KVM: disable uninitialized var warning
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149
150 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151
152 /* make pte_list_desc fit well in cache line */
153 #define PTE_LIST_EXT 3
154
155 struct pte_list_desc {
156         u64 *sptes[PTE_LIST_EXT];
157         struct pte_list_desc *more;
158 };
159
160 struct kvm_shadow_walk_iterator {
161         u64 addr;
162         hpa_t shadow_addr;
163         u64 *sptep;
164         int level;
165         unsigned index;
166 };
167
168 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
169         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
170              shadow_walk_okay(&(_walker));                      \
171              shadow_walk_next(&(_walker)))
172
173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
174         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
175              shadow_walk_okay(&(_walker)) &&                            \
176                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
177              __shadow_walk_next(&(_walker), spte))
178
179 static struct kmem_cache *pte_list_desc_cache;
180 static struct kmem_cache *mmu_page_header_cache;
181 static struct percpu_counter kvm_total_used_mmu_pages;
182
183 static u64 __read_mostly shadow_nx_mask;
184 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185 static u64 __read_mostly shadow_user_mask;
186 static u64 __read_mostly shadow_accessed_mask;
187 static u64 __read_mostly shadow_dirty_mask;
188 static u64 __read_mostly shadow_mmio_mask;
189
190 static void mmu_spte_set(u64 *sptep, u64 spte);
191
192 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
193 {
194         shadow_mmio_mask = mmio_mask;
195 }
196 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
197
198 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
199 {
200         access &= ACC_WRITE_MASK | ACC_USER_MASK;
201
202         trace_mark_mmio_spte(sptep, gfn, access);
203         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
204 }
205
206 static bool is_mmio_spte(u64 spte)
207 {
208         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
209 }
210
211 static gfn_t get_mmio_spte_gfn(u64 spte)
212 {
213         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
214 }
215
216 static unsigned get_mmio_spte_access(u64 spte)
217 {
218         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
219 }
220
221 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
222 {
223         if (unlikely(is_noslot_pfn(pfn))) {
224                 mark_mmio_spte(sptep, gfn, access);
225                 return true;
226         }
227
228         return false;
229 }
230
231 static inline u64 rsvd_bits(int s, int e)
232 {
233         return ((1ULL << (e - s + 1)) - 1) << s;
234 }
235
236 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
237                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
238 {
239         shadow_user_mask = user_mask;
240         shadow_accessed_mask = accessed_mask;
241         shadow_dirty_mask = dirty_mask;
242         shadow_nx_mask = nx_mask;
243         shadow_x_mask = x_mask;
244 }
245 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
246
247 static int is_cpuid_PSE36(void)
248 {
249         return 1;
250 }
251
252 static int is_nx(struct kvm_vcpu *vcpu)
253 {
254         return vcpu->arch.efer & EFER_NX;
255 }
256
257 static int is_shadow_present_pte(u64 pte)
258 {
259         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
260 }
261
262 static int is_large_pte(u64 pte)
263 {
264         return pte & PT_PAGE_SIZE_MASK;
265 }
266
267 static int is_dirty_gpte(unsigned long pte)
268 {
269         return pte & PT_DIRTY_MASK;
270 }
271
272 static int is_rmap_spte(u64 pte)
273 {
274         return is_shadow_present_pte(pte);
275 }
276
277 static int is_last_spte(u64 pte, int level)
278 {
279         if (level == PT_PAGE_TABLE_LEVEL)
280                 return 1;
281         if (is_large_pte(pte))
282                 return 1;
283         return 0;
284 }
285
286 static pfn_t spte_to_pfn(u64 pte)
287 {
288         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
289 }
290
291 static gfn_t pse36_gfn_delta(u32 gpte)
292 {
293         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
294
295         return (gpte & PT32_DIR_PSE36_MASK) << shift;
296 }
297
298 #ifdef CONFIG_X86_64
299 static void __set_spte(u64 *sptep, u64 spte)
300 {
301         *sptep = spte;
302 }
303
304 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
305 {
306         *sptep = spte;
307 }
308
309 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
310 {
311         return xchg(sptep, spte);
312 }
313
314 static u64 __get_spte_lockless(u64 *sptep)
315 {
316         return ACCESS_ONCE(*sptep);
317 }
318
319 static bool __check_direct_spte_mmio_pf(u64 spte)
320 {
321         /* It is valid if the spte is zapped. */
322         return spte == 0ull;
323 }
324 #else
325 union split_spte {
326         struct {
327                 u32 spte_low;
328                 u32 spte_high;
329         };
330         u64 spte;
331 };
332
333 static void count_spte_clear(u64 *sptep, u64 spte)
334 {
335         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
336
337         if (is_shadow_present_pte(spte))
338                 return;
339
340         /* Ensure the spte is completely set before we increase the count */
341         smp_wmb();
342         sp->clear_spte_count++;
343 }
344
345 static void __set_spte(u64 *sptep, u64 spte)
346 {
347         union split_spte *ssptep, sspte;
348
349         ssptep = (union split_spte *)sptep;
350         sspte = (union split_spte)spte;
351
352         ssptep->spte_high = sspte.spte_high;
353
354         /*
355          * If we map the spte from nonpresent to present, We should store
356          * the high bits firstly, then set present bit, so cpu can not
357          * fetch this spte while we are setting the spte.
358          */
359         smp_wmb();
360
361         ssptep->spte_low = sspte.spte_low;
362 }
363
364 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
365 {
366         union split_spte *ssptep, sspte;
367
368         ssptep = (union split_spte *)sptep;
369         sspte = (union split_spte)spte;
370
371         ssptep->spte_low = sspte.spte_low;
372
373         /*
374          * If we map the spte from present to nonpresent, we should clear
375          * present bit firstly to avoid vcpu fetch the old high bits.
376          */
377         smp_wmb();
378
379         ssptep->spte_high = sspte.spte_high;
380         count_spte_clear(sptep, spte);
381 }
382
383 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
384 {
385         union split_spte *ssptep, sspte, orig;
386
387         ssptep = (union split_spte *)sptep;
388         sspte = (union split_spte)spte;
389
390         /* xchg acts as a barrier before the setting of the high bits */
391         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
392         orig.spte_high = ssptep->spte_high;
393         ssptep->spte_high = sspte.spte_high;
394         count_spte_clear(sptep, spte);
395
396         return orig.spte;
397 }
398
399 /*
400  * The idea using the light way get the spte on x86_32 guest is from
401  * gup_get_pte(arch/x86/mm/gup.c).
402  * The difference is we can not catch the spte tlb flush if we leave
403  * guest mode, so we emulate it by increase clear_spte_count when spte
404  * is cleared.
405  */
406 static u64 __get_spte_lockless(u64 *sptep)
407 {
408         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
409         union split_spte spte, *orig = (union split_spte *)sptep;
410         int count;
411
412 retry:
413         count = sp->clear_spte_count;
414         smp_rmb();
415
416         spte.spte_low = orig->spte_low;
417         smp_rmb();
418
419         spte.spte_high = orig->spte_high;
420         smp_rmb();
421
422         if (unlikely(spte.spte_low != orig->spte_low ||
423               count != sp->clear_spte_count))
424                 goto retry;
425
426         return spte.spte;
427 }
428
429 static bool __check_direct_spte_mmio_pf(u64 spte)
430 {
431         union split_spte sspte = (union split_spte)spte;
432         u32 high_mmio_mask = shadow_mmio_mask >> 32;
433
434         /* It is valid if the spte is zapped. */
435         if (spte == 0ull)
436                 return true;
437
438         /* It is valid if the spte is being zapped. */
439         if (sspte.spte_low == 0ull &&
440             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
441                 return true;
442
443         return false;
444 }
445 #endif
446
447 static bool spte_has_volatile_bits(u64 spte)
448 {
449         if (!shadow_accessed_mask)
450                 return false;
451
452         if (!is_shadow_present_pte(spte))
453                 return false;
454
455         if ((spte & shadow_accessed_mask) &&
456               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
457                 return false;
458
459         return true;
460 }
461
462 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
463 {
464         return (old_spte & bit_mask) && !(new_spte & bit_mask);
465 }
466
467 /* Rules for using mmu_spte_set:
468  * Set the sptep from nonpresent to present.
469  * Note: the sptep being assigned *must* be either not present
470  * or in a state where the hardware will not attempt to update
471  * the spte.
472  */
473 static void mmu_spte_set(u64 *sptep, u64 new_spte)
474 {
475         WARN_ON(is_shadow_present_pte(*sptep));
476         __set_spte(sptep, new_spte);
477 }
478
479 /* Rules for using mmu_spte_update:
480  * Update the state bits, it means the mapped pfn is not changged.
481  */
482 static void mmu_spte_update(u64 *sptep, u64 new_spte)
483 {
484         u64 mask, old_spte = *sptep;
485
486         WARN_ON(!is_rmap_spte(new_spte));
487
488         if (!is_shadow_present_pte(old_spte))
489                 return mmu_spte_set(sptep, new_spte);
490
491         new_spte |= old_spte & shadow_dirty_mask;
492
493         mask = shadow_accessed_mask;
494         if (is_writable_pte(old_spte))
495                 mask |= shadow_dirty_mask;
496
497         if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
498                 __update_clear_spte_fast(sptep, new_spte);
499         else
500                 old_spte = __update_clear_spte_slow(sptep, new_spte);
501
502         if (!shadow_accessed_mask)
503                 return;
504
505         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
506                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
507         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
508                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
509 }
510
511 /*
512  * Rules for using mmu_spte_clear_track_bits:
513  * It sets the sptep from present to nonpresent, and track the
514  * state bits, it is used to clear the last level sptep.
515  */
516 static int mmu_spte_clear_track_bits(u64 *sptep)
517 {
518         pfn_t pfn;
519         u64 old_spte = *sptep;
520
521         if (!spte_has_volatile_bits(old_spte))
522                 __update_clear_spte_fast(sptep, 0ull);
523         else
524                 old_spte = __update_clear_spte_slow(sptep, 0ull);
525
526         if (!is_rmap_spte(old_spte))
527                 return 0;
528
529         pfn = spte_to_pfn(old_spte);
530         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
531                 kvm_set_pfn_accessed(pfn);
532         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
533                 kvm_set_pfn_dirty(pfn);
534         return 1;
535 }
536
537 /*
538  * Rules for using mmu_spte_clear_no_track:
539  * Directly clear spte without caring the state bits of sptep,
540  * it is used to set the upper level spte.
541  */
542 static void mmu_spte_clear_no_track(u64 *sptep)
543 {
544         __update_clear_spte_fast(sptep, 0ull);
545 }
546
547 static u64 mmu_spte_get_lockless(u64 *sptep)
548 {
549         return __get_spte_lockless(sptep);
550 }
551
552 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
553 {
554         /*
555          * Prevent page table teardown by making any free-er wait during
556          * kvm_flush_remote_tlbs() IPI to all active vcpus.
557          */
558         local_irq_disable();
559         vcpu->mode = READING_SHADOW_PAGE_TABLES;
560         /*
561          * Make sure a following spte read is not reordered ahead of the write
562          * to vcpu->mode.
563          */
564         smp_mb();
565 }
566
567 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
568 {
569         /*
570          * Make sure the write to vcpu->mode is not reordered in front of
571          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
572          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
573          */
574         smp_mb();
575         vcpu->mode = OUTSIDE_GUEST_MODE;
576         local_irq_enable();
577 }
578
579 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
580                                   struct kmem_cache *base_cache, int min)
581 {
582         void *obj;
583
584         if (cache->nobjs >= min)
585                 return 0;
586         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
587                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
588                 if (!obj)
589                         return -ENOMEM;
590                 cache->objects[cache->nobjs++] = obj;
591         }
592         return 0;
593 }
594
595 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
596 {
597         return cache->nobjs;
598 }
599
600 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
601                                   struct kmem_cache *cache)
602 {
603         while (mc->nobjs)
604                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
605 }
606
607 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
608                                        int min)
609 {
610         void *page;
611
612         if (cache->nobjs >= min)
613                 return 0;
614         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
615                 page = (void *)__get_free_page(GFP_KERNEL);
616                 if (!page)
617                         return -ENOMEM;
618                 cache->objects[cache->nobjs++] = page;
619         }
620         return 0;
621 }
622
623 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
624 {
625         while (mc->nobjs)
626                 free_page((unsigned long)mc->objects[--mc->nobjs]);
627 }
628
629 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
630 {
631         int r;
632
633         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
634                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
635         if (r)
636                 goto out;
637         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
638         if (r)
639                 goto out;
640         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
641                                    mmu_page_header_cache, 4);
642 out:
643         return r;
644 }
645
646 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
647 {
648         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
649                                 pte_list_desc_cache);
650         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
651         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
652                                 mmu_page_header_cache);
653 }
654
655 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
656                                     size_t size)
657 {
658         void *p;
659
660         BUG_ON(!mc->nobjs);
661         p = mc->objects[--mc->nobjs];
662         return p;
663 }
664
665 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
666 {
667         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
668                                       sizeof(struct pte_list_desc));
669 }
670
671 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
672 {
673         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
674 }
675
676 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
677 {
678         if (!sp->role.direct)
679                 return sp->gfns[index];
680
681         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
682 }
683
684 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
685 {
686         if (sp->role.direct)
687                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
688         else
689                 sp->gfns[index] = gfn;
690 }
691
692 /*
693  * Return the pointer to the large page information for a given gfn,
694  * handling slots that are not large page aligned.
695  */
696 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
697                                               struct kvm_memory_slot *slot,
698                                               int level)
699 {
700         unsigned long idx;
701
702         idx = gfn_to_index(gfn, slot->base_gfn, level);
703         return &slot->arch.lpage_info[level - 2][idx];
704 }
705
706 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
707 {
708         struct kvm_memory_slot *slot;
709         struct kvm_lpage_info *linfo;
710         int i;
711
712         slot = gfn_to_memslot(kvm, gfn);
713         for (i = PT_DIRECTORY_LEVEL;
714              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
715                 linfo = lpage_info_slot(gfn, slot, i);
716                 linfo->write_count += 1;
717         }
718         kvm->arch.indirect_shadow_pages++;
719 }
720
721 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
722 {
723         struct kvm_memory_slot *slot;
724         struct kvm_lpage_info *linfo;
725         int i;
726
727         slot = gfn_to_memslot(kvm, gfn);
728         for (i = PT_DIRECTORY_LEVEL;
729              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
730                 linfo = lpage_info_slot(gfn, slot, i);
731                 linfo->write_count -= 1;
732                 WARN_ON(linfo->write_count < 0);
733         }
734         kvm->arch.indirect_shadow_pages--;
735 }
736
737 static int has_wrprotected_page(struct kvm *kvm,
738                                 gfn_t gfn,
739                                 int level)
740 {
741         struct kvm_memory_slot *slot;
742         struct kvm_lpage_info *linfo;
743
744         slot = gfn_to_memslot(kvm, gfn);
745         if (slot) {
746                 linfo = lpage_info_slot(gfn, slot, level);
747                 return linfo->write_count;
748         }
749
750         return 1;
751 }
752
753 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
754 {
755         unsigned long page_size;
756         int i, ret = 0;
757
758         page_size = kvm_host_page_size(kvm, gfn);
759
760         for (i = PT_PAGE_TABLE_LEVEL;
761              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
762                 if (page_size >= KVM_HPAGE_SIZE(i))
763                         ret = i;
764                 else
765                         break;
766         }
767
768         return ret;
769 }
770
771 static struct kvm_memory_slot *
772 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
773                             bool no_dirty_log)
774 {
775         struct kvm_memory_slot *slot;
776
777         slot = gfn_to_memslot(vcpu->kvm, gfn);
778         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
779               (no_dirty_log && slot->dirty_bitmap))
780                 slot = NULL;
781
782         return slot;
783 }
784
785 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
786 {
787         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
788 }
789
790 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
791 {
792         int host_level, level, max_level;
793
794         host_level = host_mapping_level(vcpu->kvm, large_gfn);
795
796         if (host_level == PT_PAGE_TABLE_LEVEL)
797                 return host_level;
798
799         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
800                 kvm_x86_ops->get_lpage_level() : host_level;
801
802         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
803                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
804                         break;
805
806         return level - 1;
807 }
808
809 /*
810  * Pte mapping structures:
811  *
812  * If pte_list bit zero is zero, then pte_list point to the spte.
813  *
814  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
815  * pte_list_desc containing more mappings.
816  *
817  * Returns the number of pte entries before the spte was added or zero if
818  * the spte was not added.
819  *
820  */
821 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
822                         unsigned long *pte_list)
823 {
824         struct pte_list_desc *desc;
825         int i, count = 0;
826
827         if (!*pte_list) {
828                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
829                 *pte_list = (unsigned long)spte;
830         } else if (!(*pte_list & 1)) {
831                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
832                 desc = mmu_alloc_pte_list_desc(vcpu);
833                 desc->sptes[0] = (u64 *)*pte_list;
834                 desc->sptes[1] = spte;
835                 *pte_list = (unsigned long)desc | 1;
836                 ++count;
837         } else {
838                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
839                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
840                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
841                         desc = desc->more;
842                         count += PTE_LIST_EXT;
843                 }
844                 if (desc->sptes[PTE_LIST_EXT-1]) {
845                         desc->more = mmu_alloc_pte_list_desc(vcpu);
846                         desc = desc->more;
847                 }
848                 for (i = 0; desc->sptes[i]; ++i)
849                         ++count;
850                 desc->sptes[i] = spte;
851         }
852         return count;
853 }
854
855 static void
856 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
857                            int i, struct pte_list_desc *prev_desc)
858 {
859         int j;
860
861         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
862                 ;
863         desc->sptes[i] = desc->sptes[j];
864         desc->sptes[j] = NULL;
865         if (j != 0)
866                 return;
867         if (!prev_desc && !desc->more)
868                 *pte_list = (unsigned long)desc->sptes[0];
869         else
870                 if (prev_desc)
871                         prev_desc->more = desc->more;
872                 else
873                         *pte_list = (unsigned long)desc->more | 1;
874         mmu_free_pte_list_desc(desc);
875 }
876
877 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
878 {
879         struct pte_list_desc *desc;
880         struct pte_list_desc *prev_desc;
881         int i;
882
883         if (!*pte_list) {
884                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
885                 BUG();
886         } else if (!(*pte_list & 1)) {
887                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
888                 if ((u64 *)*pte_list != spte) {
889                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
890                         BUG();
891                 }
892                 *pte_list = 0;
893         } else {
894                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
895                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
896                 prev_desc = NULL;
897                 while (desc) {
898                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
899                                 if (desc->sptes[i] == spte) {
900                                         pte_list_desc_remove_entry(pte_list,
901                                                                desc, i,
902                                                                prev_desc);
903                                         return;
904                                 }
905                         prev_desc = desc;
906                         desc = desc->more;
907                 }
908                 pr_err("pte_list_remove: %p many->many\n", spte);
909                 BUG();
910         }
911 }
912
913 typedef void (*pte_list_walk_fn) (u64 *spte);
914 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
915 {
916         struct pte_list_desc *desc;
917         int i;
918
919         if (!*pte_list)
920                 return;
921
922         if (!(*pte_list & 1))
923                 return fn((u64 *)*pte_list);
924
925         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
926         while (desc) {
927                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
928                         fn(desc->sptes[i]);
929                 desc = desc->more;
930         }
931 }
932
933 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
934                                     struct kvm_memory_slot *slot)
935 {
936         struct kvm_lpage_info *linfo;
937
938         if (likely(level == PT_PAGE_TABLE_LEVEL))
939                 return &slot->rmap[gfn - slot->base_gfn];
940
941         linfo = lpage_info_slot(gfn, slot, level);
942         return &linfo->rmap_pde;
943 }
944
945 /*
946  * Take gfn and return the reverse mapping to it.
947  */
948 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
949 {
950         struct kvm_memory_slot *slot;
951
952         slot = gfn_to_memslot(kvm, gfn);
953         return __gfn_to_rmap(gfn, level, slot);
954 }
955
956 static bool rmap_can_add(struct kvm_vcpu *vcpu)
957 {
958         struct kvm_mmu_memory_cache *cache;
959
960         cache = &vcpu->arch.mmu_pte_list_desc_cache;
961         return mmu_memory_cache_free_objects(cache);
962 }
963
964 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
965 {
966         struct kvm_mmu_page *sp;
967         unsigned long *rmapp;
968
969         sp = page_header(__pa(spte));
970         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
971         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
972         return pte_list_add(vcpu, spte, rmapp);
973 }
974
975 static void rmap_remove(struct kvm *kvm, u64 *spte)
976 {
977         struct kvm_mmu_page *sp;
978         gfn_t gfn;
979         unsigned long *rmapp;
980
981         sp = page_header(__pa(spte));
982         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
983         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
984         pte_list_remove(spte, rmapp);
985 }
986
987 /*
988  * Used by the following functions to iterate through the sptes linked by a
989  * rmap.  All fields are private and not assumed to be used outside.
990  */
991 struct rmap_iterator {
992         /* private fields */
993         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
994         int pos;                        /* index of the sptep */
995 };
996
997 /*
998  * Iteration must be started by this function.  This should also be used after
999  * removing/dropping sptes from the rmap link because in such cases the
1000  * information in the itererator may not be valid.
1001  *
1002  * Returns sptep if found, NULL otherwise.
1003  */
1004 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1005 {
1006         if (!rmap)
1007                 return NULL;
1008
1009         if (!(rmap & 1)) {
1010                 iter->desc = NULL;
1011                 return (u64 *)rmap;
1012         }
1013
1014         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1015         iter->pos = 0;
1016         return iter->desc->sptes[iter->pos];
1017 }
1018
1019 /*
1020  * Must be used with a valid iterator: e.g. after rmap_get_first().
1021  *
1022  * Returns sptep if found, NULL otherwise.
1023  */
1024 static u64 *rmap_get_next(struct rmap_iterator *iter)
1025 {
1026         if (iter->desc) {
1027                 if (iter->pos < PTE_LIST_EXT - 1) {
1028                         u64 *sptep;
1029
1030                         ++iter->pos;
1031                         sptep = iter->desc->sptes[iter->pos];
1032                         if (sptep)
1033                                 return sptep;
1034                 }
1035
1036                 iter->desc = iter->desc->more;
1037
1038                 if (iter->desc) {
1039                         iter->pos = 0;
1040                         /* desc->sptes[0] cannot be NULL */
1041                         return iter->desc->sptes[iter->pos];
1042                 }
1043         }
1044
1045         return NULL;
1046 }
1047
1048 static void drop_spte(struct kvm *kvm, u64 *sptep)
1049 {
1050         if (mmu_spte_clear_track_bits(sptep))
1051                 rmap_remove(kvm, sptep);
1052 }
1053
1054 static int __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
1055 {
1056         u64 *sptep;
1057         struct rmap_iterator iter;
1058         int write_protected = 0;
1059
1060         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1061                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1062                 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1063
1064                 if (!is_writable_pte(*sptep)) {
1065                         sptep = rmap_get_next(&iter);
1066                         continue;
1067                 }
1068
1069                 if (level == PT_PAGE_TABLE_LEVEL) {
1070                         mmu_spte_update(sptep, *sptep & ~PT_WRITABLE_MASK);
1071                         sptep = rmap_get_next(&iter);
1072                 } else {
1073                         BUG_ON(!is_large_pte(*sptep));
1074                         drop_spte(kvm, sptep);
1075                         --kvm->stat.lpages;
1076                         sptep = rmap_get_first(*rmapp, &iter);
1077                 }
1078
1079                 write_protected = 1;
1080         }
1081
1082         return write_protected;
1083 }
1084
1085 /**
1086  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1087  * @kvm: kvm instance
1088  * @slot: slot to protect
1089  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1090  * @mask: indicates which pages we should protect
1091  *
1092  * Used when we do not need to care about huge page mappings: e.g. during dirty
1093  * logging we do not have any such mappings.
1094  */
1095 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1096                                      struct kvm_memory_slot *slot,
1097                                      gfn_t gfn_offset, unsigned long mask)
1098 {
1099         unsigned long *rmapp;
1100
1101         while (mask) {
1102                 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1103                 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
1104
1105                 /* clear the first set bit */
1106                 mask &= mask - 1;
1107         }
1108 }
1109
1110 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1111 {
1112         struct kvm_memory_slot *slot;
1113         unsigned long *rmapp;
1114         int i;
1115         int write_protected = 0;
1116
1117         slot = gfn_to_memslot(kvm, gfn);
1118
1119         for (i = PT_PAGE_TABLE_LEVEL;
1120              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1121                 rmapp = __gfn_to_rmap(gfn, i, slot);
1122                 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1123         }
1124
1125         return write_protected;
1126 }
1127
1128 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1129                            unsigned long data)
1130 {
1131         u64 *sptep;
1132         struct rmap_iterator iter;
1133         int need_tlb_flush = 0;
1134
1135         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1136                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1137                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1138
1139                 drop_spte(kvm, sptep);
1140                 need_tlb_flush = 1;
1141         }
1142
1143         return need_tlb_flush;
1144 }
1145
1146 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1147                              unsigned long data)
1148 {
1149         u64 *sptep;
1150         struct rmap_iterator iter;
1151         int need_flush = 0;
1152         u64 new_spte;
1153         pte_t *ptep = (pte_t *)data;
1154         pfn_t new_pfn;
1155
1156         WARN_ON(pte_huge(*ptep));
1157         new_pfn = pte_pfn(*ptep);
1158
1159         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1160                 BUG_ON(!is_shadow_present_pte(*sptep));
1161                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1162
1163                 need_flush = 1;
1164
1165                 if (pte_write(*ptep)) {
1166                         drop_spte(kvm, sptep);
1167                         sptep = rmap_get_first(*rmapp, &iter);
1168                 } else {
1169                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1170                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1171
1172                         new_spte &= ~PT_WRITABLE_MASK;
1173                         new_spte &= ~SPTE_HOST_WRITEABLE;
1174                         new_spte &= ~shadow_accessed_mask;
1175
1176                         mmu_spte_clear_track_bits(sptep);
1177                         mmu_spte_set(sptep, new_spte);
1178                         sptep = rmap_get_next(&iter);
1179                 }
1180         }
1181
1182         if (need_flush)
1183                 kvm_flush_remote_tlbs(kvm);
1184
1185         return 0;
1186 }
1187
1188 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1189                           unsigned long data,
1190                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1191                                          unsigned long data))
1192 {
1193         int j;
1194         int ret;
1195         int retval = 0;
1196         struct kvm_memslots *slots;
1197         struct kvm_memory_slot *memslot;
1198
1199         slots = kvm_memslots(kvm);
1200
1201         kvm_for_each_memslot(memslot, slots) {
1202                 unsigned long start = memslot->userspace_addr;
1203                 unsigned long end;
1204
1205                 end = start + (memslot->npages << PAGE_SHIFT);
1206                 if (hva >= start && hva < end) {
1207                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1208                         gfn_t gfn = memslot->base_gfn + gfn_offset;
1209
1210                         ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1211
1212                         for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1213                                 struct kvm_lpage_info *linfo;
1214
1215                                 linfo = lpage_info_slot(gfn, memslot,
1216                                                         PT_DIRECTORY_LEVEL + j);
1217                                 ret |= handler(kvm, &linfo->rmap_pde, data);
1218                         }
1219                         trace_kvm_age_page(hva, memslot, ret);
1220                         retval |= ret;
1221                 }
1222         }
1223
1224         return retval;
1225 }
1226
1227 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1228 {
1229         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1230 }
1231
1232 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1233 {
1234         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1235 }
1236
1237 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1238                          unsigned long data)
1239 {
1240         u64 *sptep;
1241         struct rmap_iterator uninitialized_var(iter);
1242         int young = 0;
1243
1244         /*
1245          * In case of absence of EPT Access and Dirty Bits supports,
1246          * emulate the accessed bit for EPT, by checking if this page has
1247          * an EPT mapping, and clearing it if it does. On the next access,
1248          * a new EPT mapping will be established.
1249          * This has some overhead, but not as much as the cost of swapping
1250          * out actively used pages or breaking up actively used hugepages.
1251          */
1252         if (!shadow_accessed_mask)
1253                 return kvm_unmap_rmapp(kvm, rmapp, data);
1254
1255         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1256              sptep = rmap_get_next(&iter)) {
1257                 BUG_ON(!is_shadow_present_pte(*sptep));
1258
1259                 if (*sptep & shadow_accessed_mask) {
1260                         young = 1;
1261                         clear_bit((ffs(shadow_accessed_mask) - 1),
1262                                  (unsigned long *)sptep);
1263                 }
1264         }
1265
1266         return young;
1267 }
1268
1269 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1270                               unsigned long data)
1271 {
1272         u64 *sptep;
1273         struct rmap_iterator iter;
1274         int young = 0;
1275
1276         /*
1277          * If there's no access bit in the secondary pte set by the
1278          * hardware it's up to gup-fast/gup to set the access bit in
1279          * the primary pte or in the page structure.
1280          */
1281         if (!shadow_accessed_mask)
1282                 goto out;
1283
1284         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1285              sptep = rmap_get_next(&iter)) {
1286                 BUG_ON(!is_shadow_present_pte(*sptep));
1287
1288                 if (*sptep & shadow_accessed_mask) {
1289                         young = 1;
1290                         break;
1291                 }
1292         }
1293 out:
1294         return young;
1295 }
1296
1297 #define RMAP_RECYCLE_THRESHOLD 1000
1298
1299 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1300 {
1301         unsigned long *rmapp;
1302         struct kvm_mmu_page *sp;
1303
1304         sp = page_header(__pa(spte));
1305
1306         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1307
1308         kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1309         kvm_flush_remote_tlbs(vcpu->kvm);
1310 }
1311
1312 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1313 {
1314         return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1315 }
1316
1317 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1318 {
1319         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1320 }
1321
1322 #ifdef MMU_DEBUG
1323 static int is_empty_shadow_page(u64 *spt)
1324 {
1325         u64 *pos;
1326         u64 *end;
1327
1328         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1329                 if (is_shadow_present_pte(*pos)) {
1330                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1331                                pos, *pos);
1332                         return 0;
1333                 }
1334         return 1;
1335 }
1336 #endif
1337
1338 /*
1339  * This value is the sum of all of the kvm instances's
1340  * kvm->arch.n_used_mmu_pages values.  We need a global,
1341  * aggregate version in order to make the slab shrinker
1342  * faster
1343  */
1344 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1345 {
1346         kvm->arch.n_used_mmu_pages += nr;
1347         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1348 }
1349
1350 /*
1351  * Remove the sp from shadow page cache, after call it,
1352  * we can not find this sp from the cache, and the shadow
1353  * page table is still valid.
1354  * It should be under the protection of mmu lock.
1355  */
1356 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1357 {
1358         ASSERT(is_empty_shadow_page(sp->spt));
1359         hlist_del(&sp->hash_link);
1360         if (!sp->role.direct)
1361                 free_page((unsigned long)sp->gfns);
1362 }
1363
1364 /*
1365  * Free the shadow page table and the sp, we can do it
1366  * out of the protection of mmu lock.
1367  */
1368 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1369 {
1370         list_del(&sp->link);
1371         free_page((unsigned long)sp->spt);
1372         kmem_cache_free(mmu_page_header_cache, sp);
1373 }
1374
1375 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1376 {
1377         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1378 }
1379
1380 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1381                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1382 {
1383         if (!parent_pte)
1384                 return;
1385
1386         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1387 }
1388
1389 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1390                                        u64 *parent_pte)
1391 {
1392         pte_list_remove(parent_pte, &sp->parent_ptes);
1393 }
1394
1395 static void drop_parent_pte(struct kvm_mmu_page *sp,
1396                             u64 *parent_pte)
1397 {
1398         mmu_page_remove_parent_pte(sp, parent_pte);
1399         mmu_spte_clear_no_track(parent_pte);
1400 }
1401
1402 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1403                                                u64 *parent_pte, int direct)
1404 {
1405         struct kvm_mmu_page *sp;
1406         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1407                                         sizeof *sp);
1408         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1409         if (!direct)
1410                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1411                                                   PAGE_SIZE);
1412         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1413         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1414         bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1415         sp->parent_ptes = 0;
1416         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1417         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1418         return sp;
1419 }
1420
1421 static void mark_unsync(u64 *spte);
1422 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1423 {
1424         pte_list_walk(&sp->parent_ptes, mark_unsync);
1425 }
1426
1427 static void mark_unsync(u64 *spte)
1428 {
1429         struct kvm_mmu_page *sp;
1430         unsigned int index;
1431
1432         sp = page_header(__pa(spte));
1433         index = spte - sp->spt;
1434         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1435                 return;
1436         if (sp->unsync_children++)
1437                 return;
1438         kvm_mmu_mark_parents_unsync(sp);
1439 }
1440
1441 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1442                                struct kvm_mmu_page *sp)
1443 {
1444         return 1;
1445 }
1446
1447 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1448 {
1449 }
1450
1451 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1452                                  struct kvm_mmu_page *sp, u64 *spte,
1453                                  const void *pte)
1454 {
1455         WARN_ON(1);
1456 }
1457
1458 #define KVM_PAGE_ARRAY_NR 16
1459
1460 struct kvm_mmu_pages {
1461         struct mmu_page_and_offset {
1462                 struct kvm_mmu_page *sp;
1463                 unsigned int idx;
1464         } page[KVM_PAGE_ARRAY_NR];
1465         unsigned int nr;
1466 };
1467
1468 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1469                          int idx)
1470 {
1471         int i;
1472
1473         if (sp->unsync)
1474                 for (i=0; i < pvec->nr; i++)
1475                         if (pvec->page[i].sp == sp)
1476                                 return 0;
1477
1478         pvec->page[pvec->nr].sp = sp;
1479         pvec->page[pvec->nr].idx = idx;
1480         pvec->nr++;
1481         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1482 }
1483
1484 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1485                            struct kvm_mmu_pages *pvec)
1486 {
1487         int i, ret, nr_unsync_leaf = 0;
1488
1489         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1490                 struct kvm_mmu_page *child;
1491                 u64 ent = sp->spt[i];
1492
1493                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1494                         goto clear_child_bitmap;
1495
1496                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1497
1498                 if (child->unsync_children) {
1499                         if (mmu_pages_add(pvec, child, i))
1500                                 return -ENOSPC;
1501
1502                         ret = __mmu_unsync_walk(child, pvec);
1503                         if (!ret)
1504                                 goto clear_child_bitmap;
1505                         else if (ret > 0)
1506                                 nr_unsync_leaf += ret;
1507                         else
1508                                 return ret;
1509                 } else if (child->unsync) {
1510                         nr_unsync_leaf++;
1511                         if (mmu_pages_add(pvec, child, i))
1512                                 return -ENOSPC;
1513                 } else
1514                          goto clear_child_bitmap;
1515
1516                 continue;
1517
1518 clear_child_bitmap:
1519                 __clear_bit(i, sp->unsync_child_bitmap);
1520                 sp->unsync_children--;
1521                 WARN_ON((int)sp->unsync_children < 0);
1522         }
1523
1524
1525         return nr_unsync_leaf;
1526 }
1527
1528 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1529                            struct kvm_mmu_pages *pvec)
1530 {
1531         if (!sp->unsync_children)
1532                 return 0;
1533
1534         mmu_pages_add(pvec, sp, 0);
1535         return __mmu_unsync_walk(sp, pvec);
1536 }
1537
1538 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1539 {
1540         WARN_ON(!sp->unsync);
1541         trace_kvm_mmu_sync_page(sp);
1542         sp->unsync = 0;
1543         --kvm->stat.mmu_unsync;
1544 }
1545
1546 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1547                                     struct list_head *invalid_list);
1548 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1549                                     struct list_head *invalid_list);
1550
1551 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1552   hlist_for_each_entry(sp, pos,                                         \
1553    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1554         if ((sp)->gfn != (gfn)) {} else
1555
1556 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1557   hlist_for_each_entry(sp, pos,                                         \
1558    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1559                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1560                         (sp)->role.invalid) {} else
1561
1562 /* @sp->gfn should be write-protected at the call site */
1563 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1564                            struct list_head *invalid_list, bool clear_unsync)
1565 {
1566         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1567                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1568                 return 1;
1569         }
1570
1571         if (clear_unsync)
1572                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1573
1574         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1575                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1576                 return 1;
1577         }
1578
1579         kvm_mmu_flush_tlb(vcpu);
1580         return 0;
1581 }
1582
1583 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1584                                    struct kvm_mmu_page *sp)
1585 {
1586         LIST_HEAD(invalid_list);
1587         int ret;
1588
1589         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1590         if (ret)
1591                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1592
1593         return ret;
1594 }
1595
1596 #ifdef CONFIG_KVM_MMU_AUDIT
1597 #include "mmu_audit.c"
1598 #else
1599 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1600 static void mmu_audit_disable(void) { }
1601 #endif
1602
1603 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1604                          struct list_head *invalid_list)
1605 {
1606         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1607 }
1608
1609 /* @gfn should be write-protected at the call site */
1610 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1611 {
1612         struct kvm_mmu_page *s;
1613         struct hlist_node *node;
1614         LIST_HEAD(invalid_list);
1615         bool flush = false;
1616
1617         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1618                 if (!s->unsync)
1619                         continue;
1620
1621                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1622                 kvm_unlink_unsync_page(vcpu->kvm, s);
1623                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1624                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1625                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1626                         continue;
1627                 }
1628                 flush = true;
1629         }
1630
1631         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1632         if (flush)
1633                 kvm_mmu_flush_tlb(vcpu);
1634 }
1635
1636 struct mmu_page_path {
1637         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1638         unsigned int idx[PT64_ROOT_LEVEL-1];
1639 };
1640
1641 #define for_each_sp(pvec, sp, parents, i)                       \
1642                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1643                         sp = pvec.page[i].sp;                   \
1644                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1645                         i = mmu_pages_next(&pvec, &parents, i))
1646
1647 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1648                           struct mmu_page_path *parents,
1649                           int i)
1650 {
1651         int n;
1652
1653         for (n = i+1; n < pvec->nr; n++) {
1654                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1655
1656                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1657                         parents->idx[0] = pvec->page[n].idx;
1658                         return n;
1659                 }
1660
1661                 parents->parent[sp->role.level-2] = sp;
1662                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1663         }
1664
1665         return n;
1666 }
1667
1668 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1669 {
1670         struct kvm_mmu_page *sp;
1671         unsigned int level = 0;
1672
1673         do {
1674                 unsigned int idx = parents->idx[level];
1675
1676                 sp = parents->parent[level];
1677                 if (!sp)
1678                         return;
1679
1680                 --sp->unsync_children;
1681                 WARN_ON((int)sp->unsync_children < 0);
1682                 __clear_bit(idx, sp->unsync_child_bitmap);
1683                 level++;
1684         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1685 }
1686
1687 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1688                                struct mmu_page_path *parents,
1689                                struct kvm_mmu_pages *pvec)
1690 {
1691         parents->parent[parent->role.level-1] = NULL;
1692         pvec->nr = 0;
1693 }
1694
1695 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1696                               struct kvm_mmu_page *parent)
1697 {
1698         int i;
1699         struct kvm_mmu_page *sp;
1700         struct mmu_page_path parents;
1701         struct kvm_mmu_pages pages;
1702         LIST_HEAD(invalid_list);
1703
1704         kvm_mmu_pages_init(parent, &parents, &pages);
1705         while (mmu_unsync_walk(parent, &pages)) {
1706                 int protected = 0;
1707
1708                 for_each_sp(pages, sp, parents, i)
1709                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1710
1711                 if (protected)
1712                         kvm_flush_remote_tlbs(vcpu->kvm);
1713
1714                 for_each_sp(pages, sp, parents, i) {
1715                         kvm_sync_page(vcpu, sp, &invalid_list);
1716                         mmu_pages_clear_parents(&parents);
1717                 }
1718                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1719                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1720                 kvm_mmu_pages_init(parent, &parents, &pages);
1721         }
1722 }
1723
1724 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1725 {
1726         int i;
1727
1728         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1729                 sp->spt[i] = 0ull;
1730 }
1731
1732 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1733 {
1734         sp->write_flooding_count = 0;
1735 }
1736
1737 static void clear_sp_write_flooding_count(u64 *spte)
1738 {
1739         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1740
1741         __clear_sp_write_flooding_count(sp);
1742 }
1743
1744 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1745                                              gfn_t gfn,
1746                                              gva_t gaddr,
1747                                              unsigned level,
1748                                              int direct,
1749                                              unsigned access,
1750                                              u64 *parent_pte)
1751 {
1752         union kvm_mmu_page_role role;
1753         unsigned quadrant;
1754         struct kvm_mmu_page *sp;
1755         struct hlist_node *node;
1756         bool need_sync = false;
1757
1758         role = vcpu->arch.mmu.base_role;
1759         role.level = level;
1760         role.direct = direct;
1761         if (role.direct)
1762                 role.cr4_pae = 0;
1763         role.access = access;
1764         if (!vcpu->arch.mmu.direct_map
1765             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1766                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1767                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1768                 role.quadrant = quadrant;
1769         }
1770         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1771                 if (!need_sync && sp->unsync)
1772                         need_sync = true;
1773
1774                 if (sp->role.word != role.word)
1775                         continue;
1776
1777                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1778                         break;
1779
1780                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1781                 if (sp->unsync_children) {
1782                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1783                         kvm_mmu_mark_parents_unsync(sp);
1784                 } else if (sp->unsync)
1785                         kvm_mmu_mark_parents_unsync(sp);
1786
1787                 __clear_sp_write_flooding_count(sp);
1788                 trace_kvm_mmu_get_page(sp, false);
1789                 return sp;
1790         }
1791         ++vcpu->kvm->stat.mmu_cache_miss;
1792         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1793         if (!sp)
1794                 return sp;
1795         sp->gfn = gfn;
1796         sp->role = role;
1797         hlist_add_head(&sp->hash_link,
1798                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1799         if (!direct) {
1800                 if (rmap_write_protect(vcpu->kvm, gfn))
1801                         kvm_flush_remote_tlbs(vcpu->kvm);
1802                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1803                         kvm_sync_pages(vcpu, gfn);
1804
1805                 account_shadowed(vcpu->kvm, gfn);
1806         }
1807         init_shadow_page_table(sp);
1808         trace_kvm_mmu_get_page(sp, true);
1809         return sp;
1810 }
1811
1812 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1813                              struct kvm_vcpu *vcpu, u64 addr)
1814 {
1815         iterator->addr = addr;
1816         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1817         iterator->level = vcpu->arch.mmu.shadow_root_level;
1818
1819         if (iterator->level == PT64_ROOT_LEVEL &&
1820             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1821             !vcpu->arch.mmu.direct_map)
1822                 --iterator->level;
1823
1824         if (iterator->level == PT32E_ROOT_LEVEL) {
1825                 iterator->shadow_addr
1826                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1827                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1828                 --iterator->level;
1829                 if (!iterator->shadow_addr)
1830                         iterator->level = 0;
1831         }
1832 }
1833
1834 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1835 {
1836         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1837                 return false;
1838
1839         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1840         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1841         return true;
1842 }
1843
1844 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1845                                u64 spte)
1846 {
1847         if (is_last_spte(spte, iterator->level)) {
1848                 iterator->level = 0;
1849                 return;
1850         }
1851
1852         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1853         --iterator->level;
1854 }
1855
1856 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1857 {
1858         return __shadow_walk_next(iterator, *iterator->sptep);
1859 }
1860
1861 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1862 {
1863         u64 spte;
1864
1865         spte = __pa(sp->spt)
1866                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1867                 | PT_WRITABLE_MASK | PT_USER_MASK;
1868         mmu_spte_set(sptep, spte);
1869 }
1870
1871 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1872 {
1873         if (is_large_pte(*sptep)) {
1874                 drop_spte(vcpu->kvm, sptep);
1875                 --vcpu->kvm->stat.lpages;
1876                 kvm_flush_remote_tlbs(vcpu->kvm);
1877         }
1878 }
1879
1880 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1881                                    unsigned direct_access)
1882 {
1883         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1884                 struct kvm_mmu_page *child;
1885
1886                 /*
1887                  * For the direct sp, if the guest pte's dirty bit
1888                  * changed form clean to dirty, it will corrupt the
1889                  * sp's access: allow writable in the read-only sp,
1890                  * so we should update the spte at this point to get
1891                  * a new sp with the correct access.
1892                  */
1893                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1894                 if (child->role.access == direct_access)
1895                         return;
1896
1897                 drop_parent_pte(child, sptep);
1898                 kvm_flush_remote_tlbs(vcpu->kvm);
1899         }
1900 }
1901
1902 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1903                              u64 *spte)
1904 {
1905         u64 pte;
1906         struct kvm_mmu_page *child;
1907
1908         pte = *spte;
1909         if (is_shadow_present_pte(pte)) {
1910                 if (is_last_spte(pte, sp->role.level)) {
1911                         drop_spte(kvm, spte);
1912                         if (is_large_pte(pte))
1913                                 --kvm->stat.lpages;
1914                 } else {
1915                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1916                         drop_parent_pte(child, spte);
1917                 }
1918                 return true;
1919         }
1920
1921         if (is_mmio_spte(pte))
1922                 mmu_spte_clear_no_track(spte);
1923
1924         return false;
1925 }
1926
1927 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1928                                          struct kvm_mmu_page *sp)
1929 {
1930         unsigned i;
1931
1932         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1933                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1934 }
1935
1936 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1937 {
1938         mmu_page_remove_parent_pte(sp, parent_pte);
1939 }
1940
1941 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1942 {
1943         u64 *sptep;
1944         struct rmap_iterator iter;
1945
1946         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
1947                 drop_parent_pte(sp, sptep);
1948 }
1949
1950 static int mmu_zap_unsync_children(struct kvm *kvm,
1951                                    struct kvm_mmu_page *parent,
1952                                    struct list_head *invalid_list)
1953 {
1954         int i, zapped = 0;
1955         struct mmu_page_path parents;
1956         struct kvm_mmu_pages pages;
1957
1958         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1959                 return 0;
1960
1961         kvm_mmu_pages_init(parent, &parents, &pages);
1962         while (mmu_unsync_walk(parent, &pages)) {
1963                 struct kvm_mmu_page *sp;
1964
1965                 for_each_sp(pages, sp, parents, i) {
1966                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1967                         mmu_pages_clear_parents(&parents);
1968                         zapped++;
1969                 }
1970                 kvm_mmu_pages_init(parent, &parents, &pages);
1971         }
1972
1973         return zapped;
1974 }
1975
1976 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1977                                     struct list_head *invalid_list)
1978 {
1979         int ret;
1980
1981         trace_kvm_mmu_prepare_zap_page(sp);
1982         ++kvm->stat.mmu_shadow_zapped;
1983         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1984         kvm_mmu_page_unlink_children(kvm, sp);
1985         kvm_mmu_unlink_parents(kvm, sp);
1986         if (!sp->role.invalid && !sp->role.direct)
1987                 unaccount_shadowed(kvm, sp->gfn);
1988         if (sp->unsync)
1989                 kvm_unlink_unsync_page(kvm, sp);
1990         if (!sp->root_count) {
1991                 /* Count self */
1992                 ret++;
1993                 list_move(&sp->link, invalid_list);
1994                 kvm_mod_used_mmu_pages(kvm, -1);
1995         } else {
1996                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1997                 kvm_reload_remote_mmus(kvm);
1998         }
1999
2000         sp->role.invalid = 1;
2001         return ret;
2002 }
2003
2004 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2005                                     struct list_head *invalid_list)
2006 {
2007         struct kvm_mmu_page *sp;
2008
2009         if (list_empty(invalid_list))
2010                 return;
2011
2012         /*
2013          * wmb: make sure everyone sees our modifications to the page tables
2014          * rmb: make sure we see changes to vcpu->mode
2015          */
2016         smp_mb();
2017
2018         /*
2019          * Wait for all vcpus to exit guest mode and/or lockless shadow
2020          * page table walks.
2021          */
2022         kvm_flush_remote_tlbs(kvm);
2023
2024         do {
2025                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2026                 WARN_ON(!sp->role.invalid || sp->root_count);
2027                 kvm_mmu_isolate_page(sp);
2028                 kvm_mmu_free_page(sp);
2029         } while (!list_empty(invalid_list));
2030 }
2031
2032 /*
2033  * Changing the number of mmu pages allocated to the vm
2034  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2035  */
2036 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2037 {
2038         LIST_HEAD(invalid_list);
2039         /*
2040          * If we set the number of mmu pages to be smaller be than the
2041          * number of actived pages , we must to free some mmu pages before we
2042          * change the value
2043          */
2044
2045         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2046                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2047                         !list_empty(&kvm->arch.active_mmu_pages)) {
2048                         struct kvm_mmu_page *page;
2049
2050                         page = container_of(kvm->arch.active_mmu_pages.prev,
2051                                             struct kvm_mmu_page, link);
2052                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2053                 }
2054                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2055                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2056         }
2057
2058         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2059 }
2060
2061 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2062 {
2063         struct kvm_mmu_page *sp;
2064         struct hlist_node *node;
2065         LIST_HEAD(invalid_list);
2066         int r;
2067
2068         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2069         r = 0;
2070         spin_lock(&kvm->mmu_lock);
2071         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2072                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2073                          sp->role.word);
2074                 r = 1;
2075                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2076         }
2077         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2078         spin_unlock(&kvm->mmu_lock);
2079
2080         return r;
2081 }
2082 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2083
2084 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2085 {
2086         int slot = memslot_id(kvm, gfn);
2087         struct kvm_mmu_page *sp = page_header(__pa(pte));
2088
2089         __set_bit(slot, sp->slot_bitmap);
2090 }
2091
2092 /*
2093  * The function is based on mtrr_type_lookup() in
2094  * arch/x86/kernel/cpu/mtrr/generic.c
2095  */
2096 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2097                          u64 start, u64 end)
2098 {
2099         int i;
2100         u64 base, mask;
2101         u8 prev_match, curr_match;
2102         int num_var_ranges = KVM_NR_VAR_MTRR;
2103
2104         if (!mtrr_state->enabled)
2105                 return 0xFF;
2106
2107         /* Make end inclusive end, instead of exclusive */
2108         end--;
2109
2110         /* Look in fixed ranges. Just return the type as per start */
2111         if (mtrr_state->have_fixed && (start < 0x100000)) {
2112                 int idx;
2113
2114                 if (start < 0x80000) {
2115                         idx = 0;
2116                         idx += (start >> 16);
2117                         return mtrr_state->fixed_ranges[idx];
2118                 } else if (start < 0xC0000) {
2119                         idx = 1 * 8;
2120                         idx += ((start - 0x80000) >> 14);
2121                         return mtrr_state->fixed_ranges[idx];
2122                 } else if (start < 0x1000000) {
2123                         idx = 3 * 8;
2124                         idx += ((start - 0xC0000) >> 12);
2125                         return mtrr_state->fixed_ranges[idx];
2126                 }
2127         }
2128
2129         /*
2130          * Look in variable ranges
2131          * Look of multiple ranges matching this address and pick type
2132          * as per MTRR precedence
2133          */
2134         if (!(mtrr_state->enabled & 2))
2135                 return mtrr_state->def_type;
2136
2137         prev_match = 0xFF;
2138         for (i = 0; i < num_var_ranges; ++i) {
2139                 unsigned short start_state, end_state;
2140
2141                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2142                         continue;
2143
2144                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2145                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2146                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2147                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2148
2149                 start_state = ((start & mask) == (base & mask));
2150                 end_state = ((end & mask) == (base & mask));
2151                 if (start_state != end_state)
2152                         return 0xFE;
2153
2154                 if ((start & mask) != (base & mask))
2155                         continue;
2156
2157                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2158                 if (prev_match == 0xFF) {
2159                         prev_match = curr_match;
2160                         continue;
2161                 }
2162
2163                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2164                     curr_match == MTRR_TYPE_UNCACHABLE)
2165                         return MTRR_TYPE_UNCACHABLE;
2166
2167                 if ((prev_match == MTRR_TYPE_WRBACK &&
2168                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2169                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2170                      curr_match == MTRR_TYPE_WRBACK)) {
2171                         prev_match = MTRR_TYPE_WRTHROUGH;
2172                         curr_match = MTRR_TYPE_WRTHROUGH;
2173                 }
2174
2175                 if (prev_match != curr_match)
2176                         return MTRR_TYPE_UNCACHABLE;
2177         }
2178
2179         if (prev_match != 0xFF)
2180                 return prev_match;
2181
2182         return mtrr_state->def_type;
2183 }
2184
2185 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2186 {
2187         u8 mtrr;
2188
2189         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2190                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2191         if (mtrr == 0xfe || mtrr == 0xff)
2192                 mtrr = MTRR_TYPE_WRBACK;
2193         return mtrr;
2194 }
2195 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2196
2197 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2198 {
2199         trace_kvm_mmu_unsync_page(sp);
2200         ++vcpu->kvm->stat.mmu_unsync;
2201         sp->unsync = 1;
2202
2203         kvm_mmu_mark_parents_unsync(sp);
2204 }
2205
2206 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2207 {
2208         struct kvm_mmu_page *s;
2209         struct hlist_node *node;
2210
2211         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2212                 if (s->unsync)
2213                         continue;
2214                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2215                 __kvm_unsync_page(vcpu, s);
2216         }
2217 }
2218
2219 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2220                                   bool can_unsync)
2221 {
2222         struct kvm_mmu_page *s;
2223         struct hlist_node *node;
2224         bool need_unsync = false;
2225
2226         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2227                 if (!can_unsync)
2228                         return 1;
2229
2230                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2231                         return 1;
2232
2233                 if (!need_unsync && !s->unsync) {
2234                         need_unsync = true;
2235                 }
2236         }
2237         if (need_unsync)
2238                 kvm_unsync_pages(vcpu, gfn);
2239         return 0;
2240 }
2241
2242 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2243                     unsigned pte_access, int user_fault,
2244                     int write_fault, int level,
2245                     gfn_t gfn, pfn_t pfn, bool speculative,
2246                     bool can_unsync, bool host_writable)
2247 {
2248         u64 spte, entry = *sptep;
2249         int ret = 0;
2250
2251         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2252                 return 0;
2253
2254         spte = PT_PRESENT_MASK;
2255         if (!speculative)
2256                 spte |= shadow_accessed_mask;
2257
2258         if (pte_access & ACC_EXEC_MASK)
2259                 spte |= shadow_x_mask;
2260         else
2261                 spte |= shadow_nx_mask;
2262         if (pte_access & ACC_USER_MASK)
2263                 spte |= shadow_user_mask;
2264         if (level > PT_PAGE_TABLE_LEVEL)
2265                 spte |= PT_PAGE_SIZE_MASK;
2266         if (tdp_enabled)
2267                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2268                         kvm_is_mmio_pfn(pfn));
2269
2270         if (host_writable)
2271                 spte |= SPTE_HOST_WRITEABLE;
2272         else
2273                 pte_access &= ~ACC_WRITE_MASK;
2274
2275         spte |= (u64)pfn << PAGE_SHIFT;
2276
2277         if ((pte_access & ACC_WRITE_MASK)
2278             || (!vcpu->arch.mmu.direct_map && write_fault
2279                 && !is_write_protection(vcpu) && !user_fault)) {
2280
2281                 if (level > PT_PAGE_TABLE_LEVEL &&
2282                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
2283                         ret = 1;
2284                         drop_spte(vcpu->kvm, sptep);
2285                         goto done;
2286                 }
2287
2288                 spte |= PT_WRITABLE_MASK;
2289
2290                 if (!vcpu->arch.mmu.direct_map
2291                     && !(pte_access & ACC_WRITE_MASK)) {
2292                         spte &= ~PT_USER_MASK;
2293                         /*
2294                          * If we converted a user page to a kernel page,
2295                          * so that the kernel can write to it when cr0.wp=0,
2296                          * then we should prevent the kernel from executing it
2297                          * if SMEP is enabled.
2298                          */
2299                         if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2300                                 spte |= PT64_NX_MASK;
2301                 }
2302
2303                 /*
2304                  * Optimization: for pte sync, if spte was writable the hash
2305                  * lookup is unnecessary (and expensive). Write protection
2306                  * is responsibility of mmu_get_page / kvm_sync_page.
2307                  * Same reasoning can be applied to dirty page accounting.
2308                  */
2309                 if (!can_unsync && is_writable_pte(*sptep))
2310                         goto set_pte;
2311
2312                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2313                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2314                                  __func__, gfn);
2315                         ret = 1;
2316                         pte_access &= ~ACC_WRITE_MASK;
2317                         if (is_writable_pte(spte))
2318                                 spte &= ~PT_WRITABLE_MASK;
2319                 }
2320         }
2321
2322         if (pte_access & ACC_WRITE_MASK)
2323                 mark_page_dirty(vcpu->kvm, gfn);
2324
2325 set_pte:
2326         mmu_spte_update(sptep, spte);
2327         /*
2328          * If we overwrite a writable spte with a read-only one we
2329          * should flush remote TLBs. Otherwise rmap_write_protect
2330          * will find a read-only spte, even though the writable spte
2331          * might be cached on a CPU's TLB.
2332          */
2333         if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2334                 kvm_flush_remote_tlbs(vcpu->kvm);
2335 done:
2336         return ret;
2337 }
2338
2339 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2340                          unsigned pt_access, unsigned pte_access,
2341                          int user_fault, int write_fault,
2342                          int *emulate, int level, gfn_t gfn,
2343                          pfn_t pfn, bool speculative,
2344                          bool host_writable)
2345 {
2346         int was_rmapped = 0;
2347         int rmap_count;
2348
2349         pgprintk("%s: spte %llx access %x write_fault %d"
2350                  " user_fault %d gfn %llx\n",
2351                  __func__, *sptep, pt_access,
2352                  write_fault, user_fault, gfn);
2353
2354         if (is_rmap_spte(*sptep)) {
2355                 /*
2356                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2357                  * the parent of the now unreachable PTE.
2358                  */
2359                 if (level > PT_PAGE_TABLE_LEVEL &&
2360                     !is_large_pte(*sptep)) {
2361                         struct kvm_mmu_page *child;
2362                         u64 pte = *sptep;
2363
2364                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2365                         drop_parent_pte(child, sptep);
2366                         kvm_flush_remote_tlbs(vcpu->kvm);
2367                 } else if (pfn != spte_to_pfn(*sptep)) {
2368                         pgprintk("hfn old %llx new %llx\n",
2369                                  spte_to_pfn(*sptep), pfn);
2370                         drop_spte(vcpu->kvm, sptep);
2371                         kvm_flush_remote_tlbs(vcpu->kvm);
2372                 } else
2373                         was_rmapped = 1;
2374         }
2375
2376         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2377                       level, gfn, pfn, speculative, true,
2378                       host_writable)) {
2379                 if (write_fault)
2380                         *emulate = 1;
2381                 kvm_mmu_flush_tlb(vcpu);
2382         }
2383
2384         if (unlikely(is_mmio_spte(*sptep) && emulate))
2385                 *emulate = 1;
2386
2387         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2388         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2389                  is_large_pte(*sptep)? "2MB" : "4kB",
2390                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2391                  *sptep, sptep);
2392         if (!was_rmapped && is_large_pte(*sptep))
2393                 ++vcpu->kvm->stat.lpages;
2394
2395         if (is_shadow_present_pte(*sptep)) {
2396                 page_header_update_slot(vcpu->kvm, sptep, gfn);
2397                 if (!was_rmapped) {
2398                         rmap_count = rmap_add(vcpu, sptep, gfn);
2399                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2400                                 rmap_recycle(vcpu, sptep, gfn);
2401                 }
2402         }
2403         kvm_release_pfn_clean(pfn);
2404 }
2405
2406 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2407 {
2408 }
2409
2410 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2411                                      bool no_dirty_log)
2412 {
2413         struct kvm_memory_slot *slot;
2414         unsigned long hva;
2415
2416         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2417         if (!slot) {
2418                 get_page(fault_page);
2419                 return page_to_pfn(fault_page);
2420         }
2421
2422         hva = gfn_to_hva_memslot(slot, gfn);
2423
2424         return hva_to_pfn_atomic(vcpu->kvm, hva);
2425 }
2426
2427 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2428                                     struct kvm_mmu_page *sp,
2429                                     u64 *start, u64 *end)
2430 {
2431         struct page *pages[PTE_PREFETCH_NUM];
2432         unsigned access = sp->role.access;
2433         int i, ret;
2434         gfn_t gfn;
2435
2436         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2437         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2438                 return -1;
2439
2440         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2441         if (ret <= 0)
2442                 return -1;
2443
2444         for (i = 0; i < ret; i++, gfn++, start++)
2445                 mmu_set_spte(vcpu, start, ACC_ALL,
2446                              access, 0, 0, NULL,
2447                              sp->role.level, gfn,
2448                              page_to_pfn(pages[i]), true, true);
2449
2450         return 0;
2451 }
2452
2453 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2454                                   struct kvm_mmu_page *sp, u64 *sptep)
2455 {
2456         u64 *spte, *start = NULL;
2457         int i;
2458
2459         WARN_ON(!sp->role.direct);
2460
2461         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2462         spte = sp->spt + i;
2463
2464         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2465                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2466                         if (!start)
2467                                 continue;
2468                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2469                                 break;
2470                         start = NULL;
2471                 } else if (!start)
2472                         start = spte;
2473         }
2474 }
2475
2476 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2477 {
2478         struct kvm_mmu_page *sp;
2479
2480         /*
2481          * Since it's no accessed bit on EPT, it's no way to
2482          * distinguish between actually accessed translations
2483          * and prefetched, so disable pte prefetch if EPT is
2484          * enabled.
2485          */
2486         if (!shadow_accessed_mask)
2487                 return;
2488
2489         sp = page_header(__pa(sptep));
2490         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2491                 return;
2492
2493         __direct_pte_prefetch(vcpu, sp, sptep);
2494 }
2495
2496 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2497                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2498                         bool prefault)
2499 {
2500         struct kvm_shadow_walk_iterator iterator;
2501         struct kvm_mmu_page *sp;
2502         int emulate = 0;
2503         gfn_t pseudo_gfn;
2504
2505         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2506                 if (iterator.level == level) {
2507                         unsigned pte_access = ACC_ALL;
2508
2509                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2510                                      0, write, &emulate,
2511                                      level, gfn, pfn, prefault, map_writable);
2512                         direct_pte_prefetch(vcpu, iterator.sptep);
2513                         ++vcpu->stat.pf_fixed;
2514                         break;
2515                 }
2516
2517                 if (!is_shadow_present_pte(*iterator.sptep)) {
2518                         u64 base_addr = iterator.addr;
2519
2520                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2521                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2522                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2523                                               iterator.level - 1,
2524                                               1, ACC_ALL, iterator.sptep);
2525                         if (!sp) {
2526                                 pgprintk("nonpaging_map: ENOMEM\n");
2527                                 kvm_release_pfn_clean(pfn);
2528                                 return -ENOMEM;
2529                         }
2530
2531                         mmu_spte_set(iterator.sptep,
2532                                      __pa(sp->spt)
2533                                      | PT_PRESENT_MASK | PT_WRITABLE_MASK
2534                                      | shadow_user_mask | shadow_x_mask
2535                                      | shadow_accessed_mask);
2536                 }
2537         }
2538         return emulate;
2539 }
2540
2541 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2542 {
2543         siginfo_t info;
2544
2545         info.si_signo   = SIGBUS;
2546         info.si_errno   = 0;
2547         info.si_code    = BUS_MCEERR_AR;
2548         info.si_addr    = (void __user *)address;
2549         info.si_addr_lsb = PAGE_SHIFT;
2550
2551         send_sig_info(SIGBUS, &info, tsk);
2552 }
2553
2554 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2555 {
2556         kvm_release_pfn_clean(pfn);
2557         if (is_hwpoison_pfn(pfn)) {
2558                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2559                 return 0;
2560         }
2561
2562         return -EFAULT;
2563 }
2564
2565 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2566                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2567 {
2568         pfn_t pfn = *pfnp;
2569         gfn_t gfn = *gfnp;
2570         int level = *levelp;
2571
2572         /*
2573          * Check if it's a transparent hugepage. If this would be an
2574          * hugetlbfs page, level wouldn't be set to
2575          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2576          * here.
2577          */
2578         if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2579             level == PT_PAGE_TABLE_LEVEL &&
2580             PageTransCompound(pfn_to_page(pfn)) &&
2581             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2582                 unsigned long mask;
2583                 /*
2584                  * mmu_notifier_retry was successful and we hold the
2585                  * mmu_lock here, so the pmd can't become splitting
2586                  * from under us, and in turn
2587                  * __split_huge_page_refcount() can't run from under
2588                  * us and we can safely transfer the refcount from
2589                  * PG_tail to PG_head as we switch the pfn to tail to
2590                  * head.
2591                  */
2592                 *levelp = level = PT_DIRECTORY_LEVEL;
2593                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2594                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2595                 if (pfn & mask) {
2596                         gfn &= ~mask;
2597                         *gfnp = gfn;
2598                         kvm_release_pfn_clean(pfn);
2599                         pfn &= ~mask;
2600                         kvm_get_pfn(pfn);
2601                         *pfnp = pfn;
2602                 }
2603         }
2604 }
2605
2606 static bool mmu_invalid_pfn(pfn_t pfn)
2607 {
2608         return unlikely(is_invalid_pfn(pfn));
2609 }
2610
2611 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2612                                 pfn_t pfn, unsigned access, int *ret_val)
2613 {
2614         bool ret = true;
2615
2616         /* The pfn is invalid, report the error! */
2617         if (unlikely(is_invalid_pfn(pfn))) {
2618                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2619                 goto exit;
2620         }
2621
2622         if (unlikely(is_noslot_pfn(pfn)))
2623                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2624
2625         ret = false;
2626 exit:
2627         return ret;
2628 }
2629
2630 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2631                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2632
2633 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2634                          bool prefault)
2635 {
2636         int r;
2637         int level;
2638         int force_pt_level;
2639         pfn_t pfn;
2640         unsigned long mmu_seq;
2641         bool map_writable;
2642
2643         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2644         if (likely(!force_pt_level)) {
2645                 level = mapping_level(vcpu, gfn);
2646                 /*
2647                  * This path builds a PAE pagetable - so we can map
2648                  * 2mb pages at maximum. Therefore check if the level
2649                  * is larger than that.
2650                  */
2651                 if (level > PT_DIRECTORY_LEVEL)
2652                         level = PT_DIRECTORY_LEVEL;
2653
2654                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2655         } else
2656                 level = PT_PAGE_TABLE_LEVEL;
2657
2658         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2659         smp_rmb();
2660
2661         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2662                 return 0;
2663
2664         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2665                 return r;
2666
2667         spin_lock(&vcpu->kvm->mmu_lock);
2668         if (mmu_notifier_retry(vcpu, mmu_seq))
2669                 goto out_unlock;
2670         kvm_mmu_free_some_pages(vcpu);
2671         if (likely(!force_pt_level))
2672                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2673         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2674                          prefault);
2675         spin_unlock(&vcpu->kvm->mmu_lock);
2676
2677
2678         return r;
2679
2680 out_unlock:
2681         spin_unlock(&vcpu->kvm->mmu_lock);
2682         kvm_release_pfn_clean(pfn);
2683         return 0;
2684 }
2685
2686
2687 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2688 {
2689         int i;
2690         struct kvm_mmu_page *sp;
2691         LIST_HEAD(invalid_list);
2692
2693         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2694                 return;
2695         spin_lock(&vcpu->kvm->mmu_lock);
2696         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2697             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2698              vcpu->arch.mmu.direct_map)) {
2699                 hpa_t root = vcpu->arch.mmu.root_hpa;
2700
2701                 sp = page_header(root);
2702                 --sp->root_count;
2703                 if (!sp->root_count && sp->role.invalid) {
2704                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2705                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2706                 }
2707                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2708                 spin_unlock(&vcpu->kvm->mmu_lock);
2709                 return;
2710         }
2711         for (i = 0; i < 4; ++i) {
2712                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2713
2714                 if (root) {
2715                         root &= PT64_BASE_ADDR_MASK;
2716                         sp = page_header(root);
2717                         --sp->root_count;
2718                         if (!sp->root_count && sp->role.invalid)
2719                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2720                                                          &invalid_list);
2721                 }
2722                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2723         }
2724         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2725         spin_unlock(&vcpu->kvm->mmu_lock);
2726         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2727 }
2728
2729 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2730 {
2731         int ret = 0;
2732
2733         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2734                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2735                 ret = 1;
2736         }
2737
2738         return ret;
2739 }
2740
2741 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2742 {
2743         struct kvm_mmu_page *sp;
2744         unsigned i;
2745
2746         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2747                 spin_lock(&vcpu->kvm->mmu_lock);
2748                 kvm_mmu_free_some_pages(vcpu);
2749                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2750                                       1, ACC_ALL, NULL);
2751                 ++sp->root_count;
2752                 spin_unlock(&vcpu->kvm->mmu_lock);
2753                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2754         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2755                 for (i = 0; i < 4; ++i) {
2756                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2757
2758                         ASSERT(!VALID_PAGE(root));
2759                         spin_lock(&vcpu->kvm->mmu_lock);
2760                         kvm_mmu_free_some_pages(vcpu);
2761                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2762                                               i << 30,
2763                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2764                                               NULL);
2765                         root = __pa(sp->spt);
2766                         ++sp->root_count;
2767                         spin_unlock(&vcpu->kvm->mmu_lock);
2768                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2769                 }
2770                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2771         } else
2772                 BUG();
2773
2774         return 0;
2775 }
2776
2777 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2778 {
2779         struct kvm_mmu_page *sp;
2780         u64 pdptr, pm_mask;
2781         gfn_t root_gfn;
2782         int i;
2783
2784         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2785
2786         if (mmu_check_root(vcpu, root_gfn))
2787                 return 1;
2788
2789         /*
2790          * Do we shadow a long mode page table? If so we need to
2791          * write-protect the guests page table root.
2792          */
2793         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2794                 hpa_t root = vcpu->arch.mmu.root_hpa;
2795
2796                 ASSERT(!VALID_PAGE(root));
2797
2798                 spin_lock(&vcpu->kvm->mmu_lock);
2799                 kvm_mmu_free_some_pages(vcpu);
2800                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2801                                       0, ACC_ALL, NULL);
2802                 root = __pa(sp->spt);
2803                 ++sp->root_count;
2804                 spin_unlock(&vcpu->kvm->mmu_lock);
2805                 vcpu->arch.mmu.root_hpa = root;
2806                 return 0;
2807         }
2808
2809         /*
2810          * We shadow a 32 bit page table. This may be a legacy 2-level
2811          * or a PAE 3-level page table. In either case we need to be aware that
2812          * the shadow page table may be a PAE or a long mode page table.
2813          */
2814         pm_mask = PT_PRESENT_MASK;
2815         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2816                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2817
2818         for (i = 0; i < 4; ++i) {
2819                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2820
2821                 ASSERT(!VALID_PAGE(root));
2822                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2823                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2824                         if (!is_present_gpte(pdptr)) {
2825                                 vcpu->arch.mmu.pae_root[i] = 0;
2826                                 continue;
2827                         }
2828                         root_gfn = pdptr >> PAGE_SHIFT;
2829                         if (mmu_check_root(vcpu, root_gfn))
2830                                 return 1;
2831                 }
2832                 spin_lock(&vcpu->kvm->mmu_lock);
2833                 kvm_mmu_free_some_pages(vcpu);
2834                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2835                                       PT32_ROOT_LEVEL, 0,
2836                                       ACC_ALL, NULL);
2837                 root = __pa(sp->spt);
2838                 ++sp->root_count;
2839                 spin_unlock(&vcpu->kvm->mmu_lock);
2840
2841                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2842         }
2843         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2844
2845         /*
2846          * If we shadow a 32 bit page table with a long mode page
2847          * table we enter this path.
2848          */
2849         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2850                 if (vcpu->arch.mmu.lm_root == NULL) {
2851                         /*
2852                          * The additional page necessary for this is only
2853                          * allocated on demand.
2854                          */
2855
2856                         u64 *lm_root;
2857
2858                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2859                         if (lm_root == NULL)
2860                                 return 1;
2861
2862                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2863
2864                         vcpu->arch.mmu.lm_root = lm_root;
2865                 }
2866
2867                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2868         }
2869
2870         return 0;
2871 }
2872
2873 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2874 {
2875         if (vcpu->arch.mmu.direct_map)
2876                 return mmu_alloc_direct_roots(vcpu);
2877         else
2878                 return mmu_alloc_shadow_roots(vcpu);
2879 }
2880
2881 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2882 {
2883         int i;
2884         struct kvm_mmu_page *sp;
2885
2886         if (vcpu->arch.mmu.direct_map)
2887                 return;
2888
2889         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2890                 return;
2891
2892         vcpu_clear_mmio_info(vcpu, ~0ul);
2893         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2894         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2895                 hpa_t root = vcpu->arch.mmu.root_hpa;
2896                 sp = page_header(root);
2897                 mmu_sync_children(vcpu, sp);
2898                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2899                 return;
2900         }
2901         for (i = 0; i < 4; ++i) {
2902                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2903
2904                 if (root && VALID_PAGE(root)) {
2905                         root &= PT64_BASE_ADDR_MASK;
2906                         sp = page_header(root);
2907                         mmu_sync_children(vcpu, sp);
2908                 }
2909         }
2910         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2911 }
2912
2913 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2914 {
2915         spin_lock(&vcpu->kvm->mmu_lock);
2916         mmu_sync_roots(vcpu);
2917         spin_unlock(&vcpu->kvm->mmu_lock);
2918 }
2919
2920 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2921                                   u32 access, struct x86_exception *exception)
2922 {
2923         if (exception)
2924                 exception->error_code = 0;
2925         return vaddr;
2926 }
2927
2928 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2929                                          u32 access,
2930                                          struct x86_exception *exception)
2931 {
2932         if (exception)
2933                 exception->error_code = 0;
2934         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2935 }
2936
2937 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2938 {
2939         if (direct)
2940                 return vcpu_match_mmio_gpa(vcpu, addr);
2941
2942         return vcpu_match_mmio_gva(vcpu, addr);
2943 }
2944
2945
2946 /*
2947  * On direct hosts, the last spte is only allows two states
2948  * for mmio page fault:
2949  *   - It is the mmio spte
2950  *   - It is zapped or it is being zapped.
2951  *
2952  * This function completely checks the spte when the last spte
2953  * is not the mmio spte.
2954  */
2955 static bool check_direct_spte_mmio_pf(u64 spte)
2956 {
2957         return __check_direct_spte_mmio_pf(spte);
2958 }
2959
2960 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2961 {
2962         struct kvm_shadow_walk_iterator iterator;
2963         u64 spte = 0ull;
2964
2965         walk_shadow_page_lockless_begin(vcpu);
2966         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2967                 if (!is_shadow_present_pte(spte))
2968                         break;
2969         walk_shadow_page_lockless_end(vcpu);
2970
2971         return spte;
2972 }
2973
2974 /*
2975  * If it is a real mmio page fault, return 1 and emulat the instruction
2976  * directly, return 0 to let CPU fault again on the address, -1 is
2977  * returned if bug is detected.
2978  */
2979 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2980 {
2981         u64 spte;
2982
2983         if (quickly_check_mmio_pf(vcpu, addr, direct))
2984                 return 1;
2985
2986         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2987
2988         if (is_mmio_spte(spte)) {
2989                 gfn_t gfn = get_mmio_spte_gfn(spte);
2990                 unsigned access = get_mmio_spte_access(spte);
2991
2992                 if (direct)
2993                         addr = 0;
2994
2995                 trace_handle_mmio_page_fault(addr, gfn, access);
2996                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2997                 return 1;
2998         }
2999
3000         /*
3001          * It's ok if the gva is remapped by other cpus on shadow guest,
3002          * it's a BUG if the gfn is not a mmio page.
3003          */
3004         if (direct && !check_direct_spte_mmio_pf(spte))
3005                 return -1;
3006
3007         /*
3008          * If the page table is zapped by other cpus, let CPU fault again on
3009          * the address.
3010          */
3011         return 0;
3012 }
3013 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3014
3015 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3016                                   u32 error_code, bool direct)
3017 {
3018         int ret;
3019
3020         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3021         WARN_ON(ret < 0);
3022         return ret;
3023 }
3024
3025 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3026                                 u32 error_code, bool prefault)
3027 {
3028         gfn_t gfn;
3029         int r;
3030
3031         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3032
3033         if (unlikely(error_code & PFERR_RSVD_MASK))
3034                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3035
3036         r = mmu_topup_memory_caches(vcpu);
3037         if (r)
3038                 return r;
3039
3040         ASSERT(vcpu);
3041         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3042
3043         gfn = gva >> PAGE_SHIFT;
3044
3045         return nonpaging_map(vcpu, gva & PAGE_MASK,
3046                              error_code & PFERR_WRITE_MASK, gfn, prefault);
3047 }
3048
3049 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3050 {
3051         struct kvm_arch_async_pf arch;
3052
3053         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3054         arch.gfn = gfn;
3055         arch.direct_map = vcpu->arch.mmu.direct_map;
3056         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3057
3058         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3059 }
3060
3061 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3062 {
3063         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3064                      kvm_event_needs_reinjection(vcpu)))
3065                 return false;
3066
3067         return kvm_x86_ops->interrupt_allowed(vcpu);
3068 }
3069
3070 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3071                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3072 {
3073         bool async;
3074
3075         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3076
3077         if (!async)
3078                 return false; /* *pfn has correct page already */
3079
3080         put_page(pfn_to_page(*pfn));
3081
3082         if (!prefault && can_do_async_pf(vcpu)) {
3083                 trace_kvm_try_async_get_page(gva, gfn);
3084                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3085                         trace_kvm_async_pf_doublefault(gva, gfn);
3086                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3087                         return true;
3088                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3089                         return true;
3090         }
3091
3092         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3093
3094         return false;
3095 }
3096
3097 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3098                           bool prefault)
3099 {
3100         pfn_t pfn;
3101         int r;
3102         int level;
3103         int force_pt_level;
3104         gfn_t gfn = gpa >> PAGE_SHIFT;
3105         unsigned long mmu_seq;
3106         int write = error_code & PFERR_WRITE_MASK;
3107         bool map_writable;
3108
3109         ASSERT(vcpu);
3110         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3111
3112         if (unlikely(error_code & PFERR_RSVD_MASK))
3113                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3114
3115         r = mmu_topup_memory_caches(vcpu);
3116         if (r)
3117                 return r;
3118
3119         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3120         if (likely(!force_pt_level)) {
3121                 level = mapping_level(vcpu, gfn);
3122                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3123         } else
3124                 level = PT_PAGE_TABLE_LEVEL;
3125
3126         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3127         smp_rmb();
3128
3129         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3130                 return 0;
3131
3132         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3133                 return r;
3134
3135         spin_lock(&vcpu->kvm->mmu_lock);
3136         if (mmu_notifier_retry(vcpu, mmu_seq))
3137                 goto out_unlock;
3138         kvm_mmu_free_some_pages(vcpu);
3139         if (likely(!force_pt_level))
3140                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3141         r = __direct_map(vcpu, gpa, write, map_writable,
3142                          level, gfn, pfn, prefault);
3143         spin_unlock(&vcpu->kvm->mmu_lock);
3144
3145         return r;
3146
3147 out_unlock:
3148         spin_unlock(&vcpu->kvm->mmu_lock);
3149         kvm_release_pfn_clean(pfn);
3150         return 0;
3151 }
3152
3153 static void nonpaging_free(struct kvm_vcpu *vcpu)
3154 {
3155         mmu_free_roots(vcpu);
3156 }
3157
3158 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3159                                   struct kvm_mmu *context)
3160 {
3161         context->new_cr3 = nonpaging_new_cr3;
3162         context->page_fault = nonpaging_page_fault;
3163         context->gva_to_gpa = nonpaging_gva_to_gpa;
3164         context->free = nonpaging_free;
3165         context->sync_page = nonpaging_sync_page;
3166         context->invlpg = nonpaging_invlpg;
3167         context->update_pte = nonpaging_update_pte;
3168         context->root_level = 0;
3169         context->shadow_root_level = PT32E_ROOT_LEVEL;
3170         context->root_hpa = INVALID_PAGE;
3171         context->direct_map = true;
3172         context->nx = false;
3173         return 0;
3174 }
3175
3176 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3177 {
3178         ++vcpu->stat.tlb_flush;
3179         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3180 }
3181
3182 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3183 {
3184         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3185         mmu_free_roots(vcpu);
3186 }
3187
3188 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3189 {
3190         return kvm_read_cr3(vcpu);
3191 }
3192
3193 static void inject_page_fault(struct kvm_vcpu *vcpu,
3194                               struct x86_exception *fault)
3195 {
3196         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3197 }
3198
3199 static void paging_free(struct kvm_vcpu *vcpu)
3200 {
3201         nonpaging_free(vcpu);
3202 }
3203
3204 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3205 {
3206         int bit7;
3207
3208         bit7 = (gpte >> 7) & 1;
3209         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3210 }
3211
3212 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3213                            int *nr_present)
3214 {
3215         if (unlikely(is_mmio_spte(*sptep))) {
3216                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3217                         mmu_spte_clear_no_track(sptep);
3218                         return true;
3219                 }
3220
3221                 (*nr_present)++;
3222                 mark_mmio_spte(sptep, gfn, access);
3223                 return true;
3224         }
3225
3226         return false;
3227 }
3228
3229 #define PTTYPE 64
3230 #include "paging_tmpl.h"
3231 #undef PTTYPE
3232
3233 #define PTTYPE 32
3234 #include "paging_tmpl.h"
3235 #undef PTTYPE
3236
3237 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3238                                   struct kvm_mmu *context)
3239 {
3240         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3241         u64 exb_bit_rsvd = 0;
3242
3243         if (!context->nx)
3244                 exb_bit_rsvd = rsvd_bits(63, 63);
3245         switch (context->root_level) {
3246         case PT32_ROOT_LEVEL:
3247                 /* no rsvd bits for 2 level 4K page table entries */
3248                 context->rsvd_bits_mask[0][1] = 0;
3249                 context->rsvd_bits_mask[0][0] = 0;
3250                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3251
3252                 if (!is_pse(vcpu)) {
3253                         context->rsvd_bits_mask[1][1] = 0;
3254                         break;
3255                 }
3256
3257                 if (is_cpuid_PSE36())
3258                         /* 36bits PSE 4MB page */
3259                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3260                 else
3261                         /* 32 bits PSE 4MB page */
3262                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3263                 break;
3264         case PT32E_ROOT_LEVEL:
3265                 context->rsvd_bits_mask[0][2] =
3266                         rsvd_bits(maxphyaddr, 63) |
3267                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3268                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3269                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3270                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3271                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3272                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3273                         rsvd_bits(maxphyaddr, 62) |
3274                         rsvd_bits(13, 20);              /* large page */
3275                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3276                 break;
3277         case PT64_ROOT_LEVEL:
3278                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3279                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3280                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3281                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3282                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3283                         rsvd_bits(maxphyaddr, 51);
3284                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3285                         rsvd_bits(maxphyaddr, 51);
3286                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3287                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3288                         rsvd_bits(maxphyaddr, 51) |
3289                         rsvd_bits(13, 29);
3290                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3291                         rsvd_bits(maxphyaddr, 51) |
3292                         rsvd_bits(13, 20);              /* large page */
3293                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3294                 break;
3295         }
3296 }
3297
3298 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3299                                         struct kvm_mmu *context,
3300                                         int level)
3301 {
3302         context->nx = is_nx(vcpu);
3303         context->root_level = level;
3304
3305         reset_rsvds_bits_mask(vcpu, context);
3306
3307         ASSERT(is_pae(vcpu));
3308         context->new_cr3 = paging_new_cr3;
3309         context->page_fault = paging64_page_fault;
3310         context->gva_to_gpa = paging64_gva_to_gpa;
3311         context->sync_page = paging64_sync_page;
3312         context->invlpg = paging64_invlpg;
3313         context->update_pte = paging64_update_pte;
3314         context->free = paging_free;
3315         context->shadow_root_level = level;
3316         context->root_hpa = INVALID_PAGE;
3317         context->direct_map = false;
3318         return 0;
3319 }
3320
3321 static int paging64_init_context(struct kvm_vcpu *vcpu,
3322                                  struct kvm_mmu *context)
3323 {
3324         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3325 }
3326
3327 static int paging32_init_context(struct kvm_vcpu *vcpu,
3328                                  struct kvm_mmu *context)
3329 {
3330         context->nx = false;
3331         context->root_level = PT32_ROOT_LEVEL;
3332
3333         reset_rsvds_bits_mask(vcpu, context);
3334
3335         context->new_cr3 = paging_new_cr3;
3336         context->page_fault = paging32_page_fault;
3337         context->gva_to_gpa = paging32_gva_to_gpa;
3338         context->free = paging_free;
3339         context->sync_page = paging32_sync_page;
3340         context->invlpg = paging32_invlpg;
3341         context->update_pte = paging32_update_pte;
3342         context->shadow_root_level = PT32E_ROOT_LEVEL;
3343         context->root_hpa = INVALID_PAGE;
3344         context->direct_map = false;
3345         return 0;
3346 }
3347
3348 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3349                                   struct kvm_mmu *context)
3350 {
3351         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3352 }
3353
3354 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3355 {
3356         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3357
3358         context->base_role.word = 0;
3359         context->new_cr3 = nonpaging_new_cr3;
3360         context->page_fault = tdp_page_fault;
3361         context->free = nonpaging_free;
3362         context->sync_page = nonpaging_sync_page;
3363         context->invlpg = nonpaging_invlpg;
3364         context->update_pte = nonpaging_update_pte;
3365         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3366         context->root_hpa = INVALID_PAGE;
3367         context->direct_map = true;
3368         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3369         context->get_cr3 = get_cr3;
3370         context->get_pdptr = kvm_pdptr_read;
3371         context->inject_page_fault = kvm_inject_page_fault;
3372
3373         if (!is_paging(vcpu)) {
3374                 context->nx = false;
3375                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3376                 context->root_level = 0;
3377         } else if (is_long_mode(vcpu)) {
3378                 context->nx = is_nx(vcpu);
3379                 context->root_level = PT64_ROOT_LEVEL;
3380                 reset_rsvds_bits_mask(vcpu, context);
3381                 context->gva_to_gpa = paging64_gva_to_gpa;
3382         } else if (is_pae(vcpu)) {
3383                 context->nx = is_nx(vcpu);
3384                 context->root_level = PT32E_ROOT_LEVEL;
3385                 reset_rsvds_bits_mask(vcpu, context);
3386                 context->gva_to_gpa = paging64_gva_to_gpa;
3387         } else {
3388                 context->nx = false;
3389                 context->root_level = PT32_ROOT_LEVEL;
3390                 reset_rsvds_bits_mask(vcpu, context);
3391                 context->gva_to_gpa = paging32_gva_to_gpa;
3392         }
3393
3394         return 0;
3395 }
3396
3397 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3398 {
3399         int r;
3400         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3401         ASSERT(vcpu);
3402         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3403
3404         if (!is_paging(vcpu))
3405                 r = nonpaging_init_context(vcpu, context);
3406         else if (is_long_mode(vcpu))
3407                 r = paging64_init_context(vcpu, context);
3408         else if (is_pae(vcpu))
3409                 r = paging32E_init_context(vcpu, context);
3410         else
3411                 r = paging32_init_context(vcpu, context);
3412
3413         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3414         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3415         vcpu->arch.mmu.base_role.smep_andnot_wp
3416                 = smep && !is_write_protection(vcpu);
3417
3418         return r;
3419 }
3420 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3421
3422 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3423 {
3424         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3425
3426         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3427         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3428         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3429         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3430
3431         return r;
3432 }
3433
3434 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3435 {
3436         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3437
3438         g_context->get_cr3           = get_cr3;
3439         g_context->get_pdptr         = kvm_pdptr_read;
3440         g_context->inject_page_fault = kvm_inject_page_fault;
3441
3442         /*
3443          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3444          * translation of l2_gpa to l1_gpa addresses is done using the
3445          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3446          * functions between mmu and nested_mmu are swapped.
3447          */
3448         if (!is_paging(vcpu)) {
3449                 g_context->nx = false;
3450                 g_context->root_level = 0;
3451                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3452         } else if (is_long_mode(vcpu)) {
3453                 g_context->nx = is_nx(vcpu);
3454                 g_context->root_level = PT64_ROOT_LEVEL;
3455                 reset_rsvds_bits_mask(vcpu, g_context);
3456                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3457         } else if (is_pae(vcpu)) {
3458                 g_context->nx = is_nx(vcpu);
3459                 g_context->root_level = PT32E_ROOT_LEVEL;
3460                 reset_rsvds_bits_mask(vcpu, g_context);
3461                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3462         } else {
3463                 g_context->nx = false;
3464                 g_context->root_level = PT32_ROOT_LEVEL;
3465                 reset_rsvds_bits_mask(vcpu, g_context);
3466                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3467         }
3468
3469         return 0;
3470 }
3471
3472 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3473 {
3474         if (mmu_is_nested(vcpu))
3475                 return init_kvm_nested_mmu(vcpu);
3476         else if (tdp_enabled)
3477                 return init_kvm_tdp_mmu(vcpu);
3478         else
3479                 return init_kvm_softmmu(vcpu);
3480 }
3481
3482 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3483 {
3484         ASSERT(vcpu);
3485         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3486                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3487                 vcpu->arch.mmu.free(vcpu);
3488 }
3489
3490 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3491 {
3492         destroy_kvm_mmu(vcpu);
3493         return init_kvm_mmu(vcpu);
3494 }
3495 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3496
3497 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3498 {
3499         int r;
3500
3501         r = mmu_topup_memory_caches(vcpu);
3502         if (r)
3503                 goto out;
3504         r = mmu_alloc_roots(vcpu);
3505         spin_lock(&vcpu->kvm->mmu_lock);
3506         mmu_sync_roots(vcpu);
3507         spin_unlock(&vcpu->kvm->mmu_lock);
3508         if (r)
3509                 goto out;
3510         /* set_cr3() should ensure TLB has been flushed */
3511         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3512 out:
3513         return r;
3514 }
3515 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3516
3517 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3518 {
3519         mmu_free_roots(vcpu);
3520 }
3521 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3522
3523 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3524                                   struct kvm_mmu_page *sp, u64 *spte,
3525                                   const void *new)
3526 {
3527         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3528                 ++vcpu->kvm->stat.mmu_pde_zapped;
3529                 return;
3530         }
3531
3532         ++vcpu->kvm->stat.mmu_pte_updated;
3533         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3534 }
3535
3536 static bool need_remote_flush(u64 old, u64 new)
3537 {
3538         if (!is_shadow_present_pte(old))
3539                 return false;
3540         if (!is_shadow_present_pte(new))
3541                 return true;
3542         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3543                 return true;
3544         old ^= PT64_NX_MASK;
3545         new ^= PT64_NX_MASK;
3546         return (old & ~new & PT64_PERM_MASK) != 0;
3547 }
3548
3549 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3550                                     bool remote_flush, bool local_flush)
3551 {
3552         if (zap_page)
3553                 return;
3554
3555         if (remote_flush)
3556                 kvm_flush_remote_tlbs(vcpu->kvm);
3557         else if (local_flush)
3558                 kvm_mmu_flush_tlb(vcpu);
3559 }
3560
3561 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3562                                     const u8 *new, int *bytes)
3563 {
3564         u64 gentry;
3565         int r;
3566
3567         /*
3568          * Assume that the pte write on a page table of the same type
3569          * as the current vcpu paging mode since we update the sptes only
3570          * when they have the same mode.
3571          */
3572         if (is_pae(vcpu) && *bytes == 4) {
3573                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3574                 *gpa &= ~(gpa_t)7;
3575                 *bytes = 8;
3576                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3577                 if (r)
3578                         gentry = 0;
3579                 new = (const u8 *)&gentry;
3580         }
3581
3582         switch (*bytes) {
3583         case 4:
3584                 gentry = *(const u32 *)new;
3585                 break;
3586         case 8:
3587                 gentry = *(const u64 *)new;
3588                 break;
3589         default:
3590                 gentry = 0;
3591                 break;
3592         }
3593
3594         return gentry;
3595 }
3596
3597 /*
3598  * If we're seeing too many writes to a page, it may no longer be a page table,
3599  * or we may be forking, in which case it is better to unmap the page.
3600  */
3601 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3602 {
3603         /*
3604          * Skip write-flooding detected for the sp whose level is 1, because
3605          * it can become unsync, then the guest page is not write-protected.
3606          */
3607         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3608                 return false;
3609
3610         return ++sp->write_flooding_count >= 3;
3611 }
3612
3613 /*
3614  * Misaligned accesses are too much trouble to fix up; also, they usually
3615  * indicate a page is not used as a page table.
3616  */
3617 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3618                                     int bytes)
3619 {
3620         unsigned offset, pte_size, misaligned;
3621
3622         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3623                  gpa, bytes, sp->role.word);
3624
3625         offset = offset_in_page(gpa);
3626         pte_size = sp->role.cr4_pae ? 8 : 4;
3627
3628         /*
3629          * Sometimes, the OS only writes the last one bytes to update status
3630          * bits, for example, in linux, andb instruction is used in clear_bit().
3631          */
3632         if (!(offset & (pte_size - 1)) && bytes == 1)
3633                 return false;
3634
3635         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3636         misaligned |= bytes < 4;
3637
3638         return misaligned;
3639 }
3640
3641 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3642 {
3643         unsigned page_offset, quadrant;
3644         u64 *spte;
3645         int level;
3646
3647         page_offset = offset_in_page(gpa);
3648         level = sp->role.level;
3649         *nspte = 1;
3650         if (!sp->role.cr4_pae) {
3651                 page_offset <<= 1;      /* 32->64 */
3652                 /*
3653                  * A 32-bit pde maps 4MB while the shadow pdes map
3654                  * only 2MB.  So we need to double the offset again
3655                  * and zap two pdes instead of one.
3656                  */
3657                 if (level == PT32_ROOT_LEVEL) {
3658                         page_offset &= ~7; /* kill rounding error */
3659                         page_offset <<= 1;
3660                         *nspte = 2;
3661                 }
3662                 quadrant = page_offset >> PAGE_SHIFT;
3663                 page_offset &= ~PAGE_MASK;
3664                 if (quadrant != sp->role.quadrant)
3665                         return NULL;
3666         }
3667
3668         spte = &sp->spt[page_offset / sizeof(*spte)];
3669         return spte;
3670 }
3671
3672 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3673                        const u8 *new, int bytes)
3674 {
3675         gfn_t gfn = gpa >> PAGE_SHIFT;
3676         union kvm_mmu_page_role mask = { .word = 0 };
3677         struct kvm_mmu_page *sp;
3678         struct hlist_node *node;
3679         LIST_HEAD(invalid_list);
3680         u64 entry, gentry, *spte;
3681         int npte;
3682         bool remote_flush, local_flush, zap_page;
3683
3684         /*
3685          * If we don't have indirect shadow pages, it means no page is
3686          * write-protected, so we can exit simply.
3687          */
3688         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3689                 return;
3690
3691         zap_page = remote_flush = local_flush = false;
3692
3693         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3694
3695         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3696
3697         /*
3698          * No need to care whether allocation memory is successful
3699          * or not since pte prefetch is skiped if it does not have
3700          * enough objects in the cache.
3701          */
3702         mmu_topup_memory_caches(vcpu);
3703
3704         spin_lock(&vcpu->kvm->mmu_lock);
3705         ++vcpu->kvm->stat.mmu_pte_write;
3706         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3707
3708         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3709         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3710                 if (detect_write_misaligned(sp, gpa, bytes) ||
3711                       detect_write_flooding(sp)) {
3712                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3713                                                      &invalid_list);
3714                         ++vcpu->kvm->stat.mmu_flooded;
3715                         continue;
3716                 }
3717
3718                 spte = get_written_sptes(sp, gpa, &npte);
3719                 if (!spte)
3720                         continue;
3721
3722                 local_flush = true;
3723                 while (npte--) {
3724                         entry = *spte;
3725                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3726                         if (gentry &&
3727                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3728                               & mask.word) && rmap_can_add(vcpu))
3729                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3730                         if (!remote_flush && need_remote_flush(entry, *spte))
3731                                 remote_flush = true;
3732                         ++spte;
3733                 }
3734         }
3735         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3736         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3737         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3738         spin_unlock(&vcpu->kvm->mmu_lock);
3739 }
3740
3741 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3742 {
3743         gpa_t gpa;
3744         int r;
3745
3746         if (vcpu->arch.mmu.direct_map)
3747                 return 0;
3748
3749         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3750
3751         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3752
3753         return r;
3754 }
3755 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3756
3757 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3758 {
3759         LIST_HEAD(invalid_list);
3760
3761         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3762                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3763                 struct kvm_mmu_page *sp;
3764
3765                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3766                                   struct kvm_mmu_page, link);
3767                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3768                 ++vcpu->kvm->stat.mmu_recycled;
3769         }
3770         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3771 }
3772
3773 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3774 {
3775         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3776                 return vcpu_match_mmio_gpa(vcpu, addr);
3777
3778         return vcpu_match_mmio_gva(vcpu, addr);
3779 }
3780
3781 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3782                        void *insn, int insn_len)
3783 {
3784         int r, emulation_type = EMULTYPE_RETRY;
3785         enum emulation_result er;
3786
3787         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3788         if (r < 0)
3789                 goto out;
3790
3791         if (!r) {
3792                 r = 1;
3793                 goto out;
3794         }
3795
3796         if (is_mmio_page_fault(vcpu, cr2))
3797                 emulation_type = 0;
3798
3799         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3800
3801         switch (er) {
3802         case EMULATE_DONE:
3803                 return 1;
3804         case EMULATE_DO_MMIO:
3805                 ++vcpu->stat.mmio_exits;
3806                 /* fall through */
3807         case EMULATE_FAIL:
3808                 return 0;
3809         default:
3810                 BUG();
3811         }
3812 out:
3813         return r;
3814 }
3815 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3816
3817 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3818 {
3819         vcpu->arch.mmu.invlpg(vcpu, gva);
3820         kvm_mmu_flush_tlb(vcpu);
3821         ++vcpu->stat.invlpg;
3822 }
3823 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3824
3825 void kvm_enable_tdp(void)
3826 {
3827         tdp_enabled = true;
3828 }
3829 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3830
3831 void kvm_disable_tdp(void)
3832 {
3833         tdp_enabled = false;
3834 }
3835 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3836
3837 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3838 {
3839         free_page((unsigned long)vcpu->arch.mmu.pae_root);
3840         if (vcpu->arch.mmu.lm_root != NULL)
3841                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3842 }
3843
3844 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3845 {
3846         struct page *page;
3847         int i;
3848
3849         ASSERT(vcpu);
3850
3851         /*
3852          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3853          * Therefore we need to allocate shadow page tables in the first
3854          * 4GB of memory, which happens to fit the DMA32 zone.
3855          */
3856         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3857         if (!page)
3858                 return -ENOMEM;
3859
3860         vcpu->arch.mmu.pae_root = page_address(page);
3861         for (i = 0; i < 4; ++i)
3862                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3863
3864         return 0;
3865 }
3866
3867 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3868 {
3869         ASSERT(vcpu);
3870
3871         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3872         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3873         vcpu->arch.mmu.translate_gpa = translate_gpa;
3874         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3875
3876         return alloc_mmu_pages(vcpu);
3877 }
3878
3879 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3880 {
3881         ASSERT(vcpu);
3882         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3883
3884         return init_kvm_mmu(vcpu);
3885 }
3886
3887 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3888 {
3889         struct kvm_mmu_page *sp;
3890
3891         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3892                 int i;
3893                 u64 *pt;
3894
3895                 if (!test_bit(slot, sp->slot_bitmap))
3896                         continue;
3897
3898                 pt = sp->spt;
3899                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3900                         if (!is_shadow_present_pte(pt[i]) ||
3901                               !is_last_spte(pt[i], sp->role.level))
3902                                 continue;
3903
3904                         if (is_large_pte(pt[i])) {
3905                                 drop_spte(kvm, &pt[i]);
3906                                 --kvm->stat.lpages;
3907                                 continue;
3908                         }
3909
3910                         /* avoid RMW */
3911                         if (is_writable_pte(pt[i]))
3912                                 mmu_spte_update(&pt[i],
3913                                                 pt[i] & ~PT_WRITABLE_MASK);
3914                 }
3915         }
3916         kvm_flush_remote_tlbs(kvm);
3917 }
3918
3919 void kvm_mmu_zap_all(struct kvm *kvm)
3920 {
3921         struct kvm_mmu_page *sp, *node;
3922         LIST_HEAD(invalid_list);
3923
3924         spin_lock(&kvm->mmu_lock);
3925 restart:
3926         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3927                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3928                         goto restart;
3929
3930         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3931         spin_unlock(&kvm->mmu_lock);
3932 }
3933
3934 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3935                                                 struct list_head *invalid_list)
3936 {
3937         struct kvm_mmu_page *page;
3938
3939         page = container_of(kvm->arch.active_mmu_pages.prev,
3940                             struct kvm_mmu_page, link);
3941         kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3942 }
3943
3944 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3945 {
3946         struct kvm *kvm;
3947         int nr_to_scan = sc->nr_to_scan;
3948
3949         if (nr_to_scan == 0)
3950                 goto out;
3951
3952         raw_spin_lock(&kvm_lock);
3953
3954         list_for_each_entry(kvm, &vm_list, vm_list) {
3955                 int idx;
3956                 LIST_HEAD(invalid_list);
3957
3958                 /*
3959                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
3960                  * here. We may skip a VM instance errorneosly, but we do not
3961                  * want to shrink a VM that only started to populate its MMU
3962                  * anyway.
3963                  */
3964                 if (kvm->arch.n_used_mmu_pages > 0) {
3965                         if (!nr_to_scan--)
3966                                 break;
3967                         continue;
3968                 }
3969
3970                 idx = srcu_read_lock(&kvm->srcu);
3971                 spin_lock(&kvm->mmu_lock);
3972
3973                 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
3974                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3975
3976                 spin_unlock(&kvm->mmu_lock);
3977                 srcu_read_unlock(&kvm->srcu, idx);
3978
3979                 list_move_tail(&kvm->vm_list, &vm_list);
3980                 break;
3981         }
3982
3983         raw_spin_unlock(&kvm_lock);
3984
3985 out:
3986         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3987 }
3988
3989 static struct shrinker mmu_shrinker = {
3990         .shrink = mmu_shrink,
3991         .seeks = DEFAULT_SEEKS * 10,
3992 };
3993
3994 static void mmu_destroy_caches(void)
3995 {
3996         if (pte_list_desc_cache)
3997                 kmem_cache_destroy(pte_list_desc_cache);
3998         if (mmu_page_header_cache)
3999                 kmem_cache_destroy(mmu_page_header_cache);
4000 }
4001
4002 int kvm_mmu_module_init(void)
4003 {
4004         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4005                                             sizeof(struct pte_list_desc),
4006                                             0, 0, NULL);
4007         if (!pte_list_desc_cache)
4008                 goto nomem;
4009
4010         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4011                                                   sizeof(struct kvm_mmu_page),
4012                                                   0, 0, NULL);
4013         if (!mmu_page_header_cache)
4014                 goto nomem;
4015
4016         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4017                 goto nomem;
4018
4019         register_shrinker(&mmu_shrinker);
4020
4021         return 0;
4022
4023 nomem:
4024         mmu_destroy_caches();
4025         return -ENOMEM;
4026 }
4027
4028 /*
4029  * Caculate mmu pages needed for kvm.
4030  */
4031 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4032 {
4033         unsigned int nr_mmu_pages;
4034         unsigned int  nr_pages = 0;
4035         struct kvm_memslots *slots;
4036         struct kvm_memory_slot *memslot;
4037
4038         slots = kvm_memslots(kvm);
4039
4040         kvm_for_each_memslot(memslot, slots)
4041                 nr_pages += memslot->npages;
4042
4043         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4044         nr_mmu_pages = max(nr_mmu_pages,
4045                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4046
4047         return nr_mmu_pages;
4048 }
4049
4050 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4051 {
4052         struct kvm_shadow_walk_iterator iterator;
4053         u64 spte;
4054         int nr_sptes = 0;
4055
4056         walk_shadow_page_lockless_begin(vcpu);
4057         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4058                 sptes[iterator.level-1] = spte;
4059                 nr_sptes++;
4060                 if (!is_shadow_present_pte(spte))
4061                         break;
4062         }
4063         walk_shadow_page_lockless_end(vcpu);
4064
4065         return nr_sptes;
4066 }
4067 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4068
4069 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4070 {
4071         ASSERT(vcpu);
4072
4073         destroy_kvm_mmu(vcpu);
4074         free_mmu_pages(vcpu);
4075         mmu_free_memory_caches(vcpu);
4076 }
4077
4078 void kvm_mmu_module_exit(void)
4079 {
4080         mmu_destroy_caches();
4081         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4082         unregister_shrinker(&mmu_shrinker);
4083         mmu_audit_disable();
4084 }