Correct .gbs.conf settings
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
136                         | shadow_x_mask | shadow_nx_mask)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 /*
201  * the low bit of the generation number is always presumed to be zero.
202  * This disables mmio caching during memslot updates.  The concept is
203  * similar to a seqcount but instead of retrying the access we just punt
204  * and ignore the cache.
205  *
206  * spte bits 3-11 are used as bits 1-9 of the generation number,
207  * the bits 52-61 are used as bits 10-19 of the generation number.
208  */
209 #define MMIO_SPTE_GEN_LOW_SHIFT         2
210 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
211
212 #define MMIO_GEN_SHIFT                  20
213 #define MMIO_GEN_LOW_SHIFT              10
214 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
215 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
216 #define MMIO_MAX_GEN                    ((1 << MMIO_GEN_SHIFT) - 1)
217
218 static u64 generation_mmio_spte_mask(unsigned int gen)
219 {
220         u64 mask;
221
222         WARN_ON(gen > MMIO_MAX_GEN);
223
224         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
225         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
226         return mask;
227 }
228
229 static unsigned int get_mmio_spte_generation(u64 spte)
230 {
231         unsigned int gen;
232
233         spte &= ~shadow_mmio_mask;
234
235         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
236         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
237         return gen;
238 }
239
240 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
241 {
242         /*
243          * Init kvm generation close to MMIO_MAX_GEN to easily test the
244          * code of handling generation number wrap-around.
245          */
246         return (kvm_memslots(kvm)->generation +
247                       MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
248 }
249
250 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
251                            unsigned access)
252 {
253         unsigned int gen = kvm_current_mmio_generation(kvm);
254         u64 mask = generation_mmio_spte_mask(gen);
255
256         access &= ACC_WRITE_MASK | ACC_USER_MASK;
257         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
258
259         trace_mark_mmio_spte(sptep, gfn, access, gen);
260         mmu_spte_set(sptep, mask);
261 }
262
263 static bool is_mmio_spte(u64 spte)
264 {
265         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
266 }
267
268 static gfn_t get_mmio_spte_gfn(u64 spte)
269 {
270         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
271         return (spte & ~mask) >> PAGE_SHIFT;
272 }
273
274 static unsigned get_mmio_spte_access(u64 spte)
275 {
276         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
277         return (spte & ~mask) & ~PAGE_MASK;
278 }
279
280 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
281                           pfn_t pfn, unsigned access)
282 {
283         if (unlikely(is_noslot_pfn(pfn))) {
284                 mark_mmio_spte(kvm, sptep, gfn, access);
285                 return true;
286         }
287
288         return false;
289 }
290
291 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
292 {
293         unsigned int kvm_gen, spte_gen;
294
295         kvm_gen = kvm_current_mmio_generation(kvm);
296         spte_gen = get_mmio_spte_generation(spte);
297
298         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
299         return likely(kvm_gen == spte_gen);
300 }
301
302 static inline u64 rsvd_bits(int s, int e)
303 {
304         return ((1ULL << (e - s + 1)) - 1) << s;
305 }
306
307 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
308                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
309 {
310         shadow_user_mask = user_mask;
311         shadow_accessed_mask = accessed_mask;
312         shadow_dirty_mask = dirty_mask;
313         shadow_nx_mask = nx_mask;
314         shadow_x_mask = x_mask;
315 }
316 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
317
318 static int is_cpuid_PSE36(void)
319 {
320         return 1;
321 }
322
323 static int is_nx(struct kvm_vcpu *vcpu)
324 {
325         return vcpu->arch.efer & EFER_NX;
326 }
327
328 static int is_shadow_present_pte(u64 pte)
329 {
330         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
331 }
332
333 static int is_large_pte(u64 pte)
334 {
335         return pte & PT_PAGE_SIZE_MASK;
336 }
337
338 static int is_rmap_spte(u64 pte)
339 {
340         return is_shadow_present_pte(pte);
341 }
342
343 static int is_last_spte(u64 pte, int level)
344 {
345         if (level == PT_PAGE_TABLE_LEVEL)
346                 return 1;
347         if (is_large_pte(pte))
348                 return 1;
349         return 0;
350 }
351
352 static pfn_t spte_to_pfn(u64 pte)
353 {
354         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
355 }
356
357 static gfn_t pse36_gfn_delta(u32 gpte)
358 {
359         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
360
361         return (gpte & PT32_DIR_PSE36_MASK) << shift;
362 }
363
364 #ifdef CONFIG_X86_64
365 static void __set_spte(u64 *sptep, u64 spte)
366 {
367         *sptep = spte;
368 }
369
370 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
371 {
372         *sptep = spte;
373 }
374
375 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
376 {
377         return xchg(sptep, spte);
378 }
379
380 static u64 __get_spte_lockless(u64 *sptep)
381 {
382         return ACCESS_ONCE(*sptep);
383 }
384
385 static bool __check_direct_spte_mmio_pf(u64 spte)
386 {
387         /* It is valid if the spte is zapped. */
388         return spte == 0ull;
389 }
390 #else
391 union split_spte {
392         struct {
393                 u32 spte_low;
394                 u32 spte_high;
395         };
396         u64 spte;
397 };
398
399 static void count_spte_clear(u64 *sptep, u64 spte)
400 {
401         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
402
403         if (is_shadow_present_pte(spte))
404                 return;
405
406         /* Ensure the spte is completely set before we increase the count */
407         smp_wmb();
408         sp->clear_spte_count++;
409 }
410
411 static void __set_spte(u64 *sptep, u64 spte)
412 {
413         union split_spte *ssptep, sspte;
414
415         ssptep = (union split_spte *)sptep;
416         sspte = (union split_spte)spte;
417
418         ssptep->spte_high = sspte.spte_high;
419
420         /*
421          * If we map the spte from nonpresent to present, We should store
422          * the high bits firstly, then set present bit, so cpu can not
423          * fetch this spte while we are setting the spte.
424          */
425         smp_wmb();
426
427         ssptep->spte_low = sspte.spte_low;
428 }
429
430 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
431 {
432         union split_spte *ssptep, sspte;
433
434         ssptep = (union split_spte *)sptep;
435         sspte = (union split_spte)spte;
436
437         ssptep->spte_low = sspte.spte_low;
438
439         /*
440          * If we map the spte from present to nonpresent, we should clear
441          * present bit firstly to avoid vcpu fetch the old high bits.
442          */
443         smp_wmb();
444
445         ssptep->spte_high = sspte.spte_high;
446         count_spte_clear(sptep, spte);
447 }
448
449 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
450 {
451         union split_spte *ssptep, sspte, orig;
452
453         ssptep = (union split_spte *)sptep;
454         sspte = (union split_spte)spte;
455
456         /* xchg acts as a barrier before the setting of the high bits */
457         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
458         orig.spte_high = ssptep->spte_high;
459         ssptep->spte_high = sspte.spte_high;
460         count_spte_clear(sptep, spte);
461
462         return orig.spte;
463 }
464
465 /*
466  * The idea using the light way get the spte on x86_32 guest is from
467  * gup_get_pte(arch/x86/mm/gup.c).
468  *
469  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
470  * coalesces them and we are running out of the MMU lock.  Therefore
471  * we need to protect against in-progress updates of the spte.
472  *
473  * Reading the spte while an update is in progress may get the old value
474  * for the high part of the spte.  The race is fine for a present->non-present
475  * change (because the high part of the spte is ignored for non-present spte),
476  * but for a present->present change we must reread the spte.
477  *
478  * All such changes are done in two steps (present->non-present and
479  * non-present->present), hence it is enough to count the number of
480  * present->non-present updates: if it changed while reading the spte,
481  * we might have hit the race.  This is done using clear_spte_count.
482  */
483 static u64 __get_spte_lockless(u64 *sptep)
484 {
485         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
486         union split_spte spte, *orig = (union split_spte *)sptep;
487         int count;
488
489 retry:
490         count = sp->clear_spte_count;
491         smp_rmb();
492
493         spte.spte_low = orig->spte_low;
494         smp_rmb();
495
496         spte.spte_high = orig->spte_high;
497         smp_rmb();
498
499         if (unlikely(spte.spte_low != orig->spte_low ||
500               count != sp->clear_spte_count))
501                 goto retry;
502
503         return spte.spte;
504 }
505
506 static bool __check_direct_spte_mmio_pf(u64 spte)
507 {
508         union split_spte sspte = (union split_spte)spte;
509         u32 high_mmio_mask = shadow_mmio_mask >> 32;
510
511         /* It is valid if the spte is zapped. */
512         if (spte == 0ull)
513                 return true;
514
515         /* It is valid if the spte is being zapped. */
516         if (sspte.spte_low == 0ull &&
517             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
518                 return true;
519
520         return false;
521 }
522 #endif
523
524 static bool spte_is_locklessly_modifiable(u64 spte)
525 {
526         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
527                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
528 }
529
530 static bool spte_has_volatile_bits(u64 spte)
531 {
532         /*
533          * Always atomicly update spte if it can be updated
534          * out of mmu-lock, it can ensure dirty bit is not lost,
535          * also, it can help us to get a stable is_writable_pte()
536          * to ensure tlb flush is not missed.
537          */
538         if (spte_is_locklessly_modifiable(spte))
539                 return true;
540
541         if (!shadow_accessed_mask)
542                 return false;
543
544         if (!is_shadow_present_pte(spte))
545                 return false;
546
547         if ((spte & shadow_accessed_mask) &&
548               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
549                 return false;
550
551         return true;
552 }
553
554 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
555 {
556         return (old_spte & bit_mask) && !(new_spte & bit_mask);
557 }
558
559 /* Rules for using mmu_spte_set:
560  * Set the sptep from nonpresent to present.
561  * Note: the sptep being assigned *must* be either not present
562  * or in a state where the hardware will not attempt to update
563  * the spte.
564  */
565 static void mmu_spte_set(u64 *sptep, u64 new_spte)
566 {
567         WARN_ON(is_shadow_present_pte(*sptep));
568         __set_spte(sptep, new_spte);
569 }
570
571 /* Rules for using mmu_spte_update:
572  * Update the state bits, it means the mapped pfn is not changged.
573  *
574  * Whenever we overwrite a writable spte with a read-only one we
575  * should flush remote TLBs. Otherwise rmap_write_protect
576  * will find a read-only spte, even though the writable spte
577  * might be cached on a CPU's TLB, the return value indicates this
578  * case.
579  */
580 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
581 {
582         u64 old_spte = *sptep;
583         bool ret = false;
584
585         WARN_ON(!is_rmap_spte(new_spte));
586
587         if (!is_shadow_present_pte(old_spte)) {
588                 mmu_spte_set(sptep, new_spte);
589                 return ret;
590         }
591
592         if (!spte_has_volatile_bits(old_spte))
593                 __update_clear_spte_fast(sptep, new_spte);
594         else
595                 old_spte = __update_clear_spte_slow(sptep, new_spte);
596
597         /*
598          * For the spte updated out of mmu-lock is safe, since
599          * we always atomicly update it, see the comments in
600          * spte_has_volatile_bits().
601          */
602         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
603                 ret = true;
604
605         if (!shadow_accessed_mask)
606                 return ret;
607
608         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
609                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
610         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
611                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
612
613         return ret;
614 }
615
616 /*
617  * Rules for using mmu_spte_clear_track_bits:
618  * It sets the sptep from present to nonpresent, and track the
619  * state bits, it is used to clear the last level sptep.
620  */
621 static int mmu_spte_clear_track_bits(u64 *sptep)
622 {
623         pfn_t pfn;
624         u64 old_spte = *sptep;
625
626         if (!spte_has_volatile_bits(old_spte))
627                 __update_clear_spte_fast(sptep, 0ull);
628         else
629                 old_spte = __update_clear_spte_slow(sptep, 0ull);
630
631         if (!is_rmap_spte(old_spte))
632                 return 0;
633
634         pfn = spte_to_pfn(old_spte);
635
636         /*
637          * KVM does not hold the refcount of the page used by
638          * kvm mmu, before reclaiming the page, we should
639          * unmap it from mmu first.
640          */
641         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
642
643         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
644                 kvm_set_pfn_accessed(pfn);
645         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
646                 kvm_set_pfn_dirty(pfn);
647         return 1;
648 }
649
650 /*
651  * Rules for using mmu_spte_clear_no_track:
652  * Directly clear spte without caring the state bits of sptep,
653  * it is used to set the upper level spte.
654  */
655 static void mmu_spte_clear_no_track(u64 *sptep)
656 {
657         __update_clear_spte_fast(sptep, 0ull);
658 }
659
660 static u64 mmu_spte_get_lockless(u64 *sptep)
661 {
662         return __get_spte_lockless(sptep);
663 }
664
665 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
666 {
667         /*
668          * Prevent page table teardown by making any free-er wait during
669          * kvm_flush_remote_tlbs() IPI to all active vcpus.
670          */
671         local_irq_disable();
672         vcpu->mode = READING_SHADOW_PAGE_TABLES;
673         /*
674          * Make sure a following spte read is not reordered ahead of the write
675          * to vcpu->mode.
676          */
677         smp_mb();
678 }
679
680 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
681 {
682         /*
683          * Make sure the write to vcpu->mode is not reordered in front of
684          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
685          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
686          */
687         smp_mb();
688         vcpu->mode = OUTSIDE_GUEST_MODE;
689         local_irq_enable();
690 }
691
692 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
693                                   struct kmem_cache *base_cache, int min)
694 {
695         void *obj;
696
697         if (cache->nobjs >= min)
698                 return 0;
699         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
700                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
701                 if (!obj)
702                         return -ENOMEM;
703                 cache->objects[cache->nobjs++] = obj;
704         }
705         return 0;
706 }
707
708 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
709 {
710         return cache->nobjs;
711 }
712
713 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
714                                   struct kmem_cache *cache)
715 {
716         while (mc->nobjs)
717                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
718 }
719
720 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
721                                        int min)
722 {
723         void *page;
724
725         if (cache->nobjs >= min)
726                 return 0;
727         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
728                 page = (void *)__get_free_page(GFP_KERNEL);
729                 if (!page)
730                         return -ENOMEM;
731                 cache->objects[cache->nobjs++] = page;
732         }
733         return 0;
734 }
735
736 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
737 {
738         while (mc->nobjs)
739                 free_page((unsigned long)mc->objects[--mc->nobjs]);
740 }
741
742 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
743 {
744         int r;
745
746         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
747                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
748         if (r)
749                 goto out;
750         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
751         if (r)
752                 goto out;
753         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
754                                    mmu_page_header_cache, 4);
755 out:
756         return r;
757 }
758
759 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
760 {
761         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
762                                 pte_list_desc_cache);
763         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
764         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
765                                 mmu_page_header_cache);
766 }
767
768 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
769 {
770         void *p;
771
772         BUG_ON(!mc->nobjs);
773         p = mc->objects[--mc->nobjs];
774         return p;
775 }
776
777 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
778 {
779         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
780 }
781
782 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
783 {
784         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
785 }
786
787 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
788 {
789         if (!sp->role.direct)
790                 return sp->gfns[index];
791
792         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
793 }
794
795 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
796 {
797         if (sp->role.direct)
798                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
799         else
800                 sp->gfns[index] = gfn;
801 }
802
803 /*
804  * Return the pointer to the large page information for a given gfn,
805  * handling slots that are not large page aligned.
806  */
807 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
808                                               struct kvm_memory_slot *slot,
809                                               int level)
810 {
811         unsigned long idx;
812
813         idx = gfn_to_index(gfn, slot->base_gfn, level);
814         return &slot->arch.lpage_info[level - 2][idx];
815 }
816
817 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
818 {
819         struct kvm_memory_slot *slot;
820         struct kvm_lpage_info *linfo;
821         int i;
822
823         slot = gfn_to_memslot(kvm, gfn);
824         for (i = PT_DIRECTORY_LEVEL;
825              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
826                 linfo = lpage_info_slot(gfn, slot, i);
827                 linfo->write_count += 1;
828         }
829         kvm->arch.indirect_shadow_pages++;
830 }
831
832 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
833 {
834         struct kvm_memory_slot *slot;
835         struct kvm_lpage_info *linfo;
836         int i;
837
838         slot = gfn_to_memslot(kvm, gfn);
839         for (i = PT_DIRECTORY_LEVEL;
840              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
841                 linfo = lpage_info_slot(gfn, slot, i);
842                 linfo->write_count -= 1;
843                 WARN_ON(linfo->write_count < 0);
844         }
845         kvm->arch.indirect_shadow_pages--;
846 }
847
848 static int has_wrprotected_page(struct kvm *kvm,
849                                 gfn_t gfn,
850                                 int level)
851 {
852         struct kvm_memory_slot *slot;
853         struct kvm_lpage_info *linfo;
854
855         slot = gfn_to_memslot(kvm, gfn);
856         if (slot) {
857                 linfo = lpage_info_slot(gfn, slot, level);
858                 return linfo->write_count;
859         }
860
861         return 1;
862 }
863
864 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
865 {
866         unsigned long page_size;
867         int i, ret = 0;
868
869         page_size = kvm_host_page_size(kvm, gfn);
870
871         for (i = PT_PAGE_TABLE_LEVEL;
872              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
873                 if (page_size >= KVM_HPAGE_SIZE(i))
874                         ret = i;
875                 else
876                         break;
877         }
878
879         return ret;
880 }
881
882 static struct kvm_memory_slot *
883 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
884                             bool no_dirty_log)
885 {
886         struct kvm_memory_slot *slot;
887
888         slot = gfn_to_memslot(vcpu->kvm, gfn);
889         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
890               (no_dirty_log && slot->dirty_bitmap))
891                 slot = NULL;
892
893         return slot;
894 }
895
896 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
897 {
898         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
899 }
900
901 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
902 {
903         int host_level, level, max_level;
904
905         host_level = host_mapping_level(vcpu->kvm, large_gfn);
906
907         if (host_level == PT_PAGE_TABLE_LEVEL)
908                 return host_level;
909
910         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
911
912         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
913                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
914                         break;
915
916         return level - 1;
917 }
918
919 /*
920  * Pte mapping structures:
921  *
922  * If pte_list bit zero is zero, then pte_list point to the spte.
923  *
924  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
925  * pte_list_desc containing more mappings.
926  *
927  * Returns the number of pte entries before the spte was added or zero if
928  * the spte was not added.
929  *
930  */
931 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
932                         unsigned long *pte_list)
933 {
934         struct pte_list_desc *desc;
935         int i, count = 0;
936
937         if (!*pte_list) {
938                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
939                 *pte_list = (unsigned long)spte;
940         } else if (!(*pte_list & 1)) {
941                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
942                 desc = mmu_alloc_pte_list_desc(vcpu);
943                 desc->sptes[0] = (u64 *)*pte_list;
944                 desc->sptes[1] = spte;
945                 *pte_list = (unsigned long)desc | 1;
946                 ++count;
947         } else {
948                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
949                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
950                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
951                         desc = desc->more;
952                         count += PTE_LIST_EXT;
953                 }
954                 if (desc->sptes[PTE_LIST_EXT-1]) {
955                         desc->more = mmu_alloc_pte_list_desc(vcpu);
956                         desc = desc->more;
957                 }
958                 for (i = 0; desc->sptes[i]; ++i)
959                         ++count;
960                 desc->sptes[i] = spte;
961         }
962         return count;
963 }
964
965 static void
966 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
967                            int i, struct pte_list_desc *prev_desc)
968 {
969         int j;
970
971         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
972                 ;
973         desc->sptes[i] = desc->sptes[j];
974         desc->sptes[j] = NULL;
975         if (j != 0)
976                 return;
977         if (!prev_desc && !desc->more)
978                 *pte_list = (unsigned long)desc->sptes[0];
979         else
980                 if (prev_desc)
981                         prev_desc->more = desc->more;
982                 else
983                         *pte_list = (unsigned long)desc->more | 1;
984         mmu_free_pte_list_desc(desc);
985 }
986
987 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
988 {
989         struct pte_list_desc *desc;
990         struct pte_list_desc *prev_desc;
991         int i;
992
993         if (!*pte_list) {
994                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
995                 BUG();
996         } else if (!(*pte_list & 1)) {
997                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
998                 if ((u64 *)*pte_list != spte) {
999                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1000                         BUG();
1001                 }
1002                 *pte_list = 0;
1003         } else {
1004                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1005                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1006                 prev_desc = NULL;
1007                 while (desc) {
1008                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1009                                 if (desc->sptes[i] == spte) {
1010                                         pte_list_desc_remove_entry(pte_list,
1011                                                                desc, i,
1012                                                                prev_desc);
1013                                         return;
1014                                 }
1015                         prev_desc = desc;
1016                         desc = desc->more;
1017                 }
1018                 pr_err("pte_list_remove: %p many->many\n", spte);
1019                 BUG();
1020         }
1021 }
1022
1023 typedef void (*pte_list_walk_fn) (u64 *spte);
1024 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1025 {
1026         struct pte_list_desc *desc;
1027         int i;
1028
1029         if (!*pte_list)
1030                 return;
1031
1032         if (!(*pte_list & 1))
1033                 return fn((u64 *)*pte_list);
1034
1035         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1036         while (desc) {
1037                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1038                         fn(desc->sptes[i]);
1039                 desc = desc->more;
1040         }
1041 }
1042
1043 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1044                                     struct kvm_memory_slot *slot)
1045 {
1046         unsigned long idx;
1047
1048         idx = gfn_to_index(gfn, slot->base_gfn, level);
1049         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1050 }
1051
1052 /*
1053  * Take gfn and return the reverse mapping to it.
1054  */
1055 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1056 {
1057         struct kvm_memory_slot *slot;
1058
1059         slot = gfn_to_memslot(kvm, gfn);
1060         return __gfn_to_rmap(gfn, level, slot);
1061 }
1062
1063 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1064 {
1065         struct kvm_mmu_memory_cache *cache;
1066
1067         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1068         return mmu_memory_cache_free_objects(cache);
1069 }
1070
1071 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1072 {
1073         struct kvm_mmu_page *sp;
1074         unsigned long *rmapp;
1075
1076         sp = page_header(__pa(spte));
1077         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1078         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1079         return pte_list_add(vcpu, spte, rmapp);
1080 }
1081
1082 static void rmap_remove(struct kvm *kvm, u64 *spte)
1083 {
1084         struct kvm_mmu_page *sp;
1085         gfn_t gfn;
1086         unsigned long *rmapp;
1087
1088         sp = page_header(__pa(spte));
1089         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1090         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1091         pte_list_remove(spte, rmapp);
1092 }
1093
1094 /*
1095  * Used by the following functions to iterate through the sptes linked by a
1096  * rmap.  All fields are private and not assumed to be used outside.
1097  */
1098 struct rmap_iterator {
1099         /* private fields */
1100         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1101         int pos;                        /* index of the sptep */
1102 };
1103
1104 /*
1105  * Iteration must be started by this function.  This should also be used after
1106  * removing/dropping sptes from the rmap link because in such cases the
1107  * information in the itererator may not be valid.
1108  *
1109  * Returns sptep if found, NULL otherwise.
1110  */
1111 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1112 {
1113         if (!rmap)
1114                 return NULL;
1115
1116         if (!(rmap & 1)) {
1117                 iter->desc = NULL;
1118                 return (u64 *)rmap;
1119         }
1120
1121         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1122         iter->pos = 0;
1123         return iter->desc->sptes[iter->pos];
1124 }
1125
1126 /*
1127  * Must be used with a valid iterator: e.g. after rmap_get_first().
1128  *
1129  * Returns sptep if found, NULL otherwise.
1130  */
1131 static u64 *rmap_get_next(struct rmap_iterator *iter)
1132 {
1133         if (iter->desc) {
1134                 if (iter->pos < PTE_LIST_EXT - 1) {
1135                         u64 *sptep;
1136
1137                         ++iter->pos;
1138                         sptep = iter->desc->sptes[iter->pos];
1139                         if (sptep)
1140                                 return sptep;
1141                 }
1142
1143                 iter->desc = iter->desc->more;
1144
1145                 if (iter->desc) {
1146                         iter->pos = 0;
1147                         /* desc->sptes[0] cannot be NULL */
1148                         return iter->desc->sptes[iter->pos];
1149                 }
1150         }
1151
1152         return NULL;
1153 }
1154
1155 static void drop_spte(struct kvm *kvm, u64 *sptep)
1156 {
1157         if (mmu_spte_clear_track_bits(sptep))
1158                 rmap_remove(kvm, sptep);
1159 }
1160
1161
1162 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1163 {
1164         if (is_large_pte(*sptep)) {
1165                 WARN_ON(page_header(__pa(sptep))->role.level ==
1166                         PT_PAGE_TABLE_LEVEL);
1167                 drop_spte(kvm, sptep);
1168                 --kvm->stat.lpages;
1169                 return true;
1170         }
1171
1172         return false;
1173 }
1174
1175 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1176 {
1177         if (__drop_large_spte(vcpu->kvm, sptep))
1178                 kvm_flush_remote_tlbs(vcpu->kvm);
1179 }
1180
1181 /*
1182  * Write-protect on the specified @sptep, @pt_protect indicates whether
1183  * spte writ-protection is caused by protecting shadow page table.
1184  * @flush indicates whether tlb need be flushed.
1185  *
1186  * Note: write protection is difference between drity logging and spte
1187  * protection:
1188  * - for dirty logging, the spte can be set to writable at anytime if
1189  *   its dirty bitmap is properly set.
1190  * - for spte protection, the spte can be writable only after unsync-ing
1191  *   shadow page.
1192  *
1193  * Return true if the spte is dropped.
1194  */
1195 static bool
1196 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1197 {
1198         u64 spte = *sptep;
1199
1200         if (!is_writable_pte(spte) &&
1201               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1202                 return false;
1203
1204         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1205
1206         if (__drop_large_spte(kvm, sptep)) {
1207                 *flush |= true;
1208                 return true;
1209         }
1210
1211         if (pt_protect)
1212                 spte &= ~SPTE_MMU_WRITEABLE;
1213         spte = spte & ~PT_WRITABLE_MASK;
1214
1215         *flush |= mmu_spte_update(sptep, spte);
1216         return false;
1217 }
1218
1219 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1220                                  bool pt_protect)
1221 {
1222         u64 *sptep;
1223         struct rmap_iterator iter;
1224         bool flush = false;
1225
1226         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1227                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1228                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1229                         sptep = rmap_get_first(*rmapp, &iter);
1230                         continue;
1231                 }
1232
1233                 sptep = rmap_get_next(&iter);
1234         }
1235
1236         return flush;
1237 }
1238
1239 /**
1240  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1241  * @kvm: kvm instance
1242  * @slot: slot to protect
1243  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1244  * @mask: indicates which pages we should protect
1245  *
1246  * Used when we do not need to care about huge page mappings: e.g. during dirty
1247  * logging we do not have any such mappings.
1248  */
1249 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1250                                      struct kvm_memory_slot *slot,
1251                                      gfn_t gfn_offset, unsigned long mask)
1252 {
1253         unsigned long *rmapp;
1254
1255         while (mask) {
1256                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1257                                       PT_PAGE_TABLE_LEVEL, slot);
1258                 __rmap_write_protect(kvm, rmapp, false);
1259
1260                 /* clear the first set bit */
1261                 mask &= mask - 1;
1262         }
1263 }
1264
1265 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1266 {
1267         struct kvm_memory_slot *slot;
1268         unsigned long *rmapp;
1269         int i;
1270         bool write_protected = false;
1271
1272         slot = gfn_to_memslot(kvm, gfn);
1273
1274         for (i = PT_PAGE_TABLE_LEVEL;
1275              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1276                 rmapp = __gfn_to_rmap(gfn, i, slot);
1277                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1278         }
1279
1280         return write_protected;
1281 }
1282
1283 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1284                            struct kvm_memory_slot *slot, unsigned long data)
1285 {
1286         u64 *sptep;
1287         struct rmap_iterator iter;
1288         int need_tlb_flush = 0;
1289
1290         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1291                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1292                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1293
1294                 drop_spte(kvm, sptep);
1295                 need_tlb_flush = 1;
1296         }
1297
1298         return need_tlb_flush;
1299 }
1300
1301 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1302                              struct kvm_memory_slot *slot, unsigned long data)
1303 {
1304         u64 *sptep;
1305         struct rmap_iterator iter;
1306         int need_flush = 0;
1307         u64 new_spte;
1308         pte_t *ptep = (pte_t *)data;
1309         pfn_t new_pfn;
1310
1311         WARN_ON(pte_huge(*ptep));
1312         new_pfn = pte_pfn(*ptep);
1313
1314         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1315                 BUG_ON(!is_shadow_present_pte(*sptep));
1316                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1317
1318                 need_flush = 1;
1319
1320                 if (pte_write(*ptep)) {
1321                         drop_spte(kvm, sptep);
1322                         sptep = rmap_get_first(*rmapp, &iter);
1323                 } else {
1324                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1325                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1326
1327                         new_spte &= ~PT_WRITABLE_MASK;
1328                         new_spte &= ~SPTE_HOST_WRITEABLE;
1329                         new_spte &= ~shadow_accessed_mask;
1330
1331                         mmu_spte_clear_track_bits(sptep);
1332                         mmu_spte_set(sptep, new_spte);
1333                         sptep = rmap_get_next(&iter);
1334                 }
1335         }
1336
1337         if (need_flush)
1338                 kvm_flush_remote_tlbs(kvm);
1339
1340         return 0;
1341 }
1342
1343 static int kvm_handle_hva_range(struct kvm *kvm,
1344                                 unsigned long start,
1345                                 unsigned long end,
1346                                 unsigned long data,
1347                                 int (*handler)(struct kvm *kvm,
1348                                                unsigned long *rmapp,
1349                                                struct kvm_memory_slot *slot,
1350                                                unsigned long data))
1351 {
1352         int j;
1353         int ret = 0;
1354         struct kvm_memslots *slots;
1355         struct kvm_memory_slot *memslot;
1356
1357         slots = kvm_memslots(kvm);
1358
1359         kvm_for_each_memslot(memslot, slots) {
1360                 unsigned long hva_start, hva_end;
1361                 gfn_t gfn_start, gfn_end;
1362
1363                 hva_start = max(start, memslot->userspace_addr);
1364                 hva_end = min(end, memslot->userspace_addr +
1365                                         (memslot->npages << PAGE_SHIFT));
1366                 if (hva_start >= hva_end)
1367                         continue;
1368                 /*
1369                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1370                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1371                  */
1372                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1373                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1374
1375                 for (j = PT_PAGE_TABLE_LEVEL;
1376                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1377                         unsigned long idx, idx_end;
1378                         unsigned long *rmapp;
1379
1380                         /*
1381                          * {idx(page_j) | page_j intersects with
1382                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1383                          */
1384                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1385                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1386
1387                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1388
1389                         for (; idx <= idx_end; ++idx)
1390                                 ret |= handler(kvm, rmapp++, memslot, data);
1391                 }
1392         }
1393
1394         return ret;
1395 }
1396
1397 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1398                           unsigned long data,
1399                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1400                                          struct kvm_memory_slot *slot,
1401                                          unsigned long data))
1402 {
1403         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1404 }
1405
1406 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1407 {
1408         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1409 }
1410
1411 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1412 {
1413         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1414 }
1415
1416 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1417 {
1418         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1419 }
1420
1421 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1422                          struct kvm_memory_slot *slot, unsigned long data)
1423 {
1424         u64 *sptep;
1425         struct rmap_iterator uninitialized_var(iter);
1426         int young = 0;
1427
1428         /*
1429          * In case of absence of EPT Access and Dirty Bits supports,
1430          * emulate the accessed bit for EPT, by checking if this page has
1431          * an EPT mapping, and clearing it if it does. On the next access,
1432          * a new EPT mapping will be established.
1433          * This has some overhead, but not as much as the cost of swapping
1434          * out actively used pages or breaking up actively used hugepages.
1435          */
1436         if (!shadow_accessed_mask) {
1437                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1438                 goto out;
1439         }
1440
1441         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1442              sptep = rmap_get_next(&iter)) {
1443                 BUG_ON(!is_shadow_present_pte(*sptep));
1444
1445                 if (*sptep & shadow_accessed_mask) {
1446                         young = 1;
1447                         clear_bit((ffs(shadow_accessed_mask) - 1),
1448                                  (unsigned long *)sptep);
1449                 }
1450         }
1451 out:
1452         /* @data has hva passed to kvm_age_hva(). */
1453         trace_kvm_age_page(data, slot, young);
1454         return young;
1455 }
1456
1457 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1458                               struct kvm_memory_slot *slot, unsigned long data)
1459 {
1460         u64 *sptep;
1461         struct rmap_iterator iter;
1462         int young = 0;
1463
1464         /*
1465          * If there's no access bit in the secondary pte set by the
1466          * hardware it's up to gup-fast/gup to set the access bit in
1467          * the primary pte or in the page structure.
1468          */
1469         if (!shadow_accessed_mask)
1470                 goto out;
1471
1472         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1473              sptep = rmap_get_next(&iter)) {
1474                 BUG_ON(!is_shadow_present_pte(*sptep));
1475
1476                 if (*sptep & shadow_accessed_mask) {
1477                         young = 1;
1478                         break;
1479                 }
1480         }
1481 out:
1482         return young;
1483 }
1484
1485 #define RMAP_RECYCLE_THRESHOLD 1000
1486
1487 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1488 {
1489         unsigned long *rmapp;
1490         struct kvm_mmu_page *sp;
1491
1492         sp = page_header(__pa(spte));
1493
1494         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1495
1496         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1497         kvm_flush_remote_tlbs(vcpu->kvm);
1498 }
1499
1500 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1501 {
1502         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1503 }
1504
1505 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1506 {
1507         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1508 }
1509
1510 #ifdef MMU_DEBUG
1511 static int is_empty_shadow_page(u64 *spt)
1512 {
1513         u64 *pos;
1514         u64 *end;
1515
1516         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1517                 if (is_shadow_present_pte(*pos)) {
1518                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1519                                pos, *pos);
1520                         return 0;
1521                 }
1522         return 1;
1523 }
1524 #endif
1525
1526 /*
1527  * This value is the sum of all of the kvm instances's
1528  * kvm->arch.n_used_mmu_pages values.  We need a global,
1529  * aggregate version in order to make the slab shrinker
1530  * faster
1531  */
1532 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1533 {
1534         kvm->arch.n_used_mmu_pages += nr;
1535         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1536 }
1537
1538 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1539 {
1540         ASSERT(is_empty_shadow_page(sp->spt));
1541         hlist_del(&sp->hash_link);
1542         list_del(&sp->link);
1543         free_page((unsigned long)sp->spt);
1544         if (!sp->role.direct)
1545                 free_page((unsigned long)sp->gfns);
1546         kmem_cache_free(mmu_page_header_cache, sp);
1547 }
1548
1549 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1550 {
1551         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1552 }
1553
1554 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1555                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1556 {
1557         if (!parent_pte)
1558                 return;
1559
1560         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1561 }
1562
1563 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1564                                        u64 *parent_pte)
1565 {
1566         pte_list_remove(parent_pte, &sp->parent_ptes);
1567 }
1568
1569 static void drop_parent_pte(struct kvm_mmu_page *sp,
1570                             u64 *parent_pte)
1571 {
1572         mmu_page_remove_parent_pte(sp, parent_pte);
1573         mmu_spte_clear_no_track(parent_pte);
1574 }
1575
1576 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1577                                                u64 *parent_pte, int direct)
1578 {
1579         struct kvm_mmu_page *sp;
1580
1581         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1582         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1583         if (!direct)
1584                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1585         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1586
1587         /*
1588          * The active_mmu_pages list is the FIFO list, do not move the
1589          * page until it is zapped. kvm_zap_obsolete_pages depends on
1590          * this feature. See the comments in kvm_zap_obsolete_pages().
1591          */
1592         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1593         sp->parent_ptes = 0;
1594         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1595         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1596         return sp;
1597 }
1598
1599 static void mark_unsync(u64 *spte);
1600 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1601 {
1602         pte_list_walk(&sp->parent_ptes, mark_unsync);
1603 }
1604
1605 static void mark_unsync(u64 *spte)
1606 {
1607         struct kvm_mmu_page *sp;
1608         unsigned int index;
1609
1610         sp = page_header(__pa(spte));
1611         index = spte - sp->spt;
1612         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1613                 return;
1614         if (sp->unsync_children++)
1615                 return;
1616         kvm_mmu_mark_parents_unsync(sp);
1617 }
1618
1619 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1620                                struct kvm_mmu_page *sp)
1621 {
1622         return 1;
1623 }
1624
1625 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1626 {
1627 }
1628
1629 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1630                                  struct kvm_mmu_page *sp, u64 *spte,
1631                                  const void *pte)
1632 {
1633         WARN_ON(1);
1634 }
1635
1636 #define KVM_PAGE_ARRAY_NR 16
1637
1638 struct kvm_mmu_pages {
1639         struct mmu_page_and_offset {
1640                 struct kvm_mmu_page *sp;
1641                 unsigned int idx;
1642         } page[KVM_PAGE_ARRAY_NR];
1643         unsigned int nr;
1644 };
1645
1646 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1647                          int idx)
1648 {
1649         int i;
1650
1651         if (sp->unsync)
1652                 for (i=0; i < pvec->nr; i++)
1653                         if (pvec->page[i].sp == sp)
1654                                 return 0;
1655
1656         pvec->page[pvec->nr].sp = sp;
1657         pvec->page[pvec->nr].idx = idx;
1658         pvec->nr++;
1659         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1660 }
1661
1662 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1663                            struct kvm_mmu_pages *pvec)
1664 {
1665         int i, ret, nr_unsync_leaf = 0;
1666
1667         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1668                 struct kvm_mmu_page *child;
1669                 u64 ent = sp->spt[i];
1670
1671                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1672                         goto clear_child_bitmap;
1673
1674                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1675
1676                 if (child->unsync_children) {
1677                         if (mmu_pages_add(pvec, child, i))
1678                                 return -ENOSPC;
1679
1680                         ret = __mmu_unsync_walk(child, pvec);
1681                         if (!ret)
1682                                 goto clear_child_bitmap;
1683                         else if (ret > 0)
1684                                 nr_unsync_leaf += ret;
1685                         else
1686                                 return ret;
1687                 } else if (child->unsync) {
1688                         nr_unsync_leaf++;
1689                         if (mmu_pages_add(pvec, child, i))
1690                                 return -ENOSPC;
1691                 } else
1692                          goto clear_child_bitmap;
1693
1694                 continue;
1695
1696 clear_child_bitmap:
1697                 __clear_bit(i, sp->unsync_child_bitmap);
1698                 sp->unsync_children--;
1699                 WARN_ON((int)sp->unsync_children < 0);
1700         }
1701
1702
1703         return nr_unsync_leaf;
1704 }
1705
1706 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1707                            struct kvm_mmu_pages *pvec)
1708 {
1709         if (!sp->unsync_children)
1710                 return 0;
1711
1712         mmu_pages_add(pvec, sp, 0);
1713         return __mmu_unsync_walk(sp, pvec);
1714 }
1715
1716 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1717 {
1718         WARN_ON(!sp->unsync);
1719         trace_kvm_mmu_sync_page(sp);
1720         sp->unsync = 0;
1721         --kvm->stat.mmu_unsync;
1722 }
1723
1724 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1725                                     struct list_head *invalid_list);
1726 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1727                                     struct list_head *invalid_list);
1728
1729 /*
1730  * NOTE: we should pay more attention on the zapped-obsolete page
1731  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1732  * since it has been deleted from active_mmu_pages but still can be found
1733  * at hast list.
1734  *
1735  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1736  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1737  * all the obsolete pages.
1738  */
1739 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1740         hlist_for_each_entry(_sp,                                       \
1741           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1742                 if ((_sp)->gfn != (_gfn)) {} else
1743
1744 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1745         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1746                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1747
1748 /* @sp->gfn should be write-protected at the call site */
1749 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1750                            struct list_head *invalid_list, bool clear_unsync)
1751 {
1752         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1753                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1754                 return 1;
1755         }
1756
1757         if (clear_unsync)
1758                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1759
1760         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1761                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1762                 return 1;
1763         }
1764
1765         kvm_mmu_flush_tlb(vcpu);
1766         return 0;
1767 }
1768
1769 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1770                                    struct kvm_mmu_page *sp)
1771 {
1772         LIST_HEAD(invalid_list);
1773         int ret;
1774
1775         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1776         if (ret)
1777                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1778
1779         return ret;
1780 }
1781
1782 #ifdef CONFIG_KVM_MMU_AUDIT
1783 #include "mmu_audit.c"
1784 #else
1785 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1786 static void mmu_audit_disable(void) { }
1787 #endif
1788
1789 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1790                          struct list_head *invalid_list)
1791 {
1792         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1793 }
1794
1795 /* @gfn should be write-protected at the call site */
1796 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1797 {
1798         struct kvm_mmu_page *s;
1799         LIST_HEAD(invalid_list);
1800         bool flush = false;
1801
1802         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1803                 if (!s->unsync)
1804                         continue;
1805
1806                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1807                 kvm_unlink_unsync_page(vcpu->kvm, s);
1808                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1809                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1810                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1811                         continue;
1812                 }
1813                 flush = true;
1814         }
1815
1816         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1817         if (flush)
1818                 kvm_mmu_flush_tlb(vcpu);
1819 }
1820
1821 struct mmu_page_path {
1822         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1823         unsigned int idx[PT64_ROOT_LEVEL-1];
1824 };
1825
1826 #define for_each_sp(pvec, sp, parents, i)                       \
1827                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1828                         sp = pvec.page[i].sp;                   \
1829                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1830                         i = mmu_pages_next(&pvec, &parents, i))
1831
1832 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1833                           struct mmu_page_path *parents,
1834                           int i)
1835 {
1836         int n;
1837
1838         for (n = i+1; n < pvec->nr; n++) {
1839                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1840
1841                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1842                         parents->idx[0] = pvec->page[n].idx;
1843                         return n;
1844                 }
1845
1846                 parents->parent[sp->role.level-2] = sp;
1847                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1848         }
1849
1850         return n;
1851 }
1852
1853 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1854 {
1855         struct kvm_mmu_page *sp;
1856         unsigned int level = 0;
1857
1858         do {
1859                 unsigned int idx = parents->idx[level];
1860
1861                 sp = parents->parent[level];
1862                 if (!sp)
1863                         return;
1864
1865                 --sp->unsync_children;
1866                 WARN_ON((int)sp->unsync_children < 0);
1867                 __clear_bit(idx, sp->unsync_child_bitmap);
1868                 level++;
1869         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1870 }
1871
1872 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1873                                struct mmu_page_path *parents,
1874                                struct kvm_mmu_pages *pvec)
1875 {
1876         parents->parent[parent->role.level-1] = NULL;
1877         pvec->nr = 0;
1878 }
1879
1880 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1881                               struct kvm_mmu_page *parent)
1882 {
1883         int i;
1884         struct kvm_mmu_page *sp;
1885         struct mmu_page_path parents;
1886         struct kvm_mmu_pages pages;
1887         LIST_HEAD(invalid_list);
1888
1889         kvm_mmu_pages_init(parent, &parents, &pages);
1890         while (mmu_unsync_walk(parent, &pages)) {
1891                 bool protected = false;
1892
1893                 for_each_sp(pages, sp, parents, i)
1894                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1895
1896                 if (protected)
1897                         kvm_flush_remote_tlbs(vcpu->kvm);
1898
1899                 for_each_sp(pages, sp, parents, i) {
1900                         kvm_sync_page(vcpu, sp, &invalid_list);
1901                         mmu_pages_clear_parents(&parents);
1902                 }
1903                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1904                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1905                 kvm_mmu_pages_init(parent, &parents, &pages);
1906         }
1907 }
1908
1909 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1910 {
1911         int i;
1912
1913         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1914                 sp->spt[i] = 0ull;
1915 }
1916
1917 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1918 {
1919         sp->write_flooding_count = 0;
1920 }
1921
1922 static void clear_sp_write_flooding_count(u64 *spte)
1923 {
1924         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1925
1926         __clear_sp_write_flooding_count(sp);
1927 }
1928
1929 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1930 {
1931         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1932 }
1933
1934 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1935                                              gfn_t gfn,
1936                                              gva_t gaddr,
1937                                              unsigned level,
1938                                              int direct,
1939                                              unsigned access,
1940                                              u64 *parent_pte)
1941 {
1942         union kvm_mmu_page_role role;
1943         unsigned quadrant;
1944         struct kvm_mmu_page *sp;
1945         bool need_sync = false;
1946
1947         role = vcpu->arch.mmu.base_role;
1948         role.level = level;
1949         role.direct = direct;
1950         if (role.direct)
1951                 role.cr4_pae = 0;
1952         role.access = access;
1953         if (!vcpu->arch.mmu.direct_map
1954             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1955                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1956                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1957                 role.quadrant = quadrant;
1958         }
1959         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1960                 if (is_obsolete_sp(vcpu->kvm, sp))
1961                         continue;
1962
1963                 if (!need_sync && sp->unsync)
1964                         need_sync = true;
1965
1966                 if (sp->role.word != role.word)
1967                         continue;
1968
1969                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1970                         break;
1971
1972                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1973                 if (sp->unsync_children) {
1974                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1975                         kvm_mmu_mark_parents_unsync(sp);
1976                 } else if (sp->unsync)
1977                         kvm_mmu_mark_parents_unsync(sp);
1978
1979                 __clear_sp_write_flooding_count(sp);
1980                 trace_kvm_mmu_get_page(sp, false);
1981                 return sp;
1982         }
1983         ++vcpu->kvm->stat.mmu_cache_miss;
1984         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1985         if (!sp)
1986                 return sp;
1987         sp->gfn = gfn;
1988         sp->role = role;
1989         hlist_add_head(&sp->hash_link,
1990                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1991         if (!direct) {
1992                 if (rmap_write_protect(vcpu->kvm, gfn))
1993                         kvm_flush_remote_tlbs(vcpu->kvm);
1994                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1995                         kvm_sync_pages(vcpu, gfn);
1996
1997                 account_shadowed(vcpu->kvm, gfn);
1998         }
1999         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2000         init_shadow_page_table(sp);
2001         trace_kvm_mmu_get_page(sp, true);
2002         return sp;
2003 }
2004
2005 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2006                              struct kvm_vcpu *vcpu, u64 addr)
2007 {
2008         iterator->addr = addr;
2009         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2010         iterator->level = vcpu->arch.mmu.shadow_root_level;
2011
2012         if (iterator->level == PT64_ROOT_LEVEL &&
2013             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2014             !vcpu->arch.mmu.direct_map)
2015                 --iterator->level;
2016
2017         if (iterator->level == PT32E_ROOT_LEVEL) {
2018                 iterator->shadow_addr
2019                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2020                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2021                 --iterator->level;
2022                 if (!iterator->shadow_addr)
2023                         iterator->level = 0;
2024         }
2025 }
2026
2027 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2028 {
2029         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2030                 return false;
2031
2032         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2033         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2034         return true;
2035 }
2036
2037 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2038                                u64 spte)
2039 {
2040         if (is_last_spte(spte, iterator->level)) {
2041                 iterator->level = 0;
2042                 return;
2043         }
2044
2045         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2046         --iterator->level;
2047 }
2048
2049 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2050 {
2051         return __shadow_walk_next(iterator, *iterator->sptep);
2052 }
2053
2054 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2055 {
2056         u64 spte;
2057
2058         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2059                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2060
2061         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2062                shadow_user_mask | shadow_x_mask;
2063
2064         if (accessed)
2065                 spte |= shadow_accessed_mask;
2066
2067         mmu_spte_set(sptep, spte);
2068 }
2069
2070 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2071                                    unsigned direct_access)
2072 {
2073         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2074                 struct kvm_mmu_page *child;
2075
2076                 /*
2077                  * For the direct sp, if the guest pte's dirty bit
2078                  * changed form clean to dirty, it will corrupt the
2079                  * sp's access: allow writable in the read-only sp,
2080                  * so we should update the spte at this point to get
2081                  * a new sp with the correct access.
2082                  */
2083                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2084                 if (child->role.access == direct_access)
2085                         return;
2086
2087                 drop_parent_pte(child, sptep);
2088                 kvm_flush_remote_tlbs(vcpu->kvm);
2089         }
2090 }
2091
2092 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2093                              u64 *spte)
2094 {
2095         u64 pte;
2096         struct kvm_mmu_page *child;
2097
2098         pte = *spte;
2099         if (is_shadow_present_pte(pte)) {
2100                 if (is_last_spte(pte, sp->role.level)) {
2101                         drop_spte(kvm, spte);
2102                         if (is_large_pte(pte))
2103                                 --kvm->stat.lpages;
2104                 } else {
2105                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2106                         drop_parent_pte(child, spte);
2107                 }
2108                 return true;
2109         }
2110
2111         if (is_mmio_spte(pte))
2112                 mmu_spte_clear_no_track(spte);
2113
2114         return false;
2115 }
2116
2117 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2118                                          struct kvm_mmu_page *sp)
2119 {
2120         unsigned i;
2121
2122         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2123                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2124 }
2125
2126 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2127 {
2128         mmu_page_remove_parent_pte(sp, parent_pte);
2129 }
2130
2131 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2132 {
2133         u64 *sptep;
2134         struct rmap_iterator iter;
2135
2136         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2137                 drop_parent_pte(sp, sptep);
2138 }
2139
2140 static int mmu_zap_unsync_children(struct kvm *kvm,
2141                                    struct kvm_mmu_page *parent,
2142                                    struct list_head *invalid_list)
2143 {
2144         int i, zapped = 0;
2145         struct mmu_page_path parents;
2146         struct kvm_mmu_pages pages;
2147
2148         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2149                 return 0;
2150
2151         kvm_mmu_pages_init(parent, &parents, &pages);
2152         while (mmu_unsync_walk(parent, &pages)) {
2153                 struct kvm_mmu_page *sp;
2154
2155                 for_each_sp(pages, sp, parents, i) {
2156                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2157                         mmu_pages_clear_parents(&parents);
2158                         zapped++;
2159                 }
2160                 kvm_mmu_pages_init(parent, &parents, &pages);
2161         }
2162
2163         return zapped;
2164 }
2165
2166 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2167                                     struct list_head *invalid_list)
2168 {
2169         int ret;
2170
2171         trace_kvm_mmu_prepare_zap_page(sp);
2172         ++kvm->stat.mmu_shadow_zapped;
2173         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2174         kvm_mmu_page_unlink_children(kvm, sp);
2175         kvm_mmu_unlink_parents(kvm, sp);
2176
2177         if (!sp->role.invalid && !sp->role.direct)
2178                 unaccount_shadowed(kvm, sp->gfn);
2179
2180         if (sp->unsync)
2181                 kvm_unlink_unsync_page(kvm, sp);
2182         if (!sp->root_count) {
2183                 /* Count self */
2184                 ret++;
2185                 list_move(&sp->link, invalid_list);
2186                 kvm_mod_used_mmu_pages(kvm, -1);
2187         } else {
2188                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2189
2190                 /*
2191                  * The obsolete pages can not be used on any vcpus.
2192                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2193                  */
2194                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2195                         kvm_reload_remote_mmus(kvm);
2196         }
2197
2198         sp->role.invalid = 1;
2199         return ret;
2200 }
2201
2202 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2203                                     struct list_head *invalid_list)
2204 {
2205         struct kvm_mmu_page *sp, *nsp;
2206
2207         if (list_empty(invalid_list))
2208                 return;
2209
2210         /*
2211          * wmb: make sure everyone sees our modifications to the page tables
2212          * rmb: make sure we see changes to vcpu->mode
2213          */
2214         smp_mb();
2215
2216         /*
2217          * Wait for all vcpus to exit guest mode and/or lockless shadow
2218          * page table walks.
2219          */
2220         kvm_flush_remote_tlbs(kvm);
2221
2222         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2223                 WARN_ON(!sp->role.invalid || sp->root_count);
2224                 kvm_mmu_free_page(sp);
2225         }
2226 }
2227
2228 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2229                                         struct list_head *invalid_list)
2230 {
2231         struct kvm_mmu_page *sp;
2232
2233         if (list_empty(&kvm->arch.active_mmu_pages))
2234                 return false;
2235
2236         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2237                         struct kvm_mmu_page, link);
2238         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2239
2240         return true;
2241 }
2242
2243 /*
2244  * Changing the number of mmu pages allocated to the vm
2245  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2246  */
2247 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2248 {
2249         LIST_HEAD(invalid_list);
2250
2251         spin_lock(&kvm->mmu_lock);
2252
2253         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2254                 /* Need to free some mmu pages to achieve the goal. */
2255                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2256                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2257                                 break;
2258
2259                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2260                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2261         }
2262
2263         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2264
2265         spin_unlock(&kvm->mmu_lock);
2266 }
2267
2268 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2269 {
2270         struct kvm_mmu_page *sp;
2271         LIST_HEAD(invalid_list);
2272         int r;
2273
2274         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2275         r = 0;
2276         spin_lock(&kvm->mmu_lock);
2277         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2278                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2279                          sp->role.word);
2280                 r = 1;
2281                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2282         }
2283         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2284         spin_unlock(&kvm->mmu_lock);
2285
2286         return r;
2287 }
2288 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2289
2290 /*
2291  * The function is based on mtrr_type_lookup() in
2292  * arch/x86/kernel/cpu/mtrr/generic.c
2293  */
2294 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2295                          u64 start, u64 end)
2296 {
2297         int i;
2298         u64 base, mask;
2299         u8 prev_match, curr_match;
2300         int num_var_ranges = KVM_NR_VAR_MTRR;
2301
2302         if (!mtrr_state->enabled)
2303                 return 0xFF;
2304
2305         /* Make end inclusive end, instead of exclusive */
2306         end--;
2307
2308         /* Look in fixed ranges. Just return the type as per start */
2309         if (mtrr_state->have_fixed && (start < 0x100000)) {
2310                 int idx;
2311
2312                 if (start < 0x80000) {
2313                         idx = 0;
2314                         idx += (start >> 16);
2315                         return mtrr_state->fixed_ranges[idx];
2316                 } else if (start < 0xC0000) {
2317                         idx = 1 * 8;
2318                         idx += ((start - 0x80000) >> 14);
2319                         return mtrr_state->fixed_ranges[idx];
2320                 } else if (start < 0x1000000) {
2321                         idx = 3 * 8;
2322                         idx += ((start - 0xC0000) >> 12);
2323                         return mtrr_state->fixed_ranges[idx];
2324                 }
2325         }
2326
2327         /*
2328          * Look in variable ranges
2329          * Look of multiple ranges matching this address and pick type
2330          * as per MTRR precedence
2331          */
2332         if (!(mtrr_state->enabled & 2))
2333                 return mtrr_state->def_type;
2334
2335         prev_match = 0xFF;
2336         for (i = 0; i < num_var_ranges; ++i) {
2337                 unsigned short start_state, end_state;
2338
2339                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2340                         continue;
2341
2342                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2343                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2344                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2345                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2346
2347                 start_state = ((start & mask) == (base & mask));
2348                 end_state = ((end & mask) == (base & mask));
2349                 if (start_state != end_state)
2350                         return 0xFE;
2351
2352                 if ((start & mask) != (base & mask))
2353                         continue;
2354
2355                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2356                 if (prev_match == 0xFF) {
2357                         prev_match = curr_match;
2358                         continue;
2359                 }
2360
2361                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2362                     curr_match == MTRR_TYPE_UNCACHABLE)
2363                         return MTRR_TYPE_UNCACHABLE;
2364
2365                 if ((prev_match == MTRR_TYPE_WRBACK &&
2366                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2367                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2368                      curr_match == MTRR_TYPE_WRBACK)) {
2369                         prev_match = MTRR_TYPE_WRTHROUGH;
2370                         curr_match = MTRR_TYPE_WRTHROUGH;
2371                 }
2372
2373                 if (prev_match != curr_match)
2374                         return MTRR_TYPE_UNCACHABLE;
2375         }
2376
2377         if (prev_match != 0xFF)
2378                 return prev_match;
2379
2380         return mtrr_state->def_type;
2381 }
2382
2383 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2384 {
2385         u8 mtrr;
2386
2387         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2388                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2389         if (mtrr == 0xfe || mtrr == 0xff)
2390                 mtrr = MTRR_TYPE_WRBACK;
2391         return mtrr;
2392 }
2393 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2394
2395 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2396 {
2397         trace_kvm_mmu_unsync_page(sp);
2398         ++vcpu->kvm->stat.mmu_unsync;
2399         sp->unsync = 1;
2400
2401         kvm_mmu_mark_parents_unsync(sp);
2402 }
2403
2404 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2405 {
2406         struct kvm_mmu_page *s;
2407
2408         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2409                 if (s->unsync)
2410                         continue;
2411                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2412                 __kvm_unsync_page(vcpu, s);
2413         }
2414 }
2415
2416 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2417                                   bool can_unsync)
2418 {
2419         struct kvm_mmu_page *s;
2420         bool need_unsync = false;
2421
2422         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2423                 if (!can_unsync)
2424                         return 1;
2425
2426                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2427                         return 1;
2428
2429                 if (!s->unsync)
2430                         need_unsync = true;
2431         }
2432         if (need_unsync)
2433                 kvm_unsync_pages(vcpu, gfn);
2434         return 0;
2435 }
2436
2437 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2438                     unsigned pte_access, int level,
2439                     gfn_t gfn, pfn_t pfn, bool speculative,
2440                     bool can_unsync, bool host_writable)
2441 {
2442         u64 spte;
2443         int ret = 0;
2444
2445         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2446                 return 0;
2447
2448         spte = PT_PRESENT_MASK;
2449         if (!speculative)
2450                 spte |= shadow_accessed_mask;
2451
2452         if (pte_access & ACC_EXEC_MASK)
2453                 spte |= shadow_x_mask;
2454         else
2455                 spte |= shadow_nx_mask;
2456
2457         if (pte_access & ACC_USER_MASK)
2458                 spte |= shadow_user_mask;
2459
2460         if (level > PT_PAGE_TABLE_LEVEL)
2461                 spte |= PT_PAGE_SIZE_MASK;
2462         if (tdp_enabled)
2463                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2464                         kvm_is_mmio_pfn(pfn));
2465
2466         if (host_writable)
2467                 spte |= SPTE_HOST_WRITEABLE;
2468         else
2469                 pte_access &= ~ACC_WRITE_MASK;
2470
2471         spte |= (u64)pfn << PAGE_SHIFT;
2472
2473         if (pte_access & ACC_WRITE_MASK) {
2474
2475                 /*
2476                  * Other vcpu creates new sp in the window between
2477                  * mapping_level() and acquiring mmu-lock. We can
2478                  * allow guest to retry the access, the mapping can
2479                  * be fixed if guest refault.
2480                  */
2481                 if (level > PT_PAGE_TABLE_LEVEL &&
2482                     has_wrprotected_page(vcpu->kvm, gfn, level))
2483                         goto done;
2484
2485                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2486
2487                 /*
2488                  * Optimization: for pte sync, if spte was writable the hash
2489                  * lookup is unnecessary (and expensive). Write protection
2490                  * is responsibility of mmu_get_page / kvm_sync_page.
2491                  * Same reasoning can be applied to dirty page accounting.
2492                  */
2493                 if (!can_unsync && is_writable_pte(*sptep))
2494                         goto set_pte;
2495
2496                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2497                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2498                                  __func__, gfn);
2499                         ret = 1;
2500                         pte_access &= ~ACC_WRITE_MASK;
2501                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2502                 }
2503         }
2504
2505         if (pte_access & ACC_WRITE_MASK)
2506                 mark_page_dirty(vcpu->kvm, gfn);
2507
2508 set_pte:
2509         if (mmu_spte_update(sptep, spte))
2510                 kvm_flush_remote_tlbs(vcpu->kvm);
2511 done:
2512         return ret;
2513 }
2514
2515 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2516                          unsigned pte_access, int write_fault, int *emulate,
2517                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2518                          bool host_writable)
2519 {
2520         int was_rmapped = 0;
2521         int rmap_count;
2522
2523         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2524                  *sptep, write_fault, gfn);
2525
2526         if (is_rmap_spte(*sptep)) {
2527                 /*
2528                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2529                  * the parent of the now unreachable PTE.
2530                  */
2531                 if (level > PT_PAGE_TABLE_LEVEL &&
2532                     !is_large_pte(*sptep)) {
2533                         struct kvm_mmu_page *child;
2534                         u64 pte = *sptep;
2535
2536                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2537                         drop_parent_pte(child, sptep);
2538                         kvm_flush_remote_tlbs(vcpu->kvm);
2539                 } else if (pfn != spte_to_pfn(*sptep)) {
2540                         pgprintk("hfn old %llx new %llx\n",
2541                                  spte_to_pfn(*sptep), pfn);
2542                         drop_spte(vcpu->kvm, sptep);
2543                         kvm_flush_remote_tlbs(vcpu->kvm);
2544                 } else
2545                         was_rmapped = 1;
2546         }
2547
2548         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2549               true, host_writable)) {
2550                 if (write_fault)
2551                         *emulate = 1;
2552                 kvm_mmu_flush_tlb(vcpu);
2553         }
2554
2555         if (unlikely(is_mmio_spte(*sptep) && emulate))
2556                 *emulate = 1;
2557
2558         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2559         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2560                  is_large_pte(*sptep)? "2MB" : "4kB",
2561                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2562                  *sptep, sptep);
2563         if (!was_rmapped && is_large_pte(*sptep))
2564                 ++vcpu->kvm->stat.lpages;
2565
2566         if (is_shadow_present_pte(*sptep)) {
2567                 if (!was_rmapped) {
2568                         rmap_count = rmap_add(vcpu, sptep, gfn);
2569                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2570                                 rmap_recycle(vcpu, sptep, gfn);
2571                 }
2572         }
2573
2574         kvm_release_pfn_clean(pfn);
2575 }
2576
2577 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2578                                      bool no_dirty_log)
2579 {
2580         struct kvm_memory_slot *slot;
2581
2582         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2583         if (!slot)
2584                 return KVM_PFN_ERR_FAULT;
2585
2586         return gfn_to_pfn_memslot_atomic(slot, gfn);
2587 }
2588
2589 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2590                                     struct kvm_mmu_page *sp,
2591                                     u64 *start, u64 *end)
2592 {
2593         struct page *pages[PTE_PREFETCH_NUM];
2594         unsigned access = sp->role.access;
2595         int i, ret;
2596         gfn_t gfn;
2597
2598         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2599         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2600                 return -1;
2601
2602         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2603         if (ret <= 0)
2604                 return -1;
2605
2606         for (i = 0; i < ret; i++, gfn++, start++)
2607                 mmu_set_spte(vcpu, start, access, 0, NULL,
2608                              sp->role.level, gfn, page_to_pfn(pages[i]),
2609                              true, true);
2610
2611         return 0;
2612 }
2613
2614 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2615                                   struct kvm_mmu_page *sp, u64 *sptep)
2616 {
2617         u64 *spte, *start = NULL;
2618         int i;
2619
2620         WARN_ON(!sp->role.direct);
2621
2622         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2623         spte = sp->spt + i;
2624
2625         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2626                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2627                         if (!start)
2628                                 continue;
2629                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2630                                 break;
2631                         start = NULL;
2632                 } else if (!start)
2633                         start = spte;
2634         }
2635 }
2636
2637 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2638 {
2639         struct kvm_mmu_page *sp;
2640
2641         /*
2642          * Since it's no accessed bit on EPT, it's no way to
2643          * distinguish between actually accessed translations
2644          * and prefetched, so disable pte prefetch if EPT is
2645          * enabled.
2646          */
2647         if (!shadow_accessed_mask)
2648                 return;
2649
2650         sp = page_header(__pa(sptep));
2651         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2652                 return;
2653
2654         __direct_pte_prefetch(vcpu, sp, sptep);
2655 }
2656
2657 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2658                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2659                         bool prefault)
2660 {
2661         struct kvm_shadow_walk_iterator iterator;
2662         struct kvm_mmu_page *sp;
2663         int emulate = 0;
2664         gfn_t pseudo_gfn;
2665
2666         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2667                 return 0;
2668
2669         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2670                 if (iterator.level == level) {
2671                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2672                                      write, &emulate, level, gfn, pfn,
2673                                      prefault, map_writable);
2674                         direct_pte_prefetch(vcpu, iterator.sptep);
2675                         ++vcpu->stat.pf_fixed;
2676                         break;
2677                 }
2678
2679                 drop_large_spte(vcpu, iterator.sptep);
2680                 if (!is_shadow_present_pte(*iterator.sptep)) {
2681                         u64 base_addr = iterator.addr;
2682
2683                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2684                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2685                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2686                                               iterator.level - 1,
2687                                               1, ACC_ALL, iterator.sptep);
2688
2689                         link_shadow_page(iterator.sptep, sp, true);
2690                 }
2691         }
2692         return emulate;
2693 }
2694
2695 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2696 {
2697         siginfo_t info;
2698
2699         info.si_signo   = SIGBUS;
2700         info.si_errno   = 0;
2701         info.si_code    = BUS_MCEERR_AR;
2702         info.si_addr    = (void __user *)address;
2703         info.si_addr_lsb = PAGE_SHIFT;
2704
2705         send_sig_info(SIGBUS, &info, tsk);
2706 }
2707
2708 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2709 {
2710         /*
2711          * Do not cache the mmio info caused by writing the readonly gfn
2712          * into the spte otherwise read access on readonly gfn also can
2713          * caused mmio page fault and treat it as mmio access.
2714          * Return 1 to tell kvm to emulate it.
2715          */
2716         if (pfn == KVM_PFN_ERR_RO_FAULT)
2717                 return 1;
2718
2719         if (pfn == KVM_PFN_ERR_HWPOISON) {
2720                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2721                 return 0;
2722         }
2723
2724         return -EFAULT;
2725 }
2726
2727 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2728                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2729 {
2730         pfn_t pfn = *pfnp;
2731         gfn_t gfn = *gfnp;
2732         int level = *levelp;
2733
2734         /*
2735          * Check if it's a transparent hugepage. If this would be an
2736          * hugetlbfs page, level wouldn't be set to
2737          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2738          * here.
2739          */
2740         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2741             level == PT_PAGE_TABLE_LEVEL &&
2742             PageTransCompound(pfn_to_page(pfn)) &&
2743             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2744                 unsigned long mask;
2745                 /*
2746                  * mmu_notifier_retry was successful and we hold the
2747                  * mmu_lock here, so the pmd can't become splitting
2748                  * from under us, and in turn
2749                  * __split_huge_page_refcount() can't run from under
2750                  * us and we can safely transfer the refcount from
2751                  * PG_tail to PG_head as we switch the pfn to tail to
2752                  * head.
2753                  */
2754                 *levelp = level = PT_DIRECTORY_LEVEL;
2755                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2756                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2757                 if (pfn & mask) {
2758                         gfn &= ~mask;
2759                         *gfnp = gfn;
2760                         kvm_release_pfn_clean(pfn);
2761                         pfn &= ~mask;
2762                         kvm_get_pfn(pfn);
2763                         *pfnp = pfn;
2764                 }
2765         }
2766 }
2767
2768 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2769                                 pfn_t pfn, unsigned access, int *ret_val)
2770 {
2771         bool ret = true;
2772
2773         /* The pfn is invalid, report the error! */
2774         if (unlikely(is_error_pfn(pfn))) {
2775                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2776                 goto exit;
2777         }
2778
2779         if (unlikely(is_noslot_pfn(pfn)))
2780                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2781
2782         ret = false;
2783 exit:
2784         return ret;
2785 }
2786
2787 static bool page_fault_can_be_fast(u32 error_code)
2788 {
2789         /*
2790          * Do not fix the mmio spte with invalid generation number which
2791          * need to be updated by slow page fault path.
2792          */
2793         if (unlikely(error_code & PFERR_RSVD_MASK))
2794                 return false;
2795
2796         /*
2797          * #PF can be fast only if the shadow page table is present and it
2798          * is caused by write-protect, that means we just need change the
2799          * W bit of the spte which can be done out of mmu-lock.
2800          */
2801         if (!(error_code & PFERR_PRESENT_MASK) ||
2802               !(error_code & PFERR_WRITE_MASK))
2803                 return false;
2804
2805         return true;
2806 }
2807
2808 static bool
2809 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2810 {
2811         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2812         gfn_t gfn;
2813
2814         WARN_ON(!sp->role.direct);
2815
2816         /*
2817          * The gfn of direct spte is stable since it is calculated
2818          * by sp->gfn.
2819          */
2820         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2821
2822         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2823                 mark_page_dirty(vcpu->kvm, gfn);
2824
2825         return true;
2826 }
2827
2828 /*
2829  * Return value:
2830  * - true: let the vcpu to access on the same address again.
2831  * - false: let the real page fault path to fix it.
2832  */
2833 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2834                             u32 error_code)
2835 {
2836         struct kvm_shadow_walk_iterator iterator;
2837         bool ret = false;
2838         u64 spte = 0ull;
2839
2840         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2841                 return false;
2842
2843         if (!page_fault_can_be_fast(error_code))
2844                 return false;
2845
2846         walk_shadow_page_lockless_begin(vcpu);
2847         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2848                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2849                         break;
2850
2851         /*
2852          * If the mapping has been changed, let the vcpu fault on the
2853          * same address again.
2854          */
2855         if (!is_rmap_spte(spte)) {
2856                 ret = true;
2857                 goto exit;
2858         }
2859
2860         if (!is_last_spte(spte, level))
2861                 goto exit;
2862
2863         /*
2864          * Check if it is a spurious fault caused by TLB lazily flushed.
2865          *
2866          * Need not check the access of upper level table entries since
2867          * they are always ACC_ALL.
2868          */
2869          if (is_writable_pte(spte)) {
2870                 ret = true;
2871                 goto exit;
2872         }
2873
2874         /*
2875          * Currently, to simplify the code, only the spte write-protected
2876          * by dirty-log can be fast fixed.
2877          */
2878         if (!spte_is_locklessly_modifiable(spte))
2879                 goto exit;
2880
2881         /*
2882          * Currently, fast page fault only works for direct mapping since
2883          * the gfn is not stable for indirect shadow page.
2884          * See Documentation/virtual/kvm/locking.txt to get more detail.
2885          */
2886         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2887 exit:
2888         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2889                               spte, ret);
2890         walk_shadow_page_lockless_end(vcpu);
2891
2892         return ret;
2893 }
2894
2895 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2896                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2897 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2898
2899 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2900                          gfn_t gfn, bool prefault)
2901 {
2902         int r;
2903         int level;
2904         int force_pt_level;
2905         pfn_t pfn;
2906         unsigned long mmu_seq;
2907         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2908
2909         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2910         if (likely(!force_pt_level)) {
2911                 level = mapping_level(vcpu, gfn);
2912                 /*
2913                  * This path builds a PAE pagetable - so we can map
2914                  * 2mb pages at maximum. Therefore check if the level
2915                  * is larger than that.
2916                  */
2917                 if (level > PT_DIRECTORY_LEVEL)
2918                         level = PT_DIRECTORY_LEVEL;
2919
2920                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2921         } else
2922                 level = PT_PAGE_TABLE_LEVEL;
2923
2924         if (fast_page_fault(vcpu, v, level, error_code))
2925                 return 0;
2926
2927         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2928         smp_rmb();
2929
2930         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2931                 return 0;
2932
2933         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2934                 return r;
2935
2936         spin_lock(&vcpu->kvm->mmu_lock);
2937         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2938                 goto out_unlock;
2939         make_mmu_pages_available(vcpu);
2940         if (likely(!force_pt_level))
2941                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2942         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2943                          prefault);
2944         spin_unlock(&vcpu->kvm->mmu_lock);
2945
2946
2947         return r;
2948
2949 out_unlock:
2950         spin_unlock(&vcpu->kvm->mmu_lock);
2951         kvm_release_pfn_clean(pfn);
2952         return 0;
2953 }
2954
2955
2956 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2957 {
2958         int i;
2959         struct kvm_mmu_page *sp;
2960         LIST_HEAD(invalid_list);
2961
2962         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2963                 return;
2964
2965         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2966             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2967              vcpu->arch.mmu.direct_map)) {
2968                 hpa_t root = vcpu->arch.mmu.root_hpa;
2969
2970                 spin_lock(&vcpu->kvm->mmu_lock);
2971                 sp = page_header(root);
2972                 --sp->root_count;
2973                 if (!sp->root_count && sp->role.invalid) {
2974                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2975                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2976                 }
2977                 spin_unlock(&vcpu->kvm->mmu_lock);
2978                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2979                 return;
2980         }
2981
2982         spin_lock(&vcpu->kvm->mmu_lock);
2983         for (i = 0; i < 4; ++i) {
2984                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2985
2986                 if (root) {
2987                         root &= PT64_BASE_ADDR_MASK;
2988                         sp = page_header(root);
2989                         --sp->root_count;
2990                         if (!sp->root_count && sp->role.invalid)
2991                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2992                                                          &invalid_list);
2993                 }
2994                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2995         }
2996         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2997         spin_unlock(&vcpu->kvm->mmu_lock);
2998         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2999 }
3000
3001 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3002 {
3003         int ret = 0;
3004
3005         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3006                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3007                 ret = 1;
3008         }
3009
3010         return ret;
3011 }
3012
3013 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3014 {
3015         struct kvm_mmu_page *sp;
3016         unsigned i;
3017
3018         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3019                 spin_lock(&vcpu->kvm->mmu_lock);
3020                 make_mmu_pages_available(vcpu);
3021                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3022                                       1, ACC_ALL, NULL);
3023                 ++sp->root_count;
3024                 spin_unlock(&vcpu->kvm->mmu_lock);
3025                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3026         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3027                 for (i = 0; i < 4; ++i) {
3028                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3029
3030                         ASSERT(!VALID_PAGE(root));
3031                         spin_lock(&vcpu->kvm->mmu_lock);
3032                         make_mmu_pages_available(vcpu);
3033                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3034                                               i << 30,
3035                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3036                                               NULL);
3037                         root = __pa(sp->spt);
3038                         ++sp->root_count;
3039                         spin_unlock(&vcpu->kvm->mmu_lock);
3040                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3041                 }
3042                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3043         } else
3044                 BUG();
3045
3046         return 0;
3047 }
3048
3049 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3050 {
3051         struct kvm_mmu_page *sp;
3052         u64 pdptr, pm_mask;
3053         gfn_t root_gfn;
3054         int i;
3055
3056         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3057
3058         if (mmu_check_root(vcpu, root_gfn))
3059                 return 1;
3060
3061         /*
3062          * Do we shadow a long mode page table? If so we need to
3063          * write-protect the guests page table root.
3064          */
3065         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3066                 hpa_t root = vcpu->arch.mmu.root_hpa;
3067
3068                 ASSERT(!VALID_PAGE(root));
3069
3070                 spin_lock(&vcpu->kvm->mmu_lock);
3071                 make_mmu_pages_available(vcpu);
3072                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3073                                       0, ACC_ALL, NULL);
3074                 root = __pa(sp->spt);
3075                 ++sp->root_count;
3076                 spin_unlock(&vcpu->kvm->mmu_lock);
3077                 vcpu->arch.mmu.root_hpa = root;
3078                 return 0;
3079         }
3080
3081         /*
3082          * We shadow a 32 bit page table. This may be a legacy 2-level
3083          * or a PAE 3-level page table. In either case we need to be aware that
3084          * the shadow page table may be a PAE or a long mode page table.
3085          */
3086         pm_mask = PT_PRESENT_MASK;
3087         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3088                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3089
3090         for (i = 0; i < 4; ++i) {
3091                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3092
3093                 ASSERT(!VALID_PAGE(root));
3094                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3095                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3096                         if (!is_present_gpte(pdptr)) {
3097                                 vcpu->arch.mmu.pae_root[i] = 0;
3098                                 continue;
3099                         }
3100                         root_gfn = pdptr >> PAGE_SHIFT;
3101                         if (mmu_check_root(vcpu, root_gfn))
3102                                 return 1;
3103                 }
3104                 spin_lock(&vcpu->kvm->mmu_lock);
3105                 make_mmu_pages_available(vcpu);
3106                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3107                                       PT32_ROOT_LEVEL, 0,
3108                                       ACC_ALL, NULL);
3109                 root = __pa(sp->spt);
3110                 ++sp->root_count;
3111                 spin_unlock(&vcpu->kvm->mmu_lock);
3112
3113                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3114         }
3115         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3116
3117         /*
3118          * If we shadow a 32 bit page table with a long mode page
3119          * table we enter this path.
3120          */
3121         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3122                 if (vcpu->arch.mmu.lm_root == NULL) {
3123                         /*
3124                          * The additional page necessary for this is only
3125                          * allocated on demand.
3126                          */
3127
3128                         u64 *lm_root;
3129
3130                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3131                         if (lm_root == NULL)
3132                                 return 1;
3133
3134                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3135
3136                         vcpu->arch.mmu.lm_root = lm_root;
3137                 }
3138
3139                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3140         }
3141
3142         return 0;
3143 }
3144
3145 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3146 {
3147         if (vcpu->arch.mmu.direct_map)
3148                 return mmu_alloc_direct_roots(vcpu);
3149         else
3150                 return mmu_alloc_shadow_roots(vcpu);
3151 }
3152
3153 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3154 {
3155         int i;
3156         struct kvm_mmu_page *sp;
3157
3158         if (vcpu->arch.mmu.direct_map)
3159                 return;
3160
3161         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3162                 return;
3163
3164         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3165         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3166         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3167                 hpa_t root = vcpu->arch.mmu.root_hpa;
3168                 sp = page_header(root);
3169                 mmu_sync_children(vcpu, sp);
3170                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3171                 return;
3172         }
3173         for (i = 0; i < 4; ++i) {
3174                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3175
3176                 if (root && VALID_PAGE(root)) {
3177                         root &= PT64_BASE_ADDR_MASK;
3178                         sp = page_header(root);
3179                         mmu_sync_children(vcpu, sp);
3180                 }
3181         }
3182         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3183 }
3184
3185 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3186 {
3187         spin_lock(&vcpu->kvm->mmu_lock);
3188         mmu_sync_roots(vcpu);
3189         spin_unlock(&vcpu->kvm->mmu_lock);
3190 }
3191 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3192
3193 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3194                                   u32 access, struct x86_exception *exception)
3195 {
3196         if (exception)
3197                 exception->error_code = 0;
3198         return vaddr;
3199 }
3200
3201 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3202                                          u32 access,
3203                                          struct x86_exception *exception)
3204 {
3205         if (exception)
3206                 exception->error_code = 0;
3207         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3208 }
3209
3210 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3211 {
3212         if (direct)
3213                 return vcpu_match_mmio_gpa(vcpu, addr);
3214
3215         return vcpu_match_mmio_gva(vcpu, addr);
3216 }
3217
3218
3219 /*
3220  * On direct hosts, the last spte is only allows two states
3221  * for mmio page fault:
3222  *   - It is the mmio spte
3223  *   - It is zapped or it is being zapped.
3224  *
3225  * This function completely checks the spte when the last spte
3226  * is not the mmio spte.
3227  */
3228 static bool check_direct_spte_mmio_pf(u64 spte)
3229 {
3230         return __check_direct_spte_mmio_pf(spte);
3231 }
3232
3233 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3234 {
3235         struct kvm_shadow_walk_iterator iterator;
3236         u64 spte = 0ull;
3237
3238         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3239                 return spte;
3240
3241         walk_shadow_page_lockless_begin(vcpu);
3242         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3243                 if (!is_shadow_present_pte(spte))
3244                         break;
3245         walk_shadow_page_lockless_end(vcpu);
3246
3247         return spte;
3248 }
3249
3250 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3251 {
3252         u64 spte;
3253
3254         if (quickly_check_mmio_pf(vcpu, addr, direct))
3255                 return RET_MMIO_PF_EMULATE;
3256
3257         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3258
3259         if (is_mmio_spte(spte)) {
3260                 gfn_t gfn = get_mmio_spte_gfn(spte);
3261                 unsigned access = get_mmio_spte_access(spte);
3262
3263                 if (!check_mmio_spte(vcpu->kvm, spte))
3264                         return RET_MMIO_PF_INVALID;
3265
3266                 if (direct)
3267                         addr = 0;
3268
3269                 trace_handle_mmio_page_fault(addr, gfn, access);
3270                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3271                 return RET_MMIO_PF_EMULATE;
3272         }
3273
3274         /*
3275          * It's ok if the gva is remapped by other cpus on shadow guest,
3276          * it's a BUG if the gfn is not a mmio page.
3277          */
3278         if (direct && !check_direct_spte_mmio_pf(spte))
3279                 return RET_MMIO_PF_BUG;
3280
3281         /*
3282          * If the page table is zapped by other cpus, let CPU fault again on
3283          * the address.
3284          */
3285         return RET_MMIO_PF_RETRY;
3286 }
3287 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3288
3289 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3290                                   u32 error_code, bool direct)
3291 {
3292         int ret;
3293
3294         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3295         WARN_ON(ret == RET_MMIO_PF_BUG);
3296         return ret;
3297 }
3298
3299 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3300                                 u32 error_code, bool prefault)
3301 {
3302         gfn_t gfn;
3303         int r;
3304
3305         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3306
3307         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3308                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3309
3310                 if (likely(r != RET_MMIO_PF_INVALID))
3311                         return r;
3312         }
3313
3314         r = mmu_topup_memory_caches(vcpu);
3315         if (r)
3316                 return r;
3317
3318         ASSERT(vcpu);
3319         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3320
3321         gfn = gva >> PAGE_SHIFT;
3322
3323         return nonpaging_map(vcpu, gva & PAGE_MASK,
3324                              error_code, gfn, prefault);
3325 }
3326
3327 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3328 {
3329         struct kvm_arch_async_pf arch;
3330
3331         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3332         arch.gfn = gfn;
3333         arch.direct_map = vcpu->arch.mmu.direct_map;
3334         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3335
3336         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3337 }
3338
3339 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3340 {
3341         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3342                      kvm_event_needs_reinjection(vcpu)))
3343                 return false;
3344
3345         return kvm_x86_ops->interrupt_allowed(vcpu);
3346 }
3347
3348 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3349                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3350 {
3351         bool async;
3352
3353         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3354
3355         if (!async)
3356                 return false; /* *pfn has correct page already */
3357
3358         if (!prefault && can_do_async_pf(vcpu)) {
3359                 trace_kvm_try_async_get_page(gva, gfn);
3360                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3361                         trace_kvm_async_pf_doublefault(gva, gfn);
3362                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3363                         return true;
3364                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3365                         return true;
3366         }
3367
3368         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3369
3370         return false;
3371 }
3372
3373 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3374                           bool prefault)
3375 {
3376         pfn_t pfn;
3377         int r;
3378         int level;
3379         int force_pt_level;
3380         gfn_t gfn = gpa >> PAGE_SHIFT;
3381         unsigned long mmu_seq;
3382         int write = error_code & PFERR_WRITE_MASK;
3383         bool map_writable;
3384
3385         ASSERT(vcpu);
3386         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3387
3388         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3389                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3390
3391                 if (likely(r != RET_MMIO_PF_INVALID))
3392                         return r;
3393         }
3394
3395         r = mmu_topup_memory_caches(vcpu);
3396         if (r)
3397                 return r;
3398
3399         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3400         if (likely(!force_pt_level)) {
3401                 level = mapping_level(vcpu, gfn);
3402                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3403         } else
3404                 level = PT_PAGE_TABLE_LEVEL;
3405
3406         if (fast_page_fault(vcpu, gpa, level, error_code))
3407                 return 0;
3408
3409         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3410         smp_rmb();
3411
3412         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3413                 return 0;
3414
3415         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3416                 return r;
3417
3418         spin_lock(&vcpu->kvm->mmu_lock);
3419         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3420                 goto out_unlock;
3421         make_mmu_pages_available(vcpu);
3422         if (likely(!force_pt_level))
3423                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3424         r = __direct_map(vcpu, gpa, write, map_writable,
3425                          level, gfn, pfn, prefault);
3426         spin_unlock(&vcpu->kvm->mmu_lock);
3427
3428         return r;
3429
3430 out_unlock:
3431         spin_unlock(&vcpu->kvm->mmu_lock);
3432         kvm_release_pfn_clean(pfn);
3433         return 0;
3434 }
3435
3436 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3437                                    struct kvm_mmu *context)
3438 {
3439         context->page_fault = nonpaging_page_fault;
3440         context->gva_to_gpa = nonpaging_gva_to_gpa;
3441         context->sync_page = nonpaging_sync_page;
3442         context->invlpg = nonpaging_invlpg;
3443         context->update_pte = nonpaging_update_pte;
3444         context->root_level = 0;
3445         context->shadow_root_level = PT32E_ROOT_LEVEL;
3446         context->root_hpa = INVALID_PAGE;
3447         context->direct_map = true;
3448         context->nx = false;
3449 }
3450
3451 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3452 {
3453         ++vcpu->stat.tlb_flush;
3454         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3455 }
3456 EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
3457
3458 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3459 {
3460         mmu_free_roots(vcpu);
3461 }
3462
3463 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3464 {
3465         return kvm_read_cr3(vcpu);
3466 }
3467
3468 static void inject_page_fault(struct kvm_vcpu *vcpu,
3469                               struct x86_exception *fault)
3470 {
3471         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3472 }
3473
3474 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3475                            unsigned access, int *nr_present)
3476 {
3477         if (unlikely(is_mmio_spte(*sptep))) {
3478                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3479                         mmu_spte_clear_no_track(sptep);
3480                         return true;
3481                 }
3482
3483                 (*nr_present)++;
3484                 mark_mmio_spte(kvm, sptep, gfn, access);
3485                 return true;
3486         }
3487
3488         return false;
3489 }
3490
3491 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3492 {
3493         unsigned index;
3494
3495         index = level - 1;
3496         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3497         return mmu->last_pte_bitmap & (1 << index);
3498 }
3499
3500 #define PTTYPE_EPT 18 /* arbitrary */
3501 #define PTTYPE PTTYPE_EPT
3502 #include "paging_tmpl.h"
3503 #undef PTTYPE
3504
3505 #define PTTYPE 64
3506 #include "paging_tmpl.h"
3507 #undef PTTYPE
3508
3509 #define PTTYPE 32
3510 #include "paging_tmpl.h"
3511 #undef PTTYPE
3512
3513 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3514                                   struct kvm_mmu *context)
3515 {
3516         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3517         u64 exb_bit_rsvd = 0;
3518
3519         context->bad_mt_xwr = 0;
3520
3521         if (!context->nx)
3522                 exb_bit_rsvd = rsvd_bits(63, 63);
3523         switch (context->root_level) {
3524         case PT32_ROOT_LEVEL:
3525                 /* no rsvd bits for 2 level 4K page table entries */
3526                 context->rsvd_bits_mask[0][1] = 0;
3527                 context->rsvd_bits_mask[0][0] = 0;
3528                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3529
3530                 if (!is_pse(vcpu)) {
3531                         context->rsvd_bits_mask[1][1] = 0;
3532                         break;
3533                 }
3534
3535                 if (is_cpuid_PSE36())
3536                         /* 36bits PSE 4MB page */
3537                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3538                 else
3539                         /* 32 bits PSE 4MB page */
3540                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3541                 break;
3542         case PT32E_ROOT_LEVEL:
3543                 context->rsvd_bits_mask[0][2] =
3544                         rsvd_bits(maxphyaddr, 63) |
3545                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3546                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3547                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3548                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3549                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3550                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3551                         rsvd_bits(maxphyaddr, 62) |
3552                         rsvd_bits(13, 20);              /* large page */
3553                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3554                 break;
3555         case PT64_ROOT_LEVEL:
3556                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3557                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3558                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3559                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3560                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3561                         rsvd_bits(maxphyaddr, 51);
3562                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3563                         rsvd_bits(maxphyaddr, 51);
3564                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3565                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3566                         rsvd_bits(maxphyaddr, 51) |
3567                         rsvd_bits(13, 29);
3568                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3569                         rsvd_bits(maxphyaddr, 51) |
3570                         rsvd_bits(13, 20);              /* large page */
3571                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3572                 break;
3573         }
3574 }
3575
3576 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3577                 struct kvm_mmu *context, bool execonly)
3578 {
3579         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3580         int pte;
3581
3582         context->rsvd_bits_mask[0][3] =
3583                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3584         context->rsvd_bits_mask[0][2] =
3585                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3586         context->rsvd_bits_mask[0][1] =
3587                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3588         context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3589
3590         /* large page */
3591         context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3592         context->rsvd_bits_mask[1][2] =
3593                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3594         context->rsvd_bits_mask[1][1] =
3595                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3596         context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3597
3598         for (pte = 0; pte < 64; pte++) {
3599                 int rwx_bits = pte & 7;
3600                 int mt = pte >> 3;
3601                 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3602                                 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3603                                 (rwx_bits == 0x4 && !execonly))
3604                         context->bad_mt_xwr |= (1ull << pte);
3605         }
3606 }
3607
3608 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3609                 struct kvm_mmu *mmu, bool ept)
3610 {
3611         unsigned bit, byte, pfec;
3612         u8 map;
3613         bool fault, x, w, u, wf, uf, ff, smep;
3614
3615         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3616         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3617                 pfec = byte << 1;
3618                 map = 0;
3619                 wf = pfec & PFERR_WRITE_MASK;
3620                 uf = pfec & PFERR_USER_MASK;
3621                 ff = pfec & PFERR_FETCH_MASK;
3622                 for (bit = 0; bit < 8; ++bit) {
3623                         x = bit & ACC_EXEC_MASK;
3624                         w = bit & ACC_WRITE_MASK;
3625                         u = bit & ACC_USER_MASK;
3626
3627                         if (!ept) {
3628                                 /* Not really needed: !nx will cause pte.nx to fault */
3629                                 x |= !mmu->nx;
3630                                 /* Allow supervisor writes if !cr0.wp */
3631                                 w |= !is_write_protection(vcpu) && !uf;
3632                                 /* Disallow supervisor fetches of user code if cr4.smep */
3633                                 x &= !(smep && u && !uf);
3634                         } else
3635                                 /* Not really needed: no U/S accesses on ept  */
3636                                 u = 1;
3637
3638                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3639                         map |= fault << bit;
3640                 }
3641                 mmu->permissions[byte] = map;
3642         }
3643 }
3644
3645 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3646 {
3647         u8 map;
3648         unsigned level, root_level = mmu->root_level;
3649         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3650
3651         if (root_level == PT32E_ROOT_LEVEL)
3652                 --root_level;
3653         /* PT_PAGE_TABLE_LEVEL always terminates */
3654         map = 1 | (1 << ps_set_index);
3655         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3656                 if (level <= PT_PDPE_LEVEL
3657                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3658                         map |= 1 << (ps_set_index | (level - 1));
3659         }
3660         mmu->last_pte_bitmap = map;
3661 }
3662
3663 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3664                                          struct kvm_mmu *context,
3665                                          int level)
3666 {
3667         context->nx = is_nx(vcpu);
3668         context->root_level = level;
3669
3670         reset_rsvds_bits_mask(vcpu, context);
3671         update_permission_bitmask(vcpu, context, false);
3672         update_last_pte_bitmap(vcpu, context);
3673
3674         ASSERT(is_pae(vcpu));
3675         context->page_fault = paging64_page_fault;
3676         context->gva_to_gpa = paging64_gva_to_gpa;
3677         context->sync_page = paging64_sync_page;
3678         context->invlpg = paging64_invlpg;
3679         context->update_pte = paging64_update_pte;
3680         context->shadow_root_level = level;
3681         context->root_hpa = INVALID_PAGE;
3682         context->direct_map = false;
3683 }
3684
3685 static void paging64_init_context(struct kvm_vcpu *vcpu,
3686                                   struct kvm_mmu *context)
3687 {
3688         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3689 }
3690
3691 static void paging32_init_context(struct kvm_vcpu *vcpu,
3692                                   struct kvm_mmu *context)
3693 {
3694         context->nx = false;
3695         context->root_level = PT32_ROOT_LEVEL;
3696
3697         reset_rsvds_bits_mask(vcpu, context);
3698         update_permission_bitmask(vcpu, context, false);
3699         update_last_pte_bitmap(vcpu, context);
3700
3701         context->page_fault = paging32_page_fault;
3702         context->gva_to_gpa = paging32_gva_to_gpa;
3703         context->sync_page = paging32_sync_page;
3704         context->invlpg = paging32_invlpg;
3705         context->update_pte = paging32_update_pte;
3706         context->shadow_root_level = PT32E_ROOT_LEVEL;
3707         context->root_hpa = INVALID_PAGE;
3708         context->direct_map = false;
3709 }
3710
3711 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3712                                    struct kvm_mmu *context)
3713 {
3714         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3715 }
3716
3717 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3718 {
3719         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3720
3721         context->base_role.word = 0;
3722         context->page_fault = tdp_page_fault;
3723         context->sync_page = nonpaging_sync_page;
3724         context->invlpg = nonpaging_invlpg;
3725         context->update_pte = nonpaging_update_pte;
3726         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3727         context->root_hpa = INVALID_PAGE;
3728         context->direct_map = true;
3729         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3730         context->get_cr3 = get_cr3;
3731         context->get_pdptr = kvm_pdptr_read;
3732         context->inject_page_fault = kvm_inject_page_fault;
3733
3734         if (!is_paging(vcpu)) {
3735                 context->nx = false;
3736                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3737                 context->root_level = 0;
3738         } else if (is_long_mode(vcpu)) {
3739                 context->nx = is_nx(vcpu);
3740                 context->root_level = PT64_ROOT_LEVEL;
3741                 reset_rsvds_bits_mask(vcpu, context);
3742                 context->gva_to_gpa = paging64_gva_to_gpa;
3743         } else if (is_pae(vcpu)) {
3744                 context->nx = is_nx(vcpu);
3745                 context->root_level = PT32E_ROOT_LEVEL;
3746                 reset_rsvds_bits_mask(vcpu, context);
3747                 context->gva_to_gpa = paging64_gva_to_gpa;
3748         } else {
3749                 context->nx = false;
3750                 context->root_level = PT32_ROOT_LEVEL;
3751                 reset_rsvds_bits_mask(vcpu, context);
3752                 context->gva_to_gpa = paging32_gva_to_gpa;
3753         }
3754
3755         update_permission_bitmask(vcpu, context, false);
3756         update_last_pte_bitmap(vcpu, context);
3757 }
3758
3759 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3760 {
3761         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3762         ASSERT(vcpu);
3763         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3764
3765         if (!is_paging(vcpu))
3766                 nonpaging_init_context(vcpu, context);
3767         else if (is_long_mode(vcpu))
3768                 paging64_init_context(vcpu, context);
3769         else if (is_pae(vcpu))
3770                 paging32E_init_context(vcpu, context);
3771         else
3772                 paging32_init_context(vcpu, context);
3773
3774         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3775         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3776         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3777         vcpu->arch.mmu.base_role.smep_andnot_wp
3778                 = smep && !is_write_protection(vcpu);
3779 }
3780 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3781
3782 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3783                 bool execonly)
3784 {
3785         ASSERT(vcpu);
3786         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3787
3788         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3789
3790         context->nx = true;
3791         context->page_fault = ept_page_fault;
3792         context->gva_to_gpa = ept_gva_to_gpa;
3793         context->sync_page = ept_sync_page;
3794         context->invlpg = ept_invlpg;
3795         context->update_pte = ept_update_pte;
3796         context->root_level = context->shadow_root_level;
3797         context->root_hpa = INVALID_PAGE;
3798         context->direct_map = false;
3799
3800         update_permission_bitmask(vcpu, context, true);
3801         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3802 }
3803 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3804
3805 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3806 {
3807         kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3808         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3809         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3810         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3811         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3812 }
3813
3814 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3815 {
3816         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3817
3818         g_context->get_cr3           = get_cr3;
3819         g_context->get_pdptr         = kvm_pdptr_read;
3820         g_context->inject_page_fault = kvm_inject_page_fault;
3821
3822         /*
3823          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3824          * translation of l2_gpa to l1_gpa addresses is done using the
3825          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3826          * functions between mmu and nested_mmu are swapped.
3827          */
3828         if (!is_paging(vcpu)) {
3829                 g_context->nx = false;
3830                 g_context->root_level = 0;
3831                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3832         } else if (is_long_mode(vcpu)) {
3833                 g_context->nx = is_nx(vcpu);
3834                 g_context->root_level = PT64_ROOT_LEVEL;
3835                 reset_rsvds_bits_mask(vcpu, g_context);
3836                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3837         } else if (is_pae(vcpu)) {
3838                 g_context->nx = is_nx(vcpu);
3839                 g_context->root_level = PT32E_ROOT_LEVEL;
3840                 reset_rsvds_bits_mask(vcpu, g_context);
3841                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3842         } else {
3843                 g_context->nx = false;
3844                 g_context->root_level = PT32_ROOT_LEVEL;
3845                 reset_rsvds_bits_mask(vcpu, g_context);
3846                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3847         }
3848
3849         update_permission_bitmask(vcpu, g_context, false);
3850         update_last_pte_bitmap(vcpu, g_context);
3851 }
3852
3853 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3854 {
3855         if (mmu_is_nested(vcpu))
3856                 return init_kvm_nested_mmu(vcpu);
3857         else if (tdp_enabled)
3858                 return init_kvm_tdp_mmu(vcpu);
3859         else
3860                 return init_kvm_softmmu(vcpu);
3861 }
3862
3863 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3864 {
3865         ASSERT(vcpu);
3866
3867         kvm_mmu_unload(vcpu);
3868         init_kvm_mmu(vcpu);
3869 }
3870 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3871
3872 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3873 {
3874         int r;
3875
3876         r = mmu_topup_memory_caches(vcpu);
3877         if (r)
3878                 goto out;
3879         r = mmu_alloc_roots(vcpu);
3880         kvm_mmu_sync_roots(vcpu);
3881         if (r)
3882                 goto out;
3883         /* set_cr3() should ensure TLB has been flushed */
3884         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3885 out:
3886         return r;
3887 }
3888 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3889
3890 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3891 {
3892         mmu_free_roots(vcpu);
3893         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3894 }
3895 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3896
3897 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3898                                   struct kvm_mmu_page *sp, u64 *spte,
3899                                   const void *new)
3900 {
3901         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3902                 ++vcpu->kvm->stat.mmu_pde_zapped;
3903                 return;
3904         }
3905
3906         ++vcpu->kvm->stat.mmu_pte_updated;
3907         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3908 }
3909
3910 static bool need_remote_flush(u64 old, u64 new)
3911 {
3912         if (!is_shadow_present_pte(old))
3913                 return false;
3914         if (!is_shadow_present_pte(new))
3915                 return true;
3916         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3917                 return true;
3918         old ^= shadow_nx_mask;
3919         new ^= shadow_nx_mask;
3920         return (old & ~new & PT64_PERM_MASK) != 0;
3921 }
3922
3923 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3924                                     bool remote_flush, bool local_flush)
3925 {
3926         if (zap_page)
3927                 return;
3928
3929         if (remote_flush)
3930                 kvm_flush_remote_tlbs(vcpu->kvm);
3931         else if (local_flush)
3932                 kvm_mmu_flush_tlb(vcpu);
3933 }
3934
3935 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3936                                     const u8 *new, int *bytes)
3937 {
3938         u64 gentry;
3939         int r;
3940
3941         /*
3942          * Assume that the pte write on a page table of the same type
3943          * as the current vcpu paging mode since we update the sptes only
3944          * when they have the same mode.
3945          */
3946         if (is_pae(vcpu) && *bytes == 4) {
3947                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3948                 *gpa &= ~(gpa_t)7;
3949                 *bytes = 8;
3950                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3951                 if (r)
3952                         gentry = 0;
3953                 new = (const u8 *)&gentry;
3954         }
3955
3956         switch (*bytes) {
3957         case 4:
3958                 gentry = *(const u32 *)new;
3959                 break;
3960         case 8:
3961                 gentry = *(const u64 *)new;
3962                 break;
3963         default:
3964                 gentry = 0;
3965                 break;
3966         }
3967
3968         return gentry;
3969 }
3970
3971 /*
3972  * If we're seeing too many writes to a page, it may no longer be a page table,
3973  * or we may be forking, in which case it is better to unmap the page.
3974  */
3975 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3976 {
3977         /*
3978          * Skip write-flooding detected for the sp whose level is 1, because
3979          * it can become unsync, then the guest page is not write-protected.
3980          */
3981         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3982                 return false;
3983
3984         return ++sp->write_flooding_count >= 3;
3985 }
3986
3987 /*
3988  * Misaligned accesses are too much trouble to fix up; also, they usually
3989  * indicate a page is not used as a page table.
3990  */
3991 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3992                                     int bytes)
3993 {
3994         unsigned offset, pte_size, misaligned;
3995
3996         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3997                  gpa, bytes, sp->role.word);
3998
3999         offset = offset_in_page(gpa);
4000         pte_size = sp->role.cr4_pae ? 8 : 4;
4001
4002         /*
4003          * Sometimes, the OS only writes the last one bytes to update status
4004          * bits, for example, in linux, andb instruction is used in clear_bit().
4005          */
4006         if (!(offset & (pte_size - 1)) && bytes == 1)
4007                 return false;
4008
4009         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4010         misaligned |= bytes < 4;
4011
4012         return misaligned;
4013 }
4014
4015 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4016 {
4017         unsigned page_offset, quadrant;
4018         u64 *spte;
4019         int level;
4020
4021         page_offset = offset_in_page(gpa);
4022         level = sp->role.level;
4023         *nspte = 1;
4024         if (!sp->role.cr4_pae) {
4025                 page_offset <<= 1;      /* 32->64 */
4026                 /*
4027                  * A 32-bit pde maps 4MB while the shadow pdes map
4028                  * only 2MB.  So we need to double the offset again
4029                  * and zap two pdes instead of one.
4030                  */
4031                 if (level == PT32_ROOT_LEVEL) {
4032                         page_offset &= ~7; /* kill rounding error */
4033                         page_offset <<= 1;
4034                         *nspte = 2;
4035                 }
4036                 quadrant = page_offset >> PAGE_SHIFT;
4037                 page_offset &= ~PAGE_MASK;
4038                 if (quadrant != sp->role.quadrant)
4039                         return NULL;
4040         }
4041
4042         spte = &sp->spt[page_offset / sizeof(*spte)];
4043         return spte;
4044 }
4045
4046 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4047                        const u8 *new, int bytes)
4048 {
4049         gfn_t gfn = gpa >> PAGE_SHIFT;
4050         union kvm_mmu_page_role mask = { .word = 0 };
4051         struct kvm_mmu_page *sp;
4052         LIST_HEAD(invalid_list);
4053         u64 entry, gentry, *spte;
4054         int npte;
4055         bool remote_flush, local_flush, zap_page;
4056
4057         /*
4058          * If we don't have indirect shadow pages, it means no page is
4059          * write-protected, so we can exit simply.
4060          */
4061         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4062                 return;
4063
4064         zap_page = remote_flush = local_flush = false;
4065
4066         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4067
4068         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4069
4070         /*
4071          * No need to care whether allocation memory is successful
4072          * or not since pte prefetch is skiped if it does not have
4073          * enough objects in the cache.
4074          */
4075         mmu_topup_memory_caches(vcpu);
4076
4077         spin_lock(&vcpu->kvm->mmu_lock);
4078         ++vcpu->kvm->stat.mmu_pte_write;
4079         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4080
4081         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4082         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4083                 if (detect_write_misaligned(sp, gpa, bytes) ||
4084                       detect_write_flooding(sp)) {
4085                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4086                                                      &invalid_list);
4087                         ++vcpu->kvm->stat.mmu_flooded;
4088                         continue;
4089                 }
4090
4091                 spte = get_written_sptes(sp, gpa, &npte);
4092                 if (!spte)
4093                         continue;
4094
4095                 local_flush = true;
4096                 while (npte--) {
4097                         entry = *spte;
4098                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4099                         if (gentry &&
4100                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4101                               & mask.word) && rmap_can_add(vcpu))
4102                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4103                         if (need_remote_flush(entry, *spte))
4104                                 remote_flush = true;
4105                         ++spte;
4106                 }
4107         }
4108         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4109         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4110         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4111         spin_unlock(&vcpu->kvm->mmu_lock);
4112 }
4113
4114 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4115 {
4116         gpa_t gpa;
4117         int r;
4118
4119         if (vcpu->arch.mmu.direct_map)
4120                 return 0;
4121
4122         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4123
4124         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4125
4126         return r;
4127 }
4128 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4129
4130 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4131 {
4132         LIST_HEAD(invalid_list);
4133
4134         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4135                 return;
4136
4137         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4138                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4139                         break;
4140
4141                 ++vcpu->kvm->stat.mmu_recycled;
4142         }
4143         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4144 }
4145
4146 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4147 {
4148         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4149                 return vcpu_match_mmio_gpa(vcpu, addr);
4150
4151         return vcpu_match_mmio_gva(vcpu, addr);
4152 }
4153
4154 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4155                        void *insn, int insn_len)
4156 {
4157         int r, emulation_type = EMULTYPE_RETRY;
4158         enum emulation_result er;
4159
4160         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4161         if (r < 0)
4162                 goto out;
4163
4164         if (!r) {
4165                 r = 1;
4166                 goto out;
4167         }
4168
4169         if (is_mmio_page_fault(vcpu, cr2))
4170                 emulation_type = 0;
4171
4172         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4173
4174         switch (er) {
4175         case EMULATE_DONE:
4176                 return 1;
4177         case EMULATE_USER_EXIT:
4178                 ++vcpu->stat.mmio_exits;
4179                 /* fall through */
4180         case EMULATE_FAIL:
4181                 return 0;
4182         default:
4183                 BUG();
4184         }
4185 out:
4186         return r;
4187 }
4188 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4189
4190 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4191 {
4192         vcpu->arch.mmu.invlpg(vcpu, gva);
4193         kvm_mmu_flush_tlb(vcpu);
4194         ++vcpu->stat.invlpg;
4195 }
4196 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4197
4198 void kvm_enable_tdp(void)
4199 {
4200         tdp_enabled = true;
4201 }
4202 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4203
4204 void kvm_disable_tdp(void)
4205 {
4206         tdp_enabled = false;
4207 }
4208 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4209
4210 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4211 {
4212         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4213         if (vcpu->arch.mmu.lm_root != NULL)
4214                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4215 }
4216
4217 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4218 {
4219         struct page *page;
4220         int i;
4221
4222         ASSERT(vcpu);
4223
4224         /*
4225          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4226          * Therefore we need to allocate shadow page tables in the first
4227          * 4GB of memory, which happens to fit the DMA32 zone.
4228          */
4229         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4230         if (!page)
4231                 return -ENOMEM;
4232
4233         vcpu->arch.mmu.pae_root = page_address(page);
4234         for (i = 0; i < 4; ++i)
4235                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4236
4237         return 0;
4238 }
4239
4240 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4241 {
4242         ASSERT(vcpu);
4243
4244         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4245         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4246         vcpu->arch.mmu.translate_gpa = translate_gpa;
4247         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4248
4249         return alloc_mmu_pages(vcpu);
4250 }
4251
4252 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4253 {
4254         ASSERT(vcpu);
4255         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4256
4257         init_kvm_mmu(vcpu);
4258 }
4259
4260 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4261 {
4262         struct kvm_memory_slot *memslot;
4263         gfn_t last_gfn;
4264         int i;
4265
4266         memslot = id_to_memslot(kvm->memslots, slot);
4267         last_gfn = memslot->base_gfn + memslot->npages - 1;
4268
4269         spin_lock(&kvm->mmu_lock);
4270
4271         for (i = PT_PAGE_TABLE_LEVEL;
4272              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4273                 unsigned long *rmapp;
4274                 unsigned long last_index, index;
4275
4276                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4277                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4278
4279                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4280                         if (*rmapp)
4281                                 __rmap_write_protect(kvm, rmapp, false);
4282
4283                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4284                                 kvm_flush_remote_tlbs(kvm);
4285                                 cond_resched_lock(&kvm->mmu_lock);
4286                         }
4287                 }
4288         }
4289
4290         kvm_flush_remote_tlbs(kvm);
4291         spin_unlock(&kvm->mmu_lock);
4292 }
4293
4294 #define BATCH_ZAP_PAGES 10
4295 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4296 {
4297         struct kvm_mmu_page *sp, *node;
4298         int batch = 0;
4299
4300 restart:
4301         list_for_each_entry_safe_reverse(sp, node,
4302               &kvm->arch.active_mmu_pages, link) {
4303                 int ret;
4304
4305                 /*
4306                  * No obsolete page exists before new created page since
4307                  * active_mmu_pages is the FIFO list.
4308                  */
4309                 if (!is_obsolete_sp(kvm, sp))
4310                         break;
4311
4312                 /*
4313                  * Since we are reversely walking the list and the invalid
4314                  * list will be moved to the head, skip the invalid page
4315                  * can help us to avoid the infinity list walking.
4316                  */
4317                 if (sp->role.invalid)
4318                         continue;
4319
4320                 /*
4321                  * Need not flush tlb since we only zap the sp with invalid
4322                  * generation number.
4323                  */
4324                 if (batch >= BATCH_ZAP_PAGES &&
4325                       cond_resched_lock(&kvm->mmu_lock)) {
4326                         batch = 0;
4327                         goto restart;
4328                 }
4329
4330                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4331                                 &kvm->arch.zapped_obsolete_pages);
4332                 batch += ret;
4333
4334                 if (ret)
4335                         goto restart;
4336         }
4337
4338         /*
4339          * Should flush tlb before free page tables since lockless-walking
4340          * may use the pages.
4341          */
4342         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4343 }
4344
4345 /*
4346  * Fast invalidate all shadow pages and use lock-break technique
4347  * to zap obsolete pages.
4348  *
4349  * It's required when memslot is being deleted or VM is being
4350  * destroyed, in these cases, we should ensure that KVM MMU does
4351  * not use any resource of the being-deleted slot or all slots
4352  * after calling the function.
4353  */
4354 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4355 {
4356         spin_lock(&kvm->mmu_lock);
4357         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4358         kvm->arch.mmu_valid_gen++;
4359
4360         /*
4361          * Notify all vcpus to reload its shadow page table
4362          * and flush TLB. Then all vcpus will switch to new
4363          * shadow page table with the new mmu_valid_gen.
4364          *
4365          * Note: we should do this under the protection of
4366          * mmu-lock, otherwise, vcpu would purge shadow page
4367          * but miss tlb flush.
4368          */
4369         kvm_reload_remote_mmus(kvm);
4370
4371         kvm_zap_obsolete_pages(kvm);
4372         spin_unlock(&kvm->mmu_lock);
4373 }
4374
4375 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4376 {
4377         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4378 }
4379
4380 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4381 {
4382         /*
4383          * The very rare case: if the generation-number is round,
4384          * zap all shadow pages.
4385          */
4386         if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4387                 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4388                 kvm_mmu_invalidate_zap_all_pages(kvm);
4389         }
4390 }
4391
4392 static unsigned long
4393 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4394 {
4395         struct kvm *kvm;
4396         int nr_to_scan = sc->nr_to_scan;
4397         unsigned long freed = 0;
4398
4399         spin_lock(&kvm_lock);
4400
4401         list_for_each_entry(kvm, &vm_list, vm_list) {
4402                 int idx;
4403                 LIST_HEAD(invalid_list);
4404
4405                 /*
4406                  * Never scan more than sc->nr_to_scan VM instances.
4407                  * Will not hit this condition practically since we do not try
4408                  * to shrink more than one VM and it is very unlikely to see
4409                  * !n_used_mmu_pages so many times.
4410                  */
4411                 if (!nr_to_scan--)
4412                         break;
4413                 /*
4414                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4415                  * here. We may skip a VM instance errorneosly, but we do not
4416                  * want to shrink a VM that only started to populate its MMU
4417                  * anyway.
4418                  */
4419                 if (!kvm->arch.n_used_mmu_pages &&
4420                       !kvm_has_zapped_obsolete_pages(kvm))
4421                         continue;
4422
4423                 idx = srcu_read_lock(&kvm->srcu);
4424                 spin_lock(&kvm->mmu_lock);
4425
4426                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4427                         kvm_mmu_commit_zap_page(kvm,
4428                               &kvm->arch.zapped_obsolete_pages);
4429                         goto unlock;
4430                 }
4431
4432                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4433                         freed++;
4434                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4435
4436 unlock:
4437                 spin_unlock(&kvm->mmu_lock);
4438                 srcu_read_unlock(&kvm->srcu, idx);
4439
4440                 /*
4441                  * unfair on small ones
4442                  * per-vm shrinkers cry out
4443                  * sadness comes quickly
4444                  */
4445                 list_move_tail(&kvm->vm_list, &vm_list);
4446                 break;
4447         }
4448
4449         spin_unlock(&kvm_lock);
4450         return freed;
4451 }
4452
4453 static unsigned long
4454 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4455 {
4456         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4457 }
4458
4459 static struct shrinker mmu_shrinker = {
4460         .count_objects = mmu_shrink_count,
4461         .scan_objects = mmu_shrink_scan,
4462         .seeks = DEFAULT_SEEKS * 10,
4463 };
4464
4465 static void mmu_destroy_caches(void)
4466 {
4467         if (pte_list_desc_cache)
4468                 kmem_cache_destroy(pte_list_desc_cache);
4469         if (mmu_page_header_cache)
4470                 kmem_cache_destroy(mmu_page_header_cache);
4471 }
4472
4473 int kvm_mmu_module_init(void)
4474 {
4475         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4476                                             sizeof(struct pte_list_desc),
4477                                             0, 0, NULL);
4478         if (!pte_list_desc_cache)
4479                 goto nomem;
4480
4481         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4482                                                   sizeof(struct kvm_mmu_page),
4483                                                   0, 0, NULL);
4484         if (!mmu_page_header_cache)
4485                 goto nomem;
4486
4487         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4488                 goto nomem;
4489
4490         register_shrinker(&mmu_shrinker);
4491
4492         return 0;
4493
4494 nomem:
4495         mmu_destroy_caches();
4496         return -ENOMEM;
4497 }
4498
4499 /*
4500  * Caculate mmu pages needed for kvm.
4501  */
4502 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4503 {
4504         unsigned int nr_mmu_pages;
4505         unsigned int  nr_pages = 0;
4506         struct kvm_memslots *slots;
4507         struct kvm_memory_slot *memslot;
4508
4509         slots = kvm_memslots(kvm);
4510
4511         kvm_for_each_memslot(memslot, slots)
4512                 nr_pages += memslot->npages;
4513
4514         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4515         nr_mmu_pages = max(nr_mmu_pages,
4516                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4517
4518         return nr_mmu_pages;
4519 }
4520
4521 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4522 {
4523         struct kvm_shadow_walk_iterator iterator;
4524         u64 spte;
4525         int nr_sptes = 0;
4526
4527         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4528                 return nr_sptes;
4529
4530         walk_shadow_page_lockless_begin(vcpu);
4531         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4532                 sptes[iterator.level-1] = spte;
4533                 nr_sptes++;
4534                 if (!is_shadow_present_pte(spte))
4535                         break;
4536         }
4537         walk_shadow_page_lockless_end(vcpu);
4538
4539         return nr_sptes;
4540 }
4541 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4542
4543 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4544 {
4545         ASSERT(vcpu);
4546
4547         kvm_mmu_unload(vcpu);
4548         free_mmu_pages(vcpu);
4549         mmu_free_memory_caches(vcpu);
4550 }
4551
4552 void kvm_mmu_module_exit(void)
4553 {
4554         mmu_destroy_caches();
4555         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4556         unregister_shrinker(&mmu_shrinker);
4557         mmu_audit_disable();
4558 }