1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
27 #include <asm/intel-family.h>
29 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
30 EXPORT_SYMBOL(cpu_khz);
32 unsigned int __read_mostly tsc_khz;
33 EXPORT_SYMBOL(tsc_khz);
36 * TSC can be unstable due to cpufreq or due to unsynced TSCs
38 static int __read_mostly tsc_unstable;
40 /* native_sched_clock() is called before tsc_init(), so
41 we must start with the TSC soft disabled to prevent
42 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
43 static int __read_mostly tsc_disabled = -1;
45 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
47 int tsc_clocksource_reliable;
49 static u32 art_to_tsc_numerator;
50 static u32 art_to_tsc_denominator;
51 static u64 art_to_tsc_offset;
52 struct clocksource *art_related_clocksource;
55 * Use a ring-buffer like data structure, where a writer advances the head by
56 * writing a new data entry and a reader advances the tail when it observes a
59 * Writers are made to wait on readers until there's space to write a new
62 * This means that we can always use an {offset, mul} pair to compute a ns
63 * value that is 'roughly' in the right direction, even if we're writing a new
64 * {offset, mul} pair during the clock read.
66 * The down-side is that we can no longer guarantee strict monotonicity anymore
67 * (assuming the TSC was that to begin with), because while we compute the
68 * intersection point of the two clock slopes and make sure the time is
69 * continuous at the point of switching; we can no longer guarantee a reader is
70 * strictly before or after the switch point.
72 * It does mean a reader no longer needs to disable IRQs in order to avoid
73 * CPU-Freq updates messing with his times, and similarly an NMI reader will
74 * no longer run the risk of hitting half-written state.
78 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
79 struct cyc2ns_data *head; /* 48 + 8 = 56 */
80 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
81 }; /* exactly fits one cacheline */
83 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
85 struct cyc2ns_data *cyc2ns_read_begin(void)
87 struct cyc2ns_data *head;
91 head = this_cpu_read(cyc2ns.head);
93 * Ensure we observe the entry when we observe the pointer to it.
94 * matches the wmb from cyc2ns_write_end().
96 smp_read_barrier_depends();
103 void cyc2ns_read_end(struct cyc2ns_data *head)
107 * If we're the outer most nested read; update the tail pointer
108 * when we're done. This notifies possible pending writers
109 * that we've observed the head pointer and that the other
112 if (!--head->__count) {
114 * x86-TSO does not reorder writes with older reads;
115 * therefore once this write becomes visible to another
116 * cpu, we must be finished reading the cyc2ns_data.
118 * matches with cyc2ns_write_begin().
120 this_cpu_write(cyc2ns.tail, head);
126 * Begin writing a new @data entry for @cpu.
128 * Assumes some sort of write side lock; currently 'provided' by the assumption
129 * that cpufreq will call its notifiers sequentially.
131 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
133 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
134 struct cyc2ns_data *data = c2n->data;
136 if (data == c2n->head)
139 /* XXX send an IPI to @cpu in order to guarantee a read? */
142 * When we observe the tail write from cyc2ns_read_end(),
143 * the cpu must be done with that entry and its safe
144 * to start writing to it.
146 while (c2n->tail == data)
152 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
154 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
157 * Ensure the @data writes are visible before we publish the
158 * entry. Matches the data-depencency in cyc2ns_read_begin().
162 ACCESS_ONCE(c2n->head) = data;
166 * Accelerators for sched_clock()
167 * convert from cycles(64bits) => nanoseconds (64bits)
169 * ns = cycles / (freq / ns_per_sec)
170 * ns = cycles * (ns_per_sec / freq)
171 * ns = cycles * (10^9 / (cpu_khz * 10^3))
172 * ns = cycles * (10^6 / cpu_khz)
174 * Then we use scaling math (suggested by george@mvista.com) to get:
175 * ns = cycles * (10^6 * SC / cpu_khz) / SC
176 * ns = cycles * cyc2ns_scale / SC
178 * And since SC is a constant power of two, we can convert the div
179 * into a shift. The larger SC is, the more accurate the conversion, but
180 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
181 * (64-bit result) can be used.
183 * We can use khz divisor instead of mhz to keep a better precision.
184 * (mathieu.desnoyers@polymtl.ca)
186 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
189 static void cyc2ns_data_init(struct cyc2ns_data *data)
191 data->cyc2ns_mul = 0;
192 data->cyc2ns_shift = 0;
193 data->cyc2ns_offset = 0;
197 static void cyc2ns_init(int cpu)
199 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
201 cyc2ns_data_init(&c2n->data[0]);
202 cyc2ns_data_init(&c2n->data[1]);
204 c2n->head = c2n->data;
205 c2n->tail = c2n->data;
208 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
210 struct cyc2ns_data *data, *tail;
211 unsigned long long ns;
214 * See cyc2ns_read_*() for details; replicated in order to avoid
215 * an extra few instructions that came with the abstraction.
216 * Notable, it allows us to only do the __count and tail update
217 * dance when its actually needed.
220 preempt_disable_notrace();
221 data = this_cpu_read(cyc2ns.head);
222 tail = this_cpu_read(cyc2ns.tail);
224 if (likely(data == tail)) {
225 ns = data->cyc2ns_offset;
226 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
232 ns = data->cyc2ns_offset;
233 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
237 if (!--data->__count)
238 this_cpu_write(cyc2ns.tail, data);
240 preempt_enable_notrace();
245 static void set_cyc2ns_scale(unsigned long khz, int cpu)
247 unsigned long long tsc_now, ns_now;
248 struct cyc2ns_data *data;
251 local_irq_save(flags);
252 sched_clock_idle_sleep_event();
257 data = cyc2ns_write_begin(cpu);
260 ns_now = cycles_2_ns(tsc_now);
263 * Compute a new multiplier as per the above comment and ensure our
264 * time function is continuous; see the comment near struct
267 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
271 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
272 * not expected to be greater than 31 due to the original published
273 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
274 * value) - refer perf_event_mmap_page documentation in perf_event.h.
276 if (data->cyc2ns_shift == 32) {
277 data->cyc2ns_shift = 31;
278 data->cyc2ns_mul >>= 1;
281 data->cyc2ns_offset = ns_now -
282 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
284 cyc2ns_write_end(cpu, data);
287 sched_clock_idle_wakeup_event(0);
288 local_irq_restore(flags);
291 * Scheduler clock - returns current time in nanosec units.
293 u64 native_sched_clock(void)
295 if (static_branch_likely(&__use_tsc)) {
296 u64 tsc_now = rdtsc();
298 /* return the value in ns */
299 return cycles_2_ns(tsc_now);
303 * Fall back to jiffies if there's no TSC available:
304 * ( But note that we still use it if the TSC is marked
305 * unstable. We do this because unlike Time Of Day,
306 * the scheduler clock tolerates small errors and it's
307 * very important for it to be as fast as the platform
311 /* No locking but a rare wrong value is not a big deal: */
312 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
316 * Generate a sched_clock if you already have a TSC value.
318 u64 native_sched_clock_from_tsc(u64 tsc)
320 return cycles_2_ns(tsc);
323 /* We need to define a real function for sched_clock, to override the
324 weak default version */
325 #ifdef CONFIG_PARAVIRT
326 unsigned long long sched_clock(void)
328 return paravirt_sched_clock();
331 bool using_native_sched_clock(void)
333 return pv_time_ops.sched_clock == native_sched_clock;
337 sched_clock(void) __attribute__((alias("native_sched_clock")));
339 bool using_native_sched_clock(void) { return true; }
342 int check_tsc_unstable(void)
346 EXPORT_SYMBOL_GPL(check_tsc_unstable);
348 #ifdef CONFIG_X86_TSC
349 int __init notsc_setup(char *str)
351 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
357 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
360 int __init notsc_setup(char *str)
362 setup_clear_cpu_cap(X86_FEATURE_TSC);
367 __setup("notsc", notsc_setup);
369 static int no_sched_irq_time;
371 static int __init tsc_setup(char *str)
373 if (!strcmp(str, "reliable"))
374 tsc_clocksource_reliable = 1;
375 if (!strncmp(str, "noirqtime", 9))
376 no_sched_irq_time = 1;
380 __setup("tsc=", tsc_setup);
382 #define MAX_RETRIES 5
383 #define SMI_TRESHOLD 50000
386 * Read TSC and the reference counters. Take care of SMI disturbance
388 static u64 tsc_read_refs(u64 *p, int hpet)
393 for (i = 0; i < MAX_RETRIES; i++) {
396 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
398 *p = acpi_pm_read_early();
400 if ((t2 - t1) < SMI_TRESHOLD)
407 * Calculate the TSC frequency from HPET reference
409 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
414 hpet2 += 0x100000000ULL;
416 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
417 do_div(tmp, 1000000);
418 do_div(deltatsc, tmp);
420 return (unsigned long) deltatsc;
424 * Calculate the TSC frequency from PMTimer reference
426 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
434 pm2 += (u64)ACPI_PM_OVRRUN;
436 tmp = pm2 * 1000000000LL;
437 do_div(tmp, PMTMR_TICKS_PER_SEC);
438 do_div(deltatsc, tmp);
440 return (unsigned long) deltatsc;
444 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
445 #define CAL_PIT_LOOPS 1000
448 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
449 #define CAL2_PIT_LOOPS 5000
453 * Try to calibrate the TSC against the Programmable
454 * Interrupt Timer and return the frequency of the TSC
457 * Return ULONG_MAX on failure to calibrate.
459 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
461 u64 tsc, t1, t2, delta;
462 unsigned long tscmin, tscmax;
465 /* Set the Gate high, disable speaker */
466 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
469 * Setup CTC channel 2* for mode 0, (interrupt on terminal
470 * count mode), binary count. Set the latch register to 50ms
471 * (LSB then MSB) to begin countdown.
474 outb(latch & 0xff, 0x42);
475 outb(latch >> 8, 0x42);
477 tsc = t1 = t2 = get_cycles();
482 while ((inb(0x61) & 0x20) == 0) {
486 if ((unsigned long) delta < tscmin)
487 tscmin = (unsigned int) delta;
488 if ((unsigned long) delta > tscmax)
489 tscmax = (unsigned int) delta;
496 * If we were not able to read the PIT more than loopmin
497 * times, then we have been hit by a massive SMI
499 * If the maximum is 10 times larger than the minimum,
500 * then we got hit by an SMI as well.
502 if (pitcnt < loopmin || tscmax > 10 * tscmin)
505 /* Calculate the PIT value */
512 * This reads the current MSB of the PIT counter, and
513 * checks if we are running on sufficiently fast and
514 * non-virtualized hardware.
516 * Our expectations are:
518 * - the PIT is running at roughly 1.19MHz
520 * - each IO is going to take about 1us on real hardware,
521 * but we allow it to be much faster (by a factor of 10) or
522 * _slightly_ slower (ie we allow up to a 2us read+counter
523 * update - anything else implies a unacceptably slow CPU
524 * or PIT for the fast calibration to work.
526 * - with 256 PIT ticks to read the value, we have 214us to
527 * see the same MSB (and overhead like doing a single TSC
528 * read per MSB value etc).
530 * - We're doing 2 reads per loop (LSB, MSB), and we expect
531 * them each to take about a microsecond on real hardware.
532 * So we expect a count value of around 100. But we'll be
533 * generous, and accept anything over 50.
535 * - if the PIT is stuck, and we see *many* more reads, we
536 * return early (and the next caller of pit_expect_msb()
537 * then consider it a failure when they don't see the
538 * next expected value).
540 * These expectations mean that we know that we have seen the
541 * transition from one expected value to another with a fairly
542 * high accuracy, and we didn't miss any events. We can thus
543 * use the TSC value at the transitions to calculate a pretty
544 * good value for the TSC frequencty.
546 static inline int pit_verify_msb(unsigned char val)
550 return inb(0x42) == val;
553 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
556 u64 tsc = 0, prev_tsc = 0;
558 for (count = 0; count < 50000; count++) {
559 if (!pit_verify_msb(val))
564 *deltap = get_cycles() - prev_tsc;
568 * We require _some_ success, but the quality control
569 * will be based on the error terms on the TSC values.
575 * How many MSB values do we want to see? We aim for
576 * a maximum error rate of 500ppm (in practice the
577 * real error is much smaller), but refuse to spend
578 * more than 50ms on it.
580 #define MAX_QUICK_PIT_MS 50
581 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
583 static unsigned long quick_pit_calibrate(void)
587 unsigned long d1, d2;
589 /* Set the Gate high, disable speaker */
590 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
593 * Counter 2, mode 0 (one-shot), binary count
595 * NOTE! Mode 2 decrements by two (and then the
596 * output is flipped each time, giving the same
597 * final output frequency as a decrement-by-one),
598 * so mode 0 is much better when looking at the
603 /* Start at 0xffff */
608 * The PIT starts counting at the next edge, so we
609 * need to delay for a microsecond. The easiest way
610 * to do that is to just read back the 16-bit counter
615 if (pit_expect_msb(0xff, &tsc, &d1)) {
616 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
617 if (!pit_expect_msb(0xff-i, &delta, &d2))
623 * Extrapolate the error and fail fast if the error will
624 * never be below 500 ppm.
627 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
631 * Iterate until the error is less than 500 ppm
633 if (d1+d2 >= delta >> 11)
637 * Check the PIT one more time to verify that
638 * all TSC reads were stable wrt the PIT.
640 * This also guarantees serialization of the
641 * last cycle read ('d2') in pit_expect_msb.
643 if (!pit_verify_msb(0xfe - i))
648 pr_info("Fast TSC calibration failed\n");
653 * Ok, if we get here, then we've seen the
654 * MSB of the PIT decrement 'i' times, and the
655 * error has shrunk to less than 500 ppm.
657 * As a result, we can depend on there not being
658 * any odd delays anywhere, and the TSC reads are
659 * reliable (within the error).
661 * kHz = ticks / time-in-seconds / 1000;
662 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
663 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
665 delta *= PIT_TICK_RATE;
666 do_div(delta, i*256*1000);
667 pr_info("Fast TSC calibration using PIT\n");
672 * native_calibrate_tsc
673 * Determine TSC frequency via CPUID, else return 0.
675 unsigned long native_calibrate_tsc(void)
677 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
678 unsigned int crystal_khz;
680 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
683 if (boot_cpu_data.cpuid_level < 0x15)
686 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
688 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
689 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
691 if (ebx_numerator == 0 || eax_denominator == 0)
694 crystal_khz = ecx_hz / 1000;
696 if (crystal_khz == 0) {
697 switch (boot_cpu_data.x86_model) {
698 case INTEL_FAM6_SKYLAKE_MOBILE:
699 case INTEL_FAM6_SKYLAKE_DESKTOP:
700 case INTEL_FAM6_KABYLAKE_MOBILE:
701 case INTEL_FAM6_KABYLAKE_DESKTOP:
702 crystal_khz = 24000; /* 24.0 MHz */
704 case INTEL_FAM6_SKYLAKE_X:
705 case INTEL_FAM6_ATOM_DENVERTON:
706 crystal_khz = 25000; /* 25.0 MHz */
708 case INTEL_FAM6_ATOM_GOLDMONT:
709 crystal_khz = 19200; /* 19.2 MHz */
715 * TSC frequency determined by CPUID is a "hardware reported"
716 * frequency and is the most accurate one so far we have. This
717 * is considered a known frequency.
719 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
722 * For Atom SoCs TSC is the only reliable clocksource.
723 * Mark TSC reliable so no watchdog on it.
725 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
726 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
728 return crystal_khz * ebx_numerator / eax_denominator;
731 static unsigned long cpu_khz_from_cpuid(void)
733 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
735 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
738 if (boot_cpu_data.cpuid_level < 0x16)
741 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
743 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
745 return eax_base_mhz * 1000;
749 * native_calibrate_cpu - calibrate the cpu on boot
751 unsigned long native_calibrate_cpu(void)
753 u64 tsc1, tsc2, delta, ref1, ref2;
754 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
755 unsigned long flags, latch, ms, fast_calibrate;
756 int hpet = is_hpet_enabled(), i, loopmin;
758 fast_calibrate = cpu_khz_from_cpuid();
760 return fast_calibrate;
762 fast_calibrate = cpu_khz_from_msr();
764 return fast_calibrate;
766 local_irq_save(flags);
767 fast_calibrate = quick_pit_calibrate();
768 local_irq_restore(flags);
770 return fast_calibrate;
773 * Run 5 calibration loops to get the lowest frequency value
774 * (the best estimate). We use two different calibration modes
777 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
778 * load a timeout of 50ms. We read the time right after we
779 * started the timer and wait until the PIT count down reaches
780 * zero. In each wait loop iteration we read the TSC and check
781 * the delta to the previous read. We keep track of the min
782 * and max values of that delta. The delta is mostly defined
783 * by the IO time of the PIT access, so we can detect when a
784 * SMI/SMM disturbance happened between the two reads. If the
785 * maximum time is significantly larger than the minimum time,
786 * then we discard the result and have another try.
788 * 2) Reference counter. If available we use the HPET or the
789 * PMTIMER as a reference to check the sanity of that value.
790 * We use separate TSC readouts and check inside of the
791 * reference read for a SMI/SMM disturbance. We dicard
792 * disturbed values here as well. We do that around the PIT
793 * calibration delay loop as we have to wait for a certain
794 * amount of time anyway.
797 /* Preset PIT loop values */
800 loopmin = CAL_PIT_LOOPS;
802 for (i = 0; i < 3; i++) {
803 unsigned long tsc_pit_khz;
806 * Read the start value and the reference count of
807 * hpet/pmtimer when available. Then do the PIT
808 * calibration, which will take at least 50ms, and
809 * read the end value.
811 local_irq_save(flags);
812 tsc1 = tsc_read_refs(&ref1, hpet);
813 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
814 tsc2 = tsc_read_refs(&ref2, hpet);
815 local_irq_restore(flags);
817 /* Pick the lowest PIT TSC calibration so far */
818 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
820 /* hpet or pmtimer available ? */
824 /* Check, whether the sampling was disturbed by an SMI */
825 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
828 tsc2 = (tsc2 - tsc1) * 1000000LL;
830 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
832 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
834 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
836 /* Check the reference deviation */
837 delta = ((u64) tsc_pit_min) * 100;
838 do_div(delta, tsc_ref_min);
841 * If both calibration results are inside a 10% window
842 * then we can be sure, that the calibration
843 * succeeded. We break out of the loop right away. We
844 * use the reference value, as it is more precise.
846 if (delta >= 90 && delta <= 110) {
847 pr_info("PIT calibration matches %s. %d loops\n",
848 hpet ? "HPET" : "PMTIMER", i + 1);
853 * Check whether PIT failed more than once. This
854 * happens in virtualized environments. We need to
855 * give the virtual PC a slightly longer timeframe for
856 * the HPET/PMTIMER to make the result precise.
858 if (i == 1 && tsc_pit_min == ULONG_MAX) {
861 loopmin = CAL2_PIT_LOOPS;
866 * Now check the results.
868 if (tsc_pit_min == ULONG_MAX) {
869 /* PIT gave no useful value */
870 pr_warn("Unable to calibrate against PIT\n");
872 /* We don't have an alternative source, disable TSC */
873 if (!hpet && !ref1 && !ref2) {
874 pr_notice("No reference (HPET/PMTIMER) available\n");
878 /* The alternative source failed as well, disable TSC */
879 if (tsc_ref_min == ULONG_MAX) {
880 pr_warn("HPET/PMTIMER calibration failed\n");
884 /* Use the alternative source */
885 pr_info("using %s reference calibration\n",
886 hpet ? "HPET" : "PMTIMER");
891 /* We don't have an alternative source, use the PIT calibration value */
892 if (!hpet && !ref1 && !ref2) {
893 pr_info("Using PIT calibration value\n");
897 /* The alternative source failed, use the PIT calibration value */
898 if (tsc_ref_min == ULONG_MAX) {
899 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
904 * The calibration values differ too much. In doubt, we use
905 * the PIT value as we know that there are PMTIMERs around
906 * running at double speed. At least we let the user know:
908 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
909 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
910 pr_info("Using PIT calibration value\n");
914 int recalibrate_cpu_khz(void)
917 unsigned long cpu_khz_old = cpu_khz;
919 if (!boot_cpu_has(X86_FEATURE_TSC))
922 cpu_khz = x86_platform.calibrate_cpu();
923 tsc_khz = x86_platform.calibrate_tsc();
926 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
928 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
929 cpu_khz_old, cpu_khz);
937 EXPORT_SYMBOL(recalibrate_cpu_khz);
940 static unsigned long long cyc2ns_suspend;
942 void tsc_save_sched_clock_state(void)
944 if (!sched_clock_stable())
947 cyc2ns_suspend = sched_clock();
951 * Even on processors with invariant TSC, TSC gets reset in some the
952 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
953 * arbitrary value (still sync'd across cpu's) during resume from such sleep
954 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
955 * that sched_clock() continues from the point where it was left off during
958 void tsc_restore_sched_clock_state(void)
960 unsigned long long offset;
964 if (!sched_clock_stable())
967 local_irq_save(flags);
970 * We're coming out of suspend, there's no concurrency yet; don't
971 * bother being nice about the RCU stuff, just write to both
975 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
976 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
978 offset = cyc2ns_suspend - sched_clock();
980 for_each_possible_cpu(cpu) {
981 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
982 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
985 local_irq_restore(flags);
988 #ifdef CONFIG_CPU_FREQ
990 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
993 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
994 * not that important because current Opteron setups do not support
995 * scaling on SMP anyroads.
997 * Should fix up last_tsc too. Currently gettimeofday in the
998 * first tick after the change will be slightly wrong.
1001 static unsigned int ref_freq;
1002 static unsigned long loops_per_jiffy_ref;
1003 static unsigned long tsc_khz_ref;
1005 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1008 struct cpufreq_freqs *freq = data;
1011 lpj = &boot_cpu_data.loops_per_jiffy;
1013 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1014 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
1018 ref_freq = freq->old;
1019 loops_per_jiffy_ref = *lpj;
1020 tsc_khz_ref = tsc_khz;
1022 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
1023 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1024 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1026 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1027 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1028 mark_tsc_unstable("cpufreq changes");
1030 set_cyc2ns_scale(tsc_khz, freq->cpu);
1036 static struct notifier_block time_cpufreq_notifier_block = {
1037 .notifier_call = time_cpufreq_notifier
1040 static int __init cpufreq_register_tsc_scaling(void)
1042 if (!boot_cpu_has(X86_FEATURE_TSC))
1044 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1046 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1047 CPUFREQ_TRANSITION_NOTIFIER);
1051 core_initcall(cpufreq_register_tsc_scaling);
1053 #endif /* CONFIG_CPU_FREQ */
1055 #define ART_CPUID_LEAF (0x15)
1056 #define ART_MIN_DENOMINATOR (1)
1060 * If ART is present detect the numerator:denominator to convert to TSC
1062 static void detect_art(void)
1064 unsigned int unused[2];
1066 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1069 /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
1070 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1071 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1072 !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
1075 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1076 &art_to_tsc_numerator, unused, unused+1);
1078 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1081 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1083 /* Make this sticky over multiple CPU init calls */
1084 setup_force_cpu_cap(X86_FEATURE_ART);
1088 /* clocksource code */
1090 static struct clocksource clocksource_tsc;
1092 static void tsc_resume(struct clocksource *cs)
1094 tsc_verify_tsc_adjust(true);
1098 * We used to compare the TSC to the cycle_last value in the clocksource
1099 * structure to avoid a nasty time-warp. This can be observed in a
1100 * very small window right after one CPU updated cycle_last under
1101 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1102 * is smaller than the cycle_last reference value due to a TSC which
1103 * is slighty behind. This delta is nowhere else observable, but in
1104 * that case it results in a forward time jump in the range of hours
1105 * due to the unsigned delta calculation of the time keeping core
1106 * code, which is necessary to support wrapping clocksources like pm
1109 * This sanity check is now done in the core timekeeping code.
1110 * checking the result of read_tsc() - cycle_last for being negative.
1111 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1113 static u64 read_tsc(struct clocksource *cs)
1115 return (u64)rdtsc_ordered();
1118 static void tsc_cs_mark_unstable(struct clocksource *cs)
1124 if (using_native_sched_clock())
1125 clear_sched_clock_stable();
1126 disable_sched_clock_irqtime();
1127 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1131 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1133 static struct clocksource clocksource_tsc = {
1137 .mask = CLOCKSOURCE_MASK(64),
1138 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1139 CLOCK_SOURCE_MUST_VERIFY,
1140 .archdata = { .vclock_mode = VCLOCK_TSC },
1141 .resume = tsc_resume,
1142 .mark_unstable = tsc_cs_mark_unstable,
1145 void mark_tsc_unstable(char *reason)
1151 if (using_native_sched_clock())
1152 clear_sched_clock_stable();
1153 disable_sched_clock_irqtime();
1154 pr_info("Marking TSC unstable due to %s\n", reason);
1155 /* Change only the rating, when not registered */
1156 if (clocksource_tsc.mult) {
1157 clocksource_mark_unstable(&clocksource_tsc);
1159 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1160 clocksource_tsc.rating = 0;
1164 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1166 static void __init check_system_tsc_reliable(void)
1168 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1169 if (is_geode_lx()) {
1170 /* RTSC counts during suspend */
1171 #define RTSC_SUSP 0x100
1172 unsigned long res_low, res_high;
1174 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1175 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1176 if (res_low & RTSC_SUSP)
1177 tsc_clocksource_reliable = 1;
1180 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1181 tsc_clocksource_reliable = 1;
1185 * Make an educated guess if the TSC is trustworthy and synchronized
1188 int unsynchronized_tsc(void)
1190 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1194 if (apic_is_clustered_box())
1198 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1201 if (tsc_clocksource_reliable)
1204 * Intel systems are normally all synchronized.
1205 * Exceptions must mark TSC as unstable:
1207 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1208 /* assume multi socket systems are not synchronized: */
1209 if (num_possible_cpus() > 1)
1217 * Convert ART to TSC given numerator/denominator found in detect_art()
1219 struct system_counterval_t convert_art_to_tsc(u64 art)
1223 rem = do_div(art, art_to_tsc_denominator);
1225 res = art * art_to_tsc_numerator;
1226 tmp = rem * art_to_tsc_numerator;
1228 do_div(tmp, art_to_tsc_denominator);
1229 res += tmp + art_to_tsc_offset;
1231 return (struct system_counterval_t) {.cs = art_related_clocksource,
1234 EXPORT_SYMBOL(convert_art_to_tsc);
1236 static void tsc_refine_calibration_work(struct work_struct *work);
1237 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1239 * tsc_refine_calibration_work - Further refine tsc freq calibration
1242 * This functions uses delayed work over a period of a
1243 * second to further refine the TSC freq value. Since this is
1244 * timer based, instead of loop based, we don't block the boot
1245 * process while this longer calibration is done.
1247 * If there are any calibration anomalies (too many SMIs, etc),
1248 * or the refined calibration is off by 1% of the fast early
1249 * calibration, we throw out the new calibration and use the
1250 * early calibration.
1252 static void tsc_refine_calibration_work(struct work_struct *work)
1254 static u64 tsc_start = -1, ref_start;
1256 u64 tsc_stop, ref_stop, delta;
1259 /* Don't bother refining TSC on unstable systems */
1260 if (check_tsc_unstable())
1264 * Since the work is started early in boot, we may be
1265 * delayed the first time we expire. So set the workqueue
1266 * again once we know timers are working.
1268 if (tsc_start == -1) {
1270 * Only set hpet once, to avoid mixing hardware
1271 * if the hpet becomes enabled later.
1273 hpet = is_hpet_enabled();
1274 schedule_delayed_work(&tsc_irqwork, HZ);
1275 tsc_start = tsc_read_refs(&ref_start, hpet);
1279 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1281 /* hpet or pmtimer available ? */
1282 if (ref_start == ref_stop)
1285 /* Check, whether the sampling was disturbed by an SMI */
1286 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1289 delta = tsc_stop - tsc_start;
1292 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1294 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1296 /* Make sure we're within 1% */
1297 if (abs(tsc_khz - freq) > tsc_khz/100)
1301 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1302 (unsigned long)tsc_khz / 1000,
1303 (unsigned long)tsc_khz % 1000);
1305 /* Inform the TSC deadline clockevent devices about the recalibration */
1306 lapic_update_tsc_freq();
1309 if (boot_cpu_has(X86_FEATURE_ART))
1310 art_related_clocksource = &clocksource_tsc;
1311 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1315 static int __init init_tsc_clocksource(void)
1317 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1320 if (tsc_clocksource_reliable)
1321 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1322 /* lower the rating if we already know its unstable: */
1323 if (check_tsc_unstable()) {
1324 clocksource_tsc.rating = 0;
1325 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1328 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1329 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1332 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1333 * the refined calibration and directly register it as a clocksource.
1335 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1336 if (boot_cpu_has(X86_FEATURE_ART))
1337 art_related_clocksource = &clocksource_tsc;
1338 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1342 schedule_delayed_work(&tsc_irqwork, 0);
1346 * We use device_initcall here, to ensure we run after the hpet
1347 * is fully initialized, which may occur at fs_initcall time.
1349 device_initcall(init_tsc_clocksource);
1351 void __init tsc_init(void)
1356 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1357 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1361 cpu_khz = x86_platform.calibrate_cpu();
1362 tsc_khz = x86_platform.calibrate_tsc();
1365 * Trust non-zero tsc_khz as authorative,
1366 * and use it to sanity check cpu_khz,
1367 * which will be off if system timer is off.
1371 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1375 mark_tsc_unstable("could not calculate TSC khz");
1376 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1380 pr_info("Detected %lu.%03lu MHz processor\n",
1381 (unsigned long)cpu_khz / 1000,
1382 (unsigned long)cpu_khz % 1000);
1384 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1385 tsc_store_and_check_tsc_adjust(true);
1388 * Secondary CPUs do not run through tsc_init(), so set up
1389 * all the scale factors for all CPUs, assuming the same
1390 * speed as the bootup CPU. (cpufreq notifiers will fix this
1391 * up if their speed diverges)
1393 for_each_possible_cpu(cpu) {
1395 set_cyc2ns_scale(tsc_khz, cpu);
1398 if (tsc_disabled > 0)
1401 /* now allow native_sched_clock() to use rdtsc */
1404 static_branch_enable(&__use_tsc);
1406 if (!no_sched_irq_time)
1407 enable_sched_clock_irqtime();
1409 lpj = ((u64)tsc_khz * 1000);
1415 if (unsynchronized_tsc())
1416 mark_tsc_unstable("TSCs unsynchronized");
1418 check_system_tsc_reliable();
1425 * If we have a constant TSC and are using the TSC for the delay loop,
1426 * we can skip clock calibration if another cpu in the same socket has already
1427 * been calibrated. This assumes that CONSTANT_TSC applies to all
1428 * cpus in the socket - this should be a safe assumption.
1430 unsigned long calibrate_delay_is_known(void)
1432 int sibling, cpu = smp_processor_id();
1433 struct cpumask *mask = topology_core_cpumask(cpu);
1435 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1441 sibling = cpumask_any_but(mask, cpu);
1442 if (sibling < nr_cpu_ids)
1443 return cpu_data(sibling).loops_per_jiffy;