Merge tag 'asm-generic-fixes-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / arch / x86 / kvm / svm / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20 #include <asm/fpu/internal.h>
21
22 #include <asm/pkru.h>
23 #include <asm/trapnr.h>
24
25 #include "x86.h"
26 #include "svm.h"
27 #include "svm_ops.h"
28 #include "cpuid.h"
29 #include "trace.h"
30
31 #ifndef CONFIG_KVM_AMD_SEV
32 /*
33  * When this config is not defined, SEV feature is not supported and APIs in
34  * this file are not used but this file still gets compiled into the KVM AMD
35  * module.
36  *
37  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
38  * misc_res_type {} defined in linux/misc_cgroup.h.
39  *
40  * Below macros allow compilation to succeed.
41  */
42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
44 #endif
45
46 #ifdef CONFIG_KVM_AMD_SEV
47 /* enable/disable SEV support */
48 static bool sev_enabled = true;
49 module_param_named(sev, sev_enabled, bool, 0444);
50
51 /* enable/disable SEV-ES support */
52 static bool sev_es_enabled = true;
53 module_param_named(sev_es, sev_es_enabled, bool, 0444);
54 #else
55 #define sev_enabled false
56 #define sev_es_enabled false
57 #endif /* CONFIG_KVM_AMD_SEV */
58
59 static u8 sev_enc_bit;
60 static DECLARE_RWSEM(sev_deactivate_lock);
61 static DEFINE_MUTEX(sev_bitmap_lock);
62 unsigned int max_sev_asid;
63 static unsigned int min_sev_asid;
64 static unsigned long sev_me_mask;
65 static unsigned int nr_asids;
66 static unsigned long *sev_asid_bitmap;
67 static unsigned long *sev_reclaim_asid_bitmap;
68
69 struct enc_region {
70         struct list_head list;
71         unsigned long npages;
72         struct page **pages;
73         unsigned long uaddr;
74         unsigned long size;
75 };
76
77 /* Called with the sev_bitmap_lock held, or on shutdown  */
78 static int sev_flush_asids(int min_asid, int max_asid)
79 {
80         int ret, asid, error = 0;
81
82         /* Check if there are any ASIDs to reclaim before performing a flush */
83         asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
84         if (asid > max_asid)
85                 return -EBUSY;
86
87         /*
88          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
89          * so it must be guarded.
90          */
91         down_write(&sev_deactivate_lock);
92
93         wbinvd_on_all_cpus();
94         ret = sev_guest_df_flush(&error);
95
96         up_write(&sev_deactivate_lock);
97
98         if (ret)
99                 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
100
101         return ret;
102 }
103
104 static inline bool is_mirroring_enc_context(struct kvm *kvm)
105 {
106         return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
107 }
108
109 /* Must be called with the sev_bitmap_lock held */
110 static bool __sev_recycle_asids(int min_asid, int max_asid)
111 {
112         if (sev_flush_asids(min_asid, max_asid))
113                 return false;
114
115         /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
116         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
117                    nr_asids);
118         bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
119
120         return true;
121 }
122
123 static int sev_asid_new(struct kvm_sev_info *sev)
124 {
125         int asid, min_asid, max_asid, ret;
126         bool retry = true;
127         enum misc_res_type type;
128
129         type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
130         WARN_ON(sev->misc_cg);
131         sev->misc_cg = get_current_misc_cg();
132         ret = misc_cg_try_charge(type, sev->misc_cg, 1);
133         if (ret) {
134                 put_misc_cg(sev->misc_cg);
135                 sev->misc_cg = NULL;
136                 return ret;
137         }
138
139         mutex_lock(&sev_bitmap_lock);
140
141         /*
142          * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
143          * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
144          */
145         min_asid = sev->es_active ? 1 : min_sev_asid;
146         max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
147 again:
148         asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
149         if (asid > max_asid) {
150                 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
151                         retry = false;
152                         goto again;
153                 }
154                 mutex_unlock(&sev_bitmap_lock);
155                 ret = -EBUSY;
156                 goto e_uncharge;
157         }
158
159         __set_bit(asid, sev_asid_bitmap);
160
161         mutex_unlock(&sev_bitmap_lock);
162
163         return asid;
164 e_uncharge:
165         misc_cg_uncharge(type, sev->misc_cg, 1);
166         put_misc_cg(sev->misc_cg);
167         sev->misc_cg = NULL;
168         return ret;
169 }
170
171 static int sev_get_asid(struct kvm *kvm)
172 {
173         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
174
175         return sev->asid;
176 }
177
178 static void sev_asid_free(struct kvm_sev_info *sev)
179 {
180         struct svm_cpu_data *sd;
181         int cpu;
182         enum misc_res_type type;
183
184         mutex_lock(&sev_bitmap_lock);
185
186         __set_bit(sev->asid, sev_reclaim_asid_bitmap);
187
188         for_each_possible_cpu(cpu) {
189                 sd = per_cpu(svm_data, cpu);
190                 sd->sev_vmcbs[sev->asid] = NULL;
191         }
192
193         mutex_unlock(&sev_bitmap_lock);
194
195         type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
196         misc_cg_uncharge(type, sev->misc_cg, 1);
197         put_misc_cg(sev->misc_cg);
198         sev->misc_cg = NULL;
199 }
200
201 static void sev_decommission(unsigned int handle)
202 {
203         struct sev_data_decommission decommission;
204
205         if (!handle)
206                 return;
207
208         decommission.handle = handle;
209         sev_guest_decommission(&decommission, NULL);
210 }
211
212 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
213 {
214         struct sev_data_deactivate deactivate;
215
216         if (!handle)
217                 return;
218
219         deactivate.handle = handle;
220
221         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
222         down_read(&sev_deactivate_lock);
223         sev_guest_deactivate(&deactivate, NULL);
224         up_read(&sev_deactivate_lock);
225
226         sev_decommission(handle);
227 }
228
229 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
230 {
231         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
232         bool es_active = argp->id == KVM_SEV_ES_INIT;
233         int asid, ret;
234
235         if (kvm->created_vcpus)
236                 return -EINVAL;
237
238         ret = -EBUSY;
239         if (unlikely(sev->active))
240                 return ret;
241
242         sev->es_active = es_active;
243         asid = sev_asid_new(sev);
244         if (asid < 0)
245                 goto e_no_asid;
246         sev->asid = asid;
247
248         ret = sev_platform_init(&argp->error);
249         if (ret)
250                 goto e_free;
251
252         sev->active = true;
253         sev->asid = asid;
254         INIT_LIST_HEAD(&sev->regions_list);
255
256         return 0;
257
258 e_free:
259         sev_asid_free(sev);
260         sev->asid = 0;
261 e_no_asid:
262         sev->es_active = false;
263         return ret;
264 }
265
266 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
267 {
268         struct sev_data_activate activate;
269         int asid = sev_get_asid(kvm);
270         int ret;
271
272         /* activate ASID on the given handle */
273         activate.handle = handle;
274         activate.asid   = asid;
275         ret = sev_guest_activate(&activate, error);
276
277         return ret;
278 }
279
280 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
281 {
282         struct fd f;
283         int ret;
284
285         f = fdget(fd);
286         if (!f.file)
287                 return -EBADF;
288
289         ret = sev_issue_cmd_external_user(f.file, id, data, error);
290
291         fdput(f);
292         return ret;
293 }
294
295 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
296 {
297         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
298
299         return __sev_issue_cmd(sev->fd, id, data, error);
300 }
301
302 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
303 {
304         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
305         struct sev_data_launch_start start;
306         struct kvm_sev_launch_start params;
307         void *dh_blob, *session_blob;
308         int *error = &argp->error;
309         int ret;
310
311         if (!sev_guest(kvm))
312                 return -ENOTTY;
313
314         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
315                 return -EFAULT;
316
317         memset(&start, 0, sizeof(start));
318
319         dh_blob = NULL;
320         if (params.dh_uaddr) {
321                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
322                 if (IS_ERR(dh_blob))
323                         return PTR_ERR(dh_blob);
324
325                 start.dh_cert_address = __sme_set(__pa(dh_blob));
326                 start.dh_cert_len = params.dh_len;
327         }
328
329         session_blob = NULL;
330         if (params.session_uaddr) {
331                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
332                 if (IS_ERR(session_blob)) {
333                         ret = PTR_ERR(session_blob);
334                         goto e_free_dh;
335                 }
336
337                 start.session_address = __sme_set(__pa(session_blob));
338                 start.session_len = params.session_len;
339         }
340
341         start.handle = params.handle;
342         start.policy = params.policy;
343
344         /* create memory encryption context */
345         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
346         if (ret)
347                 goto e_free_session;
348
349         /* Bind ASID to this guest */
350         ret = sev_bind_asid(kvm, start.handle, error);
351         if (ret) {
352                 sev_decommission(start.handle);
353                 goto e_free_session;
354         }
355
356         /* return handle to userspace */
357         params.handle = start.handle;
358         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
359                 sev_unbind_asid(kvm, start.handle);
360                 ret = -EFAULT;
361                 goto e_free_session;
362         }
363
364         sev->handle = start.handle;
365         sev->fd = argp->sev_fd;
366
367 e_free_session:
368         kfree(session_blob);
369 e_free_dh:
370         kfree(dh_blob);
371         return ret;
372 }
373
374 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
375                                     unsigned long ulen, unsigned long *n,
376                                     int write)
377 {
378         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
379         unsigned long npages, size;
380         int npinned;
381         unsigned long locked, lock_limit;
382         struct page **pages;
383         unsigned long first, last;
384         int ret;
385
386         lockdep_assert_held(&kvm->lock);
387
388         if (ulen == 0 || uaddr + ulen < uaddr)
389                 return ERR_PTR(-EINVAL);
390
391         /* Calculate number of pages. */
392         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
393         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
394         npages = (last - first + 1);
395
396         locked = sev->pages_locked + npages;
397         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
398         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
399                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
400                 return ERR_PTR(-ENOMEM);
401         }
402
403         if (WARN_ON_ONCE(npages > INT_MAX))
404                 return ERR_PTR(-EINVAL);
405
406         /* Avoid using vmalloc for smaller buffers. */
407         size = npages * sizeof(struct page *);
408         if (size > PAGE_SIZE)
409                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
410         else
411                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
412
413         if (!pages)
414                 return ERR_PTR(-ENOMEM);
415
416         /* Pin the user virtual address. */
417         npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
418         if (npinned != npages) {
419                 pr_err("SEV: Failure locking %lu pages.\n", npages);
420                 ret = -ENOMEM;
421                 goto err;
422         }
423
424         *n = npages;
425         sev->pages_locked = locked;
426
427         return pages;
428
429 err:
430         if (npinned > 0)
431                 unpin_user_pages(pages, npinned);
432
433         kvfree(pages);
434         return ERR_PTR(ret);
435 }
436
437 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
438                              unsigned long npages)
439 {
440         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
441
442         unpin_user_pages(pages, npages);
443         kvfree(pages);
444         sev->pages_locked -= npages;
445 }
446
447 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
448 {
449         uint8_t *page_virtual;
450         unsigned long i;
451
452         if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
453             pages == NULL)
454                 return;
455
456         for (i = 0; i < npages; i++) {
457                 page_virtual = kmap_atomic(pages[i]);
458                 clflush_cache_range(page_virtual, PAGE_SIZE);
459                 kunmap_atomic(page_virtual);
460         }
461 }
462
463 static unsigned long get_num_contig_pages(unsigned long idx,
464                                 struct page **inpages, unsigned long npages)
465 {
466         unsigned long paddr, next_paddr;
467         unsigned long i = idx + 1, pages = 1;
468
469         /* find the number of contiguous pages starting from idx */
470         paddr = __sme_page_pa(inpages[idx]);
471         while (i < npages) {
472                 next_paddr = __sme_page_pa(inpages[i++]);
473                 if ((paddr + PAGE_SIZE) == next_paddr) {
474                         pages++;
475                         paddr = next_paddr;
476                         continue;
477                 }
478                 break;
479         }
480
481         return pages;
482 }
483
484 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
485 {
486         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
487         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
488         struct kvm_sev_launch_update_data params;
489         struct sev_data_launch_update_data data;
490         struct page **inpages;
491         int ret;
492
493         if (!sev_guest(kvm))
494                 return -ENOTTY;
495
496         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
497                 return -EFAULT;
498
499         vaddr = params.uaddr;
500         size = params.len;
501         vaddr_end = vaddr + size;
502
503         /* Lock the user memory. */
504         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
505         if (IS_ERR(inpages))
506                 return PTR_ERR(inpages);
507
508         /*
509          * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
510          * place; the cache may contain the data that was written unencrypted.
511          */
512         sev_clflush_pages(inpages, npages);
513
514         data.reserved = 0;
515         data.handle = sev->handle;
516
517         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
518                 int offset, len;
519
520                 /*
521                  * If the user buffer is not page-aligned, calculate the offset
522                  * within the page.
523                  */
524                 offset = vaddr & (PAGE_SIZE - 1);
525
526                 /* Calculate the number of pages that can be encrypted in one go. */
527                 pages = get_num_contig_pages(i, inpages, npages);
528
529                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
530
531                 data.len = len;
532                 data.address = __sme_page_pa(inpages[i]) + offset;
533                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
534                 if (ret)
535                         goto e_unpin;
536
537                 size -= len;
538                 next_vaddr = vaddr + len;
539         }
540
541 e_unpin:
542         /* content of memory is updated, mark pages dirty */
543         for (i = 0; i < npages; i++) {
544                 set_page_dirty_lock(inpages[i]);
545                 mark_page_accessed(inpages[i]);
546         }
547         /* unlock the user pages */
548         sev_unpin_memory(kvm, inpages, npages);
549         return ret;
550 }
551
552 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
553 {
554         struct vmcb_save_area *save = &svm->vmcb->save;
555
556         /* Check some debug related fields before encrypting the VMSA */
557         if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
558                 return -EINVAL;
559
560         /* Sync registgers */
561         save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
562         save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
563         save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
564         save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
565         save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
566         save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
567         save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
568         save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
569 #ifdef CONFIG_X86_64
570         save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
571         save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
572         save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
573         save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
574         save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
575         save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
576         save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
577         save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
578 #endif
579         save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
580
581         /* Sync some non-GPR registers before encrypting */
582         save->xcr0 = svm->vcpu.arch.xcr0;
583         save->pkru = svm->vcpu.arch.pkru;
584         save->xss  = svm->vcpu.arch.ia32_xss;
585         save->dr6  = svm->vcpu.arch.dr6;
586
587         /*
588          * SEV-ES will use a VMSA that is pointed to by the VMCB, not
589          * the traditional VMSA that is part of the VMCB. Copy the
590          * traditional VMSA as it has been built so far (in prep
591          * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
592          */
593         memcpy(svm->vmsa, save, sizeof(*save));
594
595         return 0;
596 }
597
598 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
599                                     int *error)
600 {
601         struct sev_data_launch_update_vmsa vmsa;
602         struct vcpu_svm *svm = to_svm(vcpu);
603         int ret;
604
605         /* Perform some pre-encryption checks against the VMSA */
606         ret = sev_es_sync_vmsa(svm);
607         if (ret)
608                 return ret;
609
610         /*
611          * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
612          * the VMSA memory content (i.e it will write the same memory region
613          * with the guest's key), so invalidate it first.
614          */
615         clflush_cache_range(svm->vmsa, PAGE_SIZE);
616
617         vmsa.reserved = 0;
618         vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
619         vmsa.address = __sme_pa(svm->vmsa);
620         vmsa.len = PAGE_SIZE;
621         return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
622 }
623
624 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
625 {
626         struct kvm_vcpu *vcpu;
627         int i, ret;
628
629         if (!sev_es_guest(kvm))
630                 return -ENOTTY;
631
632         kvm_for_each_vcpu(i, vcpu, kvm) {
633                 ret = mutex_lock_killable(&vcpu->mutex);
634                 if (ret)
635                         return ret;
636
637                 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
638
639                 mutex_unlock(&vcpu->mutex);
640                 if (ret)
641                         return ret;
642         }
643
644         return 0;
645 }
646
647 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
648 {
649         void __user *measure = (void __user *)(uintptr_t)argp->data;
650         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
651         struct sev_data_launch_measure data;
652         struct kvm_sev_launch_measure params;
653         void __user *p = NULL;
654         void *blob = NULL;
655         int ret;
656
657         if (!sev_guest(kvm))
658                 return -ENOTTY;
659
660         if (copy_from_user(&params, measure, sizeof(params)))
661                 return -EFAULT;
662
663         memset(&data, 0, sizeof(data));
664
665         /* User wants to query the blob length */
666         if (!params.len)
667                 goto cmd;
668
669         p = (void __user *)(uintptr_t)params.uaddr;
670         if (p) {
671                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
672                         return -EINVAL;
673
674                 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
675                 if (!blob)
676                         return -ENOMEM;
677
678                 data.address = __psp_pa(blob);
679                 data.len = params.len;
680         }
681
682 cmd:
683         data.handle = sev->handle;
684         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
685
686         /*
687          * If we query the session length, FW responded with expected data.
688          */
689         if (!params.len)
690                 goto done;
691
692         if (ret)
693                 goto e_free_blob;
694
695         if (blob) {
696                 if (copy_to_user(p, blob, params.len))
697                         ret = -EFAULT;
698         }
699
700 done:
701         params.len = data.len;
702         if (copy_to_user(measure, &params, sizeof(params)))
703                 ret = -EFAULT;
704 e_free_blob:
705         kfree(blob);
706         return ret;
707 }
708
709 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
710 {
711         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
712         struct sev_data_launch_finish data;
713
714         if (!sev_guest(kvm))
715                 return -ENOTTY;
716
717         data.handle = sev->handle;
718         return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
719 }
720
721 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
722 {
723         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
724         struct kvm_sev_guest_status params;
725         struct sev_data_guest_status data;
726         int ret;
727
728         if (!sev_guest(kvm))
729                 return -ENOTTY;
730
731         memset(&data, 0, sizeof(data));
732
733         data.handle = sev->handle;
734         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
735         if (ret)
736                 return ret;
737
738         params.policy = data.policy;
739         params.state = data.state;
740         params.handle = data.handle;
741
742         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
743                 ret = -EFAULT;
744
745         return ret;
746 }
747
748 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
749                                unsigned long dst, int size,
750                                int *error, bool enc)
751 {
752         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
753         struct sev_data_dbg data;
754
755         data.reserved = 0;
756         data.handle = sev->handle;
757         data.dst_addr = dst;
758         data.src_addr = src;
759         data.len = size;
760
761         return sev_issue_cmd(kvm,
762                              enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
763                              &data, error);
764 }
765
766 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
767                              unsigned long dst_paddr, int sz, int *err)
768 {
769         int offset;
770
771         /*
772          * Its safe to read more than we are asked, caller should ensure that
773          * destination has enough space.
774          */
775         offset = src_paddr & 15;
776         src_paddr = round_down(src_paddr, 16);
777         sz = round_up(sz + offset, 16);
778
779         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
780 }
781
782 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
783                                   void __user *dst_uaddr,
784                                   unsigned long dst_paddr,
785                                   int size, int *err)
786 {
787         struct page *tpage = NULL;
788         int ret, offset;
789
790         /* if inputs are not 16-byte then use intermediate buffer */
791         if (!IS_ALIGNED(dst_paddr, 16) ||
792             !IS_ALIGNED(paddr,     16) ||
793             !IS_ALIGNED(size,      16)) {
794                 tpage = (void *)alloc_page(GFP_KERNEL);
795                 if (!tpage)
796                         return -ENOMEM;
797
798                 dst_paddr = __sme_page_pa(tpage);
799         }
800
801         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
802         if (ret)
803                 goto e_free;
804
805         if (tpage) {
806                 offset = paddr & 15;
807                 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
808                         ret = -EFAULT;
809         }
810
811 e_free:
812         if (tpage)
813                 __free_page(tpage);
814
815         return ret;
816 }
817
818 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
819                                   void __user *vaddr,
820                                   unsigned long dst_paddr,
821                                   void __user *dst_vaddr,
822                                   int size, int *error)
823 {
824         struct page *src_tpage = NULL;
825         struct page *dst_tpage = NULL;
826         int ret, len = size;
827
828         /* If source buffer is not aligned then use an intermediate buffer */
829         if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
830                 src_tpage = alloc_page(GFP_KERNEL);
831                 if (!src_tpage)
832                         return -ENOMEM;
833
834                 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
835                         __free_page(src_tpage);
836                         return -EFAULT;
837                 }
838
839                 paddr = __sme_page_pa(src_tpage);
840         }
841
842         /*
843          *  If destination buffer or length is not aligned then do read-modify-write:
844          *   - decrypt destination in an intermediate buffer
845          *   - copy the source buffer in an intermediate buffer
846          *   - use the intermediate buffer as source buffer
847          */
848         if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
849                 int dst_offset;
850
851                 dst_tpage = alloc_page(GFP_KERNEL);
852                 if (!dst_tpage) {
853                         ret = -ENOMEM;
854                         goto e_free;
855                 }
856
857                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
858                                         __sme_page_pa(dst_tpage), size, error);
859                 if (ret)
860                         goto e_free;
861
862                 /*
863                  *  If source is kernel buffer then use memcpy() otherwise
864                  *  copy_from_user().
865                  */
866                 dst_offset = dst_paddr & 15;
867
868                 if (src_tpage)
869                         memcpy(page_address(dst_tpage) + dst_offset,
870                                page_address(src_tpage), size);
871                 else {
872                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
873                                            vaddr, size)) {
874                                 ret = -EFAULT;
875                                 goto e_free;
876                         }
877                 }
878
879                 paddr = __sme_page_pa(dst_tpage);
880                 dst_paddr = round_down(dst_paddr, 16);
881                 len = round_up(size, 16);
882         }
883
884         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
885
886 e_free:
887         if (src_tpage)
888                 __free_page(src_tpage);
889         if (dst_tpage)
890                 __free_page(dst_tpage);
891         return ret;
892 }
893
894 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
895 {
896         unsigned long vaddr, vaddr_end, next_vaddr;
897         unsigned long dst_vaddr;
898         struct page **src_p, **dst_p;
899         struct kvm_sev_dbg debug;
900         unsigned long n;
901         unsigned int size;
902         int ret;
903
904         if (!sev_guest(kvm))
905                 return -ENOTTY;
906
907         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
908                 return -EFAULT;
909
910         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
911                 return -EINVAL;
912         if (!debug.dst_uaddr)
913                 return -EINVAL;
914
915         vaddr = debug.src_uaddr;
916         size = debug.len;
917         vaddr_end = vaddr + size;
918         dst_vaddr = debug.dst_uaddr;
919
920         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
921                 int len, s_off, d_off;
922
923                 /* lock userspace source and destination page */
924                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
925                 if (IS_ERR(src_p))
926                         return PTR_ERR(src_p);
927
928                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
929                 if (IS_ERR(dst_p)) {
930                         sev_unpin_memory(kvm, src_p, n);
931                         return PTR_ERR(dst_p);
932                 }
933
934                 /*
935                  * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
936                  * the pages; flush the destination too so that future accesses do not
937                  * see stale data.
938                  */
939                 sev_clflush_pages(src_p, 1);
940                 sev_clflush_pages(dst_p, 1);
941
942                 /*
943                  * Since user buffer may not be page aligned, calculate the
944                  * offset within the page.
945                  */
946                 s_off = vaddr & ~PAGE_MASK;
947                 d_off = dst_vaddr & ~PAGE_MASK;
948                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
949
950                 if (dec)
951                         ret = __sev_dbg_decrypt_user(kvm,
952                                                      __sme_page_pa(src_p[0]) + s_off,
953                                                      (void __user *)dst_vaddr,
954                                                      __sme_page_pa(dst_p[0]) + d_off,
955                                                      len, &argp->error);
956                 else
957                         ret = __sev_dbg_encrypt_user(kvm,
958                                                      __sme_page_pa(src_p[0]) + s_off,
959                                                      (void __user *)vaddr,
960                                                      __sme_page_pa(dst_p[0]) + d_off,
961                                                      (void __user *)dst_vaddr,
962                                                      len, &argp->error);
963
964                 sev_unpin_memory(kvm, src_p, n);
965                 sev_unpin_memory(kvm, dst_p, n);
966
967                 if (ret)
968                         goto err;
969
970                 next_vaddr = vaddr + len;
971                 dst_vaddr = dst_vaddr + len;
972                 size -= len;
973         }
974 err:
975         return ret;
976 }
977
978 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
979 {
980         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
981         struct sev_data_launch_secret data;
982         struct kvm_sev_launch_secret params;
983         struct page **pages;
984         void *blob, *hdr;
985         unsigned long n, i;
986         int ret, offset;
987
988         if (!sev_guest(kvm))
989                 return -ENOTTY;
990
991         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
992                 return -EFAULT;
993
994         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
995         if (IS_ERR(pages))
996                 return PTR_ERR(pages);
997
998         /*
999          * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1000          * place; the cache may contain the data that was written unencrypted.
1001          */
1002         sev_clflush_pages(pages, n);
1003
1004         /*
1005          * The secret must be copied into contiguous memory region, lets verify
1006          * that userspace memory pages are contiguous before we issue command.
1007          */
1008         if (get_num_contig_pages(0, pages, n) != n) {
1009                 ret = -EINVAL;
1010                 goto e_unpin_memory;
1011         }
1012
1013         memset(&data, 0, sizeof(data));
1014
1015         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1016         data.guest_address = __sme_page_pa(pages[0]) + offset;
1017         data.guest_len = params.guest_len;
1018
1019         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1020         if (IS_ERR(blob)) {
1021                 ret = PTR_ERR(blob);
1022                 goto e_unpin_memory;
1023         }
1024
1025         data.trans_address = __psp_pa(blob);
1026         data.trans_len = params.trans_len;
1027
1028         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1029         if (IS_ERR(hdr)) {
1030                 ret = PTR_ERR(hdr);
1031                 goto e_free_blob;
1032         }
1033         data.hdr_address = __psp_pa(hdr);
1034         data.hdr_len = params.hdr_len;
1035
1036         data.handle = sev->handle;
1037         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1038
1039         kfree(hdr);
1040
1041 e_free_blob:
1042         kfree(blob);
1043 e_unpin_memory:
1044         /* content of memory is updated, mark pages dirty */
1045         for (i = 0; i < n; i++) {
1046                 set_page_dirty_lock(pages[i]);
1047                 mark_page_accessed(pages[i]);
1048         }
1049         sev_unpin_memory(kvm, pages, n);
1050         return ret;
1051 }
1052
1053 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1054 {
1055         void __user *report = (void __user *)(uintptr_t)argp->data;
1056         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1057         struct sev_data_attestation_report data;
1058         struct kvm_sev_attestation_report params;
1059         void __user *p;
1060         void *blob = NULL;
1061         int ret;
1062
1063         if (!sev_guest(kvm))
1064                 return -ENOTTY;
1065
1066         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1067                 return -EFAULT;
1068
1069         memset(&data, 0, sizeof(data));
1070
1071         /* User wants to query the blob length */
1072         if (!params.len)
1073                 goto cmd;
1074
1075         p = (void __user *)(uintptr_t)params.uaddr;
1076         if (p) {
1077                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1078                         return -EINVAL;
1079
1080                 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
1081                 if (!blob)
1082                         return -ENOMEM;
1083
1084                 data.address = __psp_pa(blob);
1085                 data.len = params.len;
1086                 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1087         }
1088 cmd:
1089         data.handle = sev->handle;
1090         ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1091         /*
1092          * If we query the session length, FW responded with expected data.
1093          */
1094         if (!params.len)
1095                 goto done;
1096
1097         if (ret)
1098                 goto e_free_blob;
1099
1100         if (blob) {
1101                 if (copy_to_user(p, blob, params.len))
1102                         ret = -EFAULT;
1103         }
1104
1105 done:
1106         params.len = data.len;
1107         if (copy_to_user(report, &params, sizeof(params)))
1108                 ret = -EFAULT;
1109 e_free_blob:
1110         kfree(blob);
1111         return ret;
1112 }
1113
1114 /* Userspace wants to query session length. */
1115 static int
1116 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1117                                       struct kvm_sev_send_start *params)
1118 {
1119         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1120         struct sev_data_send_start data;
1121         int ret;
1122
1123         memset(&data, 0, sizeof(data));
1124         data.handle = sev->handle;
1125         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1126
1127         params->session_len = data.session_len;
1128         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1129                                 sizeof(struct kvm_sev_send_start)))
1130                 ret = -EFAULT;
1131
1132         return ret;
1133 }
1134
1135 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1136 {
1137         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1138         struct sev_data_send_start data;
1139         struct kvm_sev_send_start params;
1140         void *amd_certs, *session_data;
1141         void *pdh_cert, *plat_certs;
1142         int ret;
1143
1144         if (!sev_guest(kvm))
1145                 return -ENOTTY;
1146
1147         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1148                                 sizeof(struct kvm_sev_send_start)))
1149                 return -EFAULT;
1150
1151         /* if session_len is zero, userspace wants to query the session length */
1152         if (!params.session_len)
1153                 return __sev_send_start_query_session_length(kvm, argp,
1154                                 &params);
1155
1156         /* some sanity checks */
1157         if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1158             !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1159                 return -EINVAL;
1160
1161         /* allocate the memory to hold the session data blob */
1162         session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1163         if (!session_data)
1164                 return -ENOMEM;
1165
1166         /* copy the certificate blobs from userspace */
1167         pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1168                                 params.pdh_cert_len);
1169         if (IS_ERR(pdh_cert)) {
1170                 ret = PTR_ERR(pdh_cert);
1171                 goto e_free_session;
1172         }
1173
1174         plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1175                                 params.plat_certs_len);
1176         if (IS_ERR(plat_certs)) {
1177                 ret = PTR_ERR(plat_certs);
1178                 goto e_free_pdh;
1179         }
1180
1181         amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1182                                 params.amd_certs_len);
1183         if (IS_ERR(amd_certs)) {
1184                 ret = PTR_ERR(amd_certs);
1185                 goto e_free_plat_cert;
1186         }
1187
1188         /* populate the FW SEND_START field with system physical address */
1189         memset(&data, 0, sizeof(data));
1190         data.pdh_cert_address = __psp_pa(pdh_cert);
1191         data.pdh_cert_len = params.pdh_cert_len;
1192         data.plat_certs_address = __psp_pa(plat_certs);
1193         data.plat_certs_len = params.plat_certs_len;
1194         data.amd_certs_address = __psp_pa(amd_certs);
1195         data.amd_certs_len = params.amd_certs_len;
1196         data.session_address = __psp_pa(session_data);
1197         data.session_len = params.session_len;
1198         data.handle = sev->handle;
1199
1200         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1201
1202         if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1203                         session_data, params.session_len)) {
1204                 ret = -EFAULT;
1205                 goto e_free_amd_cert;
1206         }
1207
1208         params.policy = data.policy;
1209         params.session_len = data.session_len;
1210         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1211                                 sizeof(struct kvm_sev_send_start)))
1212                 ret = -EFAULT;
1213
1214 e_free_amd_cert:
1215         kfree(amd_certs);
1216 e_free_plat_cert:
1217         kfree(plat_certs);
1218 e_free_pdh:
1219         kfree(pdh_cert);
1220 e_free_session:
1221         kfree(session_data);
1222         return ret;
1223 }
1224
1225 /* Userspace wants to query either header or trans length. */
1226 static int
1227 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1228                                      struct kvm_sev_send_update_data *params)
1229 {
1230         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1231         struct sev_data_send_update_data data;
1232         int ret;
1233
1234         memset(&data, 0, sizeof(data));
1235         data.handle = sev->handle;
1236         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1237
1238         params->hdr_len = data.hdr_len;
1239         params->trans_len = data.trans_len;
1240
1241         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1242                          sizeof(struct kvm_sev_send_update_data)))
1243                 ret = -EFAULT;
1244
1245         return ret;
1246 }
1247
1248 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1249 {
1250         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1251         struct sev_data_send_update_data data;
1252         struct kvm_sev_send_update_data params;
1253         void *hdr, *trans_data;
1254         struct page **guest_page;
1255         unsigned long n;
1256         int ret, offset;
1257
1258         if (!sev_guest(kvm))
1259                 return -ENOTTY;
1260
1261         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1262                         sizeof(struct kvm_sev_send_update_data)))
1263                 return -EFAULT;
1264
1265         /* userspace wants to query either header or trans length */
1266         if (!params.trans_len || !params.hdr_len)
1267                 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1268
1269         if (!params.trans_uaddr || !params.guest_uaddr ||
1270             !params.guest_len || !params.hdr_uaddr)
1271                 return -EINVAL;
1272
1273         /* Check if we are crossing the page boundary */
1274         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1275         if ((params.guest_len + offset > PAGE_SIZE))
1276                 return -EINVAL;
1277
1278         /* Pin guest memory */
1279         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1280                                     PAGE_SIZE, &n, 0);
1281         if (IS_ERR(guest_page))
1282                 return PTR_ERR(guest_page);
1283
1284         /* allocate memory for header and transport buffer */
1285         ret = -ENOMEM;
1286         hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1287         if (!hdr)
1288                 goto e_unpin;
1289
1290         trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1291         if (!trans_data)
1292                 goto e_free_hdr;
1293
1294         memset(&data, 0, sizeof(data));
1295         data.hdr_address = __psp_pa(hdr);
1296         data.hdr_len = params.hdr_len;
1297         data.trans_address = __psp_pa(trans_data);
1298         data.trans_len = params.trans_len;
1299
1300         /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1301         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1302         data.guest_address |= sev_me_mask;
1303         data.guest_len = params.guest_len;
1304         data.handle = sev->handle;
1305
1306         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1307
1308         if (ret)
1309                 goto e_free_trans_data;
1310
1311         /* copy transport buffer to user space */
1312         if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1313                          trans_data, params.trans_len)) {
1314                 ret = -EFAULT;
1315                 goto e_free_trans_data;
1316         }
1317
1318         /* Copy packet header to userspace. */
1319         if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1320                          params.hdr_len))
1321                 ret = -EFAULT;
1322
1323 e_free_trans_data:
1324         kfree(trans_data);
1325 e_free_hdr:
1326         kfree(hdr);
1327 e_unpin:
1328         sev_unpin_memory(kvm, guest_page, n);
1329
1330         return ret;
1331 }
1332
1333 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1334 {
1335         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1336         struct sev_data_send_finish data;
1337
1338         if (!sev_guest(kvm))
1339                 return -ENOTTY;
1340
1341         data.handle = sev->handle;
1342         return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1343 }
1344
1345 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1346 {
1347         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1348         struct sev_data_send_cancel data;
1349
1350         if (!sev_guest(kvm))
1351                 return -ENOTTY;
1352
1353         data.handle = sev->handle;
1354         return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1355 }
1356
1357 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1358 {
1359         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1360         struct sev_data_receive_start start;
1361         struct kvm_sev_receive_start params;
1362         int *error = &argp->error;
1363         void *session_data;
1364         void *pdh_data;
1365         int ret;
1366
1367         if (!sev_guest(kvm))
1368                 return -ENOTTY;
1369
1370         /* Get parameter from the userspace */
1371         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1372                         sizeof(struct kvm_sev_receive_start)))
1373                 return -EFAULT;
1374
1375         /* some sanity checks */
1376         if (!params.pdh_uaddr || !params.pdh_len ||
1377             !params.session_uaddr || !params.session_len)
1378                 return -EINVAL;
1379
1380         pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1381         if (IS_ERR(pdh_data))
1382                 return PTR_ERR(pdh_data);
1383
1384         session_data = psp_copy_user_blob(params.session_uaddr,
1385                         params.session_len);
1386         if (IS_ERR(session_data)) {
1387                 ret = PTR_ERR(session_data);
1388                 goto e_free_pdh;
1389         }
1390
1391         memset(&start, 0, sizeof(start));
1392         start.handle = params.handle;
1393         start.policy = params.policy;
1394         start.pdh_cert_address = __psp_pa(pdh_data);
1395         start.pdh_cert_len = params.pdh_len;
1396         start.session_address = __psp_pa(session_data);
1397         start.session_len = params.session_len;
1398
1399         /* create memory encryption context */
1400         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1401                                 error);
1402         if (ret)
1403                 goto e_free_session;
1404
1405         /* Bind ASID to this guest */
1406         ret = sev_bind_asid(kvm, start.handle, error);
1407         if (ret) {
1408                 sev_decommission(start.handle);
1409                 goto e_free_session;
1410         }
1411
1412         params.handle = start.handle;
1413         if (copy_to_user((void __user *)(uintptr_t)argp->data,
1414                          &params, sizeof(struct kvm_sev_receive_start))) {
1415                 ret = -EFAULT;
1416                 sev_unbind_asid(kvm, start.handle);
1417                 goto e_free_session;
1418         }
1419
1420         sev->handle = start.handle;
1421         sev->fd = argp->sev_fd;
1422
1423 e_free_session:
1424         kfree(session_data);
1425 e_free_pdh:
1426         kfree(pdh_data);
1427
1428         return ret;
1429 }
1430
1431 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1432 {
1433         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1434         struct kvm_sev_receive_update_data params;
1435         struct sev_data_receive_update_data data;
1436         void *hdr = NULL, *trans = NULL;
1437         struct page **guest_page;
1438         unsigned long n;
1439         int ret, offset;
1440
1441         if (!sev_guest(kvm))
1442                 return -EINVAL;
1443
1444         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1445                         sizeof(struct kvm_sev_receive_update_data)))
1446                 return -EFAULT;
1447
1448         if (!params.hdr_uaddr || !params.hdr_len ||
1449             !params.guest_uaddr || !params.guest_len ||
1450             !params.trans_uaddr || !params.trans_len)
1451                 return -EINVAL;
1452
1453         /* Check if we are crossing the page boundary */
1454         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1455         if ((params.guest_len + offset > PAGE_SIZE))
1456                 return -EINVAL;
1457
1458         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1459         if (IS_ERR(hdr))
1460                 return PTR_ERR(hdr);
1461
1462         trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1463         if (IS_ERR(trans)) {
1464                 ret = PTR_ERR(trans);
1465                 goto e_free_hdr;
1466         }
1467
1468         memset(&data, 0, sizeof(data));
1469         data.hdr_address = __psp_pa(hdr);
1470         data.hdr_len = params.hdr_len;
1471         data.trans_address = __psp_pa(trans);
1472         data.trans_len = params.trans_len;
1473
1474         /* Pin guest memory */
1475         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1476                                     PAGE_SIZE, &n, 1);
1477         if (IS_ERR(guest_page)) {
1478                 ret = PTR_ERR(guest_page);
1479                 goto e_free_trans;
1480         }
1481
1482         /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1483         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1484         data.guest_address |= sev_me_mask;
1485         data.guest_len = params.guest_len;
1486         data.handle = sev->handle;
1487
1488         ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1489                                 &argp->error);
1490
1491         sev_unpin_memory(kvm, guest_page, n);
1492
1493 e_free_trans:
1494         kfree(trans);
1495 e_free_hdr:
1496         kfree(hdr);
1497
1498         return ret;
1499 }
1500
1501 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1502 {
1503         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1504         struct sev_data_receive_finish data;
1505
1506         if (!sev_guest(kvm))
1507                 return -ENOTTY;
1508
1509         data.handle = sev->handle;
1510         return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1511 }
1512
1513 static bool cmd_allowed_from_miror(u32 cmd_id)
1514 {
1515         /*
1516          * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1517          * active mirror VMs. Also allow the debugging and status commands.
1518          */
1519         if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1520             cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1521             cmd_id == KVM_SEV_DBG_ENCRYPT)
1522                 return true;
1523
1524         return false;
1525 }
1526
1527 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1528 {
1529         struct kvm_sev_cmd sev_cmd;
1530         int r;
1531
1532         if (!sev_enabled)
1533                 return -ENOTTY;
1534
1535         if (!argp)
1536                 return 0;
1537
1538         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1539                 return -EFAULT;
1540
1541         mutex_lock(&kvm->lock);
1542
1543         /* Only the enc_context_owner handles some memory enc operations. */
1544         if (is_mirroring_enc_context(kvm) &&
1545             !cmd_allowed_from_miror(sev_cmd.id)) {
1546                 r = -EINVAL;
1547                 goto out;
1548         }
1549
1550         switch (sev_cmd.id) {
1551         case KVM_SEV_ES_INIT:
1552                 if (!sev_es_enabled) {
1553                         r = -ENOTTY;
1554                         goto out;
1555                 }
1556                 fallthrough;
1557         case KVM_SEV_INIT:
1558                 r = sev_guest_init(kvm, &sev_cmd);
1559                 break;
1560         case KVM_SEV_LAUNCH_START:
1561                 r = sev_launch_start(kvm, &sev_cmd);
1562                 break;
1563         case KVM_SEV_LAUNCH_UPDATE_DATA:
1564                 r = sev_launch_update_data(kvm, &sev_cmd);
1565                 break;
1566         case KVM_SEV_LAUNCH_UPDATE_VMSA:
1567                 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1568                 break;
1569         case KVM_SEV_LAUNCH_MEASURE:
1570                 r = sev_launch_measure(kvm, &sev_cmd);
1571                 break;
1572         case KVM_SEV_LAUNCH_FINISH:
1573                 r = sev_launch_finish(kvm, &sev_cmd);
1574                 break;
1575         case KVM_SEV_GUEST_STATUS:
1576                 r = sev_guest_status(kvm, &sev_cmd);
1577                 break;
1578         case KVM_SEV_DBG_DECRYPT:
1579                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1580                 break;
1581         case KVM_SEV_DBG_ENCRYPT:
1582                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1583                 break;
1584         case KVM_SEV_LAUNCH_SECRET:
1585                 r = sev_launch_secret(kvm, &sev_cmd);
1586                 break;
1587         case KVM_SEV_GET_ATTESTATION_REPORT:
1588                 r = sev_get_attestation_report(kvm, &sev_cmd);
1589                 break;
1590         case KVM_SEV_SEND_START:
1591                 r = sev_send_start(kvm, &sev_cmd);
1592                 break;
1593         case KVM_SEV_SEND_UPDATE_DATA:
1594                 r = sev_send_update_data(kvm, &sev_cmd);
1595                 break;
1596         case KVM_SEV_SEND_FINISH:
1597                 r = sev_send_finish(kvm, &sev_cmd);
1598                 break;
1599         case KVM_SEV_SEND_CANCEL:
1600                 r = sev_send_cancel(kvm, &sev_cmd);
1601                 break;
1602         case KVM_SEV_RECEIVE_START:
1603                 r = sev_receive_start(kvm, &sev_cmd);
1604                 break;
1605         case KVM_SEV_RECEIVE_UPDATE_DATA:
1606                 r = sev_receive_update_data(kvm, &sev_cmd);
1607                 break;
1608         case KVM_SEV_RECEIVE_FINISH:
1609                 r = sev_receive_finish(kvm, &sev_cmd);
1610                 break;
1611         default:
1612                 r = -EINVAL;
1613                 goto out;
1614         }
1615
1616         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1617                 r = -EFAULT;
1618
1619 out:
1620         mutex_unlock(&kvm->lock);
1621         return r;
1622 }
1623
1624 int svm_register_enc_region(struct kvm *kvm,
1625                             struct kvm_enc_region *range)
1626 {
1627         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1628         struct enc_region *region;
1629         int ret = 0;
1630
1631         if (!sev_guest(kvm))
1632                 return -ENOTTY;
1633
1634         /* If kvm is mirroring encryption context it isn't responsible for it */
1635         if (is_mirroring_enc_context(kvm))
1636                 return -EINVAL;
1637
1638         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1639                 return -EINVAL;
1640
1641         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1642         if (!region)
1643                 return -ENOMEM;
1644
1645         mutex_lock(&kvm->lock);
1646         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1647         if (IS_ERR(region->pages)) {
1648                 ret = PTR_ERR(region->pages);
1649                 mutex_unlock(&kvm->lock);
1650                 goto e_free;
1651         }
1652
1653         region->uaddr = range->addr;
1654         region->size = range->size;
1655
1656         list_add_tail(&region->list, &sev->regions_list);
1657         mutex_unlock(&kvm->lock);
1658
1659         /*
1660          * The guest may change the memory encryption attribute from C=0 -> C=1
1661          * or vice versa for this memory range. Lets make sure caches are
1662          * flushed to ensure that guest data gets written into memory with
1663          * correct C-bit.
1664          */
1665         sev_clflush_pages(region->pages, region->npages);
1666
1667         return ret;
1668
1669 e_free:
1670         kfree(region);
1671         return ret;
1672 }
1673
1674 static struct enc_region *
1675 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1676 {
1677         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1678         struct list_head *head = &sev->regions_list;
1679         struct enc_region *i;
1680
1681         list_for_each_entry(i, head, list) {
1682                 if (i->uaddr == range->addr &&
1683                     i->size == range->size)
1684                         return i;
1685         }
1686
1687         return NULL;
1688 }
1689
1690 static void __unregister_enc_region_locked(struct kvm *kvm,
1691                                            struct enc_region *region)
1692 {
1693         sev_unpin_memory(kvm, region->pages, region->npages);
1694         list_del(&region->list);
1695         kfree(region);
1696 }
1697
1698 int svm_unregister_enc_region(struct kvm *kvm,
1699                               struct kvm_enc_region *range)
1700 {
1701         struct enc_region *region;
1702         int ret;
1703
1704         /* If kvm is mirroring encryption context it isn't responsible for it */
1705         if (is_mirroring_enc_context(kvm))
1706                 return -EINVAL;
1707
1708         mutex_lock(&kvm->lock);
1709
1710         if (!sev_guest(kvm)) {
1711                 ret = -ENOTTY;
1712                 goto failed;
1713         }
1714
1715         region = find_enc_region(kvm, range);
1716         if (!region) {
1717                 ret = -EINVAL;
1718                 goto failed;
1719         }
1720
1721         /*
1722          * Ensure that all guest tagged cache entries are flushed before
1723          * releasing the pages back to the system for use. CLFLUSH will
1724          * not do this, so issue a WBINVD.
1725          */
1726         wbinvd_on_all_cpus();
1727
1728         __unregister_enc_region_locked(kvm, region);
1729
1730         mutex_unlock(&kvm->lock);
1731         return 0;
1732
1733 failed:
1734         mutex_unlock(&kvm->lock);
1735         return ret;
1736 }
1737
1738 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1739 {
1740         struct file *source_kvm_file;
1741         struct kvm *source_kvm;
1742         struct kvm_sev_info source_sev, *mirror_sev;
1743         int ret;
1744
1745         source_kvm_file = fget(source_fd);
1746         if (!file_is_kvm(source_kvm_file)) {
1747                 ret = -EBADF;
1748                 goto e_source_put;
1749         }
1750
1751         source_kvm = source_kvm_file->private_data;
1752         mutex_lock(&source_kvm->lock);
1753
1754         if (!sev_guest(source_kvm)) {
1755                 ret = -EINVAL;
1756                 goto e_source_unlock;
1757         }
1758
1759         /* Mirrors of mirrors should work, but let's not get silly */
1760         if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) {
1761                 ret = -EINVAL;
1762                 goto e_source_unlock;
1763         }
1764
1765         memcpy(&source_sev, &to_kvm_svm(source_kvm)->sev_info,
1766                sizeof(source_sev));
1767
1768         /*
1769          * The mirror kvm holds an enc_context_owner ref so its asid can't
1770          * disappear until we're done with it
1771          */
1772         kvm_get_kvm(source_kvm);
1773
1774         fput(source_kvm_file);
1775         mutex_unlock(&source_kvm->lock);
1776         mutex_lock(&kvm->lock);
1777
1778         if (sev_guest(kvm)) {
1779                 ret = -EINVAL;
1780                 goto e_mirror_unlock;
1781         }
1782
1783         /* Set enc_context_owner and copy its encryption context over */
1784         mirror_sev = &to_kvm_svm(kvm)->sev_info;
1785         mirror_sev->enc_context_owner = source_kvm;
1786         mirror_sev->active = true;
1787         mirror_sev->asid = source_sev.asid;
1788         mirror_sev->fd = source_sev.fd;
1789         mirror_sev->es_active = source_sev.es_active;
1790         mirror_sev->handle = source_sev.handle;
1791         /*
1792          * Do not copy ap_jump_table. Since the mirror does not share the same
1793          * KVM contexts as the original, and they may have different
1794          * memory-views.
1795          */
1796
1797         mutex_unlock(&kvm->lock);
1798         return 0;
1799
1800 e_mirror_unlock:
1801         mutex_unlock(&kvm->lock);
1802         kvm_put_kvm(source_kvm);
1803         return ret;
1804 e_source_unlock:
1805         mutex_unlock(&source_kvm->lock);
1806 e_source_put:
1807         if (source_kvm_file)
1808                 fput(source_kvm_file);
1809         return ret;
1810 }
1811
1812 void sev_vm_destroy(struct kvm *kvm)
1813 {
1814         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1815         struct list_head *head = &sev->regions_list;
1816         struct list_head *pos, *q;
1817
1818         if (!sev_guest(kvm))
1819                 return;
1820
1821         /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
1822         if (is_mirroring_enc_context(kvm)) {
1823                 kvm_put_kvm(sev->enc_context_owner);
1824                 return;
1825         }
1826
1827         mutex_lock(&kvm->lock);
1828
1829         /*
1830          * Ensure that all guest tagged cache entries are flushed before
1831          * releasing the pages back to the system for use. CLFLUSH will
1832          * not do this, so issue a WBINVD.
1833          */
1834         wbinvd_on_all_cpus();
1835
1836         /*
1837          * if userspace was terminated before unregistering the memory regions
1838          * then lets unpin all the registered memory.
1839          */
1840         if (!list_empty(head)) {
1841                 list_for_each_safe(pos, q, head) {
1842                         __unregister_enc_region_locked(kvm,
1843                                 list_entry(pos, struct enc_region, list));
1844                         cond_resched();
1845                 }
1846         }
1847
1848         mutex_unlock(&kvm->lock);
1849
1850         sev_unbind_asid(kvm, sev->handle);
1851         sev_asid_free(sev);
1852 }
1853
1854 void __init sev_set_cpu_caps(void)
1855 {
1856         if (!sev_enabled)
1857                 kvm_cpu_cap_clear(X86_FEATURE_SEV);
1858         if (!sev_es_enabled)
1859                 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
1860 }
1861
1862 void __init sev_hardware_setup(void)
1863 {
1864 #ifdef CONFIG_KVM_AMD_SEV
1865         unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
1866         bool sev_es_supported = false;
1867         bool sev_supported = false;
1868
1869         if (!sev_enabled || !npt_enabled)
1870                 goto out;
1871
1872         /* Does the CPU support SEV? */
1873         if (!boot_cpu_has(X86_FEATURE_SEV))
1874                 goto out;
1875
1876         /* Retrieve SEV CPUID information */
1877         cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1878
1879         /* Set encryption bit location for SEV-ES guests */
1880         sev_enc_bit = ebx & 0x3f;
1881
1882         /* Maximum number of encrypted guests supported simultaneously */
1883         max_sev_asid = ecx;
1884         if (!max_sev_asid)
1885                 goto out;
1886
1887         /* Minimum ASID value that should be used for SEV guest */
1888         min_sev_asid = edx;
1889         sev_me_mask = 1UL << (ebx & 0x3f);
1890
1891         /*
1892          * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
1893          * even though it's never used, so that the bitmap is indexed by the
1894          * actual ASID.
1895          */
1896         nr_asids = max_sev_asid + 1;
1897         sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
1898         if (!sev_asid_bitmap)
1899                 goto out;
1900
1901         sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
1902         if (!sev_reclaim_asid_bitmap) {
1903                 bitmap_free(sev_asid_bitmap);
1904                 sev_asid_bitmap = NULL;
1905                 goto out;
1906         }
1907
1908         sev_asid_count = max_sev_asid - min_sev_asid + 1;
1909         if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
1910                 goto out;
1911
1912         pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
1913         sev_supported = true;
1914
1915         /* SEV-ES support requested? */
1916         if (!sev_es_enabled)
1917                 goto out;
1918
1919         /* Does the CPU support SEV-ES? */
1920         if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1921                 goto out;
1922
1923         /* Has the system been allocated ASIDs for SEV-ES? */
1924         if (min_sev_asid == 1)
1925                 goto out;
1926
1927         sev_es_asid_count = min_sev_asid - 1;
1928         if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
1929                 goto out;
1930
1931         pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
1932         sev_es_supported = true;
1933
1934 out:
1935         sev_enabled = sev_supported;
1936         sev_es_enabled = sev_es_supported;
1937 #endif
1938 }
1939
1940 void sev_hardware_teardown(void)
1941 {
1942         if (!sev_enabled)
1943                 return;
1944
1945         /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
1946         sev_flush_asids(1, max_sev_asid);
1947
1948         bitmap_free(sev_asid_bitmap);
1949         bitmap_free(sev_reclaim_asid_bitmap);
1950
1951         misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
1952         misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
1953 }
1954
1955 int sev_cpu_init(struct svm_cpu_data *sd)
1956 {
1957         if (!sev_enabled)
1958                 return 0;
1959
1960         sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
1961         if (!sd->sev_vmcbs)
1962                 return -ENOMEM;
1963
1964         return 0;
1965 }
1966
1967 /*
1968  * Pages used by hardware to hold guest encrypted state must be flushed before
1969  * returning them to the system.
1970  */
1971 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1972                                    unsigned long len)
1973 {
1974         /*
1975          * If hardware enforced cache coherency for encrypted mappings of the
1976          * same physical page is supported, nothing to do.
1977          */
1978         if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1979                 return;
1980
1981         /*
1982          * If the VM Page Flush MSR is supported, use it to flush the page
1983          * (using the page virtual address and the guest ASID).
1984          */
1985         if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
1986                 struct kvm_sev_info *sev;
1987                 unsigned long va_start;
1988                 u64 start, stop;
1989
1990                 /* Align start and stop to page boundaries. */
1991                 va_start = (unsigned long)va;
1992                 start = (u64)va_start & PAGE_MASK;
1993                 stop = PAGE_ALIGN((u64)va_start + len);
1994
1995                 if (start < stop) {
1996                         sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
1997
1998                         while (start < stop) {
1999                                 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
2000                                        start | sev->asid);
2001
2002                                 start += PAGE_SIZE;
2003                         }
2004
2005                         return;
2006                 }
2007
2008                 WARN(1, "Address overflow, using WBINVD\n");
2009         }
2010
2011         /*
2012          * Hardware should always have one of the above features,
2013          * but if not, use WBINVD and issue a warning.
2014          */
2015         WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
2016         wbinvd_on_all_cpus();
2017 }
2018
2019 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2020 {
2021         struct vcpu_svm *svm;
2022
2023         if (!sev_es_guest(vcpu->kvm))
2024                 return;
2025
2026         svm = to_svm(vcpu);
2027
2028         if (vcpu->arch.guest_state_protected)
2029                 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
2030         __free_page(virt_to_page(svm->vmsa));
2031
2032         if (svm->ghcb_sa_free)
2033                 kfree(svm->ghcb_sa);
2034 }
2035
2036 static void dump_ghcb(struct vcpu_svm *svm)
2037 {
2038         struct ghcb *ghcb = svm->ghcb;
2039         unsigned int nbits;
2040
2041         /* Re-use the dump_invalid_vmcb module parameter */
2042         if (!dump_invalid_vmcb) {
2043                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2044                 return;
2045         }
2046
2047         nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2048
2049         pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2050         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2051                ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2052         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2053                ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2054         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2055                ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2056         pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2057                ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2058         pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2059 }
2060
2061 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2062 {
2063         struct kvm_vcpu *vcpu = &svm->vcpu;
2064         struct ghcb *ghcb = svm->ghcb;
2065
2066         /*
2067          * The GHCB protocol so far allows for the following data
2068          * to be returned:
2069          *   GPRs RAX, RBX, RCX, RDX
2070          *
2071          * Copy their values, even if they may not have been written during the
2072          * VM-Exit.  It's the guest's responsibility to not consume random data.
2073          */
2074         ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2075         ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2076         ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2077         ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2078 }
2079
2080 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2081 {
2082         struct vmcb_control_area *control = &svm->vmcb->control;
2083         struct kvm_vcpu *vcpu = &svm->vcpu;
2084         struct ghcb *ghcb = svm->ghcb;
2085         u64 exit_code;
2086
2087         /*
2088          * The GHCB protocol so far allows for the following data
2089          * to be supplied:
2090          *   GPRs RAX, RBX, RCX, RDX
2091          *   XCR0
2092          *   CPL
2093          *
2094          * VMMCALL allows the guest to provide extra registers. KVM also
2095          * expects RSI for hypercalls, so include that, too.
2096          *
2097          * Copy their values to the appropriate location if supplied.
2098          */
2099         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2100
2101         vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2102         vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2103         vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2104         vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2105         vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2106
2107         svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2108
2109         if (ghcb_xcr0_is_valid(ghcb)) {
2110                 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2111                 kvm_update_cpuid_runtime(vcpu);
2112         }
2113
2114         /* Copy the GHCB exit information into the VMCB fields */
2115         exit_code = ghcb_get_sw_exit_code(ghcb);
2116         control->exit_code = lower_32_bits(exit_code);
2117         control->exit_code_hi = upper_32_bits(exit_code);
2118         control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2119         control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2120
2121         /* Clear the valid entries fields */
2122         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2123 }
2124
2125 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2126 {
2127         struct kvm_vcpu *vcpu;
2128         struct ghcb *ghcb;
2129         u64 exit_code = 0;
2130
2131         ghcb = svm->ghcb;
2132
2133         /* Only GHCB Usage code 0 is supported */
2134         if (ghcb->ghcb_usage)
2135                 goto vmgexit_err;
2136
2137         /*
2138          * Retrieve the exit code now even though is may not be marked valid
2139          * as it could help with debugging.
2140          */
2141         exit_code = ghcb_get_sw_exit_code(ghcb);
2142
2143         if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2144             !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2145             !ghcb_sw_exit_info_2_is_valid(ghcb))
2146                 goto vmgexit_err;
2147
2148         switch (ghcb_get_sw_exit_code(ghcb)) {
2149         case SVM_EXIT_READ_DR7:
2150                 break;
2151         case SVM_EXIT_WRITE_DR7:
2152                 if (!ghcb_rax_is_valid(ghcb))
2153                         goto vmgexit_err;
2154                 break;
2155         case SVM_EXIT_RDTSC:
2156                 break;
2157         case SVM_EXIT_RDPMC:
2158                 if (!ghcb_rcx_is_valid(ghcb))
2159                         goto vmgexit_err;
2160                 break;
2161         case SVM_EXIT_CPUID:
2162                 if (!ghcb_rax_is_valid(ghcb) ||
2163                     !ghcb_rcx_is_valid(ghcb))
2164                         goto vmgexit_err;
2165                 if (ghcb_get_rax(ghcb) == 0xd)
2166                         if (!ghcb_xcr0_is_valid(ghcb))
2167                                 goto vmgexit_err;
2168                 break;
2169         case SVM_EXIT_INVD:
2170                 break;
2171         case SVM_EXIT_IOIO:
2172                 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2173                         if (!ghcb_sw_scratch_is_valid(ghcb))
2174                                 goto vmgexit_err;
2175                 } else {
2176                         if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2177                                 if (!ghcb_rax_is_valid(ghcb))
2178                                         goto vmgexit_err;
2179                 }
2180                 break;
2181         case SVM_EXIT_MSR:
2182                 if (!ghcb_rcx_is_valid(ghcb))
2183                         goto vmgexit_err;
2184                 if (ghcb_get_sw_exit_info_1(ghcb)) {
2185                         if (!ghcb_rax_is_valid(ghcb) ||
2186                             !ghcb_rdx_is_valid(ghcb))
2187                                 goto vmgexit_err;
2188                 }
2189                 break;
2190         case SVM_EXIT_VMMCALL:
2191                 if (!ghcb_rax_is_valid(ghcb) ||
2192                     !ghcb_cpl_is_valid(ghcb))
2193                         goto vmgexit_err;
2194                 break;
2195         case SVM_EXIT_RDTSCP:
2196                 break;
2197         case SVM_EXIT_WBINVD:
2198                 break;
2199         case SVM_EXIT_MONITOR:
2200                 if (!ghcb_rax_is_valid(ghcb) ||
2201                     !ghcb_rcx_is_valid(ghcb) ||
2202                     !ghcb_rdx_is_valid(ghcb))
2203                         goto vmgexit_err;
2204                 break;
2205         case SVM_EXIT_MWAIT:
2206                 if (!ghcb_rax_is_valid(ghcb) ||
2207                     !ghcb_rcx_is_valid(ghcb))
2208                         goto vmgexit_err;
2209                 break;
2210         case SVM_VMGEXIT_MMIO_READ:
2211         case SVM_VMGEXIT_MMIO_WRITE:
2212                 if (!ghcb_sw_scratch_is_valid(ghcb))
2213                         goto vmgexit_err;
2214                 break;
2215         case SVM_VMGEXIT_NMI_COMPLETE:
2216         case SVM_VMGEXIT_AP_HLT_LOOP:
2217         case SVM_VMGEXIT_AP_JUMP_TABLE:
2218         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2219                 break;
2220         default:
2221                 goto vmgexit_err;
2222         }
2223
2224         return 0;
2225
2226 vmgexit_err:
2227         vcpu = &svm->vcpu;
2228
2229         if (ghcb->ghcb_usage) {
2230                 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2231                             ghcb->ghcb_usage);
2232         } else {
2233                 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
2234                             exit_code);
2235                 dump_ghcb(svm);
2236         }
2237
2238         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2239         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2240         vcpu->run->internal.ndata = 2;
2241         vcpu->run->internal.data[0] = exit_code;
2242         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2243
2244         return -EINVAL;
2245 }
2246
2247 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2248 {
2249         if (!svm->ghcb)
2250                 return;
2251
2252         if (svm->ghcb_sa_free) {
2253                 /*
2254                  * The scratch area lives outside the GHCB, so there is a
2255                  * buffer that, depending on the operation performed, may
2256                  * need to be synced, then freed.
2257                  */
2258                 if (svm->ghcb_sa_sync) {
2259                         kvm_write_guest(svm->vcpu.kvm,
2260                                         ghcb_get_sw_scratch(svm->ghcb),
2261                                         svm->ghcb_sa, svm->ghcb_sa_len);
2262                         svm->ghcb_sa_sync = false;
2263                 }
2264
2265                 kfree(svm->ghcb_sa);
2266                 svm->ghcb_sa = NULL;
2267                 svm->ghcb_sa_free = false;
2268         }
2269
2270         trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
2271
2272         sev_es_sync_to_ghcb(svm);
2273
2274         kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
2275         svm->ghcb = NULL;
2276 }
2277
2278 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2279 {
2280         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2281         int asid = sev_get_asid(svm->vcpu.kvm);
2282
2283         /* Assign the asid allocated with this SEV guest */
2284         svm->asid = asid;
2285
2286         /*
2287          * Flush guest TLB:
2288          *
2289          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2290          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2291          */
2292         if (sd->sev_vmcbs[asid] == svm->vmcb &&
2293             svm->vcpu.arch.last_vmentry_cpu == cpu)
2294                 return;
2295
2296         sd->sev_vmcbs[asid] = svm->vmcb;
2297         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2298         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2299 }
2300
2301 #define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
2302 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2303 {
2304         struct vmcb_control_area *control = &svm->vmcb->control;
2305         struct ghcb *ghcb = svm->ghcb;
2306         u64 ghcb_scratch_beg, ghcb_scratch_end;
2307         u64 scratch_gpa_beg, scratch_gpa_end;
2308         void *scratch_va;
2309
2310         scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2311         if (!scratch_gpa_beg) {
2312                 pr_err("vmgexit: scratch gpa not provided\n");
2313                 return false;
2314         }
2315
2316         scratch_gpa_end = scratch_gpa_beg + len;
2317         if (scratch_gpa_end < scratch_gpa_beg) {
2318                 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2319                        len, scratch_gpa_beg);
2320                 return false;
2321         }
2322
2323         if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2324                 /* Scratch area begins within GHCB */
2325                 ghcb_scratch_beg = control->ghcb_gpa +
2326                                    offsetof(struct ghcb, shared_buffer);
2327                 ghcb_scratch_end = control->ghcb_gpa +
2328                                    offsetof(struct ghcb, reserved_1);
2329
2330                 /*
2331                  * If the scratch area begins within the GHCB, it must be
2332                  * completely contained in the GHCB shared buffer area.
2333                  */
2334                 if (scratch_gpa_beg < ghcb_scratch_beg ||
2335                     scratch_gpa_end > ghcb_scratch_end) {
2336                         pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2337                                scratch_gpa_beg, scratch_gpa_end);
2338                         return false;
2339                 }
2340
2341                 scratch_va = (void *)svm->ghcb;
2342                 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2343         } else {
2344                 /*
2345                  * The guest memory must be read into a kernel buffer, so
2346                  * limit the size
2347                  */
2348                 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2349                         pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2350                                len, GHCB_SCRATCH_AREA_LIMIT);
2351                         return false;
2352                 }
2353                 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT);
2354                 if (!scratch_va)
2355                         return false;
2356
2357                 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2358                         /* Unable to copy scratch area from guest */
2359                         pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2360
2361                         kfree(scratch_va);
2362                         return false;
2363                 }
2364
2365                 /*
2366                  * The scratch area is outside the GHCB. The operation will
2367                  * dictate whether the buffer needs to be synced before running
2368                  * the vCPU next time (i.e. a read was requested so the data
2369                  * must be written back to the guest memory).
2370                  */
2371                 svm->ghcb_sa_sync = sync;
2372                 svm->ghcb_sa_free = true;
2373         }
2374
2375         svm->ghcb_sa = scratch_va;
2376         svm->ghcb_sa_len = len;
2377
2378         return true;
2379 }
2380
2381 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2382                               unsigned int pos)
2383 {
2384         svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2385         svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2386 }
2387
2388 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2389 {
2390         return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2391 }
2392
2393 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2394 {
2395         svm->vmcb->control.ghcb_gpa = value;
2396 }
2397
2398 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2399 {
2400         struct vmcb_control_area *control = &svm->vmcb->control;
2401         struct kvm_vcpu *vcpu = &svm->vcpu;
2402         u64 ghcb_info;
2403         int ret = 1;
2404
2405         ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2406
2407         trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2408                                              control->ghcb_gpa);
2409
2410         switch (ghcb_info) {
2411         case GHCB_MSR_SEV_INFO_REQ:
2412                 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2413                                                     GHCB_VERSION_MIN,
2414                                                     sev_enc_bit));
2415                 break;
2416         case GHCB_MSR_CPUID_REQ: {
2417                 u64 cpuid_fn, cpuid_reg, cpuid_value;
2418
2419                 cpuid_fn = get_ghcb_msr_bits(svm,
2420                                              GHCB_MSR_CPUID_FUNC_MASK,
2421                                              GHCB_MSR_CPUID_FUNC_POS);
2422
2423                 /* Initialize the registers needed by the CPUID intercept */
2424                 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2425                 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2426
2427                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2428                 if (!ret) {
2429                         ret = -EINVAL;
2430                         break;
2431                 }
2432
2433                 cpuid_reg = get_ghcb_msr_bits(svm,
2434                                               GHCB_MSR_CPUID_REG_MASK,
2435                                               GHCB_MSR_CPUID_REG_POS);
2436                 if (cpuid_reg == 0)
2437                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2438                 else if (cpuid_reg == 1)
2439                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2440                 else if (cpuid_reg == 2)
2441                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2442                 else
2443                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2444
2445                 set_ghcb_msr_bits(svm, cpuid_value,
2446                                   GHCB_MSR_CPUID_VALUE_MASK,
2447                                   GHCB_MSR_CPUID_VALUE_POS);
2448
2449                 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2450                                   GHCB_MSR_INFO_MASK,
2451                                   GHCB_MSR_INFO_POS);
2452                 break;
2453         }
2454         case GHCB_MSR_TERM_REQ: {
2455                 u64 reason_set, reason_code;
2456
2457                 reason_set = get_ghcb_msr_bits(svm,
2458                                                GHCB_MSR_TERM_REASON_SET_MASK,
2459                                                GHCB_MSR_TERM_REASON_SET_POS);
2460                 reason_code = get_ghcb_msr_bits(svm,
2461                                                 GHCB_MSR_TERM_REASON_MASK,
2462                                                 GHCB_MSR_TERM_REASON_POS);
2463                 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2464                         reason_set, reason_code);
2465                 fallthrough;
2466         }
2467         default:
2468                 ret = -EINVAL;
2469         }
2470
2471         trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2472                                             control->ghcb_gpa, ret);
2473
2474         return ret;
2475 }
2476
2477 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2478 {
2479         struct vcpu_svm *svm = to_svm(vcpu);
2480         struct vmcb_control_area *control = &svm->vmcb->control;
2481         u64 ghcb_gpa, exit_code;
2482         struct ghcb *ghcb;
2483         int ret;
2484
2485         /* Validate the GHCB */
2486         ghcb_gpa = control->ghcb_gpa;
2487         if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2488                 return sev_handle_vmgexit_msr_protocol(svm);
2489
2490         if (!ghcb_gpa) {
2491                 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2492                 return -EINVAL;
2493         }
2494
2495         if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
2496                 /* Unable to map GHCB from guest */
2497                 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2498                             ghcb_gpa);
2499                 return -EINVAL;
2500         }
2501
2502         svm->ghcb = svm->ghcb_map.hva;
2503         ghcb = svm->ghcb_map.hva;
2504
2505         trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2506
2507         exit_code = ghcb_get_sw_exit_code(ghcb);
2508
2509         ret = sev_es_validate_vmgexit(svm);
2510         if (ret)
2511                 return ret;
2512
2513         sev_es_sync_from_ghcb(svm);
2514         ghcb_set_sw_exit_info_1(ghcb, 0);
2515         ghcb_set_sw_exit_info_2(ghcb, 0);
2516
2517         ret = -EINVAL;
2518         switch (exit_code) {
2519         case SVM_VMGEXIT_MMIO_READ:
2520                 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
2521                         break;
2522
2523                 ret = kvm_sev_es_mmio_read(vcpu,
2524                                            control->exit_info_1,
2525                                            control->exit_info_2,
2526                                            svm->ghcb_sa);
2527                 break;
2528         case SVM_VMGEXIT_MMIO_WRITE:
2529                 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2530                         break;
2531
2532                 ret = kvm_sev_es_mmio_write(vcpu,
2533                                             control->exit_info_1,
2534                                             control->exit_info_2,
2535                                             svm->ghcb_sa);
2536                 break;
2537         case SVM_VMGEXIT_NMI_COMPLETE:
2538                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2539                 break;
2540         case SVM_VMGEXIT_AP_HLT_LOOP:
2541                 ret = kvm_emulate_ap_reset_hold(vcpu);
2542                 break;
2543         case SVM_VMGEXIT_AP_JUMP_TABLE: {
2544                 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2545
2546                 switch (control->exit_info_1) {
2547                 case 0:
2548                         /* Set AP jump table address */
2549                         sev->ap_jump_table = control->exit_info_2;
2550                         break;
2551                 case 1:
2552                         /* Get AP jump table address */
2553                         ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2554                         break;
2555                 default:
2556                         pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2557                                control->exit_info_1);
2558                         ghcb_set_sw_exit_info_1(ghcb, 1);
2559                         ghcb_set_sw_exit_info_2(ghcb,
2560                                                 X86_TRAP_UD |
2561                                                 SVM_EVTINJ_TYPE_EXEPT |
2562                                                 SVM_EVTINJ_VALID);
2563                 }
2564
2565                 ret = 1;
2566                 break;
2567         }
2568         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2569                 vcpu_unimpl(vcpu,
2570                             "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2571                             control->exit_info_1, control->exit_info_2);
2572                 break;
2573         default:
2574                 ret = svm_invoke_exit_handler(vcpu, exit_code);
2575         }
2576
2577         return ret;
2578 }
2579
2580 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2581 {
2582         if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
2583                 return -EINVAL;
2584
2585         return kvm_sev_es_string_io(&svm->vcpu, size, port,
2586                                     svm->ghcb_sa, svm->ghcb_sa_len, in);
2587 }
2588
2589 void sev_es_init_vmcb(struct vcpu_svm *svm)
2590 {
2591         struct kvm_vcpu *vcpu = &svm->vcpu;
2592
2593         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2594         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2595
2596         /*
2597          * An SEV-ES guest requires a VMSA area that is a separate from the
2598          * VMCB page. Do not include the encryption mask on the VMSA physical
2599          * address since hardware will access it using the guest key.
2600          */
2601         svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
2602
2603         /* Can't intercept CR register access, HV can't modify CR registers */
2604         svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2605         svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2606         svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2607         svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2608         svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2609         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2610
2611         svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2612
2613         /* Track EFER/CR register changes */
2614         svm_set_intercept(svm, TRAP_EFER_WRITE);
2615         svm_set_intercept(svm, TRAP_CR0_WRITE);
2616         svm_set_intercept(svm, TRAP_CR4_WRITE);
2617         svm_set_intercept(svm, TRAP_CR8_WRITE);
2618
2619         /* No support for enable_vmware_backdoor */
2620         clr_exception_intercept(svm, GP_VECTOR);
2621
2622         /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2623         svm_clr_intercept(svm, INTERCEPT_XSETBV);
2624
2625         /* Clear intercepts on selected MSRs */
2626         set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2627         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2628         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2629         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2630         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2631         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2632 }
2633
2634 void sev_es_create_vcpu(struct vcpu_svm *svm)
2635 {
2636         /*
2637          * Set the GHCB MSR value as per the GHCB specification when creating
2638          * a vCPU for an SEV-ES guest.
2639          */
2640         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2641                                             GHCB_VERSION_MIN,
2642                                             sev_enc_bit));
2643 }
2644
2645 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2646 {
2647         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2648         struct vmcb_save_area *hostsa;
2649
2650         /*
2651          * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2652          * of which one step is to perform a VMLOAD. Since hardware does not
2653          * perform a VMSAVE on VMRUN, the host savearea must be updated.
2654          */
2655         vmsave(__sme_page_pa(sd->save_area));
2656
2657         /* XCR0 is restored on VMEXIT, save the current host value */
2658         hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2659         hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2660
2661         /* PKRU is restored on VMEXIT, save the current host value */
2662         hostsa->pkru = read_pkru();
2663
2664         /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2665         hostsa->xss = host_xss;
2666 }
2667
2668 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2669 {
2670         struct vcpu_svm *svm = to_svm(vcpu);
2671
2672         /* First SIPI: Use the values as initially set by the VMM */
2673         if (!svm->received_first_sipi) {
2674                 svm->received_first_sipi = true;
2675                 return;
2676         }
2677
2678         /*
2679          * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2680          * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2681          * non-zero value.
2682          */
2683         if (!svm->ghcb)
2684                 return;
2685
2686         ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2687 }