asm-generic/io.h: give stub iounmap() on !MMU same prototype as elsewhere
[platform/kernel/linux-starfive.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 #include "paging.h"
57
58 extern bool itlb_multihit_kvm_mitigation;
59
60 int __read_mostly nx_huge_pages = -1;
61 #ifdef CONFIG_PREEMPT_RT
62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
64 #else
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66 #endif
67
68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
70
71 static const struct kernel_param_ops nx_huge_pages_ops = {
72         .set = set_nx_huge_pages,
73         .get = param_get_bool,
74 };
75
76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77         .set = set_nx_huge_pages_recovery_ratio,
78         .get = param_get_uint,
79 };
80
81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
84                 &nx_huge_pages_recovery_ratio, 0644);
85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
86
87 static bool __read_mostly force_flush_and_sync_on_reuse;
88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
89
90 /*
91  * When setting this variable to true it enables Two-Dimensional-Paging
92  * where the hardware walks 2 page tables:
93  * 1. the guest-virtual to guest-physical
94  * 2. while doing 1. it walks guest-physical to host-physical
95  * If the hardware supports that we don't need to do shadow paging.
96  */
97 bool tdp_enabled = false;
98
99 static int max_huge_page_level __read_mostly;
100 static int tdp_root_level __read_mostly;
101 static int max_tdp_level __read_mostly;
102
103 enum {
104         AUDIT_PRE_PAGE_FAULT,
105         AUDIT_POST_PAGE_FAULT,
106         AUDIT_PRE_PTE_WRITE,
107         AUDIT_POST_PTE_WRITE,
108         AUDIT_PRE_SYNC,
109         AUDIT_POST_SYNC
110 };
111
112 #ifdef MMU_DEBUG
113 bool dbg = 0;
114 module_param(dbg, bool, 0644);
115 #endif
116
117 #define PTE_PREFETCH_NUM                8
118
119 #define PT32_LEVEL_BITS 10
120
121 #define PT32_LEVEL_SHIFT(level) \
122                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
123
124 #define PT32_LVL_OFFSET_MASK(level) \
125         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT32_LEVEL_BITS))) - 1))
127
128 #define PT32_INDEX(address, level)\
129         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130
131
132 #define PT32_BASE_ADDR_MASK PAGE_MASK
133 #define PT32_DIR_BASE_ADDR_MASK \
134         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
135 #define PT32_LVL_ADDR_MASK(level) \
136         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
137                                             * PT32_LEVEL_BITS))) - 1))
138
139 #include <trace/events/kvm.h>
140
141 /* make pte_list_desc fit well in cache lines */
142 #define PTE_LIST_EXT 14
143
144 /*
145  * Slight optimization of cacheline layout, by putting `more' and `spte_count'
146  * at the start; then accessing it will only use one single cacheline for
147  * either full (entries==PTE_LIST_EXT) case or entries<=6.
148  */
149 struct pte_list_desc {
150         struct pte_list_desc *more;
151         /*
152          * Stores number of entries stored in the pte_list_desc.  No need to be
153          * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
154          */
155         u64 spte_count;
156         u64 *sptes[PTE_LIST_EXT];
157 };
158
159 struct kvm_shadow_walk_iterator {
160         u64 addr;
161         hpa_t shadow_addr;
162         u64 *sptep;
163         int level;
164         unsigned index;
165 };
166
167 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
168         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
169                                          (_root), (_addr));                \
170              shadow_walk_okay(&(_walker));                                 \
171              shadow_walk_next(&(_walker)))
172
173 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
174         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
175              shadow_walk_okay(&(_walker));                      \
176              shadow_walk_next(&(_walker)))
177
178 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
179         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
180              shadow_walk_okay(&(_walker)) &&                            \
181                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
182              __shadow_walk_next(&(_walker), spte))
183
184 static struct kmem_cache *pte_list_desc_cache;
185 struct kmem_cache *mmu_page_header_cache;
186 static struct percpu_counter kvm_total_used_mmu_pages;
187
188 static void mmu_spte_set(u64 *sptep, u64 spte);
189 static union kvm_mmu_page_role
190 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
191
192 struct kvm_mmu_role_regs {
193         const unsigned long cr0;
194         const unsigned long cr4;
195         const u64 efer;
196 };
197
198 #define CREATE_TRACE_POINTS
199 #include "mmutrace.h"
200
201 /*
202  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
203  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
204  * the single source of truth for the MMU's state.
205  */
206 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)                   \
207 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
208 {                                                                       \
209         return !!(regs->reg & flag);                                    \
210 }
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
219 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
220 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
221
222 /*
223  * The MMU itself (with a valid role) is the single source of truth for the
224  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
225  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
226  * and the vCPU may be incorrect/irrelevant.
227  */
228 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)         \
229 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)        \
230 {                                                               \
231         return !!(mmu->mmu_role. base_or_ext . reg##_##name);   \
232 }
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
234 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
235 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
236 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
237 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
238 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
239 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
240 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
241 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
242
243 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
244 {
245         struct kvm_mmu_role_regs regs = {
246                 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
247                 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
248                 .efer = vcpu->arch.efer,
249         };
250
251         return regs;
252 }
253
254 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
255 {
256         if (!____is_cr0_pg(regs))
257                 return 0;
258         else if (____is_efer_lma(regs))
259                 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
260                                                PT64_ROOT_4LEVEL;
261         else if (____is_cr4_pae(regs))
262                 return PT32E_ROOT_LEVEL;
263         else
264                 return PT32_ROOT_LEVEL;
265 }
266
267 static inline bool kvm_available_flush_tlb_with_range(void)
268 {
269         return kvm_x86_ops.tlb_remote_flush_with_range;
270 }
271
272 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
273                 struct kvm_tlb_range *range)
274 {
275         int ret = -ENOTSUPP;
276
277         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
278                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
279
280         if (ret)
281                 kvm_flush_remote_tlbs(kvm);
282 }
283
284 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
285                 u64 start_gfn, u64 pages)
286 {
287         struct kvm_tlb_range range;
288
289         range.start_gfn = start_gfn;
290         range.pages = pages;
291
292         kvm_flush_remote_tlbs_with_range(kvm, &range);
293 }
294
295 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
296                            unsigned int access)
297 {
298         u64 spte = make_mmio_spte(vcpu, gfn, access);
299
300         trace_mark_mmio_spte(sptep, gfn, spte);
301         mmu_spte_set(sptep, spte);
302 }
303
304 static gfn_t get_mmio_spte_gfn(u64 spte)
305 {
306         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
307
308         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
309                & shadow_nonpresent_or_rsvd_mask;
310
311         return gpa >> PAGE_SHIFT;
312 }
313
314 static unsigned get_mmio_spte_access(u64 spte)
315 {
316         return spte & shadow_mmio_access_mask;
317 }
318
319 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
320 {
321         u64 kvm_gen, spte_gen, gen;
322
323         gen = kvm_vcpu_memslots(vcpu)->generation;
324         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
325                 return false;
326
327         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
328         spte_gen = get_mmio_spte_generation(spte);
329
330         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
331         return likely(kvm_gen == spte_gen);
332 }
333
334 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
335                                   struct x86_exception *exception)
336 {
337         return gpa;
338 }
339
340 static int is_cpuid_PSE36(void)
341 {
342         return 1;
343 }
344
345 static gfn_t pse36_gfn_delta(u32 gpte)
346 {
347         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
348
349         return (gpte & PT32_DIR_PSE36_MASK) << shift;
350 }
351
352 #ifdef CONFIG_X86_64
353 static void __set_spte(u64 *sptep, u64 spte)
354 {
355         WRITE_ONCE(*sptep, spte);
356 }
357
358 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
359 {
360         WRITE_ONCE(*sptep, spte);
361 }
362
363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364 {
365         return xchg(sptep, spte);
366 }
367
368 static u64 __get_spte_lockless(u64 *sptep)
369 {
370         return READ_ONCE(*sptep);
371 }
372 #else
373 union split_spte {
374         struct {
375                 u32 spte_low;
376                 u32 spte_high;
377         };
378         u64 spte;
379 };
380
381 static void count_spte_clear(u64 *sptep, u64 spte)
382 {
383         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
384
385         if (is_shadow_present_pte(spte))
386                 return;
387
388         /* Ensure the spte is completely set before we increase the count */
389         smp_wmb();
390         sp->clear_spte_count++;
391 }
392
393 static void __set_spte(u64 *sptep, u64 spte)
394 {
395         union split_spte *ssptep, sspte;
396
397         ssptep = (union split_spte *)sptep;
398         sspte = (union split_spte)spte;
399
400         ssptep->spte_high = sspte.spte_high;
401
402         /*
403          * If we map the spte from nonpresent to present, We should store
404          * the high bits firstly, then set present bit, so cpu can not
405          * fetch this spte while we are setting the spte.
406          */
407         smp_wmb();
408
409         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
410 }
411
412 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
413 {
414         union split_spte *ssptep, sspte;
415
416         ssptep = (union split_spte *)sptep;
417         sspte = (union split_spte)spte;
418
419         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
420
421         /*
422          * If we map the spte from present to nonpresent, we should clear
423          * present bit firstly to avoid vcpu fetch the old high bits.
424          */
425         smp_wmb();
426
427         ssptep->spte_high = sspte.spte_high;
428         count_spte_clear(sptep, spte);
429 }
430
431 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
432 {
433         union split_spte *ssptep, sspte, orig;
434
435         ssptep = (union split_spte *)sptep;
436         sspte = (union split_spte)spte;
437
438         /* xchg acts as a barrier before the setting of the high bits */
439         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
440         orig.spte_high = ssptep->spte_high;
441         ssptep->spte_high = sspte.spte_high;
442         count_spte_clear(sptep, spte);
443
444         return orig.spte;
445 }
446
447 /*
448  * The idea using the light way get the spte on x86_32 guest is from
449  * gup_get_pte (mm/gup.c).
450  *
451  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
452  * coalesces them and we are running out of the MMU lock.  Therefore
453  * we need to protect against in-progress updates of the spte.
454  *
455  * Reading the spte while an update is in progress may get the old value
456  * for the high part of the spte.  The race is fine for a present->non-present
457  * change (because the high part of the spte is ignored for non-present spte),
458  * but for a present->present change we must reread the spte.
459  *
460  * All such changes are done in two steps (present->non-present and
461  * non-present->present), hence it is enough to count the number of
462  * present->non-present updates: if it changed while reading the spte,
463  * we might have hit the race.  This is done using clear_spte_count.
464  */
465 static u64 __get_spte_lockless(u64 *sptep)
466 {
467         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
468         union split_spte spte, *orig = (union split_spte *)sptep;
469         int count;
470
471 retry:
472         count = sp->clear_spte_count;
473         smp_rmb();
474
475         spte.spte_low = orig->spte_low;
476         smp_rmb();
477
478         spte.spte_high = orig->spte_high;
479         smp_rmb();
480
481         if (unlikely(spte.spte_low != orig->spte_low ||
482               count != sp->clear_spte_count))
483                 goto retry;
484
485         return spte.spte;
486 }
487 #endif
488
489 static bool spte_has_volatile_bits(u64 spte)
490 {
491         if (!is_shadow_present_pte(spte))
492                 return false;
493
494         /*
495          * Always atomically update spte if it can be updated
496          * out of mmu-lock, it can ensure dirty bit is not lost,
497          * also, it can help us to get a stable is_writable_pte()
498          * to ensure tlb flush is not missed.
499          */
500         if (spte_can_locklessly_be_made_writable(spte) ||
501             is_access_track_spte(spte))
502                 return true;
503
504         if (spte_ad_enabled(spte)) {
505                 if ((spte & shadow_accessed_mask) == 0 ||
506                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
507                         return true;
508         }
509
510         return false;
511 }
512
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521         WARN_ON(is_shadow_present_pte(*sptep));
522         __set_spte(sptep, new_spte);
523 }
524
525 /*
526  * Update the SPTE (excluding the PFN), but do not track changes in its
527  * accessed/dirty status.
528  */
529 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
530 {
531         u64 old_spte = *sptep;
532
533         WARN_ON(!is_shadow_present_pte(new_spte));
534
535         if (!is_shadow_present_pte(old_spte)) {
536                 mmu_spte_set(sptep, new_spte);
537                 return old_spte;
538         }
539
540         if (!spte_has_volatile_bits(old_spte))
541                 __update_clear_spte_fast(sptep, new_spte);
542         else
543                 old_spte = __update_clear_spte_slow(sptep, new_spte);
544
545         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
546
547         return old_spte;
548 }
549
550 /* Rules for using mmu_spte_update:
551  * Update the state bits, it means the mapped pfn is not changed.
552  *
553  * Whenever we overwrite a writable spte with a read-only one we
554  * should flush remote TLBs. Otherwise rmap_write_protect
555  * will find a read-only spte, even though the writable spte
556  * might be cached on a CPU's TLB, the return value indicates this
557  * case.
558  *
559  * Returns true if the TLB needs to be flushed
560  */
561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563         bool flush = false;
564         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
565
566         if (!is_shadow_present_pte(old_spte))
567                 return false;
568
569         /*
570          * For the spte updated out of mmu-lock is safe, since
571          * we always atomically update it, see the comments in
572          * spte_has_volatile_bits().
573          */
574         if (spte_can_locklessly_be_made_writable(old_spte) &&
575               !is_writable_pte(new_spte))
576                 flush = true;
577
578         /*
579          * Flush TLB when accessed/dirty states are changed in the page tables,
580          * to guarantee consistency between TLB and page tables.
581          */
582
583         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
584                 flush = true;
585                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
586         }
587
588         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
589                 flush = true;
590                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
591         }
592
593         return flush;
594 }
595
596 /*
597  * Rules for using mmu_spte_clear_track_bits:
598  * It sets the sptep from present to nonpresent, and track the
599  * state bits, it is used to clear the last level sptep.
600  * Returns the old PTE.
601  */
602 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
603 {
604         kvm_pfn_t pfn;
605         u64 old_spte = *sptep;
606         int level = sptep_to_sp(sptep)->role.level;
607
608         if (!spte_has_volatile_bits(old_spte))
609                 __update_clear_spte_fast(sptep, 0ull);
610         else
611                 old_spte = __update_clear_spte_slow(sptep, 0ull);
612
613         if (!is_shadow_present_pte(old_spte))
614                 return old_spte;
615
616         kvm_update_page_stats(kvm, level, -1);
617
618         pfn = spte_to_pfn(old_spte);
619
620         /*
621          * KVM does not hold the refcount of the page used by
622          * kvm mmu, before reclaiming the page, we should
623          * unmap it from mmu first.
624          */
625         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
626
627         if (is_accessed_spte(old_spte))
628                 kvm_set_pfn_accessed(pfn);
629
630         if (is_dirty_spte(old_spte))
631                 kvm_set_pfn_dirty(pfn);
632
633         return old_spte;
634 }
635
636 /*
637  * Rules for using mmu_spte_clear_no_track:
638  * Directly clear spte without caring the state bits of sptep,
639  * it is used to set the upper level spte.
640  */
641 static void mmu_spte_clear_no_track(u64 *sptep)
642 {
643         __update_clear_spte_fast(sptep, 0ull);
644 }
645
646 static u64 mmu_spte_get_lockless(u64 *sptep)
647 {
648         return __get_spte_lockless(sptep);
649 }
650
651 /* Restore an acc-track PTE back to a regular PTE */
652 static u64 restore_acc_track_spte(u64 spte)
653 {
654         u64 new_spte = spte;
655         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
656                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
657
658         WARN_ON_ONCE(spte_ad_enabled(spte));
659         WARN_ON_ONCE(!is_access_track_spte(spte));
660
661         new_spte &= ~shadow_acc_track_mask;
662         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
663                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
664         new_spte |= saved_bits;
665
666         return new_spte;
667 }
668
669 /* Returns the Accessed status of the PTE and resets it at the same time. */
670 static bool mmu_spte_age(u64 *sptep)
671 {
672         u64 spte = mmu_spte_get_lockless(sptep);
673
674         if (!is_accessed_spte(spte))
675                 return false;
676
677         if (spte_ad_enabled(spte)) {
678                 clear_bit((ffs(shadow_accessed_mask) - 1),
679                           (unsigned long *)sptep);
680         } else {
681                 /*
682                  * Capture the dirty status of the page, so that it doesn't get
683                  * lost when the SPTE is marked for access tracking.
684                  */
685                 if (is_writable_pte(spte))
686                         kvm_set_pfn_dirty(spte_to_pfn(spte));
687
688                 spte = mark_spte_for_access_track(spte);
689                 mmu_spte_update_no_track(sptep, spte);
690         }
691
692         return true;
693 }
694
695 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
696 {
697         if (is_tdp_mmu(vcpu->arch.mmu)) {
698                 kvm_tdp_mmu_walk_lockless_begin();
699         } else {
700                 /*
701                  * Prevent page table teardown by making any free-er wait during
702                  * kvm_flush_remote_tlbs() IPI to all active vcpus.
703                  */
704                 local_irq_disable();
705
706                 /*
707                  * Make sure a following spte read is not reordered ahead of the write
708                  * to vcpu->mode.
709                  */
710                 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
711         }
712 }
713
714 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
715 {
716         if (is_tdp_mmu(vcpu->arch.mmu)) {
717                 kvm_tdp_mmu_walk_lockless_end();
718         } else {
719                 /*
720                  * Make sure the write to vcpu->mode is not reordered in front of
721                  * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
722                  * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
723                  */
724                 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
725                 local_irq_enable();
726         }
727 }
728
729 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
730 {
731         int r;
732
733         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
734         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
735                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
736         if (r)
737                 return r;
738         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
739                                        PT64_ROOT_MAX_LEVEL);
740         if (r)
741                 return r;
742         if (maybe_indirect) {
743                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
744                                                PT64_ROOT_MAX_LEVEL);
745                 if (r)
746                         return r;
747         }
748         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
749                                           PT64_ROOT_MAX_LEVEL);
750 }
751
752 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
753 {
754         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
755         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
756         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
757         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
758 }
759
760 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
761 {
762         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
763 }
764
765 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
766 {
767         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
768 }
769
770 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
771 {
772         if (!sp->role.direct)
773                 return sp->gfns[index];
774
775         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
776 }
777
778 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
779 {
780         if (!sp->role.direct) {
781                 sp->gfns[index] = gfn;
782                 return;
783         }
784
785         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
786                 pr_err_ratelimited("gfn mismatch under direct page %llx "
787                                    "(expected %llx, got %llx)\n",
788                                    sp->gfn,
789                                    kvm_mmu_page_get_gfn(sp, index), gfn);
790 }
791
792 /*
793  * Return the pointer to the large page information for a given gfn,
794  * handling slots that are not large page aligned.
795  */
796 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
797                 const struct kvm_memory_slot *slot, int level)
798 {
799         unsigned long idx;
800
801         idx = gfn_to_index(gfn, slot->base_gfn, level);
802         return &slot->arch.lpage_info[level - 2][idx];
803 }
804
805 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
806                                             gfn_t gfn, int count)
807 {
808         struct kvm_lpage_info *linfo;
809         int i;
810
811         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
812                 linfo = lpage_info_slot(gfn, slot, i);
813                 linfo->disallow_lpage += count;
814                 WARN_ON(linfo->disallow_lpage < 0);
815         }
816 }
817
818 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
819 {
820         update_gfn_disallow_lpage_count(slot, gfn, 1);
821 }
822
823 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
824 {
825         update_gfn_disallow_lpage_count(slot, gfn, -1);
826 }
827
828 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
829 {
830         struct kvm_memslots *slots;
831         struct kvm_memory_slot *slot;
832         gfn_t gfn;
833
834         kvm->arch.indirect_shadow_pages++;
835         gfn = sp->gfn;
836         slots = kvm_memslots_for_spte_role(kvm, sp->role);
837         slot = __gfn_to_memslot(slots, gfn);
838
839         /* the non-leaf shadow pages are keeping readonly. */
840         if (sp->role.level > PG_LEVEL_4K)
841                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
842                                                     KVM_PAGE_TRACK_WRITE);
843
844         kvm_mmu_gfn_disallow_lpage(slot, gfn);
845 }
846
847 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
848 {
849         if (sp->lpage_disallowed)
850                 return;
851
852         ++kvm->stat.nx_lpage_splits;
853         list_add_tail(&sp->lpage_disallowed_link,
854                       &kvm->arch.lpage_disallowed_mmu_pages);
855         sp->lpage_disallowed = true;
856 }
857
858 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
859 {
860         struct kvm_memslots *slots;
861         struct kvm_memory_slot *slot;
862         gfn_t gfn;
863
864         kvm->arch.indirect_shadow_pages--;
865         gfn = sp->gfn;
866         slots = kvm_memslots_for_spte_role(kvm, sp->role);
867         slot = __gfn_to_memslot(slots, gfn);
868         if (sp->role.level > PG_LEVEL_4K)
869                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
870                                                        KVM_PAGE_TRACK_WRITE);
871
872         kvm_mmu_gfn_allow_lpage(slot, gfn);
873 }
874
875 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
876 {
877         --kvm->stat.nx_lpage_splits;
878         sp->lpage_disallowed = false;
879         list_del(&sp->lpage_disallowed_link);
880 }
881
882 static struct kvm_memory_slot *
883 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
884                             bool no_dirty_log)
885 {
886         struct kvm_memory_slot *slot;
887
888         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
889         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
890                 return NULL;
891         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
892                 return NULL;
893
894         return slot;
895 }
896
897 /*
898  * About rmap_head encoding:
899  *
900  * If the bit zero of rmap_head->val is clear, then it points to the only spte
901  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
902  * pte_list_desc containing more mappings.
903  */
904
905 /*
906  * Returns the number of pointers in the rmap chain, not counting the new one.
907  */
908 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
909                         struct kvm_rmap_head *rmap_head)
910 {
911         struct pte_list_desc *desc;
912         int count = 0;
913
914         if (!rmap_head->val) {
915                 rmap_printk("%p %llx 0->1\n", spte, *spte);
916                 rmap_head->val = (unsigned long)spte;
917         } else if (!(rmap_head->val & 1)) {
918                 rmap_printk("%p %llx 1->many\n", spte, *spte);
919                 desc = mmu_alloc_pte_list_desc(vcpu);
920                 desc->sptes[0] = (u64 *)rmap_head->val;
921                 desc->sptes[1] = spte;
922                 desc->spte_count = 2;
923                 rmap_head->val = (unsigned long)desc | 1;
924                 ++count;
925         } else {
926                 rmap_printk("%p %llx many->many\n", spte, *spte);
927                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
928                 while (desc->spte_count == PTE_LIST_EXT) {
929                         count += PTE_LIST_EXT;
930                         if (!desc->more) {
931                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
932                                 desc = desc->more;
933                                 desc->spte_count = 0;
934                                 break;
935                         }
936                         desc = desc->more;
937                 }
938                 count += desc->spte_count;
939                 desc->sptes[desc->spte_count++] = spte;
940         }
941         return count;
942 }
943
944 static void
945 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
946                            struct pte_list_desc *desc, int i,
947                            struct pte_list_desc *prev_desc)
948 {
949         int j = desc->spte_count - 1;
950
951         desc->sptes[i] = desc->sptes[j];
952         desc->sptes[j] = NULL;
953         desc->spte_count--;
954         if (desc->spte_count)
955                 return;
956         if (!prev_desc && !desc->more)
957                 rmap_head->val = 0;
958         else
959                 if (prev_desc)
960                         prev_desc->more = desc->more;
961                 else
962                         rmap_head->val = (unsigned long)desc->more | 1;
963         mmu_free_pte_list_desc(desc);
964 }
965
966 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
967 {
968         struct pte_list_desc *desc;
969         struct pte_list_desc *prev_desc;
970         int i;
971
972         if (!rmap_head->val) {
973                 pr_err("%s: %p 0->BUG\n", __func__, spte);
974                 BUG();
975         } else if (!(rmap_head->val & 1)) {
976                 rmap_printk("%p 1->0\n", spte);
977                 if ((u64 *)rmap_head->val != spte) {
978                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
979                         BUG();
980                 }
981                 rmap_head->val = 0;
982         } else {
983                 rmap_printk("%p many->many\n", spte);
984                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
985                 prev_desc = NULL;
986                 while (desc) {
987                         for (i = 0; i < desc->spte_count; ++i) {
988                                 if (desc->sptes[i] == spte) {
989                                         pte_list_desc_remove_entry(rmap_head,
990                                                         desc, i, prev_desc);
991                                         return;
992                                 }
993                         }
994                         prev_desc = desc;
995                         desc = desc->more;
996                 }
997                 pr_err("%s: %p many->many\n", __func__, spte);
998                 BUG();
999         }
1000 }
1001
1002 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1003                             u64 *sptep)
1004 {
1005         mmu_spte_clear_track_bits(kvm, sptep);
1006         __pte_list_remove(sptep, rmap_head);
1007 }
1008
1009 /* Return true if rmap existed, false otherwise */
1010 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1011 {
1012         struct pte_list_desc *desc, *next;
1013         int i;
1014
1015         if (!rmap_head->val)
1016                 return false;
1017
1018         if (!(rmap_head->val & 1)) {
1019                 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1020                 goto out;
1021         }
1022
1023         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024
1025         for (; desc; desc = next) {
1026                 for (i = 0; i < desc->spte_count; i++)
1027                         mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1028                 next = desc->more;
1029                 mmu_free_pte_list_desc(desc);
1030         }
1031 out:
1032         /* rmap_head is meaningless now, remember to reset it */
1033         rmap_head->val = 0;
1034         return true;
1035 }
1036
1037 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1038 {
1039         struct pte_list_desc *desc;
1040         unsigned int count = 0;
1041
1042         if (!rmap_head->val)
1043                 return 0;
1044         else if (!(rmap_head->val & 1))
1045                 return 1;
1046
1047         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1048
1049         while (desc) {
1050                 count += desc->spte_count;
1051                 desc = desc->more;
1052         }
1053
1054         return count;
1055 }
1056
1057 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1058                                          const struct kvm_memory_slot *slot)
1059 {
1060         unsigned long idx;
1061
1062         idx = gfn_to_index(gfn, slot->base_gfn, level);
1063         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1064 }
1065
1066 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1067 {
1068         struct kvm_mmu_memory_cache *mc;
1069
1070         mc = &vcpu->arch.mmu_pte_list_desc_cache;
1071         return kvm_mmu_memory_cache_nr_free_objects(mc);
1072 }
1073
1074 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1075 {
1076         struct kvm_memory_slot *slot;
1077         struct kvm_mmu_page *sp;
1078         struct kvm_rmap_head *rmap_head;
1079
1080         sp = sptep_to_sp(spte);
1081         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1082         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1083         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1084         return pte_list_add(vcpu, spte, rmap_head);
1085 }
1086
1087
1088 static void rmap_remove(struct kvm *kvm, u64 *spte)
1089 {
1090         struct kvm_memslots *slots;
1091         struct kvm_memory_slot *slot;
1092         struct kvm_mmu_page *sp;
1093         gfn_t gfn;
1094         struct kvm_rmap_head *rmap_head;
1095
1096         sp = sptep_to_sp(spte);
1097         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1098
1099         /*
1100          * Unlike rmap_add and rmap_recycle, rmap_remove does not run in the
1101          * context of a vCPU so have to determine which memslots to use based
1102          * on context information in sp->role.
1103          */
1104         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1105
1106         slot = __gfn_to_memslot(slots, gfn);
1107         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1108
1109         __pte_list_remove(spte, rmap_head);
1110 }
1111
1112 /*
1113  * Used by the following functions to iterate through the sptes linked by a
1114  * rmap.  All fields are private and not assumed to be used outside.
1115  */
1116 struct rmap_iterator {
1117         /* private fields */
1118         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1119         int pos;                        /* index of the sptep */
1120 };
1121
1122 /*
1123  * Iteration must be started by this function.  This should also be used after
1124  * removing/dropping sptes from the rmap link because in such cases the
1125  * information in the iterator may not be valid.
1126  *
1127  * Returns sptep if found, NULL otherwise.
1128  */
1129 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1130                            struct rmap_iterator *iter)
1131 {
1132         u64 *sptep;
1133
1134         if (!rmap_head->val)
1135                 return NULL;
1136
1137         if (!(rmap_head->val & 1)) {
1138                 iter->desc = NULL;
1139                 sptep = (u64 *)rmap_head->val;
1140                 goto out;
1141         }
1142
1143         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1144         iter->pos = 0;
1145         sptep = iter->desc->sptes[iter->pos];
1146 out:
1147         BUG_ON(!is_shadow_present_pte(*sptep));
1148         return sptep;
1149 }
1150
1151 /*
1152  * Must be used with a valid iterator: e.g. after rmap_get_first().
1153  *
1154  * Returns sptep if found, NULL otherwise.
1155  */
1156 static u64 *rmap_get_next(struct rmap_iterator *iter)
1157 {
1158         u64 *sptep;
1159
1160         if (iter->desc) {
1161                 if (iter->pos < PTE_LIST_EXT - 1) {
1162                         ++iter->pos;
1163                         sptep = iter->desc->sptes[iter->pos];
1164                         if (sptep)
1165                                 goto out;
1166                 }
1167
1168                 iter->desc = iter->desc->more;
1169
1170                 if (iter->desc) {
1171                         iter->pos = 0;
1172                         /* desc->sptes[0] cannot be NULL */
1173                         sptep = iter->desc->sptes[iter->pos];
1174                         goto out;
1175                 }
1176         }
1177
1178         return NULL;
1179 out:
1180         BUG_ON(!is_shadow_present_pte(*sptep));
1181         return sptep;
1182 }
1183
1184 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1185         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1186              _spte_; _spte_ = rmap_get_next(_iter_))
1187
1188 static void drop_spte(struct kvm *kvm, u64 *sptep)
1189 {
1190         u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1191
1192         if (is_shadow_present_pte(old_spte))
1193                 rmap_remove(kvm, sptep);
1194 }
1195
1196
1197 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1198 {
1199         if (is_large_pte(*sptep)) {
1200                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1201                 drop_spte(kvm, sptep);
1202                 return true;
1203         }
1204
1205         return false;
1206 }
1207
1208 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1209 {
1210         if (__drop_large_spte(vcpu->kvm, sptep)) {
1211                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1212
1213                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1214                         KVM_PAGES_PER_HPAGE(sp->role.level));
1215         }
1216 }
1217
1218 /*
1219  * Write-protect on the specified @sptep, @pt_protect indicates whether
1220  * spte write-protection is caused by protecting shadow page table.
1221  *
1222  * Note: write protection is difference between dirty logging and spte
1223  * protection:
1224  * - for dirty logging, the spte can be set to writable at anytime if
1225  *   its dirty bitmap is properly set.
1226  * - for spte protection, the spte can be writable only after unsync-ing
1227  *   shadow page.
1228  *
1229  * Return true if tlb need be flushed.
1230  */
1231 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1232 {
1233         u64 spte = *sptep;
1234
1235         if (!is_writable_pte(spte) &&
1236               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1237                 return false;
1238
1239         rmap_printk("spte %p %llx\n", sptep, *sptep);
1240
1241         if (pt_protect)
1242                 spte &= ~shadow_mmu_writable_mask;
1243         spte = spte & ~PT_WRITABLE_MASK;
1244
1245         return mmu_spte_update(sptep, spte);
1246 }
1247
1248 static bool __rmap_write_protect(struct kvm *kvm,
1249                                  struct kvm_rmap_head *rmap_head,
1250                                  bool pt_protect)
1251 {
1252         u64 *sptep;
1253         struct rmap_iterator iter;
1254         bool flush = false;
1255
1256         for_each_rmap_spte(rmap_head, &iter, sptep)
1257                 flush |= spte_write_protect(sptep, pt_protect);
1258
1259         return flush;
1260 }
1261
1262 static bool spte_clear_dirty(u64 *sptep)
1263 {
1264         u64 spte = *sptep;
1265
1266         rmap_printk("spte %p %llx\n", sptep, *sptep);
1267
1268         MMU_WARN_ON(!spte_ad_enabled(spte));
1269         spte &= ~shadow_dirty_mask;
1270         return mmu_spte_update(sptep, spte);
1271 }
1272
1273 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1274 {
1275         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1276                                                (unsigned long *)sptep);
1277         if (was_writable && !spte_ad_enabled(*sptep))
1278                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1279
1280         return was_writable;
1281 }
1282
1283 /*
1284  * Gets the GFN ready for another round of dirty logging by clearing the
1285  *      - D bit on ad-enabled SPTEs, and
1286  *      - W bit on ad-disabled SPTEs.
1287  * Returns true iff any D or W bits were cleared.
1288  */
1289 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1290                                const struct kvm_memory_slot *slot)
1291 {
1292         u64 *sptep;
1293         struct rmap_iterator iter;
1294         bool flush = false;
1295
1296         for_each_rmap_spte(rmap_head, &iter, sptep)
1297                 if (spte_ad_need_write_protect(*sptep))
1298                         flush |= spte_wrprot_for_clear_dirty(sptep);
1299                 else
1300                         flush |= spte_clear_dirty(sptep);
1301
1302         return flush;
1303 }
1304
1305 /**
1306  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1307  * @kvm: kvm instance
1308  * @slot: slot to protect
1309  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1310  * @mask: indicates which pages we should protect
1311  *
1312  * Used when we do not need to care about huge page mappings.
1313  */
1314 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1315                                      struct kvm_memory_slot *slot,
1316                                      gfn_t gfn_offset, unsigned long mask)
1317 {
1318         struct kvm_rmap_head *rmap_head;
1319
1320         if (is_tdp_mmu_enabled(kvm))
1321                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1322                                 slot->base_gfn + gfn_offset, mask, true);
1323
1324         if (!kvm_memslots_have_rmaps(kvm))
1325                 return;
1326
1327         while (mask) {
1328                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1329                                         PG_LEVEL_4K, slot);
1330                 __rmap_write_protect(kvm, rmap_head, false);
1331
1332                 /* clear the first set bit */
1333                 mask &= mask - 1;
1334         }
1335 }
1336
1337 /**
1338  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1339  * protect the page if the D-bit isn't supported.
1340  * @kvm: kvm instance
1341  * @slot: slot to clear D-bit
1342  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1343  * @mask: indicates which pages we should clear D-bit
1344  *
1345  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1346  */
1347 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1348                                          struct kvm_memory_slot *slot,
1349                                          gfn_t gfn_offset, unsigned long mask)
1350 {
1351         struct kvm_rmap_head *rmap_head;
1352
1353         if (is_tdp_mmu_enabled(kvm))
1354                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1355                                 slot->base_gfn + gfn_offset, mask, false);
1356
1357         if (!kvm_memslots_have_rmaps(kvm))
1358                 return;
1359
1360         while (mask) {
1361                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1362                                         PG_LEVEL_4K, slot);
1363                 __rmap_clear_dirty(kvm, rmap_head, slot);
1364
1365                 /* clear the first set bit */
1366                 mask &= mask - 1;
1367         }
1368 }
1369
1370 /**
1371  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1372  * PT level pages.
1373  *
1374  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1375  * enable dirty logging for them.
1376  *
1377  * We need to care about huge page mappings: e.g. during dirty logging we may
1378  * have such mappings.
1379  */
1380 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1381                                 struct kvm_memory_slot *slot,
1382                                 gfn_t gfn_offset, unsigned long mask)
1383 {
1384         /*
1385          * Huge pages are NOT write protected when we start dirty logging in
1386          * initially-all-set mode; must write protect them here so that they
1387          * are split to 4K on the first write.
1388          *
1389          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1390          * of memslot has no such restriction, so the range can cross two large
1391          * pages.
1392          */
1393         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1394                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1395                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1396
1397                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1398
1399                 /* Cross two large pages? */
1400                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1401                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1402                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1403                                                        PG_LEVEL_2M);
1404         }
1405
1406         /* Now handle 4K PTEs.  */
1407         if (kvm_x86_ops.cpu_dirty_log_size)
1408                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1409         else
1410                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1411 }
1412
1413 int kvm_cpu_dirty_log_size(void)
1414 {
1415         return kvm_x86_ops.cpu_dirty_log_size;
1416 }
1417
1418 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1419                                     struct kvm_memory_slot *slot, u64 gfn,
1420                                     int min_level)
1421 {
1422         struct kvm_rmap_head *rmap_head;
1423         int i;
1424         bool write_protected = false;
1425
1426         if (kvm_memslots_have_rmaps(kvm)) {
1427                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1428                         rmap_head = gfn_to_rmap(gfn, i, slot);
1429                         write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1430                 }
1431         }
1432
1433         if (is_tdp_mmu_enabled(kvm))
1434                 write_protected |=
1435                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1436
1437         return write_protected;
1438 }
1439
1440 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1441 {
1442         struct kvm_memory_slot *slot;
1443
1444         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1445         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1446 }
1447
1448 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1449                           const struct kvm_memory_slot *slot)
1450 {
1451         return pte_list_destroy(kvm, rmap_head);
1452 }
1453
1454 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1455                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1456                             pte_t unused)
1457 {
1458         return kvm_zap_rmapp(kvm, rmap_head, slot);
1459 }
1460
1461 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1462                               struct kvm_memory_slot *slot, gfn_t gfn, int level,
1463                               pte_t pte)
1464 {
1465         u64 *sptep;
1466         struct rmap_iterator iter;
1467         int need_flush = 0;
1468         u64 new_spte;
1469         kvm_pfn_t new_pfn;
1470
1471         WARN_ON(pte_huge(pte));
1472         new_pfn = pte_pfn(pte);
1473
1474 restart:
1475         for_each_rmap_spte(rmap_head, &iter, sptep) {
1476                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1477                             sptep, *sptep, gfn, level);
1478
1479                 need_flush = 1;
1480
1481                 if (pte_write(pte)) {
1482                         pte_list_remove(kvm, rmap_head, sptep);
1483                         goto restart;
1484                 } else {
1485                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1486                                         *sptep, new_pfn);
1487
1488                         mmu_spte_clear_track_bits(kvm, sptep);
1489                         mmu_spte_set(sptep, new_spte);
1490                 }
1491         }
1492
1493         if (need_flush && kvm_available_flush_tlb_with_range()) {
1494                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1495                 return 0;
1496         }
1497
1498         return need_flush;
1499 }
1500
1501 struct slot_rmap_walk_iterator {
1502         /* input fields. */
1503         const struct kvm_memory_slot *slot;
1504         gfn_t start_gfn;
1505         gfn_t end_gfn;
1506         int start_level;
1507         int end_level;
1508
1509         /* output fields. */
1510         gfn_t gfn;
1511         struct kvm_rmap_head *rmap;
1512         int level;
1513
1514         /* private field. */
1515         struct kvm_rmap_head *end_rmap;
1516 };
1517
1518 static void
1519 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1520 {
1521         iterator->level = level;
1522         iterator->gfn = iterator->start_gfn;
1523         iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1524         iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1525 }
1526
1527 static void
1528 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1529                     const struct kvm_memory_slot *slot, int start_level,
1530                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1531 {
1532         iterator->slot = slot;
1533         iterator->start_level = start_level;
1534         iterator->end_level = end_level;
1535         iterator->start_gfn = start_gfn;
1536         iterator->end_gfn = end_gfn;
1537
1538         rmap_walk_init_level(iterator, iterator->start_level);
1539 }
1540
1541 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1542 {
1543         return !!iterator->rmap;
1544 }
1545
1546 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1547 {
1548         if (++iterator->rmap <= iterator->end_rmap) {
1549                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1550                 return;
1551         }
1552
1553         if (++iterator->level > iterator->end_level) {
1554                 iterator->rmap = NULL;
1555                 return;
1556         }
1557
1558         rmap_walk_init_level(iterator, iterator->level);
1559 }
1560
1561 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1562            _start_gfn, _end_gfn, _iter_)                                \
1563         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1564                                  _end_level_, _start_gfn, _end_gfn);    \
1565              slot_rmap_walk_okay(_iter_);                               \
1566              slot_rmap_walk_next(_iter_))
1567
1568 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1569                                struct kvm_memory_slot *slot, gfn_t gfn,
1570                                int level, pte_t pte);
1571
1572 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1573                                                  struct kvm_gfn_range *range,
1574                                                  rmap_handler_t handler)
1575 {
1576         struct slot_rmap_walk_iterator iterator;
1577         bool ret = false;
1578
1579         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1580                                  range->start, range->end - 1, &iterator)
1581                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1582                                iterator.level, range->pte);
1583
1584         return ret;
1585 }
1586
1587 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1588 {
1589         bool flush = false;
1590
1591         if (kvm_memslots_have_rmaps(kvm))
1592                 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1593
1594         if (is_tdp_mmu_enabled(kvm))
1595                 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1596
1597         return flush;
1598 }
1599
1600 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1601 {
1602         bool flush = false;
1603
1604         if (kvm_memslots_have_rmaps(kvm))
1605                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1606
1607         if (is_tdp_mmu_enabled(kvm))
1608                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1609
1610         return flush;
1611 }
1612
1613 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1614                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1615                           pte_t unused)
1616 {
1617         u64 *sptep;
1618         struct rmap_iterator iter;
1619         int young = 0;
1620
1621         for_each_rmap_spte(rmap_head, &iter, sptep)
1622                 young |= mmu_spte_age(sptep);
1623
1624         return young;
1625 }
1626
1627 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1628                                struct kvm_memory_slot *slot, gfn_t gfn,
1629                                int level, pte_t unused)
1630 {
1631         u64 *sptep;
1632         struct rmap_iterator iter;
1633
1634         for_each_rmap_spte(rmap_head, &iter, sptep)
1635                 if (is_accessed_spte(*sptep))
1636                         return 1;
1637         return 0;
1638 }
1639
1640 #define RMAP_RECYCLE_THRESHOLD 1000
1641
1642 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1643 {
1644         struct kvm_memory_slot *slot;
1645         struct kvm_rmap_head *rmap_head;
1646         struct kvm_mmu_page *sp;
1647
1648         sp = sptep_to_sp(spte);
1649         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1650         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1651
1652         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1653         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1654                         KVM_PAGES_PER_HPAGE(sp->role.level));
1655 }
1656
1657 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1658 {
1659         bool young = false;
1660
1661         if (kvm_memslots_have_rmaps(kvm))
1662                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1663
1664         if (is_tdp_mmu_enabled(kvm))
1665                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1666
1667         return young;
1668 }
1669
1670 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1671 {
1672         bool young = false;
1673
1674         if (kvm_memslots_have_rmaps(kvm))
1675                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1676
1677         if (is_tdp_mmu_enabled(kvm))
1678                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1679
1680         return young;
1681 }
1682
1683 #ifdef MMU_DEBUG
1684 static int is_empty_shadow_page(u64 *spt)
1685 {
1686         u64 *pos;
1687         u64 *end;
1688
1689         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1690                 if (is_shadow_present_pte(*pos)) {
1691                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1692                                pos, *pos);
1693                         return 0;
1694                 }
1695         return 1;
1696 }
1697 #endif
1698
1699 /*
1700  * This value is the sum of all of the kvm instances's
1701  * kvm->arch.n_used_mmu_pages values.  We need a global,
1702  * aggregate version in order to make the slab shrinker
1703  * faster
1704  */
1705 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1706 {
1707         kvm->arch.n_used_mmu_pages += nr;
1708         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1709 }
1710
1711 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1712 {
1713         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1714         hlist_del(&sp->hash_link);
1715         list_del(&sp->link);
1716         free_page((unsigned long)sp->spt);
1717         if (!sp->role.direct)
1718                 free_page((unsigned long)sp->gfns);
1719         kmem_cache_free(mmu_page_header_cache, sp);
1720 }
1721
1722 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1723 {
1724         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1725 }
1726
1727 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1728                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1729 {
1730         if (!parent_pte)
1731                 return;
1732
1733         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1734 }
1735
1736 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1737                                        u64 *parent_pte)
1738 {
1739         __pte_list_remove(parent_pte, &sp->parent_ptes);
1740 }
1741
1742 static void drop_parent_pte(struct kvm_mmu_page *sp,
1743                             u64 *parent_pte)
1744 {
1745         mmu_page_remove_parent_pte(sp, parent_pte);
1746         mmu_spte_clear_no_track(parent_pte);
1747 }
1748
1749 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1750 {
1751         struct kvm_mmu_page *sp;
1752
1753         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1754         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1755         if (!direct)
1756                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1757         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1758
1759         /*
1760          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1761          * depends on valid pages being added to the head of the list.  See
1762          * comments in kvm_zap_obsolete_pages().
1763          */
1764         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1765         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1766         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1767         return sp;
1768 }
1769
1770 static void mark_unsync(u64 *spte);
1771 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1772 {
1773         u64 *sptep;
1774         struct rmap_iterator iter;
1775
1776         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1777                 mark_unsync(sptep);
1778         }
1779 }
1780
1781 static void mark_unsync(u64 *spte)
1782 {
1783         struct kvm_mmu_page *sp;
1784         unsigned int index;
1785
1786         sp = sptep_to_sp(spte);
1787         index = spte - sp->spt;
1788         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1789                 return;
1790         if (sp->unsync_children++)
1791                 return;
1792         kvm_mmu_mark_parents_unsync(sp);
1793 }
1794
1795 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1796                                struct kvm_mmu_page *sp)
1797 {
1798         return 0;
1799 }
1800
1801 #define KVM_PAGE_ARRAY_NR 16
1802
1803 struct kvm_mmu_pages {
1804         struct mmu_page_and_offset {
1805                 struct kvm_mmu_page *sp;
1806                 unsigned int idx;
1807         } page[KVM_PAGE_ARRAY_NR];
1808         unsigned int nr;
1809 };
1810
1811 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1812                          int idx)
1813 {
1814         int i;
1815
1816         if (sp->unsync)
1817                 for (i=0; i < pvec->nr; i++)
1818                         if (pvec->page[i].sp == sp)
1819                                 return 0;
1820
1821         pvec->page[pvec->nr].sp = sp;
1822         pvec->page[pvec->nr].idx = idx;
1823         pvec->nr++;
1824         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1825 }
1826
1827 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1828 {
1829         --sp->unsync_children;
1830         WARN_ON((int)sp->unsync_children < 0);
1831         __clear_bit(idx, sp->unsync_child_bitmap);
1832 }
1833
1834 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1835                            struct kvm_mmu_pages *pvec)
1836 {
1837         int i, ret, nr_unsync_leaf = 0;
1838
1839         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1840                 struct kvm_mmu_page *child;
1841                 u64 ent = sp->spt[i];
1842
1843                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1844                         clear_unsync_child_bit(sp, i);
1845                         continue;
1846                 }
1847
1848                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1849
1850                 if (child->unsync_children) {
1851                         if (mmu_pages_add(pvec, child, i))
1852                                 return -ENOSPC;
1853
1854                         ret = __mmu_unsync_walk(child, pvec);
1855                         if (!ret) {
1856                                 clear_unsync_child_bit(sp, i);
1857                                 continue;
1858                         } else if (ret > 0) {
1859                                 nr_unsync_leaf += ret;
1860                         } else
1861                                 return ret;
1862                 } else if (child->unsync) {
1863                         nr_unsync_leaf++;
1864                         if (mmu_pages_add(pvec, child, i))
1865                                 return -ENOSPC;
1866                 } else
1867                         clear_unsync_child_bit(sp, i);
1868         }
1869
1870         return nr_unsync_leaf;
1871 }
1872
1873 #define INVALID_INDEX (-1)
1874
1875 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1876                            struct kvm_mmu_pages *pvec)
1877 {
1878         pvec->nr = 0;
1879         if (!sp->unsync_children)
1880                 return 0;
1881
1882         mmu_pages_add(pvec, sp, INVALID_INDEX);
1883         return __mmu_unsync_walk(sp, pvec);
1884 }
1885
1886 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1887 {
1888         WARN_ON(!sp->unsync);
1889         trace_kvm_mmu_sync_page(sp);
1890         sp->unsync = 0;
1891         --kvm->stat.mmu_unsync;
1892 }
1893
1894 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1895                                      struct list_head *invalid_list);
1896 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1897                                     struct list_head *invalid_list);
1898
1899 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1900         hlist_for_each_entry(_sp, _list, hash_link)                     \
1901                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1902                 } else
1903
1904 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1905         for_each_valid_sp(_kvm, _sp,                                    \
1906           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1907                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1908
1909 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1910                          struct list_head *invalid_list)
1911 {
1912         if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1913                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1914                 return false;
1915         }
1916
1917         return true;
1918 }
1919
1920 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1921                                         struct list_head *invalid_list,
1922                                         bool remote_flush)
1923 {
1924         if (!remote_flush && list_empty(invalid_list))
1925                 return false;
1926
1927         if (!list_empty(invalid_list))
1928                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1929         else
1930                 kvm_flush_remote_tlbs(kvm);
1931         return true;
1932 }
1933
1934 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1935                                  struct list_head *invalid_list,
1936                                  bool remote_flush, bool local_flush)
1937 {
1938         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1939                 return;
1940
1941         if (local_flush)
1942                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1943 }
1944
1945 #ifdef CONFIG_KVM_MMU_AUDIT
1946 #include "mmu_audit.c"
1947 #else
1948 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1949 static void mmu_audit_disable(void) { }
1950 #endif
1951
1952 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1953 {
1954         return sp->role.invalid ||
1955                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1956 }
1957
1958 struct mmu_page_path {
1959         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1960         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1961 };
1962
1963 #define for_each_sp(pvec, sp, parents, i)                       \
1964                 for (i = mmu_pages_first(&pvec, &parents);      \
1965                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1966                         i = mmu_pages_next(&pvec, &parents, i))
1967
1968 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1969                           struct mmu_page_path *parents,
1970                           int i)
1971 {
1972         int n;
1973
1974         for (n = i+1; n < pvec->nr; n++) {
1975                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1976                 unsigned idx = pvec->page[n].idx;
1977                 int level = sp->role.level;
1978
1979                 parents->idx[level-1] = idx;
1980                 if (level == PG_LEVEL_4K)
1981                         break;
1982
1983                 parents->parent[level-2] = sp;
1984         }
1985
1986         return n;
1987 }
1988
1989 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1990                            struct mmu_page_path *parents)
1991 {
1992         struct kvm_mmu_page *sp;
1993         int level;
1994
1995         if (pvec->nr == 0)
1996                 return 0;
1997
1998         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1999
2000         sp = pvec->page[0].sp;
2001         level = sp->role.level;
2002         WARN_ON(level == PG_LEVEL_4K);
2003
2004         parents->parent[level-2] = sp;
2005
2006         /* Also set up a sentinel.  Further entries in pvec are all
2007          * children of sp, so this element is never overwritten.
2008          */
2009         parents->parent[level-1] = NULL;
2010         return mmu_pages_next(pvec, parents, 0);
2011 }
2012
2013 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2014 {
2015         struct kvm_mmu_page *sp;
2016         unsigned int level = 0;
2017
2018         do {
2019                 unsigned int idx = parents->idx[level];
2020                 sp = parents->parent[level];
2021                 if (!sp)
2022                         return;
2023
2024                 WARN_ON(idx == INVALID_INDEX);
2025                 clear_unsync_child_bit(sp, idx);
2026                 level++;
2027         } while (!sp->unsync_children);
2028 }
2029
2030 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2031                               struct kvm_mmu_page *parent)
2032 {
2033         int i;
2034         struct kvm_mmu_page *sp;
2035         struct mmu_page_path parents;
2036         struct kvm_mmu_pages pages;
2037         LIST_HEAD(invalid_list);
2038         bool flush = false;
2039
2040         while (mmu_unsync_walk(parent, &pages)) {
2041                 bool protected = false;
2042
2043                 for_each_sp(pages, sp, parents, i)
2044                         protected |= rmap_write_protect(vcpu, sp->gfn);
2045
2046                 if (protected) {
2047                         kvm_flush_remote_tlbs(vcpu->kvm);
2048                         flush = false;
2049                 }
2050
2051                 for_each_sp(pages, sp, parents, i) {
2052                         kvm_unlink_unsync_page(vcpu->kvm, sp);
2053                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2054                         mmu_pages_clear_parents(&parents);
2055                 }
2056                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2057                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2058                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2059                         flush = false;
2060                 }
2061         }
2062
2063         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2064 }
2065
2066 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2067 {
2068         atomic_set(&sp->write_flooding_count,  0);
2069 }
2070
2071 static void clear_sp_write_flooding_count(u64 *spte)
2072 {
2073         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2074 }
2075
2076 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2077                                              gfn_t gfn,
2078                                              gva_t gaddr,
2079                                              unsigned level,
2080                                              int direct,
2081                                              unsigned int access)
2082 {
2083         bool direct_mmu = vcpu->arch.mmu->direct_map;
2084         union kvm_mmu_page_role role;
2085         struct hlist_head *sp_list;
2086         unsigned quadrant;
2087         struct kvm_mmu_page *sp;
2088         int collisions = 0;
2089         LIST_HEAD(invalid_list);
2090
2091         role = vcpu->arch.mmu->mmu_role.base;
2092         role.level = level;
2093         role.direct = direct;
2094         if (role.direct)
2095                 role.gpte_is_8_bytes = true;
2096         role.access = access;
2097         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2098                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2099                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2100                 role.quadrant = quadrant;
2101         }
2102
2103         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2104         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2105                 if (sp->gfn != gfn) {
2106                         collisions++;
2107                         continue;
2108                 }
2109
2110                 if (sp->role.word != role.word) {
2111                         /*
2112                          * If the guest is creating an upper-level page, zap
2113                          * unsync pages for the same gfn.  While it's possible
2114                          * the guest is using recursive page tables, in all
2115                          * likelihood the guest has stopped using the unsync
2116                          * page and is installing a completely unrelated page.
2117                          * Unsync pages must not be left as is, because the new
2118                          * upper-level page will be write-protected.
2119                          */
2120                         if (level > PG_LEVEL_4K && sp->unsync)
2121                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2122                                                          &invalid_list);
2123                         continue;
2124                 }
2125
2126                 if (direct_mmu)
2127                         goto trace_get_page;
2128
2129                 if (sp->unsync) {
2130                         /*
2131                          * The page is good, but is stale.  kvm_sync_page does
2132                          * get the latest guest state, but (unlike mmu_unsync_children)
2133                          * it doesn't write-protect the page or mark it synchronized!
2134                          * This way the validity of the mapping is ensured, but the
2135                          * overhead of write protection is not incurred until the
2136                          * guest invalidates the TLB mapping.  This allows multiple
2137                          * SPs for a single gfn to be unsync.
2138                          *
2139                          * If the sync fails, the page is zapped.  If so, break
2140                          * in order to rebuild it.
2141                          */
2142                         if (!kvm_sync_page(vcpu, sp, &invalid_list))
2143                                 break;
2144
2145                         WARN_ON(!list_empty(&invalid_list));
2146                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2147                 }
2148
2149                 if (sp->unsync_children)
2150                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2151
2152                 __clear_sp_write_flooding_count(sp);
2153
2154 trace_get_page:
2155                 trace_kvm_mmu_get_page(sp, false);
2156                 goto out;
2157         }
2158
2159         ++vcpu->kvm->stat.mmu_cache_miss;
2160
2161         sp = kvm_mmu_alloc_page(vcpu, direct);
2162
2163         sp->gfn = gfn;
2164         sp->role = role;
2165         hlist_add_head(&sp->hash_link, sp_list);
2166         if (!direct) {
2167                 account_shadowed(vcpu->kvm, sp);
2168                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2169                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2170         }
2171         trace_kvm_mmu_get_page(sp, true);
2172 out:
2173         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2174
2175         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2176                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2177         return sp;
2178 }
2179
2180 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2181                                         struct kvm_vcpu *vcpu, hpa_t root,
2182                                         u64 addr)
2183 {
2184         iterator->addr = addr;
2185         iterator->shadow_addr = root;
2186         iterator->level = vcpu->arch.mmu->shadow_root_level;
2187
2188         if (iterator->level == PT64_ROOT_4LEVEL &&
2189             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2190             !vcpu->arch.mmu->direct_map)
2191                 --iterator->level;
2192
2193         if (iterator->level == PT32E_ROOT_LEVEL) {
2194                 /*
2195                  * prev_root is currently only used for 64-bit hosts. So only
2196                  * the active root_hpa is valid here.
2197                  */
2198                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2199
2200                 iterator->shadow_addr
2201                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2202                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2203                 --iterator->level;
2204                 if (!iterator->shadow_addr)
2205                         iterator->level = 0;
2206         }
2207 }
2208
2209 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2210                              struct kvm_vcpu *vcpu, u64 addr)
2211 {
2212         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2213                                     addr);
2214 }
2215
2216 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2217 {
2218         if (iterator->level < PG_LEVEL_4K)
2219                 return false;
2220
2221         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2222         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2223         return true;
2224 }
2225
2226 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2227                                u64 spte)
2228 {
2229         if (is_last_spte(spte, iterator->level)) {
2230                 iterator->level = 0;
2231                 return;
2232         }
2233
2234         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2235         --iterator->level;
2236 }
2237
2238 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2239 {
2240         __shadow_walk_next(iterator, *iterator->sptep);
2241 }
2242
2243 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2244                              struct kvm_mmu_page *sp)
2245 {
2246         u64 spte;
2247
2248         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2249
2250         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2251
2252         mmu_spte_set(sptep, spte);
2253
2254         mmu_page_add_parent_pte(vcpu, sp, sptep);
2255
2256         if (sp->unsync_children || sp->unsync)
2257                 mark_unsync(sptep);
2258 }
2259
2260 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2261                                    unsigned direct_access)
2262 {
2263         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2264                 struct kvm_mmu_page *child;
2265
2266                 /*
2267                  * For the direct sp, if the guest pte's dirty bit
2268                  * changed form clean to dirty, it will corrupt the
2269                  * sp's access: allow writable in the read-only sp,
2270                  * so we should update the spte at this point to get
2271                  * a new sp with the correct access.
2272                  */
2273                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2274                 if (child->role.access == direct_access)
2275                         return;
2276
2277                 drop_parent_pte(child, sptep);
2278                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2279         }
2280 }
2281
2282 /* Returns the number of zapped non-leaf child shadow pages. */
2283 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2284                             u64 *spte, struct list_head *invalid_list)
2285 {
2286         u64 pte;
2287         struct kvm_mmu_page *child;
2288
2289         pte = *spte;
2290         if (is_shadow_present_pte(pte)) {
2291                 if (is_last_spte(pte, sp->role.level)) {
2292                         drop_spte(kvm, spte);
2293                 } else {
2294                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2295                         drop_parent_pte(child, spte);
2296
2297                         /*
2298                          * Recursively zap nested TDP SPs, parentless SPs are
2299                          * unlikely to be used again in the near future.  This
2300                          * avoids retaining a large number of stale nested SPs.
2301                          */
2302                         if (tdp_enabled && invalid_list &&
2303                             child->role.guest_mode && !child->parent_ptes.val)
2304                                 return kvm_mmu_prepare_zap_page(kvm, child,
2305                                                                 invalid_list);
2306                 }
2307         } else if (is_mmio_spte(pte)) {
2308                 mmu_spte_clear_no_track(spte);
2309         }
2310         return 0;
2311 }
2312
2313 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2314                                         struct kvm_mmu_page *sp,
2315                                         struct list_head *invalid_list)
2316 {
2317         int zapped = 0;
2318         unsigned i;
2319
2320         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2321                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2322
2323         return zapped;
2324 }
2325
2326 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2327 {
2328         u64 *sptep;
2329         struct rmap_iterator iter;
2330
2331         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2332                 drop_parent_pte(sp, sptep);
2333 }
2334
2335 static int mmu_zap_unsync_children(struct kvm *kvm,
2336                                    struct kvm_mmu_page *parent,
2337                                    struct list_head *invalid_list)
2338 {
2339         int i, zapped = 0;
2340         struct mmu_page_path parents;
2341         struct kvm_mmu_pages pages;
2342
2343         if (parent->role.level == PG_LEVEL_4K)
2344                 return 0;
2345
2346         while (mmu_unsync_walk(parent, &pages)) {
2347                 struct kvm_mmu_page *sp;
2348
2349                 for_each_sp(pages, sp, parents, i) {
2350                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2351                         mmu_pages_clear_parents(&parents);
2352                         zapped++;
2353                 }
2354         }
2355
2356         return zapped;
2357 }
2358
2359 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2360                                        struct kvm_mmu_page *sp,
2361                                        struct list_head *invalid_list,
2362                                        int *nr_zapped)
2363 {
2364         bool list_unstable;
2365
2366         trace_kvm_mmu_prepare_zap_page(sp);
2367         ++kvm->stat.mmu_shadow_zapped;
2368         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2369         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2370         kvm_mmu_unlink_parents(kvm, sp);
2371
2372         /* Zapping children means active_mmu_pages has become unstable. */
2373         list_unstable = *nr_zapped;
2374
2375         if (!sp->role.invalid && !sp->role.direct)
2376                 unaccount_shadowed(kvm, sp);
2377
2378         if (sp->unsync)
2379                 kvm_unlink_unsync_page(kvm, sp);
2380         if (!sp->root_count) {
2381                 /* Count self */
2382                 (*nr_zapped)++;
2383
2384                 /*
2385                  * Already invalid pages (previously active roots) are not on
2386                  * the active page list.  See list_del() in the "else" case of
2387                  * !sp->root_count.
2388                  */
2389                 if (sp->role.invalid)
2390                         list_add(&sp->link, invalid_list);
2391                 else
2392                         list_move(&sp->link, invalid_list);
2393                 kvm_mod_used_mmu_pages(kvm, -1);
2394         } else {
2395                 /*
2396                  * Remove the active root from the active page list, the root
2397                  * will be explicitly freed when the root_count hits zero.
2398                  */
2399                 list_del(&sp->link);
2400
2401                 /*
2402                  * Obsolete pages cannot be used on any vCPUs, see the comment
2403                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2404                  * treats invalid shadow pages as being obsolete.
2405                  */
2406                 if (!is_obsolete_sp(kvm, sp))
2407                         kvm_reload_remote_mmus(kvm);
2408         }
2409
2410         if (sp->lpage_disallowed)
2411                 unaccount_huge_nx_page(kvm, sp);
2412
2413         sp->role.invalid = 1;
2414         return list_unstable;
2415 }
2416
2417 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2418                                      struct list_head *invalid_list)
2419 {
2420         int nr_zapped;
2421
2422         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2423         return nr_zapped;
2424 }
2425
2426 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2427                                     struct list_head *invalid_list)
2428 {
2429         struct kvm_mmu_page *sp, *nsp;
2430
2431         if (list_empty(invalid_list))
2432                 return;
2433
2434         /*
2435          * We need to make sure everyone sees our modifications to
2436          * the page tables and see changes to vcpu->mode here. The barrier
2437          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2438          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2439          *
2440          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2441          * guest mode and/or lockless shadow page table walks.
2442          */
2443         kvm_flush_remote_tlbs(kvm);
2444
2445         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2446                 WARN_ON(!sp->role.invalid || sp->root_count);
2447                 kvm_mmu_free_page(sp);
2448         }
2449 }
2450
2451 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2452                                                   unsigned long nr_to_zap)
2453 {
2454         unsigned long total_zapped = 0;
2455         struct kvm_mmu_page *sp, *tmp;
2456         LIST_HEAD(invalid_list);
2457         bool unstable;
2458         int nr_zapped;
2459
2460         if (list_empty(&kvm->arch.active_mmu_pages))
2461                 return 0;
2462
2463 restart:
2464         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2465                 /*
2466                  * Don't zap active root pages, the page itself can't be freed
2467                  * and zapping it will just force vCPUs to realloc and reload.
2468                  */
2469                 if (sp->root_count)
2470                         continue;
2471
2472                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2473                                                       &nr_zapped);
2474                 total_zapped += nr_zapped;
2475                 if (total_zapped >= nr_to_zap)
2476                         break;
2477
2478                 if (unstable)
2479                         goto restart;
2480         }
2481
2482         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2483
2484         kvm->stat.mmu_recycled += total_zapped;
2485         return total_zapped;
2486 }
2487
2488 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2489 {
2490         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2491                 return kvm->arch.n_max_mmu_pages -
2492                         kvm->arch.n_used_mmu_pages;
2493
2494         return 0;
2495 }
2496
2497 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2498 {
2499         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2500
2501         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2502                 return 0;
2503
2504         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2505
2506         /*
2507          * Note, this check is intentionally soft, it only guarantees that one
2508          * page is available, while the caller may end up allocating as many as
2509          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2510          * exceeding the (arbitrary by default) limit will not harm the host,
2511          * being too aggressive may unnecessarily kill the guest, and getting an
2512          * exact count is far more trouble than it's worth, especially in the
2513          * page fault paths.
2514          */
2515         if (!kvm_mmu_available_pages(vcpu->kvm))
2516                 return -ENOSPC;
2517         return 0;
2518 }
2519
2520 /*
2521  * Changing the number of mmu pages allocated to the vm
2522  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2523  */
2524 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2525 {
2526         write_lock(&kvm->mmu_lock);
2527
2528         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2529                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2530                                                   goal_nr_mmu_pages);
2531
2532                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2533         }
2534
2535         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2536
2537         write_unlock(&kvm->mmu_lock);
2538 }
2539
2540 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2541 {
2542         struct kvm_mmu_page *sp;
2543         LIST_HEAD(invalid_list);
2544         int r;
2545
2546         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2547         r = 0;
2548         write_lock(&kvm->mmu_lock);
2549         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2550                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2551                          sp->role.word);
2552                 r = 1;
2553                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2554         }
2555         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2556         write_unlock(&kvm->mmu_lock);
2557
2558         return r;
2559 }
2560
2561 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2562 {
2563         gpa_t gpa;
2564         int r;
2565
2566         if (vcpu->arch.mmu->direct_map)
2567                 return 0;
2568
2569         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2570
2571         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2572
2573         return r;
2574 }
2575
2576 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2577 {
2578         trace_kvm_mmu_unsync_page(sp);
2579         ++vcpu->kvm->stat.mmu_unsync;
2580         sp->unsync = 1;
2581
2582         kvm_mmu_mark_parents_unsync(sp);
2583 }
2584
2585 /*
2586  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2587  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2588  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2589  * be write-protected.
2590  */
2591 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2592 {
2593         struct kvm_mmu_page *sp;
2594         bool locked = false;
2595
2596         /*
2597          * Force write-protection if the page is being tracked.  Note, the page
2598          * track machinery is used to write-protect upper-level shadow pages,
2599          * i.e. this guards the role.level == 4K assertion below!
2600          */
2601         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2602                 return -EPERM;
2603
2604         /*
2605          * The page is not write-tracked, mark existing shadow pages unsync
2606          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2607          * that case, KVM must complete emulation of the guest TLB flush before
2608          * allowing shadow pages to become unsync (writable by the guest).
2609          */
2610         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2611                 if (!can_unsync)
2612                         return -EPERM;
2613
2614                 if (sp->unsync)
2615                         continue;
2616
2617                 /*
2618                  * TDP MMU page faults require an additional spinlock as they
2619                  * run with mmu_lock held for read, not write, and the unsync
2620                  * logic is not thread safe.  Take the spinklock regardless of
2621                  * the MMU type to avoid extra conditionals/parameters, there's
2622                  * no meaningful penalty if mmu_lock is held for write.
2623                  */
2624                 if (!locked) {
2625                         locked = true;
2626                         spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2627
2628                         /*
2629                          * Recheck after taking the spinlock, a different vCPU
2630                          * may have since marked the page unsync.  A false
2631                          * positive on the unprotected check above is not
2632                          * possible as clearing sp->unsync _must_ hold mmu_lock
2633                          * for write, i.e. unsync cannot transition from 0->1
2634                          * while this CPU holds mmu_lock for read (or write).
2635                          */
2636                         if (READ_ONCE(sp->unsync))
2637                                 continue;
2638                 }
2639
2640                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2641                 kvm_unsync_page(vcpu, sp);
2642         }
2643         if (locked)
2644                 spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2645
2646         /*
2647          * We need to ensure that the marking of unsync pages is visible
2648          * before the SPTE is updated to allow writes because
2649          * kvm_mmu_sync_roots() checks the unsync flags without holding
2650          * the MMU lock and so can race with this. If the SPTE was updated
2651          * before the page had been marked as unsync-ed, something like the
2652          * following could happen:
2653          *
2654          * CPU 1                    CPU 2
2655          * ---------------------------------------------------------------------
2656          * 1.2 Host updates SPTE
2657          *     to be writable
2658          *                      2.1 Guest writes a GPTE for GVA X.
2659          *                          (GPTE being in the guest page table shadowed
2660          *                           by the SP from CPU 1.)
2661          *                          This reads SPTE during the page table walk.
2662          *                          Since SPTE.W is read as 1, there is no
2663          *                          fault.
2664          *
2665          *                      2.2 Guest issues TLB flush.
2666          *                          That causes a VM Exit.
2667          *
2668          *                      2.3 Walking of unsync pages sees sp->unsync is
2669          *                          false and skips the page.
2670          *
2671          *                      2.4 Guest accesses GVA X.
2672          *                          Since the mapping in the SP was not updated,
2673          *                          so the old mapping for GVA X incorrectly
2674          *                          gets used.
2675          * 1.1 Host marks SP
2676          *     as unsync
2677          *     (sp->unsync = true)
2678          *
2679          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2680          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2681          * pairs with this write barrier.
2682          */
2683         smp_wmb();
2684
2685         return 0;
2686 }
2687
2688 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2689                     unsigned int pte_access, int level,
2690                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2691                     bool can_unsync, bool host_writable)
2692 {
2693         u64 spte;
2694         struct kvm_mmu_page *sp;
2695         int ret;
2696
2697         sp = sptep_to_sp(sptep);
2698
2699         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2700                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2701
2702         if (spte & PT_WRITABLE_MASK)
2703                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2704
2705         if (*sptep == spte)
2706                 ret |= SET_SPTE_SPURIOUS;
2707         else if (mmu_spte_update(sptep, spte))
2708                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2709         return ret;
2710 }
2711
2712 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2713                         unsigned int pte_access, bool write_fault, int level,
2714                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2715                         bool host_writable)
2716 {
2717         int was_rmapped = 0;
2718         int rmap_count;
2719         int set_spte_ret;
2720         int ret = RET_PF_FIXED;
2721         bool flush = false;
2722
2723         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2724                  *sptep, write_fault, gfn);
2725
2726         if (unlikely(is_noslot_pfn(pfn))) {
2727                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2728                 return RET_PF_EMULATE;
2729         }
2730
2731         if (is_shadow_present_pte(*sptep)) {
2732                 /*
2733                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2734                  * the parent of the now unreachable PTE.
2735                  */
2736                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2737                         struct kvm_mmu_page *child;
2738                         u64 pte = *sptep;
2739
2740                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2741                         drop_parent_pte(child, sptep);
2742                         flush = true;
2743                 } else if (pfn != spte_to_pfn(*sptep)) {
2744                         pgprintk("hfn old %llx new %llx\n",
2745                                  spte_to_pfn(*sptep), pfn);
2746                         drop_spte(vcpu->kvm, sptep);
2747                         flush = true;
2748                 } else
2749                         was_rmapped = 1;
2750         }
2751
2752         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2753                                 speculative, true, host_writable);
2754         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2755                 if (write_fault)
2756                         ret = RET_PF_EMULATE;
2757                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2758         }
2759
2760         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2761                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2762                                 KVM_PAGES_PER_HPAGE(level));
2763
2764         /*
2765          * The fault is fully spurious if and only if the new SPTE and old SPTE
2766          * are identical, and emulation is not required.
2767          */
2768         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2769                 WARN_ON_ONCE(!was_rmapped);
2770                 return RET_PF_SPURIOUS;
2771         }
2772
2773         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2774         trace_kvm_mmu_set_spte(level, gfn, sptep);
2775
2776         if (!was_rmapped) {
2777                 kvm_update_page_stats(vcpu->kvm, level, 1);
2778                 rmap_count = rmap_add(vcpu, sptep, gfn);
2779                 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2780                         rmap_recycle(vcpu, sptep, gfn);
2781         }
2782
2783         return ret;
2784 }
2785
2786 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2787                                      bool no_dirty_log)
2788 {
2789         struct kvm_memory_slot *slot;
2790
2791         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2792         if (!slot)
2793                 return KVM_PFN_ERR_FAULT;
2794
2795         return gfn_to_pfn_memslot_atomic(slot, gfn);
2796 }
2797
2798 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2799                                     struct kvm_mmu_page *sp,
2800                                     u64 *start, u64 *end)
2801 {
2802         struct page *pages[PTE_PREFETCH_NUM];
2803         struct kvm_memory_slot *slot;
2804         unsigned int access = sp->role.access;
2805         int i, ret;
2806         gfn_t gfn;
2807
2808         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2809         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2810         if (!slot)
2811                 return -1;
2812
2813         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2814         if (ret <= 0)
2815                 return -1;
2816
2817         for (i = 0; i < ret; i++, gfn++, start++) {
2818                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2819                              page_to_pfn(pages[i]), true, true);
2820                 put_page(pages[i]);
2821         }
2822
2823         return 0;
2824 }
2825
2826 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2827                                   struct kvm_mmu_page *sp, u64 *sptep)
2828 {
2829         u64 *spte, *start = NULL;
2830         int i;
2831
2832         WARN_ON(!sp->role.direct);
2833
2834         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2835         spte = sp->spt + i;
2836
2837         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2838                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2839                         if (!start)
2840                                 continue;
2841                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2842                                 break;
2843                         start = NULL;
2844                 } else if (!start)
2845                         start = spte;
2846         }
2847 }
2848
2849 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2850 {
2851         struct kvm_mmu_page *sp;
2852
2853         sp = sptep_to_sp(sptep);
2854
2855         /*
2856          * Without accessed bits, there's no way to distinguish between
2857          * actually accessed translations and prefetched, so disable pte
2858          * prefetch if accessed bits aren't available.
2859          */
2860         if (sp_ad_disabled(sp))
2861                 return;
2862
2863         if (sp->role.level > PG_LEVEL_4K)
2864                 return;
2865
2866         /*
2867          * If addresses are being invalidated, skip prefetching to avoid
2868          * accidentally prefetching those addresses.
2869          */
2870         if (unlikely(vcpu->kvm->mmu_notifier_count))
2871                 return;
2872
2873         __direct_pte_prefetch(vcpu, sp, sptep);
2874 }
2875
2876 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2877                                   const struct kvm_memory_slot *slot)
2878 {
2879         unsigned long hva;
2880         pte_t *pte;
2881         int level;
2882
2883         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2884                 return PG_LEVEL_4K;
2885
2886         /*
2887          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2888          * is not solely for performance, it's also necessary to avoid the
2889          * "writable" check in __gfn_to_hva_many(), which will always fail on
2890          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2891          * page fault steps have already verified the guest isn't writing a
2892          * read-only memslot.
2893          */
2894         hva = __gfn_to_hva_memslot(slot, gfn);
2895
2896         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2897         if (unlikely(!pte))
2898                 return PG_LEVEL_4K;
2899
2900         return level;
2901 }
2902
2903 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2904                               const struct kvm_memory_slot *slot, gfn_t gfn,
2905                               kvm_pfn_t pfn, int max_level)
2906 {
2907         struct kvm_lpage_info *linfo;
2908         int host_level;
2909
2910         max_level = min(max_level, max_huge_page_level);
2911         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2912                 linfo = lpage_info_slot(gfn, slot, max_level);
2913                 if (!linfo->disallow_lpage)
2914                         break;
2915         }
2916
2917         if (max_level == PG_LEVEL_4K)
2918                 return PG_LEVEL_4K;
2919
2920         host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
2921         return min(host_level, max_level);
2922 }
2923
2924 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2925                             int max_level, kvm_pfn_t *pfnp,
2926                             bool huge_page_disallowed, int *req_level)
2927 {
2928         struct kvm_memory_slot *slot;
2929         kvm_pfn_t pfn = *pfnp;
2930         kvm_pfn_t mask;
2931         int level;
2932
2933         *req_level = PG_LEVEL_4K;
2934
2935         if (unlikely(max_level == PG_LEVEL_4K))
2936                 return PG_LEVEL_4K;
2937
2938         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2939                 return PG_LEVEL_4K;
2940
2941         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2942         if (!slot)
2943                 return PG_LEVEL_4K;
2944
2945         /*
2946          * Enforce the iTLB multihit workaround after capturing the requested
2947          * level, which will be used to do precise, accurate accounting.
2948          */
2949         *req_level = level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2950         if (level == PG_LEVEL_4K || huge_page_disallowed)
2951                 return PG_LEVEL_4K;
2952
2953         /*
2954          * mmu_notifier_retry() was successful and mmu_lock is held, so
2955          * the pmd can't be split from under us.
2956          */
2957         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2958         VM_BUG_ON((gfn & mask) != (pfn & mask));
2959         *pfnp = pfn & ~mask;
2960
2961         return level;
2962 }
2963
2964 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2965                                 kvm_pfn_t *pfnp, int *goal_levelp)
2966 {
2967         int level = *goal_levelp;
2968
2969         if (cur_level == level && level > PG_LEVEL_4K &&
2970             is_shadow_present_pte(spte) &&
2971             !is_large_pte(spte)) {
2972                 /*
2973                  * A small SPTE exists for this pfn, but FNAME(fetch)
2974                  * and __direct_map would like to create a large PTE
2975                  * instead: just force them to go down another level,
2976                  * patching back for them into pfn the next 9 bits of
2977                  * the address.
2978                  */
2979                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2980                                 KVM_PAGES_PER_HPAGE(level - 1);
2981                 *pfnp |= gfn & page_mask;
2982                 (*goal_levelp)--;
2983         }
2984 }
2985
2986 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2987                         int map_writable, int max_level, kvm_pfn_t pfn,
2988                         bool prefault, bool is_tdp)
2989 {
2990         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2991         bool write = error_code & PFERR_WRITE_MASK;
2992         bool exec = error_code & PFERR_FETCH_MASK;
2993         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2994         struct kvm_shadow_walk_iterator it;
2995         struct kvm_mmu_page *sp;
2996         int level, req_level, ret;
2997         gfn_t gfn = gpa >> PAGE_SHIFT;
2998         gfn_t base_gfn = gfn;
2999
3000         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
3001                                         huge_page_disallowed, &req_level);
3002
3003         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3004         for_each_shadow_entry(vcpu, gpa, it) {
3005                 /*
3006                  * We cannot overwrite existing page tables with an NX
3007                  * large page, as the leaf could be executable.
3008                  */
3009                 if (nx_huge_page_workaround_enabled)
3010                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
3011                                                    &pfn, &level);
3012
3013                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3014                 if (it.level == level)
3015                         break;
3016
3017                 drop_large_spte(vcpu, it.sptep);
3018                 if (is_shadow_present_pte(*it.sptep))
3019                         continue;
3020
3021                 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3022                                       it.level - 1, true, ACC_ALL);
3023
3024                 link_shadow_page(vcpu, it.sptep, sp);
3025                 if (is_tdp && huge_page_disallowed &&
3026                     req_level >= it.level)
3027                         account_huge_nx_page(vcpu->kvm, sp);
3028         }
3029
3030         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3031                            write, level, base_gfn, pfn, prefault,
3032                            map_writable);
3033         if (ret == RET_PF_SPURIOUS)
3034                 return ret;
3035
3036         direct_pte_prefetch(vcpu, it.sptep);
3037         ++vcpu->stat.pf_fixed;
3038         return ret;
3039 }
3040
3041 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3042 {
3043         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3044 }
3045
3046 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3047 {
3048         /*
3049          * Do not cache the mmio info caused by writing the readonly gfn
3050          * into the spte otherwise read access on readonly gfn also can
3051          * caused mmio page fault and treat it as mmio access.
3052          */
3053         if (pfn == KVM_PFN_ERR_RO_FAULT)
3054                 return RET_PF_EMULATE;
3055
3056         if (pfn == KVM_PFN_ERR_HWPOISON) {
3057                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3058                 return RET_PF_RETRY;
3059         }
3060
3061         return -EFAULT;
3062 }
3063
3064 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3065                                 kvm_pfn_t pfn, unsigned int access,
3066                                 int *ret_val)
3067 {
3068         /* The pfn is invalid, report the error! */
3069         if (unlikely(is_error_pfn(pfn))) {
3070                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3071                 return true;
3072         }
3073
3074         if (unlikely(is_noslot_pfn(pfn))) {
3075                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3076                                      access & shadow_mmio_access_mask);
3077                 /*
3078                  * If MMIO caching is disabled, emulate immediately without
3079                  * touching the shadow page tables as attempting to install an
3080                  * MMIO SPTE will just be an expensive nop.
3081                  */
3082                 if (unlikely(!shadow_mmio_value)) {
3083                         *ret_val = RET_PF_EMULATE;
3084                         return true;
3085                 }
3086         }
3087
3088         return false;
3089 }
3090
3091 static bool page_fault_can_be_fast(u32 error_code)
3092 {
3093         /*
3094          * Do not fix the mmio spte with invalid generation number which
3095          * need to be updated by slow page fault path.
3096          */
3097         if (unlikely(error_code & PFERR_RSVD_MASK))
3098                 return false;
3099
3100         /* See if the page fault is due to an NX violation */
3101         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3102                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3103                 return false;
3104
3105         /*
3106          * #PF can be fast if:
3107          * 1. The shadow page table entry is not present, which could mean that
3108          *    the fault is potentially caused by access tracking (if enabled).
3109          * 2. The shadow page table entry is present and the fault
3110          *    is caused by write-protect, that means we just need change the W
3111          *    bit of the spte which can be done out of mmu-lock.
3112          *
3113          * However, if access tracking is disabled we know that a non-present
3114          * page must be a genuine page fault where we have to create a new SPTE.
3115          * So, if access tracking is disabled, we return true only for write
3116          * accesses to a present page.
3117          */
3118
3119         return shadow_acc_track_mask != 0 ||
3120                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3121                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3122 }
3123
3124 /*
3125  * Returns true if the SPTE was fixed successfully. Otherwise,
3126  * someone else modified the SPTE from its original value.
3127  */
3128 static bool
3129 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3130                         u64 *sptep, u64 old_spte, u64 new_spte)
3131 {
3132         gfn_t gfn;
3133
3134         WARN_ON(!sp->role.direct);
3135
3136         /*
3137          * Theoretically we could also set dirty bit (and flush TLB) here in
3138          * order to eliminate unnecessary PML logging. See comments in
3139          * set_spte. But fast_page_fault is very unlikely to happen with PML
3140          * enabled, so we do not do this. This might result in the same GPA
3141          * to be logged in PML buffer again when the write really happens, and
3142          * eventually to be called by mark_page_dirty twice. But it's also no
3143          * harm. This also avoids the TLB flush needed after setting dirty bit
3144          * so non-PML cases won't be impacted.
3145          *
3146          * Compare with set_spte where instead shadow_dirty_mask is set.
3147          */
3148         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3149                 return false;
3150
3151         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3152                 /*
3153                  * The gfn of direct spte is stable since it is
3154                  * calculated by sp->gfn.
3155                  */
3156                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3157                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3158         }
3159
3160         return true;
3161 }
3162
3163 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3164 {
3165         if (fault_err_code & PFERR_FETCH_MASK)
3166                 return is_executable_pte(spte);
3167
3168         if (fault_err_code & PFERR_WRITE_MASK)
3169                 return is_writable_pte(spte);
3170
3171         /* Fault was on Read access */
3172         return spte & PT_PRESENT_MASK;
3173 }
3174
3175 /*
3176  * Returns the last level spte pointer of the shadow page walk for the given
3177  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3178  * walk could be performed, returns NULL and *spte does not contain valid data.
3179  *
3180  * Contract:
3181  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3182  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3183  */
3184 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3185 {
3186         struct kvm_shadow_walk_iterator iterator;
3187         u64 old_spte;
3188         u64 *sptep = NULL;
3189
3190         for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3191                 sptep = iterator.sptep;
3192                 *spte = old_spte;
3193
3194                 if (!is_shadow_present_pte(old_spte))
3195                         break;
3196         }
3197
3198         return sptep;
3199 }
3200
3201 /*
3202  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3203  */
3204 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code)
3205 {
3206         struct kvm_mmu_page *sp;
3207         int ret = RET_PF_INVALID;
3208         u64 spte = 0ull;
3209         u64 *sptep = NULL;
3210         uint retry_count = 0;
3211
3212         if (!page_fault_can_be_fast(error_code))
3213                 return ret;
3214
3215         walk_shadow_page_lockless_begin(vcpu);
3216
3217         do {
3218                 u64 new_spte;
3219
3220                 if (is_tdp_mmu(vcpu->arch.mmu))
3221                         sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, gpa, &spte);
3222                 else
3223                         sptep = fast_pf_get_last_sptep(vcpu, gpa, &spte);
3224
3225                 if (!is_shadow_present_pte(spte))
3226                         break;
3227
3228                 sp = sptep_to_sp(sptep);
3229                 if (!is_last_spte(spte, sp->role.level))
3230                         break;
3231
3232                 /*
3233                  * Check whether the memory access that caused the fault would
3234                  * still cause it if it were to be performed right now. If not,
3235                  * then this is a spurious fault caused by TLB lazily flushed,
3236                  * or some other CPU has already fixed the PTE after the
3237                  * current CPU took the fault.
3238                  *
3239                  * Need not check the access of upper level table entries since
3240                  * they are always ACC_ALL.
3241                  */
3242                 if (is_access_allowed(error_code, spte)) {
3243                         ret = RET_PF_SPURIOUS;
3244                         break;
3245                 }
3246
3247                 new_spte = spte;
3248
3249                 if (is_access_track_spte(spte))
3250                         new_spte = restore_acc_track_spte(new_spte);
3251
3252                 /*
3253                  * Currently, to simplify the code, write-protection can
3254                  * be removed in the fast path only if the SPTE was
3255                  * write-protected for dirty-logging or access tracking.
3256                  */
3257                 if ((error_code & PFERR_WRITE_MASK) &&
3258                     spte_can_locklessly_be_made_writable(spte)) {
3259                         new_spte |= PT_WRITABLE_MASK;
3260
3261                         /*
3262                          * Do not fix write-permission on the large spte.  Since
3263                          * we only dirty the first page into the dirty-bitmap in
3264                          * fast_pf_fix_direct_spte(), other pages are missed
3265                          * if its slot has dirty logging enabled.
3266                          *
3267                          * Instead, we let the slow page fault path create a
3268                          * normal spte to fix the access.
3269                          *
3270                          * See the comments in kvm_arch_commit_memory_region().
3271                          */
3272                         if (sp->role.level > PG_LEVEL_4K)
3273                                 break;
3274                 }
3275
3276                 /* Verify that the fault can be handled in the fast path */
3277                 if (new_spte == spte ||
3278                     !is_access_allowed(error_code, new_spte))
3279                         break;
3280
3281                 /*
3282                  * Currently, fast page fault only works for direct mapping
3283                  * since the gfn is not stable for indirect shadow page. See
3284                  * Documentation/virt/kvm/locking.rst to get more detail.
3285                  */
3286                 if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) {
3287                         ret = RET_PF_FIXED;
3288                         break;
3289                 }
3290
3291                 if (++retry_count > 4) {
3292                         printk_once(KERN_WARNING
3293                                 "kvm: Fast #PF retrying more than 4 times.\n");
3294                         break;
3295                 }
3296
3297         } while (true);
3298
3299         trace_fast_page_fault(vcpu, gpa, error_code, sptep, spte, ret);
3300         walk_shadow_page_lockless_end(vcpu);
3301
3302         return ret;
3303 }
3304
3305 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3306                                struct list_head *invalid_list)
3307 {
3308         struct kvm_mmu_page *sp;
3309
3310         if (!VALID_PAGE(*root_hpa))
3311                 return;
3312
3313         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3314
3315         if (is_tdp_mmu_page(sp))
3316                 kvm_tdp_mmu_put_root(kvm, sp, false);
3317         else if (!--sp->root_count && sp->role.invalid)
3318                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3319
3320         *root_hpa = INVALID_PAGE;
3321 }
3322
3323 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3324 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3325                         ulong roots_to_free)
3326 {
3327         struct kvm *kvm = vcpu->kvm;
3328         int i;
3329         LIST_HEAD(invalid_list);
3330         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3331
3332         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3333
3334         /* Before acquiring the MMU lock, see if we need to do any real work. */
3335         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3336                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3337                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3338                             VALID_PAGE(mmu->prev_roots[i].hpa))
3339                                 break;
3340
3341                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3342                         return;
3343         }
3344
3345         write_lock(&kvm->mmu_lock);
3346
3347         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3348                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3349                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3350                                            &invalid_list);
3351
3352         if (free_active_root) {
3353                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3354                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3355                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3356                 } else if (mmu->pae_root) {
3357                         for (i = 0; i < 4; ++i) {
3358                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3359                                         continue;
3360
3361                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3362                                                    &invalid_list);
3363                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3364                         }
3365                 }
3366                 mmu->root_hpa = INVALID_PAGE;
3367                 mmu->root_pgd = 0;
3368         }
3369
3370         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3371         write_unlock(&kvm->mmu_lock);
3372 }
3373 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3374
3375 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3376 {
3377         unsigned long roots_to_free = 0;
3378         hpa_t root_hpa;
3379         int i;
3380
3381         /*
3382          * This should not be called while L2 is active, L2 can't invalidate
3383          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3384          */
3385         WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3386
3387         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3388                 root_hpa = mmu->prev_roots[i].hpa;
3389                 if (!VALID_PAGE(root_hpa))
3390                         continue;
3391
3392                 if (!to_shadow_page(root_hpa) ||
3393                         to_shadow_page(root_hpa)->role.guest_mode)
3394                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3395         }
3396
3397         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3398 }
3399 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3400
3401
3402 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3403 {
3404         int ret = 0;
3405
3406         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3407                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3408                 ret = 1;
3409         }
3410
3411         return ret;
3412 }
3413
3414 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3415                             u8 level, bool direct)
3416 {
3417         struct kvm_mmu_page *sp;
3418
3419         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3420         ++sp->root_count;
3421
3422         return __pa(sp->spt);
3423 }
3424
3425 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3426 {
3427         struct kvm_mmu *mmu = vcpu->arch.mmu;
3428         u8 shadow_root_level = mmu->shadow_root_level;
3429         hpa_t root;
3430         unsigned i;
3431         int r;
3432
3433         write_lock(&vcpu->kvm->mmu_lock);
3434         r = make_mmu_pages_available(vcpu);
3435         if (r < 0)
3436                 goto out_unlock;
3437
3438         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3439                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3440                 mmu->root_hpa = root;
3441         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3442                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3443                 mmu->root_hpa = root;
3444         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3445                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3446                         r = -EIO;
3447                         goto out_unlock;
3448                 }
3449
3450                 for (i = 0; i < 4; ++i) {
3451                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3452
3453                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3454                                               i << 30, PT32_ROOT_LEVEL, true);
3455                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3456                                            shadow_me_mask;
3457                 }
3458                 mmu->root_hpa = __pa(mmu->pae_root);
3459         } else {
3460                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3461                 r = -EIO;
3462                 goto out_unlock;
3463         }
3464
3465         /* root_pgd is ignored for direct MMUs. */
3466         mmu->root_pgd = 0;
3467 out_unlock:
3468         write_unlock(&vcpu->kvm->mmu_lock);
3469         return r;
3470 }
3471
3472 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3473 {
3474         struct kvm_mmu *mmu = vcpu->arch.mmu;
3475         u64 pdptrs[4], pm_mask;
3476         gfn_t root_gfn, root_pgd;
3477         hpa_t root;
3478         unsigned i;
3479         int r;
3480
3481         root_pgd = mmu->get_guest_pgd(vcpu);
3482         root_gfn = root_pgd >> PAGE_SHIFT;
3483
3484         if (mmu_check_root(vcpu, root_gfn))
3485                 return 1;
3486
3487         /*
3488          * On SVM, reading PDPTRs might access guest memory, which might fault
3489          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3490          */
3491         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3492                 for (i = 0; i < 4; ++i) {
3493                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3494                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3495                                 continue;
3496
3497                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3498                                 return 1;
3499                 }
3500         }
3501
3502         r = alloc_all_memslots_rmaps(vcpu->kvm);
3503         if (r)
3504                 return r;
3505
3506         write_lock(&vcpu->kvm->mmu_lock);
3507         r = make_mmu_pages_available(vcpu);
3508         if (r < 0)
3509                 goto out_unlock;
3510
3511         /*
3512          * Do we shadow a long mode page table? If so we need to
3513          * write-protect the guests page table root.
3514          */
3515         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3516                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3517                                       mmu->shadow_root_level, false);
3518                 mmu->root_hpa = root;
3519                 goto set_root_pgd;
3520         }
3521
3522         if (WARN_ON_ONCE(!mmu->pae_root)) {
3523                 r = -EIO;
3524                 goto out_unlock;
3525         }
3526
3527         /*
3528          * We shadow a 32 bit page table. This may be a legacy 2-level
3529          * or a PAE 3-level page table. In either case we need to be aware that
3530          * the shadow page table may be a PAE or a long mode page table.
3531          */
3532         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3533         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3534                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3535
3536                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3537                         r = -EIO;
3538                         goto out_unlock;
3539                 }
3540                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3541
3542                 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
3543                         if (WARN_ON_ONCE(!mmu->pml5_root)) {
3544                                 r = -EIO;
3545                                 goto out_unlock;
3546                         }
3547                         mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3548                 }
3549         }
3550
3551         for (i = 0; i < 4; ++i) {
3552                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3553
3554                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3555                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3556                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3557                                 continue;
3558                         }
3559                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3560                 }
3561
3562                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3563                                       PT32_ROOT_LEVEL, false);
3564                 mmu->pae_root[i] = root | pm_mask;
3565         }
3566
3567         if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
3568                 mmu->root_hpa = __pa(mmu->pml5_root);
3569         else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3570                 mmu->root_hpa = __pa(mmu->pml4_root);
3571         else
3572                 mmu->root_hpa = __pa(mmu->pae_root);
3573
3574 set_root_pgd:
3575         mmu->root_pgd = root_pgd;
3576 out_unlock:
3577         write_unlock(&vcpu->kvm->mmu_lock);
3578
3579         return 0;
3580 }
3581
3582 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3583 {
3584         struct kvm_mmu *mmu = vcpu->arch.mmu;
3585         bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3586         u64 *pml5_root = NULL;
3587         u64 *pml4_root = NULL;
3588         u64 *pae_root;
3589
3590         /*
3591          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3592          * tables are allocated and initialized at root creation as there is no
3593          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3594          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3595          */
3596         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3597             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3598                 return 0;
3599
3600         /*
3601          * NPT, the only paging mode that uses this horror, uses a fixed number
3602          * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3603          * all MMus are 5-level.  Thus, this can safely require that pml5_root
3604          * is allocated if the other roots are valid and pml5 is needed, as any
3605          * prior MMU would also have required pml5.
3606          */
3607         if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3608                 return 0;
3609
3610         /*
3611          * The special roots should always be allocated in concert.  Yell and
3612          * bail if KVM ends up in a state where only one of the roots is valid.
3613          */
3614         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3615                          (need_pml5 && mmu->pml5_root)))
3616                 return -EIO;
3617
3618         /*
3619          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3620          * doesn't need to be decrypted.
3621          */
3622         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3623         if (!pae_root)
3624                 return -ENOMEM;
3625
3626 #ifdef CONFIG_X86_64
3627         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3628         if (!pml4_root)
3629                 goto err_pml4;
3630
3631         if (need_pml5) {
3632                 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3633                 if (!pml5_root)
3634                         goto err_pml5;
3635         }
3636 #endif
3637
3638         mmu->pae_root = pae_root;
3639         mmu->pml4_root = pml4_root;
3640         mmu->pml5_root = pml5_root;
3641
3642         return 0;
3643
3644 #ifdef CONFIG_X86_64
3645 err_pml5:
3646         free_page((unsigned long)pml4_root);
3647 err_pml4:
3648         free_page((unsigned long)pae_root);
3649         return -ENOMEM;
3650 #endif
3651 }
3652
3653 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3654 {
3655         int i;
3656         struct kvm_mmu_page *sp;
3657
3658         if (vcpu->arch.mmu->direct_map)
3659                 return;
3660
3661         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3662                 return;
3663
3664         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3665
3666         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3667                 hpa_t root = vcpu->arch.mmu->root_hpa;
3668                 sp = to_shadow_page(root);
3669
3670                 /*
3671                  * Even if another CPU was marking the SP as unsync-ed
3672                  * simultaneously, any guest page table changes are not
3673                  * guaranteed to be visible anyway until this VCPU issues a TLB
3674                  * flush strictly after those changes are made. We only need to
3675                  * ensure that the other CPU sets these flags before any actual
3676                  * changes to the page tables are made. The comments in
3677                  * mmu_try_to_unsync_pages() describe what could go wrong if
3678                  * this requirement isn't satisfied.
3679                  */
3680                 if (!smp_load_acquire(&sp->unsync) &&
3681                     !smp_load_acquire(&sp->unsync_children))
3682                         return;
3683
3684                 write_lock(&vcpu->kvm->mmu_lock);
3685                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3686
3687                 mmu_sync_children(vcpu, sp);
3688
3689                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3690                 write_unlock(&vcpu->kvm->mmu_lock);
3691                 return;
3692         }
3693
3694         write_lock(&vcpu->kvm->mmu_lock);
3695         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3696
3697         for (i = 0; i < 4; ++i) {
3698                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3699
3700                 if (IS_VALID_PAE_ROOT(root)) {
3701                         root &= PT64_BASE_ADDR_MASK;
3702                         sp = to_shadow_page(root);
3703                         mmu_sync_children(vcpu, sp);
3704                 }
3705         }
3706
3707         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3708         write_unlock(&vcpu->kvm->mmu_lock);
3709 }
3710
3711 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3712                                   u32 access, struct x86_exception *exception)
3713 {
3714         if (exception)
3715                 exception->error_code = 0;
3716         return vaddr;
3717 }
3718
3719 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3720                                          u32 access,
3721                                          struct x86_exception *exception)
3722 {
3723         if (exception)
3724                 exception->error_code = 0;
3725         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3726 }
3727
3728 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3729 {
3730         /*
3731          * A nested guest cannot use the MMIO cache if it is using nested
3732          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3733          */
3734         if (mmu_is_nested(vcpu))
3735                 return false;
3736
3737         if (direct)
3738                 return vcpu_match_mmio_gpa(vcpu, addr);
3739
3740         return vcpu_match_mmio_gva(vcpu, addr);
3741 }
3742
3743 /*
3744  * Return the level of the lowest level SPTE added to sptes.
3745  * That SPTE may be non-present.
3746  *
3747  * Must be called between walk_shadow_page_lockless_{begin,end}.
3748  */
3749 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3750 {
3751         struct kvm_shadow_walk_iterator iterator;
3752         int leaf = -1;
3753         u64 spte;
3754
3755         for (shadow_walk_init(&iterator, vcpu, addr),
3756              *root_level = iterator.level;
3757              shadow_walk_okay(&iterator);
3758              __shadow_walk_next(&iterator, spte)) {
3759                 leaf = iterator.level;
3760                 spte = mmu_spte_get_lockless(iterator.sptep);
3761
3762                 sptes[leaf] = spte;
3763
3764                 if (!is_shadow_present_pte(spte))
3765                         break;
3766         }
3767
3768         return leaf;
3769 }
3770
3771 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3772 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3773 {
3774         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3775         struct rsvd_bits_validate *rsvd_check;
3776         int root, leaf, level;
3777         bool reserved = false;
3778
3779         walk_shadow_page_lockless_begin(vcpu);
3780
3781         if (is_tdp_mmu(vcpu->arch.mmu))
3782                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3783         else
3784                 leaf = get_walk(vcpu, addr, sptes, &root);
3785
3786         walk_shadow_page_lockless_end(vcpu);
3787
3788         if (unlikely(leaf < 0)) {
3789                 *sptep = 0ull;
3790                 return reserved;
3791         }
3792
3793         *sptep = sptes[leaf];
3794
3795         /*
3796          * Skip reserved bits checks on the terminal leaf if it's not a valid
3797          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3798          * design, always have reserved bits set.  The purpose of the checks is
3799          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3800          */
3801         if (!is_shadow_present_pte(sptes[leaf]))
3802                 leaf++;
3803
3804         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3805
3806         for (level = root; level >= leaf; level--)
3807                 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3808
3809         if (reserved) {
3810                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3811                        __func__, addr);
3812                 for (level = root; level >= leaf; level--)
3813                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3814                                sptes[level], level,
3815                                get_rsvd_bits(rsvd_check, sptes[level], level));
3816         }
3817
3818         return reserved;
3819 }
3820
3821 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3822 {
3823         u64 spte;
3824         bool reserved;
3825
3826         if (mmio_info_in_cache(vcpu, addr, direct))
3827                 return RET_PF_EMULATE;
3828
3829         reserved = get_mmio_spte(vcpu, addr, &spte);
3830         if (WARN_ON(reserved))
3831                 return -EINVAL;
3832
3833         if (is_mmio_spte(spte)) {
3834                 gfn_t gfn = get_mmio_spte_gfn(spte);
3835                 unsigned int access = get_mmio_spte_access(spte);
3836
3837                 if (!check_mmio_spte(vcpu, spte))
3838                         return RET_PF_INVALID;
3839
3840                 if (direct)
3841                         addr = 0;
3842
3843                 trace_handle_mmio_page_fault(addr, gfn, access);
3844                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3845                 return RET_PF_EMULATE;
3846         }
3847
3848         /*
3849          * If the page table is zapped by other cpus, let CPU fault again on
3850          * the address.
3851          */
3852         return RET_PF_RETRY;
3853 }
3854
3855 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3856                                          u32 error_code, gfn_t gfn)
3857 {
3858         if (unlikely(error_code & PFERR_RSVD_MASK))
3859                 return false;
3860
3861         if (!(error_code & PFERR_PRESENT_MASK) ||
3862               !(error_code & PFERR_WRITE_MASK))
3863                 return false;
3864
3865         /*
3866          * guest is writing the page which is write tracked which can
3867          * not be fixed by page fault handler.
3868          */
3869         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3870                 return true;
3871
3872         return false;
3873 }
3874
3875 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3876 {
3877         struct kvm_shadow_walk_iterator iterator;
3878         u64 spte;
3879
3880         walk_shadow_page_lockless_begin(vcpu);
3881         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3882                 clear_sp_write_flooding_count(iterator.sptep);
3883                 if (!is_shadow_present_pte(spte))
3884                         break;
3885         }
3886         walk_shadow_page_lockless_end(vcpu);
3887 }
3888
3889 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3890                                     gfn_t gfn)
3891 {
3892         struct kvm_arch_async_pf arch;
3893
3894         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3895         arch.gfn = gfn;
3896         arch.direct_map = vcpu->arch.mmu->direct_map;
3897         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3898
3899         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3900                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3901 }
3902
3903 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3904                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3905                          bool write, bool *writable, int *r)
3906 {
3907         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3908         bool async;
3909
3910         /*
3911          * Retry the page fault if the gfn hit a memslot that is being deleted
3912          * or moved.  This ensures any existing SPTEs for the old memslot will
3913          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3914          */
3915         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3916                 goto out_retry;
3917
3918         if (!kvm_is_visible_memslot(slot)) {
3919                 /* Don't expose private memslots to L2. */
3920                 if (is_guest_mode(vcpu)) {
3921                         *pfn = KVM_PFN_NOSLOT;
3922                         *writable = false;
3923                         return false;
3924                 }
3925                 /*
3926                  * If the APIC access page exists but is disabled, go directly
3927                  * to emulation without caching the MMIO access or creating a
3928                  * MMIO SPTE.  That way the cache doesn't need to be purged
3929                  * when the AVIC is re-enabled.
3930                  */
3931                 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3932                     !kvm_apicv_activated(vcpu->kvm)) {
3933                         *r = RET_PF_EMULATE;
3934                         return true;
3935                 }
3936         }
3937
3938         async = false;
3939         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3940                                     write, writable, hva);
3941         if (!async)
3942                 return false; /* *pfn has correct page already */
3943
3944         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3945                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3946                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3947                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3948                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3949                         goto out_retry;
3950                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3951                         goto out_retry;
3952         }
3953
3954         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3955                                     write, writable, hva);
3956
3957 out_retry:
3958         *r = RET_PF_RETRY;
3959         return true;
3960 }
3961
3962 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3963                              bool prefault, int max_level, bool is_tdp)
3964 {
3965         bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3966         bool write = error_code & PFERR_WRITE_MASK;
3967         bool map_writable;
3968
3969         gfn_t gfn = gpa >> PAGE_SHIFT;
3970         unsigned long mmu_seq;
3971         kvm_pfn_t pfn;
3972         hva_t hva;
3973         int r;
3974
3975         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3976                 return RET_PF_EMULATE;
3977
3978         r = fast_page_fault(vcpu, gpa, error_code);
3979         if (r != RET_PF_INVALID)
3980                 return r;
3981
3982         r = mmu_topup_memory_caches(vcpu, false);
3983         if (r)
3984                 return r;
3985
3986         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3987         smp_rmb();
3988
3989         if (kvm_faultin_pfn(vcpu, prefault, gfn, gpa, &pfn, &hva,
3990                          write, &map_writable, &r))
3991                 return r;
3992
3993         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3994                 return r;
3995
3996         r = RET_PF_RETRY;
3997
3998         if (is_tdp_mmu_fault)
3999                 read_lock(&vcpu->kvm->mmu_lock);
4000         else
4001                 write_lock(&vcpu->kvm->mmu_lock);
4002
4003         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
4004                 goto out_unlock;
4005         r = make_mmu_pages_available(vcpu);
4006         if (r)
4007                 goto out_unlock;
4008
4009         if (is_tdp_mmu_fault)
4010                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
4011                                     pfn, prefault);
4012         else
4013                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
4014                                  prefault, is_tdp);
4015
4016 out_unlock:
4017         if (is_tdp_mmu_fault)
4018                 read_unlock(&vcpu->kvm->mmu_lock);
4019         else
4020                 write_unlock(&vcpu->kvm->mmu_lock);
4021         kvm_release_pfn_clean(pfn);
4022         return r;
4023 }
4024
4025 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4026                                 u32 error_code, bool prefault)
4027 {
4028         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4029
4030         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4031         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4032                                  PG_LEVEL_2M, false);
4033 }
4034
4035 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4036                                 u64 fault_address, char *insn, int insn_len)
4037 {
4038         int r = 1;
4039         u32 flags = vcpu->arch.apf.host_apf_flags;
4040
4041 #ifndef CONFIG_X86_64
4042         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4043         if (WARN_ON_ONCE(fault_address >> 32))
4044                 return -EFAULT;
4045 #endif
4046
4047         vcpu->arch.l1tf_flush_l1d = true;
4048         if (!flags) {
4049                 trace_kvm_page_fault(fault_address, error_code);
4050
4051                 if (kvm_event_needs_reinjection(vcpu))
4052                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4053                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4054                                 insn_len);
4055         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4056                 vcpu->arch.apf.host_apf_flags = 0;
4057                 local_irq_disable();
4058                 kvm_async_pf_task_wait_schedule(fault_address);
4059                 local_irq_enable();
4060         } else {
4061                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4062         }
4063
4064         return r;
4065 }
4066 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4067
4068 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4069                        bool prefault)
4070 {
4071         int max_level;
4072
4073         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4074              max_level > PG_LEVEL_4K;
4075              max_level--) {
4076                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4077                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4078
4079                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4080                         break;
4081         }
4082
4083         return direct_page_fault(vcpu, gpa, error_code, prefault,
4084                                  max_level, true);
4085 }
4086
4087 static void nonpaging_init_context(struct kvm_mmu *context)
4088 {
4089         context->page_fault = nonpaging_page_fault;
4090         context->gva_to_gpa = nonpaging_gva_to_gpa;
4091         context->sync_page = nonpaging_sync_page;
4092         context->invlpg = NULL;
4093         context->direct_map = true;
4094 }
4095
4096 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4097                                   union kvm_mmu_page_role role)
4098 {
4099         return (role.direct || pgd == root->pgd) &&
4100                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4101                role.word == to_shadow_page(root->hpa)->role.word;
4102 }
4103
4104 /*
4105  * Find out if a previously cached root matching the new pgd/role is available.
4106  * The current root is also inserted into the cache.
4107  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4108  * returned.
4109  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4110  * false is returned. This root should now be freed by the caller.
4111  */
4112 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4113                                   union kvm_mmu_page_role new_role)
4114 {
4115         uint i;
4116         struct kvm_mmu_root_info root;
4117         struct kvm_mmu *mmu = vcpu->arch.mmu;
4118
4119         root.pgd = mmu->root_pgd;
4120         root.hpa = mmu->root_hpa;
4121
4122         if (is_root_usable(&root, new_pgd, new_role))
4123                 return true;
4124
4125         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4126                 swap(root, mmu->prev_roots[i]);
4127
4128                 if (is_root_usable(&root, new_pgd, new_role))
4129                         break;
4130         }
4131
4132         mmu->root_hpa = root.hpa;
4133         mmu->root_pgd = root.pgd;
4134
4135         return i < KVM_MMU_NUM_PREV_ROOTS;
4136 }
4137
4138 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4139                             union kvm_mmu_page_role new_role)
4140 {
4141         struct kvm_mmu *mmu = vcpu->arch.mmu;
4142
4143         /*
4144          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4145          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4146          * later if necessary.
4147          */
4148         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4149             mmu->root_level >= PT64_ROOT_4LEVEL)
4150                 return cached_root_available(vcpu, new_pgd, new_role);
4151
4152         return false;
4153 }
4154
4155 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4156                               union kvm_mmu_page_role new_role)
4157 {
4158         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4159                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4160                 return;
4161         }
4162
4163         /*
4164          * It's possible that the cached previous root page is obsolete because
4165          * of a change in the MMU generation number. However, changing the
4166          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4167          * free the root set here and allocate a new one.
4168          */
4169         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4170
4171         if (force_flush_and_sync_on_reuse) {
4172                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4173                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4174         }
4175
4176         /*
4177          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4178          * switching to a new CR3, that GVA->GPA mapping may no longer be
4179          * valid. So clear any cached MMIO info even when we don't need to sync
4180          * the shadow page tables.
4181          */
4182         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4183
4184         /*
4185          * If this is a direct root page, it doesn't have a write flooding
4186          * count. Otherwise, clear the write flooding count.
4187          */
4188         if (!new_role.direct)
4189                 __clear_sp_write_flooding_count(
4190                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
4191 }
4192
4193 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4194 {
4195         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4196 }
4197 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4198
4199 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4200 {
4201         return kvm_read_cr3(vcpu);
4202 }
4203
4204 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4205                            unsigned int access, int *nr_present)
4206 {
4207         if (unlikely(is_mmio_spte(*sptep))) {
4208                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4209                         mmu_spte_clear_no_track(sptep);
4210                         return true;
4211                 }
4212
4213                 (*nr_present)++;
4214                 mark_mmio_spte(vcpu, sptep, gfn, access);
4215                 return true;
4216         }
4217
4218         return false;
4219 }
4220
4221 #define PTTYPE_EPT 18 /* arbitrary */
4222 #define PTTYPE PTTYPE_EPT
4223 #include "paging_tmpl.h"
4224 #undef PTTYPE
4225
4226 #define PTTYPE 64
4227 #include "paging_tmpl.h"
4228 #undef PTTYPE
4229
4230 #define PTTYPE 32
4231 #include "paging_tmpl.h"
4232 #undef PTTYPE
4233
4234 static void
4235 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4236                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4237                         bool pse, bool amd)
4238 {
4239         u64 gbpages_bit_rsvd = 0;
4240         u64 nonleaf_bit8_rsvd = 0;
4241         u64 high_bits_rsvd;
4242
4243         rsvd_check->bad_mt_xwr = 0;
4244
4245         if (!gbpages)
4246                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4247
4248         if (level == PT32E_ROOT_LEVEL)
4249                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4250         else
4251                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4252
4253         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4254         if (!nx)
4255                 high_bits_rsvd |= rsvd_bits(63, 63);
4256
4257         /*
4258          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4259          * leaf entries) on AMD CPUs only.
4260          */
4261         if (amd)
4262                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4263
4264         switch (level) {
4265         case PT32_ROOT_LEVEL:
4266                 /* no rsvd bits for 2 level 4K page table entries */
4267                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4268                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4269                 rsvd_check->rsvd_bits_mask[1][0] =
4270                         rsvd_check->rsvd_bits_mask[0][0];
4271
4272                 if (!pse) {
4273                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4274                         break;
4275                 }
4276
4277                 if (is_cpuid_PSE36())
4278                         /* 36bits PSE 4MB page */
4279                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4280                 else
4281                         /* 32 bits PSE 4MB page */
4282                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4283                 break;
4284         case PT32E_ROOT_LEVEL:
4285                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4286                                                    high_bits_rsvd |
4287                                                    rsvd_bits(5, 8) |
4288                                                    rsvd_bits(1, 2);     /* PDPTE */
4289                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4290                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4291                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4292                                                    rsvd_bits(13, 20);   /* large page */
4293                 rsvd_check->rsvd_bits_mask[1][0] =
4294                         rsvd_check->rsvd_bits_mask[0][0];
4295                 break;
4296         case PT64_ROOT_5LEVEL:
4297                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4298                                                    nonleaf_bit8_rsvd |
4299                                                    rsvd_bits(7, 7);
4300                 rsvd_check->rsvd_bits_mask[1][4] =
4301                         rsvd_check->rsvd_bits_mask[0][4];
4302                 fallthrough;
4303         case PT64_ROOT_4LEVEL:
4304                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4305                                                    nonleaf_bit8_rsvd |
4306                                                    rsvd_bits(7, 7);
4307                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4308                                                    gbpages_bit_rsvd;
4309                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4310                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4311                 rsvd_check->rsvd_bits_mask[1][3] =
4312                         rsvd_check->rsvd_bits_mask[0][3];
4313                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4314                                                    gbpages_bit_rsvd |
4315                                                    rsvd_bits(13, 29);
4316                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4317                                                    rsvd_bits(13, 20); /* large page */
4318                 rsvd_check->rsvd_bits_mask[1][0] =
4319                         rsvd_check->rsvd_bits_mask[0][0];
4320                 break;
4321         }
4322 }
4323
4324 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4325 {
4326         /*
4327          * If TDP is enabled, let the guest use GBPAGES if they're supported in
4328          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4329          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4330          * walk for performance and complexity reasons.  Not to mention KVM
4331          * _can't_ solve the problem because GVA->GPA walks aren't visible to
4332          * KVM once a TDP translation is installed.  Mimic hardware behavior so
4333          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4334          */
4335         return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4336                              guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4337 }
4338
4339 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4340                                   struct kvm_mmu *context)
4341 {
4342         __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4343                                 vcpu->arch.reserved_gpa_bits,
4344                                 context->root_level, is_efer_nx(context),
4345                                 guest_can_use_gbpages(vcpu),
4346                                 is_cr4_pse(context),
4347                                 guest_cpuid_is_amd_or_hygon(vcpu));
4348 }
4349
4350 static void
4351 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4352                             u64 pa_bits_rsvd, bool execonly)
4353 {
4354         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4355         u64 bad_mt_xwr;
4356
4357         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4358         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4359         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4360         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4361         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4362
4363         /* large page */
4364         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4365         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4366         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4367         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4368         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4369
4370         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4371         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4372         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4373         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4374         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4375         if (!execonly) {
4376                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4377                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4378         }
4379         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4380 }
4381
4382 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4383                 struct kvm_mmu *context, bool execonly)
4384 {
4385         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4386                                     vcpu->arch.reserved_gpa_bits, execonly);
4387 }
4388
4389 static inline u64 reserved_hpa_bits(void)
4390 {
4391         return rsvd_bits(shadow_phys_bits, 63);
4392 }
4393
4394 /*
4395  * the page table on host is the shadow page table for the page
4396  * table in guest or amd nested guest, its mmu features completely
4397  * follow the features in guest.
4398  */
4399 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4400                                         struct kvm_mmu *context)
4401 {
4402         /*
4403          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4404          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4405          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4406          * The iTLB multi-hit workaround can be toggled at any time, so assume
4407          * NX can be used by any non-nested shadow MMU to avoid having to reset
4408          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4409          */
4410         bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4411
4412         /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4413         bool is_amd = true;
4414         /* KVM doesn't use 2-level page tables for the shadow MMU. */
4415         bool is_pse = false;
4416         struct rsvd_bits_validate *shadow_zero_check;
4417         int i;
4418
4419         WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4420
4421         shadow_zero_check = &context->shadow_zero_check;
4422         __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4423                                 context->shadow_root_level, uses_nx,
4424                                 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4425
4426         if (!shadow_me_mask)
4427                 return;
4428
4429         for (i = context->shadow_root_level; --i >= 0;) {
4430                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4431                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4432         }
4433
4434 }
4435
4436 static inline bool boot_cpu_is_amd(void)
4437 {
4438         WARN_ON_ONCE(!tdp_enabled);
4439         return shadow_x_mask == 0;
4440 }
4441
4442 /*
4443  * the direct page table on host, use as much mmu features as
4444  * possible, however, kvm currently does not do execution-protection.
4445  */
4446 static void
4447 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4448                                 struct kvm_mmu *context)
4449 {
4450         struct rsvd_bits_validate *shadow_zero_check;
4451         int i;
4452
4453         shadow_zero_check = &context->shadow_zero_check;
4454
4455         if (boot_cpu_is_amd())
4456                 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4457                                         context->shadow_root_level, false,
4458                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4459                                         false, true);
4460         else
4461                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4462                                             reserved_hpa_bits(), false);
4463
4464         if (!shadow_me_mask)
4465                 return;
4466
4467         for (i = context->shadow_root_level; --i >= 0;) {
4468                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4469                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4470         }
4471 }
4472
4473 /*
4474  * as the comments in reset_shadow_zero_bits_mask() except it
4475  * is the shadow page table for intel nested guest.
4476  */
4477 static void
4478 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4479                                 struct kvm_mmu *context, bool execonly)
4480 {
4481         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4482                                     reserved_hpa_bits(), execonly);
4483 }
4484
4485 #define BYTE_MASK(access) \
4486         ((1 & (access) ? 2 : 0) | \
4487          (2 & (access) ? 4 : 0) | \
4488          (3 & (access) ? 8 : 0) | \
4489          (4 & (access) ? 16 : 0) | \
4490          (5 & (access) ? 32 : 0) | \
4491          (6 & (access) ? 64 : 0) | \
4492          (7 & (access) ? 128 : 0))
4493
4494
4495 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4496 {
4497         unsigned byte;
4498
4499         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4500         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4501         const u8 u = BYTE_MASK(ACC_USER_MASK);
4502
4503         bool cr4_smep = is_cr4_smep(mmu);
4504         bool cr4_smap = is_cr4_smap(mmu);
4505         bool cr0_wp = is_cr0_wp(mmu);
4506         bool efer_nx = is_efer_nx(mmu);
4507
4508         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4509                 unsigned pfec = byte << 1;
4510
4511                 /*
4512                  * Each "*f" variable has a 1 bit for each UWX value
4513                  * that causes a fault with the given PFEC.
4514                  */
4515
4516                 /* Faults from writes to non-writable pages */
4517                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4518                 /* Faults from user mode accesses to supervisor pages */
4519                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4520                 /* Faults from fetches of non-executable pages*/
4521                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4522                 /* Faults from kernel mode fetches of user pages */
4523                 u8 smepf = 0;
4524                 /* Faults from kernel mode accesses of user pages */
4525                 u8 smapf = 0;
4526
4527                 if (!ept) {
4528                         /* Faults from kernel mode accesses to user pages */
4529                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4530
4531                         /* Not really needed: !nx will cause pte.nx to fault */
4532                         if (!efer_nx)
4533                                 ff = 0;
4534
4535                         /* Allow supervisor writes if !cr0.wp */
4536                         if (!cr0_wp)
4537                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4538
4539                         /* Disallow supervisor fetches of user code if cr4.smep */
4540                         if (cr4_smep)
4541                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4542
4543                         /*
4544                          * SMAP:kernel-mode data accesses from user-mode
4545                          * mappings should fault. A fault is considered
4546                          * as a SMAP violation if all of the following
4547                          * conditions are true:
4548                          *   - X86_CR4_SMAP is set in CR4
4549                          *   - A user page is accessed
4550                          *   - The access is not a fetch
4551                          *   - Page fault in kernel mode
4552                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4553                          *
4554                          * Here, we cover the first three conditions.
4555                          * The fourth is computed dynamically in permission_fault();
4556                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4557                          * *not* subject to SMAP restrictions.
4558                          */
4559                         if (cr4_smap)
4560                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4561                 }
4562
4563                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4564         }
4565 }
4566
4567 /*
4568 * PKU is an additional mechanism by which the paging controls access to
4569 * user-mode addresses based on the value in the PKRU register.  Protection
4570 * key violations are reported through a bit in the page fault error code.
4571 * Unlike other bits of the error code, the PK bit is not known at the
4572 * call site of e.g. gva_to_gpa; it must be computed directly in
4573 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4574 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4575 *
4576 * In particular the following conditions come from the error code, the
4577 * page tables and the machine state:
4578 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4579 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4580 * - PK is always zero if U=0 in the page tables
4581 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4582 *
4583 * The PKRU bitmask caches the result of these four conditions.  The error
4584 * code (minus the P bit) and the page table's U bit form an index into the
4585 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4586 * with the two bits of the PKRU register corresponding to the protection key.
4587 * For the first three conditions above the bits will be 00, thus masking
4588 * away both AD and WD.  For all reads or if the last condition holds, WD
4589 * only will be masked away.
4590 */
4591 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4592 {
4593         unsigned bit;
4594         bool wp;
4595
4596         if (!is_cr4_pke(mmu)) {
4597                 mmu->pkru_mask = 0;
4598                 return;
4599         }
4600
4601         wp = is_cr0_wp(mmu);
4602
4603         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4604                 unsigned pfec, pkey_bits;
4605                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4606
4607                 pfec = bit << 1;
4608                 ff = pfec & PFERR_FETCH_MASK;
4609                 uf = pfec & PFERR_USER_MASK;
4610                 wf = pfec & PFERR_WRITE_MASK;
4611
4612                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4613                 pte_user = pfec & PFERR_RSVD_MASK;
4614
4615                 /*
4616                  * Only need to check the access which is not an
4617                  * instruction fetch and is to a user page.
4618                  */
4619                 check_pkey = (!ff && pte_user);
4620                 /*
4621                  * write access is controlled by PKRU if it is a
4622                  * user access or CR0.WP = 1.
4623                  */
4624                 check_write = check_pkey && wf && (uf || wp);
4625
4626                 /* PKRU.AD stops both read and write access. */
4627                 pkey_bits = !!check_pkey;
4628                 /* PKRU.WD stops write access. */
4629                 pkey_bits |= (!!check_write) << 1;
4630
4631                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4632         }
4633 }
4634
4635 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4636                                         struct kvm_mmu *mmu)
4637 {
4638         if (!is_cr0_pg(mmu))
4639                 return;
4640
4641         reset_rsvds_bits_mask(vcpu, mmu);
4642         update_permission_bitmask(mmu, false);
4643         update_pkru_bitmask(mmu);
4644 }
4645
4646 static void paging64_init_context(struct kvm_mmu *context)
4647 {
4648         context->page_fault = paging64_page_fault;
4649         context->gva_to_gpa = paging64_gva_to_gpa;
4650         context->sync_page = paging64_sync_page;
4651         context->invlpg = paging64_invlpg;
4652         context->direct_map = false;
4653 }
4654
4655 static void paging32_init_context(struct kvm_mmu *context)
4656 {
4657         context->page_fault = paging32_page_fault;
4658         context->gva_to_gpa = paging32_gva_to_gpa;
4659         context->sync_page = paging32_sync_page;
4660         context->invlpg = paging32_invlpg;
4661         context->direct_map = false;
4662 }
4663
4664 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4665                                                          struct kvm_mmu_role_regs *regs)
4666 {
4667         union kvm_mmu_extended_role ext = {0};
4668
4669         if (____is_cr0_pg(regs)) {
4670                 ext.cr0_pg = 1;
4671                 ext.cr4_pae = ____is_cr4_pae(regs);
4672                 ext.cr4_smep = ____is_cr4_smep(regs);
4673                 ext.cr4_smap = ____is_cr4_smap(regs);
4674                 ext.cr4_pse = ____is_cr4_pse(regs);
4675
4676                 /* PKEY and LA57 are active iff long mode is active. */
4677                 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4678                 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4679         }
4680
4681         ext.valid = 1;
4682
4683         return ext;
4684 }
4685
4686 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4687                                                    struct kvm_mmu_role_regs *regs,
4688                                                    bool base_only)
4689 {
4690         union kvm_mmu_role role = {0};
4691
4692         role.base.access = ACC_ALL;
4693         if (____is_cr0_pg(regs)) {
4694                 role.base.efer_nx = ____is_efer_nx(regs);
4695                 role.base.cr0_wp = ____is_cr0_wp(regs);
4696         }
4697         role.base.smm = is_smm(vcpu);
4698         role.base.guest_mode = is_guest_mode(vcpu);
4699
4700         if (base_only)
4701                 return role;
4702
4703         role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4704
4705         return role;
4706 }
4707
4708 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4709 {
4710         /* tdp_root_level is architecture forced level, use it if nonzero */
4711         if (tdp_root_level)
4712                 return tdp_root_level;
4713
4714         /* Use 5-level TDP if and only if it's useful/necessary. */
4715         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4716                 return 4;
4717
4718         return max_tdp_level;
4719 }
4720
4721 static union kvm_mmu_role
4722 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4723                                 struct kvm_mmu_role_regs *regs, bool base_only)
4724 {
4725         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4726
4727         role.base.ad_disabled = (shadow_accessed_mask == 0);
4728         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4729         role.base.direct = true;
4730         role.base.gpte_is_8_bytes = true;
4731
4732         return role;
4733 }
4734
4735 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4736 {
4737         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4738         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4739         union kvm_mmu_role new_role =
4740                 kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4741
4742         if (new_role.as_u64 == context->mmu_role.as_u64)
4743                 return;
4744
4745         context->mmu_role.as_u64 = new_role.as_u64;
4746         context->page_fault = kvm_tdp_page_fault;
4747         context->sync_page = nonpaging_sync_page;
4748         context->invlpg = NULL;
4749         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4750         context->direct_map = true;
4751         context->get_guest_pgd = get_cr3;
4752         context->get_pdptr = kvm_pdptr_read;
4753         context->inject_page_fault = kvm_inject_page_fault;
4754         context->root_level = role_regs_to_root_level(&regs);
4755
4756         if (!is_cr0_pg(context))
4757                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4758         else if (is_cr4_pae(context))
4759                 context->gva_to_gpa = paging64_gva_to_gpa;
4760         else
4761                 context->gva_to_gpa = paging32_gva_to_gpa;
4762
4763         reset_guest_paging_metadata(vcpu, context);
4764         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4765 }
4766
4767 static union kvm_mmu_role
4768 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4769                                       struct kvm_mmu_role_regs *regs, bool base_only)
4770 {
4771         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4772
4773         role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4774         role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4775         role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4776
4777         return role;
4778 }
4779
4780 static union kvm_mmu_role
4781 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4782                                    struct kvm_mmu_role_regs *regs, bool base_only)
4783 {
4784         union kvm_mmu_role role =
4785                 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4786
4787         role.base.direct = !____is_cr0_pg(regs);
4788
4789         if (!____is_efer_lma(regs))
4790                 role.base.level = PT32E_ROOT_LEVEL;
4791         else if (____is_cr4_la57(regs))
4792                 role.base.level = PT64_ROOT_5LEVEL;
4793         else
4794                 role.base.level = PT64_ROOT_4LEVEL;
4795
4796         return role;
4797 }
4798
4799 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4800                                     struct kvm_mmu_role_regs *regs,
4801                                     union kvm_mmu_role new_role)
4802 {
4803         if (new_role.as_u64 == context->mmu_role.as_u64)
4804                 return;
4805
4806         context->mmu_role.as_u64 = new_role.as_u64;
4807
4808         if (!is_cr0_pg(context))
4809                 nonpaging_init_context(context);
4810         else if (is_cr4_pae(context))
4811                 paging64_init_context(context);
4812         else
4813                 paging32_init_context(context);
4814         context->root_level = role_regs_to_root_level(regs);
4815
4816         reset_guest_paging_metadata(vcpu, context);
4817         context->shadow_root_level = new_role.base.level;
4818
4819         reset_shadow_zero_bits_mask(vcpu, context);
4820 }
4821
4822 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4823                                 struct kvm_mmu_role_regs *regs)
4824 {
4825         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4826         union kvm_mmu_role new_role =
4827                 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4828
4829         shadow_mmu_init_context(vcpu, context, regs, new_role);
4830 }
4831
4832 static union kvm_mmu_role
4833 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4834                                    struct kvm_mmu_role_regs *regs)
4835 {
4836         union kvm_mmu_role role =
4837                 kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4838
4839         role.base.direct = false;
4840         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4841
4842         return role;
4843 }
4844
4845 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4846                              unsigned long cr4, u64 efer, gpa_t nested_cr3)
4847 {
4848         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4849         struct kvm_mmu_role_regs regs = {
4850                 .cr0 = cr0,
4851                 .cr4 = cr4,
4852                 .efer = efer,
4853         };
4854         union kvm_mmu_role new_role;
4855
4856         new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4857
4858         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4859
4860         shadow_mmu_init_context(vcpu, context, &regs, new_role);
4861 }
4862 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4863
4864 static union kvm_mmu_role
4865 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4866                                    bool execonly, u8 level)
4867 {
4868         union kvm_mmu_role role = {0};
4869
4870         /* SMM flag is inherited from root_mmu */
4871         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4872
4873         role.base.level = level;
4874         role.base.gpte_is_8_bytes = true;
4875         role.base.direct = false;
4876         role.base.ad_disabled = !accessed_dirty;
4877         role.base.guest_mode = true;
4878         role.base.access = ACC_ALL;
4879
4880         /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4881         role.ext.word = 0;
4882         role.ext.execonly = execonly;
4883         role.ext.valid = 1;
4884
4885         return role;
4886 }
4887
4888 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4889                              bool accessed_dirty, gpa_t new_eptp)
4890 {
4891         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4892         u8 level = vmx_eptp_page_walk_level(new_eptp);
4893         union kvm_mmu_role new_role =
4894                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4895                                                    execonly, level);
4896
4897         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4898
4899         if (new_role.as_u64 == context->mmu_role.as_u64)
4900                 return;
4901
4902         context->mmu_role.as_u64 = new_role.as_u64;
4903
4904         context->shadow_root_level = level;
4905
4906         context->ept_ad = accessed_dirty;
4907         context->page_fault = ept_page_fault;
4908         context->gva_to_gpa = ept_gva_to_gpa;
4909         context->sync_page = ept_sync_page;
4910         context->invlpg = ept_invlpg;
4911         context->root_level = level;
4912         context->direct_map = false;
4913
4914         update_permission_bitmask(context, true);
4915         update_pkru_bitmask(context);
4916         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4917         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4918 }
4919 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4920
4921 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4922 {
4923         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4924         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4925
4926         kvm_init_shadow_mmu(vcpu, &regs);
4927
4928         context->get_guest_pgd     = get_cr3;
4929         context->get_pdptr         = kvm_pdptr_read;
4930         context->inject_page_fault = kvm_inject_page_fault;
4931 }
4932
4933 static union kvm_mmu_role
4934 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4935 {
4936         union kvm_mmu_role role;
4937
4938         role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4939
4940         /*
4941          * Nested MMUs are used only for walking L2's gva->gpa, they never have
4942          * shadow pages of their own and so "direct" has no meaning.   Set it
4943          * to "true" to try to detect bogus usage of the nested MMU.
4944          */
4945         role.base.direct = true;
4946         role.base.level = role_regs_to_root_level(regs);
4947         return role;
4948 }
4949
4950 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4951 {
4952         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4953         union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4954         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4955
4956         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4957                 return;
4958
4959         g_context->mmu_role.as_u64 = new_role.as_u64;
4960         g_context->get_guest_pgd     = get_cr3;
4961         g_context->get_pdptr         = kvm_pdptr_read;
4962         g_context->inject_page_fault = kvm_inject_page_fault;
4963         g_context->root_level        = new_role.base.level;
4964
4965         /*
4966          * L2 page tables are never shadowed, so there is no need to sync
4967          * SPTEs.
4968          */
4969         g_context->invlpg            = NULL;
4970
4971         /*
4972          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4973          * L1's nested page tables (e.g. EPT12). The nested translation
4974          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4975          * L2's page tables as the first level of translation and L1's
4976          * nested page tables as the second level of translation. Basically
4977          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4978          */
4979         if (!is_paging(vcpu))
4980                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4981         else if (is_long_mode(vcpu))
4982                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4983         else if (is_pae(vcpu))
4984                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4985         else
4986                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4987
4988         reset_guest_paging_metadata(vcpu, g_context);
4989 }
4990
4991 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4992 {
4993         if (mmu_is_nested(vcpu))
4994                 init_kvm_nested_mmu(vcpu);
4995         else if (tdp_enabled)
4996                 init_kvm_tdp_mmu(vcpu);
4997         else
4998                 init_kvm_softmmu(vcpu);
4999 }
5000 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5001
5002 static union kvm_mmu_page_role
5003 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5004 {
5005         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5006         union kvm_mmu_role role;
5007
5008         if (tdp_enabled)
5009                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5010         else
5011                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5012
5013         return role.base;
5014 }
5015
5016 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5017 {
5018         /*
5019          * Invalidate all MMU roles to force them to reinitialize as CPUID
5020          * information is factored into reserved bit calculations.
5021          */
5022         vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
5023         vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
5024         vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
5025         kvm_mmu_reset_context(vcpu);
5026
5027         /*
5028          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
5029          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
5030          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
5031          * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
5032          * sweep the problem under the rug.
5033          *
5034          * KVM's horrific CPUID ABI makes the problem all but impossible to
5035          * solve, as correctly handling multiple vCPU models (with respect to
5036          * paging and physical address properties) in a single VM would require
5037          * tracking all relevant CPUID information in kvm_mmu_page_role.  That
5038          * is very undesirable as it would double the memory requirements for
5039          * gfn_track (see struct kvm_mmu_page_role comments), and in practice
5040          * no sane VMM mucks with the core vCPU model on the fly.
5041          */
5042         if (vcpu->arch.last_vmentry_cpu != -1) {
5043                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
5044                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
5045         }
5046 }
5047
5048 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5049 {
5050         kvm_mmu_unload(vcpu);
5051         kvm_init_mmu(vcpu);
5052 }
5053 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5054
5055 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5056 {
5057         int r;
5058
5059         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5060         if (r)
5061                 goto out;
5062         r = mmu_alloc_special_roots(vcpu);
5063         if (r)
5064                 goto out;
5065         if (vcpu->arch.mmu->direct_map)
5066                 r = mmu_alloc_direct_roots(vcpu);
5067         else
5068                 r = mmu_alloc_shadow_roots(vcpu);
5069         if (r)
5070                 goto out;
5071
5072         kvm_mmu_sync_roots(vcpu);
5073
5074         kvm_mmu_load_pgd(vcpu);
5075         static_call(kvm_x86_tlb_flush_current)(vcpu);
5076 out:
5077         return r;
5078 }
5079
5080 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5081 {
5082         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5083         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5084         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5085         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5086 }
5087
5088 static bool need_remote_flush(u64 old, u64 new)
5089 {
5090         if (!is_shadow_present_pte(old))
5091                 return false;
5092         if (!is_shadow_present_pte(new))
5093                 return true;
5094         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5095                 return true;
5096         old ^= shadow_nx_mask;
5097         new ^= shadow_nx_mask;
5098         return (old & ~new & PT64_PERM_MASK) != 0;
5099 }
5100
5101 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5102                                     int *bytes)
5103 {
5104         u64 gentry = 0;
5105         int r;
5106
5107         /*
5108          * Assume that the pte write on a page table of the same type
5109          * as the current vcpu paging mode since we update the sptes only
5110          * when they have the same mode.
5111          */
5112         if (is_pae(vcpu) && *bytes == 4) {
5113                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5114                 *gpa &= ~(gpa_t)7;
5115                 *bytes = 8;
5116         }
5117
5118         if (*bytes == 4 || *bytes == 8) {
5119                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5120                 if (r)
5121                         gentry = 0;
5122         }
5123
5124         return gentry;
5125 }
5126
5127 /*
5128  * If we're seeing too many writes to a page, it may no longer be a page table,
5129  * or we may be forking, in which case it is better to unmap the page.
5130  */
5131 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5132 {
5133         /*
5134          * Skip write-flooding detected for the sp whose level is 1, because
5135          * it can become unsync, then the guest page is not write-protected.
5136          */
5137         if (sp->role.level == PG_LEVEL_4K)
5138                 return false;
5139
5140         atomic_inc(&sp->write_flooding_count);
5141         return atomic_read(&sp->write_flooding_count) >= 3;
5142 }
5143
5144 /*
5145  * Misaligned accesses are too much trouble to fix up; also, they usually
5146  * indicate a page is not used as a page table.
5147  */
5148 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5149                                     int bytes)
5150 {
5151         unsigned offset, pte_size, misaligned;
5152
5153         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5154                  gpa, bytes, sp->role.word);
5155
5156         offset = offset_in_page(gpa);
5157         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5158
5159         /*
5160          * Sometimes, the OS only writes the last one bytes to update status
5161          * bits, for example, in linux, andb instruction is used in clear_bit().
5162          */
5163         if (!(offset & (pte_size - 1)) && bytes == 1)
5164                 return false;
5165
5166         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5167         misaligned |= bytes < 4;
5168
5169         return misaligned;
5170 }
5171
5172 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5173 {
5174         unsigned page_offset, quadrant;
5175         u64 *spte;
5176         int level;
5177
5178         page_offset = offset_in_page(gpa);
5179         level = sp->role.level;
5180         *nspte = 1;
5181         if (!sp->role.gpte_is_8_bytes) {
5182                 page_offset <<= 1;      /* 32->64 */
5183                 /*
5184                  * A 32-bit pde maps 4MB while the shadow pdes map
5185                  * only 2MB.  So we need to double the offset again
5186                  * and zap two pdes instead of one.
5187                  */
5188                 if (level == PT32_ROOT_LEVEL) {
5189                         page_offset &= ~7; /* kill rounding error */
5190                         page_offset <<= 1;
5191                         *nspte = 2;
5192                 }
5193                 quadrant = page_offset >> PAGE_SHIFT;
5194                 page_offset &= ~PAGE_MASK;
5195                 if (quadrant != sp->role.quadrant)
5196                         return NULL;
5197         }
5198
5199         spte = &sp->spt[page_offset / sizeof(*spte)];
5200         return spte;
5201 }
5202
5203 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5204                               const u8 *new, int bytes,
5205                               struct kvm_page_track_notifier_node *node)
5206 {
5207         gfn_t gfn = gpa >> PAGE_SHIFT;
5208         struct kvm_mmu_page *sp;
5209         LIST_HEAD(invalid_list);
5210         u64 entry, gentry, *spte;
5211         int npte;
5212         bool remote_flush, local_flush;
5213
5214         /*
5215          * If we don't have indirect shadow pages, it means no page is
5216          * write-protected, so we can exit simply.
5217          */
5218         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5219                 return;
5220
5221         remote_flush = local_flush = false;
5222
5223         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5224
5225         /*
5226          * No need to care whether allocation memory is successful
5227          * or not since pte prefetch is skipped if it does not have
5228          * enough objects in the cache.
5229          */
5230         mmu_topup_memory_caches(vcpu, true);
5231
5232         write_lock(&vcpu->kvm->mmu_lock);
5233
5234         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5235
5236         ++vcpu->kvm->stat.mmu_pte_write;
5237         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5238
5239         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5240                 if (detect_write_misaligned(sp, gpa, bytes) ||
5241                       detect_write_flooding(sp)) {
5242                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5243                         ++vcpu->kvm->stat.mmu_flooded;
5244                         continue;
5245                 }
5246
5247                 spte = get_written_sptes(sp, gpa, &npte);
5248                 if (!spte)
5249                         continue;
5250
5251                 local_flush = true;
5252                 while (npte--) {
5253                         entry = *spte;
5254                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5255                         if (gentry && sp->role.level != PG_LEVEL_4K)
5256                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5257                         if (need_remote_flush(entry, *spte))
5258                                 remote_flush = true;
5259                         ++spte;
5260                 }
5261         }
5262         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5263         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5264         write_unlock(&vcpu->kvm->mmu_lock);
5265 }
5266
5267 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5268                        void *insn, int insn_len)
5269 {
5270         int r, emulation_type = EMULTYPE_PF;
5271         bool direct = vcpu->arch.mmu->direct_map;
5272
5273         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5274                 return RET_PF_RETRY;
5275
5276         r = RET_PF_INVALID;
5277         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5278                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5279                 if (r == RET_PF_EMULATE)
5280                         goto emulate;
5281         }
5282
5283         if (r == RET_PF_INVALID) {
5284                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5285                                           lower_32_bits(error_code), false);
5286                 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5287                         return -EIO;
5288         }
5289
5290         if (r < 0)
5291                 return r;
5292         if (r != RET_PF_EMULATE)
5293                 return 1;
5294
5295         /*
5296          * Before emulating the instruction, check if the error code
5297          * was due to a RO violation while translating the guest page.
5298          * This can occur when using nested virtualization with nested
5299          * paging in both guests. If true, we simply unprotect the page
5300          * and resume the guest.
5301          */
5302         if (vcpu->arch.mmu->direct_map &&
5303             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5304                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5305                 return 1;
5306         }
5307
5308         /*
5309          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5310          * optimistically try to just unprotect the page and let the processor
5311          * re-execute the instruction that caused the page fault.  Do not allow
5312          * retrying MMIO emulation, as it's not only pointless but could also
5313          * cause us to enter an infinite loop because the processor will keep
5314          * faulting on the non-existent MMIO address.  Retrying an instruction
5315          * from a nested guest is also pointless and dangerous as we are only
5316          * explicitly shadowing L1's page tables, i.e. unprotecting something
5317          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5318          */
5319         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5320                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5321 emulate:
5322         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5323                                        insn_len);
5324 }
5325 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5326
5327 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5328                             gva_t gva, hpa_t root_hpa)
5329 {
5330         int i;
5331
5332         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5333         if (mmu != &vcpu->arch.guest_mmu) {
5334                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5335                 if (is_noncanonical_address(gva, vcpu))
5336                         return;
5337
5338                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5339         }
5340
5341         if (!mmu->invlpg)
5342                 return;
5343
5344         if (root_hpa == INVALID_PAGE) {
5345                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5346
5347                 /*
5348                  * INVLPG is required to invalidate any global mappings for the VA,
5349                  * irrespective of PCID. Since it would take us roughly similar amount
5350                  * of work to determine whether any of the prev_root mappings of the VA
5351                  * is marked global, or to just sync it blindly, so we might as well
5352                  * just always sync it.
5353                  *
5354                  * Mappings not reachable via the current cr3 or the prev_roots will be
5355                  * synced when switching to that cr3, so nothing needs to be done here
5356                  * for them.
5357                  */
5358                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5359                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5360                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5361         } else {
5362                 mmu->invlpg(vcpu, gva, root_hpa);
5363         }
5364 }
5365
5366 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5367 {
5368         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5369         ++vcpu->stat.invlpg;
5370 }
5371 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5372
5373
5374 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5375 {
5376         struct kvm_mmu *mmu = vcpu->arch.mmu;
5377         bool tlb_flush = false;
5378         uint i;
5379
5380         if (pcid == kvm_get_active_pcid(vcpu)) {
5381                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5382                 tlb_flush = true;
5383         }
5384
5385         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5386                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5387                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5388                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5389                         tlb_flush = true;
5390                 }
5391         }
5392
5393         if (tlb_flush)
5394                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5395
5396         ++vcpu->stat.invlpg;
5397
5398         /*
5399          * Mappings not reachable via the current cr3 or the prev_roots will be
5400          * synced when switching to that cr3, so nothing needs to be done here
5401          * for them.
5402          */
5403 }
5404
5405 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5406                        int tdp_max_root_level, int tdp_huge_page_level)
5407 {
5408         tdp_enabled = enable_tdp;
5409         tdp_root_level = tdp_forced_root_level;
5410         max_tdp_level = tdp_max_root_level;
5411
5412         /*
5413          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5414          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5415          * the kernel is not.  But, KVM never creates a page size greater than
5416          * what is used by the kernel for any given HVA, i.e. the kernel's
5417          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5418          */
5419         if (tdp_enabled)
5420                 max_huge_page_level = tdp_huge_page_level;
5421         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5422                 max_huge_page_level = PG_LEVEL_1G;
5423         else
5424                 max_huge_page_level = PG_LEVEL_2M;
5425 }
5426 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5427
5428 /* The return value indicates if tlb flush on all vcpus is needed. */
5429 typedef bool (*slot_level_handler) (struct kvm *kvm,
5430                                     struct kvm_rmap_head *rmap_head,
5431                                     const struct kvm_memory_slot *slot);
5432
5433 /* The caller should hold mmu-lock before calling this function. */
5434 static __always_inline bool
5435 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5436                         slot_level_handler fn, int start_level, int end_level,
5437                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5438                         bool flush)
5439 {
5440         struct slot_rmap_walk_iterator iterator;
5441
5442         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5443                         end_gfn, &iterator) {
5444                 if (iterator.rmap)
5445                         flush |= fn(kvm, iterator.rmap, memslot);
5446
5447                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5448                         if (flush && flush_on_yield) {
5449                                 kvm_flush_remote_tlbs_with_address(kvm,
5450                                                 start_gfn,
5451                                                 iterator.gfn - start_gfn + 1);
5452                                 flush = false;
5453                         }
5454                         cond_resched_rwlock_write(&kvm->mmu_lock);
5455                 }
5456         }
5457
5458         return flush;
5459 }
5460
5461 static __always_inline bool
5462 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5463                   slot_level_handler fn, int start_level, int end_level,
5464                   bool flush_on_yield)
5465 {
5466         return slot_handle_level_range(kvm, memslot, fn, start_level,
5467                         end_level, memslot->base_gfn,
5468                         memslot->base_gfn + memslot->npages - 1,
5469                         flush_on_yield, false);
5470 }
5471
5472 static __always_inline bool
5473 slot_handle_leaf(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5474                  slot_level_handler fn, bool flush_on_yield)
5475 {
5476         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5477                                  PG_LEVEL_4K, flush_on_yield);
5478 }
5479
5480 static void free_mmu_pages(struct kvm_mmu *mmu)
5481 {
5482         if (!tdp_enabled && mmu->pae_root)
5483                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5484         free_page((unsigned long)mmu->pae_root);
5485         free_page((unsigned long)mmu->pml4_root);
5486         free_page((unsigned long)mmu->pml5_root);
5487 }
5488
5489 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5490 {
5491         struct page *page;
5492         int i;
5493
5494         mmu->root_hpa = INVALID_PAGE;
5495         mmu->root_pgd = 0;
5496         mmu->translate_gpa = translate_gpa;
5497         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5498                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5499
5500         /*
5501          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5502          * while the PDP table is a per-vCPU construct that's allocated at MMU
5503          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5504          * x86_64.  Therefore we need to allocate the PDP table in the first
5505          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5506          * generally doesn't use PAE paging and can skip allocating the PDP
5507          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5508          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5509          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5510          */
5511         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5512                 return 0;
5513
5514         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5515         if (!page)
5516                 return -ENOMEM;
5517
5518         mmu->pae_root = page_address(page);
5519
5520         /*
5521          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5522          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5523          * that KVM's writes and the CPU's reads get along.  Note, this is
5524          * only necessary when using shadow paging, as 64-bit NPT can get at
5525          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5526          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5527          */
5528         if (!tdp_enabled)
5529                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5530         else
5531                 WARN_ON_ONCE(shadow_me_mask);
5532
5533         for (i = 0; i < 4; ++i)
5534                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5535
5536         return 0;
5537 }
5538
5539 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5540 {
5541         int ret;
5542
5543         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5544         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5545
5546         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5547         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5548
5549         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5550
5551         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5552         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5553
5554         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5555
5556         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5557         if (ret)
5558                 return ret;
5559
5560         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5561         if (ret)
5562                 goto fail_allocate_root;
5563
5564         return ret;
5565  fail_allocate_root:
5566         free_mmu_pages(&vcpu->arch.guest_mmu);
5567         return ret;
5568 }
5569
5570 #define BATCH_ZAP_PAGES 10
5571 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5572 {
5573         struct kvm_mmu_page *sp, *node;
5574         int nr_zapped, batch = 0;
5575
5576 restart:
5577         list_for_each_entry_safe_reverse(sp, node,
5578               &kvm->arch.active_mmu_pages, link) {
5579                 /*
5580                  * No obsolete valid page exists before a newly created page
5581                  * since active_mmu_pages is a FIFO list.
5582                  */
5583                 if (!is_obsolete_sp(kvm, sp))
5584                         break;
5585
5586                 /*
5587                  * Invalid pages should never land back on the list of active
5588                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5589                  * infinite loop if the page gets put back on the list (again).
5590                  */
5591                 if (WARN_ON(sp->role.invalid))
5592                         continue;
5593
5594                 /*
5595                  * No need to flush the TLB since we're only zapping shadow
5596                  * pages with an obsolete generation number and all vCPUS have
5597                  * loaded a new root, i.e. the shadow pages being zapped cannot
5598                  * be in active use by the guest.
5599                  */
5600                 if (batch >= BATCH_ZAP_PAGES &&
5601                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5602                         batch = 0;
5603                         goto restart;
5604                 }
5605
5606                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5607                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5608                         batch += nr_zapped;
5609                         goto restart;
5610                 }
5611         }
5612
5613         /*
5614          * Trigger a remote TLB flush before freeing the page tables to ensure
5615          * KVM is not in the middle of a lockless shadow page table walk, which
5616          * may reference the pages.
5617          */
5618         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5619 }
5620
5621 /*
5622  * Fast invalidate all shadow pages and use lock-break technique
5623  * to zap obsolete pages.
5624  *
5625  * It's required when memslot is being deleted or VM is being
5626  * destroyed, in these cases, we should ensure that KVM MMU does
5627  * not use any resource of the being-deleted slot or all slots
5628  * after calling the function.
5629  */
5630 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5631 {
5632         lockdep_assert_held(&kvm->slots_lock);
5633
5634         write_lock(&kvm->mmu_lock);
5635         trace_kvm_mmu_zap_all_fast(kvm);
5636
5637         /*
5638          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5639          * held for the entire duration of zapping obsolete pages, it's
5640          * impossible for there to be multiple invalid generations associated
5641          * with *valid* shadow pages at any given time, i.e. there is exactly
5642          * one valid generation and (at most) one invalid generation.
5643          */
5644         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5645
5646         /* In order to ensure all threads see this change when
5647          * handling the MMU reload signal, this must happen in the
5648          * same critical section as kvm_reload_remote_mmus, and
5649          * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5650          * could drop the MMU lock and yield.
5651          */
5652         if (is_tdp_mmu_enabled(kvm))
5653                 kvm_tdp_mmu_invalidate_all_roots(kvm);
5654
5655         /*
5656          * Notify all vcpus to reload its shadow page table and flush TLB.
5657          * Then all vcpus will switch to new shadow page table with the new
5658          * mmu_valid_gen.
5659          *
5660          * Note: we need to do this under the protection of mmu_lock,
5661          * otherwise, vcpu would purge shadow page but miss tlb flush.
5662          */
5663         kvm_reload_remote_mmus(kvm);
5664
5665         kvm_zap_obsolete_pages(kvm);
5666
5667         write_unlock(&kvm->mmu_lock);
5668
5669         if (is_tdp_mmu_enabled(kvm)) {
5670                 read_lock(&kvm->mmu_lock);
5671                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5672                 read_unlock(&kvm->mmu_lock);
5673         }
5674 }
5675
5676 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5677 {
5678         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5679 }
5680
5681 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5682                         struct kvm_memory_slot *slot,
5683                         struct kvm_page_track_notifier_node *node)
5684 {
5685         kvm_mmu_zap_all_fast(kvm);
5686 }
5687
5688 void kvm_mmu_init_vm(struct kvm *kvm)
5689 {
5690         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5691
5692         spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5693
5694         if (!kvm_mmu_init_tdp_mmu(kvm))
5695                 /*
5696                  * No smp_load/store wrappers needed here as we are in
5697                  * VM init and there cannot be any memslots / other threads
5698                  * accessing this struct kvm yet.
5699                  */
5700                 kvm->arch.memslots_have_rmaps = true;
5701
5702         node->track_write = kvm_mmu_pte_write;
5703         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5704         kvm_page_track_register_notifier(kvm, node);
5705 }
5706
5707 void kvm_mmu_uninit_vm(struct kvm *kvm)
5708 {
5709         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5710
5711         kvm_page_track_unregister_notifier(kvm, node);
5712
5713         kvm_mmu_uninit_tdp_mmu(kvm);
5714 }
5715
5716 /*
5717  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5718  * (not including it)
5719  */
5720 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5721 {
5722         struct kvm_memslots *slots;
5723         struct kvm_memory_slot *memslot;
5724         int i;
5725         bool flush = false;
5726
5727         write_lock(&kvm->mmu_lock);
5728
5729         kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5730
5731         if (kvm_memslots_have_rmaps(kvm)) {
5732                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5733                         slots = __kvm_memslots(kvm, i);
5734                         kvm_for_each_memslot(memslot, slots) {
5735                                 gfn_t start, end;
5736
5737                                 start = max(gfn_start, memslot->base_gfn);
5738                                 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5739                                 if (start >= end)
5740                                         continue;
5741
5742                                 flush = slot_handle_level_range(kvm,
5743                                                 (const struct kvm_memory_slot *) memslot,
5744                                                 kvm_zap_rmapp, PG_LEVEL_4K,
5745                                                 KVM_MAX_HUGEPAGE_LEVEL, start,
5746                                                 end - 1, true, flush);
5747                         }
5748                 }
5749                 if (flush)
5750                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5751                                                            gfn_end - gfn_start);
5752         }
5753
5754         if (is_tdp_mmu_enabled(kvm)) {
5755                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5756                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5757                                                           gfn_end, flush);
5758                 if (flush)
5759                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5760                                                            gfn_end - gfn_start);
5761         }
5762
5763         if (flush)
5764                 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5765
5766         kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5767
5768         write_unlock(&kvm->mmu_lock);
5769 }
5770
5771 static bool slot_rmap_write_protect(struct kvm *kvm,
5772                                     struct kvm_rmap_head *rmap_head,
5773                                     const struct kvm_memory_slot *slot)
5774 {
5775         return __rmap_write_protect(kvm, rmap_head, false);
5776 }
5777
5778 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5779                                       const struct kvm_memory_slot *memslot,
5780                                       int start_level)
5781 {
5782         bool flush = false;
5783
5784         if (kvm_memslots_have_rmaps(kvm)) {
5785                 write_lock(&kvm->mmu_lock);
5786                 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5787                                           start_level, KVM_MAX_HUGEPAGE_LEVEL,
5788                                           false);
5789                 write_unlock(&kvm->mmu_lock);
5790         }
5791
5792         if (is_tdp_mmu_enabled(kvm)) {
5793                 read_lock(&kvm->mmu_lock);
5794                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5795                 read_unlock(&kvm->mmu_lock);
5796         }
5797
5798         /*
5799          * We can flush all the TLBs out of the mmu lock without TLB
5800          * corruption since we just change the spte from writable to
5801          * readonly so that we only need to care the case of changing
5802          * spte from present to present (changing the spte from present
5803          * to nonpresent will flush all the TLBs immediately), in other
5804          * words, the only case we care is mmu_spte_update() where we
5805          * have checked Host-writable | MMU-writable instead of
5806          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5807          * anymore.
5808          */
5809         if (flush)
5810                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5811 }
5812
5813 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5814                                          struct kvm_rmap_head *rmap_head,
5815                                          const struct kvm_memory_slot *slot)
5816 {
5817         u64 *sptep;
5818         struct rmap_iterator iter;
5819         int need_tlb_flush = 0;
5820         kvm_pfn_t pfn;
5821         struct kvm_mmu_page *sp;
5822
5823 restart:
5824         for_each_rmap_spte(rmap_head, &iter, sptep) {
5825                 sp = sptep_to_sp(sptep);
5826                 pfn = spte_to_pfn(*sptep);
5827
5828                 /*
5829                  * We cannot do huge page mapping for indirect shadow pages,
5830                  * which are found on the last rmap (level = 1) when not using
5831                  * tdp; such shadow pages are synced with the page table in
5832                  * the guest, and the guest page table is using 4K page size
5833                  * mapping if the indirect sp has level = 1.
5834                  */
5835                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5836                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5837                                                                pfn, PG_LEVEL_NUM)) {
5838                         pte_list_remove(kvm, rmap_head, sptep);
5839
5840                         if (kvm_available_flush_tlb_with_range())
5841                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5842                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5843                         else
5844                                 need_tlb_flush = 1;
5845
5846                         goto restart;
5847                 }
5848         }
5849
5850         return need_tlb_flush;
5851 }
5852
5853 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5854                                    const struct kvm_memory_slot *slot)
5855 {
5856         bool flush = false;
5857
5858         if (kvm_memslots_have_rmaps(kvm)) {
5859                 write_lock(&kvm->mmu_lock);
5860                 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5861                 if (flush)
5862                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5863                 write_unlock(&kvm->mmu_lock);
5864         }
5865
5866         if (is_tdp_mmu_enabled(kvm)) {
5867                 read_lock(&kvm->mmu_lock);
5868                 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5869                 if (flush)
5870                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5871                 read_unlock(&kvm->mmu_lock);
5872         }
5873 }
5874
5875 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5876                                         const struct kvm_memory_slot *memslot)
5877 {
5878         /*
5879          * All current use cases for flushing the TLBs for a specific memslot
5880          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5881          * The interaction between the various operations on memslot must be
5882          * serialized by slots_locks to ensure the TLB flush from one operation
5883          * is observed by any other operation on the same memslot.
5884          */
5885         lockdep_assert_held(&kvm->slots_lock);
5886         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5887                                            memslot->npages);
5888 }
5889
5890 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5891                                    const struct kvm_memory_slot *memslot)
5892 {
5893         bool flush = false;
5894
5895         if (kvm_memslots_have_rmaps(kvm)) {
5896                 write_lock(&kvm->mmu_lock);
5897                 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5898                                          false);
5899                 write_unlock(&kvm->mmu_lock);
5900         }
5901
5902         if (is_tdp_mmu_enabled(kvm)) {
5903                 read_lock(&kvm->mmu_lock);
5904                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5905                 read_unlock(&kvm->mmu_lock);
5906         }
5907
5908         /*
5909          * It's also safe to flush TLBs out of mmu lock here as currently this
5910          * function is only used for dirty logging, in which case flushing TLB
5911          * out of mmu lock also guarantees no dirty pages will be lost in
5912          * dirty_bitmap.
5913          */
5914         if (flush)
5915                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5916 }
5917
5918 void kvm_mmu_zap_all(struct kvm *kvm)
5919 {
5920         struct kvm_mmu_page *sp, *node;
5921         LIST_HEAD(invalid_list);
5922         int ign;
5923
5924         write_lock(&kvm->mmu_lock);
5925 restart:
5926         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5927                 if (WARN_ON(sp->role.invalid))
5928                         continue;
5929                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5930                         goto restart;
5931                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5932                         goto restart;
5933         }
5934
5935         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5936
5937         if (is_tdp_mmu_enabled(kvm))
5938                 kvm_tdp_mmu_zap_all(kvm);
5939
5940         write_unlock(&kvm->mmu_lock);
5941 }
5942
5943 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5944 {
5945         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5946
5947         gen &= MMIO_SPTE_GEN_MASK;
5948
5949         /*
5950          * Generation numbers are incremented in multiples of the number of
5951          * address spaces in order to provide unique generations across all
5952          * address spaces.  Strip what is effectively the address space
5953          * modifier prior to checking for a wrap of the MMIO generation so
5954          * that a wrap in any address space is detected.
5955          */
5956         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5957
5958         /*
5959          * The very rare case: if the MMIO generation number has wrapped,
5960          * zap all shadow pages.
5961          */
5962         if (unlikely(gen == 0)) {
5963                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5964                 kvm_mmu_zap_all_fast(kvm);
5965         }
5966 }
5967
5968 static unsigned long
5969 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5970 {
5971         struct kvm *kvm;
5972         int nr_to_scan = sc->nr_to_scan;
5973         unsigned long freed = 0;
5974
5975         mutex_lock(&kvm_lock);
5976
5977         list_for_each_entry(kvm, &vm_list, vm_list) {
5978                 int idx;
5979                 LIST_HEAD(invalid_list);
5980
5981                 /*
5982                  * Never scan more than sc->nr_to_scan VM instances.
5983                  * Will not hit this condition practically since we do not try
5984                  * to shrink more than one VM and it is very unlikely to see
5985                  * !n_used_mmu_pages so many times.
5986                  */
5987                 if (!nr_to_scan--)
5988                         break;
5989                 /*
5990                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5991                  * here. We may skip a VM instance errorneosly, but we do not
5992                  * want to shrink a VM that only started to populate its MMU
5993                  * anyway.
5994                  */
5995                 if (!kvm->arch.n_used_mmu_pages &&
5996                     !kvm_has_zapped_obsolete_pages(kvm))
5997                         continue;
5998
5999                 idx = srcu_read_lock(&kvm->srcu);
6000                 write_lock(&kvm->mmu_lock);
6001
6002                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6003                         kvm_mmu_commit_zap_page(kvm,
6004                               &kvm->arch.zapped_obsolete_pages);
6005                         goto unlock;
6006                 }
6007
6008                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6009
6010 unlock:
6011                 write_unlock(&kvm->mmu_lock);
6012                 srcu_read_unlock(&kvm->srcu, idx);
6013
6014                 /*
6015                  * unfair on small ones
6016                  * per-vm shrinkers cry out
6017                  * sadness comes quickly
6018                  */
6019                 list_move_tail(&kvm->vm_list, &vm_list);
6020                 break;
6021         }
6022
6023         mutex_unlock(&kvm_lock);
6024         return freed;
6025 }
6026
6027 static unsigned long
6028 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6029 {
6030         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6031 }
6032
6033 static struct shrinker mmu_shrinker = {
6034         .count_objects = mmu_shrink_count,
6035         .scan_objects = mmu_shrink_scan,
6036         .seeks = DEFAULT_SEEKS * 10,
6037 };
6038
6039 static void mmu_destroy_caches(void)
6040 {
6041         kmem_cache_destroy(pte_list_desc_cache);
6042         kmem_cache_destroy(mmu_page_header_cache);
6043 }
6044
6045 static bool get_nx_auto_mode(void)
6046 {
6047         /* Return true when CPU has the bug, and mitigations are ON */
6048         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6049 }
6050
6051 static void __set_nx_huge_pages(bool val)
6052 {
6053         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6054 }
6055
6056 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6057 {
6058         bool old_val = nx_huge_pages;
6059         bool new_val;
6060
6061         /* In "auto" mode deploy workaround only if CPU has the bug. */
6062         if (sysfs_streq(val, "off"))
6063                 new_val = 0;
6064         else if (sysfs_streq(val, "force"))
6065                 new_val = 1;
6066         else if (sysfs_streq(val, "auto"))
6067                 new_val = get_nx_auto_mode();
6068         else if (strtobool(val, &new_val) < 0)
6069                 return -EINVAL;
6070
6071         __set_nx_huge_pages(new_val);
6072
6073         if (new_val != old_val) {
6074                 struct kvm *kvm;
6075
6076                 mutex_lock(&kvm_lock);
6077
6078                 list_for_each_entry(kvm, &vm_list, vm_list) {
6079                         mutex_lock(&kvm->slots_lock);
6080                         kvm_mmu_zap_all_fast(kvm);
6081                         mutex_unlock(&kvm->slots_lock);
6082
6083                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6084                 }
6085                 mutex_unlock(&kvm_lock);
6086         }
6087
6088         return 0;
6089 }
6090
6091 int kvm_mmu_module_init(void)
6092 {
6093         int ret = -ENOMEM;
6094
6095         if (nx_huge_pages == -1)
6096                 __set_nx_huge_pages(get_nx_auto_mode());
6097
6098         /*
6099          * MMU roles use union aliasing which is, generally speaking, an
6100          * undefined behavior. However, we supposedly know how compilers behave
6101          * and the current status quo is unlikely to change. Guardians below are
6102          * supposed to let us know if the assumption becomes false.
6103          */
6104         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6105         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6106         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6107
6108         kvm_mmu_reset_all_pte_masks();
6109
6110         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6111                                             sizeof(struct pte_list_desc),
6112                                             0, SLAB_ACCOUNT, NULL);
6113         if (!pte_list_desc_cache)
6114                 goto out;
6115
6116         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6117                                                   sizeof(struct kvm_mmu_page),
6118                                                   0, SLAB_ACCOUNT, NULL);
6119         if (!mmu_page_header_cache)
6120                 goto out;
6121
6122         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6123                 goto out;
6124
6125         ret = register_shrinker(&mmu_shrinker);
6126         if (ret)
6127                 goto out;
6128
6129         return 0;
6130
6131 out:
6132         mmu_destroy_caches();
6133         return ret;
6134 }
6135
6136 /*
6137  * Calculate mmu pages needed for kvm.
6138  */
6139 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6140 {
6141         unsigned long nr_mmu_pages;
6142         unsigned long nr_pages = 0;
6143         struct kvm_memslots *slots;
6144         struct kvm_memory_slot *memslot;
6145         int i;
6146
6147         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6148                 slots = __kvm_memslots(kvm, i);
6149
6150                 kvm_for_each_memslot(memslot, slots)
6151                         nr_pages += memslot->npages;
6152         }
6153
6154         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6155         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6156
6157         return nr_mmu_pages;
6158 }
6159
6160 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6161 {
6162         kvm_mmu_unload(vcpu);
6163         free_mmu_pages(&vcpu->arch.root_mmu);
6164         free_mmu_pages(&vcpu->arch.guest_mmu);
6165         mmu_free_memory_caches(vcpu);
6166 }
6167
6168 void kvm_mmu_module_exit(void)
6169 {
6170         mmu_destroy_caches();
6171         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6172         unregister_shrinker(&mmu_shrinker);
6173         mmu_audit_disable();
6174 }
6175
6176 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6177 {
6178         unsigned int old_val;
6179         int err;
6180
6181         old_val = nx_huge_pages_recovery_ratio;
6182         err = param_set_uint(val, kp);
6183         if (err)
6184                 return err;
6185
6186         if (READ_ONCE(nx_huge_pages) &&
6187             !old_val && nx_huge_pages_recovery_ratio) {
6188                 struct kvm *kvm;
6189
6190                 mutex_lock(&kvm_lock);
6191
6192                 list_for_each_entry(kvm, &vm_list, vm_list)
6193                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6194
6195                 mutex_unlock(&kvm_lock);
6196         }
6197
6198         return err;
6199 }
6200
6201 static void kvm_recover_nx_lpages(struct kvm *kvm)
6202 {
6203         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6204         int rcu_idx;
6205         struct kvm_mmu_page *sp;
6206         unsigned int ratio;
6207         LIST_HEAD(invalid_list);
6208         bool flush = false;
6209         ulong to_zap;
6210
6211         rcu_idx = srcu_read_lock(&kvm->srcu);
6212         write_lock(&kvm->mmu_lock);
6213
6214         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6215         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6216         for ( ; to_zap; --to_zap) {
6217                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6218                         break;
6219
6220                 /*
6221                  * We use a separate list instead of just using active_mmu_pages
6222                  * because the number of lpage_disallowed pages is expected to
6223                  * be relatively small compared to the total.
6224                  */
6225                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6226                                       struct kvm_mmu_page,
6227                                       lpage_disallowed_link);
6228                 WARN_ON_ONCE(!sp->lpage_disallowed);
6229                 if (is_tdp_mmu_page(sp)) {
6230                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6231                 } else {
6232                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6233                         WARN_ON_ONCE(sp->lpage_disallowed);
6234                 }
6235
6236                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6237                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6238                         cond_resched_rwlock_write(&kvm->mmu_lock);
6239                         flush = false;
6240                 }
6241         }
6242         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6243
6244         write_unlock(&kvm->mmu_lock);
6245         srcu_read_unlock(&kvm->srcu, rcu_idx);
6246 }
6247
6248 static long get_nx_lpage_recovery_timeout(u64 start_time)
6249 {
6250         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6251                 ? start_time + 60 * HZ - get_jiffies_64()
6252                 : MAX_SCHEDULE_TIMEOUT;
6253 }
6254
6255 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6256 {
6257         u64 start_time;
6258         long remaining_time;
6259
6260         while (true) {
6261                 start_time = get_jiffies_64();
6262                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6263
6264                 set_current_state(TASK_INTERRUPTIBLE);
6265                 while (!kthread_should_stop() && remaining_time > 0) {
6266                         schedule_timeout(remaining_time);
6267                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6268                         set_current_state(TASK_INTERRUPTIBLE);
6269                 }
6270
6271                 set_current_state(TASK_RUNNING);
6272
6273                 if (kthread_should_stop())
6274                         return 0;
6275
6276                 kvm_recover_nx_lpages(kvm);
6277         }
6278 }
6279
6280 int kvm_mmu_post_init_vm(struct kvm *kvm)
6281 {
6282         int err;
6283
6284         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6285                                           "kvm-nx-lpage-recovery",
6286                                           &kvm->arch.nx_lpage_recovery_thread);
6287         if (!err)
6288                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6289
6290         return err;
6291 }
6292
6293 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6294 {
6295         if (kvm->arch.nx_lpage_recovery_thread)
6296                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6297 }