arm: dts: change RP1 SDHCI controller compatible string
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36         /* Instruction-Accurate PDIR (PDIR++) */
37         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38         {}
39 };
40
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44         {}
45 };
46
47 /* NOTE:
48  * - Each perf counter is defined as "struct kvm_pmc";
49  * - There are two types of perf counters: general purpose (gp) and fixed.
50  *   gp counters are stored in gp_counters[] and fixed counters are stored
51  *   in fixed_counters[] respectively. Both of them are part of "struct
52  *   kvm_pmu";
53  * - pmu.c understands the difference between gp counters and fixed counters.
54  *   However AMD doesn't support fixed-counters;
55  * - There are three types of index to access perf counters (PMC):
56  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57  *        has MSR_K7_PERFCTRn and, for families 15H and later,
58  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59  *        aliased to MSR_K7_PERFCTRn.
60  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
61  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63  *        that it also supports fixed counters. idx can be used to as index to
64  *        gp and fixed counters.
65  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
66  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
67  *        all perf counters (both gp and fixed). The mapping relationship
68  *        between pmc and perf counters is as the following:
69  *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73  */
74
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76
77 #define KVM_X86_PMU_OP(func)                                         \
78         DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,                          \
79                                 *(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82
83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85         memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86
87 #define __KVM_X86_PMU_OP(func) \
88         static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90         WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95
96 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
97 {
98         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
99         bool skip_pmi = false;
100
101         if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
102                 if (!in_pmi) {
103                         /*
104                          * TODO: KVM is currently _choosing_ to not generate records
105                          * for emulated instructions, avoiding BUFFER_OVF PMI when
106                          * there are no records. Strictly speaking, it should be done
107                          * as well in the right context to improve sampling accuracy.
108                          */
109                         skip_pmi = true;
110                 } else {
111                         /* Indicate PEBS overflow PMI to guest. */
112                         skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
113                                                       (unsigned long *)&pmu->global_status);
114                 }
115         } else {
116                 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
117         }
118
119         if (pmc->intr && !skip_pmi)
120                 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
121 }
122
123 static void kvm_perf_overflow(struct perf_event *perf_event,
124                               struct perf_sample_data *data,
125                               struct pt_regs *regs)
126 {
127         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
128
129         /*
130          * Ignore overflow events for counters that are scheduled to be
131          * reprogrammed, e.g. if a PMI for the previous event races with KVM's
132          * handling of a related guest WRMSR.
133          */
134         if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
135                 return;
136
137         __kvm_perf_overflow(pmc, true);
138
139         kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
140 }
141
142 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
143 {
144         /*
145          * For some model specific pebs counters with special capabilities
146          * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
147          * level to the maximum value (currently 3, backwards compatible)
148          * so that the perf subsystem would assign specific hardware counter
149          * with that capability for vPMC.
150          */
151         if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
152             (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
153                 return 3;
154
155         /*
156          * The non-zero precision level of guest event makes the ordinary
157          * guest event becomes a guest PEBS event and triggers the host
158          * PEBS PMI handler to determine whether the PEBS overflow PMI
159          * comes from the host counters or the guest.
160          */
161         return 1;
162 }
163
164 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
165                                  bool exclude_user, bool exclude_kernel,
166                                  bool intr)
167 {
168         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
169         struct perf_event *event;
170         struct perf_event_attr attr = {
171                 .type = type,
172                 .size = sizeof(attr),
173                 .pinned = true,
174                 .exclude_idle = true,
175                 .exclude_host = 1,
176                 .exclude_user = exclude_user,
177                 .exclude_kernel = exclude_kernel,
178                 .config = config,
179         };
180         bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
181
182         attr.sample_period = get_sample_period(pmc, pmc->counter);
183
184         if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
185             guest_cpuid_is_intel(pmc->vcpu)) {
186                 /*
187                  * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
188                  * period. Just clear the sample period so at least
189                  * allocating the counter doesn't fail.
190                  */
191                 attr.sample_period = 0;
192         }
193         if (pebs) {
194                 /*
195                  * For most PEBS hardware events, the difference in the software
196                  * precision levels of guest and host PEBS events will not affect
197                  * the accuracy of the PEBS profiling result, because the "event IP"
198                  * in the PEBS record is calibrated on the guest side.
199                  */
200                 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
201         }
202
203         event = perf_event_create_kernel_counter(&attr, -1, current,
204                                                  kvm_perf_overflow, pmc);
205         if (IS_ERR(event)) {
206                 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
207                             PTR_ERR(event), pmc->idx);
208                 return PTR_ERR(event);
209         }
210
211         pmc->perf_event = event;
212         pmc_to_pmu(pmc)->event_count++;
213         pmc->is_paused = false;
214         pmc->intr = intr || pebs;
215         return 0;
216 }
217
218 static void pmc_pause_counter(struct kvm_pmc *pmc)
219 {
220         u64 counter = pmc->counter;
221
222         if (!pmc->perf_event || pmc->is_paused)
223                 return;
224
225         /* update counter, reset event value to avoid redundant accumulation */
226         counter += perf_event_pause(pmc->perf_event, true);
227         pmc->counter = counter & pmc_bitmask(pmc);
228         pmc->is_paused = true;
229 }
230
231 static bool pmc_resume_counter(struct kvm_pmc *pmc)
232 {
233         if (!pmc->perf_event)
234                 return false;
235
236         /* recalibrate sample period and check if it's accepted by perf core */
237         if (is_sampling_event(pmc->perf_event) &&
238             perf_event_period(pmc->perf_event,
239                               get_sample_period(pmc, pmc->counter)))
240                 return false;
241
242         if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
243             (!!pmc->perf_event->attr.precise_ip))
244                 return false;
245
246         /* reuse perf_event to serve as pmc_reprogram_counter() does*/
247         perf_event_enable(pmc->perf_event);
248         pmc->is_paused = false;
249
250         return true;
251 }
252
253 static void pmc_release_perf_event(struct kvm_pmc *pmc)
254 {
255         if (pmc->perf_event) {
256                 perf_event_release_kernel(pmc->perf_event);
257                 pmc->perf_event = NULL;
258                 pmc->current_config = 0;
259                 pmc_to_pmu(pmc)->event_count--;
260         }
261 }
262
263 static void pmc_stop_counter(struct kvm_pmc *pmc)
264 {
265         if (pmc->perf_event) {
266                 pmc->counter = pmc_read_counter(pmc);
267                 pmc_release_perf_event(pmc);
268         }
269 }
270
271 static int filter_cmp(const void *pa, const void *pb, u64 mask)
272 {
273         u64 a = *(u64 *)pa & mask;
274         u64 b = *(u64 *)pb & mask;
275
276         return (a > b) - (a < b);
277 }
278
279
280 static int filter_sort_cmp(const void *pa, const void *pb)
281 {
282         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
283                                    KVM_PMU_MASKED_ENTRY_EXCLUDE));
284 }
285
286 /*
287  * For the event filter, searching is done on the 'includes' list and
288  * 'excludes' list separately rather than on the 'events' list (which
289  * has both).  As a result the exclude bit can be ignored.
290  */
291 static int filter_event_cmp(const void *pa, const void *pb)
292 {
293         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
294 }
295
296 static int find_filter_index(u64 *events, u64 nevents, u64 key)
297 {
298         u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
299                           filter_event_cmp);
300
301         if (!fe)
302                 return -1;
303
304         return fe - events;
305 }
306
307 static bool is_filter_entry_match(u64 filter_event, u64 umask)
308 {
309         u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
310         u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
311
312         BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
313                      (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
314                      ARCH_PERFMON_EVENTSEL_UMASK);
315
316         return (umask & mask) == match;
317 }
318
319 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
320 {
321         u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
322         u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
323         int i, index;
324
325         index = find_filter_index(events, nevents, event_select);
326         if (index < 0)
327                 return false;
328
329         /*
330          * Entries are sorted by the event select.  Walk the list in both
331          * directions to process all entries with the targeted event select.
332          */
333         for (i = index; i < nevents; i++) {
334                 if (filter_event_cmp(&events[i], &event_select))
335                         break;
336
337                 if (is_filter_entry_match(events[i], umask))
338                         return true;
339         }
340
341         for (i = index - 1; i >= 0; i--) {
342                 if (filter_event_cmp(&events[i], &event_select))
343                         break;
344
345                 if (is_filter_entry_match(events[i], umask))
346                         return true;
347         }
348
349         return false;
350 }
351
352 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
353                                 u64 eventsel)
354 {
355         if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
356             !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
357                 return f->action == KVM_PMU_EVENT_ALLOW;
358
359         return f->action == KVM_PMU_EVENT_DENY;
360 }
361
362 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
363                                    int idx)
364 {
365         int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
366
367         if (filter->action == KVM_PMU_EVENT_DENY &&
368             test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
369                 return false;
370         if (filter->action == KVM_PMU_EVENT_ALLOW &&
371             !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
372                 return false;
373
374         return true;
375 }
376
377 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
378 {
379         struct kvm_x86_pmu_event_filter *filter;
380         struct kvm *kvm = pmc->vcpu->kvm;
381
382         filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
383         if (!filter)
384                 return true;
385
386         if (pmc_is_gp(pmc))
387                 return is_gp_event_allowed(filter, pmc->eventsel);
388
389         return is_fixed_event_allowed(filter, pmc->idx);
390 }
391
392 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
393 {
394         return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
395                static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
396                check_pmu_event_filter(pmc);
397 }
398
399 static void reprogram_counter(struct kvm_pmc *pmc)
400 {
401         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
402         u64 eventsel = pmc->eventsel;
403         u64 new_config = eventsel;
404         u8 fixed_ctr_ctrl;
405
406         pmc_pause_counter(pmc);
407
408         if (!pmc_event_is_allowed(pmc))
409                 goto reprogram_complete;
410
411         if (pmc->counter < pmc->prev_counter)
412                 __kvm_perf_overflow(pmc, false);
413
414         if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
415                 printk_once("kvm pmu: pin control bit is ignored\n");
416
417         if (pmc_is_fixed(pmc)) {
418                 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
419                                                   pmc->idx - INTEL_PMC_IDX_FIXED);
420                 if (fixed_ctr_ctrl & 0x1)
421                         eventsel |= ARCH_PERFMON_EVENTSEL_OS;
422                 if (fixed_ctr_ctrl & 0x2)
423                         eventsel |= ARCH_PERFMON_EVENTSEL_USR;
424                 if (fixed_ctr_ctrl & 0x8)
425                         eventsel |= ARCH_PERFMON_EVENTSEL_INT;
426                 new_config = (u64)fixed_ctr_ctrl;
427         }
428
429         if (pmc->current_config == new_config && pmc_resume_counter(pmc))
430                 goto reprogram_complete;
431
432         pmc_release_perf_event(pmc);
433
434         pmc->current_config = new_config;
435
436         /*
437          * If reprogramming fails, e.g. due to contention, leave the counter's
438          * regprogram bit set, i.e. opportunistically try again on the next PMU
439          * refresh.  Don't make a new request as doing so can stall the guest
440          * if reprogramming repeatedly fails.
441          */
442         if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
443                                   (eventsel & pmu->raw_event_mask),
444                                   !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
445                                   !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
446                                   eventsel & ARCH_PERFMON_EVENTSEL_INT))
447                 return;
448
449 reprogram_complete:
450         clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
451         pmc->prev_counter = 0;
452 }
453
454 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
455 {
456         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
457         int bit;
458
459         for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
460                 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
461
462                 if (unlikely(!pmc)) {
463                         clear_bit(bit, pmu->reprogram_pmi);
464                         continue;
465                 }
466
467                 reprogram_counter(pmc);
468         }
469
470         /*
471          * Unused perf_events are only released if the corresponding MSRs
472          * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
473          * triggers KVM_REQ_PMU if cleanup is needed.
474          */
475         if (unlikely(pmu->need_cleanup))
476                 kvm_pmu_cleanup(vcpu);
477 }
478
479 /* check if idx is a valid index to access PMU */
480 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
481 {
482         return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
483 }
484
485 bool is_vmware_backdoor_pmc(u32 pmc_idx)
486 {
487         switch (pmc_idx) {
488         case VMWARE_BACKDOOR_PMC_HOST_TSC:
489         case VMWARE_BACKDOOR_PMC_REAL_TIME:
490         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
491                 return true;
492         }
493         return false;
494 }
495
496 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
497 {
498         u64 ctr_val;
499
500         switch (idx) {
501         case VMWARE_BACKDOOR_PMC_HOST_TSC:
502                 ctr_val = rdtsc();
503                 break;
504         case VMWARE_BACKDOOR_PMC_REAL_TIME:
505                 ctr_val = ktime_get_boottime_ns();
506                 break;
507         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
508                 ctr_val = ktime_get_boottime_ns() +
509                         vcpu->kvm->arch.kvmclock_offset;
510                 break;
511         default:
512                 return 1;
513         }
514
515         *data = ctr_val;
516         return 0;
517 }
518
519 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
520 {
521         bool fast_mode = idx & (1u << 31);
522         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
523         struct kvm_pmc *pmc;
524         u64 mask = fast_mode ? ~0u : ~0ull;
525
526         if (!pmu->version)
527                 return 1;
528
529         if (is_vmware_backdoor_pmc(idx))
530                 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
531
532         pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
533         if (!pmc)
534                 return 1;
535
536         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
537             (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
538             kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
539                 return 1;
540
541         *data = pmc_read_counter(pmc) & mask;
542         return 0;
543 }
544
545 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
546 {
547         if (lapic_in_kernel(vcpu)) {
548                 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
549                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
550         }
551 }
552
553 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
554 {
555         switch (msr) {
556         case MSR_CORE_PERF_GLOBAL_STATUS:
557         case MSR_CORE_PERF_GLOBAL_CTRL:
558         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
559                 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
560         default:
561                 break;
562         }
563         return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
564                 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
565 }
566
567 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
568 {
569         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
570         struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
571
572         if (pmc)
573                 __set_bit(pmc->idx, pmu->pmc_in_use);
574 }
575
576 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
577 {
578         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
579         u32 msr = msr_info->index;
580
581         switch (msr) {
582         case MSR_CORE_PERF_GLOBAL_STATUS:
583         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
584                 msr_info->data = pmu->global_status;
585                 break;
586         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
587         case MSR_CORE_PERF_GLOBAL_CTRL:
588                 msr_info->data = pmu->global_ctrl;
589                 break;
590         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
591         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
592                 msr_info->data = 0;
593                 break;
594         default:
595                 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
596         }
597
598         return 0;
599 }
600
601 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
602 {
603         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
604         u32 msr = msr_info->index;
605         u64 data = msr_info->data;
606         u64 diff;
607
608         /*
609          * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
610          * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
611          */
612         switch (msr) {
613         case MSR_CORE_PERF_GLOBAL_STATUS:
614                 if (!msr_info->host_initiated)
615                         return 1; /* RO MSR */
616                 fallthrough;
617         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
618                 /* Per PPR, Read-only MSR. Writes are ignored. */
619                 if (!msr_info->host_initiated)
620                         break;
621
622                 if (data & pmu->global_status_mask)
623                         return 1;
624
625                 pmu->global_status = data;
626                 break;
627         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
628                 data &= ~pmu->global_ctrl_mask;
629                 fallthrough;
630         case MSR_CORE_PERF_GLOBAL_CTRL:
631                 if (!kvm_valid_perf_global_ctrl(pmu, data))
632                         return 1;
633
634                 if (pmu->global_ctrl != data) {
635                         diff = pmu->global_ctrl ^ data;
636                         pmu->global_ctrl = data;
637                         reprogram_counters(pmu, diff);
638                 }
639                 break;
640         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
641                 /*
642                  * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
643                  * GLOBAL_STATUS, and so the set of reserved bits is the same.
644                  */
645                 if (data & pmu->global_status_mask)
646                         return 1;
647                 fallthrough;
648         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
649                 if (!msr_info->host_initiated)
650                         pmu->global_status &= ~data;
651                 break;
652         default:
653                 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
654                 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
655         }
656
657         return 0;
658 }
659
660 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
661 {
662         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
663         struct kvm_pmc *pmc;
664         int i;
665
666         pmu->need_cleanup = false;
667
668         bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
669
670         for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
671                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
672                 if (!pmc)
673                         continue;
674
675                 pmc_stop_counter(pmc);
676                 pmc->counter = 0;
677
678                 if (pmc_is_gp(pmc))
679                         pmc->eventsel = 0;
680         }
681
682         pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
683
684         static_call_cond(kvm_x86_pmu_reset)(vcpu);
685 }
686
687
688 /*
689  * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
690  * and/or PERF_CAPABILITIES.
691  */
692 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
693 {
694         if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
695                 return;
696
697         /*
698          * Stop/release all existing counters/events before realizing the new
699          * vPMU model.
700          */
701         kvm_pmu_reset(vcpu);
702
703         bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
704         static_call(kvm_x86_pmu_refresh)(vcpu);
705 }
706
707 void kvm_pmu_init(struct kvm_vcpu *vcpu)
708 {
709         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
710
711         memset(pmu, 0, sizeof(*pmu));
712         static_call(kvm_x86_pmu_init)(vcpu);
713         pmu->event_count = 0;
714         pmu->need_cleanup = false;
715         kvm_pmu_refresh(vcpu);
716 }
717
718 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
719 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
720 {
721         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
722         struct kvm_pmc *pmc = NULL;
723         DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
724         int i;
725
726         pmu->need_cleanup = false;
727
728         bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
729                       pmu->pmc_in_use, X86_PMC_IDX_MAX);
730
731         for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
732                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
733
734                 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
735                         pmc_stop_counter(pmc);
736         }
737
738         static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
739
740         bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
741 }
742
743 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
744 {
745         kvm_pmu_reset(vcpu);
746 }
747
748 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
749 {
750         pmc->prev_counter = pmc->counter;
751         pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
752         kvm_pmu_request_counter_reprogram(pmc);
753 }
754
755 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
756         unsigned int perf_hw_id)
757 {
758         return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
759                 AMD64_RAW_EVENT_MASK_NB);
760 }
761
762 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
763 {
764         bool select_os, select_user;
765         u64 config;
766
767         if (pmc_is_gp(pmc)) {
768                 config = pmc->eventsel;
769                 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
770                 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
771         } else {
772                 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
773                                           pmc->idx - INTEL_PMC_IDX_FIXED);
774                 select_os = config & 0x1;
775                 select_user = config & 0x2;
776         }
777
778         return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
779 }
780
781 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
782 {
783         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
784         struct kvm_pmc *pmc;
785         int i;
786
787         for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
788                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
789
790                 if (!pmc || !pmc_event_is_allowed(pmc))
791                         continue;
792
793                 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
794                 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
795                         kvm_pmu_incr_counter(pmc);
796         }
797 }
798 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
799
800 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
801 {
802         u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
803                    KVM_PMU_MASKED_ENTRY_UMASK_MASK |
804                    KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
805                    KVM_PMU_MASKED_ENTRY_EXCLUDE;
806         int i;
807
808         for (i = 0; i < filter->nevents; i++) {
809                 if (filter->events[i] & ~mask)
810                         return false;
811         }
812
813         return true;
814 }
815
816 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
817 {
818         int i, j;
819
820         for (i = 0, j = 0; i < filter->nevents; i++) {
821                 /*
822                  * Skip events that are impossible to match against a guest
823                  * event.  When filtering, only the event select + unit mask
824                  * of the guest event is used.  To maintain backwards
825                  * compatibility, impossible filters can't be rejected :-(
826                  */
827                 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
828                                           ARCH_PERFMON_EVENTSEL_UMASK))
829                         continue;
830                 /*
831                  * Convert userspace events to a common in-kernel event so
832                  * only one code path is needed to support both events.  For
833                  * the in-kernel events use masked events because they are
834                  * flexible enough to handle both cases.  To convert to masked
835                  * events all that's needed is to add an "all ones" umask_mask,
836                  * (unmasked filter events don't support EXCLUDE).
837                  */
838                 filter->events[j++] = filter->events[i] |
839                                       (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
840         }
841
842         filter->nevents = j;
843 }
844
845 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
846 {
847         int i;
848
849         if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
850                 convert_to_masked_filter(filter);
851         else if (!is_masked_filter_valid(filter))
852                 return -EINVAL;
853
854         /*
855          * Sort entries by event select and includes vs. excludes so that all
856          * entries for a given event select can be processed efficiently during
857          * filtering.  The EXCLUDE flag uses a more significant bit than the
858          * event select, and so the sorted list is also effectively split into
859          * includes and excludes sub-lists.
860          */
861         sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
862              filter_sort_cmp, NULL);
863
864         i = filter->nevents;
865         /* Find the first EXCLUDE event (only supported for masked events). */
866         if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
867                 for (i = 0; i < filter->nevents; i++) {
868                         if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
869                                 break;
870                 }
871         }
872
873         filter->nr_includes = i;
874         filter->nr_excludes = filter->nevents - filter->nr_includes;
875         filter->includes = filter->events;
876         filter->excludes = filter->events + filter->nr_includes;
877
878         return 0;
879 }
880
881 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
882 {
883         struct kvm_pmu_event_filter __user *user_filter = argp;
884         struct kvm_x86_pmu_event_filter *filter;
885         struct kvm_pmu_event_filter tmp;
886         struct kvm_vcpu *vcpu;
887         unsigned long i;
888         size_t size;
889         int r;
890
891         if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
892                 return -EFAULT;
893
894         if (tmp.action != KVM_PMU_EVENT_ALLOW &&
895             tmp.action != KVM_PMU_EVENT_DENY)
896                 return -EINVAL;
897
898         if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
899                 return -EINVAL;
900
901         if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
902                 return -E2BIG;
903
904         size = struct_size(filter, events, tmp.nevents);
905         filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
906         if (!filter)
907                 return -ENOMEM;
908
909         filter->action = tmp.action;
910         filter->nevents = tmp.nevents;
911         filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
912         filter->flags = tmp.flags;
913
914         r = -EFAULT;
915         if (copy_from_user(filter->events, user_filter->events,
916                            sizeof(filter->events[0]) * filter->nevents))
917                 goto cleanup;
918
919         r = prepare_filter_lists(filter);
920         if (r)
921                 goto cleanup;
922
923         mutex_lock(&kvm->lock);
924         filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
925                                      mutex_is_locked(&kvm->lock));
926         mutex_unlock(&kvm->lock);
927         synchronize_srcu_expedited(&kvm->srcu);
928
929         BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
930                      sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
931
932         kvm_for_each_vcpu(i, vcpu, kvm)
933                 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
934
935         kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
936
937         r = 0;
938 cleanup:
939         kfree(filter);
940         return r;
941 }