2 * User-space Probes (UProbes) for x86
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2011
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <asm/processor.h>
33 /* Post-execution fixups. */
36 #define UPROBE_FIX_NONE 0x0
38 /* Adjust IP back to vicinity of actual insn */
39 #define UPROBE_FIX_IP 0x1
41 /* Adjust the return address of a call insn */
42 #define UPROBE_FIX_CALL 0x2
44 #define UPROBE_FIX_RIP_AX 0x8000
45 #define UPROBE_FIX_RIP_CX 0x4000
47 #define UPROBE_TRAP_NR UINT_MAX
49 /* Adaptations for mhiramat x86 decoder v14. */
50 #define OPCODE1(insn) ((insn)->opcode.bytes[0])
51 #define OPCODE2(insn) ((insn)->opcode.bytes[1])
52 #define OPCODE3(insn) ((insn)->opcode.bytes[2])
53 #define MODRM_REG(insn) X86_MODRM_REG(insn->modrm.value)
55 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
56 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
57 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
58 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
59 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
63 * Good-instruction tables for 32-bit apps. This is non-const and volatile
64 * to keep gcc from statically optimizing it out, as variable_test_bit makes
65 * some versions of gcc to think only *(unsigned long*) is used.
67 static volatile u32 good_insns_32[256 / 32] = {
68 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
69 /* ---------------------------------------------- */
70 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
71 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
72 W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
73 W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
74 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
75 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
76 W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
77 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
78 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
79 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
80 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
81 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
82 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
83 W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
84 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
85 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
86 /* ---------------------------------------------- */
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
90 /* Using this for both 64-bit and 32-bit apps */
91 static volatile u32 good_2byte_insns[256 / 32] = {
92 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
93 /* ---------------------------------------------- */
94 W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
95 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
96 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
97 W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
98 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
99 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
100 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
101 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
102 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
103 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
104 W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
105 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
106 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
107 W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
108 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
109 W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
110 /* ---------------------------------------------- */
111 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
115 /* Good-instruction tables for 64-bit apps */
116 static volatile u32 good_insns_64[256 / 32] = {
117 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
118 /* ---------------------------------------------- */
119 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
120 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
121 W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
122 W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
123 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
124 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
125 W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
126 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
127 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
128 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
129 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
130 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
131 W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
132 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
133 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
134 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
135 /* ---------------------------------------------- */
136 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
142 * opcodes we'll probably never support:
144 * 6c-6d, e4-e5, ec-ed - in
145 * 6e-6f, e6-e7, ee-ef - out
148 * d6 - illegal instruction
152 * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
154 * invalid opcodes in 64-bit mode:
156 * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
157 * 63 - we support this opcode in x86_64 but not in i386.
159 * opcodes we may need to refine support for:
161 * 0f - 2-byte instructions: For many of these instructions, the validity
162 * depends on the prefix and/or the reg field. On such instructions, we
163 * just consider the opcode combination valid if it corresponds to any
166 * 8f - Group 1 - only reg = 0 is OK
167 * c6-c7 - Group 11 - only reg = 0 is OK
168 * d9-df - fpu insns with some illegal encodings
169 * f2, f3 - repnz, repz prefixes. These are also the first byte for
170 * certain floating-point instructions, such as addsd.
172 * fe - Group 4 - only reg = 0 or 1 is OK
173 * ff - Group 5 - only reg = 0-6 is OK
175 * others -- Do we need to support these?
177 * 0f - (floating-point?) prefetch instructions
178 * 07, 17, 1f - pop es, pop ss, pop ds
179 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
180 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
188 * - Where necessary, examine the modrm byte and allow only valid instructions
189 * in the different Groups and fpu instructions.
192 static bool is_prefix_bad(struct insn *insn)
196 for (i = 0; i < insn->prefixes.nbytes; i++) {
197 switch (insn->prefixes.bytes[i]) {
198 case 0x26: /* INAT_PFX_ES */
199 case 0x2E: /* INAT_PFX_CS */
200 case 0x36: /* INAT_PFX_DS */
201 case 0x3E: /* INAT_PFX_SS */
202 case 0xF0: /* INAT_PFX_LOCK */
209 static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
211 insn_init(insn, auprobe->insn, false);
213 /* Skip good instruction prefixes; reject "bad" ones. */
214 insn_get_opcode(insn);
215 if (is_prefix_bad(insn))
218 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
221 if (insn->opcode.nbytes == 2) {
222 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
230 * Figure out which fixups arch_uprobe_post_xol() will need to perform, and
231 * annotate arch_uprobe->fixups accordingly. To start with,
232 * arch_uprobe->fixups is either zero or it reflects rip-related fixups.
234 static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn)
236 bool fix_ip = true, fix_call = false; /* defaults */
239 insn_get_opcode(insn); /* should be a nop */
241 switch (OPCODE1(insn)) {
242 case 0xc3: /* ret/lret */
249 case 0xe8: /* call relative - Fix return addr */
252 case 0x9a: /* call absolute - Fix return addr, not ip */
257 insn_get_modrm(insn);
258 reg = MODRM_REG(insn);
259 if (reg == 2 || reg == 3) {
260 /* call or lcall, indirect */
261 /* Fix return addr; ip is correct. */
264 } else if (reg == 4 || reg == 5) {
265 /* jmp or ljmp, indirect */
270 case 0xea: /* jmp absolute -- ip is correct */
277 auprobe->fixups |= UPROBE_FIX_IP;
279 auprobe->fixups |= UPROBE_FIX_CALL;
284 * If arch_uprobe->insn doesn't use rip-relative addressing, return
285 * immediately. Otherwise, rewrite the instruction so that it accesses
286 * its memory operand indirectly through a scratch register. Set
287 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
288 * accordingly. (The contents of the scratch register will be saved
289 * before we single-step the modified instruction, and restored
292 * We do this because a rip-relative instruction can access only a
293 * relatively small area (+/- 2 GB from the instruction), and the XOL
294 * area typically lies beyond that area. At least for instructions
295 * that store to memory, we can't execute the original instruction
296 * and "fix things up" later, because the misdirected store could be
299 * Some useful facts about rip-relative instructions:
301 * - There's always a modrm byte.
302 * - There's never a SIB byte.
303 * - The displacement is always 4 bytes.
306 handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
311 if (mm->context.ia32_compat)
314 auprobe->rip_rela_target_address = 0x0;
315 if (!insn_rip_relative(insn))
319 * insn_rip_relative() would have decoded rex_prefix, modrm.
320 * Clear REX.b bit (extension of MODRM.rm field):
321 * we want to encode rax/rcx, not r8/r9.
323 if (insn->rex_prefix.nbytes) {
324 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
325 *cursor &= 0xfe; /* Clearing REX.B bit */
329 * Point cursor at the modrm byte. The next 4 bytes are the
330 * displacement. Beyond the displacement, for some instructions,
331 * is the immediate operand.
333 cursor = auprobe->insn + insn_offset_modrm(insn);
334 insn_get_length(insn);
337 * Convert from rip-relative addressing to indirect addressing
338 * via a scratch register. Change the r/m field from 0x5 (%rip)
339 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
341 reg = MODRM_REG(insn);
344 * The register operand (if any) is either the A register
345 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
346 * REX prefix) %r8. In any case, we know the C register
347 * is NOT the register operand, so we use %rcx (register
348 * #1) for the scratch register.
350 auprobe->fixups = UPROBE_FIX_RIP_CX;
351 /* Change modrm from 00 000 101 to 00 000 001. */
354 /* Use %rax (register #0) for the scratch register. */
355 auprobe->fixups = UPROBE_FIX_RIP_AX;
356 /* Change modrm from 00 xxx 101 to 00 xxx 000 */
357 *cursor = (reg << 3);
360 /* Target address = address of next instruction + (signed) offset */
361 auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
363 /* Displacement field is gone; slide immediate field (if any) over. */
364 if (insn->immediate.nbytes) {
366 memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
371 static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
373 insn_init(insn, auprobe->insn, true);
375 /* Skip good instruction prefixes; reject "bad" ones. */
376 insn_get_opcode(insn);
377 if (is_prefix_bad(insn))
380 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
383 if (insn->opcode.nbytes == 2) {
384 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
390 static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
392 if (mm->context.ia32_compat)
393 return validate_insn_32bits(auprobe, insn);
394 return validate_insn_64bits(auprobe, insn);
397 static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
399 /* No RIP-relative addressing on 32-bit */
402 static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
404 return validate_insn_32bits(auprobe, insn);
406 #endif /* CONFIG_X86_64 */
409 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
410 * @mm: the probed address space.
411 * @arch_uprobe: the probepoint information.
412 * @addr: virtual address at which to install the probepoint
413 * Return 0 on success or a -ve number on error.
415 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
421 ret = validate_insn_bits(auprobe, mm, &insn);
425 handle_riprel_insn(auprobe, mm, &insn);
426 prepare_fixups(auprobe, &insn);
433 * If we're emulating a rip-relative instruction, save the contents
434 * of the scratch register and store the target address in that register.
437 pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
438 struct arch_uprobe_task *autask)
440 if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
441 autask->saved_scratch_register = regs->ax;
442 regs->ax = current->utask->vaddr;
443 regs->ax += auprobe->rip_rela_target_address;
444 } else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
445 autask->saved_scratch_register = regs->cx;
446 regs->cx = current->utask->vaddr;
447 regs->cx += auprobe->rip_rela_target_address;
452 pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
453 struct arch_uprobe_task *autask)
455 /* No RIP-relative addressing on 32-bit */
460 * arch_uprobe_pre_xol - prepare to execute out of line.
461 * @auprobe: the probepoint information.
462 * @regs: reflects the saved user state of current task.
464 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
466 struct arch_uprobe_task *autask;
468 autask = ¤t->utask->autask;
469 autask->saved_trap_nr = current->thread.trap_nr;
470 current->thread.trap_nr = UPROBE_TRAP_NR;
471 regs->ip = current->utask->xol_vaddr;
472 pre_xol_rip_insn(auprobe, regs, autask);
478 * This function is called by arch_uprobe_post_xol() to adjust the return
479 * address pushed by a call instruction executed out of line.
481 static int adjust_ret_addr(unsigned long sp, long correction)
491 ncopied = copy_from_user(&ra, (void __user *)sp, rasize);
492 if (unlikely(ncopied))
496 ncopied = copy_to_user((void __user *)sp, &ra, rasize);
497 if (unlikely(ncopied))
504 static bool is_riprel_insn(struct arch_uprobe *auprobe)
506 return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0);
510 handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
512 if (is_riprel_insn(auprobe)) {
513 struct arch_uprobe_task *autask;
515 autask = ¤t->utask->autask;
516 if (auprobe->fixups & UPROBE_FIX_RIP_AX)
517 regs->ax = autask->saved_scratch_register;
519 regs->cx = autask->saved_scratch_register;
522 * The original instruction includes a displacement, and so
523 * is 4 bytes longer than what we've just single-stepped.
524 * Fall through to handle stuff like "jmpq *...(%rip)" and
525 * "callq *...(%rip)".
533 handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
535 /* No RIP-relative addressing on 32-bit */
540 * If xol insn itself traps and generates a signal(Say,
541 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
542 * instruction jumps back to its own address. It is assumed that anything
543 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
545 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
546 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
547 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
549 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
551 if (t->thread.trap_nr != UPROBE_TRAP_NR)
558 * Called after single-stepping. To avoid the SMP problems that can
559 * occur when we temporarily put back the original opcode to
560 * single-step, we single-stepped a copy of the instruction.
562 * This function prepares to resume execution after the single-step.
563 * We have to fix things up as follows:
565 * Typically, the new ip is relative to the copied instruction. We need
566 * to make it relative to the original instruction (FIX_IP). Exceptions
567 * are return instructions and absolute or indirect jump or call instructions.
569 * If the single-stepped instruction was a call, the return address that
570 * is atop the stack is the address following the copied instruction. We
571 * need to make it the address following the original instruction (FIX_CALL).
573 * If the original instruction was a rip-relative instruction such as
574 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
575 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
576 * We need to restore the contents of the scratch register and adjust
577 * the ip, keeping in mind that the instruction we executed is 4 bytes
578 * shorter than the original instruction (since we squeezed out the offset
579 * field). (FIX_RIP_AX or FIX_RIP_CX)
581 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
583 struct uprobe_task *utask;
587 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
589 utask = current->utask;
590 current->thread.trap_nr = utask->autask.saved_trap_nr;
591 correction = (long)(utask->vaddr - utask->xol_vaddr);
592 handle_riprel_post_xol(auprobe, regs, &correction);
593 if (auprobe->fixups & UPROBE_FIX_IP)
594 regs->ip += correction;
596 if (auprobe->fixups & UPROBE_FIX_CALL)
597 result = adjust_ret_addr(regs->sp, correction);
602 /* callback routine for handling exceptions. */
603 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
605 struct die_args *args = data;
606 struct pt_regs *regs = args->regs;
607 int ret = NOTIFY_DONE;
609 /* We are only interested in userspace traps */
610 if (regs && !user_mode_vm(regs))
615 if (uprobe_pre_sstep_notifier(regs))
621 if (uprobe_post_sstep_notifier(regs))
632 * This function gets called when XOL instruction either gets trapped or
633 * the thread has a fatal signal, so reset the instruction pointer to its
636 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
638 struct uprobe_task *utask = current->utask;
640 current->thread.trap_nr = utask->autask.saved_trap_nr;
641 handle_riprel_post_xol(auprobe, regs, NULL);
642 instruction_pointer_set(regs, utask->vaddr);
646 * Skip these instructions as per the currently known x86 ISA.
647 * 0x66* { 0x90 | 0x0f 0x1f | 0x0f 0x19 | 0x87 0xc0 }
649 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
653 for (i = 0; i < MAX_UINSN_BYTES; i++) {
654 if ((auprobe->insn[i] == 0x66))
657 if (auprobe->insn[i] == 0x90)
660 if (i == (MAX_UINSN_BYTES - 1))
663 if ((auprobe->insn[i] == 0x0f) && (auprobe->insn[i+1] == 0x1f))
666 if ((auprobe->insn[i] == 0x0f) && (auprobe->insn[i+1] == 0x19))
669 if ((auprobe->insn[i] == 0x87) && (auprobe->insn[i+1] == 0xc0))