KVM: MMU: unnecessary NX state assignment
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define PTE_LIST_EXT 4
139
140 #define ACC_EXEC_MASK    1
141 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
142 #define ACC_USER_MASK    PT_USER_MASK
143 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144
145 #include <trace/events/kvm.h>
146
147 #define CREATE_TRACE_POINTS
148 #include "mmutrace.h"
149
150 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
151
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
154 struct pte_list_desc {
155         u64 *sptes[PTE_LIST_EXT];
156         struct pte_list_desc *more;
157 };
158
159 struct kvm_shadow_walk_iterator {
160         u64 addr;
161         hpa_t shadow_addr;
162         u64 *sptep;
163         int level;
164         unsigned index;
165 };
166
167 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
168         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
169              shadow_walk_okay(&(_walker));                      \
170              shadow_walk_next(&(_walker)))
171
172 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
173         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
174              shadow_walk_okay(&(_walker)) &&                            \
175                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
176              __shadow_walk_next(&(_walker), spte))
177
178 static struct kmem_cache *pte_list_desc_cache;
179 static struct kmem_cache *mmu_page_header_cache;
180 static struct percpu_counter kvm_total_used_mmu_pages;
181
182 static u64 __read_mostly shadow_nx_mask;
183 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
184 static u64 __read_mostly shadow_user_mask;
185 static u64 __read_mostly shadow_accessed_mask;
186 static u64 __read_mostly shadow_dirty_mask;
187 static u64 __read_mostly shadow_mmio_mask;
188
189 static void mmu_spte_set(u64 *sptep, u64 spte);
190
191 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
192 {
193         shadow_mmio_mask = mmio_mask;
194 }
195 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
196
197 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
198 {
199         access &= ACC_WRITE_MASK | ACC_USER_MASK;
200
201         trace_mark_mmio_spte(sptep, gfn, access);
202         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
203 }
204
205 static bool is_mmio_spte(u64 spte)
206 {
207         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
208 }
209
210 static gfn_t get_mmio_spte_gfn(u64 spte)
211 {
212         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
213 }
214
215 static unsigned get_mmio_spte_access(u64 spte)
216 {
217         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
218 }
219
220 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
221 {
222         if (unlikely(is_noslot_pfn(pfn))) {
223                 mark_mmio_spte(sptep, gfn, access);
224                 return true;
225         }
226
227         return false;
228 }
229
230 static inline u64 rsvd_bits(int s, int e)
231 {
232         return ((1ULL << (e - s + 1)) - 1) << s;
233 }
234
235 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
236                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
237 {
238         shadow_user_mask = user_mask;
239         shadow_accessed_mask = accessed_mask;
240         shadow_dirty_mask = dirty_mask;
241         shadow_nx_mask = nx_mask;
242         shadow_x_mask = x_mask;
243 }
244 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
245
246 static int is_cpuid_PSE36(void)
247 {
248         return 1;
249 }
250
251 static int is_nx(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.efer & EFER_NX;
254 }
255
256 static int is_shadow_present_pte(u64 pte)
257 {
258         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
259 }
260
261 static int is_large_pte(u64 pte)
262 {
263         return pte & PT_PAGE_SIZE_MASK;
264 }
265
266 static int is_dirty_gpte(unsigned long pte)
267 {
268         return pte & PT_DIRTY_MASK;
269 }
270
271 static int is_rmap_spte(u64 pte)
272 {
273         return is_shadow_present_pte(pte);
274 }
275
276 static int is_last_spte(u64 pte, int level)
277 {
278         if (level == PT_PAGE_TABLE_LEVEL)
279                 return 1;
280         if (is_large_pte(pte))
281                 return 1;
282         return 0;
283 }
284
285 static pfn_t spte_to_pfn(u64 pte)
286 {
287         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
288 }
289
290 static gfn_t pse36_gfn_delta(u32 gpte)
291 {
292         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
293
294         return (gpte & PT32_DIR_PSE36_MASK) << shift;
295 }
296
297 #ifdef CONFIG_X86_64
298 static void __set_spte(u64 *sptep, u64 spte)
299 {
300         *sptep = spte;
301 }
302
303 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
304 {
305         *sptep = spte;
306 }
307
308 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
309 {
310         return xchg(sptep, spte);
311 }
312
313 static u64 __get_spte_lockless(u64 *sptep)
314 {
315         return ACCESS_ONCE(*sptep);
316 }
317
318 static bool __check_direct_spte_mmio_pf(u64 spte)
319 {
320         /* It is valid if the spte is zapped. */
321         return spte == 0ull;
322 }
323 #else
324 union split_spte {
325         struct {
326                 u32 spte_low;
327                 u32 spte_high;
328         };
329         u64 spte;
330 };
331
332 static void count_spte_clear(u64 *sptep, u64 spte)
333 {
334         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
335
336         if (is_shadow_present_pte(spte))
337                 return;
338
339         /* Ensure the spte is completely set before we increase the count */
340         smp_wmb();
341         sp->clear_spte_count++;
342 }
343
344 static void __set_spte(u64 *sptep, u64 spte)
345 {
346         union split_spte *ssptep, sspte;
347
348         ssptep = (union split_spte *)sptep;
349         sspte = (union split_spte)spte;
350
351         ssptep->spte_high = sspte.spte_high;
352
353         /*
354          * If we map the spte from nonpresent to present, We should store
355          * the high bits firstly, then set present bit, so cpu can not
356          * fetch this spte while we are setting the spte.
357          */
358         smp_wmb();
359
360         ssptep->spte_low = sspte.spte_low;
361 }
362
363 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
364 {
365         union split_spte *ssptep, sspte;
366
367         ssptep = (union split_spte *)sptep;
368         sspte = (union split_spte)spte;
369
370         ssptep->spte_low = sspte.spte_low;
371
372         /*
373          * If we map the spte from present to nonpresent, we should clear
374          * present bit firstly to avoid vcpu fetch the old high bits.
375          */
376         smp_wmb();
377
378         ssptep->spte_high = sspte.spte_high;
379         count_spte_clear(sptep, spte);
380 }
381
382 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
383 {
384         union split_spte *ssptep, sspte, orig;
385
386         ssptep = (union split_spte *)sptep;
387         sspte = (union split_spte)spte;
388
389         /* xchg acts as a barrier before the setting of the high bits */
390         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
391         orig.spte_high = ssptep->spte_high;
392         ssptep->spte_high = sspte.spte_high;
393         count_spte_clear(sptep, spte);
394
395         return orig.spte;
396 }
397
398 /*
399  * The idea using the light way get the spte on x86_32 guest is from
400  * gup_get_pte(arch/x86/mm/gup.c).
401  * The difference is we can not catch the spte tlb flush if we leave
402  * guest mode, so we emulate it by increase clear_spte_count when spte
403  * is cleared.
404  */
405 static u64 __get_spte_lockless(u64 *sptep)
406 {
407         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
408         union split_spte spte, *orig = (union split_spte *)sptep;
409         int count;
410
411 retry:
412         count = sp->clear_spte_count;
413         smp_rmb();
414
415         spte.spte_low = orig->spte_low;
416         smp_rmb();
417
418         spte.spte_high = orig->spte_high;
419         smp_rmb();
420
421         if (unlikely(spte.spte_low != orig->spte_low ||
422               count != sp->clear_spte_count))
423                 goto retry;
424
425         return spte.spte;
426 }
427
428 static bool __check_direct_spte_mmio_pf(u64 spte)
429 {
430         union split_spte sspte = (union split_spte)spte;
431         u32 high_mmio_mask = shadow_mmio_mask >> 32;
432
433         /* It is valid if the spte is zapped. */
434         if (spte == 0ull)
435                 return true;
436
437         /* It is valid if the spte is being zapped. */
438         if (sspte.spte_low == 0ull &&
439             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
440                 return true;
441
442         return false;
443 }
444 #endif
445
446 static bool spte_has_volatile_bits(u64 spte)
447 {
448         if (!shadow_accessed_mask)
449                 return false;
450
451         if (!is_shadow_present_pte(spte))
452                 return false;
453
454         if ((spte & shadow_accessed_mask) &&
455               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
456                 return false;
457
458         return true;
459 }
460
461 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
462 {
463         return (old_spte & bit_mask) && !(new_spte & bit_mask);
464 }
465
466 /* Rules for using mmu_spte_set:
467  * Set the sptep from nonpresent to present.
468  * Note: the sptep being assigned *must* be either not present
469  * or in a state where the hardware will not attempt to update
470  * the spte.
471  */
472 static void mmu_spte_set(u64 *sptep, u64 new_spte)
473 {
474         WARN_ON(is_shadow_present_pte(*sptep));
475         __set_spte(sptep, new_spte);
476 }
477
478 /* Rules for using mmu_spte_update:
479  * Update the state bits, it means the mapped pfn is not changged.
480  */
481 static void mmu_spte_update(u64 *sptep, u64 new_spte)
482 {
483         u64 mask, old_spte = *sptep;
484
485         WARN_ON(!is_rmap_spte(new_spte));
486
487         if (!is_shadow_present_pte(old_spte))
488                 return mmu_spte_set(sptep, new_spte);
489
490         new_spte |= old_spte & shadow_dirty_mask;
491
492         mask = shadow_accessed_mask;
493         if (is_writable_pte(old_spte))
494                 mask |= shadow_dirty_mask;
495
496         if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
497                 __update_clear_spte_fast(sptep, new_spte);
498         else
499                 old_spte = __update_clear_spte_slow(sptep, new_spte);
500
501         if (!shadow_accessed_mask)
502                 return;
503
504         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
505                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
506         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
507                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
508 }
509
510 /*
511  * Rules for using mmu_spte_clear_track_bits:
512  * It sets the sptep from present to nonpresent, and track the
513  * state bits, it is used to clear the last level sptep.
514  */
515 static int mmu_spte_clear_track_bits(u64 *sptep)
516 {
517         pfn_t pfn;
518         u64 old_spte = *sptep;
519
520         if (!spte_has_volatile_bits(old_spte))
521                 __update_clear_spte_fast(sptep, 0ull);
522         else
523                 old_spte = __update_clear_spte_slow(sptep, 0ull);
524
525         if (!is_rmap_spte(old_spte))
526                 return 0;
527
528         pfn = spte_to_pfn(old_spte);
529         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
530                 kvm_set_pfn_accessed(pfn);
531         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
532                 kvm_set_pfn_dirty(pfn);
533         return 1;
534 }
535
536 /*
537  * Rules for using mmu_spte_clear_no_track:
538  * Directly clear spte without caring the state bits of sptep,
539  * it is used to set the upper level spte.
540  */
541 static void mmu_spte_clear_no_track(u64 *sptep)
542 {
543         __update_clear_spte_fast(sptep, 0ull);
544 }
545
546 static u64 mmu_spte_get_lockless(u64 *sptep)
547 {
548         return __get_spte_lockless(sptep);
549 }
550
551 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
552 {
553         rcu_read_lock();
554         atomic_inc(&vcpu->kvm->arch.reader_counter);
555
556         /* Increase the counter before walking shadow page table */
557         smp_mb__after_atomic_inc();
558 }
559
560 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
561 {
562         /* Decrease the counter after walking shadow page table finished */
563         smp_mb__before_atomic_dec();
564         atomic_dec(&vcpu->kvm->arch.reader_counter);
565         rcu_read_unlock();
566 }
567
568 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
569                                   struct kmem_cache *base_cache, int min)
570 {
571         void *obj;
572
573         if (cache->nobjs >= min)
574                 return 0;
575         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
576                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
577                 if (!obj)
578                         return -ENOMEM;
579                 cache->objects[cache->nobjs++] = obj;
580         }
581         return 0;
582 }
583
584 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
585 {
586         return cache->nobjs;
587 }
588
589 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
590                                   struct kmem_cache *cache)
591 {
592         while (mc->nobjs)
593                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
594 }
595
596 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
597                                        int min)
598 {
599         void *page;
600
601         if (cache->nobjs >= min)
602                 return 0;
603         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
604                 page = (void *)__get_free_page(GFP_KERNEL);
605                 if (!page)
606                         return -ENOMEM;
607                 cache->objects[cache->nobjs++] = page;
608         }
609         return 0;
610 }
611
612 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
613 {
614         while (mc->nobjs)
615                 free_page((unsigned long)mc->objects[--mc->nobjs]);
616 }
617
618 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
619 {
620         int r;
621
622         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
623                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
624         if (r)
625                 goto out;
626         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
627         if (r)
628                 goto out;
629         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
630                                    mmu_page_header_cache, 4);
631 out:
632         return r;
633 }
634
635 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
636 {
637         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
638                                 pte_list_desc_cache);
639         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
640         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
641                                 mmu_page_header_cache);
642 }
643
644 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
645                                     size_t size)
646 {
647         void *p;
648
649         BUG_ON(!mc->nobjs);
650         p = mc->objects[--mc->nobjs];
651         return p;
652 }
653
654 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
655 {
656         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
657                                       sizeof(struct pte_list_desc));
658 }
659
660 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
661 {
662         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
663 }
664
665 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
666 {
667         if (!sp->role.direct)
668                 return sp->gfns[index];
669
670         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
671 }
672
673 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
674 {
675         if (sp->role.direct)
676                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
677         else
678                 sp->gfns[index] = gfn;
679 }
680
681 /*
682  * Return the pointer to the large page information for a given gfn,
683  * handling slots that are not large page aligned.
684  */
685 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
686                                               struct kvm_memory_slot *slot,
687                                               int level)
688 {
689         unsigned long idx;
690
691         idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
692               (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
693         return &slot->lpage_info[level - 2][idx];
694 }
695
696 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
697 {
698         struct kvm_memory_slot *slot;
699         struct kvm_lpage_info *linfo;
700         int i;
701
702         slot = gfn_to_memslot(kvm, gfn);
703         for (i = PT_DIRECTORY_LEVEL;
704              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
705                 linfo = lpage_info_slot(gfn, slot, i);
706                 linfo->write_count += 1;
707         }
708         kvm->arch.indirect_shadow_pages++;
709 }
710
711 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
712 {
713         struct kvm_memory_slot *slot;
714         struct kvm_lpage_info *linfo;
715         int i;
716
717         slot = gfn_to_memslot(kvm, gfn);
718         for (i = PT_DIRECTORY_LEVEL;
719              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
720                 linfo = lpage_info_slot(gfn, slot, i);
721                 linfo->write_count -= 1;
722                 WARN_ON(linfo->write_count < 0);
723         }
724         kvm->arch.indirect_shadow_pages--;
725 }
726
727 static int has_wrprotected_page(struct kvm *kvm,
728                                 gfn_t gfn,
729                                 int level)
730 {
731         struct kvm_memory_slot *slot;
732         struct kvm_lpage_info *linfo;
733
734         slot = gfn_to_memslot(kvm, gfn);
735         if (slot) {
736                 linfo = lpage_info_slot(gfn, slot, level);
737                 return linfo->write_count;
738         }
739
740         return 1;
741 }
742
743 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
744 {
745         unsigned long page_size;
746         int i, ret = 0;
747
748         page_size = kvm_host_page_size(kvm, gfn);
749
750         for (i = PT_PAGE_TABLE_LEVEL;
751              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
752                 if (page_size >= KVM_HPAGE_SIZE(i))
753                         ret = i;
754                 else
755                         break;
756         }
757
758         return ret;
759 }
760
761 static struct kvm_memory_slot *
762 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
763                             bool no_dirty_log)
764 {
765         struct kvm_memory_slot *slot;
766
767         slot = gfn_to_memslot(vcpu->kvm, gfn);
768         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
769               (no_dirty_log && slot->dirty_bitmap))
770                 slot = NULL;
771
772         return slot;
773 }
774
775 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
776 {
777         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
778 }
779
780 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
781 {
782         int host_level, level, max_level;
783
784         host_level = host_mapping_level(vcpu->kvm, large_gfn);
785
786         if (host_level == PT_PAGE_TABLE_LEVEL)
787                 return host_level;
788
789         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
790                 kvm_x86_ops->get_lpage_level() : host_level;
791
792         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
793                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
794                         break;
795
796         return level - 1;
797 }
798
799 /*
800  * Pte mapping structures:
801  *
802  * If pte_list bit zero is zero, then pte_list point to the spte.
803  *
804  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
805  * pte_list_desc containing more mappings.
806  *
807  * Returns the number of pte entries before the spte was added or zero if
808  * the spte was not added.
809  *
810  */
811 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
812                         unsigned long *pte_list)
813 {
814         struct pte_list_desc *desc;
815         int i, count = 0;
816
817         if (!*pte_list) {
818                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
819                 *pte_list = (unsigned long)spte;
820         } else if (!(*pte_list & 1)) {
821                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
822                 desc = mmu_alloc_pte_list_desc(vcpu);
823                 desc->sptes[0] = (u64 *)*pte_list;
824                 desc->sptes[1] = spte;
825                 *pte_list = (unsigned long)desc | 1;
826                 ++count;
827         } else {
828                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
829                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
830                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
831                         desc = desc->more;
832                         count += PTE_LIST_EXT;
833                 }
834                 if (desc->sptes[PTE_LIST_EXT-1]) {
835                         desc->more = mmu_alloc_pte_list_desc(vcpu);
836                         desc = desc->more;
837                 }
838                 for (i = 0; desc->sptes[i]; ++i)
839                         ++count;
840                 desc->sptes[i] = spte;
841         }
842         return count;
843 }
844
845 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
846 {
847         struct pte_list_desc *desc;
848         u64 *prev_spte;
849         int i;
850
851         if (!*pte_list)
852                 return NULL;
853         else if (!(*pte_list & 1)) {
854                 if (!spte)
855                         return (u64 *)*pte_list;
856                 return NULL;
857         }
858         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
859         prev_spte = NULL;
860         while (desc) {
861                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
862                         if (prev_spte == spte)
863                                 return desc->sptes[i];
864                         prev_spte = desc->sptes[i];
865                 }
866                 desc = desc->more;
867         }
868         return NULL;
869 }
870
871 static void
872 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
873                            int i, struct pte_list_desc *prev_desc)
874 {
875         int j;
876
877         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
878                 ;
879         desc->sptes[i] = desc->sptes[j];
880         desc->sptes[j] = NULL;
881         if (j != 0)
882                 return;
883         if (!prev_desc && !desc->more)
884                 *pte_list = (unsigned long)desc->sptes[0];
885         else
886                 if (prev_desc)
887                         prev_desc->more = desc->more;
888                 else
889                         *pte_list = (unsigned long)desc->more | 1;
890         mmu_free_pte_list_desc(desc);
891 }
892
893 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
894 {
895         struct pte_list_desc *desc;
896         struct pte_list_desc *prev_desc;
897         int i;
898
899         if (!*pte_list) {
900                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
901                 BUG();
902         } else if (!(*pte_list & 1)) {
903                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
904                 if ((u64 *)*pte_list != spte) {
905                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
906                         BUG();
907                 }
908                 *pte_list = 0;
909         } else {
910                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
911                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
912                 prev_desc = NULL;
913                 while (desc) {
914                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
915                                 if (desc->sptes[i] == spte) {
916                                         pte_list_desc_remove_entry(pte_list,
917                                                                desc, i,
918                                                                prev_desc);
919                                         return;
920                                 }
921                         prev_desc = desc;
922                         desc = desc->more;
923                 }
924                 pr_err("pte_list_remove: %p many->many\n", spte);
925                 BUG();
926         }
927 }
928
929 typedef void (*pte_list_walk_fn) (u64 *spte);
930 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
931 {
932         struct pte_list_desc *desc;
933         int i;
934
935         if (!*pte_list)
936                 return;
937
938         if (!(*pte_list & 1))
939                 return fn((u64 *)*pte_list);
940
941         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942         while (desc) {
943                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
944                         fn(desc->sptes[i]);
945                 desc = desc->more;
946         }
947 }
948
949 static unsigned long *__gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level,
950                                     struct kvm_memory_slot *slot)
951 {
952         struct kvm_lpage_info *linfo;
953
954         if (likely(level == PT_PAGE_TABLE_LEVEL))
955                 return &slot->rmap[gfn - slot->base_gfn];
956
957         linfo = lpage_info_slot(gfn, slot, level);
958         return &linfo->rmap_pde;
959 }
960
961 /*
962  * Take gfn and return the reverse mapping to it.
963  */
964 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
965 {
966         struct kvm_memory_slot *slot;
967
968         slot = gfn_to_memslot(kvm, gfn);
969         return __gfn_to_rmap(kvm, gfn, level, slot);
970 }
971
972 static bool rmap_can_add(struct kvm_vcpu *vcpu)
973 {
974         struct kvm_mmu_memory_cache *cache;
975
976         cache = &vcpu->arch.mmu_pte_list_desc_cache;
977         return mmu_memory_cache_free_objects(cache);
978 }
979
980 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
981 {
982         struct kvm_mmu_page *sp;
983         unsigned long *rmapp;
984
985         sp = page_header(__pa(spte));
986         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
987         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
988         return pte_list_add(vcpu, spte, rmapp);
989 }
990
991 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
992 {
993         return pte_list_next(rmapp, spte);
994 }
995
996 static void rmap_remove(struct kvm *kvm, u64 *spte)
997 {
998         struct kvm_mmu_page *sp;
999         gfn_t gfn;
1000         unsigned long *rmapp;
1001
1002         sp = page_header(__pa(spte));
1003         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1004         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1005         pte_list_remove(spte, rmapp);
1006 }
1007
1008 static void drop_spte(struct kvm *kvm, u64 *sptep)
1009 {
1010         if (mmu_spte_clear_track_bits(sptep))
1011                 rmap_remove(kvm, sptep);
1012 }
1013
1014 int kvm_mmu_rmap_write_protect(struct kvm *kvm, u64 gfn,
1015                                struct kvm_memory_slot *slot)
1016 {
1017         unsigned long *rmapp;
1018         u64 *spte;
1019         int i, write_protected = 0;
1020
1021         rmapp = __gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL, slot);
1022         spte = rmap_next(kvm, rmapp, NULL);
1023         while (spte) {
1024                 BUG_ON(!(*spte & PT_PRESENT_MASK));
1025                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1026                 if (is_writable_pte(*spte)) {
1027                         mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1028                         write_protected = 1;
1029                 }
1030                 spte = rmap_next(kvm, rmapp, spte);
1031         }
1032
1033         /* check for huge page mappings */
1034         for (i = PT_DIRECTORY_LEVEL;
1035              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1036                 rmapp = __gfn_to_rmap(kvm, gfn, i, slot);
1037                 spte = rmap_next(kvm, rmapp, NULL);
1038                 while (spte) {
1039                         BUG_ON(!(*spte & PT_PRESENT_MASK));
1040                         BUG_ON(!is_large_pte(*spte));
1041                         pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
1042                         if (is_writable_pte(*spte)) {
1043                                 drop_spte(kvm, spte);
1044                                 --kvm->stat.lpages;
1045                                 spte = NULL;
1046                                 write_protected = 1;
1047                         }
1048                         spte = rmap_next(kvm, rmapp, spte);
1049                 }
1050         }
1051
1052         return write_protected;
1053 }
1054
1055 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1056 {
1057         struct kvm_memory_slot *slot;
1058
1059         slot = gfn_to_memslot(kvm, gfn);
1060         return kvm_mmu_rmap_write_protect(kvm, gfn, slot);
1061 }
1062
1063 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1064                            unsigned long data)
1065 {
1066         u64 *spte;
1067         int need_tlb_flush = 0;
1068
1069         while ((spte = rmap_next(kvm, rmapp, NULL))) {
1070                 BUG_ON(!(*spte & PT_PRESENT_MASK));
1071                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1072                 drop_spte(kvm, spte);
1073                 need_tlb_flush = 1;
1074         }
1075         return need_tlb_flush;
1076 }
1077
1078 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1079                              unsigned long data)
1080 {
1081         int need_flush = 0;
1082         u64 *spte, new_spte;
1083         pte_t *ptep = (pte_t *)data;
1084         pfn_t new_pfn;
1085
1086         WARN_ON(pte_huge(*ptep));
1087         new_pfn = pte_pfn(*ptep);
1088         spte = rmap_next(kvm, rmapp, NULL);
1089         while (spte) {
1090                 BUG_ON(!is_shadow_present_pte(*spte));
1091                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1092                 need_flush = 1;
1093                 if (pte_write(*ptep)) {
1094                         drop_spte(kvm, spte);
1095                         spte = rmap_next(kvm, rmapp, NULL);
1096                 } else {
1097                         new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1098                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1099
1100                         new_spte &= ~PT_WRITABLE_MASK;
1101                         new_spte &= ~SPTE_HOST_WRITEABLE;
1102                         new_spte &= ~shadow_accessed_mask;
1103                         mmu_spte_clear_track_bits(spte);
1104                         mmu_spte_set(spte, new_spte);
1105                         spte = rmap_next(kvm, rmapp, spte);
1106                 }
1107         }
1108         if (need_flush)
1109                 kvm_flush_remote_tlbs(kvm);
1110
1111         return 0;
1112 }
1113
1114 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1115                           unsigned long data,
1116                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1117                                          unsigned long data))
1118 {
1119         int j;
1120         int ret;
1121         int retval = 0;
1122         struct kvm_memslots *slots;
1123         struct kvm_memory_slot *memslot;
1124
1125         slots = kvm_memslots(kvm);
1126
1127         kvm_for_each_memslot(memslot, slots) {
1128                 unsigned long start = memslot->userspace_addr;
1129                 unsigned long end;
1130
1131                 end = start + (memslot->npages << PAGE_SHIFT);
1132                 if (hva >= start && hva < end) {
1133                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1134                         gfn_t gfn = memslot->base_gfn + gfn_offset;
1135
1136                         ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1137
1138                         for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1139                                 struct kvm_lpage_info *linfo;
1140
1141                                 linfo = lpage_info_slot(gfn, memslot,
1142                                                         PT_DIRECTORY_LEVEL + j);
1143                                 ret |= handler(kvm, &linfo->rmap_pde, data);
1144                         }
1145                         trace_kvm_age_page(hva, memslot, ret);
1146                         retval |= ret;
1147                 }
1148         }
1149
1150         return retval;
1151 }
1152
1153 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1154 {
1155         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1156 }
1157
1158 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1159 {
1160         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1161 }
1162
1163 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1164                          unsigned long data)
1165 {
1166         u64 *spte;
1167         int young = 0;
1168
1169         /*
1170          * Emulate the accessed bit for EPT, by checking if this page has
1171          * an EPT mapping, and clearing it if it does. On the next access,
1172          * a new EPT mapping will be established.
1173          * This has some overhead, but not as much as the cost of swapping
1174          * out actively used pages or breaking up actively used hugepages.
1175          */
1176         if (!shadow_accessed_mask)
1177                 return kvm_unmap_rmapp(kvm, rmapp, data);
1178
1179         spte = rmap_next(kvm, rmapp, NULL);
1180         while (spte) {
1181                 int _young;
1182                 u64 _spte = *spte;
1183                 BUG_ON(!(_spte & PT_PRESENT_MASK));
1184                 _young = _spte & PT_ACCESSED_MASK;
1185                 if (_young) {
1186                         young = 1;
1187                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1188                 }
1189                 spte = rmap_next(kvm, rmapp, spte);
1190         }
1191         return young;
1192 }
1193
1194 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1195                               unsigned long data)
1196 {
1197         u64 *spte;
1198         int young = 0;
1199
1200         /*
1201          * If there's no access bit in the secondary pte set by the
1202          * hardware it's up to gup-fast/gup to set the access bit in
1203          * the primary pte or in the page structure.
1204          */
1205         if (!shadow_accessed_mask)
1206                 goto out;
1207
1208         spte = rmap_next(kvm, rmapp, NULL);
1209         while (spte) {
1210                 u64 _spte = *spte;
1211                 BUG_ON(!(_spte & PT_PRESENT_MASK));
1212                 young = _spte & PT_ACCESSED_MASK;
1213                 if (young) {
1214                         young = 1;
1215                         break;
1216                 }
1217                 spte = rmap_next(kvm, rmapp, spte);
1218         }
1219 out:
1220         return young;
1221 }
1222
1223 #define RMAP_RECYCLE_THRESHOLD 1000
1224
1225 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1226 {
1227         unsigned long *rmapp;
1228         struct kvm_mmu_page *sp;
1229
1230         sp = page_header(__pa(spte));
1231
1232         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1233
1234         kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1235         kvm_flush_remote_tlbs(vcpu->kvm);
1236 }
1237
1238 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1239 {
1240         return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1241 }
1242
1243 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1244 {
1245         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1246 }
1247
1248 #ifdef MMU_DEBUG
1249 static int is_empty_shadow_page(u64 *spt)
1250 {
1251         u64 *pos;
1252         u64 *end;
1253
1254         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1255                 if (is_shadow_present_pte(*pos)) {
1256                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1257                                pos, *pos);
1258                         return 0;
1259                 }
1260         return 1;
1261 }
1262 #endif
1263
1264 /*
1265  * This value is the sum of all of the kvm instances's
1266  * kvm->arch.n_used_mmu_pages values.  We need a global,
1267  * aggregate version in order to make the slab shrinker
1268  * faster
1269  */
1270 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1271 {
1272         kvm->arch.n_used_mmu_pages += nr;
1273         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1274 }
1275
1276 /*
1277  * Remove the sp from shadow page cache, after call it,
1278  * we can not find this sp from the cache, and the shadow
1279  * page table is still valid.
1280  * It should be under the protection of mmu lock.
1281  */
1282 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1283 {
1284         ASSERT(is_empty_shadow_page(sp->spt));
1285         hlist_del(&sp->hash_link);
1286         if (!sp->role.direct)
1287                 free_page((unsigned long)sp->gfns);
1288 }
1289
1290 /*
1291  * Free the shadow page table and the sp, we can do it
1292  * out of the protection of mmu lock.
1293  */
1294 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1295 {
1296         list_del(&sp->link);
1297         free_page((unsigned long)sp->spt);
1298         kmem_cache_free(mmu_page_header_cache, sp);
1299 }
1300
1301 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1302 {
1303         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1304 }
1305
1306 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1307                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1308 {
1309         if (!parent_pte)
1310                 return;
1311
1312         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1313 }
1314
1315 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1316                                        u64 *parent_pte)
1317 {
1318         pte_list_remove(parent_pte, &sp->parent_ptes);
1319 }
1320
1321 static void drop_parent_pte(struct kvm_mmu_page *sp,
1322                             u64 *parent_pte)
1323 {
1324         mmu_page_remove_parent_pte(sp, parent_pte);
1325         mmu_spte_clear_no_track(parent_pte);
1326 }
1327
1328 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1329                                                u64 *parent_pte, int direct)
1330 {
1331         struct kvm_mmu_page *sp;
1332         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1333                                         sizeof *sp);
1334         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1335         if (!direct)
1336                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1337                                                   PAGE_SIZE);
1338         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1339         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1340         bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1341         sp->parent_ptes = 0;
1342         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1343         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1344         return sp;
1345 }
1346
1347 static void mark_unsync(u64 *spte);
1348 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1349 {
1350         pte_list_walk(&sp->parent_ptes, mark_unsync);
1351 }
1352
1353 static void mark_unsync(u64 *spte)
1354 {
1355         struct kvm_mmu_page *sp;
1356         unsigned int index;
1357
1358         sp = page_header(__pa(spte));
1359         index = spte - sp->spt;
1360         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1361                 return;
1362         if (sp->unsync_children++)
1363                 return;
1364         kvm_mmu_mark_parents_unsync(sp);
1365 }
1366
1367 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1368                                struct kvm_mmu_page *sp)
1369 {
1370         return 1;
1371 }
1372
1373 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1374 {
1375 }
1376
1377 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1378                                  struct kvm_mmu_page *sp, u64 *spte,
1379                                  const void *pte)
1380 {
1381         WARN_ON(1);
1382 }
1383
1384 #define KVM_PAGE_ARRAY_NR 16
1385
1386 struct kvm_mmu_pages {
1387         struct mmu_page_and_offset {
1388                 struct kvm_mmu_page *sp;
1389                 unsigned int idx;
1390         } page[KVM_PAGE_ARRAY_NR];
1391         unsigned int nr;
1392 };
1393
1394 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1395                          int idx)
1396 {
1397         int i;
1398
1399         if (sp->unsync)
1400                 for (i=0; i < pvec->nr; i++)
1401                         if (pvec->page[i].sp == sp)
1402                                 return 0;
1403
1404         pvec->page[pvec->nr].sp = sp;
1405         pvec->page[pvec->nr].idx = idx;
1406         pvec->nr++;
1407         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1408 }
1409
1410 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1411                            struct kvm_mmu_pages *pvec)
1412 {
1413         int i, ret, nr_unsync_leaf = 0;
1414
1415         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1416                 struct kvm_mmu_page *child;
1417                 u64 ent = sp->spt[i];
1418
1419                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1420                         goto clear_child_bitmap;
1421
1422                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1423
1424                 if (child->unsync_children) {
1425                         if (mmu_pages_add(pvec, child, i))
1426                                 return -ENOSPC;
1427
1428                         ret = __mmu_unsync_walk(child, pvec);
1429                         if (!ret)
1430                                 goto clear_child_bitmap;
1431                         else if (ret > 0)
1432                                 nr_unsync_leaf += ret;
1433                         else
1434                                 return ret;
1435                 } else if (child->unsync) {
1436                         nr_unsync_leaf++;
1437                         if (mmu_pages_add(pvec, child, i))
1438                                 return -ENOSPC;
1439                 } else
1440                          goto clear_child_bitmap;
1441
1442                 continue;
1443
1444 clear_child_bitmap:
1445                 __clear_bit(i, sp->unsync_child_bitmap);
1446                 sp->unsync_children--;
1447                 WARN_ON((int)sp->unsync_children < 0);
1448         }
1449
1450
1451         return nr_unsync_leaf;
1452 }
1453
1454 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1455                            struct kvm_mmu_pages *pvec)
1456 {
1457         if (!sp->unsync_children)
1458                 return 0;
1459
1460         mmu_pages_add(pvec, sp, 0);
1461         return __mmu_unsync_walk(sp, pvec);
1462 }
1463
1464 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1465 {
1466         WARN_ON(!sp->unsync);
1467         trace_kvm_mmu_sync_page(sp);
1468         sp->unsync = 0;
1469         --kvm->stat.mmu_unsync;
1470 }
1471
1472 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1473                                     struct list_head *invalid_list);
1474 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1475                                     struct list_head *invalid_list);
1476
1477 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1478   hlist_for_each_entry(sp, pos,                                         \
1479    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1480         if ((sp)->gfn != (gfn)) {} else
1481
1482 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1483   hlist_for_each_entry(sp, pos,                                         \
1484    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1485                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1486                         (sp)->role.invalid) {} else
1487
1488 /* @sp->gfn should be write-protected at the call site */
1489 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1490                            struct list_head *invalid_list, bool clear_unsync)
1491 {
1492         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1493                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1494                 return 1;
1495         }
1496
1497         if (clear_unsync)
1498                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1499
1500         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1501                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1502                 return 1;
1503         }
1504
1505         kvm_mmu_flush_tlb(vcpu);
1506         return 0;
1507 }
1508
1509 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1510                                    struct kvm_mmu_page *sp)
1511 {
1512         LIST_HEAD(invalid_list);
1513         int ret;
1514
1515         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1516         if (ret)
1517                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1518
1519         return ret;
1520 }
1521
1522 #ifdef CONFIG_KVM_MMU_AUDIT
1523 #include "mmu_audit.c"
1524 #else
1525 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1526 static void mmu_audit_disable(void) { }
1527 #endif
1528
1529 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1530                          struct list_head *invalid_list)
1531 {
1532         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1533 }
1534
1535 /* @gfn should be write-protected at the call site */
1536 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1537 {
1538         struct kvm_mmu_page *s;
1539         struct hlist_node *node;
1540         LIST_HEAD(invalid_list);
1541         bool flush = false;
1542
1543         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1544                 if (!s->unsync)
1545                         continue;
1546
1547                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1548                 kvm_unlink_unsync_page(vcpu->kvm, s);
1549                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1550                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1551                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1552                         continue;
1553                 }
1554                 flush = true;
1555         }
1556
1557         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1558         if (flush)
1559                 kvm_mmu_flush_tlb(vcpu);
1560 }
1561
1562 struct mmu_page_path {
1563         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1564         unsigned int idx[PT64_ROOT_LEVEL-1];
1565 };
1566
1567 #define for_each_sp(pvec, sp, parents, i)                       \
1568                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1569                         sp = pvec.page[i].sp;                   \
1570                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1571                         i = mmu_pages_next(&pvec, &parents, i))
1572
1573 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1574                           struct mmu_page_path *parents,
1575                           int i)
1576 {
1577         int n;
1578
1579         for (n = i+1; n < pvec->nr; n++) {
1580                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1581
1582                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1583                         parents->idx[0] = pvec->page[n].idx;
1584                         return n;
1585                 }
1586
1587                 parents->parent[sp->role.level-2] = sp;
1588                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1589         }
1590
1591         return n;
1592 }
1593
1594 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1595 {
1596         struct kvm_mmu_page *sp;
1597         unsigned int level = 0;
1598
1599         do {
1600                 unsigned int idx = parents->idx[level];
1601
1602                 sp = parents->parent[level];
1603                 if (!sp)
1604                         return;
1605
1606                 --sp->unsync_children;
1607                 WARN_ON((int)sp->unsync_children < 0);
1608                 __clear_bit(idx, sp->unsync_child_bitmap);
1609                 level++;
1610         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1611 }
1612
1613 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1614                                struct mmu_page_path *parents,
1615                                struct kvm_mmu_pages *pvec)
1616 {
1617         parents->parent[parent->role.level-1] = NULL;
1618         pvec->nr = 0;
1619 }
1620
1621 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1622                               struct kvm_mmu_page *parent)
1623 {
1624         int i;
1625         struct kvm_mmu_page *sp;
1626         struct mmu_page_path parents;
1627         struct kvm_mmu_pages pages;
1628         LIST_HEAD(invalid_list);
1629
1630         kvm_mmu_pages_init(parent, &parents, &pages);
1631         while (mmu_unsync_walk(parent, &pages)) {
1632                 int protected = 0;
1633
1634                 for_each_sp(pages, sp, parents, i)
1635                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1636
1637                 if (protected)
1638                         kvm_flush_remote_tlbs(vcpu->kvm);
1639
1640                 for_each_sp(pages, sp, parents, i) {
1641                         kvm_sync_page(vcpu, sp, &invalid_list);
1642                         mmu_pages_clear_parents(&parents);
1643                 }
1644                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1645                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1646                 kvm_mmu_pages_init(parent, &parents, &pages);
1647         }
1648 }
1649
1650 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1651 {
1652         int i;
1653
1654         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1655                 sp->spt[i] = 0ull;
1656 }
1657
1658 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1659 {
1660         sp->write_flooding_count = 0;
1661 }
1662
1663 static void clear_sp_write_flooding_count(u64 *spte)
1664 {
1665         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1666
1667         __clear_sp_write_flooding_count(sp);
1668 }
1669
1670 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1671                                              gfn_t gfn,
1672                                              gva_t gaddr,
1673                                              unsigned level,
1674                                              int direct,
1675                                              unsigned access,
1676                                              u64 *parent_pte)
1677 {
1678         union kvm_mmu_page_role role;
1679         unsigned quadrant;
1680         struct kvm_mmu_page *sp;
1681         struct hlist_node *node;
1682         bool need_sync = false;
1683
1684         role = vcpu->arch.mmu.base_role;
1685         role.level = level;
1686         role.direct = direct;
1687         if (role.direct)
1688                 role.cr4_pae = 0;
1689         role.access = access;
1690         if (!vcpu->arch.mmu.direct_map
1691             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1692                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1693                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1694                 role.quadrant = quadrant;
1695         }
1696         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1697                 if (!need_sync && sp->unsync)
1698                         need_sync = true;
1699
1700                 if (sp->role.word != role.word)
1701                         continue;
1702
1703                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1704                         break;
1705
1706                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1707                 if (sp->unsync_children) {
1708                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1709                         kvm_mmu_mark_parents_unsync(sp);
1710                 } else if (sp->unsync)
1711                         kvm_mmu_mark_parents_unsync(sp);
1712
1713                 __clear_sp_write_flooding_count(sp);
1714                 trace_kvm_mmu_get_page(sp, false);
1715                 return sp;
1716         }
1717         ++vcpu->kvm->stat.mmu_cache_miss;
1718         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1719         if (!sp)
1720                 return sp;
1721         sp->gfn = gfn;
1722         sp->role = role;
1723         hlist_add_head(&sp->hash_link,
1724                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1725         if (!direct) {
1726                 if (rmap_write_protect(vcpu->kvm, gfn))
1727                         kvm_flush_remote_tlbs(vcpu->kvm);
1728                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1729                         kvm_sync_pages(vcpu, gfn);
1730
1731                 account_shadowed(vcpu->kvm, gfn);
1732         }
1733         init_shadow_page_table(sp);
1734         trace_kvm_mmu_get_page(sp, true);
1735         return sp;
1736 }
1737
1738 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1739                              struct kvm_vcpu *vcpu, u64 addr)
1740 {
1741         iterator->addr = addr;
1742         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1743         iterator->level = vcpu->arch.mmu.shadow_root_level;
1744
1745         if (iterator->level == PT64_ROOT_LEVEL &&
1746             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1747             !vcpu->arch.mmu.direct_map)
1748                 --iterator->level;
1749
1750         if (iterator->level == PT32E_ROOT_LEVEL) {
1751                 iterator->shadow_addr
1752                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1753                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1754                 --iterator->level;
1755                 if (!iterator->shadow_addr)
1756                         iterator->level = 0;
1757         }
1758 }
1759
1760 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1761 {
1762         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1763                 return false;
1764
1765         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1766         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1767         return true;
1768 }
1769
1770 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1771                                u64 spte)
1772 {
1773         if (is_last_spte(spte, iterator->level)) {
1774                 iterator->level = 0;
1775                 return;
1776         }
1777
1778         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1779         --iterator->level;
1780 }
1781
1782 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1783 {
1784         return __shadow_walk_next(iterator, *iterator->sptep);
1785 }
1786
1787 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1788 {
1789         u64 spte;
1790
1791         spte = __pa(sp->spt)
1792                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1793                 | PT_WRITABLE_MASK | PT_USER_MASK;
1794         mmu_spte_set(sptep, spte);
1795 }
1796
1797 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1798 {
1799         if (is_large_pte(*sptep)) {
1800                 drop_spte(vcpu->kvm, sptep);
1801                 --vcpu->kvm->stat.lpages;
1802                 kvm_flush_remote_tlbs(vcpu->kvm);
1803         }
1804 }
1805
1806 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1807                                    unsigned direct_access)
1808 {
1809         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1810                 struct kvm_mmu_page *child;
1811
1812                 /*
1813                  * For the direct sp, if the guest pte's dirty bit
1814                  * changed form clean to dirty, it will corrupt the
1815                  * sp's access: allow writable in the read-only sp,
1816                  * so we should update the spte at this point to get
1817                  * a new sp with the correct access.
1818                  */
1819                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1820                 if (child->role.access == direct_access)
1821                         return;
1822
1823                 drop_parent_pte(child, sptep);
1824                 kvm_flush_remote_tlbs(vcpu->kvm);
1825         }
1826 }
1827
1828 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1829                              u64 *spte)
1830 {
1831         u64 pte;
1832         struct kvm_mmu_page *child;
1833
1834         pte = *spte;
1835         if (is_shadow_present_pte(pte)) {
1836                 if (is_last_spte(pte, sp->role.level)) {
1837                         drop_spte(kvm, spte);
1838                         if (is_large_pte(pte))
1839                                 --kvm->stat.lpages;
1840                 } else {
1841                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1842                         drop_parent_pte(child, spte);
1843                 }
1844                 return true;
1845         }
1846
1847         if (is_mmio_spte(pte))
1848                 mmu_spte_clear_no_track(spte);
1849
1850         return false;
1851 }
1852
1853 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1854                                          struct kvm_mmu_page *sp)
1855 {
1856         unsigned i;
1857
1858         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1859                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1860 }
1861
1862 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1863 {
1864         mmu_page_remove_parent_pte(sp, parent_pte);
1865 }
1866
1867 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1868 {
1869         u64 *parent_pte;
1870
1871         while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1872                 drop_parent_pte(sp, parent_pte);
1873 }
1874
1875 static int mmu_zap_unsync_children(struct kvm *kvm,
1876                                    struct kvm_mmu_page *parent,
1877                                    struct list_head *invalid_list)
1878 {
1879         int i, zapped = 0;
1880         struct mmu_page_path parents;
1881         struct kvm_mmu_pages pages;
1882
1883         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1884                 return 0;
1885
1886         kvm_mmu_pages_init(parent, &parents, &pages);
1887         while (mmu_unsync_walk(parent, &pages)) {
1888                 struct kvm_mmu_page *sp;
1889
1890                 for_each_sp(pages, sp, parents, i) {
1891                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1892                         mmu_pages_clear_parents(&parents);
1893                         zapped++;
1894                 }
1895                 kvm_mmu_pages_init(parent, &parents, &pages);
1896         }
1897
1898         return zapped;
1899 }
1900
1901 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1902                                     struct list_head *invalid_list)
1903 {
1904         int ret;
1905
1906         trace_kvm_mmu_prepare_zap_page(sp);
1907         ++kvm->stat.mmu_shadow_zapped;
1908         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1909         kvm_mmu_page_unlink_children(kvm, sp);
1910         kvm_mmu_unlink_parents(kvm, sp);
1911         if (!sp->role.invalid && !sp->role.direct)
1912                 unaccount_shadowed(kvm, sp->gfn);
1913         if (sp->unsync)
1914                 kvm_unlink_unsync_page(kvm, sp);
1915         if (!sp->root_count) {
1916                 /* Count self */
1917                 ret++;
1918                 list_move(&sp->link, invalid_list);
1919                 kvm_mod_used_mmu_pages(kvm, -1);
1920         } else {
1921                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1922                 kvm_reload_remote_mmus(kvm);
1923         }
1924
1925         sp->role.invalid = 1;
1926         return ret;
1927 }
1928
1929 static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1930 {
1931         struct kvm_mmu_page *sp;
1932
1933         list_for_each_entry(sp, invalid_list, link)
1934                 kvm_mmu_isolate_page(sp);
1935 }
1936
1937 static void free_pages_rcu(struct rcu_head *head)
1938 {
1939         struct kvm_mmu_page *next, *sp;
1940
1941         sp = container_of(head, struct kvm_mmu_page, rcu);
1942         while (sp) {
1943                 if (!list_empty(&sp->link))
1944                         next = list_first_entry(&sp->link,
1945                                       struct kvm_mmu_page, link);
1946                 else
1947                         next = NULL;
1948                 kvm_mmu_free_page(sp);
1949                 sp = next;
1950         }
1951 }
1952
1953 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1954                                     struct list_head *invalid_list)
1955 {
1956         struct kvm_mmu_page *sp;
1957
1958         if (list_empty(invalid_list))
1959                 return;
1960
1961         kvm_flush_remote_tlbs(kvm);
1962
1963         if (atomic_read(&kvm->arch.reader_counter)) {
1964                 kvm_mmu_isolate_pages(invalid_list);
1965                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1966                 list_del_init(invalid_list);
1967
1968                 trace_kvm_mmu_delay_free_pages(sp);
1969                 call_rcu(&sp->rcu, free_pages_rcu);
1970                 return;
1971         }
1972
1973         do {
1974                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1975                 WARN_ON(!sp->role.invalid || sp->root_count);
1976                 kvm_mmu_isolate_page(sp);
1977                 kvm_mmu_free_page(sp);
1978         } while (!list_empty(invalid_list));
1979
1980 }
1981
1982 /*
1983  * Changing the number of mmu pages allocated to the vm
1984  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1985  */
1986 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1987 {
1988         LIST_HEAD(invalid_list);
1989         /*
1990          * If we set the number of mmu pages to be smaller be than the
1991          * number of actived pages , we must to free some mmu pages before we
1992          * change the value
1993          */
1994
1995         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1996                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1997                         !list_empty(&kvm->arch.active_mmu_pages)) {
1998                         struct kvm_mmu_page *page;
1999
2000                         page = container_of(kvm->arch.active_mmu_pages.prev,
2001                                             struct kvm_mmu_page, link);
2002                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2003                 }
2004                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2005                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2006         }
2007
2008         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2009 }
2010
2011 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2012 {
2013         struct kvm_mmu_page *sp;
2014         struct hlist_node *node;
2015         LIST_HEAD(invalid_list);
2016         int r;
2017
2018         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2019         r = 0;
2020         spin_lock(&kvm->mmu_lock);
2021         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2022                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2023                          sp->role.word);
2024                 r = 1;
2025                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2026         }
2027         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2028         spin_unlock(&kvm->mmu_lock);
2029
2030         return r;
2031 }
2032 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2033
2034 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2035 {
2036         int slot = memslot_id(kvm, gfn);
2037         struct kvm_mmu_page *sp = page_header(__pa(pte));
2038
2039         __set_bit(slot, sp->slot_bitmap);
2040 }
2041
2042 /*
2043  * The function is based on mtrr_type_lookup() in
2044  * arch/x86/kernel/cpu/mtrr/generic.c
2045  */
2046 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2047                          u64 start, u64 end)
2048 {
2049         int i;
2050         u64 base, mask;
2051         u8 prev_match, curr_match;
2052         int num_var_ranges = KVM_NR_VAR_MTRR;
2053
2054         if (!mtrr_state->enabled)
2055                 return 0xFF;
2056
2057         /* Make end inclusive end, instead of exclusive */
2058         end--;
2059
2060         /* Look in fixed ranges. Just return the type as per start */
2061         if (mtrr_state->have_fixed && (start < 0x100000)) {
2062                 int idx;
2063
2064                 if (start < 0x80000) {
2065                         idx = 0;
2066                         idx += (start >> 16);
2067                         return mtrr_state->fixed_ranges[idx];
2068                 } else if (start < 0xC0000) {
2069                         idx = 1 * 8;
2070                         idx += ((start - 0x80000) >> 14);
2071                         return mtrr_state->fixed_ranges[idx];
2072                 } else if (start < 0x1000000) {
2073                         idx = 3 * 8;
2074                         idx += ((start - 0xC0000) >> 12);
2075                         return mtrr_state->fixed_ranges[idx];
2076                 }
2077         }
2078
2079         /*
2080          * Look in variable ranges
2081          * Look of multiple ranges matching this address and pick type
2082          * as per MTRR precedence
2083          */
2084         if (!(mtrr_state->enabled & 2))
2085                 return mtrr_state->def_type;
2086
2087         prev_match = 0xFF;
2088         for (i = 0; i < num_var_ranges; ++i) {
2089                 unsigned short start_state, end_state;
2090
2091                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2092                         continue;
2093
2094                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2095                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2096                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2097                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2098
2099                 start_state = ((start & mask) == (base & mask));
2100                 end_state = ((end & mask) == (base & mask));
2101                 if (start_state != end_state)
2102                         return 0xFE;
2103
2104                 if ((start & mask) != (base & mask))
2105                         continue;
2106
2107                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2108                 if (prev_match == 0xFF) {
2109                         prev_match = curr_match;
2110                         continue;
2111                 }
2112
2113                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2114                     curr_match == MTRR_TYPE_UNCACHABLE)
2115                         return MTRR_TYPE_UNCACHABLE;
2116
2117                 if ((prev_match == MTRR_TYPE_WRBACK &&
2118                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2119                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2120                      curr_match == MTRR_TYPE_WRBACK)) {
2121                         prev_match = MTRR_TYPE_WRTHROUGH;
2122                         curr_match = MTRR_TYPE_WRTHROUGH;
2123                 }
2124
2125                 if (prev_match != curr_match)
2126                         return MTRR_TYPE_UNCACHABLE;
2127         }
2128
2129         if (prev_match != 0xFF)
2130                 return prev_match;
2131
2132         return mtrr_state->def_type;
2133 }
2134
2135 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2136 {
2137         u8 mtrr;
2138
2139         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2140                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2141         if (mtrr == 0xfe || mtrr == 0xff)
2142                 mtrr = MTRR_TYPE_WRBACK;
2143         return mtrr;
2144 }
2145 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2146
2147 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2148 {
2149         trace_kvm_mmu_unsync_page(sp);
2150         ++vcpu->kvm->stat.mmu_unsync;
2151         sp->unsync = 1;
2152
2153         kvm_mmu_mark_parents_unsync(sp);
2154 }
2155
2156 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2157 {
2158         struct kvm_mmu_page *s;
2159         struct hlist_node *node;
2160
2161         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2162                 if (s->unsync)
2163                         continue;
2164                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2165                 __kvm_unsync_page(vcpu, s);
2166         }
2167 }
2168
2169 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2170                                   bool can_unsync)
2171 {
2172         struct kvm_mmu_page *s;
2173         struct hlist_node *node;
2174         bool need_unsync = false;
2175
2176         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2177                 if (!can_unsync)
2178                         return 1;
2179
2180                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2181                         return 1;
2182
2183                 if (!need_unsync && !s->unsync) {
2184                         need_unsync = true;
2185                 }
2186         }
2187         if (need_unsync)
2188                 kvm_unsync_pages(vcpu, gfn);
2189         return 0;
2190 }
2191
2192 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2193                     unsigned pte_access, int user_fault,
2194                     int write_fault, int level,
2195                     gfn_t gfn, pfn_t pfn, bool speculative,
2196                     bool can_unsync, bool host_writable)
2197 {
2198         u64 spte, entry = *sptep;
2199         int ret = 0;
2200
2201         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2202                 return 0;
2203
2204         spte = PT_PRESENT_MASK;
2205         if (!speculative)
2206                 spte |= shadow_accessed_mask;
2207
2208         if (pte_access & ACC_EXEC_MASK)
2209                 spte |= shadow_x_mask;
2210         else
2211                 spte |= shadow_nx_mask;
2212         if (pte_access & ACC_USER_MASK)
2213                 spte |= shadow_user_mask;
2214         if (level > PT_PAGE_TABLE_LEVEL)
2215                 spte |= PT_PAGE_SIZE_MASK;
2216         if (tdp_enabled)
2217                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2218                         kvm_is_mmio_pfn(pfn));
2219
2220         if (host_writable)
2221                 spte |= SPTE_HOST_WRITEABLE;
2222         else
2223                 pte_access &= ~ACC_WRITE_MASK;
2224
2225         spte |= (u64)pfn << PAGE_SHIFT;
2226
2227         if ((pte_access & ACC_WRITE_MASK)
2228             || (!vcpu->arch.mmu.direct_map && write_fault
2229                 && !is_write_protection(vcpu) && !user_fault)) {
2230
2231                 if (level > PT_PAGE_TABLE_LEVEL &&
2232                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
2233                         ret = 1;
2234                         drop_spte(vcpu->kvm, sptep);
2235                         goto done;
2236                 }
2237
2238                 spte |= PT_WRITABLE_MASK;
2239
2240                 if (!vcpu->arch.mmu.direct_map
2241                     && !(pte_access & ACC_WRITE_MASK)) {
2242                         spte &= ~PT_USER_MASK;
2243                         /*
2244                          * If we converted a user page to a kernel page,
2245                          * so that the kernel can write to it when cr0.wp=0,
2246                          * then we should prevent the kernel from executing it
2247                          * if SMEP is enabled.
2248                          */
2249                         if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2250                                 spte |= PT64_NX_MASK;
2251                 }
2252
2253                 /*
2254                  * Optimization: for pte sync, if spte was writable the hash
2255                  * lookup is unnecessary (and expensive). Write protection
2256                  * is responsibility of mmu_get_page / kvm_sync_page.
2257                  * Same reasoning can be applied to dirty page accounting.
2258                  */
2259                 if (!can_unsync && is_writable_pte(*sptep))
2260                         goto set_pte;
2261
2262                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2263                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2264                                  __func__, gfn);
2265                         ret = 1;
2266                         pte_access &= ~ACC_WRITE_MASK;
2267                         if (is_writable_pte(spte))
2268                                 spte &= ~PT_WRITABLE_MASK;
2269                 }
2270         }
2271
2272         if (pte_access & ACC_WRITE_MASK)
2273                 mark_page_dirty(vcpu->kvm, gfn);
2274
2275 set_pte:
2276         mmu_spte_update(sptep, spte);
2277         /*
2278          * If we overwrite a writable spte with a read-only one we
2279          * should flush remote TLBs. Otherwise rmap_write_protect
2280          * will find a read-only spte, even though the writable spte
2281          * might be cached on a CPU's TLB.
2282          */
2283         if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2284                 kvm_flush_remote_tlbs(vcpu->kvm);
2285 done:
2286         return ret;
2287 }
2288
2289 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2290                          unsigned pt_access, unsigned pte_access,
2291                          int user_fault, int write_fault,
2292                          int *emulate, int level, gfn_t gfn,
2293                          pfn_t pfn, bool speculative,
2294                          bool host_writable)
2295 {
2296         int was_rmapped = 0;
2297         int rmap_count;
2298
2299         pgprintk("%s: spte %llx access %x write_fault %d"
2300                  " user_fault %d gfn %llx\n",
2301                  __func__, *sptep, pt_access,
2302                  write_fault, user_fault, gfn);
2303
2304         if (is_rmap_spte(*sptep)) {
2305                 /*
2306                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2307                  * the parent of the now unreachable PTE.
2308                  */
2309                 if (level > PT_PAGE_TABLE_LEVEL &&
2310                     !is_large_pte(*sptep)) {
2311                         struct kvm_mmu_page *child;
2312                         u64 pte = *sptep;
2313
2314                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2315                         drop_parent_pte(child, sptep);
2316                         kvm_flush_remote_tlbs(vcpu->kvm);
2317                 } else if (pfn != spte_to_pfn(*sptep)) {
2318                         pgprintk("hfn old %llx new %llx\n",
2319                                  spte_to_pfn(*sptep), pfn);
2320                         drop_spte(vcpu->kvm, sptep);
2321                         kvm_flush_remote_tlbs(vcpu->kvm);
2322                 } else
2323                         was_rmapped = 1;
2324         }
2325
2326         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2327                       level, gfn, pfn, speculative, true,
2328                       host_writable)) {
2329                 if (write_fault)
2330                         *emulate = 1;
2331                 kvm_mmu_flush_tlb(vcpu);
2332         }
2333
2334         if (unlikely(is_mmio_spte(*sptep) && emulate))
2335                 *emulate = 1;
2336
2337         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2338         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2339                  is_large_pte(*sptep)? "2MB" : "4kB",
2340                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2341                  *sptep, sptep);
2342         if (!was_rmapped && is_large_pte(*sptep))
2343                 ++vcpu->kvm->stat.lpages;
2344
2345         if (is_shadow_present_pte(*sptep)) {
2346                 page_header_update_slot(vcpu->kvm, sptep, gfn);
2347                 if (!was_rmapped) {
2348                         rmap_count = rmap_add(vcpu, sptep, gfn);
2349                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2350                                 rmap_recycle(vcpu, sptep, gfn);
2351                 }
2352         }
2353         kvm_release_pfn_clean(pfn);
2354 }
2355
2356 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2357 {
2358 }
2359
2360 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2361                                      bool no_dirty_log)
2362 {
2363         struct kvm_memory_slot *slot;
2364         unsigned long hva;
2365
2366         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2367         if (!slot) {
2368                 get_page(fault_page);
2369                 return page_to_pfn(fault_page);
2370         }
2371
2372         hva = gfn_to_hva_memslot(slot, gfn);
2373
2374         return hva_to_pfn_atomic(vcpu->kvm, hva);
2375 }
2376
2377 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2378                                     struct kvm_mmu_page *sp,
2379                                     u64 *start, u64 *end)
2380 {
2381         struct page *pages[PTE_PREFETCH_NUM];
2382         unsigned access = sp->role.access;
2383         int i, ret;
2384         gfn_t gfn;
2385
2386         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2387         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2388                 return -1;
2389
2390         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2391         if (ret <= 0)
2392                 return -1;
2393
2394         for (i = 0; i < ret; i++, gfn++, start++)
2395                 mmu_set_spte(vcpu, start, ACC_ALL,
2396                              access, 0, 0, NULL,
2397                              sp->role.level, gfn,
2398                              page_to_pfn(pages[i]), true, true);
2399
2400         return 0;
2401 }
2402
2403 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2404                                   struct kvm_mmu_page *sp, u64 *sptep)
2405 {
2406         u64 *spte, *start = NULL;
2407         int i;
2408
2409         WARN_ON(!sp->role.direct);
2410
2411         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2412         spte = sp->spt + i;
2413
2414         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2415                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2416                         if (!start)
2417                                 continue;
2418                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2419                                 break;
2420                         start = NULL;
2421                 } else if (!start)
2422                         start = spte;
2423         }
2424 }
2425
2426 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2427 {
2428         struct kvm_mmu_page *sp;
2429
2430         /*
2431          * Since it's no accessed bit on EPT, it's no way to
2432          * distinguish between actually accessed translations
2433          * and prefetched, so disable pte prefetch if EPT is
2434          * enabled.
2435          */
2436         if (!shadow_accessed_mask)
2437                 return;
2438
2439         sp = page_header(__pa(sptep));
2440         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2441                 return;
2442
2443         __direct_pte_prefetch(vcpu, sp, sptep);
2444 }
2445
2446 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2447                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2448                         bool prefault)
2449 {
2450         struct kvm_shadow_walk_iterator iterator;
2451         struct kvm_mmu_page *sp;
2452         int emulate = 0;
2453         gfn_t pseudo_gfn;
2454
2455         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2456                 if (iterator.level == level) {
2457                         unsigned pte_access = ACC_ALL;
2458
2459                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2460                                      0, write, &emulate,
2461                                      level, gfn, pfn, prefault, map_writable);
2462                         direct_pte_prefetch(vcpu, iterator.sptep);
2463                         ++vcpu->stat.pf_fixed;
2464                         break;
2465                 }
2466
2467                 if (!is_shadow_present_pte(*iterator.sptep)) {
2468                         u64 base_addr = iterator.addr;
2469
2470                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2471                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2472                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2473                                               iterator.level - 1,
2474                                               1, ACC_ALL, iterator.sptep);
2475                         if (!sp) {
2476                                 pgprintk("nonpaging_map: ENOMEM\n");
2477                                 kvm_release_pfn_clean(pfn);
2478                                 return -ENOMEM;
2479                         }
2480
2481                         mmu_spte_set(iterator.sptep,
2482                                      __pa(sp->spt)
2483                                      | PT_PRESENT_MASK | PT_WRITABLE_MASK
2484                                      | shadow_user_mask | shadow_x_mask
2485                                      | shadow_accessed_mask);
2486                 }
2487         }
2488         return emulate;
2489 }
2490
2491 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2492 {
2493         siginfo_t info;
2494
2495         info.si_signo   = SIGBUS;
2496         info.si_errno   = 0;
2497         info.si_code    = BUS_MCEERR_AR;
2498         info.si_addr    = (void __user *)address;
2499         info.si_addr_lsb = PAGE_SHIFT;
2500
2501         send_sig_info(SIGBUS, &info, tsk);
2502 }
2503
2504 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2505 {
2506         kvm_release_pfn_clean(pfn);
2507         if (is_hwpoison_pfn(pfn)) {
2508                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2509                 return 0;
2510         }
2511
2512         return -EFAULT;
2513 }
2514
2515 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2516                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2517 {
2518         pfn_t pfn = *pfnp;
2519         gfn_t gfn = *gfnp;
2520         int level = *levelp;
2521
2522         /*
2523          * Check if it's a transparent hugepage. If this would be an
2524          * hugetlbfs page, level wouldn't be set to
2525          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2526          * here.
2527          */
2528         if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2529             level == PT_PAGE_TABLE_LEVEL &&
2530             PageTransCompound(pfn_to_page(pfn)) &&
2531             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2532                 unsigned long mask;
2533                 /*
2534                  * mmu_notifier_retry was successful and we hold the
2535                  * mmu_lock here, so the pmd can't become splitting
2536                  * from under us, and in turn
2537                  * __split_huge_page_refcount() can't run from under
2538                  * us and we can safely transfer the refcount from
2539                  * PG_tail to PG_head as we switch the pfn to tail to
2540                  * head.
2541                  */
2542                 *levelp = level = PT_DIRECTORY_LEVEL;
2543                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2544                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2545                 if (pfn & mask) {
2546                         gfn &= ~mask;
2547                         *gfnp = gfn;
2548                         kvm_release_pfn_clean(pfn);
2549                         pfn &= ~mask;
2550                         if (!get_page_unless_zero(pfn_to_page(pfn)))
2551                                 BUG();
2552                         *pfnp = pfn;
2553                 }
2554         }
2555 }
2556
2557 static bool mmu_invalid_pfn(pfn_t pfn)
2558 {
2559         return unlikely(is_invalid_pfn(pfn));
2560 }
2561
2562 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2563                                 pfn_t pfn, unsigned access, int *ret_val)
2564 {
2565         bool ret = true;
2566
2567         /* The pfn is invalid, report the error! */
2568         if (unlikely(is_invalid_pfn(pfn))) {
2569                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2570                 goto exit;
2571         }
2572
2573         if (unlikely(is_noslot_pfn(pfn)))
2574                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2575
2576         ret = false;
2577 exit:
2578         return ret;
2579 }
2580
2581 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2582                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2583
2584 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2585                          bool prefault)
2586 {
2587         int r;
2588         int level;
2589         int force_pt_level;
2590         pfn_t pfn;
2591         unsigned long mmu_seq;
2592         bool map_writable;
2593
2594         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2595         if (likely(!force_pt_level)) {
2596                 level = mapping_level(vcpu, gfn);
2597                 /*
2598                  * This path builds a PAE pagetable - so we can map
2599                  * 2mb pages at maximum. Therefore check if the level
2600                  * is larger than that.
2601                  */
2602                 if (level > PT_DIRECTORY_LEVEL)
2603                         level = PT_DIRECTORY_LEVEL;
2604
2605                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2606         } else
2607                 level = PT_PAGE_TABLE_LEVEL;
2608
2609         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2610         smp_rmb();
2611
2612         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2613                 return 0;
2614
2615         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2616                 return r;
2617
2618         spin_lock(&vcpu->kvm->mmu_lock);
2619         if (mmu_notifier_retry(vcpu, mmu_seq))
2620                 goto out_unlock;
2621         kvm_mmu_free_some_pages(vcpu);
2622         if (likely(!force_pt_level))
2623                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2624         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2625                          prefault);
2626         spin_unlock(&vcpu->kvm->mmu_lock);
2627
2628
2629         return r;
2630
2631 out_unlock:
2632         spin_unlock(&vcpu->kvm->mmu_lock);
2633         kvm_release_pfn_clean(pfn);
2634         return 0;
2635 }
2636
2637
2638 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2639 {
2640         int i;
2641         struct kvm_mmu_page *sp;
2642         LIST_HEAD(invalid_list);
2643
2644         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2645                 return;
2646         spin_lock(&vcpu->kvm->mmu_lock);
2647         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2648             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2649              vcpu->arch.mmu.direct_map)) {
2650                 hpa_t root = vcpu->arch.mmu.root_hpa;
2651
2652                 sp = page_header(root);
2653                 --sp->root_count;
2654                 if (!sp->root_count && sp->role.invalid) {
2655                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2656                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2657                 }
2658                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2659                 spin_unlock(&vcpu->kvm->mmu_lock);
2660                 return;
2661         }
2662         for (i = 0; i < 4; ++i) {
2663                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2664
2665                 if (root) {
2666                         root &= PT64_BASE_ADDR_MASK;
2667                         sp = page_header(root);
2668                         --sp->root_count;
2669                         if (!sp->root_count && sp->role.invalid)
2670                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2671                                                          &invalid_list);
2672                 }
2673                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2674         }
2675         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2676         spin_unlock(&vcpu->kvm->mmu_lock);
2677         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2678 }
2679
2680 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2681 {
2682         int ret = 0;
2683
2684         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2685                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2686                 ret = 1;
2687         }
2688
2689         return ret;
2690 }
2691
2692 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2693 {
2694         struct kvm_mmu_page *sp;
2695         unsigned i;
2696
2697         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2698                 spin_lock(&vcpu->kvm->mmu_lock);
2699                 kvm_mmu_free_some_pages(vcpu);
2700                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2701                                       1, ACC_ALL, NULL);
2702                 ++sp->root_count;
2703                 spin_unlock(&vcpu->kvm->mmu_lock);
2704                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2705         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2706                 for (i = 0; i < 4; ++i) {
2707                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2708
2709                         ASSERT(!VALID_PAGE(root));
2710                         spin_lock(&vcpu->kvm->mmu_lock);
2711                         kvm_mmu_free_some_pages(vcpu);
2712                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2713                                               i << 30,
2714                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2715                                               NULL);
2716                         root = __pa(sp->spt);
2717                         ++sp->root_count;
2718                         spin_unlock(&vcpu->kvm->mmu_lock);
2719                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2720                 }
2721                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2722         } else
2723                 BUG();
2724
2725         return 0;
2726 }
2727
2728 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2729 {
2730         struct kvm_mmu_page *sp;
2731         u64 pdptr, pm_mask;
2732         gfn_t root_gfn;
2733         int i;
2734
2735         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2736
2737         if (mmu_check_root(vcpu, root_gfn))
2738                 return 1;
2739
2740         /*
2741          * Do we shadow a long mode page table? If so we need to
2742          * write-protect the guests page table root.
2743          */
2744         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2745                 hpa_t root = vcpu->arch.mmu.root_hpa;
2746
2747                 ASSERT(!VALID_PAGE(root));
2748
2749                 spin_lock(&vcpu->kvm->mmu_lock);
2750                 kvm_mmu_free_some_pages(vcpu);
2751                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2752                                       0, ACC_ALL, NULL);
2753                 root = __pa(sp->spt);
2754                 ++sp->root_count;
2755                 spin_unlock(&vcpu->kvm->mmu_lock);
2756                 vcpu->arch.mmu.root_hpa = root;
2757                 return 0;
2758         }
2759
2760         /*
2761          * We shadow a 32 bit page table. This may be a legacy 2-level
2762          * or a PAE 3-level page table. In either case we need to be aware that
2763          * the shadow page table may be a PAE or a long mode page table.
2764          */
2765         pm_mask = PT_PRESENT_MASK;
2766         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2767                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2768
2769         for (i = 0; i < 4; ++i) {
2770                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2771
2772                 ASSERT(!VALID_PAGE(root));
2773                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2774                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2775                         if (!is_present_gpte(pdptr)) {
2776                                 vcpu->arch.mmu.pae_root[i] = 0;
2777                                 continue;
2778                         }
2779                         root_gfn = pdptr >> PAGE_SHIFT;
2780                         if (mmu_check_root(vcpu, root_gfn))
2781                                 return 1;
2782                 }
2783                 spin_lock(&vcpu->kvm->mmu_lock);
2784                 kvm_mmu_free_some_pages(vcpu);
2785                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2786                                       PT32_ROOT_LEVEL, 0,
2787                                       ACC_ALL, NULL);
2788                 root = __pa(sp->spt);
2789                 ++sp->root_count;
2790                 spin_unlock(&vcpu->kvm->mmu_lock);
2791
2792                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2793         }
2794         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2795
2796         /*
2797          * If we shadow a 32 bit page table with a long mode page
2798          * table we enter this path.
2799          */
2800         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2801                 if (vcpu->arch.mmu.lm_root == NULL) {
2802                         /*
2803                          * The additional page necessary for this is only
2804                          * allocated on demand.
2805                          */
2806
2807                         u64 *lm_root;
2808
2809                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2810                         if (lm_root == NULL)
2811                                 return 1;
2812
2813                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2814
2815                         vcpu->arch.mmu.lm_root = lm_root;
2816                 }
2817
2818                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2819         }
2820
2821         return 0;
2822 }
2823
2824 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2825 {
2826         if (vcpu->arch.mmu.direct_map)
2827                 return mmu_alloc_direct_roots(vcpu);
2828         else
2829                 return mmu_alloc_shadow_roots(vcpu);
2830 }
2831
2832 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2833 {
2834         int i;
2835         struct kvm_mmu_page *sp;
2836
2837         if (vcpu->arch.mmu.direct_map)
2838                 return;
2839
2840         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2841                 return;
2842
2843         vcpu_clear_mmio_info(vcpu, ~0ul);
2844         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2845         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2846                 hpa_t root = vcpu->arch.mmu.root_hpa;
2847                 sp = page_header(root);
2848                 mmu_sync_children(vcpu, sp);
2849                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2850                 return;
2851         }
2852         for (i = 0; i < 4; ++i) {
2853                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2854
2855                 if (root && VALID_PAGE(root)) {
2856                         root &= PT64_BASE_ADDR_MASK;
2857                         sp = page_header(root);
2858                         mmu_sync_children(vcpu, sp);
2859                 }
2860         }
2861         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2862 }
2863
2864 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2865 {
2866         spin_lock(&vcpu->kvm->mmu_lock);
2867         mmu_sync_roots(vcpu);
2868         spin_unlock(&vcpu->kvm->mmu_lock);
2869 }
2870
2871 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2872                                   u32 access, struct x86_exception *exception)
2873 {
2874         if (exception)
2875                 exception->error_code = 0;
2876         return vaddr;
2877 }
2878
2879 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2880                                          u32 access,
2881                                          struct x86_exception *exception)
2882 {
2883         if (exception)
2884                 exception->error_code = 0;
2885         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2886 }
2887
2888 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2889 {
2890         if (direct)
2891                 return vcpu_match_mmio_gpa(vcpu, addr);
2892
2893         return vcpu_match_mmio_gva(vcpu, addr);
2894 }
2895
2896
2897 /*
2898  * On direct hosts, the last spte is only allows two states
2899  * for mmio page fault:
2900  *   - It is the mmio spte
2901  *   - It is zapped or it is being zapped.
2902  *
2903  * This function completely checks the spte when the last spte
2904  * is not the mmio spte.
2905  */
2906 static bool check_direct_spte_mmio_pf(u64 spte)
2907 {
2908         return __check_direct_spte_mmio_pf(spte);
2909 }
2910
2911 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2912 {
2913         struct kvm_shadow_walk_iterator iterator;
2914         u64 spte = 0ull;
2915
2916         walk_shadow_page_lockless_begin(vcpu);
2917         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2918                 if (!is_shadow_present_pte(spte))
2919                         break;
2920         walk_shadow_page_lockless_end(vcpu);
2921
2922         return spte;
2923 }
2924
2925 /*
2926  * If it is a real mmio page fault, return 1 and emulat the instruction
2927  * directly, return 0 to let CPU fault again on the address, -1 is
2928  * returned if bug is detected.
2929  */
2930 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2931 {
2932         u64 spte;
2933
2934         if (quickly_check_mmio_pf(vcpu, addr, direct))
2935                 return 1;
2936
2937         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2938
2939         if (is_mmio_spte(spte)) {
2940                 gfn_t gfn = get_mmio_spte_gfn(spte);
2941                 unsigned access = get_mmio_spte_access(spte);
2942
2943                 if (direct)
2944                         addr = 0;
2945
2946                 trace_handle_mmio_page_fault(addr, gfn, access);
2947                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2948                 return 1;
2949         }
2950
2951         /*
2952          * It's ok if the gva is remapped by other cpus on shadow guest,
2953          * it's a BUG if the gfn is not a mmio page.
2954          */
2955         if (direct && !check_direct_spte_mmio_pf(spte))
2956                 return -1;
2957
2958         /*
2959          * If the page table is zapped by other cpus, let CPU fault again on
2960          * the address.
2961          */
2962         return 0;
2963 }
2964 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2965
2966 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2967                                   u32 error_code, bool direct)
2968 {
2969         int ret;
2970
2971         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2972         WARN_ON(ret < 0);
2973         return ret;
2974 }
2975
2976 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2977                                 u32 error_code, bool prefault)
2978 {
2979         gfn_t gfn;
2980         int r;
2981
2982         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2983
2984         if (unlikely(error_code & PFERR_RSVD_MASK))
2985                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2986
2987         r = mmu_topup_memory_caches(vcpu);
2988         if (r)
2989                 return r;
2990
2991         ASSERT(vcpu);
2992         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2993
2994         gfn = gva >> PAGE_SHIFT;
2995
2996         return nonpaging_map(vcpu, gva & PAGE_MASK,
2997                              error_code & PFERR_WRITE_MASK, gfn, prefault);
2998 }
2999
3000 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3001 {
3002         struct kvm_arch_async_pf arch;
3003
3004         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3005         arch.gfn = gfn;
3006         arch.direct_map = vcpu->arch.mmu.direct_map;
3007         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3008
3009         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3010 }
3011
3012 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3013 {
3014         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3015                      kvm_event_needs_reinjection(vcpu)))
3016                 return false;
3017
3018         return kvm_x86_ops->interrupt_allowed(vcpu);
3019 }
3020
3021 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3022                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3023 {
3024         bool async;
3025
3026         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3027
3028         if (!async)
3029                 return false; /* *pfn has correct page already */
3030
3031         put_page(pfn_to_page(*pfn));
3032
3033         if (!prefault && can_do_async_pf(vcpu)) {
3034                 trace_kvm_try_async_get_page(gva, gfn);
3035                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3036                         trace_kvm_async_pf_doublefault(gva, gfn);
3037                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3038                         return true;
3039                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3040                         return true;
3041         }
3042
3043         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3044
3045         return false;
3046 }
3047
3048 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3049                           bool prefault)
3050 {
3051         pfn_t pfn;
3052         int r;
3053         int level;
3054         int force_pt_level;
3055         gfn_t gfn = gpa >> PAGE_SHIFT;
3056         unsigned long mmu_seq;
3057         int write = error_code & PFERR_WRITE_MASK;
3058         bool map_writable;
3059
3060         ASSERT(vcpu);
3061         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3062
3063         if (unlikely(error_code & PFERR_RSVD_MASK))
3064                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3065
3066         r = mmu_topup_memory_caches(vcpu);
3067         if (r)
3068                 return r;
3069
3070         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3071         if (likely(!force_pt_level)) {
3072                 level = mapping_level(vcpu, gfn);
3073                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3074         } else
3075                 level = PT_PAGE_TABLE_LEVEL;
3076
3077         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3078         smp_rmb();
3079
3080         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3081                 return 0;
3082
3083         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3084                 return r;
3085
3086         spin_lock(&vcpu->kvm->mmu_lock);
3087         if (mmu_notifier_retry(vcpu, mmu_seq))
3088                 goto out_unlock;
3089         kvm_mmu_free_some_pages(vcpu);
3090         if (likely(!force_pt_level))
3091                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3092         r = __direct_map(vcpu, gpa, write, map_writable,
3093                          level, gfn, pfn, prefault);
3094         spin_unlock(&vcpu->kvm->mmu_lock);
3095
3096         return r;
3097
3098 out_unlock:
3099         spin_unlock(&vcpu->kvm->mmu_lock);
3100         kvm_release_pfn_clean(pfn);
3101         return 0;
3102 }
3103
3104 static void nonpaging_free(struct kvm_vcpu *vcpu)
3105 {
3106         mmu_free_roots(vcpu);
3107 }
3108
3109 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3110                                   struct kvm_mmu *context)
3111 {
3112         context->new_cr3 = nonpaging_new_cr3;
3113         context->page_fault = nonpaging_page_fault;
3114         context->gva_to_gpa = nonpaging_gva_to_gpa;
3115         context->free = nonpaging_free;
3116         context->sync_page = nonpaging_sync_page;
3117         context->invlpg = nonpaging_invlpg;
3118         context->update_pte = nonpaging_update_pte;
3119         context->root_level = 0;
3120         context->shadow_root_level = PT32E_ROOT_LEVEL;
3121         context->root_hpa = INVALID_PAGE;
3122         context->direct_map = true;
3123         context->nx = false;
3124         return 0;
3125 }
3126
3127 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3128 {
3129         ++vcpu->stat.tlb_flush;
3130         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3131 }
3132
3133 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3134 {
3135         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3136         mmu_free_roots(vcpu);
3137 }
3138
3139 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3140 {
3141         return kvm_read_cr3(vcpu);
3142 }
3143
3144 static void inject_page_fault(struct kvm_vcpu *vcpu,
3145                               struct x86_exception *fault)
3146 {
3147         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3148 }
3149
3150 static void paging_free(struct kvm_vcpu *vcpu)
3151 {
3152         nonpaging_free(vcpu);
3153 }
3154
3155 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3156 {
3157         int bit7;
3158
3159         bit7 = (gpte >> 7) & 1;
3160         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3161 }
3162
3163 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3164                            int *nr_present)
3165 {
3166         if (unlikely(is_mmio_spte(*sptep))) {
3167                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3168                         mmu_spte_clear_no_track(sptep);
3169                         return true;
3170                 }
3171
3172                 (*nr_present)++;
3173                 mark_mmio_spte(sptep, gfn, access);
3174                 return true;
3175         }
3176
3177         return false;
3178 }
3179
3180 #define PTTYPE 64
3181 #include "paging_tmpl.h"
3182 #undef PTTYPE
3183
3184 #define PTTYPE 32
3185 #include "paging_tmpl.h"
3186 #undef PTTYPE
3187
3188 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3189                                   struct kvm_mmu *context,
3190                                   int level)
3191 {
3192         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3193         u64 exb_bit_rsvd = 0;
3194
3195         if (!context->nx)
3196                 exb_bit_rsvd = rsvd_bits(63, 63);
3197         switch (level) {
3198         case PT32_ROOT_LEVEL:
3199                 /* no rsvd bits for 2 level 4K page table entries */
3200                 context->rsvd_bits_mask[0][1] = 0;
3201                 context->rsvd_bits_mask[0][0] = 0;
3202                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3203
3204                 if (!is_pse(vcpu)) {
3205                         context->rsvd_bits_mask[1][1] = 0;
3206                         break;
3207                 }
3208
3209                 if (is_cpuid_PSE36())
3210                         /* 36bits PSE 4MB page */
3211                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3212                 else
3213                         /* 32 bits PSE 4MB page */
3214                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3215                 break;
3216         case PT32E_ROOT_LEVEL:
3217                 context->rsvd_bits_mask[0][2] =
3218                         rsvd_bits(maxphyaddr, 63) |
3219                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3220                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3221                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3222                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3223                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3224                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3225                         rsvd_bits(maxphyaddr, 62) |
3226                         rsvd_bits(13, 20);              /* large page */
3227                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3228                 break;
3229         case PT64_ROOT_LEVEL:
3230                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3231                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3232                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3233                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3234                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3235                         rsvd_bits(maxphyaddr, 51);
3236                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3237                         rsvd_bits(maxphyaddr, 51);
3238                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3239                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3240                         rsvd_bits(maxphyaddr, 51) |
3241                         rsvd_bits(13, 29);
3242                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3243                         rsvd_bits(maxphyaddr, 51) |
3244                         rsvd_bits(13, 20);              /* large page */
3245                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3246                 break;
3247         }
3248 }
3249
3250 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3251                                         struct kvm_mmu *context,
3252                                         int level)
3253 {
3254         context->nx = is_nx(vcpu);
3255
3256         reset_rsvds_bits_mask(vcpu, context, level);
3257
3258         ASSERT(is_pae(vcpu));
3259         context->new_cr3 = paging_new_cr3;
3260         context->page_fault = paging64_page_fault;
3261         context->gva_to_gpa = paging64_gva_to_gpa;
3262         context->sync_page = paging64_sync_page;
3263         context->invlpg = paging64_invlpg;
3264         context->update_pte = paging64_update_pte;
3265         context->free = paging_free;
3266         context->root_level = level;
3267         context->shadow_root_level = level;
3268         context->root_hpa = INVALID_PAGE;
3269         context->direct_map = false;
3270         return 0;
3271 }
3272
3273 static int paging64_init_context(struct kvm_vcpu *vcpu,
3274                                  struct kvm_mmu *context)
3275 {
3276         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3277 }
3278
3279 static int paging32_init_context(struct kvm_vcpu *vcpu,
3280                                  struct kvm_mmu *context)
3281 {
3282         context->nx = false;
3283
3284         reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3285
3286         context->new_cr3 = paging_new_cr3;
3287         context->page_fault = paging32_page_fault;
3288         context->gva_to_gpa = paging32_gva_to_gpa;
3289         context->free = paging_free;
3290         context->sync_page = paging32_sync_page;
3291         context->invlpg = paging32_invlpg;
3292         context->update_pte = paging32_update_pte;
3293         context->root_level = PT32_ROOT_LEVEL;
3294         context->shadow_root_level = PT32E_ROOT_LEVEL;
3295         context->root_hpa = INVALID_PAGE;
3296         context->direct_map = false;
3297         return 0;
3298 }
3299
3300 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3301                                   struct kvm_mmu *context)
3302 {
3303         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3304 }
3305
3306 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3307 {
3308         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3309
3310         context->base_role.word = 0;
3311         context->new_cr3 = nonpaging_new_cr3;
3312         context->page_fault = tdp_page_fault;
3313         context->free = nonpaging_free;
3314         context->sync_page = nonpaging_sync_page;
3315         context->invlpg = nonpaging_invlpg;
3316         context->update_pte = nonpaging_update_pte;
3317         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3318         context->root_hpa = INVALID_PAGE;
3319         context->direct_map = true;
3320         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3321         context->get_cr3 = get_cr3;
3322         context->get_pdptr = kvm_pdptr_read;
3323         context->inject_page_fault = kvm_inject_page_fault;
3324
3325         if (!is_paging(vcpu)) {
3326                 context->nx = false;
3327                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3328                 context->root_level = 0;
3329         } else if (is_long_mode(vcpu)) {
3330                 context->nx = is_nx(vcpu);
3331                 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3332                 context->gva_to_gpa = paging64_gva_to_gpa;
3333                 context->root_level = PT64_ROOT_LEVEL;
3334         } else if (is_pae(vcpu)) {
3335                 context->nx = is_nx(vcpu);
3336                 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3337                 context->gva_to_gpa = paging64_gva_to_gpa;
3338                 context->root_level = PT32E_ROOT_LEVEL;
3339         } else {
3340                 context->nx = false;
3341                 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3342                 context->gva_to_gpa = paging32_gva_to_gpa;
3343                 context->root_level = PT32_ROOT_LEVEL;
3344         }
3345
3346         return 0;
3347 }
3348
3349 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3350 {
3351         int r;
3352         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3353         ASSERT(vcpu);
3354         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3355
3356         if (!is_paging(vcpu))
3357                 r = nonpaging_init_context(vcpu, context);
3358         else if (is_long_mode(vcpu))
3359                 r = paging64_init_context(vcpu, context);
3360         else if (is_pae(vcpu))
3361                 r = paging32E_init_context(vcpu, context);
3362         else
3363                 r = paging32_init_context(vcpu, context);
3364
3365         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3366         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3367         vcpu->arch.mmu.base_role.smep_andnot_wp
3368                 = smep && !is_write_protection(vcpu);
3369
3370         return r;
3371 }
3372 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3373
3374 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3375 {
3376         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3377
3378         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3379         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3380         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3381         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3382
3383         return r;
3384 }
3385
3386 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3387 {
3388         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3389
3390         g_context->get_cr3           = get_cr3;
3391         g_context->get_pdptr         = kvm_pdptr_read;
3392         g_context->inject_page_fault = kvm_inject_page_fault;
3393
3394         /*
3395          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3396          * translation of l2_gpa to l1_gpa addresses is done using the
3397          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3398          * functions between mmu and nested_mmu are swapped.
3399          */
3400         if (!is_paging(vcpu)) {
3401                 g_context->nx = false;
3402                 g_context->root_level = 0;
3403                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3404         } else if (is_long_mode(vcpu)) {
3405                 g_context->nx = is_nx(vcpu);
3406                 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3407                 g_context->root_level = PT64_ROOT_LEVEL;
3408                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3409         } else if (is_pae(vcpu)) {
3410                 g_context->nx = is_nx(vcpu);
3411                 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3412                 g_context->root_level = PT32E_ROOT_LEVEL;
3413                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3414         } else {
3415                 g_context->nx = false;
3416                 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3417                 g_context->root_level = PT32_ROOT_LEVEL;
3418                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3419         }
3420
3421         return 0;
3422 }
3423
3424 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3425 {
3426         if (mmu_is_nested(vcpu))
3427                 return init_kvm_nested_mmu(vcpu);
3428         else if (tdp_enabled)
3429                 return init_kvm_tdp_mmu(vcpu);
3430         else
3431                 return init_kvm_softmmu(vcpu);
3432 }
3433
3434 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3435 {
3436         ASSERT(vcpu);
3437         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3438                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3439                 vcpu->arch.mmu.free(vcpu);
3440 }
3441
3442 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3443 {
3444         destroy_kvm_mmu(vcpu);
3445         return init_kvm_mmu(vcpu);
3446 }
3447 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3448
3449 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3450 {
3451         int r;
3452
3453         r = mmu_topup_memory_caches(vcpu);
3454         if (r)
3455                 goto out;
3456         r = mmu_alloc_roots(vcpu);
3457         spin_lock(&vcpu->kvm->mmu_lock);
3458         mmu_sync_roots(vcpu);
3459         spin_unlock(&vcpu->kvm->mmu_lock);
3460         if (r)
3461                 goto out;
3462         /* set_cr3() should ensure TLB has been flushed */
3463         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3464 out:
3465         return r;
3466 }
3467 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3468
3469 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3470 {
3471         mmu_free_roots(vcpu);
3472 }
3473 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3474
3475 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3476                                   struct kvm_mmu_page *sp, u64 *spte,
3477                                   const void *new)
3478 {
3479         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3480                 ++vcpu->kvm->stat.mmu_pde_zapped;
3481                 return;
3482         }
3483
3484         ++vcpu->kvm->stat.mmu_pte_updated;
3485         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3486 }
3487
3488 static bool need_remote_flush(u64 old, u64 new)
3489 {
3490         if (!is_shadow_present_pte(old))
3491                 return false;
3492         if (!is_shadow_present_pte(new))
3493                 return true;
3494         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3495                 return true;
3496         old ^= PT64_NX_MASK;
3497         new ^= PT64_NX_MASK;
3498         return (old & ~new & PT64_PERM_MASK) != 0;
3499 }
3500
3501 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3502                                     bool remote_flush, bool local_flush)
3503 {
3504         if (zap_page)
3505                 return;
3506
3507         if (remote_flush)
3508                 kvm_flush_remote_tlbs(vcpu->kvm);
3509         else if (local_flush)
3510                 kvm_mmu_flush_tlb(vcpu);
3511 }
3512
3513 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3514                                     const u8 *new, int *bytes)
3515 {
3516         u64 gentry;
3517         int r;
3518
3519         /*
3520          * Assume that the pte write on a page table of the same type
3521          * as the current vcpu paging mode since we update the sptes only
3522          * when they have the same mode.
3523          */
3524         if (is_pae(vcpu) && *bytes == 4) {
3525                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3526                 *gpa &= ~(gpa_t)7;
3527                 *bytes = 8;
3528                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3529                 if (r)
3530                         gentry = 0;
3531                 new = (const u8 *)&gentry;
3532         }
3533
3534         switch (*bytes) {
3535         case 4:
3536                 gentry = *(const u32 *)new;
3537                 break;
3538         case 8:
3539                 gentry = *(const u64 *)new;
3540                 break;
3541         default:
3542                 gentry = 0;
3543                 break;
3544         }
3545
3546         return gentry;
3547 }
3548
3549 /*
3550  * If we're seeing too many writes to a page, it may no longer be a page table,
3551  * or we may be forking, in which case it is better to unmap the page.
3552  */
3553 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3554 {
3555         /*
3556          * Skip write-flooding detected for the sp whose level is 1, because
3557          * it can become unsync, then the guest page is not write-protected.
3558          */
3559         if (sp->role.level == 1)
3560                 return false;
3561
3562         return ++sp->write_flooding_count >= 3;
3563 }
3564
3565 /*
3566  * Misaligned accesses are too much trouble to fix up; also, they usually
3567  * indicate a page is not used as a page table.
3568  */
3569 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3570                                     int bytes)
3571 {
3572         unsigned offset, pte_size, misaligned;
3573
3574         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3575                  gpa, bytes, sp->role.word);
3576
3577         offset = offset_in_page(gpa);
3578         pte_size = sp->role.cr4_pae ? 8 : 4;
3579
3580         /*
3581          * Sometimes, the OS only writes the last one bytes to update status
3582          * bits, for example, in linux, andb instruction is used in clear_bit().
3583          */
3584         if (!(offset & (pte_size - 1)) && bytes == 1)
3585                 return false;
3586
3587         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3588         misaligned |= bytes < 4;
3589
3590         return misaligned;
3591 }
3592
3593 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3594 {
3595         unsigned page_offset, quadrant;
3596         u64 *spte;
3597         int level;
3598
3599         page_offset = offset_in_page(gpa);
3600         level = sp->role.level;
3601         *nspte = 1;
3602         if (!sp->role.cr4_pae) {
3603                 page_offset <<= 1;      /* 32->64 */
3604                 /*
3605                  * A 32-bit pde maps 4MB while the shadow pdes map
3606                  * only 2MB.  So we need to double the offset again
3607                  * and zap two pdes instead of one.
3608                  */
3609                 if (level == PT32_ROOT_LEVEL) {
3610                         page_offset &= ~7; /* kill rounding error */
3611                         page_offset <<= 1;
3612                         *nspte = 2;
3613                 }
3614                 quadrant = page_offset >> PAGE_SHIFT;
3615                 page_offset &= ~PAGE_MASK;
3616                 if (quadrant != sp->role.quadrant)
3617                         return NULL;
3618         }
3619
3620         spte = &sp->spt[page_offset / sizeof(*spte)];
3621         return spte;
3622 }
3623
3624 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3625                        const u8 *new, int bytes)
3626 {
3627         gfn_t gfn = gpa >> PAGE_SHIFT;
3628         union kvm_mmu_page_role mask = { .word = 0 };
3629         struct kvm_mmu_page *sp;
3630         struct hlist_node *node;
3631         LIST_HEAD(invalid_list);
3632         u64 entry, gentry, *spte;
3633         int npte;
3634         bool remote_flush, local_flush, zap_page;
3635
3636         /*
3637          * If we don't have indirect shadow pages, it means no page is
3638          * write-protected, so we can exit simply.
3639          */
3640         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3641                 return;
3642
3643         zap_page = remote_flush = local_flush = false;
3644
3645         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3646
3647         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3648
3649         /*
3650          * No need to care whether allocation memory is successful
3651          * or not since pte prefetch is skiped if it does not have
3652          * enough objects in the cache.
3653          */
3654         mmu_topup_memory_caches(vcpu);
3655
3656         spin_lock(&vcpu->kvm->mmu_lock);
3657         ++vcpu->kvm->stat.mmu_pte_write;
3658         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3659
3660         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3661         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3662                 if (detect_write_misaligned(sp, gpa, bytes) ||
3663                       detect_write_flooding(sp)) {
3664                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3665                                                      &invalid_list);
3666                         ++vcpu->kvm->stat.mmu_flooded;
3667                         continue;
3668                 }
3669
3670                 spte = get_written_sptes(sp, gpa, &npte);
3671                 if (!spte)
3672                         continue;
3673
3674                 local_flush = true;
3675                 while (npte--) {
3676                         entry = *spte;
3677                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3678                         if (gentry &&
3679                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3680                               & mask.word) && rmap_can_add(vcpu))
3681                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3682                         if (!remote_flush && need_remote_flush(entry, *spte))
3683                                 remote_flush = true;
3684                         ++spte;
3685                 }
3686         }
3687         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3688         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3689         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3690         spin_unlock(&vcpu->kvm->mmu_lock);
3691 }
3692
3693 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3694 {
3695         gpa_t gpa;
3696         int r;
3697
3698         if (vcpu->arch.mmu.direct_map)
3699                 return 0;
3700
3701         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3702
3703         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3704
3705         return r;
3706 }
3707 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3708
3709 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3710 {
3711         LIST_HEAD(invalid_list);
3712
3713         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3714                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3715                 struct kvm_mmu_page *sp;
3716
3717                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3718                                   struct kvm_mmu_page, link);
3719                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3720                 ++vcpu->kvm->stat.mmu_recycled;
3721         }
3722         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3723 }
3724
3725 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3726 {
3727         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3728                 return vcpu_match_mmio_gpa(vcpu, addr);
3729
3730         return vcpu_match_mmio_gva(vcpu, addr);
3731 }
3732
3733 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3734                        void *insn, int insn_len)
3735 {
3736         int r, emulation_type = EMULTYPE_RETRY;
3737         enum emulation_result er;
3738
3739         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3740         if (r < 0)
3741                 goto out;
3742
3743         if (!r) {
3744                 r = 1;
3745                 goto out;
3746         }
3747
3748         if (is_mmio_page_fault(vcpu, cr2))
3749                 emulation_type = 0;
3750
3751         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3752
3753         switch (er) {
3754         case EMULATE_DONE:
3755                 return 1;
3756         case EMULATE_DO_MMIO:
3757                 ++vcpu->stat.mmio_exits;
3758                 /* fall through */
3759         case EMULATE_FAIL:
3760                 return 0;
3761         default:
3762                 BUG();
3763         }
3764 out:
3765         return r;
3766 }
3767 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3768
3769 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3770 {
3771         vcpu->arch.mmu.invlpg(vcpu, gva);
3772         kvm_mmu_flush_tlb(vcpu);
3773         ++vcpu->stat.invlpg;
3774 }
3775 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3776
3777 void kvm_enable_tdp(void)
3778 {
3779         tdp_enabled = true;
3780 }
3781 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3782
3783 void kvm_disable_tdp(void)
3784 {
3785         tdp_enabled = false;
3786 }
3787 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3788
3789 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3790 {
3791         free_page((unsigned long)vcpu->arch.mmu.pae_root);
3792         if (vcpu->arch.mmu.lm_root != NULL)
3793                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3794 }
3795
3796 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3797 {
3798         struct page *page;
3799         int i;
3800
3801         ASSERT(vcpu);
3802
3803         /*
3804          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3805          * Therefore we need to allocate shadow page tables in the first
3806          * 4GB of memory, which happens to fit the DMA32 zone.
3807          */
3808         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3809         if (!page)
3810                 return -ENOMEM;
3811
3812         vcpu->arch.mmu.pae_root = page_address(page);
3813         for (i = 0; i < 4; ++i)
3814                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3815
3816         return 0;
3817 }
3818
3819 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3820 {
3821         ASSERT(vcpu);
3822
3823         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3824         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3825         vcpu->arch.mmu.translate_gpa = translate_gpa;
3826         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3827
3828         return alloc_mmu_pages(vcpu);
3829 }
3830
3831 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3832 {
3833         ASSERT(vcpu);
3834         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3835
3836         return init_kvm_mmu(vcpu);
3837 }
3838
3839 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3840 {
3841         struct kvm_mmu_page *sp;
3842
3843         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3844                 int i;
3845                 u64 *pt;
3846
3847                 if (!test_bit(slot, sp->slot_bitmap))
3848                         continue;
3849
3850                 pt = sp->spt;
3851                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3852                         if (!is_shadow_present_pte(pt[i]) ||
3853                               !is_last_spte(pt[i], sp->role.level))
3854                                 continue;
3855
3856                         if (is_large_pte(pt[i])) {
3857                                 drop_spte(kvm, &pt[i]);
3858                                 --kvm->stat.lpages;
3859                                 continue;
3860                         }
3861
3862                         /* avoid RMW */
3863                         if (is_writable_pte(pt[i]))
3864                                 mmu_spte_update(&pt[i],
3865                                                 pt[i] & ~PT_WRITABLE_MASK);
3866                 }
3867         }
3868         kvm_flush_remote_tlbs(kvm);
3869 }
3870
3871 void kvm_mmu_zap_all(struct kvm *kvm)
3872 {
3873         struct kvm_mmu_page *sp, *node;
3874         LIST_HEAD(invalid_list);
3875
3876         spin_lock(&kvm->mmu_lock);
3877 restart:
3878         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3879                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3880                         goto restart;
3881
3882         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3883         spin_unlock(&kvm->mmu_lock);
3884 }
3885
3886 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3887                                                 struct list_head *invalid_list)
3888 {
3889         struct kvm_mmu_page *page;
3890
3891         page = container_of(kvm->arch.active_mmu_pages.prev,
3892                             struct kvm_mmu_page, link);
3893         kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3894 }
3895
3896 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3897 {
3898         struct kvm *kvm;
3899         struct kvm *kvm_freed = NULL;
3900         int nr_to_scan = sc->nr_to_scan;
3901
3902         if (nr_to_scan == 0)
3903                 goto out;
3904
3905         raw_spin_lock(&kvm_lock);
3906
3907         list_for_each_entry(kvm, &vm_list, vm_list) {
3908                 int idx;
3909                 LIST_HEAD(invalid_list);
3910
3911                 idx = srcu_read_lock(&kvm->srcu);
3912                 spin_lock(&kvm->mmu_lock);
3913                 if (!kvm_freed && nr_to_scan > 0 &&
3914                     kvm->arch.n_used_mmu_pages > 0) {
3915                         kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3916                                                             &invalid_list);
3917                         kvm_freed = kvm;
3918                 }
3919                 nr_to_scan--;
3920
3921                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3922                 spin_unlock(&kvm->mmu_lock);
3923                 srcu_read_unlock(&kvm->srcu, idx);
3924         }
3925         if (kvm_freed)
3926                 list_move_tail(&kvm_freed->vm_list, &vm_list);
3927
3928         raw_spin_unlock(&kvm_lock);
3929
3930 out:
3931         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3932 }
3933
3934 static struct shrinker mmu_shrinker = {
3935         .shrink = mmu_shrink,
3936         .seeks = DEFAULT_SEEKS * 10,
3937 };
3938
3939 static void mmu_destroy_caches(void)
3940 {
3941         if (pte_list_desc_cache)
3942                 kmem_cache_destroy(pte_list_desc_cache);
3943         if (mmu_page_header_cache)
3944                 kmem_cache_destroy(mmu_page_header_cache);
3945 }
3946
3947 int kvm_mmu_module_init(void)
3948 {
3949         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3950                                             sizeof(struct pte_list_desc),
3951                                             0, 0, NULL);
3952         if (!pte_list_desc_cache)
3953                 goto nomem;
3954
3955         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3956                                                   sizeof(struct kvm_mmu_page),
3957                                                   0, 0, NULL);
3958         if (!mmu_page_header_cache)
3959                 goto nomem;
3960
3961         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3962                 goto nomem;
3963
3964         register_shrinker(&mmu_shrinker);
3965
3966         return 0;
3967
3968 nomem:
3969         mmu_destroy_caches();
3970         return -ENOMEM;
3971 }
3972
3973 /*
3974  * Caculate mmu pages needed for kvm.
3975  */
3976 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3977 {
3978         unsigned int nr_mmu_pages;
3979         unsigned int  nr_pages = 0;
3980         struct kvm_memslots *slots;
3981         struct kvm_memory_slot *memslot;
3982
3983         slots = kvm_memslots(kvm);
3984
3985         kvm_for_each_memslot(memslot, slots)
3986                 nr_pages += memslot->npages;
3987
3988         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3989         nr_mmu_pages = max(nr_mmu_pages,
3990                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3991
3992         return nr_mmu_pages;
3993 }
3994
3995 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3996 {
3997         struct kvm_shadow_walk_iterator iterator;
3998         u64 spte;
3999         int nr_sptes = 0;
4000
4001         walk_shadow_page_lockless_begin(vcpu);
4002         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4003                 sptes[iterator.level-1] = spte;
4004                 nr_sptes++;
4005                 if (!is_shadow_present_pte(spte))
4006                         break;
4007         }
4008         walk_shadow_page_lockless_end(vcpu);
4009
4010         return nr_sptes;
4011 }
4012 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4013
4014 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4015 {
4016         ASSERT(vcpu);
4017
4018         destroy_kvm_mmu(vcpu);
4019         free_mmu_pages(vcpu);
4020         mmu_free_memory_caches(vcpu);
4021 }
4022
4023 void kvm_mmu_module_exit(void)
4024 {
4025         mmu_destroy_caches();
4026         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4027         unregister_shrinker(&mmu_shrinker);
4028         mmu_audit_disable();
4029 }