Merge tag 'powerpc-6.6-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-starfive.git] / arch / x86 / kvm / pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36         /* Instruction-Accurate PDIR (PDIR++) */
37         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38         {}
39 };
40
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44         {}
45 };
46
47 /* NOTE:
48  * - Each perf counter is defined as "struct kvm_pmc";
49  * - There are two types of perf counters: general purpose (gp) and fixed.
50  *   gp counters are stored in gp_counters[] and fixed counters are stored
51  *   in fixed_counters[] respectively. Both of them are part of "struct
52  *   kvm_pmu";
53  * - pmu.c understands the difference between gp counters and fixed counters.
54  *   However AMD doesn't support fixed-counters;
55  * - There are three types of index to access perf counters (PMC):
56  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57  *        has MSR_K7_PERFCTRn and, for families 15H and later,
58  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59  *        aliased to MSR_K7_PERFCTRn.
60  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
61  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63  *        that it also supports fixed counters. idx can be used to as index to
64  *        gp and fixed counters.
65  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
66  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
67  *        all perf counters (both gp and fixed). The mapping relationship
68  *        between pmc and perf counters is as the following:
69  *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73  */
74
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76
77 #define KVM_X86_PMU_OP(func)                                         \
78         DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,                          \
79                                 *(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82
83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85         memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86
87 #define __KVM_X86_PMU_OP(func) \
88         static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90         WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95
96 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
97 {
98         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
99         bool skip_pmi = false;
100
101         if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
102                 if (!in_pmi) {
103                         /*
104                          * TODO: KVM is currently _choosing_ to not generate records
105                          * for emulated instructions, avoiding BUFFER_OVF PMI when
106                          * there are no records. Strictly speaking, it should be done
107                          * as well in the right context to improve sampling accuracy.
108                          */
109                         skip_pmi = true;
110                 } else {
111                         /* Indicate PEBS overflow PMI to guest. */
112                         skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
113                                                       (unsigned long *)&pmu->global_status);
114                 }
115         } else {
116                 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
117         }
118
119         if (pmc->intr && !skip_pmi)
120                 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
121 }
122
123 static void kvm_perf_overflow(struct perf_event *perf_event,
124                               struct perf_sample_data *data,
125                               struct pt_regs *regs)
126 {
127         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
128
129         /*
130          * Ignore overflow events for counters that are scheduled to be
131          * reprogrammed, e.g. if a PMI for the previous event races with KVM's
132          * handling of a related guest WRMSR.
133          */
134         if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
135                 return;
136
137         __kvm_perf_overflow(pmc, true);
138
139         kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
140 }
141
142 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
143 {
144         /*
145          * For some model specific pebs counters with special capabilities
146          * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
147          * level to the maximum value (currently 3, backwards compatible)
148          * so that the perf subsystem would assign specific hardware counter
149          * with that capability for vPMC.
150          */
151         if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
152             (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
153                 return 3;
154
155         /*
156          * The non-zero precision level of guest event makes the ordinary
157          * guest event becomes a guest PEBS event and triggers the host
158          * PEBS PMI handler to determine whether the PEBS overflow PMI
159          * comes from the host counters or the guest.
160          */
161         return 1;
162 }
163
164 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
165                                  bool exclude_user, bool exclude_kernel,
166                                  bool intr)
167 {
168         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
169         struct perf_event *event;
170         struct perf_event_attr attr = {
171                 .type = type,
172                 .size = sizeof(attr),
173                 .pinned = true,
174                 .exclude_idle = true,
175                 .exclude_host = 1,
176                 .exclude_user = exclude_user,
177                 .exclude_kernel = exclude_kernel,
178                 .config = config,
179         };
180         bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
181
182         attr.sample_period = get_sample_period(pmc, pmc->counter);
183
184         if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
185             guest_cpuid_is_intel(pmc->vcpu)) {
186                 /*
187                  * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
188                  * period. Just clear the sample period so at least
189                  * allocating the counter doesn't fail.
190                  */
191                 attr.sample_period = 0;
192         }
193         if (pebs) {
194                 /*
195                  * For most PEBS hardware events, the difference in the software
196                  * precision levels of guest and host PEBS events will not affect
197                  * the accuracy of the PEBS profiling result, because the "event IP"
198                  * in the PEBS record is calibrated on the guest side.
199                  */
200                 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
201         }
202
203         event = perf_event_create_kernel_counter(&attr, -1, current,
204                                                  kvm_perf_overflow, pmc);
205         if (IS_ERR(event)) {
206                 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
207                             PTR_ERR(event), pmc->idx);
208                 return PTR_ERR(event);
209         }
210
211         pmc->perf_event = event;
212         pmc_to_pmu(pmc)->event_count++;
213         pmc->is_paused = false;
214         pmc->intr = intr || pebs;
215         return 0;
216 }
217
218 static void pmc_pause_counter(struct kvm_pmc *pmc)
219 {
220         u64 counter = pmc->counter;
221
222         if (!pmc->perf_event || pmc->is_paused)
223                 return;
224
225         /* update counter, reset event value to avoid redundant accumulation */
226         counter += perf_event_pause(pmc->perf_event, true);
227         pmc->counter = counter & pmc_bitmask(pmc);
228         pmc->is_paused = true;
229 }
230
231 static bool pmc_resume_counter(struct kvm_pmc *pmc)
232 {
233         if (!pmc->perf_event)
234                 return false;
235
236         /* recalibrate sample period and check if it's accepted by perf core */
237         if (is_sampling_event(pmc->perf_event) &&
238             perf_event_period(pmc->perf_event,
239                               get_sample_period(pmc, pmc->counter)))
240                 return false;
241
242         if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
243             (!!pmc->perf_event->attr.precise_ip))
244                 return false;
245
246         /* reuse perf_event to serve as pmc_reprogram_counter() does*/
247         perf_event_enable(pmc->perf_event);
248         pmc->is_paused = false;
249
250         return true;
251 }
252
253 static int filter_cmp(const void *pa, const void *pb, u64 mask)
254 {
255         u64 a = *(u64 *)pa & mask;
256         u64 b = *(u64 *)pb & mask;
257
258         return (a > b) - (a < b);
259 }
260
261
262 static int filter_sort_cmp(const void *pa, const void *pb)
263 {
264         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
265                                    KVM_PMU_MASKED_ENTRY_EXCLUDE));
266 }
267
268 /*
269  * For the event filter, searching is done on the 'includes' list and
270  * 'excludes' list separately rather than on the 'events' list (which
271  * has both).  As a result the exclude bit can be ignored.
272  */
273 static int filter_event_cmp(const void *pa, const void *pb)
274 {
275         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
276 }
277
278 static int find_filter_index(u64 *events, u64 nevents, u64 key)
279 {
280         u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
281                           filter_event_cmp);
282
283         if (!fe)
284                 return -1;
285
286         return fe - events;
287 }
288
289 static bool is_filter_entry_match(u64 filter_event, u64 umask)
290 {
291         u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
292         u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
293
294         BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
295                      (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
296                      ARCH_PERFMON_EVENTSEL_UMASK);
297
298         return (umask & mask) == match;
299 }
300
301 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
302 {
303         u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
304         u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
305         int i, index;
306
307         index = find_filter_index(events, nevents, event_select);
308         if (index < 0)
309                 return false;
310
311         /*
312          * Entries are sorted by the event select.  Walk the list in both
313          * directions to process all entries with the targeted event select.
314          */
315         for (i = index; i < nevents; i++) {
316                 if (filter_event_cmp(&events[i], &event_select))
317                         break;
318
319                 if (is_filter_entry_match(events[i], umask))
320                         return true;
321         }
322
323         for (i = index - 1; i >= 0; i--) {
324                 if (filter_event_cmp(&events[i], &event_select))
325                         break;
326
327                 if (is_filter_entry_match(events[i], umask))
328                         return true;
329         }
330
331         return false;
332 }
333
334 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
335                                 u64 eventsel)
336 {
337         if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
338             !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
339                 return f->action == KVM_PMU_EVENT_ALLOW;
340
341         return f->action == KVM_PMU_EVENT_DENY;
342 }
343
344 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
345                                    int idx)
346 {
347         int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
348
349         if (filter->action == KVM_PMU_EVENT_DENY &&
350             test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
351                 return false;
352         if (filter->action == KVM_PMU_EVENT_ALLOW &&
353             !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
354                 return false;
355
356         return true;
357 }
358
359 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
360 {
361         struct kvm_x86_pmu_event_filter *filter;
362         struct kvm *kvm = pmc->vcpu->kvm;
363
364         filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
365         if (!filter)
366                 return true;
367
368         if (pmc_is_gp(pmc))
369                 return is_gp_event_allowed(filter, pmc->eventsel);
370
371         return is_fixed_event_allowed(filter, pmc->idx);
372 }
373
374 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
375 {
376         return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
377                static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
378                check_pmu_event_filter(pmc);
379 }
380
381 static void reprogram_counter(struct kvm_pmc *pmc)
382 {
383         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
384         u64 eventsel = pmc->eventsel;
385         u64 new_config = eventsel;
386         u8 fixed_ctr_ctrl;
387
388         pmc_pause_counter(pmc);
389
390         if (!pmc_event_is_allowed(pmc))
391                 goto reprogram_complete;
392
393         if (pmc->counter < pmc->prev_counter)
394                 __kvm_perf_overflow(pmc, false);
395
396         if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
397                 printk_once("kvm pmu: pin control bit is ignored\n");
398
399         if (pmc_is_fixed(pmc)) {
400                 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
401                                                   pmc->idx - INTEL_PMC_IDX_FIXED);
402                 if (fixed_ctr_ctrl & 0x1)
403                         eventsel |= ARCH_PERFMON_EVENTSEL_OS;
404                 if (fixed_ctr_ctrl & 0x2)
405                         eventsel |= ARCH_PERFMON_EVENTSEL_USR;
406                 if (fixed_ctr_ctrl & 0x8)
407                         eventsel |= ARCH_PERFMON_EVENTSEL_INT;
408                 new_config = (u64)fixed_ctr_ctrl;
409         }
410
411         if (pmc->current_config == new_config && pmc_resume_counter(pmc))
412                 goto reprogram_complete;
413
414         pmc_release_perf_event(pmc);
415
416         pmc->current_config = new_config;
417
418         /*
419          * If reprogramming fails, e.g. due to contention, leave the counter's
420          * regprogram bit set, i.e. opportunistically try again on the next PMU
421          * refresh.  Don't make a new request as doing so can stall the guest
422          * if reprogramming repeatedly fails.
423          */
424         if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
425                                   (eventsel & pmu->raw_event_mask),
426                                   !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
427                                   !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
428                                   eventsel & ARCH_PERFMON_EVENTSEL_INT))
429                 return;
430
431 reprogram_complete:
432         clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
433         pmc->prev_counter = 0;
434 }
435
436 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
437 {
438         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
439         int bit;
440
441         for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
442                 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
443
444                 if (unlikely(!pmc)) {
445                         clear_bit(bit, pmu->reprogram_pmi);
446                         continue;
447                 }
448
449                 reprogram_counter(pmc);
450         }
451
452         /*
453          * Unused perf_events are only released if the corresponding MSRs
454          * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
455          * triggers KVM_REQ_PMU if cleanup is needed.
456          */
457         if (unlikely(pmu->need_cleanup))
458                 kvm_pmu_cleanup(vcpu);
459 }
460
461 /* check if idx is a valid index to access PMU */
462 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
463 {
464         return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
465 }
466
467 bool is_vmware_backdoor_pmc(u32 pmc_idx)
468 {
469         switch (pmc_idx) {
470         case VMWARE_BACKDOOR_PMC_HOST_TSC:
471         case VMWARE_BACKDOOR_PMC_REAL_TIME:
472         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
473                 return true;
474         }
475         return false;
476 }
477
478 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
479 {
480         u64 ctr_val;
481
482         switch (idx) {
483         case VMWARE_BACKDOOR_PMC_HOST_TSC:
484                 ctr_val = rdtsc();
485                 break;
486         case VMWARE_BACKDOOR_PMC_REAL_TIME:
487                 ctr_val = ktime_get_boottime_ns();
488                 break;
489         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
490                 ctr_val = ktime_get_boottime_ns() +
491                         vcpu->kvm->arch.kvmclock_offset;
492                 break;
493         default:
494                 return 1;
495         }
496
497         *data = ctr_val;
498         return 0;
499 }
500
501 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
502 {
503         bool fast_mode = idx & (1u << 31);
504         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
505         struct kvm_pmc *pmc;
506         u64 mask = fast_mode ? ~0u : ~0ull;
507
508         if (!pmu->version)
509                 return 1;
510
511         if (is_vmware_backdoor_pmc(idx))
512                 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
513
514         pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
515         if (!pmc)
516                 return 1;
517
518         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
519             (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
520             kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
521                 return 1;
522
523         *data = pmc_read_counter(pmc) & mask;
524         return 0;
525 }
526
527 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
528 {
529         if (lapic_in_kernel(vcpu)) {
530                 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
531                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
532         }
533 }
534
535 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
536 {
537         switch (msr) {
538         case MSR_CORE_PERF_GLOBAL_STATUS:
539         case MSR_CORE_PERF_GLOBAL_CTRL:
540         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
541                 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
542         default:
543                 break;
544         }
545         return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
546                 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
547 }
548
549 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
550 {
551         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
552         struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
553
554         if (pmc)
555                 __set_bit(pmc->idx, pmu->pmc_in_use);
556 }
557
558 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
559 {
560         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
561         u32 msr = msr_info->index;
562
563         switch (msr) {
564         case MSR_CORE_PERF_GLOBAL_STATUS:
565         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
566                 msr_info->data = pmu->global_status;
567                 break;
568         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
569         case MSR_CORE_PERF_GLOBAL_CTRL:
570                 msr_info->data = pmu->global_ctrl;
571                 break;
572         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
573         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
574                 msr_info->data = 0;
575                 break;
576         default:
577                 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
578         }
579
580         return 0;
581 }
582
583 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
584 {
585         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
586         u32 msr = msr_info->index;
587         u64 data = msr_info->data;
588         u64 diff;
589
590         /*
591          * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
592          * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
593          */
594         switch (msr) {
595         case MSR_CORE_PERF_GLOBAL_STATUS:
596                 if (!msr_info->host_initiated)
597                         return 1; /* RO MSR */
598                 fallthrough;
599         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
600                 /* Per PPR, Read-only MSR. Writes are ignored. */
601                 if (!msr_info->host_initiated)
602                         break;
603
604                 if (data & pmu->global_status_mask)
605                         return 1;
606
607                 pmu->global_status = data;
608                 break;
609         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
610                 data &= ~pmu->global_ctrl_mask;
611                 fallthrough;
612         case MSR_CORE_PERF_GLOBAL_CTRL:
613                 if (!kvm_valid_perf_global_ctrl(pmu, data))
614                         return 1;
615
616                 if (pmu->global_ctrl != data) {
617                         diff = pmu->global_ctrl ^ data;
618                         pmu->global_ctrl = data;
619                         reprogram_counters(pmu, diff);
620                 }
621                 break;
622         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
623                 /*
624                  * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
625                  * GLOBAL_STATUS, and so the set of reserved bits is the same.
626                  */
627                 if (data & pmu->global_status_mask)
628                         return 1;
629                 fallthrough;
630         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
631                 if (!msr_info->host_initiated)
632                         pmu->global_status &= ~data;
633                 break;
634         default:
635                 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
636                 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
637         }
638
639         return 0;
640 }
641
642 /* refresh PMU settings. This function generally is called when underlying
643  * settings are changed (such as changes of PMU CPUID by guest VMs), which
644  * should rarely happen.
645  */
646 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
647 {
648         if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
649                 return;
650
651         bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
652         static_call(kvm_x86_pmu_refresh)(vcpu);
653 }
654
655 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
656 {
657         static_call(kvm_x86_pmu_reset)(vcpu);
658 }
659
660 void kvm_pmu_init(struct kvm_vcpu *vcpu)
661 {
662         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
663
664         memset(pmu, 0, sizeof(*pmu));
665         static_call(kvm_x86_pmu_init)(vcpu);
666         pmu->event_count = 0;
667         pmu->need_cleanup = false;
668         kvm_pmu_refresh(vcpu);
669 }
670
671 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
672 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
673 {
674         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
675         struct kvm_pmc *pmc = NULL;
676         DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
677         int i;
678
679         pmu->need_cleanup = false;
680
681         bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
682                       pmu->pmc_in_use, X86_PMC_IDX_MAX);
683
684         for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
685                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
686
687                 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
688                         pmc_stop_counter(pmc);
689         }
690
691         static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
692
693         bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
694 }
695
696 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
697 {
698         kvm_pmu_reset(vcpu);
699 }
700
701 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
702 {
703         pmc->prev_counter = pmc->counter;
704         pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
705         kvm_pmu_request_counter_reprogram(pmc);
706 }
707
708 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
709         unsigned int perf_hw_id)
710 {
711         return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
712                 AMD64_RAW_EVENT_MASK_NB);
713 }
714
715 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
716 {
717         bool select_os, select_user;
718         u64 config;
719
720         if (pmc_is_gp(pmc)) {
721                 config = pmc->eventsel;
722                 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
723                 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
724         } else {
725                 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
726                                           pmc->idx - INTEL_PMC_IDX_FIXED);
727                 select_os = config & 0x1;
728                 select_user = config & 0x2;
729         }
730
731         return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
732 }
733
734 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
735 {
736         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
737         struct kvm_pmc *pmc;
738         int i;
739
740         for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
741                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
742
743                 if (!pmc || !pmc_event_is_allowed(pmc))
744                         continue;
745
746                 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
747                 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
748                         kvm_pmu_incr_counter(pmc);
749         }
750 }
751 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
752
753 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
754 {
755         u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
756                    KVM_PMU_MASKED_ENTRY_UMASK_MASK |
757                    KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
758                    KVM_PMU_MASKED_ENTRY_EXCLUDE;
759         int i;
760
761         for (i = 0; i < filter->nevents; i++) {
762                 if (filter->events[i] & ~mask)
763                         return false;
764         }
765
766         return true;
767 }
768
769 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
770 {
771         int i, j;
772
773         for (i = 0, j = 0; i < filter->nevents; i++) {
774                 /*
775                  * Skip events that are impossible to match against a guest
776                  * event.  When filtering, only the event select + unit mask
777                  * of the guest event is used.  To maintain backwards
778                  * compatibility, impossible filters can't be rejected :-(
779                  */
780                 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
781                                           ARCH_PERFMON_EVENTSEL_UMASK))
782                         continue;
783                 /*
784                  * Convert userspace events to a common in-kernel event so
785                  * only one code path is needed to support both events.  For
786                  * the in-kernel events use masked events because they are
787                  * flexible enough to handle both cases.  To convert to masked
788                  * events all that's needed is to add an "all ones" umask_mask,
789                  * (unmasked filter events don't support EXCLUDE).
790                  */
791                 filter->events[j++] = filter->events[i] |
792                                       (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
793         }
794
795         filter->nevents = j;
796 }
797
798 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
799 {
800         int i;
801
802         if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
803                 convert_to_masked_filter(filter);
804         else if (!is_masked_filter_valid(filter))
805                 return -EINVAL;
806
807         /*
808          * Sort entries by event select and includes vs. excludes so that all
809          * entries for a given event select can be processed efficiently during
810          * filtering.  The EXCLUDE flag uses a more significant bit than the
811          * event select, and so the sorted list is also effectively split into
812          * includes and excludes sub-lists.
813          */
814         sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
815              filter_sort_cmp, NULL);
816
817         i = filter->nevents;
818         /* Find the first EXCLUDE event (only supported for masked events). */
819         if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
820                 for (i = 0; i < filter->nevents; i++) {
821                         if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
822                                 break;
823                 }
824         }
825
826         filter->nr_includes = i;
827         filter->nr_excludes = filter->nevents - filter->nr_includes;
828         filter->includes = filter->events;
829         filter->excludes = filter->events + filter->nr_includes;
830
831         return 0;
832 }
833
834 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
835 {
836         struct kvm_pmu_event_filter __user *user_filter = argp;
837         struct kvm_x86_pmu_event_filter *filter;
838         struct kvm_pmu_event_filter tmp;
839         struct kvm_vcpu *vcpu;
840         unsigned long i;
841         size_t size;
842         int r;
843
844         if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
845                 return -EFAULT;
846
847         if (tmp.action != KVM_PMU_EVENT_ALLOW &&
848             tmp.action != KVM_PMU_EVENT_DENY)
849                 return -EINVAL;
850
851         if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
852                 return -EINVAL;
853
854         if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
855                 return -E2BIG;
856
857         size = struct_size(filter, events, tmp.nevents);
858         filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
859         if (!filter)
860                 return -ENOMEM;
861
862         filter->action = tmp.action;
863         filter->nevents = tmp.nevents;
864         filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
865         filter->flags = tmp.flags;
866
867         r = -EFAULT;
868         if (copy_from_user(filter->events, user_filter->events,
869                            sizeof(filter->events[0]) * filter->nevents))
870                 goto cleanup;
871
872         r = prepare_filter_lists(filter);
873         if (r)
874                 goto cleanup;
875
876         mutex_lock(&kvm->lock);
877         filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
878                                      mutex_is_locked(&kvm->lock));
879         mutex_unlock(&kvm->lock);
880         synchronize_srcu_expedited(&kvm->srcu);
881
882         BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
883                      sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
884
885         kvm_for_each_vcpu(i, vcpu, kvm)
886                 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
887
888         kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
889
890         r = 0;
891 cleanup:
892         kfree(filter);
893         return r;
894 }