1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
10 * Hardware-defined CPUID leafs that are scattered in the kernel, but need to
11 * be directly used by KVM. Note, these word values conflict with the kernel's
12 * "bug" caps, but KVM doesn't use those.
14 enum kvm_only_cpuid_leafs {
15 CPUID_12_EAX = NCAPINTS,
18 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
21 #define KVM_X86_FEATURE(w, f) ((w)*32 + (f))
23 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
24 #define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0)
25 #define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1)
33 static const struct cpuid_reg reverse_cpuid[] = {
34 [CPUID_1_EDX] = { 1, 0, CPUID_EDX},
35 [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
36 [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
37 [CPUID_1_ECX] = { 1, 0, CPUID_ECX},
38 [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
39 [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
40 [CPUID_7_0_EBX] = { 7, 0, CPUID_EBX},
41 [CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX},
42 [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
43 [CPUID_6_EAX] = { 6, 0, CPUID_EAX},
44 [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
45 [CPUID_7_ECX] = { 7, 0, CPUID_ECX},
46 [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
47 [CPUID_7_EDX] = { 7, 0, CPUID_EDX},
48 [CPUID_7_1_EAX] = { 7, 1, CPUID_EAX},
49 [CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX},
50 [CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
54 * Reverse CPUID and its derivatives can only be used for hardware-defined
55 * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
56 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
57 * is nonsensical as the bit number/mask is an arbitrary software-defined value
58 * and can't be used by KVM to query/control guest capabilities. And obviously
59 * the leaf being queried must have an entry in the lookup table.
61 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
63 BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
64 BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
65 BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
66 BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
67 BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
68 BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
72 * Translate feature bits that are scattered in the kernel's cpufeatures word
73 * into KVM feature words that align with hardware's definitions.
75 static __always_inline u32 __feature_translate(int x86_feature)
77 if (x86_feature == X86_FEATURE_SGX1)
78 return KVM_X86_FEATURE_SGX1;
79 else if (x86_feature == X86_FEATURE_SGX2)
80 return KVM_X86_FEATURE_SGX2;
85 static __always_inline u32 __feature_leaf(int x86_feature)
87 return __feature_translate(x86_feature) / 32;
91 * Retrieve the bit mask from an X86_FEATURE_* definition. Features contain
92 * the hardware defined bit number (stored in bits 4:0) and a software defined
93 * "word" (stored in bits 31:5). The word is used to index into arrays of
94 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
96 static __always_inline u32 __feature_bit(int x86_feature)
98 x86_feature = __feature_translate(x86_feature);
100 reverse_cpuid_check(x86_feature / 32);
101 return 1 << (x86_feature & 31);
104 #define feature_bit(name) __feature_bit(X86_FEATURE_##name)
106 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
108 unsigned int x86_leaf = __feature_leaf(x86_feature);
110 reverse_cpuid_check(x86_leaf);
111 return reverse_cpuid[x86_leaf];
114 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
132 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
133 unsigned int x86_feature)
135 const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
137 return __cpuid_entry_get_reg(entry, cpuid.reg);
140 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
141 unsigned int x86_feature)
143 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
145 return *reg & __feature_bit(x86_feature);
148 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
149 unsigned int x86_feature)
151 return cpuid_entry_get(entry, x86_feature);
154 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
155 unsigned int x86_feature)
157 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
159 *reg &= ~__feature_bit(x86_feature);
162 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
163 unsigned int x86_feature)
165 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
167 *reg |= __feature_bit(x86_feature);
170 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
171 unsigned int x86_feature,
174 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
177 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
178 * compiler into using CMOV instead of Jcc when possible.
181 *reg |= __feature_bit(x86_feature);
183 *reg &= ~__feature_bit(x86_feature);
186 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */