KVM: x86/mmu: Avoid modulo operator on 64-bit value to fix i386 build
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / mmu / tdp_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "mmu.h"
4 #include "mmu_internal.h"
5 #include "mmutrace.h"
6 #include "tdp_iter.h"
7 #include "tdp_mmu.h"
8 #include "spte.h"
9
10 #ifdef CONFIG_X86_64
11 static bool __read_mostly tdp_mmu_enabled = false;
12 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
13 #endif
14
15 static bool is_tdp_mmu_enabled(void)
16 {
17 #ifdef CONFIG_X86_64
18         return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
19 #else
20         return false;
21 #endif /* CONFIG_X86_64 */
22 }
23
24 /* Initializes the TDP MMU for the VM, if enabled. */
25 void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
26 {
27         if (!is_tdp_mmu_enabled())
28                 return;
29
30         /* This should not be changed for the lifetime of the VM. */
31         kvm->arch.tdp_mmu_enabled = true;
32
33         INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
34         INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
35 }
36
37 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
38 {
39         if (!kvm->arch.tdp_mmu_enabled)
40                 return;
41
42         WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
43 }
44
45 #define for_each_tdp_mmu_root(_kvm, _root)                          \
46         list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
47
48 bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
49 {
50         struct kvm_mmu_page *sp;
51
52         sp = to_shadow_page(hpa);
53
54         return sp->tdp_mmu_page && sp->root_count;
55 }
56
57 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
58                           gfn_t start, gfn_t end, bool can_yield);
59
60 void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
61 {
62         gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);
63
64         lockdep_assert_held(&kvm->mmu_lock);
65
66         WARN_ON(root->root_count);
67         WARN_ON(!root->tdp_mmu_page);
68
69         list_del(&root->link);
70
71         zap_gfn_range(kvm, root, 0, max_gfn, false);
72
73         free_page((unsigned long)root->spt);
74         kmem_cache_free(mmu_page_header_cache, root);
75 }
76
77 static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
78                                                    int level)
79 {
80         union kvm_mmu_page_role role;
81
82         role = vcpu->arch.mmu->mmu_role.base;
83         role.level = level;
84         role.direct = true;
85         role.gpte_is_8_bytes = true;
86         role.access = ACC_ALL;
87
88         return role;
89 }
90
91 static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
92                                                int level)
93 {
94         struct kvm_mmu_page *sp;
95
96         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
97         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
98         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
99
100         sp->role.word = page_role_for_level(vcpu, level).word;
101         sp->gfn = gfn;
102         sp->tdp_mmu_page = true;
103
104         return sp;
105 }
106
107 static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
108 {
109         union kvm_mmu_page_role role;
110         struct kvm *kvm = vcpu->kvm;
111         struct kvm_mmu_page *root;
112
113         role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
114
115         spin_lock(&kvm->mmu_lock);
116
117         /* Check for an existing root before allocating a new one. */
118         for_each_tdp_mmu_root(kvm, root) {
119                 if (root->role.word == role.word) {
120                         kvm_mmu_get_root(kvm, root);
121                         spin_unlock(&kvm->mmu_lock);
122                         return root;
123                 }
124         }
125
126         root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
127         root->root_count = 1;
128
129         list_add(&root->link, &kvm->arch.tdp_mmu_roots);
130
131         spin_unlock(&kvm->mmu_lock);
132
133         return root;
134 }
135
136 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
137 {
138         struct kvm_mmu_page *root;
139
140         root = get_tdp_mmu_vcpu_root(vcpu);
141         if (!root)
142                 return INVALID_PAGE;
143
144         return __pa(root->spt);
145 }
146
147 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
148                                 u64 old_spte, u64 new_spte, int level);
149
150 static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
151 {
152         return sp->role.smm ? 1 : 0;
153 }
154
155 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
156 {
157         bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
158
159         if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
160                 return;
161
162         if (is_accessed_spte(old_spte) &&
163             (!is_accessed_spte(new_spte) || pfn_changed))
164                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
165 }
166
167 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
168                                           u64 old_spte, u64 new_spte, int level)
169 {
170         bool pfn_changed;
171         struct kvm_memory_slot *slot;
172
173         if (level > PG_LEVEL_4K)
174                 return;
175
176         pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
177
178         if ((!is_writable_pte(old_spte) || pfn_changed) &&
179             is_writable_pte(new_spte)) {
180                 slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
181                 mark_page_dirty_in_slot(slot, gfn);
182         }
183 }
184
185 /**
186  * handle_changed_spte - handle bookkeeping associated with an SPTE change
187  * @kvm: kvm instance
188  * @as_id: the address space of the paging structure the SPTE was a part of
189  * @gfn: the base GFN that was mapped by the SPTE
190  * @old_spte: The value of the SPTE before the change
191  * @new_spte: The value of the SPTE after the change
192  * @level: the level of the PT the SPTE is part of in the paging structure
193  *
194  * Handle bookkeeping that might result from the modification of a SPTE.
195  * This function must be called for all TDP SPTE modifications.
196  */
197 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
198                                 u64 old_spte, u64 new_spte, int level)
199 {
200         bool was_present = is_shadow_present_pte(old_spte);
201         bool is_present = is_shadow_present_pte(new_spte);
202         bool was_leaf = was_present && is_last_spte(old_spte, level);
203         bool is_leaf = is_present && is_last_spte(new_spte, level);
204         bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
205         u64 *pt;
206         struct kvm_mmu_page *sp;
207         u64 old_child_spte;
208         int i;
209
210         WARN_ON(level > PT64_ROOT_MAX_LEVEL);
211         WARN_ON(level < PG_LEVEL_4K);
212         WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
213
214         /*
215          * If this warning were to trigger it would indicate that there was a
216          * missing MMU notifier or a race with some notifier handler.
217          * A present, leaf SPTE should never be directly replaced with another
218          * present leaf SPTE pointing to a differnt PFN. A notifier handler
219          * should be zapping the SPTE before the main MM's page table is
220          * changed, or the SPTE should be zeroed, and the TLBs flushed by the
221          * thread before replacement.
222          */
223         if (was_leaf && is_leaf && pfn_changed) {
224                 pr_err("Invalid SPTE change: cannot replace a present leaf\n"
225                        "SPTE with another present leaf SPTE mapping a\n"
226                        "different PFN!\n"
227                        "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
228                        as_id, gfn, old_spte, new_spte, level);
229
230                 /*
231                  * Crash the host to prevent error propagation and guest data
232                  * courruption.
233                  */
234                 BUG();
235         }
236
237         if (old_spte == new_spte)
238                 return;
239
240         /*
241          * The only times a SPTE should be changed from a non-present to
242          * non-present state is when an MMIO entry is installed/modified/
243          * removed. In that case, there is nothing to do here.
244          */
245         if (!was_present && !is_present) {
246                 /*
247                  * If this change does not involve a MMIO SPTE, it is
248                  * unexpected. Log the change, though it should not impact the
249                  * guest since both the former and current SPTEs are nonpresent.
250                  */
251                 if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
252                         pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
253                                "should not be replaced with another,\n"
254                                "different nonpresent SPTE, unless one or both\n"
255                                "are MMIO SPTEs.\n"
256                                "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
257                                as_id, gfn, old_spte, new_spte, level);
258                 return;
259         }
260
261
262         if (was_leaf && is_dirty_spte(old_spte) &&
263             (!is_dirty_spte(new_spte) || pfn_changed))
264                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
265
266         /*
267          * Recursively handle child PTs if the change removed a subtree from
268          * the paging structure.
269          */
270         if (was_present && !was_leaf && (pfn_changed || !is_present)) {
271                 pt = spte_to_child_pt(old_spte, level);
272                 sp = sptep_to_sp(pt);
273
274                 list_del(&sp->link);
275
276                 if (sp->lpage_disallowed)
277                         unaccount_huge_nx_page(kvm, sp);
278
279                 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
280                         old_child_spte = READ_ONCE(*(pt + i));
281                         WRITE_ONCE(*(pt + i), 0);
282                         handle_changed_spte(kvm, as_id,
283                                 gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
284                                 old_child_spte, 0, level - 1);
285                 }
286
287                 kvm_flush_remote_tlbs_with_address(kvm, gfn,
288                                                    KVM_PAGES_PER_HPAGE(level));
289
290                 free_page((unsigned long)pt);
291                 kmem_cache_free(mmu_page_header_cache, sp);
292         }
293 }
294
295 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
296                                 u64 old_spte, u64 new_spte, int level)
297 {
298         __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
299         handle_changed_spte_acc_track(old_spte, new_spte, level);
300         handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
301                                       new_spte, level);
302 }
303
304 static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
305                                       u64 new_spte, bool record_acc_track,
306                                       bool record_dirty_log)
307 {
308         u64 *root_pt = tdp_iter_root_pt(iter);
309         struct kvm_mmu_page *root = sptep_to_sp(root_pt);
310         int as_id = kvm_mmu_page_as_id(root);
311
312         WRITE_ONCE(*iter->sptep, new_spte);
313
314         __handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
315                               iter->level);
316         if (record_acc_track)
317                 handle_changed_spte_acc_track(iter->old_spte, new_spte,
318                                               iter->level);
319         if (record_dirty_log)
320                 handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
321                                               iter->old_spte, new_spte,
322                                               iter->level);
323 }
324
325 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
326                                     u64 new_spte)
327 {
328         __tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
329 }
330
331 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
332                                                  struct tdp_iter *iter,
333                                                  u64 new_spte)
334 {
335         __tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
336 }
337
338 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
339                                                  struct tdp_iter *iter,
340                                                  u64 new_spte)
341 {
342         __tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
343 }
344
345 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
346         for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
347
348 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)  \
349         tdp_root_for_each_pte(_iter, _root, _start, _end)               \
350                 if (!is_shadow_present_pte(_iter.old_spte) ||           \
351                     !is_last_spte(_iter.old_spte, _iter.level))         \
352                         continue;                                       \
353                 else
354
355 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)         \
356         for_each_tdp_pte(_iter, __va(_mmu->root_hpa),           \
357                          _mmu->shadow_root_level, _start, _end)
358
359 /*
360  * Flush the TLB if the process should drop kvm->mmu_lock.
361  * Return whether the caller still needs to flush the tlb.
362  */
363 static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
364 {
365         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
366                 kvm_flush_remote_tlbs(kvm);
367                 cond_resched_lock(&kvm->mmu_lock);
368                 tdp_iter_refresh_walk(iter);
369                 return false;
370         } else {
371                 return true;
372         }
373 }
374
375 static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
376 {
377         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
378                 cond_resched_lock(&kvm->mmu_lock);
379                 tdp_iter_refresh_walk(iter);
380         }
381 }
382
383 /*
384  * Tears down the mappings for the range of gfns, [start, end), and frees the
385  * non-root pages mapping GFNs strictly within that range. Returns true if
386  * SPTEs have been cleared and a TLB flush is needed before releasing the
387  * MMU lock.
388  * If can_yield is true, will release the MMU lock and reschedule if the
389  * scheduler needs the CPU or there is contention on the MMU lock. If this
390  * function cannot yield, it will not release the MMU lock or reschedule and
391  * the caller must ensure it does not supply too large a GFN range, or the
392  * operation can cause a soft lockup.
393  */
394 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
395                           gfn_t start, gfn_t end, bool can_yield)
396 {
397         struct tdp_iter iter;
398         bool flush_needed = false;
399
400         tdp_root_for_each_pte(iter, root, start, end) {
401                 if (!is_shadow_present_pte(iter.old_spte))
402                         continue;
403
404                 /*
405                  * If this is a non-last-level SPTE that covers a larger range
406                  * than should be zapped, continue, and zap the mappings at a
407                  * lower level.
408                  */
409                 if ((iter.gfn < start ||
410                      iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
411                     !is_last_spte(iter.old_spte, iter.level))
412                         continue;
413
414                 tdp_mmu_set_spte(kvm, &iter, 0);
415
416                 if (can_yield)
417                         flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
418                 else
419                         flush_needed = true;
420         }
421         return flush_needed;
422 }
423
424 /*
425  * Tears down the mappings for the range of gfns, [start, end), and frees the
426  * non-root pages mapping GFNs strictly within that range. Returns true if
427  * SPTEs have been cleared and a TLB flush is needed before releasing the
428  * MMU lock.
429  */
430 bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
431 {
432         struct kvm_mmu_page *root;
433         bool flush = false;
434
435         for_each_tdp_mmu_root(kvm, root) {
436                 /*
437                  * Take a reference on the root so that it cannot be freed if
438                  * this thread releases the MMU lock and yields in this loop.
439                  */
440                 kvm_mmu_get_root(kvm, root);
441
442                 flush |= zap_gfn_range(kvm, root, start, end, true);
443
444                 kvm_mmu_put_root(kvm, root);
445         }
446
447         return flush;
448 }
449
450 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
451 {
452         gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);
453         bool flush;
454
455         flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
456         if (flush)
457                 kvm_flush_remote_tlbs(kvm);
458 }
459
460 /*
461  * Installs a last-level SPTE to handle a TDP page fault.
462  * (NPT/EPT violation/misconfiguration)
463  */
464 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
465                                           int map_writable,
466                                           struct tdp_iter *iter,
467                                           kvm_pfn_t pfn, bool prefault)
468 {
469         u64 new_spte;
470         int ret = 0;
471         int make_spte_ret = 0;
472
473         if (unlikely(is_noslot_pfn(pfn))) {
474                 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
475                 trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
476         } else
477                 make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
478                                          pfn, iter->old_spte, prefault, true,
479                                          map_writable, !shadow_accessed_mask,
480                                          &new_spte);
481
482         if (new_spte == iter->old_spte)
483                 ret = RET_PF_SPURIOUS;
484         else
485                 tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
486
487         /*
488          * If the page fault was caused by a write but the page is write
489          * protected, emulation is needed. If the emulation was skipped,
490          * the vCPU would have the same fault again.
491          */
492         if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
493                 if (write)
494                         ret = RET_PF_EMULATE;
495                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
496         }
497
498         /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
499         if (unlikely(is_mmio_spte(new_spte)))
500                 ret = RET_PF_EMULATE;
501
502         trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
503         if (!prefault)
504                 vcpu->stat.pf_fixed++;
505
506         return ret;
507 }
508
509 /*
510  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
511  * page tables and SPTEs to translate the faulting guest physical address.
512  */
513 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
514                     int map_writable, int max_level, kvm_pfn_t pfn,
515                     bool prefault)
516 {
517         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
518         bool write = error_code & PFERR_WRITE_MASK;
519         bool exec = error_code & PFERR_FETCH_MASK;
520         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
521         struct kvm_mmu *mmu = vcpu->arch.mmu;
522         struct tdp_iter iter;
523         struct kvm_mmu_page *sp;
524         u64 *child_pt;
525         u64 new_spte;
526         int ret;
527         gfn_t gfn = gpa >> PAGE_SHIFT;
528         int level;
529         int req_level;
530
531         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
532                 return RET_PF_RETRY;
533         if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
534                 return RET_PF_RETRY;
535
536         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
537                                         huge_page_disallowed, &req_level);
538
539         trace_kvm_mmu_spte_requested(gpa, level, pfn);
540         tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
541                 if (nx_huge_page_workaround_enabled)
542                         disallowed_hugepage_adjust(iter.old_spte, gfn,
543                                                    iter.level, &pfn, &level);
544
545                 if (iter.level == level)
546                         break;
547
548                 /*
549                  * If there is an SPTE mapping a large page at a higher level
550                  * than the target, that SPTE must be cleared and replaced
551                  * with a non-leaf SPTE.
552                  */
553                 if (is_shadow_present_pte(iter.old_spte) &&
554                     is_large_pte(iter.old_spte)) {
555                         tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
556
557                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
558                                         KVM_PAGES_PER_HPAGE(iter.level));
559
560                         /*
561                          * The iter must explicitly re-read the spte here
562                          * because the new value informs the !present
563                          * path below.
564                          */
565                         iter.old_spte = READ_ONCE(*iter.sptep);
566                 }
567
568                 if (!is_shadow_present_pte(iter.old_spte)) {
569                         sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
570                         list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
571                         child_pt = sp->spt;
572                         clear_page(child_pt);
573                         new_spte = make_nonleaf_spte(child_pt,
574                                                      !shadow_accessed_mask);
575
576                         trace_kvm_mmu_get_page(sp, true);
577                         if (huge_page_disallowed && req_level >= iter.level)
578                                 account_huge_nx_page(vcpu->kvm, sp);
579
580                         tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
581                 }
582         }
583
584         if (WARN_ON(iter.level != level))
585                 return RET_PF_RETRY;
586
587         ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
588                                               pfn, prefault);
589
590         return ret;
591 }
592
593 static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
594                 unsigned long end, unsigned long data,
595                 int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
596                                struct kvm_mmu_page *root, gfn_t start,
597                                gfn_t end, unsigned long data))
598 {
599         struct kvm_memslots *slots;
600         struct kvm_memory_slot *memslot;
601         struct kvm_mmu_page *root;
602         int ret = 0;
603         int as_id;
604
605         for_each_tdp_mmu_root(kvm, root) {
606                 /*
607                  * Take a reference on the root so that it cannot be freed if
608                  * this thread releases the MMU lock and yields in this loop.
609                  */
610                 kvm_mmu_get_root(kvm, root);
611
612                 as_id = kvm_mmu_page_as_id(root);
613                 slots = __kvm_memslots(kvm, as_id);
614                 kvm_for_each_memslot(memslot, slots) {
615                         unsigned long hva_start, hva_end;
616                         gfn_t gfn_start, gfn_end;
617
618                         hva_start = max(start, memslot->userspace_addr);
619                         hva_end = min(end, memslot->userspace_addr +
620                                       (memslot->npages << PAGE_SHIFT));
621                         if (hva_start >= hva_end)
622                                 continue;
623                         /*
624                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
625                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
626                          */
627                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
628                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
629
630                         ret |= handler(kvm, memslot, root, gfn_start,
631                                        gfn_end, data);
632                 }
633
634                 kvm_mmu_put_root(kvm, root);
635         }
636
637         return ret;
638 }
639
640 static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
641                                      struct kvm_memory_slot *slot,
642                                      struct kvm_mmu_page *root, gfn_t start,
643                                      gfn_t end, unsigned long unused)
644 {
645         return zap_gfn_range(kvm, root, start, end, false);
646 }
647
648 int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
649                               unsigned long end)
650 {
651         return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
652                                             zap_gfn_range_hva_wrapper);
653 }
654
655 /*
656  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
657  * if any of the GFNs in the range have been accessed.
658  */
659 static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
660                          struct kvm_mmu_page *root, gfn_t start, gfn_t end,
661                          unsigned long unused)
662 {
663         struct tdp_iter iter;
664         int young = 0;
665         u64 new_spte = 0;
666
667         tdp_root_for_each_leaf_pte(iter, root, start, end) {
668                 /*
669                  * If we have a non-accessed entry we don't need to change the
670                  * pte.
671                  */
672                 if (!is_accessed_spte(iter.old_spte))
673                         continue;
674
675                 new_spte = iter.old_spte;
676
677                 if (spte_ad_enabled(new_spte)) {
678                         clear_bit((ffs(shadow_accessed_mask) - 1),
679                                   (unsigned long *)&new_spte);
680                 } else {
681                         /*
682                          * Capture the dirty status of the page, so that it doesn't get
683                          * lost when the SPTE is marked for access tracking.
684                          */
685                         if (is_writable_pte(new_spte))
686                                 kvm_set_pfn_dirty(spte_to_pfn(new_spte));
687
688                         new_spte = mark_spte_for_access_track(new_spte);
689                 }
690                 new_spte &= ~shadow_dirty_mask;
691
692                 tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
693                 young = 1;
694         }
695
696         return young;
697 }
698
699 int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
700                               unsigned long end)
701 {
702         return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
703                                             age_gfn_range);
704 }
705
706 static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
707                         struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
708                         unsigned long unused2)
709 {
710         struct tdp_iter iter;
711
712         tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
713                 if (is_accessed_spte(iter.old_spte))
714                         return 1;
715
716         return 0;
717 }
718
719 int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
720 {
721         return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
722                                             test_age_gfn);
723 }
724
725 /*
726  * Handle the changed_pte MMU notifier for the TDP MMU.
727  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
728  * notifier.
729  * Returns non-zero if a flush is needed before releasing the MMU lock.
730  */
731 static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
732                         struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
733                         unsigned long data)
734 {
735         struct tdp_iter iter;
736         pte_t *ptep = (pte_t *)data;
737         kvm_pfn_t new_pfn;
738         u64 new_spte;
739         int need_flush = 0;
740
741         WARN_ON(pte_huge(*ptep));
742
743         new_pfn = pte_pfn(*ptep);
744
745         tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
746                 if (iter.level != PG_LEVEL_4K)
747                         continue;
748
749                 if (!is_shadow_present_pte(iter.old_spte))
750                         break;
751
752                 tdp_mmu_set_spte(kvm, &iter, 0);
753
754                 kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
755
756                 if (!pte_write(*ptep)) {
757                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
758                                         iter.old_spte, new_pfn);
759
760                         tdp_mmu_set_spte(kvm, &iter, new_spte);
761                 }
762
763                 need_flush = 1;
764         }
765
766         if (need_flush)
767                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
768
769         return 0;
770 }
771
772 int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
773                              pte_t *host_ptep)
774 {
775         return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
776                                             (unsigned long)host_ptep,
777                                             set_tdp_spte);
778 }
779
780 /*
781  * Remove write access from all the SPTEs mapping GFNs [start, end). If
782  * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
783  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
784  */
785 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
786                              gfn_t start, gfn_t end, int min_level)
787 {
788         struct tdp_iter iter;
789         u64 new_spte;
790         bool spte_set = false;
791
792         BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
793
794         for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
795                                    min_level, start, end) {
796                 if (!is_shadow_present_pte(iter.old_spte) ||
797                     !is_last_spte(iter.old_spte, iter.level))
798                         continue;
799
800                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
801
802                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
803                 spte_set = true;
804
805                 tdp_mmu_iter_cond_resched(kvm, &iter);
806         }
807         return spte_set;
808 }
809
810 /*
811  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
812  * only affect leaf SPTEs down to min_level.
813  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
814  */
815 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
816                              int min_level)
817 {
818         struct kvm_mmu_page *root;
819         int root_as_id;
820         bool spte_set = false;
821
822         for_each_tdp_mmu_root(kvm, root) {
823                 root_as_id = kvm_mmu_page_as_id(root);
824                 if (root_as_id != slot->as_id)
825                         continue;
826
827                 /*
828                  * Take a reference on the root so that it cannot be freed if
829                  * this thread releases the MMU lock and yields in this loop.
830                  */
831                 kvm_mmu_get_root(kvm, root);
832
833                 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
834                              slot->base_gfn + slot->npages, min_level);
835
836                 kvm_mmu_put_root(kvm, root);
837         }
838
839         return spte_set;
840 }
841
842 /*
843  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
844  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
845  * If AD bits are not enabled, this will require clearing the writable bit on
846  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
847  * be flushed.
848  */
849 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
850                            gfn_t start, gfn_t end)
851 {
852         struct tdp_iter iter;
853         u64 new_spte;
854         bool spte_set = false;
855
856         tdp_root_for_each_leaf_pte(iter, root, start, end) {
857                 if (spte_ad_need_write_protect(iter.old_spte)) {
858                         if (is_writable_pte(iter.old_spte))
859                                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
860                         else
861                                 continue;
862                 } else {
863                         if (iter.old_spte & shadow_dirty_mask)
864                                 new_spte = iter.old_spte & ~shadow_dirty_mask;
865                         else
866                                 continue;
867                 }
868
869                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
870                 spte_set = true;
871
872                 tdp_mmu_iter_cond_resched(kvm, &iter);
873         }
874         return spte_set;
875 }
876
877 /*
878  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
879  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
880  * If AD bits are not enabled, this will require clearing the writable bit on
881  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
882  * be flushed.
883  */
884 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
885 {
886         struct kvm_mmu_page *root;
887         int root_as_id;
888         bool spte_set = false;
889
890         for_each_tdp_mmu_root(kvm, root) {
891                 root_as_id = kvm_mmu_page_as_id(root);
892                 if (root_as_id != slot->as_id)
893                         continue;
894
895                 /*
896                  * Take a reference on the root so that it cannot be freed if
897                  * this thread releases the MMU lock and yields in this loop.
898                  */
899                 kvm_mmu_get_root(kvm, root);
900
901                 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
902                                 slot->base_gfn + slot->npages);
903
904                 kvm_mmu_put_root(kvm, root);
905         }
906
907         return spte_set;
908 }
909
910 /*
911  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
912  * set in mask, starting at gfn. The given memslot is expected to contain all
913  * the GFNs represented by set bits in the mask. If AD bits are enabled,
914  * clearing the dirty status will involve clearing the dirty bit on each SPTE
915  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
916  */
917 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
918                                   gfn_t gfn, unsigned long mask, bool wrprot)
919 {
920         struct tdp_iter iter;
921         u64 new_spte;
922
923         tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
924                                     gfn + BITS_PER_LONG) {
925                 if (!mask)
926                         break;
927
928                 if (iter.level > PG_LEVEL_4K ||
929                     !(mask & (1UL << (iter.gfn - gfn))))
930                         continue;
931
932                 if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
933                         if (is_writable_pte(iter.old_spte))
934                                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
935                         else
936                                 continue;
937                 } else {
938                         if (iter.old_spte & shadow_dirty_mask)
939                                 new_spte = iter.old_spte & ~shadow_dirty_mask;
940                         else
941                                 continue;
942                 }
943
944                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
945
946                 mask &= ~(1UL << (iter.gfn - gfn));
947         }
948 }
949
950 /*
951  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
952  * set in mask, starting at gfn. The given memslot is expected to contain all
953  * the GFNs represented by set bits in the mask. If AD bits are enabled,
954  * clearing the dirty status will involve clearing the dirty bit on each SPTE
955  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
956  */
957 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
958                                        struct kvm_memory_slot *slot,
959                                        gfn_t gfn, unsigned long mask,
960                                        bool wrprot)
961 {
962         struct kvm_mmu_page *root;
963         int root_as_id;
964
965         lockdep_assert_held(&kvm->mmu_lock);
966         for_each_tdp_mmu_root(kvm, root) {
967                 root_as_id = kvm_mmu_page_as_id(root);
968                 if (root_as_id != slot->as_id)
969                         continue;
970
971                 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
972         }
973 }
974
975 /*
976  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
977  * only used for PML, and so will involve setting the dirty bit on each SPTE.
978  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
979  */
980 static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
981                                 gfn_t start, gfn_t end)
982 {
983         struct tdp_iter iter;
984         u64 new_spte;
985         bool spte_set = false;
986
987         tdp_root_for_each_pte(iter, root, start, end) {
988                 if (!is_shadow_present_pte(iter.old_spte))
989                         continue;
990
991                 new_spte = iter.old_spte | shadow_dirty_mask;
992
993                 tdp_mmu_set_spte(kvm, &iter, new_spte);
994                 spte_set = true;
995
996                 tdp_mmu_iter_cond_resched(kvm, &iter);
997         }
998
999         return spte_set;
1000 }
1001
1002 /*
1003  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1004  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1005  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1006  */
1007 bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
1008 {
1009         struct kvm_mmu_page *root;
1010         int root_as_id;
1011         bool spte_set = false;
1012
1013         for_each_tdp_mmu_root(kvm, root) {
1014                 root_as_id = kvm_mmu_page_as_id(root);
1015                 if (root_as_id != slot->as_id)
1016                         continue;
1017
1018                 /*
1019                  * Take a reference on the root so that it cannot be freed if
1020                  * this thread releases the MMU lock and yields in this loop.
1021                  */
1022                 kvm_mmu_get_root(kvm, root);
1023
1024                 spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
1025                                 slot->base_gfn + slot->npages);
1026
1027                 kvm_mmu_put_root(kvm, root);
1028         }
1029         return spte_set;
1030 }
1031
1032 /*
1033  * Clear non-leaf entries (and free associated page tables) which could
1034  * be replaced by large mappings, for GFNs within the slot.
1035  */
1036 static void zap_collapsible_spte_range(struct kvm *kvm,
1037                                        struct kvm_mmu_page *root,
1038                                        gfn_t start, gfn_t end)
1039 {
1040         struct tdp_iter iter;
1041         kvm_pfn_t pfn;
1042         bool spte_set = false;
1043
1044         tdp_root_for_each_pte(iter, root, start, end) {
1045                 if (!is_shadow_present_pte(iter.old_spte) ||
1046                     is_last_spte(iter.old_spte, iter.level))
1047                         continue;
1048
1049                 pfn = spte_to_pfn(iter.old_spte);
1050                 if (kvm_is_reserved_pfn(pfn) ||
1051                     !PageTransCompoundMap(pfn_to_page(pfn)))
1052                         continue;
1053
1054                 tdp_mmu_set_spte(kvm, &iter, 0);
1055
1056                 spte_set = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
1057         }
1058
1059         if (spte_set)
1060                 kvm_flush_remote_tlbs(kvm);
1061 }
1062
1063 /*
1064  * Clear non-leaf entries (and free associated page tables) which could
1065  * be replaced by large mappings, for GFNs within the slot.
1066  */
1067 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1068                                        const struct kvm_memory_slot *slot)
1069 {
1070         struct kvm_mmu_page *root;
1071         int root_as_id;
1072
1073         for_each_tdp_mmu_root(kvm, root) {
1074                 root_as_id = kvm_mmu_page_as_id(root);
1075                 if (root_as_id != slot->as_id)
1076                         continue;
1077
1078                 /*
1079                  * Take a reference on the root so that it cannot be freed if
1080                  * this thread releases the MMU lock and yields in this loop.
1081                  */
1082                 kvm_mmu_get_root(kvm, root);
1083
1084                 zap_collapsible_spte_range(kvm, root, slot->base_gfn,
1085                                            slot->base_gfn + slot->npages);
1086
1087                 kvm_mmu_put_root(kvm, root);
1088         }
1089 }
1090
1091 /*
1092  * Removes write access on the last level SPTE mapping this GFN and unsets the
1093  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1094  * Returns true if an SPTE was set and a TLB flush is needed.
1095  */
1096 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1097                               gfn_t gfn)
1098 {
1099         struct tdp_iter iter;
1100         u64 new_spte;
1101         bool spte_set = false;
1102
1103         tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
1104                 if (!is_writable_pte(iter.old_spte))
1105                         break;
1106
1107                 new_spte = iter.old_spte &
1108                         ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1109
1110                 tdp_mmu_set_spte(kvm, &iter, new_spte);
1111                 spte_set = true;
1112         }
1113
1114         return spte_set;
1115 }
1116
1117 /*
1118  * Removes write access on the last level SPTE mapping this GFN and unsets the
1119  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1120  * Returns true if an SPTE was set and a TLB flush is needed.
1121  */
1122 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1123                                    struct kvm_memory_slot *slot, gfn_t gfn)
1124 {
1125         struct kvm_mmu_page *root;
1126         int root_as_id;
1127         bool spte_set = false;
1128
1129         lockdep_assert_held(&kvm->mmu_lock);
1130         for_each_tdp_mmu_root(kvm, root) {
1131                 root_as_id = kvm_mmu_page_as_id(root);
1132                 if (root_as_id != slot->as_id)
1133                         continue;
1134
1135                 spte_set |= write_protect_gfn(kvm, root, gfn);
1136         }
1137         return spte_set;
1138 }
1139
1140 /*
1141  * Return the level of the lowest level SPTE added to sptes.
1142  * That SPTE may be non-present.
1143  */
1144 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
1145 {
1146         struct tdp_iter iter;
1147         struct kvm_mmu *mmu = vcpu->arch.mmu;
1148         int leaf = vcpu->arch.mmu->shadow_root_level;
1149         gfn_t gfn = addr >> PAGE_SHIFT;
1150
1151         tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1152                 leaf = iter.level;
1153                 sptes[leaf - 1] = iter.old_spte;
1154         }
1155
1156         return leaf;
1157 }