflags;
1505 }
1506
1507 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1508 {
1509         if (to_svm(vcpu)->nmi_singlestep)
1510                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1511
1512        /*
1513         * Any change of EFLAGS.VM is accompanied by a reload of SS
1514         * (caused by either a task switch or an inter-privilege IRET),
1515         * so we do not need to update the CPL here.
1516         */
1517         to_svm(vcpu)->vmcb->save.rflags = rflags;
1518 }
1519
1520 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1521 {
1522         switch (reg) {
1523         case VCPU_EXREG_PDPTR:
1524                 BUG_ON(!npt_enabled);
1525                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1526                 break;
1527         default:
1528                 KVM_BUG_ON(1, vcpu->kvm);
1529         }
1530 }
1531
1532 static void svm_set_vintr(struct vcpu_svm *svm)
1533 {
1534         struct vmcb_control_area *control;
1535
1536         /*
1537          * The following fields are ignored when AVIC is enabled
1538          */
1539         WARN_ON(kvm_apicv_activated(svm->vcpu.kvm));
1540
1541         svm_set_intercept(svm, INTERCEPT_VINTR);
1542
1543         /*
1544          * This is just a dummy VINTR to actually cause a vmexit to happen.
1545          * Actual injection of virtual interrupts happens through EVENTINJ.
1546          */
1547         control = &svm->vmcb->control;
1548         control->int_vector = 0x0;
1549         control->int_ctl &= ~V_INTR_PRIO_MASK;
1550         control->int_ctl |= V_IRQ_MASK |
1551                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1552         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1553 }
1554
1555 static void svm_clear_vintr(struct vcpu_svm *svm)
1556 {
1557         svm_clr_intercept(svm, INTERCEPT_VINTR);
1558
1559         /* Drop int_ctl fields related to VINTR injection.  */
1560         svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1561         if (is_guest_mode(&svm->vcpu)) {
1562                 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1563
1564                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1565                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1566
1567                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1568                         V_IRQ_INJECTION_BITS_MASK;
1569         }
1570
1571         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1572 }
1573
1574 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1575 {
1576         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1577         struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1578
1579         switch (seg) {
1580         case VCPU_SREG_CS: return &save->cs;
1581         case VCPU_SREG_DS: return &save->ds;
1582         case VCPU_SREG_ES: return &save->es;
1583         case VCPU_SREG_FS: return &save01->fs;
1584         case VCPU_SREG_GS: return &save01->gs;
1585         case VCPU_SREG_SS: return &save->ss;
1586         case VCPU_SREG_TR: return &save01->tr;
1587         case VCPU_SREG_LDTR: return &save01->ldtr;
1588         }
1589         BUG();
1590         return NULL;
1591 }
1592
1593 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1594 {
1595         struct vmcb_seg *s = svm_seg(vcpu, seg);
1596
1597         return s->base;
1598 }
1599
1600 static void svm_get_segment(struct kvm_vcpu *vcpu,
1601                             struct kvm_segment *var, int seg)
1602 {
1603         struct vmcb_seg *s = svm_seg(vcpu, seg);
1604
1605         var->base = s->base;
1606         var->limit = s->limit;
1607         var->selector = s->selector;
1608         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1609         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1610         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1611         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1612         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1613         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1614         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1615
1616         /*
1617          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1618          * However, the SVM spec states that the G bit is not observed by the
1619          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1620          * So let's synthesize a legal G bit for all segments, this helps
1621          * running KVM nested. It also helps cross-vendor migration, because
1622          * Intel's vmentry has a check on the 'G' bit.
1623          */
1624         var->g = s->limit > 0xfffff;
1625
1626         /*
1627          * AMD's VMCB does not have an explicit unusable field, so emulate it
1628          * for cross vendor migration purposes by "not present"
1629          */
1630         var->unusable = !var->present;
1631
1632         switch (seg) {
1633         case VCPU_SREG_TR:
1634                 /*
1635                  * Work around a bug where the busy flag in the tr selector
1636                  * isn't exposed
1637                  */
1638                 var->type |= 0x2;
1639                 break;
1640         case VCPU_SREG_DS:
1641         case VCPU_SREG_ES:
1642         case VCPU_SREG_FS:
1643         case VCPU_SREG_GS:
1644                 /*
1645                  * The accessed bit must always be set in the segment
1646                  * descriptor cache, although it can be cleared in the
1647                  * descriptor, the cached bit always remains at 1. Since
1648                  * Intel has a check on this, set it here to support
1649                  * cross-vendor migration.
1650                  */
1651                 if (!var->unusable)
1652                         var->type |= 0x1;
1653                 break;
1654         case VCPU_SREG_SS:
1655                 /*
1656                  * On AMD CPUs sometimes the DB bit in the segment
1657                  * descriptor is left as 1, although the whole segment has
1658                  * been made unusable. Clear it here to pass an Intel VMX
1659                  * entry check when cross vendor migrating.
1660                  */
1661                 if (var->unusable)
1662                         var->db = 0;
1663                 /* This is symmetric with svm_set_segment() */
1664                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1665                 break;
1666         }
1667 }
1668
1669 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1670 {
1671         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1672
1673         return save->cpl;
1674 }
1675
1676 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1677 {
1678         struct vcpu_svm *svm = to_svm(vcpu);
1679
1680         dt->size = svm->vmcb->save.idtr.limit;
1681         dt->address = svm->vmcb->save.idtr.base;
1682 }
1683
1684 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1685 {
1686         struct vcpu_svm *svm = to_svm(vcpu);
1687
1688         svm->vmcb->save.idtr.limit = dt->size;
1689         svm->vmcb->save.idtr.base = dt->address ;
1690         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1691 }
1692
1693 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1694 {
1695         struct vcpu_svm *svm = to_svm(vcpu);
1696
1697         dt->size = svm->vmcb->save.gdtr.limit;
1698         dt->address = svm->vmcb->save.gdtr.base;
1699 }
1700
1701 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1702 {
1703         struct vcpu_svm *svm = to_svm(vcpu);
1704
1705         svm->vmcb->save.gdtr.limit = dt->size;
1706         svm->vmcb->save.gdtr.base = dt->address ;
1707         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1708 }
1709
1710 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1711 {
1712         struct vcpu_svm *svm = to_svm(vcpu);
1713         u64 hcr0 = cr0;
1714
1715 #ifdef CONFIG_X86_64
1716         if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1717                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1718                         vcpu->arch.efer |= EFER_LMA;
1719                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1720                 }
1721
1722                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1723                         vcpu->arch.efer &= ~EFER_LMA;
1724                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1725                 }
1726         }
1727 #endif
1728         vcpu->arch.cr0 = cr0;
1729
1730         if (!npt_enabled)
1731                 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1732
1733         /*
1734          * re-enable caching here because the QEMU bios
1735          * does not do it - this results in some delay at
1736          * reboot
1737          */
1738         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1739                 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1740
1741         svm->vmcb->save.cr0 = hcr0;
1742         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1743
1744         /*
1745          * SEV-ES guests must always keep the CR intercepts cleared. CR
1746          * tracking is done using the CR write traps.
1747          */
1748         if (sev_es_guest(vcpu->kvm))
1749                 return;
1750
1751         if (hcr0 == cr0) {
1752                 /* Selective CR0 write remains on.  */
1753                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1754                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1755         } else {
1756                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1757                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1758         }
1759 }
1760
1761 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1762 {
1763         return true;
1764 }
1765
1766 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1767 {
1768         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1769         unsigned long old_cr4 = vcpu->arch.cr4;
1770
1771         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1772                 svm_flush_tlb(vcpu);
1773
1774         vcpu->arch.cr4 = cr4;
1775         if (!npt_enabled)
1776                 cr4 |= X86_CR4_PAE;
1777         cr4 |= host_cr4_mce;
1778         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1779         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1780
1781         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1782                 kvm_update_cpuid_runtime(vcpu);
1783 }
1784
1785 static void svm_set_segment(struct kvm_vcpu *vcpu,
1786                             struct kvm_segment *var, int seg)
1787 {
1788         struct vcpu_svm *svm = to_svm(vcpu);
1789         struct vmcb_seg *s = svm_seg(vcpu, seg);
1790
1791         s->base = var->base;
1792         s->limit = var->limit;
1793         s->selector = var->selector;
1794         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1795         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1796         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1797         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1798         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1799         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1800         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1801         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1802
1803         /*
1804          * This is always accurate, except if SYSRET returned to a segment
1805          * with SS.DPL != 3.  Intel does not have this quirk, and always
1806          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1807          * would entail passing the CPL to userspace and back.
1808          */
1809         if (seg == VCPU_SREG_SS)
1810                 /* This is symmetric with svm_get_segment() */
1811                 svm->vmcb->save.cpl = (var->dpl & 3);
1812
1813         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1814 }
1815
1816 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1817 {
1818         struct vcpu_svm *svm = to_svm(vcpu);
1819
1820         clr_exception_intercept(svm, BP_VECTOR);
1821
1822         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1823                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1824                         set_exception_intercept(svm, BP_VECTOR);
1825         }
1826 }
1827
1828 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1829 {
1830         if (sd->next_asid > sd->max_asid) {
1831                 ++sd->asid_generation;
1832                 sd->next_asid = sd->min_asid;
1833                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1834                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1835         }
1836
1837         svm->current_vmcb->asid_generation = sd->asid_generation;
1838         svm->asid = sd->next_asid++;
1839 }
1840
1841 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1842 {
1843         struct vmcb *vmcb = svm->vmcb;
1844
1845         if (svm->vcpu.arch.guest_state_protected)
1846                 return;
1847
1848         if (unlikely(value != vmcb->save.dr6)) {
1849                 vmcb->save.dr6 = value;
1850                 vmcb_mark_dirty(vmcb, VMCB_DR);
1851         }
1852 }
1853
1854 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1855 {
1856         struct vcpu_svm *svm = to_svm(vcpu);
1857
1858         if (vcpu->arch.guest_state_protected)
1859                 return;
1860
1861         get_debugreg(vcpu->arch.db[0], 0);
1862         get_debugreg(vcpu->arch.db[1], 1);
1863         get_debugreg(vcpu->arch.db[2], 2);
1864         get_debugreg(vcpu->arch.db[3], 3);
1865         /*
1866          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1867          * because db_interception might need it.  We can do it before vmentry.
1868          */
1869         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1870         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1871         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1872         set_dr_intercepts(svm);
1873 }
1874
1875 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1876 {
1877         struct vcpu_svm *svm = to_svm(vcpu);
1878
1879         if (vcpu->arch.guest_state_protected)
1880                 return;
1881
1882         svm->vmcb->save.dr7 = value;
1883         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1884 }
1885
1886 static int pf_interception(struct kvm_vcpu *vcpu)
1887 {
1888         struct vcpu_svm *svm = to_svm(vcpu);
1889
1890         u64 fault_address = svm->vmcb->control.exit_info_2;
1891         u64 error_code = svm->vmcb->control.exit_info_1;
1892
1893         return kvm_handle_page_fault(vcpu, error_code, fault_address,
1894                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1895                         svm->vmcb->control.insn_bytes : NULL,
1896                         svm->vmcb->control.insn_len);
1897 }
1898
1899 static int npf_interception(struct kvm_vcpu *vcpu)
1900 {
1901         struct vcpu_svm *svm = to_svm(vcpu);
1902
1903         u64 fault_address = svm->vmcb->control.exit_info_2;
1904         u64 error_code = svm->vmcb->control.exit_info_1;
1905
1906         trace_kvm_page_fault(fault_address, error_code);
1907         return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1908                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1909                         svm->vmcb->control.insn_bytes : NULL,
1910                         svm->vmcb->control.insn_len);
1911 }
1912
1913 static int db_interception(struct kvm_vcpu *vcpu)
1914 {
1915         struct kvm_run *kvm_run = vcpu->run;
1916         struct vcpu_svm *svm = to_svm(vcpu);
1917
1918         if (!(vcpu->guest_debug &
1919               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1920                 !svm->nmi_singlestep) {
1921                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1922                 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1923                 return 1;
1924         }
1925
1926         if (svm->nmi_singlestep) {
1927                 disable_nmi_singlestep(svm);
1928                 /* Make sure we check for pending NMIs upon entry */
1929                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1930         }
1931
1932         if (vcpu->guest_debug &
1933             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1934                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1935                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1936                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1937                 kvm_run->debug.arch.pc =
1938                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1939                 kvm_run->debug.arch.exception = DB_VECTOR;
1940                 return 0;
1941         }
1942
1943         return 1;
1944 }
1945
1946 static int bp_interception(struct kvm_vcpu *vcpu)
1947 {
1948         struct vcpu_svm *svm = to_svm(vcpu);
1949         struct kvm_run *kvm_run = vcpu->run;
1950
1951         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1952         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1953         kvm_run->debug.arch.exception = BP_VECTOR;
1954         return 0;
1955 }
1956
1957 static int ud_interception(struct kvm_vcpu *vcpu)
1958 {
1959         return handle_ud(vcpu);
1960 }
1961
1962 static int ac_interception(struct kvm_vcpu *vcpu)
1963 {
1964         kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1965         return 1;
1966 }
1967
1968 static bool is_erratum_383(void)
1969 {
1970         int err, i;
1971         u64 value;
1972
1973         if (!erratum_383_found)
1974                 return false;
1975
1976         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1977         if (err)
1978                 return false;
1979
1980         /* Bit 62 may or may not be set for this mce */
1981         value &= ~(1ULL << 62);
1982
1983         if (value != 0xb600000000010015ULL)
1984                 return false;
1985
1986         /* Clear MCi_STATUS registers */
1987         for (i = 0; i < 6; ++i)
1988                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1989
1990         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1991         if (!err) {
1992                 u32 low, high;
1993
1994                 value &= ~(1ULL << 2);
1995                 low    = lower_32_bits(value);
1996                 high   = upper_32_bits(value);
1997
1998                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1999         }
2000
2001         /* Flush tlb to evict multi-match entries */
2002         __flush_tlb_all();
2003
2004         return true;
2005 }
2006
2007 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2008 {
2009         if (is_erratum_383()) {
2010                 /*
2011                  * Erratum 383 triggered. Guest state is corrupt so kill the
2012                  * guest.
2013                  */
2014                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2015
2016                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2017
2018                 return;
2019         }
2020
2021         /*
2022          * On an #MC intercept the MCE handler is not called automatically in
2023          * the host. So do it by hand here.
2024          */
2025         kvm_machine_check();
2026 }
2027
2028 static int mc_interception(struct kvm_vcpu *vcpu)
2029 {
2030         return 1;
2031 }
2032
2033 static int shutdown_interception(struct kvm_vcpu *vcpu)
2034 {
2035         struct kvm_run *kvm_run = vcpu->run;
2036         struct vcpu_svm *svm = to_svm(vcpu);
2037
2038         /*
2039          * The VM save area has already been encrypted so it
2040          * cannot be reinitialized - just terminate.
2041          */
2042         if (sev_es_guest(vcpu->kvm))
2043                 return -EINVAL;
2044
2045         /*
2046          * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2047          * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2048          * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2049          * userspace.  At a platform view, INIT is acceptable behavior as
2050          * there exist bare metal platforms that automatically INIT the CPU
2051          * in response to shutdown.
2052          */
2053         clear_page(svm->vmcb);
2054         kvm_vcpu_reset(vcpu, true);
2055
2056         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2057         return 0;
2058 }
2059
2060 static int io_interception(struct kvm_vcpu *vcpu)
2061 {
2062         struct vcpu_svm *svm = to_svm(vcpu);
2063         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2064         int size, in, string;
2065         unsigned port;
2066
2067         ++vcpu->stat.io_exits;
2068         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2069         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2070         port = io_info >> 16;
2071         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2072
2073         if (string) {
2074                 if (sev_es_guest(vcpu->kvm))
2075                         return sev_es_string_io(svm, size, port, in);
2076                 else
2077                         return kvm_emulate_instruction(vcpu, 0);
2078         }
2079
2080         svm->next_rip = svm->vmcb->control.exit_info_2;
2081
2082         return kvm_fast_pio(vcpu, size, port, in);
2083 }
2084
2085 static int nmi_interception(struct kvm_vcpu *vcpu)
2086 {
2087         return 1;
2088 }
2089
2090 static int smi_interception(struct kvm_vcpu *vcpu)
2091 {
2092         return 1;
2093 }
2094
2095 static int intr_interception(struct kvm_vcpu *vcpu)
2096 {
2097         ++vcpu->stat.irq_exits;
2098         return 1;
2099 }
2100
2101 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2102 {
2103         struct vcpu_svm *svm = to_svm(vcpu);
2104         struct vmcb *vmcb12;
2105         struct kvm_host_map map;
2106         int ret;
2107
2108         if (nested_svm_check_permissions(vcpu))
2109                 return 1;
2110
2111         ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2112         if (ret) {
2113                 if (ret == -EINVAL)
2114                         kvm_inject_gp(vcpu, 0);
2115                 return 1;
2116         }
2117
2118         vmcb12 = map.hva;
2119
2120         ret = kvm_skip_emulated_instruction(vcpu);
2121
2122         if (vmload) {
2123                 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2124                 svm->sysenter_eip_hi = 0;
2125                 svm->sysenter_esp_hi = 0;
2126         } else {
2127                 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2128         }
2129
2130         kvm_vcpu_unmap(vcpu, &map, true);
2131
2132         return ret;
2133 }
2134
2135 static int vmload_interception(struct kvm_vcpu *vcpu)
2136 {
2137         return vmload_vmsave_interception(vcpu, true);
2138 }
2139
2140 static int vmsave_interception(struct kvm_vcpu *vcpu)
2141 {
2142         return vmload_vmsave_interception(vcpu, false);
2143 }
2144
2145 static int vmrun_interception(struct kvm_vcpu *vcpu)
2146 {
2147         if (nested_svm_check_permissions(vcpu))
2148                 return 1;
2149
2150         return nested_svm_vmrun(vcpu);
2151 }
2152
2153 enum {
2154         NONE_SVM_INSTR,
2155         SVM_INSTR_VMRUN,
2156         SVM_INSTR_VMLOAD,
2157         SVM_INSTR_VMSAVE,
2158 };
2159
2160 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2161 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2162 {
2163         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2164
2165         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2166                 return NONE_SVM_INSTR;
2167
2168         switch (ctxt->modrm) {
2169         case 0xd8: /* VMRUN */
2170                 return SVM_INSTR_VMRUN;
2171         case 0xda: /* VMLOAD */
2172                 return SVM_INSTR_VMLOAD;
2173         case 0xdb: /* VMSAVE */
2174                 return SVM_INSTR_VMSAVE;
2175         default:
2176                 break;
2177         }
2178
2179         return NONE_SVM_INSTR;
2180 }
2181
2182 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2183 {
2184         const int guest_mode_exit_codes[] = {
2185                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2186                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2187                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2188         };
2189         int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2190                 [SVM_INSTR_VMRUN] = vmrun_interception,
2191                 [SVM_INSTR_VMLOAD] = vmload_interception,
2192                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2193         };
2194         struct vcpu_svm *svm = to_svm(vcpu);
2195         int ret;
2196
2197         if (is_guest_mode(vcpu)) {
2198                 /* Returns '1' or -errno on failure, '0' on success. */
2199                 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2200                 if (ret)
2201                         return ret;
2202                 return 1;
2203         }
2204         return svm_instr_handlers[opcode](vcpu);
2205 }
2206
2207 /*
2208  * #GP handling code. Note that #GP can be triggered under the following two
2209  * cases:
2210  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2211  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2212  *      regions (e.g. SMM memory on host).
2213  *   2) VMware backdoor
2214  */
2215 static int gp_interception(struct kvm_vcpu *vcpu)
2216 {
2217         struct vcpu_svm *svm = to_svm(vcpu);
2218         u32 error_code = svm->vmcb->control.exit_info_1;
2219         int opcode;
2220
2221         /* Both #GP cases have zero error_code */
2222         if (error_code)
2223                 goto reinject;
2224
2225         /* Decode the instruction for usage later */
2226         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2227                 goto reinject;
2228
2229         opcode = svm_instr_opcode(vcpu);
2230
2231         if (opcode == NONE_SVM_INSTR) {
2232                 if (!enable_vmware_backdoor)
2233                         goto reinject;
2234
2235                 /*
2236                  * VMware backdoor emulation on #GP interception only handles
2237                  * IN{S}, OUT{S}, and RDPMC.
2238                  */
2239                 if (!is_guest_mode(vcpu))
2240                         return kvm_emulate_instruction(vcpu,
2241                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2242         } else
2243                 return emulate_svm_instr(vcpu, opcode);
2244
2245 reinject:
2246         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2247         return 1;
2248 }
2249
2250 void svm_set_gif(struct vcpu_svm *svm, bool value)
2251 {
2252         if (value) {
2253                 /*
2254                  * If VGIF is enabled, the STGI intercept is only added to
2255                  * detect the opening of the SMI/NMI window; remove it now.
2256                  * Likewise, clear the VINTR intercept, we will set it
2257                  * again while processing KVM_REQ_EVENT if needed.
2258                  */
2259                 if (vgif_enabled(svm))
2260                         svm_clr_intercept(svm, INTERCEPT_STGI);
2261                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2262                         svm_clear_vintr(svm);
2263
2264                 enable_gif(svm);
2265                 if (svm->vcpu.arch.smi_pending ||
2266                     svm->vcpu.arch.nmi_pending ||
2267                     kvm_cpu_has_injectable_intr(&svm->vcpu))
2268                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2269         } else {
2270                 disable_gif(svm);
2271
2272                 /*
2273                  * After a CLGI no interrupts should come.  But if vGIF is
2274                  * in use, we still rely on the VINTR intercept (rather than
2275                  * STGI) to detect an open interrupt window.
2276                 */
2277                 if (!vgif_enabled(svm))
2278                         svm_clear_vintr(svm);
2279         }
2280 }
2281
2282 static int stgi_interception(struct kvm_vcpu *vcpu)
2283 {
2284         int ret;
2285
2286         if (nested_svm_check_permissions(vcpu))
2287                 return 1;
2288
2289         ret = kvm_skip_emulated_instruction(vcpu);
2290         svm_set_gif(to_svm(vcpu), true);
2291         return ret;
2292 }
2293
2294 static int clgi_interception(struct kvm_vcpu *vcpu)
2295 {
2296         int ret;
2297
2298         if (nested_svm_check_permissions(vcpu))
2299                 return 1;
2300
2301         ret = kvm_skip_emulated_instruction(vcpu);
2302         svm_set_gif(to_svm(vcpu), false);
2303         return ret;
2304 }
2305
2306 static int invlpga_interception(struct kvm_vcpu *vcpu)
2307 {
2308         gva_t gva = kvm_rax_read(vcpu);
2309         u32 asid = kvm_rcx_read(vcpu);
2310
2311         /* FIXME: Handle an address size prefix. */
2312         if (!is_long_mode(vcpu))
2313                 gva = (u32)gva;
2314
2315         trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2316
2317         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2318         kvm_mmu_invlpg(vcpu, gva);
2319
2320         return kvm_skip_emulated_instruction(vcpu);
2321 }
2322
2323 static int skinit_interception(struct kvm_vcpu *vcpu)
2324 {
2325         trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2326
2327         kvm_queue_exception(vcpu, UD_VECTOR);
2328         return 1;
2329 }
2330
2331 static int task_switch_interception(struct kvm_vcpu *vcpu)
2332 {
2333         struct vcpu_svm *svm = to_svm(vcpu);
2334         u16 tss_selector;
2335         int reason;
2336         int int_type = svm->vmcb->control.exit_int_info &
2337                 SVM_EXITINTINFO_TYPE_MASK;
2338         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2339         uint32_t type =
2340                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2341         uint32_t idt_v =
2342                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2343         bool has_error_code = false;
2344         u32 error_code = 0;
2345
2346         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2347
2348         if (svm->vmcb->control.exit_info_2 &
2349             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2350                 reason = TASK_SWITCH_IRET;
2351         else if (svm->vmcb->control.exit_info_2 &
2352                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2353                 reason = TASK_SWITCH_JMP;
2354         else if (idt_v)
2355                 reason = TASK_SWITCH_GATE;
2356         else
2357                 reason = TASK_SWITCH_CALL;
2358
2359         if (reason == TASK_SWITCH_GATE) {
2360                 switch (type) {
2361                 case SVM_EXITINTINFO_TYPE_NMI:
2362                         vcpu->arch.nmi_injected = false;
2363                         break;
2364                 case SVM_EXITINTINFO_TYPE_EXEPT:
2365                         if (svm->vmcb->control.exit_info_2 &
2366                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2367                                 has_error_code = true;
2368                                 error_code =
2369                                         (u32)svm->vmcb->control.exit_info_2;
2370                         }
2371                         kvm_clear_exception_queue(vcpu);
2372                         break;
2373                 case SVM_EXITINTINFO_TYPE_INTR:
2374                         kvm_clear_interrupt_queue(vcpu);
2375                         break;
2376                 default:
2377                         break;
2378                 }
2379         }
2380
2381         if (reason != TASK_SWITCH_GATE ||
2382             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2383             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2384              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2385                 if (!skip_emulated_instruction(vcpu))
2386                         return 0;
2387         }
2388
2389         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2390                 int_vec = -1;
2391
2392         return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2393                                has_error_code, error_code);
2394 }
2395
2396 static int iret_interception(struct kvm_vcpu *vcpu)
2397 {
2398         struct vcpu_svm *svm = to_svm(vcpu);
2399
2400         ++vcpu->stat.nmi_window_exits;
2401         vcpu->arch.hflags |= HF_IRET_MASK;
2402         if (!sev_es_guest(vcpu->kvm)) {
2403                 svm_clr_intercept(svm, INTERCEPT_IRET);
2404                 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2405         }
2406         kvm_make_request(KVM_REQ_EVENT, vcpu);
2407         return 1;
2408 }
2409
2410 static int invlpg_interception(struct kvm_vcpu *vcpu)
2411 {
2412         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2413                 return kvm_emulate_instruction(vcpu, 0);
2414
2415         kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2416         return kvm_skip_emulated_instruction(vcpu);
2417 }
2418
2419 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2420 {
2421         return kvm_emulate_instruction(vcpu, 0);
2422 }
2423
2424 static int rsm_interception(struct kvm_vcpu *vcpu)
2425 {
2426         return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2427 }
2428
2429 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2430                                             unsigned long val)
2431 {
2432         struct vcpu_svm *svm = to_svm(vcpu);
2433         unsigned long cr0 = vcpu->arch.cr0;
2434         bool ret = false;
2435
2436         if (!is_guest_mode(vcpu) ||
2437             (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2438                 return false;
2439
2440         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2441         val &= ~SVM_CR0_SELECTIVE_MASK;
2442
2443         if (cr0 ^ val) {
2444                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2445                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2446         }
2447
2448         return ret;
2449 }
2450
2451 #define CR_VALID (1ULL << 63)
2452
2453 static int cr_interception(struct kvm_vcpu *vcpu)
2454 {
2455         struct vcpu_svm *svm = to_svm(vcpu);
2456         int reg, cr;
2457         unsigned long val;
2458         int err;
2459
2460         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2461                 return emulate_on_interception(vcpu);
2462
2463         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2464                 return emulate_on_interception(vcpu);
2465
2466         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2467         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2468                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2469         else
2470                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2471
2472         err = 0;
2473         if (cr >= 16) { /* mov to cr */
2474                 cr -= 16;
2475                 val = kvm_register_read(vcpu, reg);
2476                 trace_kvm_cr_write(cr, val);
2477                 switch (cr) {
2478                 case 0:
2479                         if (!check_selective_cr0_intercepted(vcpu, val))
2480                                 err = kvm_set_cr0(vcpu, val);
2481                         else
2482                                 return 1;
2483
2484                         break;
2485                 case 3:
2486                         err = kvm_set_cr3(vcpu, val);
2487                         break;
2488                 case 4:
2489                         err = kvm_set_cr4(vcpu, val);
2490                         break;
2491                 case 8:
2492                         err = kvm_set_cr8(vcpu, val);
2493                         break;
2494                 default:
2495                         WARN(1, "unhandled write to CR%d", cr);
2496                         kvm_queue_exception(vcpu, UD_VECTOR);
2497                         return 1;
2498                 }
2499         } else { /* mov from cr */
2500                 switch (cr) {
2501                 case 0:
2502                         val = kvm_read_cr0(vcpu);
2503                         break;
2504                 case 2:
2505                         val = vcpu->arch.cr2;
2506                         break;
2507                 case 3:
2508                         val = kvm_read_cr3(vcpu);
2509                         break;
2510                 case 4:
2511                         val = kvm_read_cr4(vcpu);
2512                         break;
2513                 case 8:
2514                         val = kvm_get_cr8(vcpu);
2515                         break;
2516                 default:
2517                         WARN(1, "unhandled read from CR%d", cr);
2518                         kvm_queue_exception(vcpu, UD_VECTOR);
2519                         return 1;
2520                 }
2521                 kvm_register_write(vcpu, reg, val);
2522                 trace_kvm_cr_read(cr, val);
2523         }
2524         return kvm_complete_insn_gp(vcpu, err);
2525 }
2526
2527 static int cr_trap(struct kvm_vcpu *vcpu)
2528 {
2529         struct vcpu_svm *svm = to_svm(vcpu);
2530         unsigned long old_value, new_value;
2531         unsigned int cr;
2532         int ret = 0;
2533
2534         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2535
2536         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2537         switch (cr) {
2538         case 0:
2539                 old_value = kvm_read_cr0(vcpu);
2540                 svm_set_cr0(vcpu, new_value);
2541
2542                 kvm_post_set_cr0(vcpu, old_value, new_value);
2543                 break;
2544         case 4:
2545                 old_value = kvm_read_cr4(vcpu);
2546                 svm_set_cr4(vcpu, new_value);
2547
2548                 kvm_post_set_cr4(vcpu, old_value, new_value);
2549                 break;
2550         case 8:
2551                 ret = kvm_set_cr8(vcpu, new_value);
2552                 break;
2553         default:
2554                 WARN(1, "unhandled CR%d write trap", cr);
2555                 kvm_queue_exception(vcpu, UD_VECTOR);
2556                 return 1;
2557         }
2558
2559         return kvm_complete_insn_gp(vcpu, ret);
2560 }
2561
2562 static int dr_interception(struct kvm_vcpu *vcpu)
2563 {
2564         struct vcpu_svm *svm = to_svm(vcpu);
2565         int reg, dr;
2566         unsigned long val;
2567         int err = 0;
2568
2569         if (vcpu->guest_debug == 0) {
2570                 /*
2571                  * No more DR vmexits; force a reload of the debug registers
2572                  * and reenter on this instruction.  The next vmexit will
2573                  * retrieve the full state of the debug registers.
2574                  */
2575                 clr_dr_intercepts(svm);
2576                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2577                 return 1;
2578         }
2579
2580         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2581                 return emulate_on_interception(vcpu);
2582
2583         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2584         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2585         if (dr >= 16) { /* mov to DRn  */
2586                 dr -= 16;
2587                 val = kvm_register_read(vcpu, reg);
2588                 err = kvm_set_dr(vcpu, dr, val);
2589         } else {
2590                 kvm_get_dr(vcpu, dr, &val);
2591                 kvm_register_write(vcpu, reg, val);
2592         }
2593
2594         return kvm_complete_insn_gp(vcpu, err);
2595 }
2596
2597 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2598 {
2599         int r;
2600
2601         u8 cr8_prev = kvm_get_cr8(vcpu);
2602         /* instruction emulation calls kvm_set_cr8() */
2603         r = cr_interception(vcpu);
2604         if (lapic_in_kernel(vcpu))
2605                 return r;
2606         if (cr8_prev <= kvm_get_cr8(vcpu))
2607                 return r;
2608         vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2609         return 0;
2610 }
2611
2612 static int efer_trap(struct kvm_vcpu *vcpu)
2613 {
2614         struct msr_data msr_info;
2615         int ret;
2616
2617         /*
2618          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2619          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2620          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2621          * the guest doesn't have X86_FEATURE_SVM.
2622          */
2623         msr_info.host_initiated = false;
2624         msr_info.index = MSR_EFER;
2625         msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2626         ret = kvm_set_msr_common(vcpu, &msr_info);
2627
2628         return kvm_complete_insn_gp(vcpu, ret);
2629 }
2630
2631 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2632 {
2633         msr->data = 0;
2634
2635         switch (msr->index) {
2636         case MSR_F10H_DECFG:
2637                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2638                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2639                 break;
2640         case MSR_IA32_PERF_CAPABILITIES:
2641                 return 0;
2642         default:
2643                 return KVM_MSR_RET_INVALID;
2644         }
2645
2646         return 0;
2647 }
2648
2649 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2650 {
2651         struct vcpu_svm *svm = to_svm(vcpu);
2652
2653         switch (msr_info->index) {
2654         case MSR_STAR:
2655                 msr_info->data = svm->vmcb01.ptr->save.star;
2656                 break;
2657 #ifdef CONFIG_X86_64
2658         case MSR_LSTAR:
2659                 msr_info->data = svm->vmcb01.ptr->save.lstar;
2660                 break;
2661         case MSR_CSTAR:
2662                 msr_info->data = svm->vmcb01.ptr->save.cstar;
2663                 break;
2664         case MSR_KERNEL_GS_BASE:
2665                 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2666                 break;
2667         case MSR_SYSCALL_MASK:
2668                 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2669                 break;
2670 #endif
2671         case MSR_IA32_SYSENTER_CS:
2672                 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2673                 break;
2674         case MSR_IA32_SYSENTER_EIP:
2675                 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2676                 if (guest_cpuid_is_intel(vcpu))
2677                         msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2678                 break;
2679         case MSR_IA32_SYSENTER_ESP:
2680                 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2681                 if (guest_cpuid_is_intel(vcpu))
2682                         msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2683                 break;
2684         case MSR_TSC_AUX:
2685                 msr_info->data = svm->tsc_aux;
2686                 break;
2687         /*
2688          * Nobody will change the following 5 values in the VMCB so we can
2689          * safely return them on rdmsr. They will always be 0 until LBRV is
2690          * implemented.
2691          */
2692         case MSR_IA32_DEBUGCTLMSR:
2693                 msr_info->data = svm->vmcb->save.dbgctl;
2694                 break;
2695         case MSR_IA32_LASTBRANCHFROMIP:
2696                 msr_info->data = svm->vmcb->save.br_from;
2697                 break;
2698         case MSR_IA32_LASTBRANCHTOIP:
2699                 msr_info->data = svm->vmcb->save.br_to;
2700                 break;
2701         case MSR_IA32_LASTINTFROMIP:
2702                 msr_info->data = svm->vmcb->save.last_excp_from;
2703                 break;
2704         case MSR_IA32_LASTINTTOIP:
2705                 msr_info->data = svm->vmcb->save.last_excp_to;
2706                 break;
2707         case MSR_VM_HSAVE_PA:
2708                 msr_info->data = svm->nested.hsave_msr;
2709                 break;
2710         case MSR_VM_CR:
2711                 msr_info->data = svm->nested.vm_cr_msr;
2712                 break;
2713         case MSR_IA32_SPEC_CTRL:
2714                 if (!msr_info->host_initiated &&
2715                     !guest_has_spec_ctrl_msr(vcpu))
2716                         return 1;
2717
2718                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2719                         msr_info->data = svm->vmcb->save.spec_ctrl;
2720                 else
2721                         msr_info->data = svm->spec_ctrl;
2722                 break;
2723         case MSR_AMD64_VIRT_SPEC_CTRL:
2724                 if (!msr_info->host_initiated &&
2725                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2726                         return 1;
2727
2728                 msr_info->data = svm->virt_spec_ctrl;
2729                 break;
2730         case MSR_F15H_IC_CFG: {
2731
2732                 int family, model;
2733
2734                 family = guest_cpuid_family(vcpu);
2735                 model  = guest_cpuid_model(vcpu);
2736
2737                 if (family < 0 || model < 0)
2738                         return kvm_get_msr_common(vcpu, msr_info);
2739
2740                 msr_info->data = 0;
2741
2742                 if (family == 0x15 &&
2743                     (model >= 0x2 && model < 0x20))
2744                         msr_info->data = 0x1E;
2745                 }
2746                 break;
2747         case MSR_F10H_DECFG:
2748                 msr_info->data = svm->msr_decfg;
2749                 break;
2750         default:
2751                 return kvm_get_msr_common(vcpu, msr_info);
2752         }
2753         return 0;
2754 }
2755
2756 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2757 {
2758         struct vcpu_svm *svm = to_svm(vcpu);
2759         if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb))
2760                 return kvm_complete_insn_gp(vcpu, err);
2761
2762         ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2763         ghcb_set_sw_exit_info_2(svm->ghcb,
2764                                 X86_TRAP_GP |
2765                                 SVM_EVTINJ_TYPE_EXEPT |
2766                                 SVM_EVTINJ_VALID);
2767         return 1;
2768 }
2769
2770 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2771 {
2772         struct vcpu_svm *svm = to_svm(vcpu);
2773         int svm_dis, chg_mask;
2774
2775         if (data & ~SVM_VM_CR_VALID_MASK)
2776                 return 1;
2777
2778         chg_mask = SVM_VM_CR_VALID_MASK;
2779
2780         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2781                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2782
2783         svm->nested.vm_cr_msr &= ~chg_mask;
2784         svm->nested.vm_cr_msr |= (data & chg_mask);
2785
2786         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2787
2788         /* check for svm_disable while efer.svme is set */
2789         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2790                 return 1;
2791
2792         return 0;
2793 }
2794
2795 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2796 {
2797         struct vcpu_svm *svm = to_svm(vcpu);
2798         int r;
2799
2800         u32 ecx = msr->index;
2801         u64 data = msr->data;
2802         switch (ecx) {
2803         case MSR_IA32_CR_PAT:
2804                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2805                         return 1;
2806                 vcpu->arch.pat = data;
2807                 svm->vmcb01.ptr->save.g_pat = data;
2808                 if (is_guest_mode(vcpu))
2809                         nested_vmcb02_compute_g_pat(svm);
2810                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2811                 break;
2812         case MSR_IA32_SPEC_CTRL:
2813                 if (!msr->host_initiated &&
2814                     !guest_has_spec_ctrl_msr(vcpu))
2815                         return 1;
2816
2817                 if (kvm_spec_ctrl_test_value(data))
2818                         return 1;
2819
2820                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2821                         svm->vmcb->save.spec_ctrl = data;
2822                 else
2823                         svm->spec_ctrl = data;
2824                 if (!data)
2825                         break;
2826
2827                 /*
2828                  * For non-nested:
2829                  * When it's written (to non-zero) for the first time, pass
2830                  * it through.
2831                  *
2832                  * For nested:
2833                  * The handling of the MSR bitmap for L2 guests is done in
2834                  * nested_svm_vmrun_msrpm.
2835                  * We update the L1 MSR bit as well since it will end up
2836                  * touching the MSR anyway now.
2837                  */
2838                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2839                 break;
2840         case MSR_IA32_PRED_CMD:
2841                 if (!msr->host_initiated &&
2842                     !guest_has_pred_cmd_msr(vcpu))
2843                         return 1;
2844
2845                 if (data & ~PRED_CMD_IBPB)
2846                         return 1;
2847                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2848                         return 1;
2849                 if (!data)
2850                         break;
2851
2852                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2853                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2854                 break;
2855         case MSR_AMD64_VIRT_SPEC_CTRL:
2856                 if (!msr->host_initiated &&
2857                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2858                         return 1;
2859
2860                 if (data & ~SPEC_CTRL_SSBD)
2861                         return 1;
2862
2863                 svm->virt_spec_ctrl = data;
2864                 break;
2865         case MSR_STAR:
2866                 svm->vmcb01.ptr->save.star = data;
2867                 break;
2868 #ifdef CONFIG_X86_64
2869         case MSR_LSTAR:
2870                 svm->vmcb01.ptr->save.lstar = data;
2871                 break;
2872         case MSR_CSTAR:
2873                 svm->vmcb01.ptr->save.cstar = data;
2874                 break;
2875         case MSR_KERNEL_GS_BASE:
2876                 svm->vmcb01.ptr->save.kernel_gs_base = data;
2877                 break;
2878         case MSR_SYSCALL_MASK:
2879                 svm->vmcb01.ptr->save.sfmask = data;
2880                 break;
2881 #endif
2882         case MSR_IA32_SYSENTER_CS:
2883                 svm->vmcb01.ptr->save.sysenter_cs = data;
2884                 break;
2885         case MSR_IA32_SYSENTER_EIP:
2886                 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2887                 /*
2888                  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2889                  * when we spoof an Intel vendor ID (for cross vendor migration).
2890                  * In this case we use this intercept to track the high
2891                  * 32 bit part of these msrs to support Intel's
2892                  * implementation of SYSENTER/SYSEXIT.
2893                  */
2894                 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2895                 break;
2896         case MSR_IA32_SYSENTER_ESP:
2897                 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2898                 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2899                 break;
2900         case MSR_TSC_AUX:
2901                 /*
2902                  * TSC_AUX is usually changed only during boot and never read
2903                  * directly.  Intercept TSC_AUX instead of exposing it to the
2904                  * guest via direct_access_msrs, and switch it via user return.
2905                  */
2906                 preempt_disable();
2907                 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2908                 preempt_enable();
2909                 if (r)
2910                         return 1;
2911
2912                 svm->tsc_aux = data;
2913                 break;
2914         case MSR_IA32_DEBUGCTLMSR:
2915                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2916                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2917                                     __func__, data);
2918                         break;
2919                 }
2920                 if (data & DEBUGCTL_RESERVED_BITS)
2921                         return 1;
2922
2923                 svm->vmcb->save.dbgctl = data;
2924                 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2925                 if (data & (1ULL<<0))
2926                         svm_enable_lbrv(vcpu);
2927                 else
2928                         svm_disable_lbrv(vcpu);
2929                 break;
2930         case MSR_VM_HSAVE_PA:
2931                 /*
2932                  * Old kernels did not validate the value written to
2933                  * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
2934                  * value to allow live migrating buggy or malicious guests
2935                  * originating from those kernels.
2936                  */
2937                 if (!msr->host_initiated && !page_address_valid(vcpu, data))
2938                         return 1;
2939
2940                 svm->nested.hsave_msr = data & PAGE_MASK;
2941                 break;
2942         case MSR_VM_CR:
2943                 return svm_set_vm_cr(vcpu, data);
2944         case MSR_VM_IGNNE:
2945                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2946                 break;
2947         case MSR_F10H_DECFG: {
2948                 struct kvm_msr_entry msr_entry;
2949
2950                 msr_entry.index = msr->index;
2951                 if (svm_get_msr_feature(&msr_entry))
2952                         return 1;
2953
2954                 /* Check the supported bits */
2955                 if (data & ~msr_entry.data)
2956                         return 1;
2957
2958                 /* Don't allow the guest to change a bit, #GP */
2959                 if (!msr->host_initiated && (data ^ msr_entry.data))
2960                         return 1;
2961
2962                 svm->msr_decfg = data;
2963                 break;
2964         }
2965         default:
2966                 return kvm_set_msr_common(vcpu, msr);
2967         }
2968         return 0;
2969 }
2970
2971 static int msr_interception(struct kvm_vcpu *vcpu)
2972 {
2973         if (to_svm(vcpu)->vmcb->control.exit_info_1)
2974                 return kvm_emulate_wrmsr(vcpu);
2975         else
2976                 return kvm_emulate_rdmsr(vcpu);
2977 }
2978
2979 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
2980 {
2981         kvm_make_request(KVM_REQ_EVENT, vcpu);
2982         svm_clear_vintr(to_svm(vcpu));
2983
2984         /*
2985          * For AVIC, the only reason to end up here is ExtINTs.
2986          * In this case AVIC was temporarily disabled for
2987          * requesting the IRQ window and we have to re-enable it.
2988          */
2989         kvm_request_apicv_update(vcpu->kvm, true, APICV_INHIBIT_REASON_IRQWIN);
2990
2991         ++vcpu->stat.irq_window_exits;
2992         return 1;
2993 }
2994
2995 static int pause_interception(struct kvm_vcpu *vcpu)
2996 {
2997         bool in_kernel;
2998
2999         /*
3000          * CPL is not made available for an SEV-ES guest, therefore
3001          * vcpu->arch.preempted_in_kernel can never be true.  Just
3002          * set in_kernel to false as well.
3003          */
3004         in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3005
3006         if (!kvm_pause_in_guest(vcpu->kvm))
3007                 grow_ple_window(vcpu);
3008
3009         kvm_vcpu_on_spin(vcpu, in_kernel);
3010         return kvm_skip_emulated_instruction(vcpu);
3011 }
3012
3013 static int invpcid_interception(struct kvm_vcpu *vcpu)
3014 {
3015         struct vcpu_svm *svm = to_svm(vcpu);
3016         unsigned long type;
3017         gva_t gva;
3018
3019         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3020                 kvm_queue_exception(vcpu, UD_VECTOR);
3021                 return 1;
3022         }
3023
3024         /*
3025          * For an INVPCID intercept:
3026          * EXITINFO1 provides the linear address of the memory operand.
3027          * EXITINFO2 provides the contents of the register operand.
3028          */
3029         type = svm->vmcb->control.exit_info_2;
3030         gva = svm->vmcb->control.exit_info_1;
3031
3032         if (type > 3) {
3033                 kvm_inject_gp(vcpu, 0);
3034                 return 1;
3035         }
3036
3037         return kvm_handle_invpcid(vcpu, type, gva);
3038 }
3039
3040 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3041         [SVM_EXIT_READ_CR0]                     = cr_interception,
3042         [SVM_EXIT_READ_CR3]                     = cr_interception,
3043         [SVM_EXIT_READ_CR4]                     = cr_interception,
3044         [SVM_EXIT_READ_CR8]                     = cr_interception,
3045         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3046         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3047         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3048         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3049         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3050         [SVM_EXIT_READ_DR0]                     = dr_interception,
3051         [SVM_EXIT_READ_DR1]                     = dr_interception,
3052         [SVM_EXIT_READ_DR2]                     = dr_interception,
3053         [SVM_EXIT_READ_DR3]                     = dr_interception,
3054         [SVM_EXIT_READ_DR4]                     = dr_interception,
3055         [SVM_EXIT_READ_DR5]                     = dr_interception,
3056         [SVM_EXIT_READ_DR6]                     = dr_interception,
3057         [SVM_EXIT_READ_DR7]                     = dr_interception,
3058         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3059         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3060         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3061         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3062         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3063         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3064         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3065         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3066         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3067         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3068         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3069         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3070         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3071         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3072         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
3073         [SVM_EXIT_INTR]                         = intr_interception,
3074         [SVM_EXIT_NMI]                          = nmi_interception,
3075         [SVM_EXIT_SMI]                          = smi_interception,
3076         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3077         [SVM_EXIT_RDPMC]                        = kvm_emulate_rdpmc,
3078         [SVM_EXIT_CPUID]                        = kvm_emulate_cpuid,
3079         [SVM_EXIT_IRET]                         = iret_interception,
3080         [SVM_EXIT_INVD]                         = kvm_emulate_invd,
3081         [SVM_EXIT_PAUSE]                        = pause_interception,
3082         [SVM_EXIT_HLT]                          = kvm_emulate_halt,
3083         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3084         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3085         [SVM_EXIT_IOIO]                         = io_interception,
3086         [SVM_EXIT_MSR]                          = msr_interception,
3087         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3088         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3089         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3090         [SVM_EXIT_VMMCALL]                      = kvm_emulate_hypercall,
3091         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3092         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3093         [SVM_EXIT_STGI]                         = stgi_interception,
3094         [SVM_EXIT_CLGI]                         = clgi_interception,
3095         [SVM_EXIT_SKINIT]                       = skinit_interception,
3096         [SVM_EXIT_RDTSCP]                       = kvm_handle_invalid_op,
3097         [SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3098         [SVM_EXIT_MONITOR]                      = kvm_emulate_monitor,
3099         [SVM_EXIT_MWAIT]                        = kvm_emulate_mwait,
3100         [SVM_EXIT_XSETBV]                       = kvm_emulate_xsetbv,
3101         [SVM_EXIT_RDPRU]                        = kvm_handle_invalid_op,
3102         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3103         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3104         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3105         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3106         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3107         [SVM_EXIT_NPF]                          = npf_interception,
3108         [SVM_EXIT_RSM]                          = rsm_interception,
3109         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3110         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3111         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3112 };
3113
3114 static void dump_vmcb(struct kvm_vcpu *vcpu)
3115 {
3116         struct vcpu_svm *svm = to_svm(vcpu);
3117         struct vmcb_control_area *control = &svm->vmcb->control;
3118         struct vmcb_save_area *save = &svm->vmcb->save;
3119         struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3120
3121         if (!dump_invalid_vmcb) {
3122                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3123                 return;
3124         }
3125
3126         pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3127                svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3128         pr_err("VMCB Control Area:\n");
3129         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3130         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3131         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3132         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3133         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3134         pr_err("%-20s%08x %08x\n", "intercepts:",
3135               control->intercepts[INTERCEPT_WORD3],
3136                control->intercepts[INTERCEPT_WORD4]);
3137         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3138         pr_err("%-20s%d\n", "pause filter threshold:",
3139                control->pause_filter_thresh);
3140         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3141         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3142         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3143         pr_err("%-20s%d\n", "asid:", control->asid);
3144         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3145         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3146         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3147         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3148         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3149         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3150         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3151         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3152         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3153         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3154         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3155         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3156         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3157         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3158         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3159         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3160         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3161         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3162         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3163         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3164         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3165         pr_err("VMCB State Save Area:\n");
3166         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3167                "es:",
3168                save->es.selector, save->es.attrib,
3169                save->es.limit, save->es.base);
3170         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3171                "cs:",
3172                save->cs.selector, save->cs.attrib,
3173                save->cs.limit, save->cs.base);
3174         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3175                "ss:",
3176                save->ss.selector, save->ss.attrib,
3177                save->ss.limit, save->ss.base);
3178         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3179                "ds:",
3180                save->ds.selector, save->ds.attrib,
3181                save->ds.limit, save->ds.base);
3182         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3183                "fs:",
3184                save01->fs.selector, save01->fs.attrib,
3185                save01->fs.limit, save01->fs.base);
3186         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3187                "gs:",
3188                save01->gs.selector, save01->gs.attrib,
3189                save01->gs.limit, save01->gs.base);
3190         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3191                "gdtr:",
3192                save->gdtr.selector, save->gdtr.attrib,
3193                save->gdtr.limit, save->gdtr.base);
3194         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3195                "ldtr:",
3196                save01->ldtr.selector, save01->ldtr.attrib,
3197                save01->ldtr.limit, save01->ldtr.base);
3198         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3199                "idtr:",
3200                save->idtr.selector, save->idtr.attrib,
3201                save->idtr.limit, save->idtr.base);
3202         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3203                "tr:",
3204                save01->tr.selector, save01->tr.attrib,
3205                save01->tr.limit, save01->tr.base);
3206         pr_err("cpl:            %d                efer:         %016llx\n",
3207                 save->cpl, save->efer);
3208         pr_err("%-15s %016llx %-13s %016llx\n",
3209                "cr0:", save->cr0, "cr2:", save->cr2);
3210         pr_err("%-15s %016llx %-13s %016llx\n",
3211                "cr3:", save->cr3, "cr4:", save->cr4);
3212         pr_err("%-15s %016llx %-13s %016llx\n",
3213                "dr6:", save->dr6, "dr7:", save->dr7);
3214         pr_err("%-15s %016llx %-13s %016llx\n",
3215                "rip:", save->rip, "rflags:", save->rflags);
3216         pr_err("%-15s %016llx %-13s %016llx\n",
3217                "rsp:", save->rsp, "rax:", save->rax);
3218         pr_err("%-15s %016llx %-13s %016llx\n",
3219                "star:", save01->star, "lstar:", save01->lstar);
3220         pr_err("%-15s %016llx %-13s %016llx\n",
3221                "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3222         pr_err("%-15s %016llx %-13s %016llx\n",
3223                "kernel_gs_base:", save01->kernel_gs_base,
3224                "sysenter_cs:", save01->sysenter_cs);
3225         pr_err("%-15s %016llx %-13s %016llx\n",
3226                "sysenter_esp:", save01->sysenter_esp,
3227                "sysenter_eip:", save01->sysenter_eip);
3228         pr_err("%-15s %016llx %-13s %016llx\n",
3229                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3230         pr_err("%-15s %016llx %-13s %016llx\n",
3231                "br_from:", save->br_from, "br_to:", save->br_to);
3232         pr_err("%-15s %016llx %-13s %016llx\n",
3233                "excp_from:", save->last_excp_from,
3234                "excp_to:", save->last_excp_to);
3235 }
3236
3237 static bool svm_check_exit_valid(struct kvm_vcpu *vcpu, u64 exit_code)
3238 {
3239         return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3240                 svm_exit_handlers[exit_code]);
3241 }
3242
3243 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3244 {
3245         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3246         dump_vmcb(vcpu);
3247         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3248         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3249         vcpu->run->internal.ndata = 2;
3250         vcpu->run->internal.data[0] = exit_code;
3251         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3252         return 0;
3253 }
3254
3255 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3256 {
3257         if (!svm_check_exit_valid(vcpu, exit_code))
3258                 return svm_handle_invalid_exit(vcpu, exit_code);
3259
3260 #ifdef CONFIG_RETPOLINE
3261         if (exit_code == SVM_EXIT_MSR)
3262                 return msr_interception(vcpu);
3263         else if (exit_code == SVM_EXIT_VINTR)
3264                 return interrupt_window_interception(vcpu);
3265         else if (exit_code == SVM_EXIT_INTR)
3266                 return intr_interception(vcpu);
3267         else if (exit_code == SVM_EXIT_HLT)
3268                 return kvm_emulate_halt(vcpu);
3269         else if (exit_code == SVM_EXIT_NPF)
3270                 return npf_interception(vcpu);
3271 #endif
3272         return svm_exit_handlers[exit_code](vcpu);
3273 }
3274
3275 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3276                               u32 *intr_info, u32 *error_code)
3277 {
3278         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3279
3280         *info1 = control->exit_info_1;
3281         *info2 = control->exit_info_2;
3282         *intr_info = control->exit_int_info;
3283         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3284             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3285                 *error_code = control->exit_int_info_err;
3286         else
3287                 *error_code = 0;
3288 }
3289
3290 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3291 {
3292         struct vcpu_svm *svm = to_svm(vcpu);
3293         struct kvm_run *kvm_run = vcpu->run;
3294         u32 exit_code = svm->vmcb->control.exit_code;
3295
3296         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3297
3298         /* SEV-ES guests must use the CR write traps to track CR registers. */
3299         if (!sev_es_guest(vcpu->kvm)) {
3300                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3301                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3302                 if (npt_enabled)
3303                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3304         }
3305
3306         if (is_guest_mode(vcpu)) {
3307                 int vmexit;
3308
3309                 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3310
3311                 vmexit = nested_svm_exit_special(svm);
3312
3313                 if (vmexit == NESTED_EXIT_CONTINUE)
3314                         vmexit = nested_svm_exit_handled(svm);
3315
3316                 if (vmexit == NESTED_EXIT_DONE)
3317                         return 1;
3318         }
3319
3320         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3321                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3322                 kvm_run->fail_entry.hardware_entry_failure_reason
3323                         = svm->vmcb->control.exit_code;
3324                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3325                 dump_vmcb(vcpu);
3326                 return 0;
3327         }
3328
3329         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3330             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3331             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3332             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3333                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3334                        "exit_code 0x%x\n",
3335                        __func__, svm->vmcb->control.exit_int_info,
3336                        exit_code);
3337
3338         if (exit_fastpath != EXIT_FASTPATH_NONE)
3339                 return 1;
3340
3341         return svm_invoke_exit_handler(vcpu, exit_code);
3342 }
3343
3344 static void reload_tss(struct kvm_vcpu *vcpu)
3345 {
3346         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3347
3348         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3349         load_TR_desc();
3350 }
3351
3352 static void pre_svm_run(struct kvm_vcpu *vcpu)
3353 {
3354         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3355         struct vcpu_svm *svm = to_svm(vcpu);
3356
3357         /*
3358          * If the previous vmrun of the vmcb occurred on a different physical
3359          * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3360          * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3361          */
3362         if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3363                 svm->current_vmcb->asid_generation = 0;
3364                 vmcb_mark_all_dirty(svm->vmcb);
3365                 svm->current_vmcb->cpu = vcpu->cpu;
3366         }
3367
3368         if (sev_guest(vcpu->kvm))
3369                 return pre_sev_run(svm, vcpu->cpu);
3370
3371         /* FIXME: handle wraparound of asid_generation */
3372         if (svm->current_vmcb->asid_generation != sd->asid_generation)
3373                 new_asid(svm, sd);
3374 }
3375
3376 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3377 {
3378         struct vcpu_svm *svm = to_svm(vcpu);
3379
3380         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3381         vcpu->arch.hflags |= HF_NMI_MASK;
3382         if (!sev_es_guest(vcpu->kvm))
3383                 svm_set_intercept(svm, INTERCEPT_IRET);
3384         ++vcpu->stat.nmi_injections;
3385 }
3386
3387 static void svm_set_irq(struct kvm_vcpu *vcpu)
3388 {
3389         struct vcpu_svm *svm = to_svm(vcpu);
3390
3391         BUG_ON(!(gif_set(svm)));
3392
3393         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3394         ++vcpu->stat.irq_injections;
3395
3396         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3397                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3398 }
3399
3400 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3401 {
3402         struct vcpu_svm *svm = to_svm(vcpu);
3403
3404         /*
3405          * SEV-ES guests must always keep the CR intercepts cleared. CR
3406          * tracking is done using the CR write traps.
3407          */
3408         if (sev_es_guest(vcpu->kvm))
3409                 return;
3410
3411         if (nested_svm_virtualize_tpr(vcpu))
3412                 return;
3413
3414         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3415
3416         if (irr == -1)
3417                 return;
3418
3419         if (tpr >= irr)
3420                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3421 }
3422
3423 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3424 {
3425         struct vcpu_svm *svm = to_svm(vcpu);
3426         struct vmcb *vmcb = svm->vmcb;
3427         bool ret;
3428
3429         if (!gif_set(svm))
3430                 return true;
3431
3432         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3433                 return false;
3434
3435         ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3436               (vcpu->arch.hflags & HF_NMI_MASK);
3437
3438         return ret;
3439 }
3440
3441 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3442 {
3443         struct vcpu_svm *svm = to_svm(vcpu);
3444         if (svm->nested.nested_run_pending)
3445                 return -EBUSY;
3446
3447         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3448         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3449                 return -EBUSY;
3450
3451         return !svm_nmi_blocked(vcpu);
3452 }
3453
3454 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3455 {
3456         return !!(vcpu->arch.hflags & HF_NMI_MASK);
3457 }
3458
3459 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3460 {
3461         struct vcpu_svm *svm = to_svm(vcpu);
3462
3463         if (masked) {
3464                 vcpu->arch.hflags |= HF_NMI_MASK;
3465                 if (!sev_es_guest(vcpu->kvm))
3466                         svm_set_intercept(svm, INTERCEPT_IRET);
3467         } else {
3468                 vcpu->arch.hflags &= ~HF_NMI_MASK;
3469                 if (!sev_es_guest(vcpu->kvm))
3470                         svm_clr_intercept(svm, INTERCEPT_IRET);
3471         }
3472 }
3473
3474 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3475 {
3476         struct vcpu_svm *svm = to_svm(vcpu);
3477         struct vmcb *vmcb = svm->vmcb;
3478
3479         if (!gif_set(svm))
3480                 return true;
3481
3482         if (sev_es_guest(vcpu->kvm)) {
3483                 /*
3484                  * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3485                  * bit to determine the state of the IF flag.
3486                  */
3487                 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3488                         return true;
3489         } else if (is_guest_mode(vcpu)) {
3490                 /* As long as interrupts are being delivered...  */
3491                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3492                     ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3493                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3494                         return true;
3495
3496                 /* ... vmexits aren't blocked by the interrupt shadow  */
3497                 if (nested_exit_on_intr(svm))
3498                         return false;
3499         } else {
3500                 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3501                         return true;
3502         }
3503
3504         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3505 }
3506
3507 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3508 {
3509         struct vcpu_svm *svm = to_svm(vcpu);
3510         if (svm->nested.nested_run_pending)
3511                 return -EBUSY;
3512
3513         /*
3514          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3515          * e.g. if the IRQ arrived asynchronously after checking nested events.
3516          */
3517         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3518                 return -EBUSY;
3519
3520         return !svm_interrupt_blocked(vcpu);
3521 }
3522
3523 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3524 {
3525         struct vcpu_svm *svm = to_svm(vcpu);
3526
3527         /*
3528          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3529          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3530          * get that intercept, this function will be called again though and
3531          * we'll get the vintr intercept. However, if the vGIF feature is
3532          * enabled, the STGI interception will not occur. Enable the irq
3533          * window under the assumption that the hardware will set the GIF.
3534          */
3535         if (vgif_enabled(svm) || gif_set(svm)) {
3536                 /*
3537                  * IRQ window is not needed when AVIC is enabled,
3538                  * unless we have pending ExtINT since it cannot be injected
3539                  * via AVIC. In such case, we need to temporarily disable AVIC,
3540                  * and fallback to injecting IRQ via V_IRQ.
3541                  */
3542                 kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_IRQWIN);
3543                 svm_set_vintr(svm);
3544         }
3545 }
3546
3547 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3548 {
3549         struct vcpu_svm *svm = to_svm(vcpu);
3550
3551         if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3552                 return; /* IRET will cause a vm exit */
3553
3554         if (!gif_set(svm)) {
3555                 if (vgif_enabled(svm))
3556                         svm_set_intercept(svm, INTERCEPT_STGI);
3557                 return; /* STGI will cause a vm exit */
3558         }
3559
3560         /*
3561          * Something prevents NMI from been injected. Single step over possible
3562          * problem (IRET or exception injection or interrupt shadow)
3563          */
3564         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3565         svm->nmi_singlestep = true;
3566         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3567 }
3568
3569 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3570 {
3571         return 0;
3572 }
3573
3574 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3575 {
3576         return 0;
3577 }
3578
3579 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3580 {
3581         struct vcpu_svm *svm = to_svm(vcpu);
3582
3583         /*
3584          * Flush only the current ASID even if the TLB flush was invoked via
3585          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3586          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3587          * unconditionally does a TLB flush on both nested VM-Enter and nested
3588          * VM-Exit (via kvm_mmu_reset_context()).
3589          */
3590         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3591                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3592         else
3593                 svm->current_vmcb->asid_generation--;
3594 }
3595
3596 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3597 {
3598         struct vcpu_svm *svm = to_svm(vcpu);
3599
3600         invlpga(gva, svm->vmcb->control.asid);
3601 }
3602
3603 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3604 {
3605         struct vcpu_svm *svm = to_svm(vcpu);
3606
3607         if (nested_svm_virtualize_tpr(vcpu))
3608                 return;
3609
3610         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3611                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3612                 kvm_set_cr8(vcpu, cr8);
3613         }
3614 }
3615
3616 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3617 {
3618         struct vcpu_svm *svm = to_svm(vcpu);
3619         u64 cr8;
3620
3621         if (nested_svm_virtualize_tpr(vcpu) ||
3622             kvm_vcpu_apicv_active(vcpu))
3623                 return;
3624
3625         cr8 = kvm_get_cr8(vcpu);
3626         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3627         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3628 }
3629
3630 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3631 {
3632         struct vcpu_svm *svm = to_svm(vcpu);
3633         u8 vector;
3634         int type;
3635         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3636         unsigned int3_injected = svm->int3_injected;
3637
3638         svm->int3_injected = 0;
3639
3640         /*
3641          * If we've made progress since setting HF_IRET_MASK, we've
3642          * executed an IRET and can allow NMI injection.
3643          */
3644         if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3645             (sev_es_guest(vcpu->kvm) ||
3646              kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3647                 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3648                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3649         }
3650
3651         vcpu->arch.nmi_injected = false;
3652         kvm_clear_exception_queue(vcpu);
3653         kvm_clear_interrupt_queue(vcpu);
3654
3655         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3656                 return;
3657
3658         kvm_make_request(KVM_REQ_EVENT, vcpu);
3659
3660         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3661         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3662
3663         switch (type) {
3664         case SVM_EXITINTINFO_TYPE_NMI:
3665                 vcpu->arch.nmi_injected = true;
3666                 break;
3667         case SVM_EXITINTINFO_TYPE_EXEPT:
3668                 /*
3669                  * Never re-inject a #VC exception.
3670                  */
3671                 if (vector == X86_TRAP_VC)
3672                         break;
3673
3674                 /*
3675                  * In case of software exceptions, do not reinject the vector,
3676                  * but re-execute the instruction instead. Rewind RIP first
3677                  * if we emulated INT3 before.
3678                  */
3679                 if (kvm_exception_is_soft(vector)) {
3680                         if (vector == BP_VECTOR && int3_injected &&
3681                             kvm_is_linear_rip(vcpu, svm->int3_rip))
3682                                 kvm_rip_write(vcpu,
3683                                               kvm_rip_read(vcpu) - int3_injected);
3684                         break;
3685                 }
3686                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3687                         u32 err = svm->vmcb->control.exit_int_info_err;
3688                         kvm_requeue_exception_e(vcpu, vector, err);
3689
3690                 } else
3691                         kvm_requeue_exception(vcpu, vector);
3692                 break;
3693         case SVM_EXITINTINFO_TYPE_INTR:
3694                 kvm_queue_interrupt(vcpu, vector, false);
3695                 break;
3696         default:
3697                 break;
3698         }
3699 }
3700
3701 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3702 {
3703         struct vcpu_svm *svm = to_svm(vcpu);
3704         struct vmcb_control_area *control = &svm->vmcb->control;
3705
3706         control->exit_int_info = control->event_inj;
3707         control->exit_int_info_err = control->event_inj_err;
3708         control->event_inj = 0;
3709         svm_complete_interrupts(vcpu);
3710 }
3711
3712 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3713 {
3714         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3715             to_svm(vcpu)->vmcb->control.exit_info_1)
3716                 return handle_fastpath_set_msr_irqoff(vcpu);
3717
3718         return EXIT_FASTPATH_NONE;
3719 }
3720
3721 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3722 {
3723         struct vcpu_svm *svm = to_svm(vcpu);
3724         unsigned long vmcb_pa = svm->current_vmcb->pa;
3725
3726         kvm_guest_enter_irqoff();
3727
3728         if (sev_es_guest(vcpu->kvm)) {
3729                 __svm_sev_es_vcpu_run(vmcb_pa);
3730         } else {
3731                 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3732
3733                 /*
3734                  * Use a single vmcb (vmcb01 because it's always valid) for
3735                  * context switching guest state via VMLOAD/VMSAVE, that way
3736                  * the state doesn't need to be copied between vmcb01 and
3737                  * vmcb02 when switching vmcbs for nested virtualization.
3738                  */
3739                 vmload(svm->vmcb01.pa);
3740                 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3741                 vmsave(svm->vmcb01.pa);
3742
3743                 vmload(__sme_page_pa(sd->save_area));
3744         }
3745
3746         kvm_guest_exit_irqoff();
3747 }
3748
3749 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3750 {
3751         struct vcpu_svm *svm = to_svm(vcpu);
3752
3753         trace_kvm_entry(vcpu);
3754
3755         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3756         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3757         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3758
3759         /*
3760          * Disable singlestep if we're injecting an interrupt/exception.
3761          * We don't want our modified rflags to be pushed on the stack where
3762          * we might not be able to easily reset them if we disabled NMI
3763          * singlestep later.
3764          */
3765         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3766                 /*
3767                  * Event injection happens before external interrupts cause a
3768                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3769                  * is enough to force an immediate vmexit.
3770                  */
3771                 disable_nmi_singlestep(svm);
3772                 smp_send_reschedule(vcpu->cpu);
3773         }
3774
3775         pre_svm_run(vcpu);
3776
3777         WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
3778
3779         sync_lapic_to_cr8(vcpu);
3780
3781         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3782                 svm->vmcb->control.asid = svm->asid;
3783                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3784         }
3785         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3786
3787         svm_hv_update_vp_id(svm->vmcb, vcpu);
3788
3789         /*
3790          * Run with all-zero DR6 unless needed, so that we can get the exact cause
3791          * of a #DB.
3792          */
3793         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3794                 svm_set_dr6(svm, vcpu->arch.dr6);
3795         else
3796                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
3797
3798         clgi();
3799         kvm_load_guest_xsave_state(vcpu);
3800
3801         kvm_wait_lapic_expire(vcpu);
3802
3803         /*
3804          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3805          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3806          * is no need to worry about the conditional branch over the wrmsr
3807          * being speculatively taken.
3808          */
3809         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3810                 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3811
3812         svm_vcpu_enter_exit(vcpu);
3813
3814         /*
3815          * We do not use IBRS in the kernel. If this vCPU has used the
3816          * SPEC_CTRL MSR it may have left it on; save the value and
3817          * turn it off. This is much more efficient than blindly adding
3818          * it to the atomic save/restore list. Especially as the former
3819          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3820          *
3821          * For non-nested case:
3822          * If the L01 MSR bitmap does not intercept the MSR, then we need to
3823          * save it.
3824          *
3825          * For nested case:
3826          * If the L02 MSR bitmap does not intercept the MSR, then we need to
3827          * save it.
3828          */
3829         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3830             unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3831                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3832
3833         if (!sev_es_guest(vcpu->kvm))
3834                 reload_tss(vcpu);
3835
3836         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3837                 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3838
3839         if (!sev_es_guest(vcpu->kvm)) {
3840                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3841                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3842                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3843                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3844         }
3845
3846         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3847                 kvm_before_interrupt(vcpu);
3848
3849         kvm_load_host_xsave_state(vcpu);
3850         stgi();
3851
3852         /* Any pending NMI will happen here */
3853
3854         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3855                 kvm_after_interrupt(vcpu);
3856
3857         sync_cr8_to_lapic(vcpu);
3858
3859         svm->next_rip = 0;
3860         if (is_guest_mode(vcpu)) {
3861                 nested_sync_control_from_vmcb02(svm);
3862
3863                 /* Track VMRUNs that have made past consistency checking */
3864                 if (svm->nested.nested_run_pending &&
3865                     svm->vmcb->control.exit_code != SVM_EXIT_ERR)
3866                         ++vcpu->stat.nested_run;
3867
3868                 svm->nested.nested_run_pending = 0;
3869         }
3870
3871         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3872         vmcb_mark_all_clean(svm->vmcb);
3873
3874         /* if exit due to PF check for async PF */
3875         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3876                 vcpu->arch.apf.host_apf_flags =
3877                         kvm_read_and_reset_apf_flags();
3878
3879         if (npt_enabled)
3880                 kvm_register_clear_available(vcpu, VCPU_EXREG_PDPTR);
3881
3882         /*
3883          * We need to handle MC intercepts here before the vcpu has a chance to
3884          * change the physical cpu
3885          */
3886         if (unlikely(svm->vmcb->control.exit_code ==
3887                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3888                 svm_handle_mce(vcpu);
3889
3890         svm_complete_interrupts(vcpu);
3891
3892         if (is_guest_mode(vcpu))
3893                 return EXIT_FASTPATH_NONE;
3894
3895         return svm_exit_handlers_fastpath(vcpu);
3896 }
3897
3898 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3899                              int root_level)
3900 {
3901         struct vcpu_svm *svm = to_svm(vcpu);
3902         unsigned long cr3;
3903
3904         if (npt_enabled) {
3905                 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3906                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3907
3908                 hv_track_root_tdp(vcpu, root_hpa);
3909
3910                 /* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3911                 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3912                         return;
3913                 cr3 = vcpu->arch.cr3;
3914         } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3915                 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3916         } else {
3917                 /* PCID in the guest should be impossible with a 32-bit MMU. */
3918                 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3919                 cr3 = root_hpa;
3920         }
3921
3922         svm->vmcb->save.cr3 = cr3;
3923         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3924 }
3925
3926 static int is_disabled(void)
3927 {
3928         u64 vm_cr;
3929
3930         rdmsrl(MSR_VM_CR, vm_cr);
3931         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3932                 return 1;
3933
3934         return 0;
3935 }
3936
3937 static void
3938 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3939 {
3940         /*
3941          * Patch in the VMMCALL instruction:
3942          */
3943         hypercall[0] = 0x0f;
3944         hypercall[1] = 0x01;
3945         hypercall[2] = 0xd9;
3946 }
3947
3948 static int __init svm_check_processor_compat(void)
3949 {
3950         return 0;
3951 }
3952
3953 static bool svm_cpu_has_accelerated_tpr(void)
3954 {
3955         return false;
3956 }
3957
3958 /*
3959  * The kvm parameter can be NULL (module initialization, or invocation before
3960  * VM creation). Be sure to check the kvm parameter before using it.
3961  */
3962 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3963 {
3964         switch (index) {
3965         case MSR_IA32_MCG_EXT_CTL:
3966         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3967                 return false;
3968         case MSR_IA32_SMBASE:
3969                 /* SEV-ES guests do not support SMM, so report false */
3970                 if (kvm && sev_es_guest(kvm))
3971                         return false;
3972                 break;
3973         default:
3974                 break;
3975         }
3976
3977         return true;
3978 }
3979
3980 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3981 {
3982         return 0;
3983 }
3984
3985 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3986 {
3987         struct vcpu_svm *svm = to_svm(vcpu);
3988         struct kvm_cpuid_entry2 *best;
3989
3990         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3991                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
3992                                     boot_cpu_has(X86_FEATURE_XSAVES);
3993
3994         /* Update nrips enabled cache */
3995         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3996                              guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
3997
3998         svm_recalc_instruction_intercepts(vcpu, svm);
3999
4000         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
4001         if (sev_guest(vcpu->kvm)) {
4002                 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
4003                 if (best)
4004                         vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4005         }
4006
4007         if (kvm_vcpu_apicv_active(vcpu)) {
4008                 /*
4009                  * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
4010                  * is exposed to the guest, disable AVIC.
4011                  */
4012                 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
4013                         kvm_request_apicv_update(vcpu->kvm, false,
4014                                                  APICV_INHIBIT_REASON_X2APIC);
4015
4016                 /*
4017                  * Currently, AVIC does not work with nested virtualization.
4018                  * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
4019                  */
4020                 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4021                         kvm_request_apicv_update(vcpu->kvm, false,
4022                                                  APICV_INHIBIT_REASON_NESTED);
4023         }
4024
4025         if (guest_cpuid_is_intel(vcpu)) {
4026                 /*
4027                  * We must intercept SYSENTER_EIP and SYSENTER_ESP
4028                  * accesses because the processor only stores 32 bits.
4029                  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
4030                  */
4031                 svm_set_intercept(svm, INTERCEPT_VMLOAD);
4032                 svm_set_intercept(svm, INTERCEPT_VMSAVE);
4033                 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4034
4035                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
4036                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
4037         } else {
4038                 /*
4039                  * If hardware supports Virtual VMLOAD VMSAVE then enable it
4040                  * in VMCB and clear intercepts to avoid #VMEXIT.
4041                  */
4042                 if (vls) {
4043                         svm_clr_intercept(svm, INTERCEPT_VMLOAD);
4044                         svm_clr_intercept(svm, INTERCEPT_VMSAVE);
4045                         svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4046                 }
4047                 /* No need to intercept these MSRs */
4048                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
4049                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
4050         }
4051 }
4052
4053 static bool svm_has_wbinvd_exit(void)
4054 {
4055         return true;
4056 }
4057
4058 #define PRE_EX(exit)  { .exit_code = (exit), \
4059                         .stage = X86_ICPT_PRE_EXCEPT, }
4060 #define POST_EX(exit) { .exit_code = (exit), \
4061                         .stage = X86_ICPT_POST_EXCEPT, }
4062 #define POST_MEM(exit) { .exit_code = (exit), \
4063                         .stage = X86_ICPT_POST_MEMACCESS, }
4064
4065 static const struct __x86_intercept {
4066         u32 exit_code;
4067         enum x86_intercept_stage stage;
4068 } x86_intercept_map[] = {
4069         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4070         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4071         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4072         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4073         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4074         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4075         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4076         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4077         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4078         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4079         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4080         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4081         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4082         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4083         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4084         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4085         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4086         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4087         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4088         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4089         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4090         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4091         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4092         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4093         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4094         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4095         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4096         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4097         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4098         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4099         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4100         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4101         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4102         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4103         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4104         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4105         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4106         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4107         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4108         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4109         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4110         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4111         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4112         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4113         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4114         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4115         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4116 };
4117
4118 #undef PRE_EX
4119 #undef POST_EX
4120 #undef POST_MEM
4121
4122 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4123                                struct x86_instruction_info *info,
4124                                enum x86_intercept_stage stage,
4125                                struct x86_exception *exception)
4126 {
4127         struct vcpu_svm *svm = to_svm(vcpu);
4128         int vmexit, ret = X86EMUL_CONTINUE;
4129         struct __x86_intercept icpt_info;
4130         struct vmcb *vmcb = svm->vmcb;
4131
4132         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4133                 goto out;
4134
4135         icpt_info = x86_intercept_map[info->intercept];
4136
4137         if (stage != icpt_info.stage)
4138                 goto out;
4139
4140         switch (icpt_info.exit_code) {
4141         case SVM_EXIT_READ_CR0:
4142                 if (info->intercept == x86_intercept_cr_read)
4143                         icpt_info.exit_code += info->modrm_reg;
4144                 break;
4145         case SVM_EXIT_WRITE_CR0: {
4146                 unsigned long cr0, val;
4147
4148                 if (info->intercept == x86_intercept_cr_write)
4149                         icpt_info.exit_code += info->modrm_reg;
4150
4151                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4152                     info->intercept == x86_intercept_clts)
4153                         break;
4154
4155                 if (!(vmcb_is_intercept(&svm->nested.ctl,
4156                                         INTERCEPT_SELECTIVE_CR0)))
4157                         break;
4158
4159                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4160                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4161
4162                 if (info->intercept == x86_intercept_lmsw) {
4163                         cr0 &= 0xfUL;
4164                         val &= 0xfUL;
4165                         /* lmsw can't clear PE - catch this here */
4166                         if (cr0 & X86_CR0_PE)
4167                                 val |= X86_CR0_PE;
4168                 }
4169
4170                 if (cr0 ^ val)
4171                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4172
4173                 break;
4174         }
4175         case SVM_EXIT_READ_DR0:
4176         case SVM_EXIT_WRITE_DR0:
4177                 icpt_info.exit_code += info->modrm_reg;
4178                 break;
4179         case SVM_EXIT_MSR:
4180                 if (info->intercept == x86_intercept_wrmsr)
4181                         vmcb->control.exit_info_1 = 1;
4182                 else
4183                         vmcb->control.exit_info_1 = 0;
4184                 break;
4185         case SVM_EXIT_PAUSE:
4186                 /*
4187                  * We get this for NOP only, but pause
4188                  * is rep not, check this here
4189                  */
4190                 if (info->rep_prefix != REPE_PREFIX)
4191                         goto out;
4192                 break;
4193         case SVM_EXIT_IOIO: {
4194                 u64 exit_info;
4195                 u32 bytes;
4196
4197                 if (info->intercept == x86_intercept_in ||
4198                     info->intercept == x86_intercept_ins) {
4199                         exit_info = ((info->src_val & 0xffff) << 16) |
4200                                 SVM_IOIO_TYPE_MASK;
4201                         bytes = info->dst_bytes;
4202                 } else {
4203                         exit_info = (info->dst_val & 0xffff) << 16;
4204                         bytes = info->src_bytes;
4205                 }
4206
4207                 if (info->intercept == x86_intercept_outs ||
4208                     info->intercept == x86_intercept_ins)
4209                         exit_info |= SVM_IOIO_STR_MASK;
4210
4211                 if (info->rep_prefix)
4212                         exit_info |= SVM_IOIO_REP_MASK;
4213
4214                 bytes = min(bytes, 4u);
4215
4216                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4217
4218                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4219
4220                 vmcb->control.exit_info_1 = exit_info;
4221                 vmcb->control.exit_info_2 = info->next_rip;
4222
4223                 break;
4224         }
4225         default:
4226                 break;
4227         }
4228
4229         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4230         if (static_cpu_has(X86_FEATURE_NRIPS))
4231                 vmcb->control.next_rip  = info->next_rip;
4232         vmcb->control.exit_code = icpt_info.exit_code;
4233         vmexit = nested_svm_exit_handled(svm);
4234
4235         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4236                                            : X86EMUL_CONTINUE;
4237
4238 out:
4239         return ret;
4240 }
4241
4242 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4243 {
4244 }
4245
4246 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4247 {
4248         if (!kvm_pause_in_guest(vcpu->kvm))
4249                 shrink_ple_window(vcpu);
4250 }
4251
4252 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4253 {
4254         /* [63:9] are reserved. */
4255         vcpu->arch.mcg_cap &= 0x1ff;
4256 }
4257
4258 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4259 {
4260         struct vcpu_svm *svm = to_svm(vcpu);
4261
4262         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4263         if (!gif_set(svm))
4264                 return true;
4265
4266         return is_smm(vcpu);
4267 }
4268
4269 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4270 {
4271         struct vcpu_svm *svm = to_svm(vcpu);
4272         if (svm->nested.nested_run_pending)
4273                 return -EBUSY;
4274
4275         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4276         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4277                 return -EBUSY;
4278
4279         return !svm_smi_blocked(vcpu);
4280 }
4281
4282 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4283 {
4284         struct vcpu_svm *svm = to_svm(vcpu);
4285         struct kvm_host_map map_save;
4286         int ret;
4287
4288         if (is_guest_mode(vcpu)) {
4289                 /* FED8h - SVM Guest */
4290                 put_smstate(u64, smstate, 0x7ed8, 1);
4291                 /* FEE0h - SVM Guest VMCB Physical Address */
4292                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4293
4294                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4295                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4296                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4297
4298                 ret = nested_svm_vmexit(svm);
4299                 if (ret)
4300                         return ret;
4301
4302                 /*
4303                  * KVM uses VMCB01 to store L1 host state while L2 runs but
4304                  * VMCB01 is going to be used during SMM and thus the state will
4305                  * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4306                  * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4307                  * format of the area is identical to guest save area offsetted
4308                  * by 0x400 (matches the offset of 'struct vmcb_save_area'
4309                  * within 'struct vmcb'). Note: HSAVE area may also be used by
4310                  * L1 hypervisor to save additional host context (e.g. KVM does
4311                  * that, see svm_prepare_guest_switch()) which must be
4312                  * preserved.
4313                  */
4314                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4315                                  &map_save) == -EINVAL)
4316                         return 1;
4317
4318                 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4319
4320                 svm_copy_vmrun_state(map_save.hva + 0x400,
4321                                      &svm->vmcb01.ptr->save);
4322
4323                 kvm_vcpu_unmap(vcpu, &map_save, true);
4324         }
4325         return 0;
4326 }
4327
4328 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4329 {
4330         struct vcpu_svm *svm = to_svm(vcpu);
4331         struct kvm_host_map map, map_save;
4332         int ret = 0;
4333
4334         if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4335                 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4336                 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4337                 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4338                 struct vmcb *vmcb12;
4339
4340                 if (guest) {
4341                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4342                                 return 1;
4343
4344                         if (!(saved_efer & EFER_SVME))
4345                                 return 1;
4346
4347                         if (kvm_vcpu_map(vcpu,
4348                                          gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4349                                 return 1;
4350
4351                         if (svm_allocate_nested(svm))
4352                                 return 1;
4353
4354                         vmcb12 = map.hva;
4355
4356                         nested_load_control_from_vmcb12(svm, &vmcb12->control);
4357
4358                         ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12);
4359                         kvm_vcpu_unmap(vcpu, &map, true);
4360
4361                         /*
4362                          * Restore L1 host state from L1 HSAVE area as VMCB01 was
4363                          * used during SMM (see svm_enter_smm())
4364                          */
4365                         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4366                                          &map_save) == -EINVAL)
4367                                 return 1;
4368
4369                         svm_copy_vmrun_state(&svm->vmcb01.ptr->save,
4370                                              map_save.hva + 0x400);
4371
4372                         kvm_vcpu_unmap(vcpu, &map_save, true);
4373                 }
4374         }
4375
4376         return ret;
4377 }
4378
4379 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4380 {
4381         struct vcpu_svm *svm = to_svm(vcpu);
4382
4383         if (!gif_set(svm)) {
4384                 if (vgif_enabled(svm))
4385                         svm_set_intercept(svm, INTERCEPT_STGI);
4386                 /* STGI will cause a vm exit */
4387         } else {
4388                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4389         }
4390 }
4391
4392 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4393 {
4394         bool smep, smap, is_user;
4395         unsigned long cr4;
4396
4397         /*
4398          * When the guest is an SEV-ES guest, emulation is not possible.
4399          */
4400         if (sev_es_guest(vcpu->kvm))
4401                 return false;
4402
4403         /*
4404          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4405          *
4406          * Errata:
4407          * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4408          * possible that CPU microcode implementing DecodeAssist will fail
4409          * to read bytes of instruction which caused #NPF. In this case,
4410          * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4411          * return 0 instead of the correct guest instruction bytes.
4412          *
4413          * This happens because CPU microcode reading instruction bytes
4414          * uses a special opcode which attempts to read data using CPL=0
4415          * privileges. The microcode reads CS:RIP and if it hits a SMAP
4416          * fault, it gives up and returns no instruction bytes.
4417          *
4418          * Detection:
4419          * We reach here in case CPU supports DecodeAssist, raised #NPF and
4420          * returned 0 in GuestIntrBytes field of the VMCB.
4421          * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4422          * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4423          * in case vCPU CPL==3 (Because otherwise guest would have triggered
4424          * a SMEP fault instead of #NPF).
4425          * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4426          * As most guests enable SMAP if they have also enabled SMEP, use above
4427          * logic in order to attempt minimize false-positive of detecting errata
4428          * while still preserving all cases semantic correctness.
4429          *
4430          * Workaround:
4431          * To determine what instruction the guest was executing, the hypervisor
4432          * will have to decode the instruction at the instruction pointer.
4433          *
4434          * In non SEV guest, hypervisor will be able to read the guest
4435          * memory to decode the instruction pointer when insn_len is zero
4436          * so we return true to indicate that decoding is possible.
4437          *
4438          * But in the SEV guest, the guest memory is encrypted with the
4439          * guest specific key and hypervisor will not be able to decode the
4440          * instruction pointer so we will not able to workaround it. Lets
4441          * print the error and request to kill the guest.
4442          */
4443         if (likely(!insn || insn_len))
4444                 return true;
4445
4446         /*
4447          * If RIP is invalid, go ahead with emulation which will cause an
4448          * internal error exit.
4449          */
4450         if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4451                 return true;
4452
4453         cr4 = kvm_read_cr4(vcpu);
4454         smep = cr4 & X86_CR4_SMEP;
4455         smap = cr4 & X86_CR4_SMAP;
4456         is_user = svm_get_cpl(vcpu) == 3;
4457         if (smap && (!smep || is_user)) {
4458                 if (!sev_guest(vcpu->kvm))
4459                         return true;
4460
4461                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4462                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4463         }
4464
4465         return false;
4466 }
4467
4468 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4469 {
4470         struct vcpu_svm *svm = to_svm(vcpu);
4471
4472         /*
4473          * TODO: Last condition latch INIT signals on vCPU when
4474          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4475          * To properly emulate the INIT intercept,
4476          * svm_check_nested_events() should call nested_svm_vmexit()
4477          * if an INIT signal is pending.
4478          */
4479         return !gif_set(svm) ||
4480                    (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4481 }
4482
4483 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4484 {
4485         if (!sev_es_guest(vcpu->kvm))
4486                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4487
4488         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4489 }
4490
4491 static void svm_vm_destroy(struct kvm *kvm)
4492 {
4493         avic_vm_destroy(kvm);
4494         sev_vm_destroy(kvm);
4495 }
4496
4497 static int svm_vm_init(struct kvm *kvm)
4498 {
4499         if (!pause_filter_count || !pause_filter_thresh)
4500                 kvm->arch.pause_in_guest = true;
4501
4502         if (enable_apicv) {
4503                 int ret = avic_vm_init(kvm);
4504                 if (ret)
4505                         return ret;
4506         }
4507
4508         return 0;
4509 }
4510
4511 static struct kvm_x86_ops svm_x86_ops __initdata = {
4512         .hardware_unsetup = svm_hardware_teardown,
4513         .hardware_enable = svm_hardware_enable,
4514         .hardware_disable = svm_hardware_disable,
4515         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4516         .has_emulated_msr = svm_has_emulated_msr,
4517
4518         .vcpu_create = svm_create_vcpu,
4519         .vcpu_free = svm_free_vcpu,
4520         .vcpu_reset = svm_vcpu_reset,
4521
4522         .vm_size = sizeof(struct kvm_svm),
4523         .vm_init = svm_vm_init,
4524         .vm_destroy = svm_vm_destroy,
4525
4526         .prepare_guest_switch = svm_prepare_guest_switch,
4527         .vcpu_load = svm_vcpu_load,
4528         .vcpu_put = svm_vcpu_put,
4529         .vcpu_blocking = svm_vcpu_blocking,
4530         .vcpu_unblocking = svm_vcpu_unblocking,
4531
4532         .update_exception_bitmap = svm_update_exception_bitmap,
4533         .get_msr_feature = svm_get_msr_feature,
4534         .get_msr = svm_get_msr,
4535         .set_msr = svm_set_msr,
4536         .get_segment_base = svm_get_segment_base,
4537         .get_segment = svm_get_segment,
4538         .set_segment = svm_set_segment,
4539         .get_cpl = svm_get_cpl,
4540         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4541         .set_cr0 = svm_set_cr0,
4542         .is_valid_cr4 = svm_is_valid_cr4,
4543         .set_cr4 = svm_set_cr4,
4544         .set_efer = svm_set_efer,
4545         .get_idt = svm_get_idt,
4546         .set_idt = svm_set_idt,
4547         .get_gdt = svm_get_gdt,
4548         .set_gdt = svm_set_gdt,
4549         .set_dr7 = svm_set_dr7,
4550         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4551         .cache_reg = svm_cache_reg,
4552         .get_rflags = svm_get_rflags,
4553         .set_rflags = svm_set_rflags,
4554
4555         .tlb_flush_all = svm_flush_tlb,
4556         .tlb_flush_current = svm_flush_tlb,
4557         .tlb_flush_gva = svm_flush_tlb_gva,
4558         .tlb_flush_guest = svm_flush_tlb,
4559
4560         .run = svm_vcpu_run,
4561         .handle_exit = handle_exit,
4562         .skip_emulated_instruction = skip_emulated_instruction,
4563         .update_emulated_instruction = NULL,
4564         .set_interrupt_shadow = svm_set_interrupt_shadow,
4565         .get_interrupt_shadow = svm_get_interrupt_shadow,
4566         .patch_hypercall = svm_patch_hypercall,
4567         .set_irq = svm_set_irq,
4568         .set_nmi = svm_inject_nmi,
4569         .queue_exception = svm_queue_exception,
4570         .cancel_injection = svm_cancel_injection,
4571         .interrupt_allowed = svm_interrupt_allowed,
4572         .nmi_allowed = svm_nmi_allowed,
4573         .get_nmi_mask = svm_get_nmi_mask,
4574         .set_nmi_mask = svm_set_nmi_mask,
4575         .enable_nmi_window = svm_enable_nmi_window,
4576         .enable_irq_window = svm_enable_irq_window,
4577         .update_cr8_intercept = svm_update_cr8_intercept,
4578         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4579         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4580         .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4581         .load_eoi_exitmap = svm_load_eoi_exitmap,
4582         .hwapic_irr_update = svm_hwapic_irr_update,
4583         .hwapic_isr_update = svm_hwapic_isr_update,
4584         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4585         .apicv_post_state_restore = avic_post_state_restore,
4586
4587         .set_tss_addr = svm_set_tss_addr,
4588         .set_identity_map_addr = svm_set_identity_map_addr,
4589         .get_mt_mask = svm_get_mt_mask,
4590
4591         .get_exit_info = svm_get_exit_info,
4592
4593         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4594
4595         .has_wbinvd_exit = svm_has_wbinvd_exit,
4596
4597         .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4598         .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4599         .write_tsc_offset = svm_write_tsc_offset,
4600         .write_tsc_multiplier = svm_write_tsc_multiplier,
4601
4602         .load_mmu_pgd = svm_load_mmu_pgd,
4603
4604         .check_intercept = svm_check_intercept,
4605         .handle_exit_irqoff = svm_handle_exit_irqoff,
4606
4607         .request_immediate_exit = __kvm_request_immediate_exit,
4608
4609         .sched_in = svm_sched_in,
4610
4611         .pmu_ops = &amd_pmu_ops,
4612         .nested_ops = &svm_nested_ops,
4613
4614         .deliver_posted_interrupt = svm_deliver_avic_intr,
4615         .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4616         .update_pi_irte = svm_update_pi_irte,
4617         .setup_mce = svm_setup_mce,
4618
4619         .smi_allowed = svm_smi_allowed,
4620         .enter_smm = svm_enter_smm,
4621         .leave_smm = svm_leave_smm,
4622         .enable_smi_window = svm_enable_smi_window,
4623
4624         .mem_enc_op = svm_mem_enc_op,
4625         .mem_enc_reg_region = svm_register_enc_region,
4626         .mem_enc_unreg_region = svm_unregister_enc_region,
4627
4628         .vm_copy_enc_context_from = svm_vm_copy_asid_from,
4629
4630         .can_emulate_instruction = svm_can_emulate_instruction,
4631
4632         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4633
4634         .msr_filter_changed = svm_msr_filter_changed,
4635         .complete_emulated_msr = svm_complete_emulated_msr,
4636
4637         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4638 };
4639
4640 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4641         .cpu_has_kvm_support = has_svm,
4642         .disabled_by_bios = is_disabled,
4643         .hardware_setup = svm_hardware_setup,
4644         .check_processor_compatibility = svm_check_processor_compat,
4645
4646         .runtime_ops = &svm_x86_ops,
4647 };
4648
4649 static int __init svm_init(void)
4650 {
4651         __unused_size_checks();
4652
4653         return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4654                         __alignof__(struct vcpu_svm), THIS_MODULE);
4655 }
4656
4657 static void __exit svm_exit(void)
4658 {
4659         kvm_exit();
4660 }
4661
4662 module_init(svm_init)
4663 module_exit(svm_exit)