Merge 6.4-rc5 into usb-next
[platform/kernel/linux-starfive.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include "irq.h"
20 #include "ioapic.h"
21 #include "mmu.h"
22 #include "mmu_internal.h"
23 #include "tdp_mmu.h"
24 #include "x86.h"
25 #include "kvm_cache_regs.h"
26 #include "smm.h"
27 #include "kvm_emulate.h"
28 #include "cpuid.h"
29 #include "spte.h"
30
31 #include <linux/kvm_host.h>
32 #include <linux/types.h>
33 #include <linux/string.h>
34 #include <linux/mm.h>
35 #include <linux/highmem.h>
36 #include <linux/moduleparam.h>
37 #include <linux/export.h>
38 #include <linux/swap.h>
39 #include <linux/hugetlb.h>
40 #include <linux/compiler.h>
41 #include <linux/srcu.h>
42 #include <linux/slab.h>
43 #include <linux/sched/signal.h>
44 #include <linux/uaccess.h>
45 #include <linux/hash.h>
46 #include <linux/kern_levels.h>
47 #include <linux/kstrtox.h>
48 #include <linux/kthread.h>
49
50 #include <asm/page.h>
51 #include <asm/memtype.h>
52 #include <asm/cmpxchg.h>
53 #include <asm/io.h>
54 #include <asm/set_memory.h>
55 #include <asm/vmx.h>
56 #include <asm/kvm_page_track.h>
57 #include "trace.h"
58
59 extern bool itlb_multihit_kvm_mitigation;
60
61 int __read_mostly nx_huge_pages = -1;
62 static uint __read_mostly nx_huge_pages_recovery_period_ms;
63 #ifdef CONFIG_PREEMPT_RT
64 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
66 #else
67 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
68 #endif
69
70 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
71 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
72
73 static const struct kernel_param_ops nx_huge_pages_ops = {
74         .set = set_nx_huge_pages,
75         .get = param_get_bool,
76 };
77
78 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
79         .set = set_nx_huge_pages_recovery_param,
80         .get = param_get_uint,
81 };
82
83 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
84 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
85 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
86                 &nx_huge_pages_recovery_ratio, 0644);
87 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
88 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
89                 &nx_huge_pages_recovery_period_ms, 0644);
90 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
91
92 static bool __read_mostly force_flush_and_sync_on_reuse;
93 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
94
95 /*
96  * When setting this variable to true it enables Two-Dimensional-Paging
97  * where the hardware walks 2 page tables:
98  * 1. the guest-virtual to guest-physical
99  * 2. while doing 1. it walks guest-physical to host-physical
100  * If the hardware supports that we don't need to do shadow paging.
101  */
102 bool tdp_enabled = false;
103
104 static bool __ro_after_init tdp_mmu_allowed;
105
106 #ifdef CONFIG_X86_64
107 bool __read_mostly tdp_mmu_enabled = true;
108 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
109 #endif
110
111 static int max_huge_page_level __read_mostly;
112 static int tdp_root_level __read_mostly;
113 static int max_tdp_level __read_mostly;
114
115 #ifdef MMU_DEBUG
116 bool dbg = 0;
117 module_param(dbg, bool, 0644);
118 #endif
119
120 #define PTE_PREFETCH_NUM                8
121
122 #include <trace/events/kvm.h>
123
124 /* make pte_list_desc fit well in cache lines */
125 #define PTE_LIST_EXT 14
126
127 /*
128  * struct pte_list_desc is the core data structure used to implement a custom
129  * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
130  * given GFN when used in the context of rmaps.  Using a custom list allows KVM
131  * to optimize for the common case where many GFNs will have at most a handful
132  * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
133  * memory footprint, which in turn improves runtime performance by exploiting
134  * cache locality.
135  *
136  * A list is comprised of one or more pte_list_desc objects (descriptors).
137  * Each individual descriptor stores up to PTE_LIST_EXT SPTEs.  If a descriptor
138  * is full and a new SPTEs needs to be added, a new descriptor is allocated and
139  * becomes the head of the list.  This means that by definitions, all tail
140  * descriptors are full.
141  *
142  * Note, the meta data fields are deliberately placed at the start of the
143  * structure to optimize the cacheline layout; accessing the descriptor will
144  * touch only a single cacheline so long as @spte_count<=6 (or if only the
145  * descriptors metadata is accessed).
146  */
147 struct pte_list_desc {
148         struct pte_list_desc *more;
149         /* The number of PTEs stored in _this_ descriptor. */
150         u32 spte_count;
151         /* The number of PTEs stored in all tails of this descriptor. */
152         u32 tail_count;
153         u64 *sptes[PTE_LIST_EXT];
154 };
155
156 struct kvm_shadow_walk_iterator {
157         u64 addr;
158         hpa_t shadow_addr;
159         u64 *sptep;
160         int level;
161         unsigned index;
162 };
163
164 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
165         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
166                                          (_root), (_addr));                \
167              shadow_walk_okay(&(_walker));                                 \
168              shadow_walk_next(&(_walker)))
169
170 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
171         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
172              shadow_walk_okay(&(_walker));                      \
173              shadow_walk_next(&(_walker)))
174
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
176         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
177              shadow_walk_okay(&(_walker)) &&                            \
178                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
179              __shadow_walk_next(&(_walker), spte))
180
181 static struct kmem_cache *pte_list_desc_cache;
182 struct kmem_cache *mmu_page_header_cache;
183 static struct percpu_counter kvm_total_used_mmu_pages;
184
185 static void mmu_spte_set(u64 *sptep, u64 spte);
186
187 struct kvm_mmu_role_regs {
188         const unsigned long cr0;
189         const unsigned long cr4;
190         const u64 efer;
191 };
192
193 #define CREATE_TRACE_POINTS
194 #include "mmutrace.h"
195
196 /*
197  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
198  * reading from the role_regs.  Once the root_role is constructed, it becomes
199  * the single source of truth for the MMU's state.
200  */
201 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)                   \
202 static inline bool __maybe_unused                                       \
203 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)             \
204 {                                                                       \
205         return !!(regs->reg & flag);                                    \
206 }
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
216 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
217
218 /*
219  * The MMU itself (with a valid role) is the single source of truth for the
220  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
221  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
222  * and the vCPU may be incorrect/irrelevant.
223  */
224 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)         \
225 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)        \
226 {                                                               \
227         return !!(mmu->cpu_role. base_or_ext . reg##_##name);   \
228 }
229 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
230 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
231 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
232 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
234 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
235 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
236 BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
237
238 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
239 {
240         return mmu->cpu_role.base.level > 0;
241 }
242
243 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
244 {
245         return !mmu->cpu_role.base.has_4_byte_gpte;
246 }
247
248 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
249 {
250         struct kvm_mmu_role_regs regs = {
251                 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
252                 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
253                 .efer = vcpu->arch.efer,
254         };
255
256         return regs;
257 }
258
259 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
260 {
261         return kvm_read_cr3(vcpu);
262 }
263
264 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
265                                                   struct kvm_mmu *mmu)
266 {
267         if (IS_ENABLED(CONFIG_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
268                 return kvm_read_cr3(vcpu);
269
270         return mmu->get_guest_pgd(vcpu);
271 }
272
273 static inline bool kvm_available_flush_remote_tlbs_range(void)
274 {
275         return kvm_x86_ops.flush_remote_tlbs_range;
276 }
277
278 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t start_gfn,
279                                  gfn_t nr_pages)
280 {
281         int ret = -EOPNOTSUPP;
282
283         if (kvm_x86_ops.flush_remote_tlbs_range)
284                 ret = static_call(kvm_x86_flush_remote_tlbs_range)(kvm, start_gfn,
285                                                                    nr_pages);
286         if (ret)
287                 kvm_flush_remote_tlbs(kvm);
288 }
289
290 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
291
292 /* Flush the range of guest memory mapped by the given SPTE. */
293 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
294 {
295         struct kvm_mmu_page *sp = sptep_to_sp(sptep);
296         gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
297
298         kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
299 }
300
301 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
302                            unsigned int access)
303 {
304         u64 spte = make_mmio_spte(vcpu, gfn, access);
305
306         trace_mark_mmio_spte(sptep, gfn, spte);
307         mmu_spte_set(sptep, spte);
308 }
309
310 static gfn_t get_mmio_spte_gfn(u64 spte)
311 {
312         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
313
314         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
315                & shadow_nonpresent_or_rsvd_mask;
316
317         return gpa >> PAGE_SHIFT;
318 }
319
320 static unsigned get_mmio_spte_access(u64 spte)
321 {
322         return spte & shadow_mmio_access_mask;
323 }
324
325 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
326 {
327         u64 kvm_gen, spte_gen, gen;
328
329         gen = kvm_vcpu_memslots(vcpu)->generation;
330         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
331                 return false;
332
333         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
334         spte_gen = get_mmio_spte_generation(spte);
335
336         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
337         return likely(kvm_gen == spte_gen);
338 }
339
340 static int is_cpuid_PSE36(void)
341 {
342         return 1;
343 }
344
345 #ifdef CONFIG_X86_64
346 static void __set_spte(u64 *sptep, u64 spte)
347 {
348         WRITE_ONCE(*sptep, spte);
349 }
350
351 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
352 {
353         WRITE_ONCE(*sptep, spte);
354 }
355
356 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
357 {
358         return xchg(sptep, spte);
359 }
360
361 static u64 __get_spte_lockless(u64 *sptep)
362 {
363         return READ_ONCE(*sptep);
364 }
365 #else
366 union split_spte {
367         struct {
368                 u32 spte_low;
369                 u32 spte_high;
370         };
371         u64 spte;
372 };
373
374 static void count_spte_clear(u64 *sptep, u64 spte)
375 {
376         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
377
378         if (is_shadow_present_pte(spte))
379                 return;
380
381         /* Ensure the spte is completely set before we increase the count */
382         smp_wmb();
383         sp->clear_spte_count++;
384 }
385
386 static void __set_spte(u64 *sptep, u64 spte)
387 {
388         union split_spte *ssptep, sspte;
389
390         ssptep = (union split_spte *)sptep;
391         sspte = (union split_spte)spte;
392
393         ssptep->spte_high = sspte.spte_high;
394
395         /*
396          * If we map the spte from nonpresent to present, We should store
397          * the high bits firstly, then set present bit, so cpu can not
398          * fetch this spte while we are setting the spte.
399          */
400         smp_wmb();
401
402         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
403 }
404
405 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
406 {
407         union split_spte *ssptep, sspte;
408
409         ssptep = (union split_spte *)sptep;
410         sspte = (union split_spte)spte;
411
412         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
413
414         /*
415          * If we map the spte from present to nonpresent, we should clear
416          * present bit firstly to avoid vcpu fetch the old high bits.
417          */
418         smp_wmb();
419
420         ssptep->spte_high = sspte.spte_high;
421         count_spte_clear(sptep, spte);
422 }
423
424 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
425 {
426         union split_spte *ssptep, sspte, orig;
427
428         ssptep = (union split_spte *)sptep;
429         sspte = (union split_spte)spte;
430
431         /* xchg acts as a barrier before the setting of the high bits */
432         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
433         orig.spte_high = ssptep->spte_high;
434         ssptep->spte_high = sspte.spte_high;
435         count_spte_clear(sptep, spte);
436
437         return orig.spte;
438 }
439
440 /*
441  * The idea using the light way get the spte on x86_32 guest is from
442  * gup_get_pte (mm/gup.c).
443  *
444  * An spte tlb flush may be pending, because kvm_set_pte_rmap
445  * coalesces them and we are running out of the MMU lock.  Therefore
446  * we need to protect against in-progress updates of the spte.
447  *
448  * Reading the spte while an update is in progress may get the old value
449  * for the high part of the spte.  The race is fine for a present->non-present
450  * change (because the high part of the spte is ignored for non-present spte),
451  * but for a present->present change we must reread the spte.
452  *
453  * All such changes are done in two steps (present->non-present and
454  * non-present->present), hence it is enough to count the number of
455  * present->non-present updates: if it changed while reading the spte,
456  * we might have hit the race.  This is done using clear_spte_count.
457  */
458 static u64 __get_spte_lockless(u64 *sptep)
459 {
460         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
461         union split_spte spte, *orig = (union split_spte *)sptep;
462         int count;
463
464 retry:
465         count = sp->clear_spte_count;
466         smp_rmb();
467
468         spte.spte_low = orig->spte_low;
469         smp_rmb();
470
471         spte.spte_high = orig->spte_high;
472         smp_rmb();
473
474         if (unlikely(spte.spte_low != orig->spte_low ||
475               count != sp->clear_spte_count))
476                 goto retry;
477
478         return spte.spte;
479 }
480 #endif
481
482 /* Rules for using mmu_spte_set:
483  * Set the sptep from nonpresent to present.
484  * Note: the sptep being assigned *must* be either not present
485  * or in a state where the hardware will not attempt to update
486  * the spte.
487  */
488 static void mmu_spte_set(u64 *sptep, u64 new_spte)
489 {
490         WARN_ON(is_shadow_present_pte(*sptep));
491         __set_spte(sptep, new_spte);
492 }
493
494 /*
495  * Update the SPTE (excluding the PFN), but do not track changes in its
496  * accessed/dirty status.
497  */
498 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
499 {
500         u64 old_spte = *sptep;
501
502         WARN_ON(!is_shadow_present_pte(new_spte));
503         check_spte_writable_invariants(new_spte);
504
505         if (!is_shadow_present_pte(old_spte)) {
506                 mmu_spte_set(sptep, new_spte);
507                 return old_spte;
508         }
509
510         if (!spte_has_volatile_bits(old_spte))
511                 __update_clear_spte_fast(sptep, new_spte);
512         else
513                 old_spte = __update_clear_spte_slow(sptep, new_spte);
514
515         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
516
517         return old_spte;
518 }
519
520 /* Rules for using mmu_spte_update:
521  * Update the state bits, it means the mapped pfn is not changed.
522  *
523  * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
524  * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
525  * spte, even though the writable spte might be cached on a CPU's TLB.
526  *
527  * Returns true if the TLB needs to be flushed
528  */
529 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
530 {
531         bool flush = false;
532         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
533
534         if (!is_shadow_present_pte(old_spte))
535                 return false;
536
537         /*
538          * For the spte updated out of mmu-lock is safe, since
539          * we always atomically update it, see the comments in
540          * spte_has_volatile_bits().
541          */
542         if (is_mmu_writable_spte(old_spte) &&
543               !is_writable_pte(new_spte))
544                 flush = true;
545
546         /*
547          * Flush TLB when accessed/dirty states are changed in the page tables,
548          * to guarantee consistency between TLB and page tables.
549          */
550
551         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
552                 flush = true;
553                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
554         }
555
556         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
557                 flush = true;
558                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
559         }
560
561         return flush;
562 }
563
564 /*
565  * Rules for using mmu_spte_clear_track_bits:
566  * It sets the sptep from present to nonpresent, and track the
567  * state bits, it is used to clear the last level sptep.
568  * Returns the old PTE.
569  */
570 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
571 {
572         kvm_pfn_t pfn;
573         u64 old_spte = *sptep;
574         int level = sptep_to_sp(sptep)->role.level;
575         struct page *page;
576
577         if (!is_shadow_present_pte(old_spte) ||
578             !spte_has_volatile_bits(old_spte))
579                 __update_clear_spte_fast(sptep, 0ull);
580         else
581                 old_spte = __update_clear_spte_slow(sptep, 0ull);
582
583         if (!is_shadow_present_pte(old_spte))
584                 return old_spte;
585
586         kvm_update_page_stats(kvm, level, -1);
587
588         pfn = spte_to_pfn(old_spte);
589
590         /*
591          * KVM doesn't hold a reference to any pages mapped into the guest, and
592          * instead uses the mmu_notifier to ensure that KVM unmaps any pages
593          * before they are reclaimed.  Sanity check that, if the pfn is backed
594          * by a refcounted page, the refcount is elevated.
595          */
596         page = kvm_pfn_to_refcounted_page(pfn);
597         WARN_ON(page && !page_count(page));
598
599         if (is_accessed_spte(old_spte))
600                 kvm_set_pfn_accessed(pfn);
601
602         if (is_dirty_spte(old_spte))
603                 kvm_set_pfn_dirty(pfn);
604
605         return old_spte;
606 }
607
608 /*
609  * Rules for using mmu_spte_clear_no_track:
610  * Directly clear spte without caring the state bits of sptep,
611  * it is used to set the upper level spte.
612  */
613 static void mmu_spte_clear_no_track(u64 *sptep)
614 {
615         __update_clear_spte_fast(sptep, 0ull);
616 }
617
618 static u64 mmu_spte_get_lockless(u64 *sptep)
619 {
620         return __get_spte_lockless(sptep);
621 }
622
623 /* Returns the Accessed status of the PTE and resets it at the same time. */
624 static bool mmu_spte_age(u64 *sptep)
625 {
626         u64 spte = mmu_spte_get_lockless(sptep);
627
628         if (!is_accessed_spte(spte))
629                 return false;
630
631         if (spte_ad_enabled(spte)) {
632                 clear_bit((ffs(shadow_accessed_mask) - 1),
633                           (unsigned long *)sptep);
634         } else {
635                 /*
636                  * Capture the dirty status of the page, so that it doesn't get
637                  * lost when the SPTE is marked for access tracking.
638                  */
639                 if (is_writable_pte(spte))
640                         kvm_set_pfn_dirty(spte_to_pfn(spte));
641
642                 spte = mark_spte_for_access_track(spte);
643                 mmu_spte_update_no_track(sptep, spte);
644         }
645
646         return true;
647 }
648
649 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
650 {
651         return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
652 }
653
654 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
655 {
656         if (is_tdp_mmu_active(vcpu)) {
657                 kvm_tdp_mmu_walk_lockless_begin();
658         } else {
659                 /*
660                  * Prevent page table teardown by making any free-er wait during
661                  * kvm_flush_remote_tlbs() IPI to all active vcpus.
662                  */
663                 local_irq_disable();
664
665                 /*
666                  * Make sure a following spte read is not reordered ahead of the write
667                  * to vcpu->mode.
668                  */
669                 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
670         }
671 }
672
673 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
674 {
675         if (is_tdp_mmu_active(vcpu)) {
676                 kvm_tdp_mmu_walk_lockless_end();
677         } else {
678                 /*
679                  * Make sure the write to vcpu->mode is not reordered in front of
680                  * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
681                  * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
682                  */
683                 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
684                 local_irq_enable();
685         }
686 }
687
688 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
689 {
690         int r;
691
692         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
693         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
694                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
695         if (r)
696                 return r;
697         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
698                                        PT64_ROOT_MAX_LEVEL);
699         if (r)
700                 return r;
701         if (maybe_indirect) {
702                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
703                                                PT64_ROOT_MAX_LEVEL);
704                 if (r)
705                         return r;
706         }
707         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
708                                           PT64_ROOT_MAX_LEVEL);
709 }
710
711 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
712 {
713         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
714         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
715         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
716         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
717 }
718
719 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
720 {
721         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
722 }
723
724 static bool sp_has_gptes(struct kvm_mmu_page *sp);
725
726 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
727 {
728         if (sp->role.passthrough)
729                 return sp->gfn;
730
731         if (!sp->role.direct)
732                 return sp->shadowed_translation[index] >> PAGE_SHIFT;
733
734         return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
735 }
736
737 /*
738  * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
739  * that the SPTE itself may have a more constrained access permissions that
740  * what the guest enforces. For example, a guest may create an executable
741  * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
742  */
743 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
744 {
745         if (sp_has_gptes(sp))
746                 return sp->shadowed_translation[index] & ACC_ALL;
747
748         /*
749          * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
750          * KVM is not shadowing any guest page tables, so the "guest access
751          * permissions" are just ACC_ALL.
752          *
753          * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
754          * is shadowing a guest huge page with small pages, the guest access
755          * permissions being shadowed are the access permissions of the huge
756          * page.
757          *
758          * In both cases, sp->role.access contains the correct access bits.
759          */
760         return sp->role.access;
761 }
762
763 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
764                                          gfn_t gfn, unsigned int access)
765 {
766         if (sp_has_gptes(sp)) {
767                 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
768                 return;
769         }
770
771         WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
772                   "access mismatch under %s page %llx (expected %u, got %u)\n",
773                   sp->role.passthrough ? "passthrough" : "direct",
774                   sp->gfn, kvm_mmu_page_get_access(sp, index), access);
775
776         WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
777                   "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
778                   sp->role.passthrough ? "passthrough" : "direct",
779                   sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
780 }
781
782 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
783                                     unsigned int access)
784 {
785         gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
786
787         kvm_mmu_page_set_translation(sp, index, gfn, access);
788 }
789
790 /*
791  * Return the pointer to the large page information for a given gfn,
792  * handling slots that are not large page aligned.
793  */
794 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
795                 const struct kvm_memory_slot *slot, int level)
796 {
797         unsigned long idx;
798
799         idx = gfn_to_index(gfn, slot->base_gfn, level);
800         return &slot->arch.lpage_info[level - 2][idx];
801 }
802
803 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
804                                             gfn_t gfn, int count)
805 {
806         struct kvm_lpage_info *linfo;
807         int i;
808
809         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
810                 linfo = lpage_info_slot(gfn, slot, i);
811                 linfo->disallow_lpage += count;
812                 WARN_ON(linfo->disallow_lpage < 0);
813         }
814 }
815
816 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
817 {
818         update_gfn_disallow_lpage_count(slot, gfn, 1);
819 }
820
821 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
822 {
823         update_gfn_disallow_lpage_count(slot, gfn, -1);
824 }
825
826 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
827 {
828         struct kvm_memslots *slots;
829         struct kvm_memory_slot *slot;
830         gfn_t gfn;
831
832         kvm->arch.indirect_shadow_pages++;
833         gfn = sp->gfn;
834         slots = kvm_memslots_for_spte_role(kvm, sp->role);
835         slot = __gfn_to_memslot(slots, gfn);
836
837         /* the non-leaf shadow pages are keeping readonly. */
838         if (sp->role.level > PG_LEVEL_4K)
839                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
840                                                     KVM_PAGE_TRACK_WRITE);
841
842         kvm_mmu_gfn_disallow_lpage(slot, gfn);
843
844         if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
845                 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
846 }
847
848 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
849 {
850         /*
851          * If it's possible to replace the shadow page with an NX huge page,
852          * i.e. if the shadow page is the only thing currently preventing KVM
853          * from using a huge page, add the shadow page to the list of "to be
854          * zapped for NX recovery" pages.  Note, the shadow page can already be
855          * on the list if KVM is reusing an existing shadow page, i.e. if KVM
856          * links a shadow page at multiple points.
857          */
858         if (!list_empty(&sp->possible_nx_huge_page_link))
859                 return;
860
861         ++kvm->stat.nx_lpage_splits;
862         list_add_tail(&sp->possible_nx_huge_page_link,
863                       &kvm->arch.possible_nx_huge_pages);
864 }
865
866 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
867                                  bool nx_huge_page_possible)
868 {
869         sp->nx_huge_page_disallowed = true;
870
871         if (nx_huge_page_possible)
872                 track_possible_nx_huge_page(kvm, sp);
873 }
874
875 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
876 {
877         struct kvm_memslots *slots;
878         struct kvm_memory_slot *slot;
879         gfn_t gfn;
880
881         kvm->arch.indirect_shadow_pages--;
882         gfn = sp->gfn;
883         slots = kvm_memslots_for_spte_role(kvm, sp->role);
884         slot = __gfn_to_memslot(slots, gfn);
885         if (sp->role.level > PG_LEVEL_4K)
886                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
887                                                        KVM_PAGE_TRACK_WRITE);
888
889         kvm_mmu_gfn_allow_lpage(slot, gfn);
890 }
891
892 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
893 {
894         if (list_empty(&sp->possible_nx_huge_page_link))
895                 return;
896
897         --kvm->stat.nx_lpage_splits;
898         list_del_init(&sp->possible_nx_huge_page_link);
899 }
900
901 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
902 {
903         sp->nx_huge_page_disallowed = false;
904
905         untrack_possible_nx_huge_page(kvm, sp);
906 }
907
908 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
909                                                            gfn_t gfn,
910                                                            bool no_dirty_log)
911 {
912         struct kvm_memory_slot *slot;
913
914         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
915         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
916                 return NULL;
917         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
918                 return NULL;
919
920         return slot;
921 }
922
923 /*
924  * About rmap_head encoding:
925  *
926  * If the bit zero of rmap_head->val is clear, then it points to the only spte
927  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
928  * pte_list_desc containing more mappings.
929  */
930
931 /*
932  * Returns the number of pointers in the rmap chain, not counting the new one.
933  */
934 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
935                         struct kvm_rmap_head *rmap_head)
936 {
937         struct pte_list_desc *desc;
938         int count = 0;
939
940         if (!rmap_head->val) {
941                 rmap_printk("%p %llx 0->1\n", spte, *spte);
942                 rmap_head->val = (unsigned long)spte;
943         } else if (!(rmap_head->val & 1)) {
944                 rmap_printk("%p %llx 1->many\n", spte, *spte);
945                 desc = kvm_mmu_memory_cache_alloc(cache);
946                 desc->sptes[0] = (u64 *)rmap_head->val;
947                 desc->sptes[1] = spte;
948                 desc->spte_count = 2;
949                 desc->tail_count = 0;
950                 rmap_head->val = (unsigned long)desc | 1;
951                 ++count;
952         } else {
953                 rmap_printk("%p %llx many->many\n", spte, *spte);
954                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
955                 count = desc->tail_count + desc->spte_count;
956
957                 /*
958                  * If the previous head is full, allocate a new head descriptor
959                  * as tail descriptors are always kept full.
960                  */
961                 if (desc->spte_count == PTE_LIST_EXT) {
962                         desc = kvm_mmu_memory_cache_alloc(cache);
963                         desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul);
964                         desc->spte_count = 0;
965                         desc->tail_count = count;
966                         rmap_head->val = (unsigned long)desc | 1;
967                 }
968                 desc->sptes[desc->spte_count++] = spte;
969         }
970         return count;
971 }
972
973 static void pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
974                                        struct pte_list_desc *desc, int i)
975 {
976         struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
977         int j = head_desc->spte_count - 1;
978
979         /*
980          * The head descriptor should never be empty.  A new head is added only
981          * when adding an entry and the previous head is full, and heads are
982          * removed (this flow) when they become empty.
983          */
984         BUG_ON(j < 0);
985
986         /*
987          * Replace the to-be-freed SPTE with the last valid entry from the head
988          * descriptor to ensure that tail descriptors are full at all times.
989          * Note, this also means that tail_count is stable for each descriptor.
990          */
991         desc->sptes[i] = head_desc->sptes[j];
992         head_desc->sptes[j] = NULL;
993         head_desc->spte_count--;
994         if (head_desc->spte_count)
995                 return;
996
997         /*
998          * The head descriptor is empty.  If there are no tail descriptors,
999          * nullify the rmap head to mark the list as emtpy, else point the rmap
1000          * head at the next descriptor, i.e. the new head.
1001          */
1002         if (!head_desc->more)
1003                 rmap_head->val = 0;
1004         else
1005                 rmap_head->val = (unsigned long)head_desc->more | 1;
1006         mmu_free_pte_list_desc(head_desc);
1007 }
1008
1009 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1010 {
1011         struct pte_list_desc *desc;
1012         int i;
1013
1014         if (!rmap_head->val) {
1015                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1016                 BUG();
1017         } else if (!(rmap_head->val & 1)) {
1018                 rmap_printk("%p 1->0\n", spte);
1019                 if ((u64 *)rmap_head->val != spte) {
1020                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1021                         BUG();
1022                 }
1023                 rmap_head->val = 0;
1024         } else {
1025                 rmap_printk("%p many->many\n", spte);
1026                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1027                 while (desc) {
1028                         for (i = 0; i < desc->spte_count; ++i) {
1029                                 if (desc->sptes[i] == spte) {
1030                                         pte_list_desc_remove_entry(rmap_head, desc, i);
1031                                         return;
1032                                 }
1033                         }
1034                         desc = desc->more;
1035                 }
1036                 pr_err("%s: %p many->many\n", __func__, spte);
1037                 BUG();
1038         }
1039 }
1040
1041 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1042                                   struct kvm_rmap_head *rmap_head, u64 *sptep)
1043 {
1044         mmu_spte_clear_track_bits(kvm, sptep);
1045         pte_list_remove(sptep, rmap_head);
1046 }
1047
1048 /* Return true if at least one SPTE was zapped, false otherwise */
1049 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1050                                    struct kvm_rmap_head *rmap_head)
1051 {
1052         struct pte_list_desc *desc, *next;
1053         int i;
1054
1055         if (!rmap_head->val)
1056                 return false;
1057
1058         if (!(rmap_head->val & 1)) {
1059                 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1060                 goto out;
1061         }
1062
1063         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1064
1065         for (; desc; desc = next) {
1066                 for (i = 0; i < desc->spte_count; i++)
1067                         mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1068                 next = desc->more;
1069                 mmu_free_pte_list_desc(desc);
1070         }
1071 out:
1072         /* rmap_head is meaningless now, remember to reset it */
1073         rmap_head->val = 0;
1074         return true;
1075 }
1076
1077 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1078 {
1079         struct pte_list_desc *desc;
1080
1081         if (!rmap_head->val)
1082                 return 0;
1083         else if (!(rmap_head->val & 1))
1084                 return 1;
1085
1086         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1087         return desc->tail_count + desc->spte_count;
1088 }
1089
1090 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1091                                          const struct kvm_memory_slot *slot)
1092 {
1093         unsigned long idx;
1094
1095         idx = gfn_to_index(gfn, slot->base_gfn, level);
1096         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1097 }
1098
1099 static void rmap_remove(struct kvm *kvm, u64 *spte)
1100 {
1101         struct kvm_memslots *slots;
1102         struct kvm_memory_slot *slot;
1103         struct kvm_mmu_page *sp;
1104         gfn_t gfn;
1105         struct kvm_rmap_head *rmap_head;
1106
1107         sp = sptep_to_sp(spte);
1108         gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1109
1110         /*
1111          * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1112          * so we have to determine which memslots to use based on context
1113          * information in sp->role.
1114          */
1115         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1116
1117         slot = __gfn_to_memslot(slots, gfn);
1118         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1119
1120         pte_list_remove(spte, rmap_head);
1121 }
1122
1123 /*
1124  * Used by the following functions to iterate through the sptes linked by a
1125  * rmap.  All fields are private and not assumed to be used outside.
1126  */
1127 struct rmap_iterator {
1128         /* private fields */
1129         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1130         int pos;                        /* index of the sptep */
1131 };
1132
1133 /*
1134  * Iteration must be started by this function.  This should also be used after
1135  * removing/dropping sptes from the rmap link because in such cases the
1136  * information in the iterator may not be valid.
1137  *
1138  * Returns sptep if found, NULL otherwise.
1139  */
1140 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1141                            struct rmap_iterator *iter)
1142 {
1143         u64 *sptep;
1144
1145         if (!rmap_head->val)
1146                 return NULL;
1147
1148         if (!(rmap_head->val & 1)) {
1149                 iter->desc = NULL;
1150                 sptep = (u64 *)rmap_head->val;
1151                 goto out;
1152         }
1153
1154         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1155         iter->pos = 0;
1156         sptep = iter->desc->sptes[iter->pos];
1157 out:
1158         BUG_ON(!is_shadow_present_pte(*sptep));
1159         return sptep;
1160 }
1161
1162 /*
1163  * Must be used with a valid iterator: e.g. after rmap_get_first().
1164  *
1165  * Returns sptep if found, NULL otherwise.
1166  */
1167 static u64 *rmap_get_next(struct rmap_iterator *iter)
1168 {
1169         u64 *sptep;
1170
1171         if (iter->desc) {
1172                 if (iter->pos < PTE_LIST_EXT - 1) {
1173                         ++iter->pos;
1174                         sptep = iter->desc->sptes[iter->pos];
1175                         if (sptep)
1176                                 goto out;
1177                 }
1178
1179                 iter->desc = iter->desc->more;
1180
1181                 if (iter->desc) {
1182                         iter->pos = 0;
1183                         /* desc->sptes[0] cannot be NULL */
1184                         sptep = iter->desc->sptes[iter->pos];
1185                         goto out;
1186                 }
1187         }
1188
1189         return NULL;
1190 out:
1191         BUG_ON(!is_shadow_present_pte(*sptep));
1192         return sptep;
1193 }
1194
1195 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1196         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1197              _spte_; _spte_ = rmap_get_next(_iter_))
1198
1199 static void drop_spte(struct kvm *kvm, u64 *sptep)
1200 {
1201         u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1202
1203         if (is_shadow_present_pte(old_spte))
1204                 rmap_remove(kvm, sptep);
1205 }
1206
1207 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1208 {
1209         struct kvm_mmu_page *sp;
1210
1211         sp = sptep_to_sp(sptep);
1212         WARN_ON(sp->role.level == PG_LEVEL_4K);
1213
1214         drop_spte(kvm, sptep);
1215
1216         if (flush)
1217                 kvm_flush_remote_tlbs_sptep(kvm, sptep);
1218 }
1219
1220 /*
1221  * Write-protect on the specified @sptep, @pt_protect indicates whether
1222  * spte write-protection is caused by protecting shadow page table.
1223  *
1224  * Note: write protection is difference between dirty logging and spte
1225  * protection:
1226  * - for dirty logging, the spte can be set to writable at anytime if
1227  *   its dirty bitmap is properly set.
1228  * - for spte protection, the spte can be writable only after unsync-ing
1229  *   shadow page.
1230  *
1231  * Return true if tlb need be flushed.
1232  */
1233 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1234 {
1235         u64 spte = *sptep;
1236
1237         if (!is_writable_pte(spte) &&
1238             !(pt_protect && is_mmu_writable_spte(spte)))
1239                 return false;
1240
1241         rmap_printk("spte %p %llx\n", sptep, *sptep);
1242
1243         if (pt_protect)
1244                 spte &= ~shadow_mmu_writable_mask;
1245         spte = spte & ~PT_WRITABLE_MASK;
1246
1247         return mmu_spte_update(sptep, spte);
1248 }
1249
1250 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1251                                bool pt_protect)
1252 {
1253         u64 *sptep;
1254         struct rmap_iterator iter;
1255         bool flush = false;
1256
1257         for_each_rmap_spte(rmap_head, &iter, sptep)
1258                 flush |= spte_write_protect(sptep, pt_protect);
1259
1260         return flush;
1261 }
1262
1263 static bool spte_clear_dirty(u64 *sptep)
1264 {
1265         u64 spte = *sptep;
1266
1267         rmap_printk("spte %p %llx\n", sptep, *sptep);
1268
1269         MMU_WARN_ON(!spte_ad_enabled(spte));
1270         spte &= ~shadow_dirty_mask;
1271         return mmu_spte_update(sptep, spte);
1272 }
1273
1274 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1275 {
1276         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1277                                                (unsigned long *)sptep);
1278         if (was_writable && !spte_ad_enabled(*sptep))
1279                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1280
1281         return was_writable;
1282 }
1283
1284 /*
1285  * Gets the GFN ready for another round of dirty logging by clearing the
1286  *      - D bit on ad-enabled SPTEs, and
1287  *      - W bit on ad-disabled SPTEs.
1288  * Returns true iff any D or W bits were cleared.
1289  */
1290 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1291                                const struct kvm_memory_slot *slot)
1292 {
1293         u64 *sptep;
1294         struct rmap_iterator iter;
1295         bool flush = false;
1296
1297         for_each_rmap_spte(rmap_head, &iter, sptep)
1298                 if (spte_ad_need_write_protect(*sptep))
1299                         flush |= spte_wrprot_for_clear_dirty(sptep);
1300                 else
1301                         flush |= spte_clear_dirty(sptep);
1302
1303         return flush;
1304 }
1305
1306 /**
1307  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1308  * @kvm: kvm instance
1309  * @slot: slot to protect
1310  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1311  * @mask: indicates which pages we should protect
1312  *
1313  * Used when we do not need to care about huge page mappings.
1314  */
1315 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1316                                      struct kvm_memory_slot *slot,
1317                                      gfn_t gfn_offset, unsigned long mask)
1318 {
1319         struct kvm_rmap_head *rmap_head;
1320
1321         if (tdp_mmu_enabled)
1322                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1323                                 slot->base_gfn + gfn_offset, mask, true);
1324
1325         if (!kvm_memslots_have_rmaps(kvm))
1326                 return;
1327
1328         while (mask) {
1329                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1330                                         PG_LEVEL_4K, slot);
1331                 rmap_write_protect(rmap_head, false);
1332
1333                 /* clear the first set bit */
1334                 mask &= mask - 1;
1335         }
1336 }
1337
1338 /**
1339  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1340  * protect the page if the D-bit isn't supported.
1341  * @kvm: kvm instance
1342  * @slot: slot to clear D-bit
1343  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1344  * @mask: indicates which pages we should clear D-bit
1345  *
1346  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1347  */
1348 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1349                                          struct kvm_memory_slot *slot,
1350                                          gfn_t gfn_offset, unsigned long mask)
1351 {
1352         struct kvm_rmap_head *rmap_head;
1353
1354         if (tdp_mmu_enabled)
1355                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1356                                 slot->base_gfn + gfn_offset, mask, false);
1357
1358         if (!kvm_memslots_have_rmaps(kvm))
1359                 return;
1360
1361         while (mask) {
1362                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1363                                         PG_LEVEL_4K, slot);
1364                 __rmap_clear_dirty(kvm, rmap_head, slot);
1365
1366                 /* clear the first set bit */
1367                 mask &= mask - 1;
1368         }
1369 }
1370
1371 /**
1372  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1373  * PT level pages.
1374  *
1375  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1376  * enable dirty logging for them.
1377  *
1378  * We need to care about huge page mappings: e.g. during dirty logging we may
1379  * have such mappings.
1380  */
1381 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1382                                 struct kvm_memory_slot *slot,
1383                                 gfn_t gfn_offset, unsigned long mask)
1384 {
1385         /*
1386          * Huge pages are NOT write protected when we start dirty logging in
1387          * initially-all-set mode; must write protect them here so that they
1388          * are split to 4K on the first write.
1389          *
1390          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1391          * of memslot has no such restriction, so the range can cross two large
1392          * pages.
1393          */
1394         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1395                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1396                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1397
1398                 if (READ_ONCE(eager_page_split))
1399                         kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
1400
1401                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1402
1403                 /* Cross two large pages? */
1404                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1405                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1406                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1407                                                        PG_LEVEL_2M);
1408         }
1409
1410         /* Now handle 4K PTEs.  */
1411         if (kvm_x86_ops.cpu_dirty_log_size)
1412                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1413         else
1414                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1415 }
1416
1417 int kvm_cpu_dirty_log_size(void)
1418 {
1419         return kvm_x86_ops.cpu_dirty_log_size;
1420 }
1421
1422 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1423                                     struct kvm_memory_slot *slot, u64 gfn,
1424                                     int min_level)
1425 {
1426         struct kvm_rmap_head *rmap_head;
1427         int i;
1428         bool write_protected = false;
1429
1430         if (kvm_memslots_have_rmaps(kvm)) {
1431                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1432                         rmap_head = gfn_to_rmap(gfn, i, slot);
1433                         write_protected |= rmap_write_protect(rmap_head, true);
1434                 }
1435         }
1436
1437         if (tdp_mmu_enabled)
1438                 write_protected |=
1439                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1440
1441         return write_protected;
1442 }
1443
1444 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1445 {
1446         struct kvm_memory_slot *slot;
1447
1448         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1449         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1450 }
1451
1452 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1453                            const struct kvm_memory_slot *slot)
1454 {
1455         return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1456 }
1457
1458 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1459                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1460                          pte_t unused)
1461 {
1462         return __kvm_zap_rmap(kvm, rmap_head, slot);
1463 }
1464
1465 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1466                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1467                              pte_t pte)
1468 {
1469         u64 *sptep;
1470         struct rmap_iterator iter;
1471         bool need_flush = false;
1472         u64 new_spte;
1473         kvm_pfn_t new_pfn;
1474
1475         WARN_ON(pte_huge(pte));
1476         new_pfn = pte_pfn(pte);
1477
1478 restart:
1479         for_each_rmap_spte(rmap_head, &iter, sptep) {
1480                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1481                             sptep, *sptep, gfn, level);
1482
1483                 need_flush = true;
1484
1485                 if (pte_write(pte)) {
1486                         kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
1487                         goto restart;
1488                 } else {
1489                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1490                                         *sptep, new_pfn);
1491
1492                         mmu_spte_clear_track_bits(kvm, sptep);
1493                         mmu_spte_set(sptep, new_spte);
1494                 }
1495         }
1496
1497         if (need_flush && kvm_available_flush_remote_tlbs_range()) {
1498                 kvm_flush_remote_tlbs_gfn(kvm, gfn, level);
1499                 return false;
1500         }
1501
1502         return need_flush;
1503 }
1504
1505 struct slot_rmap_walk_iterator {
1506         /* input fields. */
1507         const struct kvm_memory_slot *slot;
1508         gfn_t start_gfn;
1509         gfn_t end_gfn;
1510         int start_level;
1511         int end_level;
1512
1513         /* output fields. */
1514         gfn_t gfn;
1515         struct kvm_rmap_head *rmap;
1516         int level;
1517
1518         /* private field. */
1519         struct kvm_rmap_head *end_rmap;
1520 };
1521
1522 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1523                                  int level)
1524 {
1525         iterator->level = level;
1526         iterator->gfn = iterator->start_gfn;
1527         iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1528         iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1529 }
1530
1531 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1532                                 const struct kvm_memory_slot *slot,
1533                                 int start_level, int end_level,
1534                                 gfn_t start_gfn, gfn_t end_gfn)
1535 {
1536         iterator->slot = slot;
1537         iterator->start_level = start_level;
1538         iterator->end_level = end_level;
1539         iterator->start_gfn = start_gfn;
1540         iterator->end_gfn = end_gfn;
1541
1542         rmap_walk_init_level(iterator, iterator->start_level);
1543 }
1544
1545 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1546 {
1547         return !!iterator->rmap;
1548 }
1549
1550 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1551 {
1552         while (++iterator->rmap <= iterator->end_rmap) {
1553                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1554
1555                 if (iterator->rmap->val)
1556                         return;
1557         }
1558
1559         if (++iterator->level > iterator->end_level) {
1560                 iterator->rmap = NULL;
1561                 return;
1562         }
1563
1564         rmap_walk_init_level(iterator, iterator->level);
1565 }
1566
1567 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1568            _start_gfn, _end_gfn, _iter_)                                \
1569         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1570                                  _end_level_, _start_gfn, _end_gfn);    \
1571              slot_rmap_walk_okay(_iter_);                               \
1572              slot_rmap_walk_next(_iter_))
1573
1574 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1575                                struct kvm_memory_slot *slot, gfn_t gfn,
1576                                int level, pte_t pte);
1577
1578 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1579                                                  struct kvm_gfn_range *range,
1580                                                  rmap_handler_t handler)
1581 {
1582         struct slot_rmap_walk_iterator iterator;
1583         bool ret = false;
1584
1585         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1586                                  range->start, range->end - 1, &iterator)
1587                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1588                                iterator.level, range->pte);
1589
1590         return ret;
1591 }
1592
1593 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1594 {
1595         bool flush = false;
1596
1597         if (kvm_memslots_have_rmaps(kvm))
1598                 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap);
1599
1600         if (tdp_mmu_enabled)
1601                 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1602
1603         return flush;
1604 }
1605
1606 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1607 {
1608         bool flush = false;
1609
1610         if (kvm_memslots_have_rmaps(kvm))
1611                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap);
1612
1613         if (tdp_mmu_enabled)
1614                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1615
1616         return flush;
1617 }
1618
1619 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1620                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1621                          pte_t unused)
1622 {
1623         u64 *sptep;
1624         struct rmap_iterator iter;
1625         int young = 0;
1626
1627         for_each_rmap_spte(rmap_head, &iter, sptep)
1628                 young |= mmu_spte_age(sptep);
1629
1630         return young;
1631 }
1632
1633 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1634                               struct kvm_memory_slot *slot, gfn_t gfn,
1635                               int level, pte_t unused)
1636 {
1637         u64 *sptep;
1638         struct rmap_iterator iter;
1639
1640         for_each_rmap_spte(rmap_head, &iter, sptep)
1641                 if (is_accessed_spte(*sptep))
1642                         return true;
1643         return false;
1644 }
1645
1646 #define RMAP_RECYCLE_THRESHOLD 1000
1647
1648 static void __rmap_add(struct kvm *kvm,
1649                        struct kvm_mmu_memory_cache *cache,
1650                        const struct kvm_memory_slot *slot,
1651                        u64 *spte, gfn_t gfn, unsigned int access)
1652 {
1653         struct kvm_mmu_page *sp;
1654         struct kvm_rmap_head *rmap_head;
1655         int rmap_count;
1656
1657         sp = sptep_to_sp(spte);
1658         kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1659         kvm_update_page_stats(kvm, sp->role.level, 1);
1660
1661         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1662         rmap_count = pte_list_add(cache, spte, rmap_head);
1663
1664         if (rmap_count > kvm->stat.max_mmu_rmap_size)
1665                 kvm->stat.max_mmu_rmap_size = rmap_count;
1666         if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1667                 kvm_zap_all_rmap_sptes(kvm, rmap_head);
1668                 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1669         }
1670 }
1671
1672 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1673                      u64 *spte, gfn_t gfn, unsigned int access)
1674 {
1675         struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1676
1677         __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1678 }
1679
1680 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1681 {
1682         bool young = false;
1683
1684         if (kvm_memslots_have_rmaps(kvm))
1685                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
1686
1687         if (tdp_mmu_enabled)
1688                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1689
1690         return young;
1691 }
1692
1693 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1694 {
1695         bool young = false;
1696
1697         if (kvm_memslots_have_rmaps(kvm))
1698                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
1699
1700         if (tdp_mmu_enabled)
1701                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1702
1703         return young;
1704 }
1705
1706 #ifdef MMU_DEBUG
1707 static int is_empty_shadow_page(u64 *spt)
1708 {
1709         u64 *pos;
1710         u64 *end;
1711
1712         for (pos = spt, end = pos + SPTE_ENT_PER_PAGE; pos != end; pos++)
1713                 if (is_shadow_present_pte(*pos)) {
1714                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1715                                pos, *pos);
1716                         return 0;
1717                 }
1718         return 1;
1719 }
1720 #endif
1721
1722 /*
1723  * This value is the sum of all of the kvm instances's
1724  * kvm->arch.n_used_mmu_pages values.  We need a global,
1725  * aggregate version in order to make the slab shrinker
1726  * faster
1727  */
1728 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1729 {
1730         kvm->arch.n_used_mmu_pages += nr;
1731         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1732 }
1733
1734 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1735 {
1736         kvm_mod_used_mmu_pages(kvm, +1);
1737         kvm_account_pgtable_pages((void *)sp->spt, +1);
1738 }
1739
1740 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1741 {
1742         kvm_mod_used_mmu_pages(kvm, -1);
1743         kvm_account_pgtable_pages((void *)sp->spt, -1);
1744 }
1745
1746 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1747 {
1748         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1749         hlist_del(&sp->hash_link);
1750         list_del(&sp->link);
1751         free_page((unsigned long)sp->spt);
1752         if (!sp->role.direct)
1753                 free_page((unsigned long)sp->shadowed_translation);
1754         kmem_cache_free(mmu_page_header_cache, sp);
1755 }
1756
1757 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1758 {
1759         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1760 }
1761
1762 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1763                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1764 {
1765         if (!parent_pte)
1766                 return;
1767
1768         pte_list_add(cache, parent_pte, &sp->parent_ptes);
1769 }
1770
1771 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1772                                        u64 *parent_pte)
1773 {
1774         pte_list_remove(parent_pte, &sp->parent_ptes);
1775 }
1776
1777 static void drop_parent_pte(struct kvm_mmu_page *sp,
1778                             u64 *parent_pte)
1779 {
1780         mmu_page_remove_parent_pte(sp, parent_pte);
1781         mmu_spte_clear_no_track(parent_pte);
1782 }
1783
1784 static void mark_unsync(u64 *spte);
1785 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1786 {
1787         u64 *sptep;
1788         struct rmap_iterator iter;
1789
1790         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1791                 mark_unsync(sptep);
1792         }
1793 }
1794
1795 static void mark_unsync(u64 *spte)
1796 {
1797         struct kvm_mmu_page *sp;
1798
1799         sp = sptep_to_sp(spte);
1800         if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1801                 return;
1802         if (sp->unsync_children++)
1803                 return;
1804         kvm_mmu_mark_parents_unsync(sp);
1805 }
1806
1807 #define KVM_PAGE_ARRAY_NR 16
1808
1809 struct kvm_mmu_pages {
1810         struct mmu_page_and_offset {
1811                 struct kvm_mmu_page *sp;
1812                 unsigned int idx;
1813         } page[KVM_PAGE_ARRAY_NR];
1814         unsigned int nr;
1815 };
1816
1817 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1818                          int idx)
1819 {
1820         int i;
1821
1822         if (sp->unsync)
1823                 for (i=0; i < pvec->nr; i++)
1824                         if (pvec->page[i].sp == sp)
1825                                 return 0;
1826
1827         pvec->page[pvec->nr].sp = sp;
1828         pvec->page[pvec->nr].idx = idx;
1829         pvec->nr++;
1830         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1831 }
1832
1833 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1834 {
1835         --sp->unsync_children;
1836         WARN_ON((int)sp->unsync_children < 0);
1837         __clear_bit(idx, sp->unsync_child_bitmap);
1838 }
1839
1840 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1841                            struct kvm_mmu_pages *pvec)
1842 {
1843         int i, ret, nr_unsync_leaf = 0;
1844
1845         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1846                 struct kvm_mmu_page *child;
1847                 u64 ent = sp->spt[i];
1848
1849                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1850                         clear_unsync_child_bit(sp, i);
1851                         continue;
1852                 }
1853
1854                 child = spte_to_child_sp(ent);
1855
1856                 if (child->unsync_children) {
1857                         if (mmu_pages_add(pvec, child, i))
1858                                 return -ENOSPC;
1859
1860                         ret = __mmu_unsync_walk(child, pvec);
1861                         if (!ret) {
1862                                 clear_unsync_child_bit(sp, i);
1863                                 continue;
1864                         } else if (ret > 0) {
1865                                 nr_unsync_leaf += ret;
1866                         } else
1867                                 return ret;
1868                 } else if (child->unsync) {
1869                         nr_unsync_leaf++;
1870                         if (mmu_pages_add(pvec, child, i))
1871                                 return -ENOSPC;
1872                 } else
1873                         clear_unsync_child_bit(sp, i);
1874         }
1875
1876         return nr_unsync_leaf;
1877 }
1878
1879 #define INVALID_INDEX (-1)
1880
1881 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1882                            struct kvm_mmu_pages *pvec)
1883 {
1884         pvec->nr = 0;
1885         if (!sp->unsync_children)
1886                 return 0;
1887
1888         mmu_pages_add(pvec, sp, INVALID_INDEX);
1889         return __mmu_unsync_walk(sp, pvec);
1890 }
1891
1892 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1893 {
1894         WARN_ON(!sp->unsync);
1895         trace_kvm_mmu_sync_page(sp);
1896         sp->unsync = 0;
1897         --kvm->stat.mmu_unsync;
1898 }
1899
1900 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1901                                      struct list_head *invalid_list);
1902 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1903                                     struct list_head *invalid_list);
1904
1905 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1906 {
1907         if (sp->role.direct)
1908                 return false;
1909
1910         if (sp->role.passthrough)
1911                 return false;
1912
1913         return true;
1914 }
1915
1916 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1917         hlist_for_each_entry(_sp, _list, hash_link)                     \
1918                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1919                 } else
1920
1921 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)               \
1922         for_each_valid_sp(_kvm, _sp,                                    \
1923           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1924                 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1925
1926 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1927 {
1928         union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
1929
1930         /*
1931          * Ignore various flags when verifying that it's safe to sync a shadow
1932          * page using the current MMU context.
1933          *
1934          *  - level: not part of the overall MMU role and will never match as the MMU's
1935          *           level tracks the root level
1936          *  - access: updated based on the new guest PTE
1937          *  - quadrant: not part of the overall MMU role (similar to level)
1938          */
1939         const union kvm_mmu_page_role sync_role_ign = {
1940                 .level = 0xf,
1941                 .access = 0x7,
1942                 .quadrant = 0x3,
1943                 .passthrough = 0x1,
1944         };
1945
1946         /*
1947          * Direct pages can never be unsync, and KVM should never attempt to
1948          * sync a shadow page for a different MMU context, e.g. if the role
1949          * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1950          * reserved bits checks will be wrong, etc...
1951          */
1952         if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
1953                          (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1954                 return false;
1955
1956         return true;
1957 }
1958
1959 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
1960 {
1961         if (!sp->spt[i])
1962                 return 0;
1963
1964         return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
1965 }
1966
1967 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1968 {
1969         int flush = 0;
1970         int i;
1971
1972         if (!kvm_sync_page_check(vcpu, sp))
1973                 return -1;
1974
1975         for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1976                 int ret = kvm_sync_spte(vcpu, sp, i);
1977
1978                 if (ret < -1)
1979                         return -1;
1980                 flush |= ret;
1981         }
1982
1983         /*
1984          * Note, any flush is purely for KVM's correctness, e.g. when dropping
1985          * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1986          * unmap or dirty logging event doesn't fail to flush.  The guest is
1987          * responsible for flushing the TLB to ensure any changes in protection
1988          * bits are recognized, i.e. until the guest flushes or page faults on
1989          * a relevant address, KVM is architecturally allowed to let vCPUs use
1990          * cached translations with the old protection bits.
1991          */
1992         return flush;
1993 }
1994
1995 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1996                          struct list_head *invalid_list)
1997 {
1998         int ret = __kvm_sync_page(vcpu, sp);
1999
2000         if (ret < 0)
2001                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2002         return ret;
2003 }
2004
2005 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2006                                         struct list_head *invalid_list,
2007                                         bool remote_flush)
2008 {
2009         if (!remote_flush && list_empty(invalid_list))
2010                 return false;
2011
2012         if (!list_empty(invalid_list))
2013                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2014         else
2015                 kvm_flush_remote_tlbs(kvm);
2016         return true;
2017 }
2018
2019 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2020 {
2021         if (sp->role.invalid)
2022                 return true;
2023
2024         /* TDP MMU pages do not use the MMU generation. */
2025         return !is_tdp_mmu_page(sp) &&
2026                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2027 }
2028
2029 struct mmu_page_path {
2030         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2031         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2032 };
2033
2034 #define for_each_sp(pvec, sp, parents, i)                       \
2035                 for (i = mmu_pages_first(&pvec, &parents);      \
2036                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2037                         i = mmu_pages_next(&pvec, &parents, i))
2038
2039 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2040                           struct mmu_page_path *parents,
2041                           int i)
2042 {
2043         int n;
2044
2045         for (n = i+1; n < pvec->nr; n++) {
2046                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2047                 unsigned idx = pvec->page[n].idx;
2048                 int level = sp->role.level;
2049
2050                 parents->idx[level-1] = idx;
2051                 if (level == PG_LEVEL_4K)
2052                         break;
2053
2054                 parents->parent[level-2] = sp;
2055         }
2056
2057         return n;
2058 }
2059
2060 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2061                            struct mmu_page_path *parents)
2062 {
2063         struct kvm_mmu_page *sp;
2064         int level;
2065
2066         if (pvec->nr == 0)
2067                 return 0;
2068
2069         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2070
2071         sp = pvec->page[0].sp;
2072         level = sp->role.level;
2073         WARN_ON(level == PG_LEVEL_4K);
2074
2075         parents->parent[level-2] = sp;
2076
2077         /* Also set up a sentinel.  Further entries in pvec are all
2078          * children of sp, so this element is never overwritten.
2079          */
2080         parents->parent[level-1] = NULL;
2081         return mmu_pages_next(pvec, parents, 0);
2082 }
2083
2084 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2085 {
2086         struct kvm_mmu_page *sp;
2087         unsigned int level = 0;
2088
2089         do {
2090                 unsigned int idx = parents->idx[level];
2091                 sp = parents->parent[level];
2092                 if (!sp)
2093                         return;
2094
2095                 WARN_ON(idx == INVALID_INDEX);
2096                 clear_unsync_child_bit(sp, idx);
2097                 level++;
2098         } while (!sp->unsync_children);
2099 }
2100
2101 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2102                              struct kvm_mmu_page *parent, bool can_yield)
2103 {
2104         int i;
2105         struct kvm_mmu_page *sp;
2106         struct mmu_page_path parents;
2107         struct kvm_mmu_pages pages;
2108         LIST_HEAD(invalid_list);
2109         bool flush = false;
2110
2111         while (mmu_unsync_walk(parent, &pages)) {
2112                 bool protected = false;
2113
2114                 for_each_sp(pages, sp, parents, i)
2115                         protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2116
2117                 if (protected) {
2118                         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2119                         flush = false;
2120                 }
2121
2122                 for_each_sp(pages, sp, parents, i) {
2123                         kvm_unlink_unsync_page(vcpu->kvm, sp);
2124                         flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2125                         mmu_pages_clear_parents(&parents);
2126                 }
2127                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2128                         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2129                         if (!can_yield) {
2130                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2131                                 return -EINTR;
2132                         }
2133
2134                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2135                         flush = false;
2136                 }
2137         }
2138
2139         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2140         return 0;
2141 }
2142
2143 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2144 {
2145         atomic_set(&sp->write_flooding_count,  0);
2146 }
2147
2148 static void clear_sp_write_flooding_count(u64 *spte)
2149 {
2150         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2151 }
2152
2153 /*
2154  * The vCPU is required when finding indirect shadow pages; the shadow
2155  * page may already exist and syncing it needs the vCPU pointer in
2156  * order to read guest page tables.  Direct shadow pages are never
2157  * unsync, thus @vcpu can be NULL if @role.direct is true.
2158  */
2159 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2160                                                      struct kvm_vcpu *vcpu,
2161                                                      gfn_t gfn,
2162                                                      struct hlist_head *sp_list,
2163                                                      union kvm_mmu_page_role role)
2164 {
2165         struct kvm_mmu_page *sp;
2166         int ret;
2167         int collisions = 0;
2168         LIST_HEAD(invalid_list);
2169
2170         for_each_valid_sp(kvm, sp, sp_list) {
2171                 if (sp->gfn != gfn) {
2172                         collisions++;
2173                         continue;
2174                 }
2175
2176                 if (sp->role.word != role.word) {
2177                         /*
2178                          * If the guest is creating an upper-level page, zap
2179                          * unsync pages for the same gfn.  While it's possible
2180                          * the guest is using recursive page tables, in all
2181                          * likelihood the guest has stopped using the unsync
2182                          * page and is installing a completely unrelated page.
2183                          * Unsync pages must not be left as is, because the new
2184                          * upper-level page will be write-protected.
2185                          */
2186                         if (role.level > PG_LEVEL_4K && sp->unsync)
2187                                 kvm_mmu_prepare_zap_page(kvm, sp,
2188                                                          &invalid_list);
2189                         continue;
2190                 }
2191
2192                 /* unsync and write-flooding only apply to indirect SPs. */
2193                 if (sp->role.direct)
2194                         goto out;
2195
2196                 if (sp->unsync) {
2197                         if (KVM_BUG_ON(!vcpu, kvm))
2198                                 break;
2199
2200                         /*
2201                          * The page is good, but is stale.  kvm_sync_page does
2202                          * get the latest guest state, but (unlike mmu_unsync_children)
2203                          * it doesn't write-protect the page or mark it synchronized!
2204                          * This way the validity of the mapping is ensured, but the
2205                          * overhead of write protection is not incurred until the
2206                          * guest invalidates the TLB mapping.  This allows multiple
2207                          * SPs for a single gfn to be unsync.
2208                          *
2209                          * If the sync fails, the page is zapped.  If so, break
2210                          * in order to rebuild it.
2211                          */
2212                         ret = kvm_sync_page(vcpu, sp, &invalid_list);
2213                         if (ret < 0)
2214                                 break;
2215
2216                         WARN_ON(!list_empty(&invalid_list));
2217                         if (ret > 0)
2218                                 kvm_flush_remote_tlbs(kvm);
2219                 }
2220
2221                 __clear_sp_write_flooding_count(sp);
2222
2223                 goto out;
2224         }
2225
2226         sp = NULL;
2227         ++kvm->stat.mmu_cache_miss;
2228
2229 out:
2230         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2231
2232         if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2233                 kvm->stat.max_mmu_page_hash_collisions = collisions;
2234         return sp;
2235 }
2236
2237 /* Caches used when allocating a new shadow page. */
2238 struct shadow_page_caches {
2239         struct kvm_mmu_memory_cache *page_header_cache;
2240         struct kvm_mmu_memory_cache *shadow_page_cache;
2241         struct kvm_mmu_memory_cache *shadowed_info_cache;
2242 };
2243
2244 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2245                                                       struct shadow_page_caches *caches,
2246                                                       gfn_t gfn,
2247                                                       struct hlist_head *sp_list,
2248                                                       union kvm_mmu_page_role role)
2249 {
2250         struct kvm_mmu_page *sp;
2251
2252         sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2253         sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2254         if (!role.direct)
2255                 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2256
2257         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2258
2259         INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2260
2261         /*
2262          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2263          * depends on valid pages being added to the head of the list.  See
2264          * comments in kvm_zap_obsolete_pages().
2265          */
2266         sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2267         list_add(&sp->link, &kvm->arch.active_mmu_pages);
2268         kvm_account_mmu_page(kvm, sp);
2269
2270         sp->gfn = gfn;
2271         sp->role = role;
2272         hlist_add_head(&sp->hash_link, sp_list);
2273         if (sp_has_gptes(sp))
2274                 account_shadowed(kvm, sp);
2275
2276         return sp;
2277 }
2278
2279 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
2280 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2281                                                       struct kvm_vcpu *vcpu,
2282                                                       struct shadow_page_caches *caches,
2283                                                       gfn_t gfn,
2284                                                       union kvm_mmu_page_role role)
2285 {
2286         struct hlist_head *sp_list;
2287         struct kvm_mmu_page *sp;
2288         bool created = false;
2289
2290         sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2291
2292         sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2293         if (!sp) {
2294                 created = true;
2295                 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2296         }
2297
2298         trace_kvm_mmu_get_page(sp, created);
2299         return sp;
2300 }
2301
2302 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2303                                                     gfn_t gfn,
2304                                                     union kvm_mmu_page_role role)
2305 {
2306         struct shadow_page_caches caches = {
2307                 .page_header_cache = &vcpu->arch.mmu_page_header_cache,
2308                 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2309                 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2310         };
2311
2312         return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2313 }
2314
2315 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2316                                                   unsigned int access)
2317 {
2318         struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2319         union kvm_mmu_page_role role;
2320
2321         role = parent_sp->role;
2322         role.level--;
2323         role.access = access;
2324         role.direct = direct;
2325         role.passthrough = 0;
2326
2327         /*
2328          * If the guest has 4-byte PTEs then that means it's using 32-bit,
2329          * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2330          * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2331          * shadow each guest page table with multiple shadow page tables, which
2332          * requires extra bookkeeping in the role.
2333          *
2334          * Specifically, to shadow the guest's page directory (which covers a
2335          * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2336          * 1GiB of the address space. @role.quadrant encodes which quarter of
2337          * the address space each maps.
2338          *
2339          * To shadow the guest's page tables (which each map a 4MiB region), KVM
2340          * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2341          * @role.quadrant encodes which half of the region they map.
2342          *
2343          * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2344          * consumes bits 29:21.  To consume bits 31:30, KVM's uses 4 shadow
2345          * PDPTEs; those 4 PAE page directories are pre-allocated and their
2346          * quadrant is assigned in mmu_alloc_root().   A 4-byte PTE consumes
2347          * bits 21:12, while an 8-byte PTE consumes bits 20:12.  To consume
2348          * bit 21 in the PTE (the child here), KVM propagates that bit to the
2349          * quadrant, i.e. sets quadrant to '0' or '1'.  The parent 8-byte PDE
2350          * covers bit 21 (see above), thus the quadrant is calculated from the
2351          * _least_ significant bit of the PDE index.
2352          */
2353         if (role.has_4_byte_gpte) {
2354                 WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2355                 role.quadrant = spte_index(sptep) & 1;
2356         }
2357
2358         return role;
2359 }
2360
2361 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2362                                                  u64 *sptep, gfn_t gfn,
2363                                                  bool direct, unsigned int access)
2364 {
2365         union kvm_mmu_page_role role;
2366
2367         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2368                 return ERR_PTR(-EEXIST);
2369
2370         role = kvm_mmu_child_role(sptep, direct, access);
2371         return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2372 }
2373
2374 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2375                                         struct kvm_vcpu *vcpu, hpa_t root,
2376                                         u64 addr)
2377 {
2378         iterator->addr = addr;
2379         iterator->shadow_addr = root;
2380         iterator->level = vcpu->arch.mmu->root_role.level;
2381
2382         if (iterator->level >= PT64_ROOT_4LEVEL &&
2383             vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2384             !vcpu->arch.mmu->root_role.direct)
2385                 iterator->level = PT32E_ROOT_LEVEL;
2386
2387         if (iterator->level == PT32E_ROOT_LEVEL) {
2388                 /*
2389                  * prev_root is currently only used for 64-bit hosts. So only
2390                  * the active root_hpa is valid here.
2391                  */
2392                 BUG_ON(root != vcpu->arch.mmu->root.hpa);
2393
2394                 iterator->shadow_addr
2395                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2396                 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2397                 --iterator->level;
2398                 if (!iterator->shadow_addr)
2399                         iterator->level = 0;
2400         }
2401 }
2402
2403 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2404                              struct kvm_vcpu *vcpu, u64 addr)
2405 {
2406         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2407                                     addr);
2408 }
2409
2410 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2411 {
2412         if (iterator->level < PG_LEVEL_4K)
2413                 return false;
2414
2415         iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2416         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2417         return true;
2418 }
2419
2420 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2421                                u64 spte)
2422 {
2423         if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2424                 iterator->level = 0;
2425                 return;
2426         }
2427
2428         iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2429         --iterator->level;
2430 }
2431
2432 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2433 {
2434         __shadow_walk_next(iterator, *iterator->sptep);
2435 }
2436
2437 static void __link_shadow_page(struct kvm *kvm,
2438                                struct kvm_mmu_memory_cache *cache, u64 *sptep,
2439                                struct kvm_mmu_page *sp, bool flush)
2440 {
2441         u64 spte;
2442
2443         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2444
2445         /*
2446          * If an SPTE is present already, it must be a leaf and therefore
2447          * a large one.  Drop it, and flush the TLB if needed, before
2448          * installing sp.
2449          */
2450         if (is_shadow_present_pte(*sptep))
2451                 drop_large_spte(kvm, sptep, flush);
2452
2453         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2454
2455         mmu_spte_set(sptep, spte);
2456
2457         mmu_page_add_parent_pte(cache, sp, sptep);
2458
2459         /*
2460          * The non-direct sub-pagetable must be updated before linking.  For
2461          * L1 sp, the pagetable is updated via kvm_sync_page() in
2462          * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2463          * so sp->unsync can be true or false.  For higher level non-direct
2464          * sp, the pagetable is updated/synced via mmu_sync_children() in
2465          * FNAME(fetch)(), so sp->unsync_children can only be false.
2466          * WARN_ON_ONCE() if anything happens unexpectedly.
2467          */
2468         if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2469                 mark_unsync(sptep);
2470 }
2471
2472 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2473                              struct kvm_mmu_page *sp)
2474 {
2475         __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2476 }
2477
2478 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2479                                    unsigned direct_access)
2480 {
2481         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2482                 struct kvm_mmu_page *child;
2483
2484                 /*
2485                  * For the direct sp, if the guest pte's dirty bit
2486                  * changed form clean to dirty, it will corrupt the
2487                  * sp's access: allow writable in the read-only sp,
2488                  * so we should update the spte at this point to get
2489                  * a new sp with the correct access.
2490                  */
2491                 child = spte_to_child_sp(*sptep);
2492                 if (child->role.access == direct_access)
2493                         return;
2494
2495                 drop_parent_pte(child, sptep);
2496                 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2497         }
2498 }
2499
2500 /* Returns the number of zapped non-leaf child shadow pages. */
2501 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2502                             u64 *spte, struct list_head *invalid_list)
2503 {
2504         u64 pte;
2505         struct kvm_mmu_page *child;
2506
2507         pte = *spte;
2508         if (is_shadow_present_pte(pte)) {
2509                 if (is_last_spte(pte, sp->role.level)) {
2510                         drop_spte(kvm, spte);
2511                 } else {
2512                         child = spte_to_child_sp(pte);
2513                         drop_parent_pte(child, spte);
2514
2515                         /*
2516                          * Recursively zap nested TDP SPs, parentless SPs are
2517                          * unlikely to be used again in the near future.  This
2518                          * avoids retaining a large number of stale nested SPs.
2519                          */
2520                         if (tdp_enabled && invalid_list &&
2521                             child->role.guest_mode && !child->parent_ptes.val)
2522                                 return kvm_mmu_prepare_zap_page(kvm, child,
2523                                                                 invalid_list);
2524                 }
2525         } else if (is_mmio_spte(pte)) {
2526                 mmu_spte_clear_no_track(spte);
2527         }
2528         return 0;
2529 }
2530
2531 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2532                                         struct kvm_mmu_page *sp,
2533                                         struct list_head *invalid_list)
2534 {
2535         int zapped = 0;
2536         unsigned i;
2537
2538         for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2539                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2540
2541         return zapped;
2542 }
2543
2544 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2545 {
2546         u64 *sptep;
2547         struct rmap_iterator iter;
2548
2549         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2550                 drop_parent_pte(sp, sptep);
2551 }
2552
2553 static int mmu_zap_unsync_children(struct kvm *kvm,
2554                                    struct kvm_mmu_page *parent,
2555                                    struct list_head *invalid_list)
2556 {
2557         int i, zapped = 0;
2558         struct mmu_page_path parents;
2559         struct kvm_mmu_pages pages;
2560
2561         if (parent->role.level == PG_LEVEL_4K)
2562                 return 0;
2563
2564         while (mmu_unsync_walk(parent, &pages)) {
2565                 struct kvm_mmu_page *sp;
2566
2567                 for_each_sp(pages, sp, parents, i) {
2568                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2569                         mmu_pages_clear_parents(&parents);
2570                         zapped++;
2571                 }
2572         }
2573
2574         return zapped;
2575 }
2576
2577 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2578                                        struct kvm_mmu_page *sp,
2579                                        struct list_head *invalid_list,
2580                                        int *nr_zapped)
2581 {
2582         bool list_unstable, zapped_root = false;
2583
2584         lockdep_assert_held_write(&kvm->mmu_lock);
2585         trace_kvm_mmu_prepare_zap_page(sp);
2586         ++kvm->stat.mmu_shadow_zapped;
2587         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2588         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2589         kvm_mmu_unlink_parents(sp);
2590
2591         /* Zapping children means active_mmu_pages has become unstable. */
2592         list_unstable = *nr_zapped;
2593
2594         if (!sp->role.invalid && sp_has_gptes(sp))
2595                 unaccount_shadowed(kvm, sp);
2596
2597         if (sp->unsync)
2598                 kvm_unlink_unsync_page(kvm, sp);
2599         if (!sp->root_count) {
2600                 /* Count self */
2601                 (*nr_zapped)++;
2602
2603                 /*
2604                  * Already invalid pages (previously active roots) are not on
2605                  * the active page list.  See list_del() in the "else" case of
2606                  * !sp->root_count.
2607                  */
2608                 if (sp->role.invalid)
2609                         list_add(&sp->link, invalid_list);
2610                 else
2611                         list_move(&sp->link, invalid_list);
2612                 kvm_unaccount_mmu_page(kvm, sp);
2613         } else {
2614                 /*
2615                  * Remove the active root from the active page list, the root
2616                  * will be explicitly freed when the root_count hits zero.
2617                  */
2618                 list_del(&sp->link);
2619
2620                 /*
2621                  * Obsolete pages cannot be used on any vCPUs, see the comment
2622                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2623                  * treats invalid shadow pages as being obsolete.
2624                  */
2625                 zapped_root = !is_obsolete_sp(kvm, sp);
2626         }
2627
2628         if (sp->nx_huge_page_disallowed)
2629                 unaccount_nx_huge_page(kvm, sp);
2630
2631         sp->role.invalid = 1;
2632
2633         /*
2634          * Make the request to free obsolete roots after marking the root
2635          * invalid, otherwise other vCPUs may not see it as invalid.
2636          */
2637         if (zapped_root)
2638                 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2639         return list_unstable;
2640 }
2641
2642 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2643                                      struct list_head *invalid_list)
2644 {
2645         int nr_zapped;
2646
2647         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2648         return nr_zapped;
2649 }
2650
2651 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2652                                     struct list_head *invalid_list)
2653 {
2654         struct kvm_mmu_page *sp, *nsp;
2655
2656         if (list_empty(invalid_list))
2657                 return;
2658
2659         /*
2660          * We need to make sure everyone sees our modifications to
2661          * the page tables and see changes to vcpu->mode here. The barrier
2662          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2663          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2664          *
2665          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2666          * guest mode and/or lockless shadow page table walks.
2667          */
2668         kvm_flush_remote_tlbs(kvm);
2669
2670         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2671                 WARN_ON(!sp->role.invalid || sp->root_count);
2672                 kvm_mmu_free_shadow_page(sp);
2673         }
2674 }
2675
2676 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2677                                                   unsigned long nr_to_zap)
2678 {
2679         unsigned long total_zapped = 0;
2680         struct kvm_mmu_page *sp, *tmp;
2681         LIST_HEAD(invalid_list);
2682         bool unstable;
2683         int nr_zapped;
2684
2685         if (list_empty(&kvm->arch.active_mmu_pages))
2686                 return 0;
2687
2688 restart:
2689         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2690                 /*
2691                  * Don't zap active root pages, the page itself can't be freed
2692                  * and zapping it will just force vCPUs to realloc and reload.
2693                  */
2694                 if (sp->root_count)
2695                         continue;
2696
2697                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2698                                                       &nr_zapped);
2699                 total_zapped += nr_zapped;
2700                 if (total_zapped >= nr_to_zap)
2701                         break;
2702
2703                 if (unstable)
2704                         goto restart;
2705         }
2706
2707         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2708
2709         kvm->stat.mmu_recycled += total_zapped;
2710         return total_zapped;
2711 }
2712
2713 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2714 {
2715         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2716                 return kvm->arch.n_max_mmu_pages -
2717                         kvm->arch.n_used_mmu_pages;
2718
2719         return 0;
2720 }
2721
2722 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2723 {
2724         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2725
2726         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2727                 return 0;
2728
2729         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2730
2731         /*
2732          * Note, this check is intentionally soft, it only guarantees that one
2733          * page is available, while the caller may end up allocating as many as
2734          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2735          * exceeding the (arbitrary by default) limit will not harm the host,
2736          * being too aggressive may unnecessarily kill the guest, and getting an
2737          * exact count is far more trouble than it's worth, especially in the
2738          * page fault paths.
2739          */
2740         if (!kvm_mmu_available_pages(vcpu->kvm))
2741                 return -ENOSPC;
2742         return 0;
2743 }
2744
2745 /*
2746  * Changing the number of mmu pages allocated to the vm
2747  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2748  */
2749 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2750 {
2751         write_lock(&kvm->mmu_lock);
2752
2753         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2754                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2755                                                   goal_nr_mmu_pages);
2756
2757                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2758         }
2759
2760         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2761
2762         write_unlock(&kvm->mmu_lock);
2763 }
2764
2765 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2766 {
2767         struct kvm_mmu_page *sp;
2768         LIST_HEAD(invalid_list);
2769         int r;
2770
2771         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2772         r = 0;
2773         write_lock(&kvm->mmu_lock);
2774         for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2775                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2776                          sp->role.word);
2777                 r = 1;
2778                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2779         }
2780         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2781         write_unlock(&kvm->mmu_lock);
2782
2783         return r;
2784 }
2785
2786 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2787 {
2788         gpa_t gpa;
2789         int r;
2790
2791         if (vcpu->arch.mmu->root_role.direct)
2792                 return 0;
2793
2794         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2795
2796         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2797
2798         return r;
2799 }
2800
2801 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2802 {
2803         trace_kvm_mmu_unsync_page(sp);
2804         ++kvm->stat.mmu_unsync;
2805         sp->unsync = 1;
2806
2807         kvm_mmu_mark_parents_unsync(sp);
2808 }
2809
2810 /*
2811  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2812  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2813  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2814  * be write-protected.
2815  */
2816 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2817                             gfn_t gfn, bool can_unsync, bool prefetch)
2818 {
2819         struct kvm_mmu_page *sp;
2820         bool locked = false;
2821
2822         /*
2823          * Force write-protection if the page is being tracked.  Note, the page
2824          * track machinery is used to write-protect upper-level shadow pages,
2825          * i.e. this guards the role.level == 4K assertion below!
2826          */
2827         if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2828                 return -EPERM;
2829
2830         /*
2831          * The page is not write-tracked, mark existing shadow pages unsync
2832          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2833          * that case, KVM must complete emulation of the guest TLB flush before
2834          * allowing shadow pages to become unsync (writable by the guest).
2835          */
2836         for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2837                 if (!can_unsync)
2838                         return -EPERM;
2839
2840                 if (sp->unsync)
2841                         continue;
2842
2843                 if (prefetch)
2844                         return -EEXIST;
2845
2846                 /*
2847                  * TDP MMU page faults require an additional spinlock as they
2848                  * run with mmu_lock held for read, not write, and the unsync
2849                  * logic is not thread safe.  Take the spinklock regardless of
2850                  * the MMU type to avoid extra conditionals/parameters, there's
2851                  * no meaningful penalty if mmu_lock is held for write.
2852                  */
2853                 if (!locked) {
2854                         locked = true;
2855                         spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2856
2857                         /*
2858                          * Recheck after taking the spinlock, a different vCPU
2859                          * may have since marked the page unsync.  A false
2860                          * positive on the unprotected check above is not
2861                          * possible as clearing sp->unsync _must_ hold mmu_lock
2862                          * for write, i.e. unsync cannot transition from 0->1
2863                          * while this CPU holds mmu_lock for read (or write).
2864                          */
2865                         if (READ_ONCE(sp->unsync))
2866                                 continue;
2867                 }
2868
2869                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2870                 kvm_unsync_page(kvm, sp);
2871         }
2872         if (locked)
2873                 spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2874
2875         /*
2876          * We need to ensure that the marking of unsync pages is visible
2877          * before the SPTE is updated to allow writes because
2878          * kvm_mmu_sync_roots() checks the unsync flags without holding
2879          * the MMU lock and so can race with this. If the SPTE was updated
2880          * before the page had been marked as unsync-ed, something like the
2881          * following could happen:
2882          *
2883          * CPU 1                    CPU 2
2884          * ---------------------------------------------------------------------
2885          * 1.2 Host updates SPTE
2886          *     to be writable
2887          *                      2.1 Guest writes a GPTE for GVA X.
2888          *                          (GPTE being in the guest page table shadowed
2889          *                           by the SP from CPU 1.)
2890          *                          This reads SPTE during the page table walk.
2891          *                          Since SPTE.W is read as 1, there is no
2892          *                          fault.
2893          *
2894          *                      2.2 Guest issues TLB flush.
2895          *                          That causes a VM Exit.
2896          *
2897          *                      2.3 Walking of unsync pages sees sp->unsync is
2898          *                          false and skips the page.
2899          *
2900          *                      2.4 Guest accesses GVA X.
2901          *                          Since the mapping in the SP was not updated,
2902          *                          so the old mapping for GVA X incorrectly
2903          *                          gets used.
2904          * 1.1 Host marks SP
2905          *     as unsync
2906          *     (sp->unsync = true)
2907          *
2908          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2909          * the situation in 2.4 does not arise.  It pairs with the read barrier
2910          * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2911          */
2912         smp_wmb();
2913
2914         return 0;
2915 }
2916
2917 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2918                         u64 *sptep, unsigned int pte_access, gfn_t gfn,
2919                         kvm_pfn_t pfn, struct kvm_page_fault *fault)
2920 {
2921         struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2922         int level = sp->role.level;
2923         int was_rmapped = 0;
2924         int ret = RET_PF_FIXED;
2925         bool flush = false;
2926         bool wrprot;
2927         u64 spte;
2928
2929         /* Prefetching always gets a writable pfn.  */
2930         bool host_writable = !fault || fault->map_writable;
2931         bool prefetch = !fault || fault->prefetch;
2932         bool write_fault = fault && fault->write;
2933
2934         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2935                  *sptep, write_fault, gfn);
2936
2937         if (unlikely(is_noslot_pfn(pfn))) {
2938                 vcpu->stat.pf_mmio_spte_created++;
2939                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2940                 return RET_PF_EMULATE;
2941         }
2942
2943         if (is_shadow_present_pte(*sptep)) {
2944                 /*
2945                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2946                  * the parent of the now unreachable PTE.
2947                  */
2948                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2949                         struct kvm_mmu_page *child;
2950                         u64 pte = *sptep;
2951
2952                         child = spte_to_child_sp(pte);
2953                         drop_parent_pte(child, sptep);
2954                         flush = true;
2955                 } else if (pfn != spte_to_pfn(*sptep)) {
2956                         pgprintk("hfn old %llx new %llx\n",
2957                                  spte_to_pfn(*sptep), pfn);
2958                         drop_spte(vcpu->kvm, sptep);
2959                         flush = true;
2960                 } else
2961                         was_rmapped = 1;
2962         }
2963
2964         wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2965                            true, host_writable, &spte);
2966
2967         if (*sptep == spte) {
2968                 ret = RET_PF_SPURIOUS;
2969         } else {
2970                 flush |= mmu_spte_update(sptep, spte);
2971                 trace_kvm_mmu_set_spte(level, gfn, sptep);
2972         }
2973
2974         if (wrprot) {
2975                 if (write_fault)
2976                         ret = RET_PF_EMULATE;
2977         }
2978
2979         if (flush)
2980                 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
2981
2982         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2983
2984         if (!was_rmapped) {
2985                 WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2986                 rmap_add(vcpu, slot, sptep, gfn, pte_access);
2987         } else {
2988                 /* Already rmapped but the pte_access bits may have changed. */
2989                 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
2990         }
2991
2992         return ret;
2993 }
2994
2995 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2996                                     struct kvm_mmu_page *sp,
2997                                     u64 *start, u64 *end)
2998 {
2999         struct page *pages[PTE_PREFETCH_NUM];
3000         struct kvm_memory_slot *slot;
3001         unsigned int access = sp->role.access;
3002         int i, ret;
3003         gfn_t gfn;
3004
3005         gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
3006         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3007         if (!slot)
3008                 return -1;
3009
3010         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3011         if (ret <= 0)
3012                 return -1;
3013
3014         for (i = 0; i < ret; i++, gfn++, start++) {
3015                 mmu_set_spte(vcpu, slot, start, access, gfn,
3016                              page_to_pfn(pages[i]), NULL);
3017                 put_page(pages[i]);
3018         }
3019
3020         return 0;
3021 }
3022
3023 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3024                                   struct kvm_mmu_page *sp, u64 *sptep)
3025 {
3026         u64 *spte, *start = NULL;
3027         int i;
3028
3029         WARN_ON(!sp->role.direct);
3030
3031         i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3032         spte = sp->spt + i;
3033
3034         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3035                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3036                         if (!start)
3037                                 continue;
3038                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3039                                 return;
3040                         start = NULL;
3041                 } else if (!start)
3042                         start = spte;
3043         }
3044         if (start)
3045                 direct_pte_prefetch_many(vcpu, sp, start, spte);
3046 }
3047
3048 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3049 {
3050         struct kvm_mmu_page *sp;
3051
3052         sp = sptep_to_sp(sptep);
3053
3054         /*
3055          * Without accessed bits, there's no way to distinguish between
3056          * actually accessed translations and prefetched, so disable pte
3057          * prefetch if accessed bits aren't available.
3058          */
3059         if (sp_ad_disabled(sp))
3060                 return;
3061
3062         if (sp->role.level > PG_LEVEL_4K)
3063                 return;
3064
3065         /*
3066          * If addresses are being invalidated, skip prefetching to avoid
3067          * accidentally prefetching those addresses.
3068          */
3069         if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3070                 return;
3071
3072         __direct_pte_prefetch(vcpu, sp, sptep);
3073 }
3074
3075 /*
3076  * Lookup the mapping level for @gfn in the current mm.
3077  *
3078  * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
3079  * consumer to be tied into KVM's handlers for MMU notifier events!
3080  *
3081  * There are several ways to safely use this helper:
3082  *
3083  * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before
3084  *   consuming it.  In this case, mmu_lock doesn't need to be held during the
3085  *   lookup, but it does need to be held while checking the MMU notifier.
3086  *
3087  * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3088  *   event for the hva.  This can be done by explicit checking the MMU notifier
3089  *   or by ensuring that KVM already has a valid mapping that covers the hva.
3090  *
3091  * - Do not use the result to install new mappings, e.g. use the host mapping
3092  *   level only to decide whether or not to zap an entry.  In this case, it's
3093  *   not required to hold mmu_lock (though it's highly likely the caller will
3094  *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
3095  *
3096  * Note!  The lookup can still race with modifications to host page tables, but
3097  * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3098  * race with the primary MMU occurs.
3099  */
3100 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3101                                   const struct kvm_memory_slot *slot)
3102 {
3103         int level = PG_LEVEL_4K;
3104         unsigned long hva;
3105         unsigned long flags;
3106         pgd_t pgd;
3107         p4d_t p4d;
3108         pud_t pud;
3109         pmd_t pmd;
3110
3111         /*
3112          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3113          * is not solely for performance, it's also necessary to avoid the
3114          * "writable" check in __gfn_to_hva_many(), which will always fail on
3115          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3116          * page fault steps have already verified the guest isn't writing a
3117          * read-only memslot.
3118          */
3119         hva = __gfn_to_hva_memslot(slot, gfn);
3120
3121         /*
3122          * Disable IRQs to prevent concurrent tear down of host page tables,
3123          * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3124          * the original page table.
3125          */
3126         local_irq_save(flags);
3127
3128         /*
3129          * Read each entry once.  As above, a non-leaf entry can be promoted to
3130          * a huge page _during_ this walk.  Re-reading the entry could send the
3131          * walk into the weeks, e.g. p*d_large() returns false (sees the old
3132          * value) and then p*d_offset() walks into the target huge page instead
3133          * of the old page table (sees the new value).
3134          */
3135         pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3136         if (pgd_none(pgd))
3137                 goto out;
3138
3139         p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3140         if (p4d_none(p4d) || !p4d_present(p4d))
3141                 goto out;
3142
3143         pud = READ_ONCE(*pud_offset(&p4d, hva));
3144         if (pud_none(pud) || !pud_present(pud))
3145                 goto out;
3146
3147         if (pud_large(pud)) {
3148                 level = PG_LEVEL_1G;
3149                 goto out;
3150         }
3151
3152         pmd = READ_ONCE(*pmd_offset(&pud, hva));
3153         if (pmd_none(pmd) || !pmd_present(pmd))
3154                 goto out;
3155
3156         if (pmd_large(pmd))
3157                 level = PG_LEVEL_2M;
3158
3159 out:
3160         local_irq_restore(flags);
3161         return level;
3162 }
3163
3164 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3165                               const struct kvm_memory_slot *slot, gfn_t gfn,
3166                               int max_level)
3167 {
3168         struct kvm_lpage_info *linfo;
3169         int host_level;
3170
3171         max_level = min(max_level, max_huge_page_level);
3172         for ( ; max_level > PG_LEVEL_4K; max_level--) {
3173                 linfo = lpage_info_slot(gfn, slot, max_level);
3174                 if (!linfo->disallow_lpage)
3175                         break;
3176         }
3177
3178         if (max_level == PG_LEVEL_4K)
3179                 return PG_LEVEL_4K;
3180
3181         host_level = host_pfn_mapping_level(kvm, gfn, slot);
3182         return min(host_level, max_level);
3183 }
3184
3185 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3186 {
3187         struct kvm_memory_slot *slot = fault->slot;
3188         kvm_pfn_t mask;
3189
3190         fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3191
3192         if (unlikely(fault->max_level == PG_LEVEL_4K))
3193                 return;
3194
3195         if (is_error_noslot_pfn(fault->pfn))
3196                 return;
3197
3198         if (kvm_slot_dirty_track_enabled(slot))
3199                 return;
3200
3201         /*
3202          * Enforce the iTLB multihit workaround after capturing the requested
3203          * level, which will be used to do precise, accurate accounting.
3204          */
3205         fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3206                                                      fault->gfn, fault->max_level);
3207         if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3208                 return;
3209
3210         /*
3211          * mmu_invalidate_retry() was successful and mmu_lock is held, so
3212          * the pmd can't be split from under us.
3213          */
3214         fault->goal_level = fault->req_level;
3215         mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3216         VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3217         fault->pfn &= ~mask;
3218 }
3219
3220 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3221 {
3222         if (cur_level > PG_LEVEL_4K &&
3223             cur_level == fault->goal_level &&
3224             is_shadow_present_pte(spte) &&
3225             !is_large_pte(spte) &&
3226             spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3227                 /*
3228                  * A small SPTE exists for this pfn, but FNAME(fetch),
3229                  * direct_map(), or kvm_tdp_mmu_map() would like to create a
3230                  * large PTE instead: just force them to go down another level,
3231                  * patching back for them into pfn the next 9 bits of the
3232                  * address.
3233                  */
3234                 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3235                                 KVM_PAGES_PER_HPAGE(cur_level - 1);
3236                 fault->pfn |= fault->gfn & page_mask;
3237                 fault->goal_level--;
3238         }
3239 }
3240
3241 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3242 {
3243         struct kvm_shadow_walk_iterator it;
3244         struct kvm_mmu_page *sp;
3245         int ret;
3246         gfn_t base_gfn = fault->gfn;
3247
3248         kvm_mmu_hugepage_adjust(vcpu, fault);
3249
3250         trace_kvm_mmu_spte_requested(fault);
3251         for_each_shadow_entry(vcpu, fault->addr, it) {
3252                 /*
3253                  * We cannot overwrite existing page tables with an NX
3254                  * large page, as the leaf could be executable.
3255                  */
3256                 if (fault->nx_huge_page_workaround_enabled)
3257                         disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3258
3259                 base_gfn = gfn_round_for_level(fault->gfn, it.level);
3260                 if (it.level == fault->goal_level)
3261                         break;
3262
3263                 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3264                 if (sp == ERR_PTR(-EEXIST))
3265                         continue;
3266
3267                 link_shadow_page(vcpu, it.sptep, sp);
3268                 if (fault->huge_page_disallowed)
3269                         account_nx_huge_page(vcpu->kvm, sp,
3270                                              fault->req_level >= it.level);
3271         }
3272
3273         if (WARN_ON_ONCE(it.level != fault->goal_level))
3274                 return -EFAULT;
3275
3276         ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3277                            base_gfn, fault->pfn, fault);
3278         if (ret == RET_PF_SPURIOUS)
3279                 return ret;
3280
3281         direct_pte_prefetch(vcpu, it.sptep);
3282         return ret;
3283 }
3284
3285 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3286 {
3287         unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3288
3289         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3290 }
3291
3292 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3293 {
3294         if (is_sigpending_pfn(fault->pfn)) {
3295                 kvm_handle_signal_exit(vcpu);
3296                 return -EINTR;
3297         }
3298
3299         /*
3300          * Do not cache the mmio info caused by writing the readonly gfn
3301          * into the spte otherwise read access on readonly gfn also can
3302          * caused mmio page fault and treat it as mmio access.
3303          */
3304         if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3305                 return RET_PF_EMULATE;
3306
3307         if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3308                 kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3309                 return RET_PF_RETRY;
3310         }
3311
3312         return -EFAULT;
3313 }
3314
3315 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3316                                    struct kvm_page_fault *fault,
3317                                    unsigned int access)
3318 {
3319         gva_t gva = fault->is_tdp ? 0 : fault->addr;
3320
3321         vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3322                              access & shadow_mmio_access_mask);
3323
3324         /*
3325          * If MMIO caching is disabled, emulate immediately without
3326          * touching the shadow page tables as attempting to install an
3327          * MMIO SPTE will just be an expensive nop.
3328          */
3329         if (unlikely(!enable_mmio_caching))
3330                 return RET_PF_EMULATE;
3331
3332         /*
3333          * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3334          * any guest that generates such gfns is running nested and is being
3335          * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3336          * only if L1's MAXPHYADDR is inaccurate with respect to the
3337          * hardware's).
3338          */
3339         if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3340                 return RET_PF_EMULATE;
3341
3342         return RET_PF_CONTINUE;
3343 }
3344
3345 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3346 {
3347         /*
3348          * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3349          * reach the common page fault handler if the SPTE has an invalid MMIO
3350          * generation number.  Refreshing the MMIO generation needs to go down
3351          * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3352          */
3353         if (fault->rsvd)
3354                 return false;
3355
3356         /*
3357          * #PF can be fast if:
3358          *
3359          * 1. The shadow page table entry is not present and A/D bits are
3360          *    disabled _by KVM_, which could mean that the fault is potentially
3361          *    caused by access tracking (if enabled).  If A/D bits are enabled
3362          *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3363          *    bits for L2 and employ access tracking, but the fast page fault
3364          *    mechanism only supports direct MMUs.
3365          * 2. The shadow page table entry is present, the access is a write,
3366          *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3367          *    the fault was caused by a write-protection violation.  If the
3368          *    SPTE is MMU-writable (determined later), the fault can be fixed
3369          *    by setting the Writable bit, which can be done out of mmu_lock.
3370          */
3371         if (!fault->present)
3372                 return !kvm_ad_enabled();
3373
3374         /*
3375          * Note, instruction fetches and writes are mutually exclusive, ignore
3376          * the "exec" flag.
3377          */
3378         return fault->write;
3379 }
3380
3381 /*
3382  * Returns true if the SPTE was fixed successfully. Otherwise,
3383  * someone else modified the SPTE from its original value.
3384  */
3385 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3386                                     struct kvm_page_fault *fault,
3387                                     u64 *sptep, u64 old_spte, u64 new_spte)
3388 {
3389         /*
3390          * Theoretically we could also set dirty bit (and flush TLB) here in
3391          * order to eliminate unnecessary PML logging. See comments in
3392          * set_spte. But fast_page_fault is very unlikely to happen with PML
3393          * enabled, so we do not do this. This might result in the same GPA
3394          * to be logged in PML buffer again when the write really happens, and
3395          * eventually to be called by mark_page_dirty twice. But it's also no
3396          * harm. This also avoids the TLB flush needed after setting dirty bit
3397          * so non-PML cases won't be impacted.
3398          *
3399          * Compare with set_spte where instead shadow_dirty_mask is set.
3400          */
3401         if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3402                 return false;
3403
3404         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3405                 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3406
3407         return true;
3408 }
3409
3410 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3411 {
3412         if (fault->exec)
3413                 return is_executable_pte(spte);
3414
3415         if (fault->write)
3416                 return is_writable_pte(spte);
3417
3418         /* Fault was on Read access */
3419         return spte & PT_PRESENT_MASK;
3420 }
3421
3422 /*
3423  * Returns the last level spte pointer of the shadow page walk for the given
3424  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3425  * walk could be performed, returns NULL and *spte does not contain valid data.
3426  *
3427  * Contract:
3428  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3429  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3430  */
3431 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3432 {
3433         struct kvm_shadow_walk_iterator iterator;
3434         u64 old_spte;
3435         u64 *sptep = NULL;
3436
3437         for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3438                 sptep = iterator.sptep;
3439                 *spte = old_spte;
3440         }
3441
3442         return sptep;
3443 }
3444
3445 /*
3446  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3447  */
3448 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3449 {
3450         struct kvm_mmu_page *sp;
3451         int ret = RET_PF_INVALID;
3452         u64 spte = 0ull;
3453         u64 *sptep = NULL;
3454         uint retry_count = 0;
3455
3456         if (!page_fault_can_be_fast(fault))
3457                 return ret;
3458
3459         walk_shadow_page_lockless_begin(vcpu);
3460
3461         do {
3462                 u64 new_spte;
3463
3464                 if (tdp_mmu_enabled)
3465                         sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3466                 else
3467                         sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3468
3469                 if (!is_shadow_present_pte(spte))
3470                         break;
3471
3472                 sp = sptep_to_sp(sptep);
3473                 if (!is_last_spte(spte, sp->role.level))
3474                         break;
3475
3476                 /*
3477                  * Check whether the memory access that caused the fault would
3478                  * still cause it if it were to be performed right now. If not,
3479                  * then this is a spurious fault caused by TLB lazily flushed,
3480                  * or some other CPU has already fixed the PTE after the
3481                  * current CPU took the fault.
3482                  *
3483                  * Need not check the access of upper level table entries since
3484                  * they are always ACC_ALL.
3485                  */
3486                 if (is_access_allowed(fault, spte)) {
3487                         ret = RET_PF_SPURIOUS;
3488                         break;
3489                 }
3490
3491                 new_spte = spte;
3492
3493                 /*
3494                  * KVM only supports fixing page faults outside of MMU lock for
3495                  * direct MMUs, nested MMUs are always indirect, and KVM always
3496                  * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
3497                  * enabled, the SPTE can't be an access-tracked SPTE.
3498                  */
3499                 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3500                         new_spte = restore_acc_track_spte(new_spte);
3501
3502                 /*
3503                  * To keep things simple, only SPTEs that are MMU-writable can
3504                  * be made fully writable outside of mmu_lock, e.g. only SPTEs
3505                  * that were write-protected for dirty-logging or access
3506                  * tracking are handled here.  Don't bother checking if the
3507                  * SPTE is writable to prioritize running with A/D bits enabled.
3508                  * The is_access_allowed() check above handles the common case
3509                  * of the fault being spurious, and the SPTE is known to be
3510                  * shadow-present, i.e. except for access tracking restoration
3511                  * making the new SPTE writable, the check is wasteful.
3512                  */
3513                 if (fault->write && is_mmu_writable_spte(spte)) {
3514                         new_spte |= PT_WRITABLE_MASK;
3515
3516                         /*
3517                          * Do not fix write-permission on the large spte when
3518                          * dirty logging is enabled. Since we only dirty the
3519                          * first page into the dirty-bitmap in
3520                          * fast_pf_fix_direct_spte(), other pages are missed
3521                          * if its slot has dirty logging enabled.
3522                          *
3523                          * Instead, we let the slow page fault path create a
3524                          * normal spte to fix the access.
3525                          */
3526                         if (sp->role.level > PG_LEVEL_4K &&
3527                             kvm_slot_dirty_track_enabled(fault->slot))
3528                                 break;
3529                 }
3530
3531                 /* Verify that the fault can be handled in the fast path */
3532                 if (new_spte == spte ||
3533                     !is_access_allowed(fault, new_spte))
3534                         break;
3535
3536                 /*
3537                  * Currently, fast page fault only works for direct mapping
3538                  * since the gfn is not stable for indirect shadow page. See
3539                  * Documentation/virt/kvm/locking.rst to get more detail.
3540                  */
3541                 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3542                         ret = RET_PF_FIXED;
3543                         break;
3544                 }
3545
3546                 if (++retry_count > 4) {
3547                         pr_warn_once("Fast #PF retrying more than 4 times.\n");
3548                         break;
3549                 }
3550
3551         } while (true);
3552
3553         trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3554         walk_shadow_page_lockless_end(vcpu);
3555
3556         if (ret != RET_PF_INVALID)
3557                 vcpu->stat.pf_fast++;
3558
3559         return ret;
3560 }
3561
3562 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3563                                struct list_head *invalid_list)
3564 {
3565         struct kvm_mmu_page *sp;
3566
3567         if (!VALID_PAGE(*root_hpa))
3568                 return;
3569
3570         /*
3571          * The "root" may be a special root, e.g. a PAE entry, treat it as a
3572          * SPTE to ensure any non-PA bits are dropped.
3573          */
3574         sp = spte_to_child_sp(*root_hpa);
3575         if (WARN_ON(!sp))
3576                 return;
3577
3578         if (is_tdp_mmu_page(sp))
3579                 kvm_tdp_mmu_put_root(kvm, sp, false);
3580         else if (!--sp->root_count && sp->role.invalid)
3581                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3582
3583         *root_hpa = INVALID_PAGE;
3584 }
3585
3586 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3587 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3588                         ulong roots_to_free)
3589 {
3590         int i;
3591         LIST_HEAD(invalid_list);
3592         bool free_active_root;
3593
3594         WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3595
3596         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3597
3598         /* Before acquiring the MMU lock, see if we need to do any real work. */
3599         free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3600                 && VALID_PAGE(mmu->root.hpa);
3601
3602         if (!free_active_root) {
3603                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3604                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3605                             VALID_PAGE(mmu->prev_roots[i].hpa))
3606                                 break;
3607
3608                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3609                         return;
3610         }
3611
3612         write_lock(&kvm->mmu_lock);
3613
3614         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3615                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3616                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3617                                            &invalid_list);
3618
3619         if (free_active_root) {
3620                 if (to_shadow_page(mmu->root.hpa)) {
3621                         mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3622                 } else if (mmu->pae_root) {
3623                         for (i = 0; i < 4; ++i) {
3624                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3625                                         continue;
3626
3627                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3628                                                    &invalid_list);
3629                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3630                         }
3631                 }
3632                 mmu->root.hpa = INVALID_PAGE;
3633                 mmu->root.pgd = 0;
3634         }
3635
3636         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3637         write_unlock(&kvm->mmu_lock);
3638 }
3639 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3640
3641 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3642 {
3643         unsigned long roots_to_free = 0;
3644         hpa_t root_hpa;
3645         int i;
3646
3647         /*
3648          * This should not be called while L2 is active, L2 can't invalidate
3649          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3650          */
3651         WARN_ON_ONCE(mmu->root_role.guest_mode);
3652
3653         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3654                 root_hpa = mmu->prev_roots[i].hpa;
3655                 if (!VALID_PAGE(root_hpa))
3656                         continue;
3657
3658                 if (!to_shadow_page(root_hpa) ||
3659                         to_shadow_page(root_hpa)->role.guest_mode)
3660                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3661         }
3662
3663         kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3664 }
3665 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3666
3667
3668 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3669 {
3670         int ret = 0;
3671
3672         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3673                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3674                 ret = 1;
3675         }
3676
3677         return ret;
3678 }
3679
3680 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3681                             u8 level)
3682 {
3683         union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3684         struct kvm_mmu_page *sp;
3685
3686         role.level = level;
3687         role.quadrant = quadrant;
3688
3689         WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3690         WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3691
3692         sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3693         ++sp->root_count;
3694
3695         return __pa(sp->spt);
3696 }
3697
3698 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3699 {
3700         struct kvm_mmu *mmu = vcpu->arch.mmu;
3701         u8 shadow_root_level = mmu->root_role.level;
3702         hpa_t root;
3703         unsigned i;
3704         int r;
3705
3706         write_lock(&vcpu->kvm->mmu_lock);
3707         r = make_mmu_pages_available(vcpu);
3708         if (r < 0)
3709                 goto out_unlock;
3710
3711         if (tdp_mmu_enabled) {
3712                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3713                 mmu->root.hpa = root;
3714         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3715                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3716                 mmu->root.hpa = root;
3717         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3718                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3719                         r = -EIO;
3720                         goto out_unlock;
3721                 }
3722
3723                 for (i = 0; i < 4; ++i) {
3724                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3725
3726                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3727                                               PT32_ROOT_LEVEL);
3728                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3729                                            shadow_me_value;
3730                 }
3731                 mmu->root.hpa = __pa(mmu->pae_root);
3732         } else {
3733                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3734                 r = -EIO;
3735                 goto out_unlock;
3736         }
3737
3738         /* root.pgd is ignored for direct MMUs. */
3739         mmu->root.pgd = 0;
3740 out_unlock:
3741         write_unlock(&vcpu->kvm->mmu_lock);
3742         return r;
3743 }
3744
3745 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3746 {
3747         struct kvm_memslots *slots;
3748         struct kvm_memory_slot *slot;
3749         int r = 0, i, bkt;
3750
3751         /*
3752          * Check if this is the first shadow root being allocated before
3753          * taking the lock.
3754          */
3755         if (kvm_shadow_root_allocated(kvm))
3756                 return 0;
3757
3758         mutex_lock(&kvm->slots_arch_lock);
3759
3760         /* Recheck, under the lock, whether this is the first shadow root. */
3761         if (kvm_shadow_root_allocated(kvm))
3762                 goto out_unlock;
3763
3764         /*
3765          * Check if anything actually needs to be allocated, e.g. all metadata
3766          * will be allocated upfront if TDP is disabled.
3767          */
3768         if (kvm_memslots_have_rmaps(kvm) &&
3769             kvm_page_track_write_tracking_enabled(kvm))
3770                 goto out_success;
3771
3772         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
3773                 slots = __kvm_memslots(kvm, i);
3774                 kvm_for_each_memslot(slot, bkt, slots) {
3775                         /*
3776                          * Both of these functions are no-ops if the target is
3777                          * already allocated, so unconditionally calling both
3778                          * is safe.  Intentionally do NOT free allocations on
3779                          * failure to avoid having to track which allocations
3780                          * were made now versus when the memslot was created.
3781                          * The metadata is guaranteed to be freed when the slot
3782                          * is freed, and will be kept/used if userspace retries
3783                          * KVM_RUN instead of killing the VM.
3784                          */
3785                         r = memslot_rmap_alloc(slot, slot->npages);
3786                         if (r)
3787                                 goto out_unlock;
3788                         r = kvm_page_track_write_tracking_alloc(slot);
3789                         if (r)
3790                                 goto out_unlock;
3791                 }
3792         }
3793
3794         /*
3795          * Ensure that shadow_root_allocated becomes true strictly after
3796          * all the related pointers are set.
3797          */
3798 out_success:
3799         smp_store_release(&kvm->arch.shadow_root_allocated, true);
3800
3801 out_unlock:
3802         mutex_unlock(&kvm->slots_arch_lock);
3803         return r;
3804 }
3805
3806 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3807 {
3808         struct kvm_mmu *mmu = vcpu->arch.mmu;
3809         u64 pdptrs[4], pm_mask;
3810         gfn_t root_gfn, root_pgd;
3811         int quadrant, i, r;
3812         hpa_t root;
3813
3814         root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
3815         root_gfn = root_pgd >> PAGE_SHIFT;
3816
3817         if (mmu_check_root(vcpu, root_gfn))
3818                 return 1;
3819
3820         /*
3821          * On SVM, reading PDPTRs might access guest memory, which might fault
3822          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3823          */
3824         if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3825                 for (i = 0; i < 4; ++i) {
3826                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3827                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3828                                 continue;
3829
3830                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3831                                 return 1;
3832                 }
3833         }
3834
3835         r = mmu_first_shadow_root_alloc(vcpu->kvm);
3836         if (r)
3837                 return r;
3838
3839         write_lock(&vcpu->kvm->mmu_lock);
3840         r = make_mmu_pages_available(vcpu);
3841         if (r < 0)
3842                 goto out_unlock;
3843
3844         /*
3845          * Do we shadow a long mode page table? If so we need to
3846          * write-protect the guests page table root.
3847          */
3848         if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3849                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3850                                       mmu->root_role.level);
3851                 mmu->root.hpa = root;
3852                 goto set_root_pgd;
3853         }
3854
3855         if (WARN_ON_ONCE(!mmu->pae_root)) {
3856                 r = -EIO;
3857                 goto out_unlock;
3858         }
3859
3860         /*
3861          * We shadow a 32 bit page table. This may be a legacy 2-level
3862          * or a PAE 3-level page table. In either case we need to be aware that
3863          * the shadow page table may be a PAE or a long mode page table.
3864          */
3865         pm_mask = PT_PRESENT_MASK | shadow_me_value;
3866         if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3867                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3868
3869                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3870                         r = -EIO;
3871                         goto out_unlock;
3872                 }
3873                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3874
3875                 if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3876                         if (WARN_ON_ONCE(!mmu->pml5_root)) {
3877                                 r = -EIO;
3878                                 goto out_unlock;
3879                         }
3880                         mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3881                 }
3882         }
3883
3884         for (i = 0; i < 4; ++i) {
3885                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3886
3887                 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3888                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3889                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3890                                 continue;
3891                         }
3892                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3893                 }
3894
3895                 /*
3896                  * If shadowing 32-bit non-PAE page tables, each PAE page
3897                  * directory maps one quarter of the guest's non-PAE page
3898                  * directory. Othwerise each PAE page direct shadows one guest
3899                  * PAE page directory so that quadrant should be 0.
3900                  */
3901                 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3902
3903                 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3904                 mmu->pae_root[i] = root | pm_mask;
3905         }
3906
3907         if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3908                 mmu->root.hpa = __pa(mmu->pml5_root);
3909         else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3910                 mmu->root.hpa = __pa(mmu->pml4_root);
3911         else
3912                 mmu->root.hpa = __pa(mmu->pae_root);
3913
3914 set_root_pgd:
3915         mmu->root.pgd = root_pgd;
3916 out_unlock:
3917         write_unlock(&vcpu->kvm->mmu_lock);
3918
3919         return r;
3920 }
3921
3922 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3923 {
3924         struct kvm_mmu *mmu = vcpu->arch.mmu;
3925         bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3926         u64 *pml5_root = NULL;
3927         u64 *pml4_root = NULL;
3928         u64 *pae_root;
3929
3930         /*
3931          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3932          * tables are allocated and initialized at root creation as there is no
3933          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3934          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3935          */
3936         if (mmu->root_role.direct ||
3937             mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3938             mmu->root_role.level < PT64_ROOT_4LEVEL)
3939                 return 0;
3940
3941         /*
3942          * NPT, the only paging mode that uses this horror, uses a fixed number
3943          * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3944          * all MMus are 5-level.  Thus, this can safely require that pml5_root
3945          * is allocated if the other roots are valid and pml5 is needed, as any
3946          * prior MMU would also have required pml5.
3947          */
3948         if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3949                 return 0;
3950
3951         /*
3952          * The special roots should always be allocated in concert.  Yell and
3953          * bail if KVM ends up in a state where only one of the roots is valid.
3954          */
3955         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3956                          (need_pml5 && mmu->pml5_root)))
3957                 return -EIO;
3958
3959         /*
3960          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3961          * doesn't need to be decrypted.
3962          */
3963         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3964         if (!pae_root)
3965                 return -ENOMEM;
3966
3967 #ifdef CONFIG_X86_64
3968         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3969         if (!pml4_root)
3970                 goto err_pml4;
3971
3972         if (need_pml5) {
3973                 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3974                 if (!pml5_root)
3975                         goto err_pml5;
3976         }
3977 #endif
3978
3979         mmu->pae_root = pae_root;
3980         mmu->pml4_root = pml4_root;
3981         mmu->pml5_root = pml5_root;
3982
3983         return 0;
3984
3985 #ifdef CONFIG_X86_64
3986 err_pml5:
3987         free_page((unsigned long)pml4_root);
3988 err_pml4:
3989         free_page((unsigned long)pae_root);
3990         return -ENOMEM;
3991 #endif
3992 }
3993
3994 static bool is_unsync_root(hpa_t root)
3995 {
3996         struct kvm_mmu_page *sp;
3997
3998         if (!VALID_PAGE(root))
3999                 return false;
4000
4001         /*
4002          * The read barrier orders the CPU's read of SPTE.W during the page table
4003          * walk before the reads of sp->unsync/sp->unsync_children here.
4004          *
4005          * Even if another CPU was marking the SP as unsync-ed simultaneously,
4006          * any guest page table changes are not guaranteed to be visible anyway
4007          * until this VCPU issues a TLB flush strictly after those changes are
4008          * made.  We only need to ensure that the other CPU sets these flags
4009          * before any actual changes to the page tables are made.  The comments
4010          * in mmu_try_to_unsync_pages() describe what could go wrong if this
4011          * requirement isn't satisfied.
4012          */
4013         smp_rmb();
4014         sp = to_shadow_page(root);
4015
4016         /*
4017          * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
4018          * PDPTEs for a given PAE root need to be synchronized individually.
4019          */
4020         if (WARN_ON_ONCE(!sp))
4021                 return false;
4022
4023         if (sp->unsync || sp->unsync_children)
4024                 return true;
4025
4026         return false;
4027 }
4028
4029 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4030 {
4031         int i;
4032         struct kvm_mmu_page *sp;
4033
4034         if (vcpu->arch.mmu->root_role.direct)
4035                 return;
4036
4037         if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4038                 return;
4039
4040         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4041
4042         if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4043                 hpa_t root = vcpu->arch.mmu->root.hpa;
4044                 sp = to_shadow_page(root);
4045
4046                 if (!is_unsync_root(root))
4047                         return;
4048
4049                 write_lock(&vcpu->kvm->mmu_lock);
4050                 mmu_sync_children(vcpu, sp, true);
4051                 write_unlock(&vcpu->kvm->mmu_lock);
4052                 return;
4053         }
4054
4055         write_lock(&vcpu->kvm->mmu_lock);
4056
4057         for (i = 0; i < 4; ++i) {
4058                 hpa_t root = vcpu->arch.mmu->pae_root[i];
4059
4060                 if (IS_VALID_PAE_ROOT(root)) {
4061                         sp = spte_to_child_sp(root);
4062                         mmu_sync_children(vcpu, sp, true);
4063                 }
4064         }
4065
4066         write_unlock(&vcpu->kvm->mmu_lock);
4067 }
4068
4069 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4070 {
4071         unsigned long roots_to_free = 0;
4072         int i;
4073
4074         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4075                 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4076                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4077
4078         /* sync prev_roots by simply freeing them */
4079         kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4080 }
4081
4082 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4083                                   gpa_t vaddr, u64 access,
4084                                   struct x86_exception *exception)
4085 {
4086         if (exception)
4087                 exception->error_code = 0;
4088         return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4089 }
4090
4091 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4092 {
4093         /*
4094          * A nested guest cannot use the MMIO cache if it is using nested
4095          * page tables, because cr2 is a nGPA while the cache stores GPAs.
4096          */
4097         if (mmu_is_nested(vcpu))
4098                 return false;
4099
4100         if (direct)
4101                 return vcpu_match_mmio_gpa(vcpu, addr);
4102
4103         return vcpu_match_mmio_gva(vcpu, addr);
4104 }
4105
4106 /*
4107  * Return the level of the lowest level SPTE added to sptes.
4108  * That SPTE may be non-present.
4109  *
4110  * Must be called between walk_shadow_page_lockless_{begin,end}.
4111  */
4112 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4113 {
4114         struct kvm_shadow_walk_iterator iterator;
4115         int leaf = -1;
4116         u64 spte;
4117
4118         for (shadow_walk_init(&iterator, vcpu, addr),
4119              *root_level = iterator.level;
4120              shadow_walk_okay(&iterator);
4121              __shadow_walk_next(&iterator, spte)) {
4122                 leaf = iterator.level;
4123                 spte = mmu_spte_get_lockless(iterator.sptep);
4124
4125                 sptes[leaf] = spte;
4126         }
4127
4128         return leaf;
4129 }
4130
4131 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4132 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4133 {
4134         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4135         struct rsvd_bits_validate *rsvd_check;
4136         int root, leaf, level;
4137         bool reserved = false;
4138
4139         walk_shadow_page_lockless_begin(vcpu);
4140
4141         if (is_tdp_mmu_active(vcpu))
4142                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
4143         else
4144                 leaf = get_walk(vcpu, addr, sptes, &root);
4145
4146         walk_shadow_page_lockless_end(vcpu);
4147
4148         if (unlikely(leaf < 0)) {
4149                 *sptep = 0ull;
4150                 return reserved;
4151         }
4152
4153         *sptep = sptes[leaf];
4154
4155         /*
4156          * Skip reserved bits checks on the terminal leaf if it's not a valid
4157          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
4158          * design, always have reserved bits set.  The purpose of the checks is
4159          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4160          */
4161         if (!is_shadow_present_pte(sptes[leaf]))
4162                 leaf++;
4163
4164         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4165
4166         for (level = root; level >= leaf; level--)
4167                 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4168
4169         if (reserved) {
4170                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4171                        __func__, addr);
4172                 for (level = root; level >= leaf; level--)
4173                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4174                                sptes[level], level,
4175                                get_rsvd_bits(rsvd_check, sptes[level], level));
4176         }
4177
4178         return reserved;
4179 }
4180
4181 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4182 {
4183         u64 spte;
4184         bool reserved;
4185
4186         if (mmio_info_in_cache(vcpu, addr, direct))
4187                 return RET_PF_EMULATE;
4188
4189         reserved = get_mmio_spte(vcpu, addr, &spte);
4190         if (WARN_ON(reserved))
4191                 return -EINVAL;
4192
4193         if (is_mmio_spte(spte)) {
4194                 gfn_t gfn = get_mmio_spte_gfn(spte);
4195                 unsigned int access = get_mmio_spte_access(spte);
4196
4197                 if (!check_mmio_spte(vcpu, spte))
4198                         return RET_PF_INVALID;
4199
4200                 if (direct)
4201                         addr = 0;
4202
4203                 trace_handle_mmio_page_fault(addr, gfn, access);
4204                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4205                 return RET_PF_EMULATE;
4206         }
4207
4208         /*
4209          * If the page table is zapped by other cpus, let CPU fault again on
4210          * the address.
4211          */
4212         return RET_PF_RETRY;
4213 }
4214
4215 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4216                                          struct kvm_page_fault *fault)
4217 {
4218         if (unlikely(fault->rsvd))
4219                 return false;
4220
4221         if (!fault->present || !fault->write)
4222                 return false;
4223
4224         /*
4225          * guest is writing the page which is write tracked which can
4226          * not be fixed by page fault handler.
4227          */
4228         if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
4229                 return true;
4230
4231         return false;
4232 }
4233
4234 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4235 {
4236         struct kvm_shadow_walk_iterator iterator;
4237         u64 spte;
4238
4239         walk_shadow_page_lockless_begin(vcpu);
4240         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4241                 clear_sp_write_flooding_count(iterator.sptep);
4242         walk_shadow_page_lockless_end(vcpu);
4243 }
4244
4245 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4246 {
4247         /* make sure the token value is not 0 */
4248         u32 id = vcpu->arch.apf.id;
4249
4250         if (id << 12 == 0)
4251                 vcpu->arch.apf.id = 1;
4252
4253         return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4254 }
4255
4256 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4257                                     gfn_t gfn)
4258 {
4259         struct kvm_arch_async_pf arch;
4260
4261         arch.token = alloc_apf_token(vcpu);
4262         arch.gfn = gfn;
4263         arch.direct_map = vcpu->arch.mmu->root_role.direct;
4264         arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4265
4266         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4267                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4268 }
4269
4270 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4271 {
4272         int r;
4273
4274         if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4275               work->wakeup_all)
4276                 return;
4277
4278         r = kvm_mmu_reload(vcpu);
4279         if (unlikely(r))
4280                 return;
4281
4282         if (!vcpu->arch.mmu->root_role.direct &&
4283               work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4284                 return;
4285
4286         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL);
4287 }
4288
4289 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4290 {
4291         struct kvm_memory_slot *slot = fault->slot;
4292         bool async;
4293
4294         /*
4295          * Retry the page fault if the gfn hit a memslot that is being deleted
4296          * or moved.  This ensures any existing SPTEs for the old memslot will
4297          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4298          */
4299         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
4300                 return RET_PF_RETRY;
4301
4302         if (!kvm_is_visible_memslot(slot)) {
4303                 /* Don't expose private memslots to L2. */
4304                 if (is_guest_mode(vcpu)) {
4305                         fault->slot = NULL;
4306                         fault->pfn = KVM_PFN_NOSLOT;
4307                         fault->map_writable = false;
4308                         return RET_PF_CONTINUE;
4309                 }
4310                 /*
4311                  * If the APIC access page exists but is disabled, go directly
4312                  * to emulation without caching the MMIO access or creating a
4313                  * MMIO SPTE.  That way the cache doesn't need to be purged
4314                  * when the AVIC is re-enabled.
4315                  */
4316                 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
4317                     !kvm_apicv_activated(vcpu->kvm))
4318                         return RET_PF_EMULATE;
4319         }
4320
4321         async = false;
4322         fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async,
4323                                           fault->write, &fault->map_writable,
4324                                           &fault->hva);
4325         if (!async)
4326                 return RET_PF_CONTINUE; /* *pfn has correct page already */
4327
4328         if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4329                 trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4330                 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4331                         trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4332                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4333                         return RET_PF_RETRY;
4334                 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
4335                         return RET_PF_RETRY;
4336                 }
4337         }
4338
4339         /*
4340          * Allow gup to bail on pending non-fatal signals when it's also allowed
4341          * to wait for IO.  Note, gup always bails if it is unable to quickly
4342          * get a page and a fatal signal, i.e. SIGKILL, is pending.
4343          */
4344         fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL,
4345                                           fault->write, &fault->map_writable,
4346                                           &fault->hva);
4347         return RET_PF_CONTINUE;
4348 }
4349
4350 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
4351                            unsigned int access)
4352 {
4353         int ret;
4354
4355         fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4356         smp_rmb();
4357
4358         ret = __kvm_faultin_pfn(vcpu, fault);
4359         if (ret != RET_PF_CONTINUE)
4360                 return ret;
4361
4362         if (unlikely(is_error_pfn(fault->pfn)))
4363                 return kvm_handle_error_pfn(vcpu, fault);
4364
4365         if (unlikely(!fault->slot))
4366                 return kvm_handle_noslot_fault(vcpu, fault, access);
4367
4368         return RET_PF_CONTINUE;
4369 }
4370
4371 /*
4372  * Returns true if the page fault is stale and needs to be retried, i.e. if the
4373  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4374  */
4375 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4376                                 struct kvm_page_fault *fault)
4377 {
4378         struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
4379
4380         /* Special roots, e.g. pae_root, are not backed by shadow pages. */
4381         if (sp && is_obsolete_sp(vcpu->kvm, sp))
4382                 return true;
4383
4384         /*
4385          * Roots without an associated shadow page are considered invalid if
4386          * there is a pending request to free obsolete roots.  The request is
4387          * only a hint that the current root _may_ be obsolete and needs to be
4388          * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4389          * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4390          * to reload even if no vCPU is actively using the root.
4391          */
4392         if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4393                 return true;
4394
4395         return fault->slot &&
4396                mmu_invalidate_retry_hva(vcpu->kvm, fault->mmu_seq, fault->hva);
4397 }
4398
4399 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4400 {
4401         int r;
4402
4403         if (page_fault_handle_page_track(vcpu, fault))
4404                 return RET_PF_EMULATE;
4405
4406         r = fast_page_fault(vcpu, fault);
4407         if (r != RET_PF_INVALID)
4408                 return r;
4409
4410         r = mmu_topup_memory_caches(vcpu, false);
4411         if (r)
4412                 return r;
4413
4414         r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4415         if (r != RET_PF_CONTINUE)
4416                 return r;
4417
4418         r = RET_PF_RETRY;
4419         write_lock(&vcpu->kvm->mmu_lock);
4420
4421         if (is_page_fault_stale(vcpu, fault))
4422                 goto out_unlock;
4423
4424         r = make_mmu_pages_available(vcpu);
4425         if (r)
4426                 goto out_unlock;
4427
4428         r = direct_map(vcpu, fault);
4429
4430 out_unlock:
4431         write_unlock(&vcpu->kvm->mmu_lock);
4432         kvm_release_pfn_clean(fault->pfn);
4433         return r;
4434 }
4435
4436 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4437                                 struct kvm_page_fault *fault)
4438 {
4439         pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4440
4441         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4442         fault->max_level = PG_LEVEL_2M;
4443         return direct_page_fault(vcpu, fault);
4444 }
4445
4446 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4447                                 u64 fault_address, char *insn, int insn_len)
4448 {
4449         int r = 1;
4450         u32 flags = vcpu->arch.apf.host_apf_flags;
4451
4452 #ifndef CONFIG_X86_64
4453         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4454         if (WARN_ON_ONCE(fault_address >> 32))
4455                 return -EFAULT;
4456 #endif
4457
4458         vcpu->arch.l1tf_flush_l1d = true;
4459         if (!flags) {
4460                 trace_kvm_page_fault(vcpu, fault_address, error_code);
4461
4462                 if (kvm_event_needs_reinjection(vcpu))
4463                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4464                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4465                                 insn_len);
4466         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4467                 vcpu->arch.apf.host_apf_flags = 0;
4468                 local_irq_disable();
4469                 kvm_async_pf_task_wait_schedule(fault_address);
4470                 local_irq_enable();
4471         } else {
4472                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4473         }
4474
4475         return r;
4476 }
4477 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4478
4479 #ifdef CONFIG_X86_64
4480 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4481                                   struct kvm_page_fault *fault)
4482 {
4483         int r;
4484
4485         if (page_fault_handle_page_track(vcpu, fault))
4486                 return RET_PF_EMULATE;
4487
4488         r = fast_page_fault(vcpu, fault);
4489         if (r != RET_PF_INVALID)
4490                 return r;
4491
4492         r = mmu_topup_memory_caches(vcpu, false);
4493         if (r)
4494                 return r;
4495
4496         r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4497         if (r != RET_PF_CONTINUE)
4498                 return r;
4499
4500         r = RET_PF_RETRY;
4501         read_lock(&vcpu->kvm->mmu_lock);
4502
4503         if (is_page_fault_stale(vcpu, fault))
4504                 goto out_unlock;
4505
4506         r = kvm_tdp_mmu_map(vcpu, fault);
4507
4508 out_unlock:
4509         read_unlock(&vcpu->kvm->mmu_lock);
4510         kvm_release_pfn_clean(fault->pfn);
4511         return r;
4512 }
4513 #endif
4514
4515 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4516 {
4517         /*
4518          * If the guest's MTRRs may be used to compute the "real" memtype,
4519          * restrict the mapping level to ensure KVM uses a consistent memtype
4520          * across the entire mapping.  If the host MTRRs are ignored by TDP
4521          * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA
4522          * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype
4523          * from the guest's MTRRs so that guest accesses to memory that is
4524          * DMA'd aren't cached against the guest's wishes.
4525          *
4526          * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs,
4527          * e.g. KVM will force UC memtype for host MMIO.
4528          */
4529         if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
4530                 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) {
4531                         int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4532                         gfn_t base = gfn_round_for_level(fault->gfn,
4533                                                          fault->max_level);
4534
4535                         if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4536                                 break;
4537                 }
4538         }
4539
4540 #ifdef CONFIG_X86_64
4541         if (tdp_mmu_enabled)
4542                 return kvm_tdp_mmu_page_fault(vcpu, fault);
4543 #endif
4544
4545         return direct_page_fault(vcpu, fault);
4546 }
4547
4548 static void nonpaging_init_context(struct kvm_mmu *context)
4549 {
4550         context->page_fault = nonpaging_page_fault;
4551         context->gva_to_gpa = nonpaging_gva_to_gpa;
4552         context->sync_spte = NULL;
4553 }
4554
4555 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4556                                   union kvm_mmu_page_role role)
4557 {
4558         return (role.direct || pgd == root->pgd) &&
4559                VALID_PAGE(root->hpa) &&
4560                role.word == to_shadow_page(root->hpa)->role.word;
4561 }
4562
4563 /*
4564  * Find out if a previously cached root matching the new pgd/role is available,
4565  * and insert the current root as the MRU in the cache.
4566  * If a matching root is found, it is assigned to kvm_mmu->root and
4567  * true is returned.
4568  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4569  * evicted to make room for the current root, and false is returned.
4570  */
4571 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4572                                               gpa_t new_pgd,
4573                                               union kvm_mmu_page_role new_role)
4574 {
4575         uint i;
4576
4577         if (is_root_usable(&mmu->root, new_pgd, new_role))
4578                 return true;
4579
4580         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4581                 /*
4582                  * The swaps end up rotating the cache like this:
4583                  *   C   0 1 2 3   (on entry to the function)
4584                  *   0   C 1 2 3
4585                  *   1   C 0 2 3
4586                  *   2   C 0 1 3
4587                  *   3   C 0 1 2   (on exit from the loop)
4588                  */
4589                 swap(mmu->root, mmu->prev_roots[i]);
4590                 if (is_root_usable(&mmu->root, new_pgd, new_role))
4591                         return true;
4592         }
4593
4594         kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4595         return false;
4596 }
4597
4598 /*
4599  * Find out if a previously cached root matching the new pgd/role is available.
4600  * On entry, mmu->root is invalid.
4601  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4602  * of the cache becomes invalid, and true is returned.
4603  * If no match is found, kvm_mmu->root is left invalid and false is returned.
4604  */
4605 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4606                                              gpa_t new_pgd,
4607                                              union kvm_mmu_page_role new_role)
4608 {
4609         uint i;
4610
4611         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4612                 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4613                         goto hit;
4614
4615         return false;
4616
4617 hit:
4618         swap(mmu->root, mmu->prev_roots[i]);
4619         /* Bubble up the remaining roots.  */
4620         for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4621                 mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4622         mmu->prev_roots[i].hpa = INVALID_PAGE;
4623         return true;
4624 }
4625
4626 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4627                             gpa_t new_pgd, union kvm_mmu_page_role new_role)
4628 {
4629         /*
4630          * For now, limit the caching to 64-bit hosts+VMs in order to avoid
4631          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4632          * later if necessary.
4633          */
4634         if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
4635                 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4636
4637         if (VALID_PAGE(mmu->root.hpa))
4638                 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4639         else
4640                 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4641 }
4642
4643 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4644 {
4645         struct kvm_mmu *mmu = vcpu->arch.mmu;
4646         union kvm_mmu_page_role new_role = mmu->root_role;
4647
4648         /*
4649          * Return immediately if no usable root was found, kvm_mmu_reload()
4650          * will establish a valid root prior to the next VM-Enter.
4651          */
4652         if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
4653                 return;
4654
4655         /*
4656          * It's possible that the cached previous root page is obsolete because
4657          * of a change in the MMU generation number. However, changing the
4658          * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4659          * which will free the root set here and allocate a new one.
4660          */
4661         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4662
4663         if (force_flush_and_sync_on_reuse) {
4664                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4665                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4666         }
4667
4668         /*
4669          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4670          * switching to a new CR3, that GVA->GPA mapping may no longer be
4671          * valid. So clear any cached MMIO info even when we don't need to sync
4672          * the shadow page tables.
4673          */
4674         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4675
4676         /*
4677          * If this is a direct root page, it doesn't have a write flooding
4678          * count. Otherwise, clear the write flooding count.
4679          */
4680         if (!new_role.direct)
4681                 __clear_sp_write_flooding_count(
4682                                 to_shadow_page(vcpu->arch.mmu->root.hpa));
4683 }
4684 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4685
4686 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4687                            unsigned int access)
4688 {
4689         if (unlikely(is_mmio_spte(*sptep))) {
4690                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4691                         mmu_spte_clear_no_track(sptep);
4692                         return true;
4693                 }
4694
4695                 mark_mmio_spte(vcpu, sptep, gfn, access);
4696                 return true;
4697         }
4698
4699         return false;
4700 }
4701
4702 #define PTTYPE_EPT 18 /* arbitrary */
4703 #define PTTYPE PTTYPE_EPT
4704 #include "paging_tmpl.h"
4705 #undef PTTYPE
4706
4707 #define PTTYPE 64
4708 #include "paging_tmpl.h"
4709 #undef PTTYPE
4710
4711 #define PTTYPE 32
4712 #include "paging_tmpl.h"
4713 #undef PTTYPE
4714
4715 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4716                                     u64 pa_bits_rsvd, int level, bool nx,
4717                                     bool gbpages, bool pse, bool amd)
4718 {
4719         u64 gbpages_bit_rsvd = 0;
4720         u64 nonleaf_bit8_rsvd = 0;
4721         u64 high_bits_rsvd;
4722
4723         rsvd_check->bad_mt_xwr = 0;
4724
4725         if (!gbpages)
4726                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4727
4728         if (level == PT32E_ROOT_LEVEL)
4729                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4730         else
4731                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4732
4733         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4734         if (!nx)
4735                 high_bits_rsvd |= rsvd_bits(63, 63);
4736
4737         /*
4738          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4739          * leaf entries) on AMD CPUs only.
4740          */
4741         if (amd)
4742                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4743
4744         switch (level) {
4745         case PT32_ROOT_LEVEL:
4746                 /* no rsvd bits for 2 level 4K page table entries */
4747                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4748                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4749                 rsvd_check->rsvd_bits_mask[1][0] =
4750                         rsvd_check->rsvd_bits_mask[0][0];
4751
4752                 if (!pse) {
4753                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4754                         break;
4755                 }
4756
4757                 if (is_cpuid_PSE36())
4758                         /* 36bits PSE 4MB page */
4759                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4760                 else
4761                         /* 32 bits PSE 4MB page */
4762                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4763                 break;
4764         case PT32E_ROOT_LEVEL:
4765                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4766                                                    high_bits_rsvd |
4767                                                    rsvd_bits(5, 8) |
4768                                                    rsvd_bits(1, 2);     /* PDPTE */
4769                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4770                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4771                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4772                                                    rsvd_bits(13, 20);   /* large page */
4773                 rsvd_check->rsvd_bits_mask[1][0] =
4774                         rsvd_check->rsvd_bits_mask[0][0];
4775                 break;
4776         case PT64_ROOT_5LEVEL:
4777                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4778                                                    nonleaf_bit8_rsvd |
4779                                                    rsvd_bits(7, 7);
4780                 rsvd_check->rsvd_bits_mask[1][4] =
4781                         rsvd_check->rsvd_bits_mask[0][4];
4782                 fallthrough;
4783         case PT64_ROOT_4LEVEL:
4784                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4785                                                    nonleaf_bit8_rsvd |
4786                                                    rsvd_bits(7, 7);
4787                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4788                                                    gbpages_bit_rsvd;
4789                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4790                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4791                 rsvd_check->rsvd_bits_mask[1][3] =
4792                         rsvd_check->rsvd_bits_mask[0][3];
4793                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4794                                                    gbpages_bit_rsvd |
4795                                                    rsvd_bits(13, 29);
4796                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4797                                                    rsvd_bits(13, 20); /* large page */
4798                 rsvd_check->rsvd_bits_mask[1][0] =
4799                         rsvd_check->rsvd_bits_mask[0][0];
4800                 break;
4801         }
4802 }
4803
4804 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4805 {
4806         /*
4807          * If TDP is enabled, let the guest use GBPAGES if they're supported in
4808          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4809          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4810          * walk for performance and complexity reasons.  Not to mention KVM
4811          * _can't_ solve the problem because GVA->GPA walks aren't visible to
4812          * KVM once a TDP translation is installed.  Mimic hardware behavior so
4813          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4814          */
4815         return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4816                              guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4817 }
4818
4819 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4820                                         struct kvm_mmu *context)
4821 {
4822         __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4823                                 vcpu->arch.reserved_gpa_bits,
4824                                 context->cpu_role.base.level, is_efer_nx(context),
4825                                 guest_can_use_gbpages(vcpu),
4826                                 is_cr4_pse(context),
4827                                 guest_cpuid_is_amd_or_hygon(vcpu));
4828 }
4829
4830 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4831                                         u64 pa_bits_rsvd, bool execonly,
4832                                         int huge_page_level)
4833 {
4834         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4835         u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4836         u64 bad_mt_xwr;
4837
4838         if (huge_page_level < PG_LEVEL_1G)
4839                 large_1g_rsvd = rsvd_bits(7, 7);
4840         if (huge_page_level < PG_LEVEL_2M)
4841                 large_2m_rsvd = rsvd_bits(7, 7);
4842
4843         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4844         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4845         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4846         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4847         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4848
4849         /* large page */
4850         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4851         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4852         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4853         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4854         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4855
4856         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4857         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4858         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4859         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4860         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4861         if (!execonly) {
4862                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4863                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4864         }
4865         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4866 }
4867
4868 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4869                 struct kvm_mmu *context, bool execonly, int huge_page_level)
4870 {
4871         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4872                                     vcpu->arch.reserved_gpa_bits, execonly,
4873                                     huge_page_level);
4874 }
4875
4876 static inline u64 reserved_hpa_bits(void)
4877 {
4878         return rsvd_bits(shadow_phys_bits, 63);
4879 }
4880
4881 /*
4882  * the page table on host is the shadow page table for the page
4883  * table in guest or amd nested guest, its mmu features completely
4884  * follow the features in guest.
4885  */
4886 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4887                                         struct kvm_mmu *context)
4888 {
4889         /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4890         bool is_amd = true;
4891         /* KVM doesn't use 2-level page tables for the shadow MMU. */
4892         bool is_pse = false;
4893         struct rsvd_bits_validate *shadow_zero_check;
4894         int i;
4895
4896         WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
4897
4898         shadow_zero_check = &context->shadow_zero_check;
4899         __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4900                                 context->root_role.level,
4901                                 context->root_role.efer_nx,
4902                                 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4903
4904         if (!shadow_me_mask)
4905                 return;
4906
4907         for (i = context->root_role.level; --i >= 0;) {
4908                 /*
4909                  * So far shadow_me_value is a constant during KVM's life
4910                  * time.  Bits in shadow_me_value are allowed to be set.
4911                  * Bits in shadow_me_mask but not in shadow_me_value are
4912                  * not allowed to be set.
4913                  */
4914                 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
4915                 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
4916                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
4917                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
4918         }
4919
4920 }
4921
4922 static inline bool boot_cpu_is_amd(void)
4923 {
4924         WARN_ON_ONCE(!tdp_enabled);
4925         return shadow_x_mask == 0;
4926 }
4927
4928 /*
4929  * the direct page table on host, use as much mmu features as
4930  * possible, however, kvm currently does not do execution-protection.
4931  */
4932 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4933 {
4934         struct rsvd_bits_validate *shadow_zero_check;
4935         int i;
4936
4937         shadow_zero_check = &context->shadow_zero_check;
4938
4939         if (boot_cpu_is_amd())
4940                 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4941                                         context->root_role.level, true,
4942                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4943                                         false, true);
4944         else
4945                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4946                                             reserved_hpa_bits(), false,
4947                                             max_huge_page_level);
4948
4949         if (!shadow_me_mask)
4950                 return;
4951
4952         for (i = context->root_role.level; --i >= 0;) {
4953                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4954                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4955         }
4956 }
4957
4958 /*
4959  * as the comments in reset_shadow_zero_bits_mask() except it
4960  * is the shadow page table for intel nested guest.
4961  */
4962 static void
4963 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4964 {
4965         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4966                                     reserved_hpa_bits(), execonly,
4967                                     max_huge_page_level);
4968 }
4969
4970 #define BYTE_MASK(access) \
4971         ((1 & (access) ? 2 : 0) | \
4972          (2 & (access) ? 4 : 0) | \
4973          (3 & (access) ? 8 : 0) | \
4974          (4 & (access) ? 16 : 0) | \
4975          (5 & (access) ? 32 : 0) | \
4976          (6 & (access) ? 64 : 0) | \
4977          (7 & (access) ? 128 : 0))
4978
4979
4980 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4981 {
4982         unsigned byte;
4983
4984         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4985         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4986         const u8 u = BYTE_MASK(ACC_USER_MASK);
4987
4988         bool cr4_smep = is_cr4_smep(mmu);
4989         bool cr4_smap = is_cr4_smap(mmu);
4990         bool cr0_wp = is_cr0_wp(mmu);
4991         bool efer_nx = is_efer_nx(mmu);
4992
4993         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4994                 unsigned pfec = byte << 1;
4995
4996                 /*
4997                  * Each "*f" variable has a 1 bit for each UWX value
4998                  * that causes a fault with the given PFEC.
4999                  */
5000
5001                 /* Faults from writes to non-writable pages */
5002                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
5003                 /* Faults from user mode accesses to supervisor pages */
5004                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
5005                 /* Faults from fetches of non-executable pages*/
5006                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
5007                 /* Faults from kernel mode fetches of user pages */
5008                 u8 smepf = 0;
5009                 /* Faults from kernel mode accesses of user pages */
5010                 u8 smapf = 0;
5011
5012                 if (!ept) {
5013                         /* Faults from kernel mode accesses to user pages */
5014                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
5015
5016                         /* Not really needed: !nx will cause pte.nx to fault */
5017                         if (!efer_nx)
5018                                 ff = 0;
5019
5020                         /* Allow supervisor writes if !cr0.wp */
5021                         if (!cr0_wp)
5022                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5023
5024                         /* Disallow supervisor fetches of user code if cr4.smep */
5025                         if (cr4_smep)
5026                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5027
5028                         /*
5029                          * SMAP:kernel-mode data accesses from user-mode
5030                          * mappings should fault. A fault is considered
5031                          * as a SMAP violation if all of the following
5032                          * conditions are true:
5033                          *   - X86_CR4_SMAP is set in CR4
5034                          *   - A user page is accessed
5035                          *   - The access is not a fetch
5036                          *   - The access is supervisor mode
5037                          *   - If implicit supervisor access or X86_EFLAGS_AC is clear
5038                          *
5039                          * Here, we cover the first four conditions.
5040                          * The fifth is computed dynamically in permission_fault();
5041                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5042                          * *not* subject to SMAP restrictions.
5043                          */
5044                         if (cr4_smap)
5045                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5046                 }
5047
5048                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5049         }
5050 }
5051
5052 /*
5053 * PKU is an additional mechanism by which the paging controls access to
5054 * user-mode addresses based on the value in the PKRU register.  Protection
5055 * key violations are reported through a bit in the page fault error code.
5056 * Unlike other bits of the error code, the PK bit is not known at the
5057 * call site of e.g. gva_to_gpa; it must be computed directly in
5058 * permission_fault based on two bits of PKRU, on some machine state (CR4,
5059 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
5060 *
5061 * In particular the following conditions come from the error code, the
5062 * page tables and the machine state:
5063 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5064 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5065 * - PK is always zero if U=0 in the page tables
5066 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5067 *
5068 * The PKRU bitmask caches the result of these four conditions.  The error
5069 * code (minus the P bit) and the page table's U bit form an index into the
5070 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
5071 * with the two bits of the PKRU register corresponding to the protection key.
5072 * For the first three conditions above the bits will be 00, thus masking
5073 * away both AD and WD.  For all reads or if the last condition holds, WD
5074 * only will be masked away.
5075 */
5076 static void update_pkru_bitmask(struct kvm_mmu *mmu)
5077 {
5078         unsigned bit;
5079         bool wp;
5080
5081         mmu->pkru_mask = 0;
5082
5083         if (!is_cr4_pke(mmu))
5084                 return;
5085
5086         wp = is_cr0_wp(mmu);
5087
5088         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5089                 unsigned pfec, pkey_bits;
5090                 bool check_pkey, check_write, ff, uf, wf, pte_user;
5091
5092                 pfec = bit << 1;
5093                 ff = pfec & PFERR_FETCH_MASK;
5094                 uf = pfec & PFERR_USER_MASK;
5095                 wf = pfec & PFERR_WRITE_MASK;
5096
5097                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
5098                 pte_user = pfec & PFERR_RSVD_MASK;
5099
5100                 /*
5101                  * Only need to check the access which is not an
5102                  * instruction fetch and is to a user page.
5103                  */
5104                 check_pkey = (!ff && pte_user);
5105                 /*
5106                  * write access is controlled by PKRU if it is a
5107                  * user access or CR0.WP = 1.
5108                  */
5109                 check_write = check_pkey && wf && (uf || wp);
5110
5111                 /* PKRU.AD stops both read and write access. */
5112                 pkey_bits = !!check_pkey;
5113                 /* PKRU.WD stops write access. */
5114                 pkey_bits |= (!!check_write) << 1;
5115
5116                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5117         }
5118 }
5119
5120 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5121                                         struct kvm_mmu *mmu)
5122 {
5123         if (!is_cr0_pg(mmu))
5124                 return;
5125
5126         reset_guest_rsvds_bits_mask(vcpu, mmu);
5127         update_permission_bitmask(mmu, false);
5128         update_pkru_bitmask(mmu);
5129 }
5130
5131 static void paging64_init_context(struct kvm_mmu *context)
5132 {
5133         context->page_fault = paging64_page_fault;
5134         context->gva_to_gpa = paging64_gva_to_gpa;
5135         context->sync_spte = paging64_sync_spte;
5136 }
5137
5138 static void paging32_init_context(struct kvm_mmu *context)
5139 {
5140         context->page_fault = paging32_page_fault;
5141         context->gva_to_gpa = paging32_gva_to_gpa;
5142         context->sync_spte = paging32_sync_spte;
5143 }
5144
5145 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5146                                             const struct kvm_mmu_role_regs *regs)
5147 {
5148         union kvm_cpu_role role = {0};
5149
5150         role.base.access = ACC_ALL;
5151         role.base.smm = is_smm(vcpu);
5152         role.base.guest_mode = is_guest_mode(vcpu);
5153         role.ext.valid = 1;
5154
5155         if (!____is_cr0_pg(regs)) {
5156                 role.base.direct = 1;
5157                 return role;
5158         }
5159
5160         role.base.efer_nx = ____is_efer_nx(regs);
5161         role.base.cr0_wp = ____is_cr0_wp(regs);
5162         role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5163         role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5164         role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5165
5166         if (____is_efer_lma(regs))
5167                 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5168                                                         : PT64_ROOT_4LEVEL;
5169         else if (____is_cr4_pae(regs))
5170                 role.base.level = PT32E_ROOT_LEVEL;
5171         else
5172                 role.base.level = PT32_ROOT_LEVEL;
5173
5174         role.ext.cr4_smep = ____is_cr4_smep(regs);
5175         role.ext.cr4_smap = ____is_cr4_smap(regs);
5176         role.ext.cr4_pse = ____is_cr4_pse(regs);
5177
5178         /* PKEY and LA57 are active iff long mode is active. */
5179         role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5180         role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5181         role.ext.efer_lma = ____is_efer_lma(regs);
5182         return role;
5183 }
5184
5185 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5186                                         struct kvm_mmu *mmu)
5187 {
5188         const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5189
5190         BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5191         BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5192
5193         if (is_cr0_wp(mmu) == cr0_wp)
5194                 return;
5195
5196         mmu->cpu_role.base.cr0_wp = cr0_wp;
5197         reset_guest_paging_metadata(vcpu, mmu);
5198 }
5199
5200 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5201 {
5202         /* tdp_root_level is architecture forced level, use it if nonzero */
5203         if (tdp_root_level)
5204                 return tdp_root_level;
5205
5206         /* Use 5-level TDP if and only if it's useful/necessary. */
5207         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5208                 return 4;
5209
5210         return max_tdp_level;
5211 }
5212
5213 static union kvm_mmu_page_role
5214 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5215                                 union kvm_cpu_role cpu_role)
5216 {
5217         union kvm_mmu_page_role role = {0};
5218
5219         role.access = ACC_ALL;
5220         role.cr0_wp = true;
5221         role.efer_nx = true;
5222         role.smm = cpu_role.base.smm;
5223         role.guest_mode = cpu_role.base.guest_mode;
5224         role.ad_disabled = !kvm_ad_enabled();
5225         role.level = kvm_mmu_get_tdp_level(vcpu);
5226         role.direct = true;
5227         role.has_4_byte_gpte = false;
5228
5229         return role;
5230 }
5231
5232 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5233                              union kvm_cpu_role cpu_role)
5234 {
5235         struct kvm_mmu *context = &vcpu->arch.root_mmu;
5236         union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5237
5238         if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5239             root_role.word == context->root_role.word)
5240                 return;
5241
5242         context->cpu_role.as_u64 = cpu_role.as_u64;
5243         context->root_role.word = root_role.word;
5244         context->page_fault = kvm_tdp_page_fault;
5245         context->sync_spte = NULL;
5246         context->get_guest_pgd = get_guest_cr3;
5247         context->get_pdptr = kvm_pdptr_read;
5248         context->inject_page_fault = kvm_inject_page_fault;
5249
5250         if (!is_cr0_pg(context))
5251                 context->gva_to_gpa = nonpaging_gva_to_gpa;
5252         else if (is_cr4_pae(context))
5253                 context->gva_to_gpa = paging64_gva_to_gpa;
5254         else
5255                 context->gva_to_gpa = paging32_gva_to_gpa;
5256
5257         reset_guest_paging_metadata(vcpu, context);
5258         reset_tdp_shadow_zero_bits_mask(context);
5259 }
5260
5261 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5262                                     union kvm_cpu_role cpu_role,
5263                                     union kvm_mmu_page_role root_role)
5264 {
5265         if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5266             root_role.word == context->root_role.word)
5267                 return;
5268
5269         context->cpu_role.as_u64 = cpu_role.as_u64;
5270         context->root_role.word = root_role.word;
5271
5272         if (!is_cr0_pg(context))
5273                 nonpaging_init_context(context);
5274         else if (is_cr4_pae(context))
5275                 paging64_init_context(context);
5276         else
5277                 paging32_init_context(context);
5278
5279         reset_guest_paging_metadata(vcpu, context);
5280         reset_shadow_zero_bits_mask(vcpu, context);
5281 }
5282
5283 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5284                                 union kvm_cpu_role cpu_role)
5285 {
5286         struct kvm_mmu *context = &vcpu->arch.root_mmu;
5287         union kvm_mmu_page_role root_role;
5288
5289         root_role = cpu_role.base;
5290
5291         /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5292         root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5293
5294         /*
5295          * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5296          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5297          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5298          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5299          * The iTLB multi-hit workaround can be toggled at any time, so assume
5300          * NX can be used by any non-nested shadow MMU to avoid having to reset
5301          * MMU contexts.
5302          */
5303         root_role.efer_nx = true;
5304
5305         shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5306 }
5307
5308 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5309                              unsigned long cr4, u64 efer, gpa_t nested_cr3)
5310 {
5311         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5312         struct kvm_mmu_role_regs regs = {
5313                 .cr0 = cr0,
5314                 .cr4 = cr4 & ~X86_CR4_PKE,
5315                 .efer = efer,
5316         };
5317         union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5318         union kvm_mmu_page_role root_role;
5319
5320         /* NPT requires CR0.PG=1. */
5321         WARN_ON_ONCE(cpu_role.base.direct);
5322
5323         root_role = cpu_role.base;
5324         root_role.level = kvm_mmu_get_tdp_level(vcpu);
5325         if (root_role.level == PT64_ROOT_5LEVEL &&
5326             cpu_role.base.level == PT64_ROOT_4LEVEL)
5327                 root_role.passthrough = 1;
5328
5329         shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5330         kvm_mmu_new_pgd(vcpu, nested_cr3);
5331 }
5332 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5333
5334 static union kvm_cpu_role
5335 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5336                                    bool execonly, u8 level)
5337 {
5338         union kvm_cpu_role role = {0};
5339
5340         /*
5341          * KVM does not support SMM transfer monitors, and consequently does not
5342          * support the "entry to SMM" control either.  role.base.smm is always 0.
5343          */
5344         WARN_ON_ONCE(is_smm(vcpu));
5345         role.base.level = level;
5346         role.base.has_4_byte_gpte = false;
5347         role.base.direct = false;
5348         role.base.ad_disabled = !accessed_dirty;
5349         role.base.guest_mode = true;
5350         role.base.access = ACC_ALL;
5351
5352         role.ext.word = 0;
5353         role.ext.execonly = execonly;
5354         role.ext.valid = 1;
5355
5356         return role;
5357 }
5358
5359 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5360                              int huge_page_level, bool accessed_dirty,
5361                              gpa_t new_eptp)
5362 {
5363         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5364         u8 level = vmx_eptp_page_walk_level(new_eptp);
5365         union kvm_cpu_role new_mode =
5366                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5367                                                    execonly, level);
5368
5369         if (new_mode.as_u64 != context->cpu_role.as_u64) {
5370                 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5371                 context->cpu_role.as_u64 = new_mode.as_u64;
5372                 context->root_role.word = new_mode.base.word;
5373
5374                 context->page_fault = ept_page_fault;
5375                 context->gva_to_gpa = ept_gva_to_gpa;
5376                 context->sync_spte = ept_sync_spte;
5377
5378                 update_permission_bitmask(context, true);
5379                 context->pkru_mask = 0;
5380                 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5381                 reset_ept_shadow_zero_bits_mask(context, execonly);
5382         }
5383
5384         kvm_mmu_new_pgd(vcpu, new_eptp);
5385 }
5386 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5387
5388 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5389                              union kvm_cpu_role cpu_role)
5390 {
5391         struct kvm_mmu *context = &vcpu->arch.root_mmu;
5392
5393         kvm_init_shadow_mmu(vcpu, cpu_role);
5394
5395         context->get_guest_pgd     = get_guest_cr3;
5396         context->get_pdptr         = kvm_pdptr_read;
5397         context->inject_page_fault = kvm_inject_page_fault;
5398 }
5399
5400 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5401                                 union kvm_cpu_role new_mode)
5402 {
5403         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5404
5405         if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5406                 return;
5407
5408         g_context->cpu_role.as_u64   = new_mode.as_u64;
5409         g_context->get_guest_pgd     = get_guest_cr3;
5410         g_context->get_pdptr         = kvm_pdptr_read;
5411         g_context->inject_page_fault = kvm_inject_page_fault;
5412
5413         /*
5414          * L2 page tables are never shadowed, so there is no need to sync
5415          * SPTEs.
5416          */
5417         g_context->sync_spte         = NULL;
5418
5419         /*
5420          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5421          * L1's nested page tables (e.g. EPT12). The nested translation
5422          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5423          * L2's page tables as the first level of translation and L1's
5424          * nested page tables as the second level of translation. Basically
5425          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5426          */
5427         if (!is_paging(vcpu))
5428                 g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5429         else if (is_long_mode(vcpu))
5430                 g_context->gva_to_gpa = paging64_gva_to_gpa;
5431         else if (is_pae(vcpu))
5432                 g_context->gva_to_gpa = paging64_gva_to_gpa;
5433         else
5434                 g_context->gva_to_gpa = paging32_gva_to_gpa;
5435
5436         reset_guest_paging_metadata(vcpu, g_context);
5437 }
5438
5439 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5440 {
5441         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5442         union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5443
5444         if (mmu_is_nested(vcpu))
5445                 init_kvm_nested_mmu(vcpu, cpu_role);
5446         else if (tdp_enabled)
5447                 init_kvm_tdp_mmu(vcpu, cpu_role);
5448         else
5449                 init_kvm_softmmu(vcpu, cpu_role);
5450 }
5451 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5452
5453 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5454 {
5455         /*
5456          * Invalidate all MMU roles to force them to reinitialize as CPUID
5457          * information is factored into reserved bit calculations.
5458          *
5459          * Correctly handling multiple vCPU models with respect to paging and
5460          * physical address properties) in a single VM would require tracking
5461          * all relevant CPUID information in kvm_mmu_page_role. That is very
5462          * undesirable as it would increase the memory requirements for
5463          * gfn_track (see struct kvm_mmu_page_role comments).  For now that
5464          * problem is swept under the rug; KVM's CPUID API is horrific and
5465          * it's all but impossible to solve it without introducing a new API.
5466          */
5467         vcpu->arch.root_mmu.root_role.word = 0;
5468         vcpu->arch.guest_mmu.root_role.word = 0;
5469         vcpu->arch.nested_mmu.root_role.word = 0;
5470         vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5471         vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5472         vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5473         kvm_mmu_reset_context(vcpu);
5474
5475         /*
5476          * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5477          * kvm_arch_vcpu_ioctl().
5478          */
5479         KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5480 }
5481
5482 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5483 {
5484         kvm_mmu_unload(vcpu);
5485         kvm_init_mmu(vcpu);
5486 }
5487 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5488
5489 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5490 {
5491         int r;
5492
5493         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5494         if (r)
5495                 goto out;
5496         r = mmu_alloc_special_roots(vcpu);
5497         if (r)
5498                 goto out;
5499         if (vcpu->arch.mmu->root_role.direct)
5500                 r = mmu_alloc_direct_roots(vcpu);
5501         else
5502                 r = mmu_alloc_shadow_roots(vcpu);
5503         if (r)
5504                 goto out;
5505
5506         kvm_mmu_sync_roots(vcpu);
5507
5508         kvm_mmu_load_pgd(vcpu);
5509
5510         /*
5511          * Flush any TLB entries for the new root, the provenance of the root
5512          * is unknown.  Even if KVM ensures there are no stale TLB entries
5513          * for a freed root, in theory another hypervisor could have left
5514          * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5515          * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5516          */
5517         static_call(kvm_x86_flush_tlb_current)(vcpu);
5518 out:
5519         return r;
5520 }
5521
5522 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5523 {
5524         struct kvm *kvm = vcpu->kvm;
5525
5526         kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5527         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5528         kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5529         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5530         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5531 }
5532
5533 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5534 {
5535         struct kvm_mmu_page *sp;
5536
5537         if (!VALID_PAGE(root_hpa))
5538                 return false;
5539
5540         /*
5541          * When freeing obsolete roots, treat roots as obsolete if they don't
5542          * have an associated shadow page.  This does mean KVM will get false
5543          * positives and free roots that don't strictly need to be freed, but
5544          * such false positives are relatively rare:
5545          *
5546          *  (a) only PAE paging and nested NPT has roots without shadow pages
5547          *  (b) remote reloads due to a memslot update obsoletes _all_ roots
5548          *  (c) KVM doesn't track previous roots for PAE paging, and the guest
5549          *      is unlikely to zap an in-use PGD.
5550          */
5551         sp = to_shadow_page(root_hpa);
5552         return !sp || is_obsolete_sp(kvm, sp);
5553 }
5554
5555 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5556 {
5557         unsigned long roots_to_free = 0;
5558         int i;
5559
5560         if (is_obsolete_root(kvm, mmu->root.hpa))
5561                 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5562
5563         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5564                 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5565                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5566         }
5567
5568         if (roots_to_free)
5569                 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5570 }
5571
5572 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5573 {
5574         __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5575         __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5576 }
5577
5578 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5579                                     int *bytes)
5580 {
5581         u64 gentry = 0;
5582         int r;
5583
5584         /*
5585          * Assume that the pte write on a page table of the same type
5586          * as the current vcpu paging mode since we update the sptes only
5587          * when they have the same mode.
5588          */
5589         if (is_pae(vcpu) && *bytes == 4) {
5590                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5591                 *gpa &= ~(gpa_t)7;
5592                 *bytes = 8;
5593         }
5594
5595         if (*bytes == 4 || *bytes == 8) {
5596                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5597                 if (r)
5598                         gentry = 0;
5599         }
5600
5601         return gentry;
5602 }
5603
5604 /*
5605  * If we're seeing too many writes to a page, it may no longer be a page table,
5606  * or we may be forking, in which case it is better to unmap the page.
5607  */
5608 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5609 {
5610         /*
5611          * Skip write-flooding detected for the sp whose level is 1, because
5612          * it can become unsync, then the guest page is not write-protected.
5613          */
5614         if (sp->role.level == PG_LEVEL_4K)
5615                 return false;
5616
5617         atomic_inc(&sp->write_flooding_count);
5618         return atomic_read(&sp->write_flooding_count) >= 3;
5619 }
5620
5621 /*
5622  * Misaligned accesses are too much trouble to fix up; also, they usually
5623  * indicate a page is not used as a page table.
5624  */
5625 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5626                                     int bytes)
5627 {
5628         unsigned offset, pte_size, misaligned;
5629
5630         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5631                  gpa, bytes, sp->role.word);
5632
5633         offset = offset_in_page(gpa);
5634         pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5635
5636         /*
5637          * Sometimes, the OS only writes the last one bytes to update status
5638          * bits, for example, in linux, andb instruction is used in clear_bit().
5639          */
5640         if (!(offset & (pte_size - 1)) && bytes == 1)
5641                 return false;
5642
5643         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5644         misaligned |= bytes < 4;
5645
5646         return misaligned;
5647 }
5648
5649 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5650 {
5651         unsigned page_offset, quadrant;
5652         u64 *spte;
5653         int level;
5654
5655         page_offset = offset_in_page(gpa);
5656         level = sp->role.level;
5657         *nspte = 1;
5658         if (sp->role.has_4_byte_gpte) {
5659                 page_offset <<= 1;      /* 32->64 */
5660                 /*
5661                  * A 32-bit pde maps 4MB while the shadow pdes map
5662                  * only 2MB.  So we need to double the offset again
5663                  * and zap two pdes instead of one.
5664                  */
5665                 if (level == PT32_ROOT_LEVEL) {
5666                         page_offset &= ~7; /* kill rounding error */
5667                         page_offset <<= 1;
5668                         *nspte = 2;
5669                 }
5670                 quadrant = page_offset >> PAGE_SHIFT;
5671                 page_offset &= ~PAGE_MASK;
5672                 if (quadrant != sp->role.quadrant)
5673                         return NULL;
5674         }
5675
5676         spte = &sp->spt[page_offset / sizeof(*spte)];
5677         return spte;
5678 }
5679
5680 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5681                               const u8 *new, int bytes,
5682                               struct kvm_page_track_notifier_node *node)
5683 {
5684         gfn_t gfn = gpa >> PAGE_SHIFT;
5685         struct kvm_mmu_page *sp;
5686         LIST_HEAD(invalid_list);
5687         u64 entry, gentry, *spte;
5688         int npte;
5689         bool flush = false;
5690
5691         /*
5692          * If we don't have indirect shadow pages, it means no page is
5693          * write-protected, so we can exit simply.
5694          */
5695         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5696                 return;
5697
5698         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5699
5700         write_lock(&vcpu->kvm->mmu_lock);
5701
5702         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5703
5704         ++vcpu->kvm->stat.mmu_pte_write;
5705
5706         for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5707                 if (detect_write_misaligned(sp, gpa, bytes) ||
5708                       detect_write_flooding(sp)) {
5709                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5710                         ++vcpu->kvm->stat.mmu_flooded;
5711                         continue;
5712                 }
5713
5714                 spte = get_written_sptes(sp, gpa, &npte);
5715                 if (!spte)
5716                         continue;
5717
5718                 while (npte--) {
5719                         entry = *spte;
5720                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5721                         if (gentry && sp->role.level != PG_LEVEL_4K)
5722                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5723                         if (is_shadow_present_pte(entry))
5724                                 flush = true;
5725                         ++spte;
5726                 }
5727         }
5728         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5729         write_unlock(&vcpu->kvm->mmu_lock);
5730 }
5731
5732 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5733                        void *insn, int insn_len)
5734 {
5735         int r, emulation_type = EMULTYPE_PF;
5736         bool direct = vcpu->arch.mmu->root_role.direct;
5737
5738         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5739                 return RET_PF_RETRY;
5740
5741         r = RET_PF_INVALID;
5742         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5743                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5744                 if (r == RET_PF_EMULATE)
5745                         goto emulate;
5746         }
5747
5748         if (r == RET_PF_INVALID) {
5749                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5750                                           lower_32_bits(error_code), false,
5751                                           &emulation_type);
5752                 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5753                         return -EIO;
5754         }
5755
5756         if (r < 0)
5757                 return r;
5758         if (r != RET_PF_EMULATE)
5759                 return 1;
5760
5761         /*
5762          * Before emulating the instruction, check if the error code
5763          * was due to a RO violation while translating the guest page.
5764          * This can occur when using nested virtualization with nested
5765          * paging in both guests. If true, we simply unprotect the page
5766          * and resume the guest.
5767          */
5768         if (vcpu->arch.mmu->root_role.direct &&
5769             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5770                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5771                 return 1;
5772         }
5773
5774         /*
5775          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5776          * optimistically try to just unprotect the page and let the processor
5777          * re-execute the instruction that caused the page fault.  Do not allow
5778          * retrying MMIO emulation, as it's not only pointless but could also
5779          * cause us to enter an infinite loop because the processor will keep
5780          * faulting on the non-existent MMIO address.  Retrying an instruction
5781          * from a nested guest is also pointless and dangerous as we are only
5782          * explicitly shadowing L1's page tables, i.e. unprotecting something
5783          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5784          */
5785         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5786                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5787 emulate:
5788         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5789                                        insn_len);
5790 }
5791 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5792
5793 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5794                                       u64 addr, hpa_t root_hpa)
5795 {
5796         struct kvm_shadow_walk_iterator iterator;
5797
5798         vcpu_clear_mmio_info(vcpu, addr);
5799
5800         if (!VALID_PAGE(root_hpa))
5801                 return;
5802
5803         write_lock(&vcpu->kvm->mmu_lock);
5804         for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
5805                 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
5806
5807                 if (sp->unsync) {
5808                         int ret = kvm_sync_spte(vcpu, sp, iterator.index);
5809
5810                         if (ret < 0)
5811                                 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
5812                         if (ret)
5813                                 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
5814                 }
5815
5816                 if (!sp->unsync_children)
5817                         break;
5818         }
5819         write_unlock(&vcpu->kvm->mmu_lock);
5820 }
5821
5822 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5823                              u64 addr, unsigned long roots)
5824 {
5825         int i;
5826
5827         WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
5828
5829         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5830         if (mmu != &vcpu->arch.guest_mmu) {
5831                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5832                 if (is_noncanonical_address(addr, vcpu))
5833                         return;
5834
5835                 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr);
5836         }
5837
5838         if (!mmu->sync_spte)
5839                 return;
5840
5841         if (roots & KVM_MMU_ROOT_CURRENT)
5842                 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
5843
5844         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5845                 if (roots & KVM_MMU_ROOT_PREVIOUS(i))
5846                         __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
5847         }
5848 }
5849 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
5850
5851 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5852 {
5853         /*
5854          * INVLPG is required to invalidate any global mappings for the VA,
5855          * irrespective of PCID.  Blindly sync all roots as it would take
5856          * roughly the same amount of work/time to determine whether any of the
5857          * previous roots have a global mapping.
5858          *
5859          * Mappings not reachable via the current or previous cached roots will
5860          * be synced when switching to that new cr3, so nothing needs to be
5861          * done here for them.
5862          */
5863         kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
5864         ++vcpu->stat.invlpg;
5865 }
5866 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5867
5868
5869 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5870 {
5871         struct kvm_mmu *mmu = vcpu->arch.mmu;
5872         unsigned long roots = 0;
5873         uint i;
5874
5875         if (pcid == kvm_get_active_pcid(vcpu))
5876                 roots |= KVM_MMU_ROOT_CURRENT;
5877
5878         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5879                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5880                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
5881                         roots |= KVM_MMU_ROOT_PREVIOUS(i);
5882         }
5883
5884         if (roots)
5885                 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
5886         ++vcpu->stat.invlpg;
5887
5888         /*
5889          * Mappings not reachable via the current cr3 or the prev_roots will be
5890          * synced when switching to that cr3, so nothing needs to be done here
5891          * for them.
5892          */
5893 }
5894
5895 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5896                        int tdp_max_root_level, int tdp_huge_page_level)
5897 {
5898         tdp_enabled = enable_tdp;
5899         tdp_root_level = tdp_forced_root_level;
5900         max_tdp_level = tdp_max_root_level;
5901
5902 #ifdef CONFIG_X86_64
5903         tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
5904 #endif
5905         /*
5906          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5907          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5908          * the kernel is not.  But, KVM never creates a page size greater than
5909          * what is used by the kernel for any given HVA, i.e. the kernel's
5910          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5911          */
5912         if (tdp_enabled)
5913                 max_huge_page_level = tdp_huge_page_level;
5914         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5915                 max_huge_page_level = PG_LEVEL_1G;
5916         else
5917                 max_huge_page_level = PG_LEVEL_2M;
5918 }
5919 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5920
5921 /* The return value indicates if tlb flush on all vcpus is needed. */
5922 typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
5923                                     struct kvm_rmap_head *rmap_head,
5924                                     const struct kvm_memory_slot *slot);
5925
5926 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
5927                                               const struct kvm_memory_slot *slot,
5928                                               slot_rmaps_handler fn,
5929                                               int start_level, int end_level,
5930                                               gfn_t start_gfn, gfn_t end_gfn,
5931                                               bool flush_on_yield, bool flush)
5932 {
5933         struct slot_rmap_walk_iterator iterator;
5934
5935         lockdep_assert_held_write(&kvm->mmu_lock);
5936
5937         for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
5938                         end_gfn, &iterator) {
5939                 if (iterator.rmap)
5940                         flush |= fn(kvm, iterator.rmap, slot);
5941
5942                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5943                         if (flush && flush_on_yield) {
5944                                 kvm_flush_remote_tlbs_range(kvm, start_gfn,
5945                                                             iterator.gfn - start_gfn + 1);
5946                                 flush = false;
5947                         }
5948                         cond_resched_rwlock_write(&kvm->mmu_lock);
5949                 }
5950         }
5951
5952         return flush;
5953 }
5954
5955 static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
5956                                             const struct kvm_memory_slot *slot,
5957                                             slot_rmaps_handler fn,
5958                                             int start_level, int end_level,
5959                                             bool flush_on_yield)
5960 {
5961         return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
5962                                  slot->base_gfn, slot->base_gfn + slot->npages - 1,
5963                                  flush_on_yield, false);
5964 }
5965
5966 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
5967                                                const struct kvm_memory_slot *slot,
5968                                                slot_rmaps_handler fn,
5969                                                bool flush_on_yield)
5970 {
5971         return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
5972 }
5973
5974 static void free_mmu_pages(struct kvm_mmu *mmu)
5975 {
5976         if (!tdp_enabled && mmu->pae_root)
5977                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5978         free_page((unsigned long)mmu->pae_root);
5979         free_page((unsigned long)mmu->pml4_root);
5980         free_page((unsigned long)mmu->pml5_root);
5981 }
5982
5983 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5984 {
5985         struct page *page;
5986         int i;
5987
5988         mmu->root.hpa = INVALID_PAGE;
5989         mmu->root.pgd = 0;
5990         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5991                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5992
5993         /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
5994         if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
5995                 return 0;
5996
5997         /*
5998          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5999          * while the PDP table is a per-vCPU construct that's allocated at MMU
6000          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
6001          * x86_64.  Therefore we need to allocate the PDP table in the first
6002          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
6003          * generally doesn't use PAE paging and can skip allocating the PDP
6004          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
6005          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6006          * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6007          */
6008         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6009                 return 0;
6010
6011         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6012         if (!page)
6013                 return -ENOMEM;
6014
6015         mmu->pae_root = page_address(page);
6016
6017         /*
6018          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6019          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
6020          * that KVM's writes and the CPU's reads get along.  Note, this is
6021          * only necessary when using shadow paging, as 64-bit NPT can get at
6022          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6023          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6024          */
6025         if (!tdp_enabled)
6026                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6027         else
6028                 WARN_ON_ONCE(shadow_me_value);
6029
6030         for (i = 0; i < 4; ++i)
6031                 mmu->pae_root[i] = INVALID_PAE_ROOT;
6032
6033         return 0;
6034 }
6035
6036 int kvm_mmu_create(struct kvm_vcpu *vcpu)
6037 {
6038         int ret;
6039
6040         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6041         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6042
6043         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6044         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6045
6046         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6047
6048         vcpu->arch.mmu = &vcpu->arch.root_mmu;
6049         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6050
6051         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6052         if (ret)
6053                 return ret;
6054
6055         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6056         if (ret)
6057                 goto fail_allocate_root;
6058
6059         return ret;
6060  fail_allocate_root:
6061         free_mmu_pages(&vcpu->arch.guest_mmu);
6062         return ret;
6063 }
6064
6065 #define BATCH_ZAP_PAGES 10
6066 static void kvm_zap_obsolete_pages(struct kvm *kvm)
6067 {
6068         struct kvm_mmu_page *sp, *node;
6069         int nr_zapped, batch = 0;
6070         bool unstable;
6071
6072 restart:
6073         list_for_each_entry_safe_reverse(sp, node,
6074               &kvm->arch.active_mmu_pages, link) {
6075                 /*
6076                  * No obsolete valid page exists before a newly created page
6077                  * since active_mmu_pages is a FIFO list.
6078                  */
6079                 if (!is_obsolete_sp(kvm, sp))
6080                         break;
6081
6082                 /*
6083                  * Invalid pages should never land back on the list of active
6084                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
6085                  * infinite loop if the page gets put back on the list (again).
6086                  */
6087                 if (WARN_ON(sp->role.invalid))
6088                         continue;
6089
6090                 /*
6091                  * No need to flush the TLB since we're only zapping shadow
6092                  * pages with an obsolete generation number and all vCPUS have
6093                  * loaded a new root, i.e. the shadow pages being zapped cannot
6094                  * be in active use by the guest.
6095                  */
6096                 if (batch >= BATCH_ZAP_PAGES &&
6097                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
6098                         batch = 0;
6099                         goto restart;
6100                 }
6101
6102                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6103                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped);
6104                 batch += nr_zapped;
6105
6106                 if (unstable)
6107                         goto restart;
6108         }
6109
6110         /*
6111          * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6112          * to ensure KVM is not in the middle of a lockless shadow page table
6113          * walk, which may reference the pages.  The remote TLB flush itself is
6114          * not required and is simply a convenient way to kick vCPUs as needed.
6115          * KVM performs a local TLB flush when allocating a new root (see
6116          * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6117          * running with an obsolete MMU.
6118          */
6119         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
6120 }
6121
6122 /*
6123  * Fast invalidate all shadow pages and use lock-break technique
6124  * to zap obsolete pages.
6125  *
6126  * It's required when memslot is being deleted or VM is being
6127  * destroyed, in these cases, we should ensure that KVM MMU does
6128  * not use any resource of the being-deleted slot or all slots
6129  * after calling the function.
6130  */
6131 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6132 {
6133         lockdep_assert_held(&kvm->slots_lock);
6134
6135         write_lock(&kvm->mmu_lock);
6136         trace_kvm_mmu_zap_all_fast(kvm);
6137
6138         /*
6139          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
6140          * held for the entire duration of zapping obsolete pages, it's
6141          * impossible for there to be multiple invalid generations associated
6142          * with *valid* shadow pages at any given time, i.e. there is exactly
6143          * one valid generation and (at most) one invalid generation.
6144          */
6145         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6146
6147         /*
6148          * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6149          * invalidating TDP MMU roots must be done while holding mmu_lock for
6150          * write and in the same critical section as making the reload request,
6151          * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6152          */
6153         if (tdp_mmu_enabled)
6154                 kvm_tdp_mmu_invalidate_all_roots(kvm);
6155
6156         /*
6157          * Notify all vcpus to reload its shadow page table and flush TLB.
6158          * Then all vcpus will switch to new shadow page table with the new
6159          * mmu_valid_gen.
6160          *
6161          * Note: we need to do this under the protection of mmu_lock,
6162          * otherwise, vcpu would purge shadow page but miss tlb flush.
6163          */
6164         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6165
6166         kvm_zap_obsolete_pages(kvm);
6167
6168         write_unlock(&kvm->mmu_lock);
6169
6170         /*
6171          * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6172          * returning to the caller, e.g. if the zap is in response to a memslot
6173          * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6174          * associated with the deleted memslot once the update completes, and
6175          * Deferring the zap until the final reference to the root is put would
6176          * lead to use-after-free.
6177          */
6178         if (tdp_mmu_enabled)
6179                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
6180 }
6181
6182 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
6183 {
6184         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
6185 }
6186
6187 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
6188                         struct kvm_memory_slot *slot,
6189                         struct kvm_page_track_notifier_node *node)
6190 {
6191         kvm_mmu_zap_all_fast(kvm);
6192 }
6193
6194 int kvm_mmu_init_vm(struct kvm *kvm)
6195 {
6196         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
6197         int r;
6198
6199         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6200         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6201         INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
6202         spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6203
6204         if (tdp_mmu_enabled) {
6205                 r = kvm_mmu_init_tdp_mmu(kvm);
6206                 if (r < 0)
6207                         return r;
6208         }
6209
6210         node->track_write = kvm_mmu_pte_write;
6211         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
6212         kvm_page_track_register_notifier(kvm, node);
6213
6214         kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6215         kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6216
6217         kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6218
6219         kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6220         kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6221
6222         return 0;
6223 }
6224
6225 static void mmu_free_vm_memory_caches(struct kvm *kvm)
6226 {
6227         kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6228         kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6229         kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6230 }
6231
6232 void kvm_mmu_uninit_vm(struct kvm *kvm)
6233 {
6234         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
6235
6236         kvm_page_track_unregister_notifier(kvm, node);
6237
6238         if (tdp_mmu_enabled)
6239                 kvm_mmu_uninit_tdp_mmu(kvm);
6240
6241         mmu_free_vm_memory_caches(kvm);
6242 }
6243
6244 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6245 {
6246         const struct kvm_memory_slot *memslot;
6247         struct kvm_memslots *slots;
6248         struct kvm_memslot_iter iter;
6249         bool flush = false;
6250         gfn_t start, end;
6251         int i;
6252
6253         if (!kvm_memslots_have_rmaps(kvm))
6254                 return flush;
6255
6256         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6257                 slots = __kvm_memslots(kvm, i);
6258
6259                 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6260                         memslot = iter.slot;
6261                         start = max(gfn_start, memslot->base_gfn);
6262                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
6263                         if (WARN_ON_ONCE(start >= end))
6264                                 continue;
6265
6266                         flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap,
6267                                                   PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
6268                                                   start, end - 1, true, flush);
6269                 }
6270         }
6271
6272         return flush;
6273 }
6274
6275 /*
6276  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6277  * (not including it)
6278  */
6279 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6280 {
6281         bool flush;
6282         int i;
6283
6284         if (WARN_ON_ONCE(gfn_end <= gfn_start))
6285                 return;
6286
6287         write_lock(&kvm->mmu_lock);
6288
6289         kvm_mmu_invalidate_begin(kvm, 0, -1ul);
6290
6291         flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6292
6293         if (tdp_mmu_enabled) {
6294                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
6295                         flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start,
6296                                                       gfn_end, true, flush);
6297         }
6298
6299         if (flush)
6300                 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6301
6302         kvm_mmu_invalidate_end(kvm, 0, -1ul);
6303
6304         write_unlock(&kvm->mmu_lock);
6305 }
6306
6307 static bool slot_rmap_write_protect(struct kvm *kvm,
6308                                     struct kvm_rmap_head *rmap_head,
6309                                     const struct kvm_memory_slot *slot)
6310 {
6311         return rmap_write_protect(rmap_head, false);
6312 }
6313
6314 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6315                                       const struct kvm_memory_slot *memslot,
6316                                       int start_level)
6317 {
6318         if (kvm_memslots_have_rmaps(kvm)) {
6319                 write_lock(&kvm->mmu_lock);
6320                 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6321                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6322                 write_unlock(&kvm->mmu_lock);
6323         }
6324
6325         if (tdp_mmu_enabled) {
6326                 read_lock(&kvm->mmu_lock);
6327                 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6328                 read_unlock(&kvm->mmu_lock);
6329         }
6330 }
6331
6332 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6333 {
6334         return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6335 }
6336
6337 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6338 {
6339         if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6340                 return true;
6341
6342         /*
6343          * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6344          * to split a single huge page. Calculating how many are actually needed
6345          * is possible but not worth the complexity.
6346          */
6347         return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6348                need_topup(&kvm->arch.split_page_header_cache, 1) ||
6349                need_topup(&kvm->arch.split_shadow_page_cache, 1);
6350 }
6351
6352 static int topup_split_caches(struct kvm *kvm)
6353 {
6354         /*
6355          * Allocating rmap list entries when splitting huge pages for nested
6356          * MMUs is uncommon as KVM needs to use a list if and only if there is
6357          * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6358          * aliased by multiple L2 gfns and/or from multiple nested roots with
6359          * different roles.  Aliasing gfns when using TDP is atypical for VMMs;
6360          * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6361          * but aliasing rarely occurs post-boot or for many gfns.  If there is
6362          * only one rmap entry, rmap->val points directly at that one entry and
6363          * doesn't need to allocate a list.  Buffer the cache by the default
6364          * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6365          * encounters an aliased gfn or two.
6366          */
6367         const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6368                              KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6369         int r;
6370
6371         lockdep_assert_held(&kvm->slots_lock);
6372
6373         r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6374                                          SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6375         if (r)
6376                 return r;
6377
6378         r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6379         if (r)
6380                 return r;
6381
6382         return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6383 }
6384
6385 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6386 {
6387         struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6388         struct shadow_page_caches caches = {};
6389         union kvm_mmu_page_role role;
6390         unsigned int access;
6391         gfn_t gfn;
6392
6393         gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6394         access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6395
6396         /*
6397          * Note, huge page splitting always uses direct shadow pages, regardless
6398          * of whether the huge page itself is mapped by a direct or indirect
6399          * shadow page, since the huge page region itself is being directly
6400          * mapped with smaller pages.
6401          */
6402         role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6403
6404         /* Direct SPs do not require a shadowed_info_cache. */
6405         caches.page_header_cache = &kvm->arch.split_page_header_cache;
6406         caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6407
6408         /* Safe to pass NULL for vCPU since requesting a direct SP. */
6409         return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6410 }
6411
6412 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6413                                        const struct kvm_memory_slot *slot,
6414                                        u64 *huge_sptep)
6415
6416 {
6417         struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6418         u64 huge_spte = READ_ONCE(*huge_sptep);
6419         struct kvm_mmu_page *sp;
6420         bool flush = false;
6421         u64 *sptep, spte;
6422         gfn_t gfn;
6423         int index;
6424
6425         sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6426
6427         for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6428                 sptep = &sp->spt[index];
6429                 gfn = kvm_mmu_page_get_gfn(sp, index);
6430
6431                 /*
6432                  * The SP may already have populated SPTEs, e.g. if this huge
6433                  * page is aliased by multiple sptes with the same access
6434                  * permissions. These entries are guaranteed to map the same
6435                  * gfn-to-pfn translation since the SP is direct, so no need to
6436                  * modify them.
6437                  *
6438                  * However, if a given SPTE points to a lower level page table,
6439                  * that lower level page table may only be partially populated.
6440                  * Installing such SPTEs would effectively unmap a potion of the
6441                  * huge page. Unmapping guest memory always requires a TLB flush
6442                  * since a subsequent operation on the unmapped regions would
6443                  * fail to detect the need to flush.
6444                  */
6445                 if (is_shadow_present_pte(*sptep)) {
6446                         flush |= !is_last_spte(*sptep, sp->role.level);
6447                         continue;
6448                 }
6449
6450                 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
6451                 mmu_spte_set(sptep, spte);
6452                 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6453         }
6454
6455         __link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6456 }
6457
6458 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6459                                           const struct kvm_memory_slot *slot,
6460                                           u64 *huge_sptep)
6461 {
6462         struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6463         int level, r = 0;
6464         gfn_t gfn;
6465         u64 spte;
6466
6467         /* Grab information for the tracepoint before dropping the MMU lock. */
6468         gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6469         level = huge_sp->role.level;
6470         spte = *huge_sptep;
6471
6472         if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6473                 r = -ENOSPC;
6474                 goto out;
6475         }
6476
6477         if (need_topup_split_caches_or_resched(kvm)) {
6478                 write_unlock(&kvm->mmu_lock);
6479                 cond_resched();
6480                 /*
6481                  * If the topup succeeds, return -EAGAIN to indicate that the
6482                  * rmap iterator should be restarted because the MMU lock was
6483                  * dropped.
6484                  */
6485                 r = topup_split_caches(kvm) ?: -EAGAIN;
6486                 write_lock(&kvm->mmu_lock);
6487                 goto out;
6488         }
6489
6490         shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6491
6492 out:
6493         trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6494         return r;
6495 }
6496
6497 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6498                                             struct kvm_rmap_head *rmap_head,
6499                                             const struct kvm_memory_slot *slot)
6500 {
6501         struct rmap_iterator iter;
6502         struct kvm_mmu_page *sp;
6503         u64 *huge_sptep;
6504         int r;
6505
6506 restart:
6507         for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6508                 sp = sptep_to_sp(huge_sptep);
6509
6510                 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6511                 if (WARN_ON_ONCE(!sp->role.guest_mode))
6512                         continue;
6513
6514                 /* The rmaps should never contain non-leaf SPTEs. */
6515                 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6516                         continue;
6517
6518                 /* SPs with level >PG_LEVEL_4K should never by unsync. */
6519                 if (WARN_ON_ONCE(sp->unsync))
6520                         continue;
6521
6522                 /* Don't bother splitting huge pages on invalid SPs. */
6523                 if (sp->role.invalid)
6524                         continue;
6525
6526                 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6527
6528                 /*
6529                  * The split succeeded or needs to be retried because the MMU
6530                  * lock was dropped. Either way, restart the iterator to get it
6531                  * back into a consistent state.
6532                  */
6533                 if (!r || r == -EAGAIN)
6534                         goto restart;
6535
6536                 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6537                 break;
6538         }
6539
6540         return false;
6541 }
6542
6543 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6544                                                 const struct kvm_memory_slot *slot,
6545                                                 gfn_t start, gfn_t end,
6546                                                 int target_level)
6547 {
6548         int level;
6549
6550         /*
6551          * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6552          * down to the target level. This ensures pages are recursively split
6553          * all the way to the target level. There's no need to split pages
6554          * already at the target level.
6555          */
6556         for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
6557                 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
6558                                   level, level, start, end - 1, true, false);
6559 }
6560
6561 /* Must be called with the mmu_lock held in write-mode. */
6562 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6563                                    const struct kvm_memory_slot *memslot,
6564                                    u64 start, u64 end,
6565                                    int target_level)
6566 {
6567         if (!tdp_mmu_enabled)
6568                 return;
6569
6570         if (kvm_memslots_have_rmaps(kvm))
6571                 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6572
6573         kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
6574
6575         /*
6576          * A TLB flush is unnecessary at this point for the same resons as in
6577          * kvm_mmu_slot_try_split_huge_pages().
6578          */
6579 }
6580
6581 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6582                                         const struct kvm_memory_slot *memslot,
6583                                         int target_level)
6584 {
6585         u64 start = memslot->base_gfn;
6586         u64 end = start + memslot->npages;
6587
6588         if (!tdp_mmu_enabled)
6589                 return;
6590
6591         if (kvm_memslots_have_rmaps(kvm)) {
6592                 write_lock(&kvm->mmu_lock);
6593                 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6594                 write_unlock(&kvm->mmu_lock);
6595         }
6596
6597         read_lock(&kvm->mmu_lock);
6598         kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6599         read_unlock(&kvm->mmu_lock);
6600
6601         /*
6602          * No TLB flush is necessary here. KVM will flush TLBs after
6603          * write-protecting and/or clearing dirty on the newly split SPTEs to
6604          * ensure that guest writes are reflected in the dirty log before the
6605          * ioctl to enable dirty logging on this memslot completes. Since the
6606          * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6607          * safe for KVM to decide if a TLB flush is necessary based on the split
6608          * SPTEs.
6609          */
6610 }
6611
6612 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6613                                          struct kvm_rmap_head *rmap_head,
6614                                          const struct kvm_memory_slot *slot)
6615 {
6616         u64 *sptep;
6617         struct rmap_iterator iter;
6618         int need_tlb_flush = 0;
6619         struct kvm_mmu_page *sp;
6620
6621 restart:
6622         for_each_rmap_spte(rmap_head, &iter, sptep) {
6623                 sp = sptep_to_sp(sptep);
6624
6625                 /*
6626                  * We cannot do huge page mapping for indirect shadow pages,
6627                  * which are found on the last rmap (level = 1) when not using
6628                  * tdp; such shadow pages are synced with the page table in
6629                  * the guest, and the guest page table is using 4K page size
6630                  * mapping if the indirect sp has level = 1.
6631                  */
6632                 if (sp->role.direct &&
6633                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
6634                                                                PG_LEVEL_NUM)) {
6635                         kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6636
6637                         if (kvm_available_flush_remote_tlbs_range())
6638                                 kvm_flush_remote_tlbs_sptep(kvm, sptep);
6639                         else
6640                                 need_tlb_flush = 1;
6641
6642                         goto restart;
6643                 }
6644         }
6645
6646         return need_tlb_flush;
6647 }
6648
6649 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6650                                            const struct kvm_memory_slot *slot)
6651 {
6652         /*
6653          * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6654          * pages that are already mapped at the maximum hugepage level.
6655          */
6656         if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
6657                             PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
6658                 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
6659 }
6660
6661 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6662                                    const struct kvm_memory_slot *slot)
6663 {
6664         if (kvm_memslots_have_rmaps(kvm)) {
6665                 write_lock(&kvm->mmu_lock);
6666                 kvm_rmap_zap_collapsible_sptes(kvm, slot);
6667                 write_unlock(&kvm->mmu_lock);
6668         }
6669
6670         if (tdp_mmu_enabled) {
6671                 read_lock(&kvm->mmu_lock);
6672                 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6673                 read_unlock(&kvm->mmu_lock);
6674         }
6675 }
6676
6677 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6678                                         const struct kvm_memory_slot *memslot)
6679 {
6680         /*
6681          * All current use cases for flushing the TLBs for a specific memslot
6682          * related to dirty logging, and many do the TLB flush out of mmu_lock.
6683          * The interaction between the various operations on memslot must be
6684          * serialized by slots_locks to ensure the TLB flush from one operation
6685          * is observed by any other operation on the same memslot.
6686          */
6687         lockdep_assert_held(&kvm->slots_lock);
6688         kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
6689 }
6690
6691 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6692                                    const struct kvm_memory_slot *memslot)
6693 {
6694         if (kvm_memslots_have_rmaps(kvm)) {
6695                 write_lock(&kvm->mmu_lock);
6696                 /*
6697                  * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6698                  * support dirty logging at a 4k granularity.
6699                  */
6700                 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
6701                 write_unlock(&kvm->mmu_lock);
6702         }
6703
6704         if (tdp_mmu_enabled) {
6705                 read_lock(&kvm->mmu_lock);
6706                 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6707                 read_unlock(&kvm->mmu_lock);
6708         }
6709
6710         /*
6711          * The caller will flush the TLBs after this function returns.
6712          *
6713          * It's also safe to flush TLBs out of mmu lock here as currently this
6714          * function is only used for dirty logging, in which case flushing TLB
6715          * out of mmu lock also guarantees no dirty pages will be lost in
6716          * dirty_bitmap.
6717          */
6718 }
6719
6720 void kvm_mmu_zap_all(struct kvm *kvm)
6721 {
6722         struct kvm_mmu_page *sp, *node;
6723         LIST_HEAD(invalid_list);
6724         int ign;
6725
6726         write_lock(&kvm->mmu_lock);
6727 restart:
6728         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6729                 if (WARN_ON(sp->role.invalid))
6730                         continue;
6731                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6732                         goto restart;
6733                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
6734                         goto restart;
6735         }
6736
6737         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6738
6739         if (tdp_mmu_enabled)
6740                 kvm_tdp_mmu_zap_all(kvm);
6741
6742         write_unlock(&kvm->mmu_lock);
6743 }
6744
6745 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6746 {
6747         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6748
6749         gen &= MMIO_SPTE_GEN_MASK;
6750
6751         /*
6752          * Generation numbers are incremented in multiples of the number of
6753          * address spaces in order to provide unique generations across all
6754          * address spaces.  Strip what is effectively the address space
6755          * modifier prior to checking for a wrap of the MMIO generation so
6756          * that a wrap in any address space is detected.
6757          */
6758         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6759
6760         /*
6761          * The very rare case: if the MMIO generation number has wrapped,
6762          * zap all shadow pages.
6763          */
6764         if (unlikely(gen == 0)) {
6765                 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
6766                 kvm_mmu_zap_all_fast(kvm);
6767         }
6768 }
6769
6770 static unsigned long mmu_shrink_scan(struct shrinker *shrink,
6771                                      struct shrink_control *sc)
6772 {
6773         struct kvm *kvm;
6774         int nr_to_scan = sc->nr_to_scan;
6775         unsigned long freed = 0;
6776
6777         mutex_lock(&kvm_lock);
6778
6779         list_for_each_entry(kvm, &vm_list, vm_list) {
6780                 int idx;
6781                 LIST_HEAD(invalid_list);
6782
6783                 /*
6784                  * Never scan more than sc->nr_to_scan VM instances.
6785                  * Will not hit this condition practically since we do not try
6786                  * to shrink more than one VM and it is very unlikely to see
6787                  * !n_used_mmu_pages so many times.
6788                  */
6789                 if (!nr_to_scan--)
6790                         break;
6791                 /*
6792                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6793                  * here. We may skip a VM instance errorneosly, but we do not
6794                  * want to shrink a VM that only started to populate its MMU
6795                  * anyway.
6796                  */
6797                 if (!kvm->arch.n_used_mmu_pages &&
6798                     !kvm_has_zapped_obsolete_pages(kvm))
6799                         continue;
6800
6801                 idx = srcu_read_lock(&kvm->srcu);
6802                 write_lock(&kvm->mmu_lock);
6803
6804                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6805                         kvm_mmu_commit_zap_page(kvm,
6806                               &kvm->arch.zapped_obsolete_pages);
6807                         goto unlock;
6808                 }
6809
6810                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6811
6812 unlock:
6813                 write_unlock(&kvm->mmu_lock);
6814                 srcu_read_unlock(&kvm->srcu, idx);
6815
6816                 /*
6817                  * unfair on small ones
6818                  * per-vm shrinkers cry out
6819                  * sadness comes quickly
6820                  */
6821                 list_move_tail(&kvm->vm_list, &vm_list);
6822                 break;
6823         }
6824
6825         mutex_unlock(&kvm_lock);
6826         return freed;
6827 }
6828
6829 static unsigned long mmu_shrink_count(struct shrinker *shrink,
6830                                       struct shrink_control *sc)
6831 {
6832         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6833 }
6834
6835 static struct shrinker mmu_shrinker = {
6836         .count_objects = mmu_shrink_count,
6837         .scan_objects = mmu_shrink_scan,
6838         .seeks = DEFAULT_SEEKS * 10,
6839 };
6840
6841 static void mmu_destroy_caches(void)
6842 {
6843         kmem_cache_destroy(pte_list_desc_cache);
6844         kmem_cache_destroy(mmu_page_header_cache);
6845 }
6846
6847 static bool get_nx_auto_mode(void)
6848 {
6849         /* Return true when CPU has the bug, and mitigations are ON */
6850         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6851 }
6852
6853 static void __set_nx_huge_pages(bool val)
6854 {
6855         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6856 }
6857
6858 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6859 {
6860         bool old_val = nx_huge_pages;
6861         bool new_val;
6862
6863         /* In "auto" mode deploy workaround only if CPU has the bug. */
6864         if (sysfs_streq(val, "off"))
6865                 new_val = 0;
6866         else if (sysfs_streq(val, "force"))
6867                 new_val = 1;
6868         else if (sysfs_streq(val, "auto"))
6869                 new_val = get_nx_auto_mode();
6870         else if (kstrtobool(val, &new_val) < 0)
6871                 return -EINVAL;
6872
6873         __set_nx_huge_pages(new_val);
6874
6875         if (new_val != old_val) {
6876                 struct kvm *kvm;
6877
6878                 mutex_lock(&kvm_lock);
6879
6880                 list_for_each_entry(kvm, &vm_list, vm_list) {
6881                         mutex_lock(&kvm->slots_lock);
6882                         kvm_mmu_zap_all_fast(kvm);
6883                         mutex_unlock(&kvm->slots_lock);
6884
6885                         wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
6886                 }
6887                 mutex_unlock(&kvm_lock);
6888         }
6889
6890         return 0;
6891 }
6892
6893 /*
6894  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6895  * its default value of -1 is technically undefined behavior for a boolean.
6896  * Forward the module init call to SPTE code so that it too can handle module
6897  * params that need to be resolved/snapshot.
6898  */
6899 void __init kvm_mmu_x86_module_init(void)
6900 {
6901         if (nx_huge_pages == -1)
6902                 __set_nx_huge_pages(get_nx_auto_mode());
6903
6904         /*
6905          * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
6906          * TDP MMU is actually enabled is determined in kvm_configure_mmu()
6907          * when the vendor module is loaded.
6908          */
6909         tdp_mmu_allowed = tdp_mmu_enabled;
6910
6911         kvm_mmu_spte_module_init();
6912 }
6913
6914 /*
6915  * The bulk of the MMU initialization is deferred until the vendor module is
6916  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6917  * to be reset when a potentially different vendor module is loaded.
6918  */
6919 int kvm_mmu_vendor_module_init(void)
6920 {
6921         int ret = -ENOMEM;
6922
6923         /*
6924          * MMU roles use union aliasing which is, generally speaking, an
6925          * undefined behavior. However, we supposedly know how compilers behave
6926          * and the current status quo is unlikely to change. Guardians below are
6927          * supposed to let us know if the assumption becomes false.
6928          */
6929         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6930         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6931         BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
6932
6933         kvm_mmu_reset_all_pte_masks();
6934
6935         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6936                                             sizeof(struct pte_list_desc),
6937                                             0, SLAB_ACCOUNT, NULL);
6938         if (!pte_list_desc_cache)
6939                 goto out;
6940
6941         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6942                                                   sizeof(struct kvm_mmu_page),
6943                                                   0, SLAB_ACCOUNT, NULL);
6944         if (!mmu_page_header_cache)
6945                 goto out;
6946
6947         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6948                 goto out;
6949
6950         ret = register_shrinker(&mmu_shrinker, "x86-mmu");
6951         if (ret)
6952                 goto out_shrinker;
6953
6954         return 0;
6955
6956 out_shrinker:
6957         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6958 out:
6959         mmu_destroy_caches();
6960         return ret;
6961 }
6962
6963 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6964 {
6965         kvm_mmu_unload(vcpu);
6966         free_mmu_pages(&vcpu->arch.root_mmu);
6967         free_mmu_pages(&vcpu->arch.guest_mmu);
6968         mmu_free_memory_caches(vcpu);
6969 }
6970
6971 void kvm_mmu_vendor_module_exit(void)
6972 {
6973         mmu_destroy_caches();
6974         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6975         unregister_shrinker(&mmu_shrinker);
6976 }
6977
6978 /*
6979  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
6980  * select a halving time of 1 hour".  Returns true if recovery is enabled.
6981  */
6982 static bool calc_nx_huge_pages_recovery_period(uint *period)
6983 {
6984         /*
6985          * Use READ_ONCE to get the params, this may be called outside of the
6986          * param setters, e.g. by the kthread to compute its next timeout.
6987          */
6988         bool enabled = READ_ONCE(nx_huge_pages);
6989         uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6990
6991         if (!enabled || !ratio)
6992                 return false;
6993
6994         *period = READ_ONCE(nx_huge_pages_recovery_period_ms);
6995         if (!*period) {
6996                 /* Make sure the period is not less than one second.  */
6997                 ratio = min(ratio, 3600u);
6998                 *period = 60 * 60 * 1000 / ratio;
6999         }
7000         return true;
7001 }
7002
7003 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
7004 {
7005         bool was_recovery_enabled, is_recovery_enabled;
7006         uint old_period, new_period;
7007         int err;
7008
7009         was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7010
7011         err = param_set_uint(val, kp);
7012         if (err)
7013                 return err;
7014
7015         is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7016
7017         if (is_recovery_enabled &&
7018             (!was_recovery_enabled || old_period > new_period)) {
7019                 struct kvm *kvm;
7020
7021                 mutex_lock(&kvm_lock);
7022
7023                 list_for_each_entry(kvm, &vm_list, vm_list)
7024                         wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
7025
7026                 mutex_unlock(&kvm_lock);
7027         }
7028
7029         return err;
7030 }
7031
7032 static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7033 {
7034         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7035         struct kvm_memory_slot *slot;
7036         int rcu_idx;
7037         struct kvm_mmu_page *sp;
7038         unsigned int ratio;
7039         LIST_HEAD(invalid_list);
7040         bool flush = false;
7041         ulong to_zap;
7042
7043         rcu_idx = srcu_read_lock(&kvm->srcu);
7044         write_lock(&kvm->mmu_lock);
7045
7046         /*
7047          * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7048          * be done under RCU protection, because the pages are freed via RCU
7049          * callback.
7050          */
7051         rcu_read_lock();
7052
7053         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7054         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7055         for ( ; to_zap; --to_zap) {
7056                 if (list_empty(&kvm->arch.possible_nx_huge_pages))
7057                         break;
7058
7059                 /*
7060                  * We use a separate list instead of just using active_mmu_pages
7061                  * because the number of shadow pages that be replaced with an
7062                  * NX huge page is expected to be relatively small compared to
7063                  * the total number of shadow pages.  And because the TDP MMU
7064                  * doesn't use active_mmu_pages.
7065                  */
7066                 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7067                                       struct kvm_mmu_page,
7068                                       possible_nx_huge_page_link);
7069                 WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7070                 WARN_ON_ONCE(!sp->role.direct);
7071
7072                 /*
7073                  * Unaccount and do not attempt to recover any NX Huge Pages
7074                  * that are being dirty tracked, as they would just be faulted
7075                  * back in as 4KiB pages. The NX Huge Pages in this slot will be
7076                  * recovered, along with all the other huge pages in the slot,
7077                  * when dirty logging is disabled.
7078                  *
7079                  * Since gfn_to_memslot() is relatively expensive, it helps to
7080                  * skip it if it the test cannot possibly return true.  On the
7081                  * other hand, if any memslot has logging enabled, chances are
7082                  * good that all of them do, in which case unaccount_nx_huge_page()
7083                  * is much cheaper than zapping the page.
7084                  *
7085                  * If a memslot update is in progress, reading an incorrect value
7086                  * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7087                  * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7088                  * it is becoming nonzero, the page will be zapped unnecessarily.
7089                  * Either way, this only affects efficiency in racy situations,
7090                  * and not correctness.
7091                  */
7092                 slot = NULL;
7093                 if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
7094                         struct kvm_memslots *slots;
7095
7096                         slots = kvm_memslots_for_spte_role(kvm, sp->role);
7097                         slot = __gfn_to_memslot(slots, sp->gfn);
7098                         WARN_ON_ONCE(!slot);
7099                 }
7100
7101                 if (slot && kvm_slot_dirty_track_enabled(slot))
7102                         unaccount_nx_huge_page(kvm, sp);
7103                 else if (is_tdp_mmu_page(sp))
7104                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7105                 else
7106                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7107                 WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7108
7109                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7110                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7111                         rcu_read_unlock();
7112
7113                         cond_resched_rwlock_write(&kvm->mmu_lock);
7114                         flush = false;
7115
7116                         rcu_read_lock();
7117                 }
7118         }
7119         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7120
7121         rcu_read_unlock();
7122
7123         write_unlock(&kvm->mmu_lock);
7124         srcu_read_unlock(&kvm->srcu, rcu_idx);
7125 }
7126
7127 static long get_nx_huge_page_recovery_timeout(u64 start_time)
7128 {
7129         bool enabled;
7130         uint period;
7131
7132         enabled = calc_nx_huge_pages_recovery_period(&period);
7133
7134         return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
7135                        : MAX_SCHEDULE_TIMEOUT;
7136 }
7137
7138 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data)
7139 {
7140         u64 start_time;
7141         long remaining_time;
7142
7143         while (true) {
7144                 start_time = get_jiffies_64();
7145                 remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7146
7147                 set_current_state(TASK_INTERRUPTIBLE);
7148                 while (!kthread_should_stop() && remaining_time > 0) {
7149                         schedule_timeout(remaining_time);
7150                         remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7151                         set_current_state(TASK_INTERRUPTIBLE);
7152                 }
7153
7154                 set_current_state(TASK_RUNNING);
7155
7156                 if (kthread_should_stop())
7157                         return 0;
7158
7159                 kvm_recover_nx_huge_pages(kvm);
7160         }
7161 }
7162
7163 int kvm_mmu_post_init_vm(struct kvm *kvm)
7164 {
7165         int err;
7166
7167         err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0,
7168                                           "kvm-nx-lpage-recovery",
7169                                           &kvm->arch.nx_huge_page_recovery_thread);
7170         if (!err)
7171                 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread);
7172
7173         return err;
7174 }
7175
7176 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7177 {
7178         if (kvm->arch.nx_huge_page_recovery_thread)
7179                 kthread_stop(kvm->arch.nx_huge_page_recovery_thread);
7180 }