drm/nouveau: fence: fix undefined fence state after emit
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kvm_host.h>
14 #include <linux/export.h>
15 #include <linux/vmalloc.h>
16 #include <linux/uaccess.h>
17 #include <linux/sched/stat.h>
18
19 #include <asm/processor.h>
20 #include <asm/user.h>
21 #include <asm/fpu/xstate.h>
22 #include <asm/sgx.h>
23 #include <asm/cpuid.h>
24 #include "cpuid.h"
25 #include "lapic.h"
26 #include "mmu.h"
27 #include "trace.h"
28 #include "pmu.h"
29 #include "xen.h"
30
31 /*
32  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
33  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
34  */
35 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
36 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
37
38 u32 xstate_required_size(u64 xstate_bv, bool compacted)
39 {
40         int feature_bit = 0;
41         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
42
43         xstate_bv &= XFEATURE_MASK_EXTEND;
44         while (xstate_bv) {
45                 if (xstate_bv & 0x1) {
46                         u32 eax, ebx, ecx, edx, offset;
47                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
48                         /* ECX[1]: 64B alignment in compacted form */
49                         if (compacted)
50                                 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
51                         else
52                                 offset = ebx;
53                         ret = max(ret, offset + eax);
54                 }
55
56                 xstate_bv >>= 1;
57                 feature_bit++;
58         }
59
60         return ret;
61 }
62
63 #define F feature_bit
64
65 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
66 #define SF(name)                                                \
67 ({                                                              \
68         BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);   \
69         (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);       \
70 })
71
72 /*
73  * Magic value used by KVM when querying userspace-provided CPUID entries and
74  * doesn't care about the CPIUD index because the index of the function in
75  * question is not significant.  Note, this magic value must have at least one
76  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
77  * to avoid false positives when processing guest CPUID input.
78  */
79 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
80
81 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
82         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
83 {
84         struct kvm_cpuid_entry2 *e;
85         int i;
86
87         for (i = 0; i < nent; i++) {
88                 e = &entries[i];
89
90                 if (e->function != function)
91                         continue;
92
93                 /*
94                  * If the index isn't significant, use the first entry with a
95                  * matching function.  It's userspace's responsibilty to not
96                  * provide "duplicate" entries in all cases.
97                  */
98                 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
99                         return e;
100
101
102                 /*
103                  * Similarly, use the first matching entry if KVM is doing a
104                  * lookup (as opposed to emulating CPUID) for a function that's
105                  * architecturally defined as not having a significant index.
106                  */
107                 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
108                         /*
109                          * Direct lookups from KVM should not diverge from what
110                          * KVM defines internally (the architectural behavior).
111                          */
112                         WARN_ON_ONCE(cpuid_function_is_indexed(function));
113                         return e;
114                 }
115         }
116
117         return NULL;
118 }
119
120 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
121                            struct kvm_cpuid_entry2 *entries,
122                            int nent)
123 {
124         struct kvm_cpuid_entry2 *best;
125         u64 xfeatures;
126
127         /*
128          * The existing code assumes virtual address is 48-bit or 57-bit in the
129          * canonical address checks; exit if it is ever changed.
130          */
131         best = cpuid_entry2_find(entries, nent, 0x80000008,
132                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
133         if (best) {
134                 int vaddr_bits = (best->eax & 0xff00) >> 8;
135
136                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
137                         return -EINVAL;
138         }
139
140         /*
141          * Exposing dynamic xfeatures to the guest requires additional
142          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
143          */
144         best = cpuid_entry2_find(entries, nent, 0xd, 0);
145         if (!best)
146                 return 0;
147
148         xfeatures = best->eax | ((u64)best->edx << 32);
149         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
150         if (!xfeatures)
151                 return 0;
152
153         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
154 }
155
156 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
157 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
158                                  int nent)
159 {
160         struct kvm_cpuid_entry2 *orig;
161         int i;
162
163         if (nent != vcpu->arch.cpuid_nent)
164                 return -EINVAL;
165
166         for (i = 0; i < nent; i++) {
167                 orig = &vcpu->arch.cpuid_entries[i];
168                 if (e2[i].function != orig->function ||
169                     e2[i].index != orig->index ||
170                     e2[i].flags != orig->flags ||
171                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
172                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
173                         return -EINVAL;
174         }
175
176         return 0;
177 }
178
179 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
180                                                             const char *sig)
181 {
182         struct kvm_hypervisor_cpuid cpuid = {};
183         struct kvm_cpuid_entry2 *entry;
184         u32 base;
185
186         for_each_possible_hypervisor_cpuid_base(base) {
187                 entry = kvm_find_cpuid_entry(vcpu, base);
188
189                 if (entry) {
190                         u32 signature[3];
191
192                         signature[0] = entry->ebx;
193                         signature[1] = entry->ecx;
194                         signature[2] = entry->edx;
195
196                         if (!memcmp(signature, sig, sizeof(signature))) {
197                                 cpuid.base = base;
198                                 cpuid.limit = entry->eax;
199                                 break;
200                         }
201                 }
202         }
203
204         return cpuid;
205 }
206
207 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
208                                               struct kvm_cpuid_entry2 *entries, int nent)
209 {
210         u32 base = vcpu->arch.kvm_cpuid.base;
211
212         if (!base)
213                 return NULL;
214
215         return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
216                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
217 }
218
219 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
220 {
221         return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
222                                              vcpu->arch.cpuid_nent);
223 }
224
225 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
226 {
227         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
228
229         /*
230          * save the feature bitmap to avoid cpuid lookup for every PV
231          * operation
232          */
233         if (best)
234                 vcpu->arch.pv_cpuid.features = best->eax;
235 }
236
237 /*
238  * Calculate guest's supported XCR0 taking into account guest CPUID data and
239  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
240  */
241 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
242 {
243         struct kvm_cpuid_entry2 *best;
244
245         best = cpuid_entry2_find(entries, nent, 0xd, 0);
246         if (!best)
247                 return 0;
248
249         return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
250 }
251
252 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
253                                        int nent)
254 {
255         struct kvm_cpuid_entry2 *best;
256
257         best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
258         if (best) {
259                 /* Update OSXSAVE bit */
260                 if (boot_cpu_has(X86_FEATURE_XSAVE))
261                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
262                                            kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
263
264                 cpuid_entry_change(best, X86_FEATURE_APIC,
265                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
266         }
267
268         best = cpuid_entry2_find(entries, nent, 7, 0);
269         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
270                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
271                                    kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
272
273         best = cpuid_entry2_find(entries, nent, 0xD, 0);
274         if (best)
275                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
276
277         best = cpuid_entry2_find(entries, nent, 0xD, 1);
278         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
279                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
280                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
281
282         best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
283         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
284                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
285                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
286
287         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
288                 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
289                 if (best)
290                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
291                                            vcpu->arch.ia32_misc_enable_msr &
292                                            MSR_IA32_MISC_ENABLE_MWAIT);
293         }
294 }
295
296 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
297 {
298         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
299 }
300 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
301
302 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
303 {
304         struct kvm_cpuid_entry2 *entry;
305
306         entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
307                                   KVM_CPUID_INDEX_NOT_SIGNIFICANT);
308         return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
309 }
310
311 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
312 {
313         struct kvm_lapic *apic = vcpu->arch.apic;
314         struct kvm_cpuid_entry2 *best;
315
316         best = kvm_find_cpuid_entry(vcpu, 1);
317         if (best && apic) {
318                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
319                         apic->lapic_timer.timer_mode_mask = 3 << 17;
320                 else
321                         apic->lapic_timer.timer_mode_mask = 1 << 17;
322
323                 kvm_apic_set_version(vcpu);
324         }
325
326         vcpu->arch.guest_supported_xcr0 =
327                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
328
329         /*
330          * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
331          * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
332          * supported by the host.
333          */
334         vcpu->arch.guest_fpu.fpstate->user_xfeatures = vcpu->arch.guest_supported_xcr0 |
335                                                        XFEATURE_MASK_FPSSE;
336
337         kvm_update_pv_runtime(vcpu);
338
339         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
340         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
341
342         kvm_pmu_refresh(vcpu);
343         vcpu->arch.cr4_guest_rsvd_bits =
344             __cr4_reserved_bits(guest_cpuid_has, vcpu);
345
346         kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
347                                                     vcpu->arch.cpuid_nent));
348
349         /* Invoke the vendor callback only after the above state is updated. */
350         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
351
352         /*
353          * Except for the MMU, which needs to do its thing any vendor specific
354          * adjustments to the reserved GPA bits.
355          */
356         kvm_mmu_after_set_cpuid(vcpu);
357 }
358
359 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
360 {
361         struct kvm_cpuid_entry2 *best;
362
363         best = kvm_find_cpuid_entry(vcpu, 0x80000000);
364         if (!best || best->eax < 0x80000008)
365                 goto not_found;
366         best = kvm_find_cpuid_entry(vcpu, 0x80000008);
367         if (best)
368                 return best->eax & 0xff;
369 not_found:
370         return 36;
371 }
372
373 /*
374  * This "raw" version returns the reserved GPA bits without any adjustments for
375  * encryption technologies that usurp bits.  The raw mask should be used if and
376  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
377  */
378 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
379 {
380         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
381 }
382
383 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
384                         int nent)
385 {
386         int r;
387
388         __kvm_update_cpuid_runtime(vcpu, e2, nent);
389
390         /*
391          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
392          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
393          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
394          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
395          * the core vCPU model on the fly. It would've been better to forbid any
396          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
397          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
398          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
399          * whether the supplied CPUID data is equal to what's already set.
400          */
401         if (kvm_vcpu_has_run(vcpu)) {
402                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
403                 if (r)
404                         return r;
405
406                 kvfree(e2);
407                 return 0;
408         }
409
410         if (kvm_cpuid_has_hyperv(e2, nent)) {
411                 r = kvm_hv_vcpu_init(vcpu);
412                 if (r)
413                         return r;
414         }
415
416         r = kvm_check_cpuid(vcpu, e2, nent);
417         if (r)
418                 return r;
419
420         kvfree(vcpu->arch.cpuid_entries);
421         vcpu->arch.cpuid_entries = e2;
422         vcpu->arch.cpuid_nent = nent;
423
424         vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
425         vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
426         kvm_vcpu_after_set_cpuid(vcpu);
427
428         return 0;
429 }
430
431 /* when an old userspace process fills a new kernel module */
432 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
433                              struct kvm_cpuid *cpuid,
434                              struct kvm_cpuid_entry __user *entries)
435 {
436         int r, i;
437         struct kvm_cpuid_entry *e = NULL;
438         struct kvm_cpuid_entry2 *e2 = NULL;
439
440         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
441                 return -E2BIG;
442
443         if (cpuid->nent) {
444                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
445                 if (IS_ERR(e))
446                         return PTR_ERR(e);
447
448                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
449                 if (!e2) {
450                         r = -ENOMEM;
451                         goto out_free_cpuid;
452                 }
453         }
454         for (i = 0; i < cpuid->nent; i++) {
455                 e2[i].function = e[i].function;
456                 e2[i].eax = e[i].eax;
457                 e2[i].ebx = e[i].ebx;
458                 e2[i].ecx = e[i].ecx;
459                 e2[i].edx = e[i].edx;
460                 e2[i].index = 0;
461                 e2[i].flags = 0;
462                 e2[i].padding[0] = 0;
463                 e2[i].padding[1] = 0;
464                 e2[i].padding[2] = 0;
465         }
466
467         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
468         if (r)
469                 kvfree(e2);
470
471 out_free_cpuid:
472         kvfree(e);
473
474         return r;
475 }
476
477 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
478                               struct kvm_cpuid2 *cpuid,
479                               struct kvm_cpuid_entry2 __user *entries)
480 {
481         struct kvm_cpuid_entry2 *e2 = NULL;
482         int r;
483
484         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
485                 return -E2BIG;
486
487         if (cpuid->nent) {
488                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
489                 if (IS_ERR(e2))
490                         return PTR_ERR(e2);
491         }
492
493         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
494         if (r)
495                 kvfree(e2);
496
497         return r;
498 }
499
500 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
501                               struct kvm_cpuid2 *cpuid,
502                               struct kvm_cpuid_entry2 __user *entries)
503 {
504         if (cpuid->nent < vcpu->arch.cpuid_nent)
505                 return -E2BIG;
506
507         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
508                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
509                 return -EFAULT;
510
511         cpuid->nent = vcpu->arch.cpuid_nent;
512         return 0;
513 }
514
515 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
516 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
517 {
518         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
519         struct kvm_cpuid_entry2 entry;
520
521         reverse_cpuid_check(leaf);
522
523         cpuid_count(cpuid.function, cpuid.index,
524                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
525
526         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
527 }
528
529 static __always_inline
530 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
531 {
532         /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
533         BUILD_BUG_ON(leaf < NCAPINTS);
534
535         kvm_cpu_caps[leaf] = mask;
536
537         __kvm_cpu_cap_mask(leaf);
538 }
539
540 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
541 {
542         /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
543         BUILD_BUG_ON(leaf >= NCAPINTS);
544
545         kvm_cpu_caps[leaf] &= mask;
546
547         __kvm_cpu_cap_mask(leaf);
548 }
549
550 void kvm_set_cpu_caps(void)
551 {
552 #ifdef CONFIG_X86_64
553         unsigned int f_gbpages = F(GBPAGES);
554         unsigned int f_lm = F(LM);
555         unsigned int f_xfd = F(XFD);
556 #else
557         unsigned int f_gbpages = 0;
558         unsigned int f_lm = 0;
559         unsigned int f_xfd = 0;
560 #endif
561         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
562
563         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
564                      sizeof(boot_cpu_data.x86_capability));
565
566         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
567                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
568
569         kvm_cpu_cap_mask(CPUID_1_ECX,
570                 /*
571                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
572                  * advertised to guests via CPUID!
573                  */
574                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
575                 0 /* DS-CPL, VMX, SMX, EST */ |
576                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
577                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
578                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
579                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
580                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
581                 F(F16C) | F(RDRAND)
582         );
583         /* KVM emulates x2apic in software irrespective of host support. */
584         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
585
586         kvm_cpu_cap_mask(CPUID_1_EDX,
587                 F(FPU) | F(VME) | F(DE) | F(PSE) |
588                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
589                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
590                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
591                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
592                 0 /* Reserved, DS, ACPI */ | F(MMX) |
593                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
594                 0 /* HTT, TM, Reserved, PBE */
595         );
596
597         kvm_cpu_cap_mask(CPUID_7_0_EBX,
598                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
599                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
600                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
601                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
602                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
603                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
604                 F(AVX512VL));
605
606         kvm_cpu_cap_mask(CPUID_7_ECX,
607                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
608                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
609                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
610                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
611                 F(SGX_LC) | F(BUS_LOCK_DETECT)
612         );
613         /* Set LA57 based on hardware capability. */
614         if (cpuid_ecx(7) & F(LA57))
615                 kvm_cpu_cap_set(X86_FEATURE_LA57);
616
617         /*
618          * PKU not yet implemented for shadow paging and requires OSPKE
619          * to be set on the host. Clear it if that is not the case
620          */
621         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
622                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
623
624         kvm_cpu_cap_mask(CPUID_7_EDX,
625                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
626                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
627                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
628                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
629                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
630         );
631
632         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
633         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
634         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
635
636         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
637                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
638         if (boot_cpu_has(X86_FEATURE_STIBP))
639                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
640         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
641                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
642
643         kvm_cpu_cap_mask(CPUID_7_1_EAX,
644                 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
645                 F(FZRM) | F(FSRS) | F(FSRC) |
646                 F(AMX_FP16) | F(AVX_IFMA)
647         );
648
649         kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
650                 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI)
651         );
652
653         kvm_cpu_cap_mask(CPUID_D_1_EAX,
654                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
655         );
656
657         kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
658                 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
659         );
660
661         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
662                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
663                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
664                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
665                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
666                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
667         );
668
669         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
670                 F(FPU) | F(VME) | F(DE) | F(PSE) |
671                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
672                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
673                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
674                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
675                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
676                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
677                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
678         );
679
680         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
681                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
682
683         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
684                 SF(CONSTANT_TSC)
685         );
686
687         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
688                 F(CLZERO) | F(XSAVEERPTR) |
689                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
690                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
691                 F(AMD_PSFD)
692         );
693
694         /*
695          * AMD has separate bits for each SPEC_CTRL bit.
696          * arch/x86/kernel/cpu/bugs.c is kind enough to
697          * record that in cpufeatures so use them.
698          */
699         if (boot_cpu_has(X86_FEATURE_IBPB))
700                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
701         if (boot_cpu_has(X86_FEATURE_IBRS))
702                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
703         if (boot_cpu_has(X86_FEATURE_STIBP))
704                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
705         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
706                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
707         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
708                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
709         /*
710          * The preference is to use SPEC CTRL MSR instead of the
711          * VIRT_SPEC MSR.
712          */
713         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
714             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
715                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
716
717         /*
718          * Hide all SVM features by default, SVM will set the cap bits for
719          * features it emulates and/or exposes for L1.
720          */
721         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
722
723         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
724                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
725                 F(SME_COHERENT));
726
727         kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
728                 F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
729                 F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */
730         );
731
732         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
733                 F(PERFMON_V2)
734         );
735
736         /*
737          * Synthesize "LFENCE is serializing" into the AMD-defined entry in
738          * KVM's supported CPUID if the feature is reported as supported by the
739          * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
740          * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
741          * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
742          * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
743          * the mask with the raw host CPUID, and reporting support in AMD's
744          * leaf can make it easier for userspace to detect the feature.
745          */
746         if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
747                 kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
748         if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
749                 kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
750         kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
751
752         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
753                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
754                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
755                 F(PMM) | F(PMM_EN)
756         );
757
758         /*
759          * Hide RDTSCP and RDPID if either feature is reported as supported but
760          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
761          * should never happen, but the guest will likely crash if RDTSCP or
762          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
763          * the past.  For example, the sanity check may fire if this instance of
764          * KVM is running as L1 on top of an older, broken KVM.
765          */
766         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
767                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
768                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
769                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
770                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
771         }
772 }
773 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
774
775 struct kvm_cpuid_array {
776         struct kvm_cpuid_entry2 *entries;
777         int maxnent;
778         int nent;
779 };
780
781 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
782 {
783         if (array->nent >= array->maxnent)
784                 return NULL;
785
786         return &array->entries[array->nent++];
787 }
788
789 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
790                                               u32 function, u32 index)
791 {
792         struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
793
794         if (!entry)
795                 return NULL;
796
797         memset(entry, 0, sizeof(*entry));
798         entry->function = function;
799         entry->index = index;
800         switch (function & 0xC0000000) {
801         case 0x40000000:
802                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
803                 return entry;
804
805         case 0x80000000:
806                 /*
807                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
808                  * would result in out-of-bounds calls to do_host_cpuid.
809                  */
810                 {
811                         static int max_cpuid_80000000;
812                         if (!READ_ONCE(max_cpuid_80000000))
813                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
814                         if (function > READ_ONCE(max_cpuid_80000000))
815                                 return entry;
816                 }
817                 break;
818
819         default:
820                 break;
821         }
822
823         cpuid_count(entry->function, entry->index,
824                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
825
826         if (cpuid_function_is_indexed(function))
827                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
828
829         return entry;
830 }
831
832 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
833 {
834         struct kvm_cpuid_entry2 *entry;
835
836         if (array->nent >= array->maxnent)
837                 return -E2BIG;
838
839         entry = &array->entries[array->nent];
840         entry->function = func;
841         entry->index = 0;
842         entry->flags = 0;
843
844         switch (func) {
845         case 0:
846                 entry->eax = 7;
847                 ++array->nent;
848                 break;
849         case 1:
850                 entry->ecx = F(MOVBE);
851                 ++array->nent;
852                 break;
853         case 7:
854                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
855                 entry->eax = 0;
856                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
857                         entry->ecx = F(RDPID);
858                 ++array->nent;
859                 break;
860         default:
861                 break;
862         }
863
864         return 0;
865 }
866
867 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
868 {
869         struct kvm_cpuid_entry2 *entry;
870         int r, i, max_idx;
871
872         /* all calls to cpuid_count() should be made on the same cpu */
873         get_cpu();
874
875         r = -E2BIG;
876
877         entry = do_host_cpuid(array, function, 0);
878         if (!entry)
879                 goto out;
880
881         switch (function) {
882         case 0:
883                 /* Limited to the highest leaf implemented in KVM. */
884                 entry->eax = min(entry->eax, 0x1fU);
885                 break;
886         case 1:
887                 cpuid_entry_override(entry, CPUID_1_EDX);
888                 cpuid_entry_override(entry, CPUID_1_ECX);
889                 break;
890         case 2:
891                 /*
892                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
893                  * CPUID(function=2, index=0) may return different results each
894                  * time, with the least-significant byte in EAX enumerating the
895                  * number of times software should do CPUID(2, 0).
896                  *
897                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
898                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
899                  * return 01H. Software should ignore this value and not
900                  * interpret it as an informational descriptor", while AMD's
901                  * APM states that CPUID(2) is reserved.
902                  *
903                  * WARN if a frankenstein CPU that supports virtualization and
904                  * a stateful CPUID.0x2 is encountered.
905                  */
906                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
907                 break;
908         /* functions 4 and 0x8000001d have additional index. */
909         case 4:
910         case 0x8000001d:
911                 /*
912                  * Read entries until the cache type in the previous entry is
913                  * zero, i.e. indicates an invalid entry.
914                  */
915                 for (i = 1; entry->eax & 0x1f; ++i) {
916                         entry = do_host_cpuid(array, function, i);
917                         if (!entry)
918                                 goto out;
919                 }
920                 break;
921         case 6: /* Thermal management */
922                 entry->eax = 0x4; /* allow ARAT */
923                 entry->ebx = 0;
924                 entry->ecx = 0;
925                 entry->edx = 0;
926                 break;
927         /* function 7 has additional index. */
928         case 7:
929                 entry->eax = min(entry->eax, 1u);
930                 cpuid_entry_override(entry, CPUID_7_0_EBX);
931                 cpuid_entry_override(entry, CPUID_7_ECX);
932                 cpuid_entry_override(entry, CPUID_7_EDX);
933
934                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
935                 if (entry->eax == 1) {
936                         entry = do_host_cpuid(array, function, 1);
937                         if (!entry)
938                                 goto out;
939
940                         cpuid_entry_override(entry, CPUID_7_1_EAX);
941                         cpuid_entry_override(entry, CPUID_7_1_EDX);
942                         entry->ebx = 0;
943                         entry->ecx = 0;
944                 }
945                 break;
946         case 0xa: { /* Architectural Performance Monitoring */
947                 union cpuid10_eax eax;
948                 union cpuid10_edx edx;
949
950                 if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
951                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
952                         break;
953                 }
954
955                 eax.split.version_id = kvm_pmu_cap.version;
956                 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
957                 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
958                 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
959                 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
960                 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
961
962                 if (kvm_pmu_cap.version)
963                         edx.split.anythread_deprecated = 1;
964                 edx.split.reserved1 = 0;
965                 edx.split.reserved2 = 0;
966
967                 entry->eax = eax.full;
968                 entry->ebx = kvm_pmu_cap.events_mask;
969                 entry->ecx = 0;
970                 entry->edx = edx.full;
971                 break;
972         }
973         case 0x1f:
974         case 0xb:
975                 /*
976                  * No topology; a valid topology is indicated by the presence
977                  * of subleaf 1.
978                  */
979                 entry->eax = entry->ebx = entry->ecx = 0;
980                 break;
981         case 0xd: {
982                 u64 permitted_xcr0 = kvm_get_filtered_xcr0();
983                 u64 permitted_xss = kvm_caps.supported_xss;
984
985                 entry->eax &= permitted_xcr0;
986                 entry->ebx = xstate_required_size(permitted_xcr0, false);
987                 entry->ecx = entry->ebx;
988                 entry->edx &= permitted_xcr0 >> 32;
989                 if (!permitted_xcr0)
990                         break;
991
992                 entry = do_host_cpuid(array, function, 1);
993                 if (!entry)
994                         goto out;
995
996                 cpuid_entry_override(entry, CPUID_D_1_EAX);
997                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
998                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
999                                                           true);
1000                 else {
1001                         WARN_ON_ONCE(permitted_xss != 0);
1002                         entry->ebx = 0;
1003                 }
1004                 entry->ecx &= permitted_xss;
1005                 entry->edx &= permitted_xss >> 32;
1006
1007                 for (i = 2; i < 64; ++i) {
1008                         bool s_state;
1009                         if (permitted_xcr0 & BIT_ULL(i))
1010                                 s_state = false;
1011                         else if (permitted_xss & BIT_ULL(i))
1012                                 s_state = true;
1013                         else
1014                                 continue;
1015
1016                         entry = do_host_cpuid(array, function, i);
1017                         if (!entry)
1018                                 goto out;
1019
1020                         /*
1021                          * The supported check above should have filtered out
1022                          * invalid sub-leafs.  Only valid sub-leafs should
1023                          * reach this point, and they should have a non-zero
1024                          * save state size.  Furthermore, check whether the
1025                          * processor agrees with permitted_xcr0/permitted_xss
1026                          * on whether this is an XCR0- or IA32_XSS-managed area.
1027                          */
1028                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1029                                 --array->nent;
1030                                 continue;
1031                         }
1032
1033                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1034                                 entry->ecx &= ~BIT_ULL(2);
1035                         entry->edx = 0;
1036                 }
1037                 break;
1038         }
1039         case 0x12:
1040                 /* Intel SGX */
1041                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1042                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1043                         break;
1044                 }
1045
1046                 /*
1047                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1048                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
1049                  * are restricted by kernel and KVM capabilities (like most
1050                  * feature flags), while enclave size is unrestricted.
1051                  */
1052                 cpuid_entry_override(entry, CPUID_12_EAX);
1053                 entry->ebx &= SGX_MISC_EXINFO;
1054
1055                 entry = do_host_cpuid(array, function, 1);
1056                 if (!entry)
1057                         goto out;
1058
1059                 /*
1060                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1061                  * feature flags.  Advertise all supported flags, including
1062                  * privileged attributes that require explicit opt-in from
1063                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1064                  * expected to derive it from supported XCR0.
1065                  */
1066                 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1067                 entry->ebx &= 0;
1068                 break;
1069         /* Intel PT */
1070         case 0x14:
1071                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1072                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1073                         break;
1074                 }
1075
1076                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1077                         if (!do_host_cpuid(array, function, i))
1078                                 goto out;
1079                 }
1080                 break;
1081         /* Intel AMX TILE */
1082         case 0x1d:
1083                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1084                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1085                         break;
1086                 }
1087
1088                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1089                         if (!do_host_cpuid(array, function, i))
1090                                 goto out;
1091                 }
1092                 break;
1093         case 0x1e: /* TMUL information */
1094                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1095                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1096                         break;
1097                 }
1098                 break;
1099         case KVM_CPUID_SIGNATURE: {
1100                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1101                 entry->eax = KVM_CPUID_FEATURES;
1102                 entry->ebx = sigptr[0];
1103                 entry->ecx = sigptr[1];
1104                 entry->edx = sigptr[2];
1105                 break;
1106         }
1107         case KVM_CPUID_FEATURES:
1108                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1109                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1110                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1111                              (1 << KVM_FEATURE_ASYNC_PF) |
1112                              (1 << KVM_FEATURE_PV_EOI) |
1113                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1114                              (1 << KVM_FEATURE_PV_UNHALT) |
1115                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1116                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1117                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1118                              (1 << KVM_FEATURE_POLL_CONTROL) |
1119                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1120                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1121
1122                 if (sched_info_on())
1123                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1124
1125                 entry->ebx = 0;
1126                 entry->ecx = 0;
1127                 entry->edx = 0;
1128                 break;
1129         case 0x80000000:
1130                 entry->eax = min(entry->eax, 0x80000022);
1131                 /*
1132                  * Serializing LFENCE is reported in a multitude of ways, and
1133                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1134                  * userspace by providing the CPUID leaf ourselves.
1135                  *
1136                  * However, only do it if the host has CPUID leaf 0x8000001d.
1137                  * QEMU thinks that it can query the host blindly for that
1138                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1139                  * above.  The processor merrily returns values from the
1140                  * highest Intel leaf which QEMU tries to use as the guest's
1141                  * 0x8000001d.  Even worse, this can result in an infinite
1142                  * loop if said highest leaf has no subleaves indexed by ECX.
1143                  */
1144                 if (entry->eax >= 0x8000001d &&
1145                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1146                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1147                         entry->eax = max(entry->eax, 0x80000021);
1148                 break;
1149         case 0x80000001:
1150                 entry->ebx &= ~GENMASK(27, 16);
1151                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1152                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1153                 break;
1154         case 0x80000006:
1155                 /* Drop reserved bits, pass host L2 cache and TLB info. */
1156                 entry->edx &= ~GENMASK(17, 16);
1157                 break;
1158         case 0x80000007: /* Advanced power management */
1159                 cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1160
1161                 /* mask against host */
1162                 entry->edx &= boot_cpu_data.x86_power;
1163                 entry->eax = entry->ebx = entry->ecx = 0;
1164                 break;
1165         case 0x80000008: {
1166                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1167                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1168                 unsigned phys_as = entry->eax & 0xff;
1169
1170                 /*
1171                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1172                  * the guest operates in the same PA space as the host, i.e.
1173                  * reductions in MAXPHYADDR for memory encryption affect shadow
1174                  * paging, too.
1175                  *
1176                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
1177                  * provided, use the raw bare metal MAXPHYADDR as reductions to
1178                  * the HPAs do not affect GPAs.
1179                  */
1180                 if (!tdp_enabled)
1181                         g_phys_as = boot_cpu_data.x86_phys_bits;
1182                 else if (!g_phys_as)
1183                         g_phys_as = phys_as;
1184
1185                 entry->eax = g_phys_as | (virt_as << 8);
1186                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1187                 entry->edx = 0;
1188                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1189                 break;
1190         }
1191         case 0x8000000A:
1192                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1193                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1194                         break;
1195                 }
1196                 entry->eax = 1; /* SVM revision 1 */
1197                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1198                                    ASID emulation to nested SVM */
1199                 entry->ecx = 0; /* Reserved */
1200                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1201                 break;
1202         case 0x80000019:
1203                 entry->ecx = entry->edx = 0;
1204                 break;
1205         case 0x8000001a:
1206                 entry->eax &= GENMASK(2, 0);
1207                 entry->ebx = entry->ecx = entry->edx = 0;
1208                 break;
1209         case 0x8000001e:
1210                 /* Do not return host topology information.  */
1211                 entry->eax = entry->ebx = entry->ecx = 0;
1212                 entry->edx = 0; /* reserved */
1213                 break;
1214         case 0x8000001F:
1215                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1216                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1217                 } else {
1218                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1219                         /* Clear NumVMPL since KVM does not support VMPL.  */
1220                         entry->ebx &= ~GENMASK(31, 12);
1221                         /*
1222                          * Enumerate '0' for "PA bits reduction", the adjusted
1223                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1224                          */
1225                         entry->ebx &= ~GENMASK(11, 6);
1226                 }
1227                 break;
1228         case 0x80000020:
1229                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1230                 break;
1231         case 0x80000021:
1232                 entry->ebx = entry->ecx = entry->edx = 0;
1233                 cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1234                 break;
1235         /* AMD Extended Performance Monitoring and Debug */
1236         case 0x80000022: {
1237                 union cpuid_0x80000022_ebx ebx;
1238
1239                 entry->ecx = entry->edx = 0;
1240                 if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1241                         entry->eax = entry->ebx;
1242                         break;
1243                 }
1244
1245                 cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1246
1247                 if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1248                         ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1249                 else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1250                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1251                 else
1252                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1253
1254                 entry->ebx = ebx.full;
1255                 break;
1256         }
1257         /*Add support for Centaur's CPUID instruction*/
1258         case 0xC0000000:
1259                 /*Just support up to 0xC0000004 now*/
1260                 entry->eax = min(entry->eax, 0xC0000004);
1261                 break;
1262         case 0xC0000001:
1263                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1264                 break;
1265         case 3: /* Processor serial number */
1266         case 5: /* MONITOR/MWAIT */
1267         case 0xC0000002:
1268         case 0xC0000003:
1269         case 0xC0000004:
1270         default:
1271                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1272                 break;
1273         }
1274
1275         r = 0;
1276
1277 out:
1278         put_cpu();
1279
1280         return r;
1281 }
1282
1283 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1284                          unsigned int type)
1285 {
1286         if (type == KVM_GET_EMULATED_CPUID)
1287                 return __do_cpuid_func_emulated(array, func);
1288
1289         return __do_cpuid_func(array, func);
1290 }
1291
1292 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1293
1294 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1295                           unsigned int type)
1296 {
1297         u32 limit;
1298         int r;
1299
1300         if (func == CENTAUR_CPUID_SIGNATURE &&
1301             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1302                 return 0;
1303
1304         r = do_cpuid_func(array, func, type);
1305         if (r)
1306                 return r;
1307
1308         limit = array->entries[array->nent - 1].eax;
1309         for (func = func + 1; func <= limit; ++func) {
1310                 r = do_cpuid_func(array, func, type);
1311                 if (r)
1312                         break;
1313         }
1314
1315         return r;
1316 }
1317
1318 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1319                                  __u32 num_entries, unsigned int ioctl_type)
1320 {
1321         int i;
1322         __u32 pad[3];
1323
1324         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1325                 return false;
1326
1327         /*
1328          * We want to make sure that ->padding is being passed clean from
1329          * userspace in case we want to use it for something in the future.
1330          *
1331          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1332          * have to give ourselves satisfied only with the emulated side. /me
1333          * sheds a tear.
1334          */
1335         for (i = 0; i < num_entries; i++) {
1336                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1337                         return true;
1338
1339                 if (pad[0] || pad[1] || pad[2])
1340                         return true;
1341         }
1342         return false;
1343 }
1344
1345 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1346                             struct kvm_cpuid_entry2 __user *entries,
1347                             unsigned int type)
1348 {
1349         static const u32 funcs[] = {
1350                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1351         };
1352
1353         struct kvm_cpuid_array array = {
1354                 .nent = 0,
1355         };
1356         int r, i;
1357
1358         if (cpuid->nent < 1)
1359                 return -E2BIG;
1360         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1361                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1362
1363         if (sanity_check_entries(entries, cpuid->nent, type))
1364                 return -EINVAL;
1365
1366         array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1367         if (!array.entries)
1368                 return -ENOMEM;
1369
1370         array.maxnent = cpuid->nent;
1371
1372         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1373                 r = get_cpuid_func(&array, funcs[i], type);
1374                 if (r)
1375                         goto out_free;
1376         }
1377         cpuid->nent = array.nent;
1378
1379         if (copy_to_user(entries, array.entries,
1380                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1381                 r = -EFAULT;
1382
1383 out_free:
1384         kvfree(array.entries);
1385         return r;
1386 }
1387
1388 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1389                                                     u32 function, u32 index)
1390 {
1391         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1392                                  function, index);
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1395
1396 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1397                                               u32 function)
1398 {
1399         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1400                                  function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1401 }
1402 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1403
1404 /*
1405  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1406  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1407  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1408  * range.  Centaur/VIA follows Intel semantics.
1409  *
1410  * A leaf is considered out-of-range if its function is higher than the maximum
1411  * supported leaf of its associated class or if its associated class does not
1412  * exist.
1413  *
1414  * There are three primary classes to be considered, with their respective
1415  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1416  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1417  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1418  *
1419  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1420  *  - Hypervisor: 0x40000000 - 0x4fffffff
1421  *  - Extended:   0x80000000 - 0xbfffffff
1422  *  - Centaur:    0xc0000000 - 0xcfffffff
1423  *
1424  * The Hypervisor class is further subdivided into sub-classes that each act as
1425  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1426  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1427  * CPUID sub-classes are:
1428  *
1429  *  - HyperV:     0x40000000 - 0x400000ff
1430  *  - KVM:        0x40000100 - 0x400001ff
1431  */
1432 static struct kvm_cpuid_entry2 *
1433 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1434 {
1435         struct kvm_cpuid_entry2 *basic, *class;
1436         u32 function = *fn_ptr;
1437
1438         basic = kvm_find_cpuid_entry(vcpu, 0);
1439         if (!basic)
1440                 return NULL;
1441
1442         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1443             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1444                 return NULL;
1445
1446         if (function >= 0x40000000 && function <= 0x4fffffff)
1447                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1448         else if (function >= 0xc0000000)
1449                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1450         else
1451                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1452
1453         if (class && function <= class->eax)
1454                 return NULL;
1455
1456         /*
1457          * Leaf specific adjustments are also applied when redirecting to the
1458          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1459          * entry for CPUID.0xb.index (see below), then the output value for EDX
1460          * needs to be pulled from CPUID.0xb.1.
1461          */
1462         *fn_ptr = basic->eax;
1463
1464         /*
1465          * The class does not exist or the requested function is out of range;
1466          * the effective CPUID entry is the max basic leaf.  Note, the index of
1467          * the original requested leaf is observed!
1468          */
1469         return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1470 }
1471
1472 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1473                u32 *ecx, u32 *edx, bool exact_only)
1474 {
1475         u32 orig_function = *eax, function = *eax, index = *ecx;
1476         struct kvm_cpuid_entry2 *entry;
1477         bool exact, used_max_basic = false;
1478
1479         entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1480         exact = !!entry;
1481
1482         if (!entry && !exact_only) {
1483                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1484                 used_max_basic = !!entry;
1485         }
1486
1487         if (entry) {
1488                 *eax = entry->eax;
1489                 *ebx = entry->ebx;
1490                 *ecx = entry->ecx;
1491                 *edx = entry->edx;
1492                 if (function == 7 && index == 0) {
1493                         u64 data;
1494                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1495                             (data & TSX_CTRL_CPUID_CLEAR))
1496                                 *ebx &= ~(F(RTM) | F(HLE));
1497                 } else if (function == 0x80000007) {
1498                         if (kvm_hv_invtsc_suppressed(vcpu))
1499                                 *edx &= ~SF(CONSTANT_TSC);
1500                 }
1501         } else {
1502                 *eax = *ebx = *ecx = *edx = 0;
1503                 /*
1504                  * When leaf 0BH or 1FH is defined, CL is pass-through
1505                  * and EDX is always the x2APIC ID, even for undefined
1506                  * subleaves. Index 1 will exist iff the leaf is
1507                  * implemented, so we pass through CL iff leaf 1
1508                  * exists. EDX can be copied from any existing index.
1509                  */
1510                 if (function == 0xb || function == 0x1f) {
1511                         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1512                         if (entry) {
1513                                 *ecx = index & 0xff;
1514                                 *edx = entry->edx;
1515                         }
1516                 }
1517         }
1518         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1519                         used_max_basic);
1520         return exact;
1521 }
1522 EXPORT_SYMBOL_GPL(kvm_cpuid);
1523
1524 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1525 {
1526         u32 eax, ebx, ecx, edx;
1527
1528         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1529                 return 1;
1530
1531         eax = kvm_rax_read(vcpu);
1532         ecx = kvm_rcx_read(vcpu);
1533         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1534         kvm_rax_write(vcpu, eax);
1535         kvm_rbx_write(vcpu, ebx);
1536         kvm_rcx_write(vcpu, ecx);
1537         kvm_rdx_write(vcpu, edx);
1538         return kvm_skip_emulated_instruction(vcpu);
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);