1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
30 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
31 EXPORT_SYMBOL(cpu_khz);
33 unsigned int __read_mostly tsc_khz;
34 EXPORT_SYMBOL(tsc_khz);
39 * TSC can be unstable due to cpufreq or due to unsynced TSCs
41 static int __read_mostly tsc_unstable;
43 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
45 int tsc_clocksource_reliable;
47 static u32 art_to_tsc_numerator;
48 static u32 art_to_tsc_denominator;
49 static u64 art_to_tsc_offset;
50 struct clocksource *art_related_clocksource;
53 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
54 seqcount_t seq; /* 32 + 4 = 36 */
56 }; /* fits one cacheline */
58 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
60 void cyc2ns_read_begin(struct cyc2ns_data *data)
64 preempt_disable_notrace();
67 seq = this_cpu_read(cyc2ns.seq.sequence);
70 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
71 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
72 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
74 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
77 void cyc2ns_read_end(void)
79 preempt_enable_notrace();
83 * Accelerators for sched_clock()
84 * convert from cycles(64bits) => nanoseconds (64bits)
86 * ns = cycles / (freq / ns_per_sec)
87 * ns = cycles * (ns_per_sec / freq)
88 * ns = cycles * (10^9 / (cpu_khz * 10^3))
89 * ns = cycles * (10^6 / cpu_khz)
91 * Then we use scaling math (suggested by george@mvista.com) to get:
92 * ns = cycles * (10^6 * SC / cpu_khz) / SC
93 * ns = cycles * cyc2ns_scale / SC
95 * And since SC is a constant power of two, we can convert the div
96 * into a shift. The larger SC is, the more accurate the conversion, but
97 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
98 * (64-bit result) can be used.
100 * We can use khz divisor instead of mhz to keep a better precision.
101 * (mathieu.desnoyers@polymtl.ca)
103 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
106 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
108 struct cyc2ns_data data;
109 unsigned long long ns;
111 cyc2ns_read_begin(&data);
113 ns = data.cyc2ns_offset;
114 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
121 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
123 unsigned long long ns_now;
124 struct cyc2ns_data data;
127 ns_now = cycles_2_ns(tsc_now);
130 * Compute a new multiplier as per the above comment and ensure our
131 * time function is continuous; see the comment near struct
134 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
138 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
139 * not expected to be greater than 31 due to the original published
140 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
141 * value) - refer perf_event_mmap_page documentation in perf_event.h.
143 if (data.cyc2ns_shift == 32) {
144 data.cyc2ns_shift = 31;
145 data.cyc2ns_mul >>= 1;
148 data.cyc2ns_offset = ns_now -
149 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
151 c2n = per_cpu_ptr(&cyc2ns, cpu);
153 raw_write_seqcount_latch(&c2n->seq);
155 raw_write_seqcount_latch(&c2n->seq);
159 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
163 local_irq_save(flags);
164 sched_clock_idle_sleep_event();
167 __set_cyc2ns_scale(khz, cpu, tsc_now);
169 sched_clock_idle_wakeup_event();
170 local_irq_restore(flags);
174 * Initialize cyc2ns for boot cpu
176 static void __init cyc2ns_init_boot_cpu(void)
178 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
180 seqcount_init(&c2n->seq);
181 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
185 * Secondary CPUs do not run through cyc2ns_init(), so set up
186 * all the scale factors for all CPUs, assuming the same
187 * speed as the bootup CPU. (cpufreq notifiers will fix this
188 * up if their speed diverges)
190 static void __init cyc2ns_init_secondary_cpus(void)
192 unsigned int cpu, this_cpu = smp_processor_id();
193 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
194 struct cyc2ns_data *data = c2n->data;
196 for_each_possible_cpu(cpu) {
197 if (cpu != this_cpu) {
198 seqcount_init(&c2n->seq);
199 c2n = per_cpu_ptr(&cyc2ns, cpu);
200 c2n->data[0] = data[0];
201 c2n->data[1] = data[1];
207 * Scheduler clock - returns current time in nanosec units.
209 u64 native_sched_clock(void)
211 if (static_branch_likely(&__use_tsc)) {
212 u64 tsc_now = rdtsc();
214 /* return the value in ns */
215 return cycles_2_ns(tsc_now);
219 * Fall back to jiffies if there's no TSC available:
220 * ( But note that we still use it if the TSC is marked
221 * unstable. We do this because unlike Time Of Day,
222 * the scheduler clock tolerates small errors and it's
223 * very important for it to be as fast as the platform
227 /* No locking but a rare wrong value is not a big deal: */
228 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
232 * Generate a sched_clock if you already have a TSC value.
234 u64 native_sched_clock_from_tsc(u64 tsc)
236 return cycles_2_ns(tsc);
239 /* We need to define a real function for sched_clock, to override the
240 weak default version */
241 #ifdef CONFIG_PARAVIRT
242 unsigned long long sched_clock(void)
244 return paravirt_sched_clock();
247 bool using_native_sched_clock(void)
249 return pv_time_ops.sched_clock == native_sched_clock;
253 sched_clock(void) __attribute__((alias("native_sched_clock")));
255 bool using_native_sched_clock(void) { return true; }
258 int check_tsc_unstable(void)
262 EXPORT_SYMBOL_GPL(check_tsc_unstable);
264 #ifdef CONFIG_X86_TSC
265 int __init notsc_setup(char *str)
267 mark_tsc_unstable("boot parameter notsc");
272 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
275 int __init notsc_setup(char *str)
277 setup_clear_cpu_cap(X86_FEATURE_TSC);
282 __setup("notsc", notsc_setup);
284 static int no_sched_irq_time;
286 static int __init tsc_setup(char *str)
288 if (!strcmp(str, "reliable"))
289 tsc_clocksource_reliable = 1;
290 if (!strncmp(str, "noirqtime", 9))
291 no_sched_irq_time = 1;
292 if (!strcmp(str, "unstable"))
293 mark_tsc_unstable("boot parameter");
297 __setup("tsc=", tsc_setup);
299 #define MAX_RETRIES 5
300 #define SMI_TRESHOLD 50000
303 * Read TSC and the reference counters. Take care of SMI disturbance
305 static u64 tsc_read_refs(u64 *p, int hpet)
310 for (i = 0; i < MAX_RETRIES; i++) {
313 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
315 *p = acpi_pm_read_early();
317 if ((t2 - t1) < SMI_TRESHOLD)
324 * Calculate the TSC frequency from HPET reference
326 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
331 hpet2 += 0x100000000ULL;
333 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
334 do_div(tmp, 1000000);
335 deltatsc = div64_u64(deltatsc, tmp);
337 return (unsigned long) deltatsc;
341 * Calculate the TSC frequency from PMTimer reference
343 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
351 pm2 += (u64)ACPI_PM_OVRRUN;
353 tmp = pm2 * 1000000000LL;
354 do_div(tmp, PMTMR_TICKS_PER_SEC);
355 do_div(deltatsc, tmp);
357 return (unsigned long) deltatsc;
361 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
362 #define CAL_PIT_LOOPS 1000
365 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
366 #define CAL2_PIT_LOOPS 5000
370 * Try to calibrate the TSC against the Programmable
371 * Interrupt Timer and return the frequency of the TSC
374 * Return ULONG_MAX on failure to calibrate.
376 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
378 u64 tsc, t1, t2, delta;
379 unsigned long tscmin, tscmax;
382 if (!has_legacy_pic()) {
384 * Relies on tsc_early_delay_calibrate() to have given us semi
385 * usable udelay(), wait for the same 50ms we would have with
386 * the PIT loop below.
388 udelay(10 * USEC_PER_MSEC);
389 udelay(10 * USEC_PER_MSEC);
390 udelay(10 * USEC_PER_MSEC);
391 udelay(10 * USEC_PER_MSEC);
392 udelay(10 * USEC_PER_MSEC);
396 /* Set the Gate high, disable speaker */
397 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
400 * Setup CTC channel 2* for mode 0, (interrupt on terminal
401 * count mode), binary count. Set the latch register to 50ms
402 * (LSB then MSB) to begin countdown.
405 outb(latch & 0xff, 0x42);
406 outb(latch >> 8, 0x42);
408 tsc = t1 = t2 = get_cycles();
413 while ((inb(0x61) & 0x20) == 0) {
417 if ((unsigned long) delta < tscmin)
418 tscmin = (unsigned int) delta;
419 if ((unsigned long) delta > tscmax)
420 tscmax = (unsigned int) delta;
427 * If we were not able to read the PIT more than loopmin
428 * times, then we have been hit by a massive SMI
430 * If the maximum is 10 times larger than the minimum,
431 * then we got hit by an SMI as well.
433 if (pitcnt < loopmin || tscmax > 10 * tscmin)
436 /* Calculate the PIT value */
443 * This reads the current MSB of the PIT counter, and
444 * checks if we are running on sufficiently fast and
445 * non-virtualized hardware.
447 * Our expectations are:
449 * - the PIT is running at roughly 1.19MHz
451 * - each IO is going to take about 1us on real hardware,
452 * but we allow it to be much faster (by a factor of 10) or
453 * _slightly_ slower (ie we allow up to a 2us read+counter
454 * update - anything else implies a unacceptably slow CPU
455 * or PIT for the fast calibration to work.
457 * - with 256 PIT ticks to read the value, we have 214us to
458 * see the same MSB (and overhead like doing a single TSC
459 * read per MSB value etc).
461 * - We're doing 2 reads per loop (LSB, MSB), and we expect
462 * them each to take about a microsecond on real hardware.
463 * So we expect a count value of around 100. But we'll be
464 * generous, and accept anything over 50.
466 * - if the PIT is stuck, and we see *many* more reads, we
467 * return early (and the next caller of pit_expect_msb()
468 * then consider it a failure when they don't see the
469 * next expected value).
471 * These expectations mean that we know that we have seen the
472 * transition from one expected value to another with a fairly
473 * high accuracy, and we didn't miss any events. We can thus
474 * use the TSC value at the transitions to calculate a pretty
475 * good value for the TSC frequencty.
477 static inline int pit_verify_msb(unsigned char val)
481 return inb(0x42) == val;
484 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
487 u64 tsc = 0, prev_tsc = 0;
489 for (count = 0; count < 50000; count++) {
490 if (!pit_verify_msb(val))
495 *deltap = get_cycles() - prev_tsc;
499 * We require _some_ success, but the quality control
500 * will be based on the error terms on the TSC values.
506 * How many MSB values do we want to see? We aim for
507 * a maximum error rate of 500ppm (in practice the
508 * real error is much smaller), but refuse to spend
509 * more than 50ms on it.
511 #define MAX_QUICK_PIT_MS 50
512 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
514 static unsigned long quick_pit_calibrate(void)
518 unsigned long d1, d2;
520 if (!has_legacy_pic())
523 /* Set the Gate high, disable speaker */
524 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
527 * Counter 2, mode 0 (one-shot), binary count
529 * NOTE! Mode 2 decrements by two (and then the
530 * output is flipped each time, giving the same
531 * final output frequency as a decrement-by-one),
532 * so mode 0 is much better when looking at the
537 /* Start at 0xffff */
542 * The PIT starts counting at the next edge, so we
543 * need to delay for a microsecond. The easiest way
544 * to do that is to just read back the 16-bit counter
549 if (pit_expect_msb(0xff, &tsc, &d1)) {
550 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
551 if (!pit_expect_msb(0xff-i, &delta, &d2))
557 * Extrapolate the error and fail fast if the error will
558 * never be below 500 ppm.
561 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
565 * Iterate until the error is less than 500 ppm
567 if (d1+d2 >= delta >> 11)
571 * Check the PIT one more time to verify that
572 * all TSC reads were stable wrt the PIT.
574 * This also guarantees serialization of the
575 * last cycle read ('d2') in pit_expect_msb.
577 if (!pit_verify_msb(0xfe - i))
582 pr_info("Fast TSC calibration failed\n");
587 * Ok, if we get here, then we've seen the
588 * MSB of the PIT decrement 'i' times, and the
589 * error has shrunk to less than 500 ppm.
591 * As a result, we can depend on there not being
592 * any odd delays anywhere, and the TSC reads are
593 * reliable (within the error).
595 * kHz = ticks / time-in-seconds / 1000;
596 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
597 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
599 delta *= PIT_TICK_RATE;
600 do_div(delta, i*256*1000);
601 pr_info("Fast TSC calibration using PIT\n");
606 * native_calibrate_tsc
607 * Determine TSC frequency via CPUID, else return 0.
609 unsigned long native_calibrate_tsc(void)
611 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
612 unsigned int crystal_khz;
614 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
617 if (boot_cpu_data.cpuid_level < 0x15)
620 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
622 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
623 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
625 if (ebx_numerator == 0 || eax_denominator == 0)
628 crystal_khz = ecx_hz / 1000;
630 if (crystal_khz == 0) {
631 switch (boot_cpu_data.x86_model) {
632 case INTEL_FAM6_SKYLAKE_MOBILE:
633 case INTEL_FAM6_SKYLAKE_DESKTOP:
634 case INTEL_FAM6_KABYLAKE_MOBILE:
635 case INTEL_FAM6_KABYLAKE_DESKTOP:
636 crystal_khz = 24000; /* 24.0 MHz */
638 case INTEL_FAM6_ATOM_DENVERTON:
639 crystal_khz = 25000; /* 25.0 MHz */
641 case INTEL_FAM6_ATOM_GOLDMONT:
642 crystal_khz = 19200; /* 19.2 MHz */
647 if (crystal_khz == 0)
650 * TSC frequency determined by CPUID is a "hardware reported"
651 * frequency and is the most accurate one so far we have. This
652 * is considered a known frequency.
654 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
657 * For Atom SoCs TSC is the only reliable clocksource.
658 * Mark TSC reliable so no watchdog on it.
660 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
661 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
663 return crystal_khz * ebx_numerator / eax_denominator;
666 static unsigned long cpu_khz_from_cpuid(void)
668 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
670 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
673 if (boot_cpu_data.cpuid_level < 0x16)
676 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
678 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
680 return eax_base_mhz * 1000;
684 * calibrate cpu using pit, hpet, and ptimer methods. They are available
685 * later in boot after acpi is initialized.
687 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
689 u64 tsc1, tsc2, delta, ref1, ref2;
690 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
691 unsigned long flags, latch, ms;
692 int hpet = is_hpet_enabled(), i, loopmin;
695 * Run 5 calibration loops to get the lowest frequency value
696 * (the best estimate). We use two different calibration modes
699 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
700 * load a timeout of 50ms. We read the time right after we
701 * started the timer and wait until the PIT count down reaches
702 * zero. In each wait loop iteration we read the TSC and check
703 * the delta to the previous read. We keep track of the min
704 * and max values of that delta. The delta is mostly defined
705 * by the IO time of the PIT access, so we can detect when a
706 * SMI/SMM disturbance happened between the two reads. If the
707 * maximum time is significantly larger than the minimum time,
708 * then we discard the result and have another try.
710 * 2) Reference counter. If available we use the HPET or the
711 * PMTIMER as a reference to check the sanity of that value.
712 * We use separate TSC readouts and check inside of the
713 * reference read for a SMI/SMM disturbance. We dicard
714 * disturbed values here as well. We do that around the PIT
715 * calibration delay loop as we have to wait for a certain
716 * amount of time anyway.
719 /* Preset PIT loop values */
722 loopmin = CAL_PIT_LOOPS;
724 for (i = 0; i < 3; i++) {
725 unsigned long tsc_pit_khz;
728 * Read the start value and the reference count of
729 * hpet/pmtimer when available. Then do the PIT
730 * calibration, which will take at least 50ms, and
731 * read the end value.
733 local_irq_save(flags);
734 tsc1 = tsc_read_refs(&ref1, hpet);
735 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
736 tsc2 = tsc_read_refs(&ref2, hpet);
737 local_irq_restore(flags);
739 /* Pick the lowest PIT TSC calibration so far */
740 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
742 /* hpet or pmtimer available ? */
746 /* Check, whether the sampling was disturbed by an SMI */
747 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
750 tsc2 = (tsc2 - tsc1) * 1000000LL;
752 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
754 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
756 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
758 /* Check the reference deviation */
759 delta = ((u64) tsc_pit_min) * 100;
760 do_div(delta, tsc_ref_min);
763 * If both calibration results are inside a 10% window
764 * then we can be sure, that the calibration
765 * succeeded. We break out of the loop right away. We
766 * use the reference value, as it is more precise.
768 if (delta >= 90 && delta <= 110) {
769 pr_info("PIT calibration matches %s. %d loops\n",
770 hpet ? "HPET" : "PMTIMER", i + 1);
775 * Check whether PIT failed more than once. This
776 * happens in virtualized environments. We need to
777 * give the virtual PC a slightly longer timeframe for
778 * the HPET/PMTIMER to make the result precise.
780 if (i == 1 && tsc_pit_min == ULONG_MAX) {
783 loopmin = CAL2_PIT_LOOPS;
788 * Now check the results.
790 if (tsc_pit_min == ULONG_MAX) {
791 /* PIT gave no useful value */
792 pr_warn("Unable to calibrate against PIT\n");
794 /* We don't have an alternative source, disable TSC */
795 if (!hpet && !ref1 && !ref2) {
796 pr_notice("No reference (HPET/PMTIMER) available\n");
800 /* The alternative source failed as well, disable TSC */
801 if (tsc_ref_min == ULONG_MAX) {
802 pr_warn("HPET/PMTIMER calibration failed\n");
806 /* Use the alternative source */
807 pr_info("using %s reference calibration\n",
808 hpet ? "HPET" : "PMTIMER");
813 /* We don't have an alternative source, use the PIT calibration value */
814 if (!hpet && !ref1 && !ref2) {
815 pr_info("Using PIT calibration value\n");
819 /* The alternative source failed, use the PIT calibration value */
820 if (tsc_ref_min == ULONG_MAX) {
821 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
826 * The calibration values differ too much. In doubt, we use
827 * the PIT value as we know that there are PMTIMERs around
828 * running at double speed. At least we let the user know:
830 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
831 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
832 pr_info("Using PIT calibration value\n");
837 * native_calibrate_cpu_early - can calibrate the cpu early in boot
839 unsigned long native_calibrate_cpu_early(void)
841 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
844 fast_calibrate = cpu_khz_from_msr();
845 if (!fast_calibrate) {
846 local_irq_save(flags);
847 fast_calibrate = quick_pit_calibrate();
848 local_irq_restore(flags);
850 return fast_calibrate;
855 * native_calibrate_cpu - calibrate the cpu
857 unsigned long native_calibrate_cpu(void)
859 unsigned long tsc_freq = native_calibrate_cpu_early();
862 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
867 void recalibrate_cpu_khz(void)
870 unsigned long cpu_khz_old = cpu_khz;
872 if (!boot_cpu_has(X86_FEATURE_TSC))
875 cpu_khz = x86_platform.calibrate_cpu();
876 tsc_khz = x86_platform.calibrate_tsc();
879 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
881 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
882 cpu_khz_old, cpu_khz);
886 EXPORT_SYMBOL(recalibrate_cpu_khz);
889 static unsigned long long cyc2ns_suspend;
891 void tsc_save_sched_clock_state(void)
893 if (!sched_clock_stable())
896 cyc2ns_suspend = sched_clock();
900 * Even on processors with invariant TSC, TSC gets reset in some the
901 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
902 * arbitrary value (still sync'd across cpu's) during resume from such sleep
903 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
904 * that sched_clock() continues from the point where it was left off during
907 void tsc_restore_sched_clock_state(void)
909 unsigned long long offset;
913 if (!sched_clock_stable())
916 local_irq_save(flags);
919 * We're coming out of suspend, there's no concurrency yet; don't
920 * bother being nice about the RCU stuff, just write to both
924 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
925 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
927 offset = cyc2ns_suspend - sched_clock();
929 for_each_possible_cpu(cpu) {
930 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
931 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
934 local_irq_restore(flags);
937 #ifdef CONFIG_CPU_FREQ
938 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
941 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
942 * not that important because current Opteron setups do not support
943 * scaling on SMP anyroads.
945 * Should fix up last_tsc too. Currently gettimeofday in the
946 * first tick after the change will be slightly wrong.
949 static unsigned int ref_freq;
950 static unsigned long loops_per_jiffy_ref;
951 static unsigned long tsc_khz_ref;
953 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
956 struct cpufreq_freqs *freq = data;
959 lpj = &boot_cpu_data.loops_per_jiffy;
961 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
962 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
966 ref_freq = freq->old;
967 loops_per_jiffy_ref = *lpj;
968 tsc_khz_ref = tsc_khz;
970 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
971 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
972 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
974 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
975 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
976 mark_tsc_unstable("cpufreq changes");
978 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
984 static struct notifier_block time_cpufreq_notifier_block = {
985 .notifier_call = time_cpufreq_notifier
988 static int __init cpufreq_register_tsc_scaling(void)
990 if (!boot_cpu_has(X86_FEATURE_TSC))
992 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
994 cpufreq_register_notifier(&time_cpufreq_notifier_block,
995 CPUFREQ_TRANSITION_NOTIFIER);
999 core_initcall(cpufreq_register_tsc_scaling);
1001 #endif /* CONFIG_CPU_FREQ */
1003 #define ART_CPUID_LEAF (0x15)
1004 #define ART_MIN_DENOMINATOR (1)
1008 * If ART is present detect the numerator:denominator to convert to TSC
1010 static void __init detect_art(void)
1012 unsigned int unused[2];
1014 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1018 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1019 * and the TSC counter resets must not occur asynchronously.
1021 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1022 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1023 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1027 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1028 &art_to_tsc_numerator, unused, unused+1);
1030 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1033 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1035 /* Make this sticky over multiple CPU init calls */
1036 setup_force_cpu_cap(X86_FEATURE_ART);
1040 /* clocksource code */
1042 static void tsc_resume(struct clocksource *cs)
1044 tsc_verify_tsc_adjust(true);
1048 * We used to compare the TSC to the cycle_last value in the clocksource
1049 * structure to avoid a nasty time-warp. This can be observed in a
1050 * very small window right after one CPU updated cycle_last under
1051 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1052 * is smaller than the cycle_last reference value due to a TSC which
1053 * is slighty behind. This delta is nowhere else observable, but in
1054 * that case it results in a forward time jump in the range of hours
1055 * due to the unsigned delta calculation of the time keeping core
1056 * code, which is necessary to support wrapping clocksources like pm
1059 * This sanity check is now done in the core timekeeping code.
1060 * checking the result of read_tsc() - cycle_last for being negative.
1061 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1063 static u64 read_tsc(struct clocksource *cs)
1065 return (u64)rdtsc_ordered();
1068 static void tsc_cs_mark_unstable(struct clocksource *cs)
1074 if (using_native_sched_clock())
1075 clear_sched_clock_stable();
1076 disable_sched_clock_irqtime();
1077 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1080 static void tsc_cs_tick_stable(struct clocksource *cs)
1085 if (using_native_sched_clock())
1086 sched_clock_tick_stable();
1090 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1092 static struct clocksource clocksource_tsc_early = {
1093 .name = "tsc-early",
1096 .mask = CLOCKSOURCE_MASK(64),
1097 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1098 CLOCK_SOURCE_MUST_VERIFY,
1099 .archdata = { .vclock_mode = VCLOCK_TSC },
1100 .resume = tsc_resume,
1101 .mark_unstable = tsc_cs_mark_unstable,
1102 .tick_stable = tsc_cs_tick_stable,
1103 .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
1107 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1108 * this one will immediately take over. We will only register if TSC has
1111 static struct clocksource clocksource_tsc = {
1115 .mask = CLOCKSOURCE_MASK(64),
1116 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1117 CLOCK_SOURCE_VALID_FOR_HRES |
1118 CLOCK_SOURCE_MUST_VERIFY,
1119 .archdata = { .vclock_mode = VCLOCK_TSC },
1120 .resume = tsc_resume,
1121 .mark_unstable = tsc_cs_mark_unstable,
1122 .tick_stable = tsc_cs_tick_stable,
1123 .list = LIST_HEAD_INIT(clocksource_tsc.list),
1126 void mark_tsc_unstable(char *reason)
1132 if (using_native_sched_clock())
1133 clear_sched_clock_stable();
1134 disable_sched_clock_irqtime();
1135 pr_info("Marking TSC unstable due to %s\n", reason);
1137 clocksource_mark_unstable(&clocksource_tsc_early);
1138 clocksource_mark_unstable(&clocksource_tsc);
1141 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1143 static void __init check_system_tsc_reliable(void)
1145 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1146 if (is_geode_lx()) {
1147 /* RTSC counts during suspend */
1148 #define RTSC_SUSP 0x100
1149 unsigned long res_low, res_high;
1151 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1152 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1153 if (res_low & RTSC_SUSP)
1154 tsc_clocksource_reliable = 1;
1157 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1158 tsc_clocksource_reliable = 1;
1162 * Make an educated guess if the TSC is trustworthy and synchronized
1165 int unsynchronized_tsc(void)
1167 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1171 if (apic_is_clustered_box())
1175 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1178 if (tsc_clocksource_reliable)
1181 * Intel systems are normally all synchronized.
1182 * Exceptions must mark TSC as unstable:
1184 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1185 /* assume multi socket systems are not synchronized: */
1186 if (num_possible_cpus() > 1)
1194 * Convert ART to TSC given numerator/denominator found in detect_art()
1196 struct system_counterval_t convert_art_to_tsc(u64 art)
1200 rem = do_div(art, art_to_tsc_denominator);
1202 res = art * art_to_tsc_numerator;
1203 tmp = rem * art_to_tsc_numerator;
1205 do_div(tmp, art_to_tsc_denominator);
1206 res += tmp + art_to_tsc_offset;
1208 return (struct system_counterval_t) {.cs = art_related_clocksource,
1211 EXPORT_SYMBOL(convert_art_to_tsc);
1214 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1215 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1217 * PTM requires all timestamps to be in units of nanoseconds. When user
1218 * software requests a cross-timestamp, this function converts system timestamp
1221 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1222 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1223 * that this flag is set before conversion to TSC is attempted.
1226 * struct system_counterval_t - system counter value with the pointer to the
1227 * corresponding clocksource
1228 * @cycles: System counter value
1229 * @cs: Clocksource corresponding to system counter value. Used
1230 * by timekeeping code to verify comparibility of two cycle
1234 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1238 rem = do_div(art_ns, USEC_PER_SEC);
1240 res = art_ns * tsc_khz;
1241 tmp = rem * tsc_khz;
1243 do_div(tmp, USEC_PER_SEC);
1246 return (struct system_counterval_t) { .cs = art_related_clocksource,
1249 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1252 static void tsc_refine_calibration_work(struct work_struct *work);
1253 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1255 * tsc_refine_calibration_work - Further refine tsc freq calibration
1258 * This functions uses delayed work over a period of a
1259 * second to further refine the TSC freq value. Since this is
1260 * timer based, instead of loop based, we don't block the boot
1261 * process while this longer calibration is done.
1263 * If there are any calibration anomalies (too many SMIs, etc),
1264 * or the refined calibration is off by 1% of the fast early
1265 * calibration, we throw out the new calibration and use the
1266 * early calibration.
1268 static void tsc_refine_calibration_work(struct work_struct *work)
1270 static u64 tsc_start = -1, ref_start;
1272 u64 tsc_stop, ref_stop, delta;
1276 /* Don't bother refining TSC on unstable systems */
1281 * Since the work is started early in boot, we may be
1282 * delayed the first time we expire. So set the workqueue
1283 * again once we know timers are working.
1285 if (tsc_start == -1) {
1287 * Only set hpet once, to avoid mixing hardware
1288 * if the hpet becomes enabled later.
1290 hpet = is_hpet_enabled();
1291 schedule_delayed_work(&tsc_irqwork, HZ);
1292 tsc_start = tsc_read_refs(&ref_start, hpet);
1296 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1298 /* hpet or pmtimer available ? */
1299 if (ref_start == ref_stop)
1302 /* Check, whether the sampling was disturbed by an SMI */
1303 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1306 delta = tsc_stop - tsc_start;
1309 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1311 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1313 /* Make sure we're within 1% */
1314 if (abs(tsc_khz - freq) > tsc_khz/100)
1318 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1319 (unsigned long)tsc_khz / 1000,
1320 (unsigned long)tsc_khz % 1000);
1322 /* Inform the TSC deadline clockevent devices about the recalibration */
1323 lapic_update_tsc_freq();
1325 /* Update the sched_clock() rate to match the clocksource one */
1326 for_each_possible_cpu(cpu)
1327 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1333 if (boot_cpu_has(X86_FEATURE_ART))
1334 art_related_clocksource = &clocksource_tsc;
1335 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1337 clocksource_unregister(&clocksource_tsc_early);
1341 static int __init init_tsc_clocksource(void)
1343 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1349 if (tsc_clocksource_reliable)
1350 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1352 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1353 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1356 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1357 * the refined calibration and directly register it as a clocksource.
1359 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1360 if (boot_cpu_has(X86_FEATURE_ART))
1361 art_related_clocksource = &clocksource_tsc;
1362 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1364 clocksource_unregister(&clocksource_tsc_early);
1368 schedule_delayed_work(&tsc_irqwork, 0);
1372 * We use device_initcall here, to ensure we run after the hpet
1373 * is fully initialized, which may occur at fs_initcall time.
1375 device_initcall(init_tsc_clocksource);
1377 static bool __init determine_cpu_tsc_frequencies(void)
1379 /* Make sure that cpu and tsc are not already calibrated */
1380 WARN_ON(cpu_khz || tsc_khz);
1382 cpu_khz = x86_platform.calibrate_cpu();
1383 tsc_khz = x86_platform.calibrate_tsc();
1386 * Trust non-zero tsc_khz as authorative,
1387 * and use it to sanity check cpu_khz,
1388 * which will be off if system timer is off.
1392 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1398 pr_info("Detected %lu.%03lu MHz processor\n",
1399 (unsigned long)cpu_khz / KHZ,
1400 (unsigned long)cpu_khz % KHZ);
1402 if (cpu_khz != tsc_khz) {
1403 pr_info("Detected %lu.%03lu MHz TSC",
1404 (unsigned long)tsc_khz / KHZ,
1405 (unsigned long)tsc_khz % KHZ);
1410 static unsigned long __init get_loops_per_jiffy(void)
1412 unsigned long lpj = tsc_khz * KHZ;
1418 void __init tsc_early_init(void)
1420 if (!boot_cpu_has(X86_FEATURE_TSC))
1422 if (!determine_cpu_tsc_frequencies())
1424 loops_per_jiffy = get_loops_per_jiffy();
1426 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1427 tsc_store_and_check_tsc_adjust(true);
1428 cyc2ns_init_boot_cpu();
1429 static_branch_enable(&__use_tsc);
1432 void __init tsc_init(void)
1434 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1435 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1440 /* We failed to determine frequencies earlier, try again */
1441 if (!determine_cpu_tsc_frequencies()) {
1442 mark_tsc_unstable("could not calculate TSC khz");
1443 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1446 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1447 tsc_store_and_check_tsc_adjust(true);
1448 cyc2ns_init_boot_cpu();
1451 cyc2ns_init_secondary_cpus();
1452 static_branch_enable(&__use_tsc);
1454 if (!no_sched_irq_time)
1455 enable_sched_clock_irqtime();
1457 lpj_fine = get_loops_per_jiffy();
1460 check_system_tsc_reliable();
1462 if (unsynchronized_tsc()) {
1463 mark_tsc_unstable("TSCs unsynchronized");
1467 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1473 * If we have a constant TSC and are using the TSC for the delay loop,
1474 * we can skip clock calibration if another cpu in the same socket has already
1475 * been calibrated. This assumes that CONSTANT_TSC applies to all
1476 * cpus in the socket - this should be a safe assumption.
1478 unsigned long calibrate_delay_is_known(void)
1480 int sibling, cpu = smp_processor_id();
1481 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1482 const struct cpumask *mask = topology_core_cpumask(cpu);
1484 if (!constant_tsc || !mask)
1487 sibling = cpumask_any_but(mask, cpu);
1488 if (sibling < nr_cpu_ids)
1489 return cpu_data(sibling).loops_per_jiffy;