1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
30 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
31 EXPORT_SYMBOL(cpu_khz);
33 unsigned int __read_mostly tsc_khz;
34 EXPORT_SYMBOL(tsc_khz);
39 * TSC can be unstable due to cpufreq or due to unsynced TSCs
41 static int __read_mostly tsc_unstable;
43 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
45 int tsc_clocksource_reliable;
47 static u32 art_to_tsc_numerator;
48 static u32 art_to_tsc_denominator;
49 static u64 art_to_tsc_offset;
50 struct clocksource *art_related_clocksource;
53 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
54 seqcount_t seq; /* 32 + 4 = 36 */
56 }; /* fits one cacheline */
58 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
60 void cyc2ns_read_begin(struct cyc2ns_data *data)
64 preempt_disable_notrace();
67 seq = this_cpu_read(cyc2ns.seq.sequence);
70 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
71 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
72 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
74 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
77 void cyc2ns_read_end(void)
79 preempt_enable_notrace();
83 * Accelerators for sched_clock()
84 * convert from cycles(64bits) => nanoseconds (64bits)
86 * ns = cycles / (freq / ns_per_sec)
87 * ns = cycles * (ns_per_sec / freq)
88 * ns = cycles * (10^9 / (cpu_khz * 10^3))
89 * ns = cycles * (10^6 / cpu_khz)
91 * Then we use scaling math (suggested by george@mvista.com) to get:
92 * ns = cycles * (10^6 * SC / cpu_khz) / SC
93 * ns = cycles * cyc2ns_scale / SC
95 * And since SC is a constant power of two, we can convert the div
96 * into a shift. The larger SC is, the more accurate the conversion, but
97 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
98 * (64-bit result) can be used.
100 * We can use khz divisor instead of mhz to keep a better precision.
101 * (mathieu.desnoyers@polymtl.ca)
103 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
106 static void cyc2ns_data_init(struct cyc2ns_data *data)
108 data->cyc2ns_mul = 0;
109 data->cyc2ns_shift = 0;
110 data->cyc2ns_offset = 0;
113 static void __init cyc2ns_init(int cpu)
115 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
117 cyc2ns_data_init(&c2n->data[0]);
118 cyc2ns_data_init(&c2n->data[1]);
120 seqcount_init(&c2n->seq);
123 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
125 struct cyc2ns_data data;
126 unsigned long long ns;
128 cyc2ns_read_begin(&data);
130 ns = data.cyc2ns_offset;
131 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
138 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
140 unsigned long long ns_now;
141 struct cyc2ns_data data;
145 local_irq_save(flags);
146 sched_clock_idle_sleep_event();
151 ns_now = cycles_2_ns(tsc_now);
154 * Compute a new multiplier as per the above comment and ensure our
155 * time function is continuous; see the comment near struct
158 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
162 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
163 * not expected to be greater than 31 due to the original published
164 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
165 * value) - refer perf_event_mmap_page documentation in perf_event.h.
167 if (data.cyc2ns_shift == 32) {
168 data.cyc2ns_shift = 31;
169 data.cyc2ns_mul >>= 1;
172 data.cyc2ns_offset = ns_now -
173 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
175 c2n = per_cpu_ptr(&cyc2ns, cpu);
177 raw_write_seqcount_latch(&c2n->seq);
179 raw_write_seqcount_latch(&c2n->seq);
183 sched_clock_idle_wakeup_event();
184 local_irq_restore(flags);
188 * Scheduler clock - returns current time in nanosec units.
190 u64 native_sched_clock(void)
192 if (static_branch_likely(&__use_tsc)) {
193 u64 tsc_now = rdtsc();
195 /* return the value in ns */
196 return cycles_2_ns(tsc_now);
200 * Fall back to jiffies if there's no TSC available:
201 * ( But note that we still use it if the TSC is marked
202 * unstable. We do this because unlike Time Of Day,
203 * the scheduler clock tolerates small errors and it's
204 * very important for it to be as fast as the platform
208 /* No locking but a rare wrong value is not a big deal: */
209 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
213 * Generate a sched_clock if you already have a TSC value.
215 u64 native_sched_clock_from_tsc(u64 tsc)
217 return cycles_2_ns(tsc);
220 /* We need to define a real function for sched_clock, to override the
221 weak default version */
222 #ifdef CONFIG_PARAVIRT
223 unsigned long long sched_clock(void)
225 return paravirt_sched_clock();
228 bool using_native_sched_clock(void)
230 return pv_time_ops.sched_clock == native_sched_clock;
234 sched_clock(void) __attribute__((alias("native_sched_clock")));
236 bool using_native_sched_clock(void) { return true; }
239 int check_tsc_unstable(void)
243 EXPORT_SYMBOL_GPL(check_tsc_unstable);
245 #ifdef CONFIG_X86_TSC
246 int __init notsc_setup(char *str)
248 mark_tsc_unstable("boot parameter notsc");
253 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
256 int __init notsc_setup(char *str)
258 setup_clear_cpu_cap(X86_FEATURE_TSC);
263 __setup("notsc", notsc_setup);
265 static int no_sched_irq_time;
267 static int __init tsc_setup(char *str)
269 if (!strcmp(str, "reliable"))
270 tsc_clocksource_reliable = 1;
271 if (!strncmp(str, "noirqtime", 9))
272 no_sched_irq_time = 1;
273 if (!strcmp(str, "unstable"))
274 mark_tsc_unstable("boot parameter");
278 __setup("tsc=", tsc_setup);
280 #define MAX_RETRIES 5
281 #define SMI_TRESHOLD 50000
284 * Read TSC and the reference counters. Take care of SMI disturbance
286 static u64 tsc_read_refs(u64 *p, int hpet)
291 for (i = 0; i < MAX_RETRIES; i++) {
294 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
296 *p = acpi_pm_read_early();
298 if ((t2 - t1) < SMI_TRESHOLD)
305 * Calculate the TSC frequency from HPET reference
307 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
312 hpet2 += 0x100000000ULL;
314 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
315 do_div(tmp, 1000000);
316 deltatsc = div64_u64(deltatsc, tmp);
318 return (unsigned long) deltatsc;
322 * Calculate the TSC frequency from PMTimer reference
324 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
332 pm2 += (u64)ACPI_PM_OVRRUN;
334 tmp = pm2 * 1000000000LL;
335 do_div(tmp, PMTMR_TICKS_PER_SEC);
336 do_div(deltatsc, tmp);
338 return (unsigned long) deltatsc;
342 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
343 #define CAL_PIT_LOOPS 1000
346 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
347 #define CAL2_PIT_LOOPS 5000
351 * Try to calibrate the TSC against the Programmable
352 * Interrupt Timer and return the frequency of the TSC
355 * Return ULONG_MAX on failure to calibrate.
357 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
359 u64 tsc, t1, t2, delta;
360 unsigned long tscmin, tscmax;
363 if (!has_legacy_pic()) {
365 * Relies on tsc_early_delay_calibrate() to have given us semi
366 * usable udelay(), wait for the same 50ms we would have with
367 * the PIT loop below.
369 udelay(10 * USEC_PER_MSEC);
370 udelay(10 * USEC_PER_MSEC);
371 udelay(10 * USEC_PER_MSEC);
372 udelay(10 * USEC_PER_MSEC);
373 udelay(10 * USEC_PER_MSEC);
377 /* Set the Gate high, disable speaker */
378 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
381 * Setup CTC channel 2* for mode 0, (interrupt on terminal
382 * count mode), binary count. Set the latch register to 50ms
383 * (LSB then MSB) to begin countdown.
386 outb(latch & 0xff, 0x42);
387 outb(latch >> 8, 0x42);
389 tsc = t1 = t2 = get_cycles();
394 while ((inb(0x61) & 0x20) == 0) {
398 if ((unsigned long) delta < tscmin)
399 tscmin = (unsigned int) delta;
400 if ((unsigned long) delta > tscmax)
401 tscmax = (unsigned int) delta;
408 * If we were not able to read the PIT more than loopmin
409 * times, then we have been hit by a massive SMI
411 * If the maximum is 10 times larger than the minimum,
412 * then we got hit by an SMI as well.
414 if (pitcnt < loopmin || tscmax > 10 * tscmin)
417 /* Calculate the PIT value */
424 * This reads the current MSB of the PIT counter, and
425 * checks if we are running on sufficiently fast and
426 * non-virtualized hardware.
428 * Our expectations are:
430 * - the PIT is running at roughly 1.19MHz
432 * - each IO is going to take about 1us on real hardware,
433 * but we allow it to be much faster (by a factor of 10) or
434 * _slightly_ slower (ie we allow up to a 2us read+counter
435 * update - anything else implies a unacceptably slow CPU
436 * or PIT for the fast calibration to work.
438 * - with 256 PIT ticks to read the value, we have 214us to
439 * see the same MSB (and overhead like doing a single TSC
440 * read per MSB value etc).
442 * - We're doing 2 reads per loop (LSB, MSB), and we expect
443 * them each to take about a microsecond on real hardware.
444 * So we expect a count value of around 100. But we'll be
445 * generous, and accept anything over 50.
447 * - if the PIT is stuck, and we see *many* more reads, we
448 * return early (and the next caller of pit_expect_msb()
449 * then consider it a failure when they don't see the
450 * next expected value).
452 * These expectations mean that we know that we have seen the
453 * transition from one expected value to another with a fairly
454 * high accuracy, and we didn't miss any events. We can thus
455 * use the TSC value at the transitions to calculate a pretty
456 * good value for the TSC frequencty.
458 static inline int pit_verify_msb(unsigned char val)
462 return inb(0x42) == val;
465 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
468 u64 tsc = 0, prev_tsc = 0;
470 for (count = 0; count < 50000; count++) {
471 if (!pit_verify_msb(val))
476 *deltap = get_cycles() - prev_tsc;
480 * We require _some_ success, but the quality control
481 * will be based on the error terms on the TSC values.
487 * How many MSB values do we want to see? We aim for
488 * a maximum error rate of 500ppm (in practice the
489 * real error is much smaller), but refuse to spend
490 * more than 50ms on it.
492 #define MAX_QUICK_PIT_MS 50
493 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
495 static unsigned long quick_pit_calibrate(void)
499 unsigned long d1, d2;
501 if (!has_legacy_pic())
504 /* Set the Gate high, disable speaker */
505 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
508 * Counter 2, mode 0 (one-shot), binary count
510 * NOTE! Mode 2 decrements by two (and then the
511 * output is flipped each time, giving the same
512 * final output frequency as a decrement-by-one),
513 * so mode 0 is much better when looking at the
518 /* Start at 0xffff */
523 * The PIT starts counting at the next edge, so we
524 * need to delay for a microsecond. The easiest way
525 * to do that is to just read back the 16-bit counter
530 if (pit_expect_msb(0xff, &tsc, &d1)) {
531 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
532 if (!pit_expect_msb(0xff-i, &delta, &d2))
538 * Extrapolate the error and fail fast if the error will
539 * never be below 500 ppm.
542 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
546 * Iterate until the error is less than 500 ppm
548 if (d1+d2 >= delta >> 11)
552 * Check the PIT one more time to verify that
553 * all TSC reads were stable wrt the PIT.
555 * This also guarantees serialization of the
556 * last cycle read ('d2') in pit_expect_msb.
558 if (!pit_verify_msb(0xfe - i))
563 pr_info("Fast TSC calibration failed\n");
568 * Ok, if we get here, then we've seen the
569 * MSB of the PIT decrement 'i' times, and the
570 * error has shrunk to less than 500 ppm.
572 * As a result, we can depend on there not being
573 * any odd delays anywhere, and the TSC reads are
574 * reliable (within the error).
576 * kHz = ticks / time-in-seconds / 1000;
577 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
578 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
580 delta *= PIT_TICK_RATE;
581 do_div(delta, i*256*1000);
582 pr_info("Fast TSC calibration using PIT\n");
587 * native_calibrate_tsc
588 * Determine TSC frequency via CPUID, else return 0.
590 unsigned long native_calibrate_tsc(void)
592 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
593 unsigned int crystal_khz;
595 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
598 if (boot_cpu_data.cpuid_level < 0x15)
601 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
603 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
604 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
606 if (ebx_numerator == 0 || eax_denominator == 0)
609 crystal_khz = ecx_hz / 1000;
611 if (crystal_khz == 0) {
612 switch (boot_cpu_data.x86_model) {
613 case INTEL_FAM6_SKYLAKE_MOBILE:
614 case INTEL_FAM6_SKYLAKE_DESKTOP:
615 case INTEL_FAM6_KABYLAKE_MOBILE:
616 case INTEL_FAM6_KABYLAKE_DESKTOP:
617 crystal_khz = 24000; /* 24.0 MHz */
619 case INTEL_FAM6_ATOM_DENVERTON:
620 crystal_khz = 25000; /* 25.0 MHz */
622 case INTEL_FAM6_ATOM_GOLDMONT:
623 crystal_khz = 19200; /* 19.2 MHz */
628 if (crystal_khz == 0)
631 * TSC frequency determined by CPUID is a "hardware reported"
632 * frequency and is the most accurate one so far we have. This
633 * is considered a known frequency.
635 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
638 * For Atom SoCs TSC is the only reliable clocksource.
639 * Mark TSC reliable so no watchdog on it.
641 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
642 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
644 return crystal_khz * ebx_numerator / eax_denominator;
647 static unsigned long cpu_khz_from_cpuid(void)
649 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
651 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
654 if (boot_cpu_data.cpuid_level < 0x16)
657 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
659 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
661 return eax_base_mhz * 1000;
665 * native_calibrate_cpu - calibrate the cpu on boot
667 unsigned long native_calibrate_cpu(void)
669 u64 tsc1, tsc2, delta, ref1, ref2;
670 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
671 unsigned long flags, latch, ms, fast_calibrate;
672 int hpet = is_hpet_enabled(), i, loopmin;
674 fast_calibrate = cpu_khz_from_cpuid();
676 return fast_calibrate;
678 fast_calibrate = cpu_khz_from_msr();
680 return fast_calibrate;
682 local_irq_save(flags);
683 fast_calibrate = quick_pit_calibrate();
684 local_irq_restore(flags);
686 return fast_calibrate;
689 * Run 5 calibration loops to get the lowest frequency value
690 * (the best estimate). We use two different calibration modes
693 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
694 * load a timeout of 50ms. We read the time right after we
695 * started the timer and wait until the PIT count down reaches
696 * zero. In each wait loop iteration we read the TSC and check
697 * the delta to the previous read. We keep track of the min
698 * and max values of that delta. The delta is mostly defined
699 * by the IO time of the PIT access, so we can detect when a
700 * SMI/SMM disturbance happened between the two reads. If the
701 * maximum time is significantly larger than the minimum time,
702 * then we discard the result and have another try.
704 * 2) Reference counter. If available we use the HPET or the
705 * PMTIMER as a reference to check the sanity of that value.
706 * We use separate TSC readouts and check inside of the
707 * reference read for a SMI/SMM disturbance. We dicard
708 * disturbed values here as well. We do that around the PIT
709 * calibration delay loop as we have to wait for a certain
710 * amount of time anyway.
713 /* Preset PIT loop values */
716 loopmin = CAL_PIT_LOOPS;
718 for (i = 0; i < 3; i++) {
719 unsigned long tsc_pit_khz;
722 * Read the start value and the reference count of
723 * hpet/pmtimer when available. Then do the PIT
724 * calibration, which will take at least 50ms, and
725 * read the end value.
727 local_irq_save(flags);
728 tsc1 = tsc_read_refs(&ref1, hpet);
729 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
730 tsc2 = tsc_read_refs(&ref2, hpet);
731 local_irq_restore(flags);
733 /* Pick the lowest PIT TSC calibration so far */
734 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
736 /* hpet or pmtimer available ? */
740 /* Check, whether the sampling was disturbed by an SMI */
741 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
744 tsc2 = (tsc2 - tsc1) * 1000000LL;
746 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
748 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
750 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
752 /* Check the reference deviation */
753 delta = ((u64) tsc_pit_min) * 100;
754 do_div(delta, tsc_ref_min);
757 * If both calibration results are inside a 10% window
758 * then we can be sure, that the calibration
759 * succeeded. We break out of the loop right away. We
760 * use the reference value, as it is more precise.
762 if (delta >= 90 && delta <= 110) {
763 pr_info("PIT calibration matches %s. %d loops\n",
764 hpet ? "HPET" : "PMTIMER", i + 1);
769 * Check whether PIT failed more than once. This
770 * happens in virtualized environments. We need to
771 * give the virtual PC a slightly longer timeframe for
772 * the HPET/PMTIMER to make the result precise.
774 if (i == 1 && tsc_pit_min == ULONG_MAX) {
777 loopmin = CAL2_PIT_LOOPS;
782 * Now check the results.
784 if (tsc_pit_min == ULONG_MAX) {
785 /* PIT gave no useful value */
786 pr_warn("Unable to calibrate against PIT\n");
788 /* We don't have an alternative source, disable TSC */
789 if (!hpet && !ref1 && !ref2) {
790 pr_notice("No reference (HPET/PMTIMER) available\n");
794 /* The alternative source failed as well, disable TSC */
795 if (tsc_ref_min == ULONG_MAX) {
796 pr_warn("HPET/PMTIMER calibration failed\n");
800 /* Use the alternative source */
801 pr_info("using %s reference calibration\n",
802 hpet ? "HPET" : "PMTIMER");
807 /* We don't have an alternative source, use the PIT calibration value */
808 if (!hpet && !ref1 && !ref2) {
809 pr_info("Using PIT calibration value\n");
813 /* The alternative source failed, use the PIT calibration value */
814 if (tsc_ref_min == ULONG_MAX) {
815 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
820 * The calibration values differ too much. In doubt, we use
821 * the PIT value as we know that there are PMTIMERs around
822 * running at double speed. At least we let the user know:
824 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
825 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
826 pr_info("Using PIT calibration value\n");
830 void recalibrate_cpu_khz(void)
833 unsigned long cpu_khz_old = cpu_khz;
835 if (!boot_cpu_has(X86_FEATURE_TSC))
838 cpu_khz = x86_platform.calibrate_cpu();
839 tsc_khz = x86_platform.calibrate_tsc();
842 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
844 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
845 cpu_khz_old, cpu_khz);
849 EXPORT_SYMBOL(recalibrate_cpu_khz);
852 static unsigned long long cyc2ns_suspend;
854 void tsc_save_sched_clock_state(void)
856 if (!sched_clock_stable())
859 cyc2ns_suspend = sched_clock();
863 * Even on processors with invariant TSC, TSC gets reset in some the
864 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
865 * arbitrary value (still sync'd across cpu's) during resume from such sleep
866 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
867 * that sched_clock() continues from the point where it was left off during
870 void tsc_restore_sched_clock_state(void)
872 unsigned long long offset;
876 if (!sched_clock_stable())
879 local_irq_save(flags);
882 * We're coming out of suspend, there's no concurrency yet; don't
883 * bother being nice about the RCU stuff, just write to both
887 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
888 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
890 offset = cyc2ns_suspend - sched_clock();
892 for_each_possible_cpu(cpu) {
893 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
894 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
897 local_irq_restore(flags);
900 #ifdef CONFIG_CPU_FREQ
901 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
904 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
905 * not that important because current Opteron setups do not support
906 * scaling on SMP anyroads.
908 * Should fix up last_tsc too. Currently gettimeofday in the
909 * first tick after the change will be slightly wrong.
912 static unsigned int ref_freq;
913 static unsigned long loops_per_jiffy_ref;
914 static unsigned long tsc_khz_ref;
916 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
919 struct cpufreq_freqs *freq = data;
922 lpj = &boot_cpu_data.loops_per_jiffy;
924 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
925 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
929 ref_freq = freq->old;
930 loops_per_jiffy_ref = *lpj;
931 tsc_khz_ref = tsc_khz;
933 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
934 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
935 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
937 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
938 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
939 mark_tsc_unstable("cpufreq changes");
941 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
947 static struct notifier_block time_cpufreq_notifier_block = {
948 .notifier_call = time_cpufreq_notifier
951 static int __init cpufreq_register_tsc_scaling(void)
953 if (!boot_cpu_has(X86_FEATURE_TSC))
955 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
957 cpufreq_register_notifier(&time_cpufreq_notifier_block,
958 CPUFREQ_TRANSITION_NOTIFIER);
962 core_initcall(cpufreq_register_tsc_scaling);
964 #endif /* CONFIG_CPU_FREQ */
966 #define ART_CPUID_LEAF (0x15)
967 #define ART_MIN_DENOMINATOR (1)
971 * If ART is present detect the numerator:denominator to convert to TSC
973 static void __init detect_art(void)
975 unsigned int unused[2];
977 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
981 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
982 * and the TSC counter resets must not occur asynchronously.
984 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
985 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
986 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
990 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
991 &art_to_tsc_numerator, unused, unused+1);
993 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
996 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
998 /* Make this sticky over multiple CPU init calls */
999 setup_force_cpu_cap(X86_FEATURE_ART);
1003 /* clocksource code */
1005 static void tsc_resume(struct clocksource *cs)
1007 tsc_verify_tsc_adjust(true);
1011 * We used to compare the TSC to the cycle_last value in the clocksource
1012 * structure to avoid a nasty time-warp. This can be observed in a
1013 * very small window right after one CPU updated cycle_last under
1014 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1015 * is smaller than the cycle_last reference value due to a TSC which
1016 * is slighty behind. This delta is nowhere else observable, but in
1017 * that case it results in a forward time jump in the range of hours
1018 * due to the unsigned delta calculation of the time keeping core
1019 * code, which is necessary to support wrapping clocksources like pm
1022 * This sanity check is now done in the core timekeeping code.
1023 * checking the result of read_tsc() - cycle_last for being negative.
1024 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1026 static u64 read_tsc(struct clocksource *cs)
1028 return (u64)rdtsc_ordered();
1031 static void tsc_cs_mark_unstable(struct clocksource *cs)
1037 if (using_native_sched_clock())
1038 clear_sched_clock_stable();
1039 disable_sched_clock_irqtime();
1040 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1043 static void tsc_cs_tick_stable(struct clocksource *cs)
1048 if (using_native_sched_clock())
1049 sched_clock_tick_stable();
1053 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1055 static struct clocksource clocksource_tsc_early = {
1056 .name = "tsc-early",
1059 .mask = CLOCKSOURCE_MASK(64),
1060 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1061 CLOCK_SOURCE_MUST_VERIFY,
1062 .archdata = { .vclock_mode = VCLOCK_TSC },
1063 .resume = tsc_resume,
1064 .mark_unstable = tsc_cs_mark_unstable,
1065 .tick_stable = tsc_cs_tick_stable,
1066 .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
1070 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1071 * this one will immediately take over. We will only register if TSC has
1074 static struct clocksource clocksource_tsc = {
1078 .mask = CLOCKSOURCE_MASK(64),
1079 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1080 CLOCK_SOURCE_VALID_FOR_HRES |
1081 CLOCK_SOURCE_MUST_VERIFY,
1082 .archdata = { .vclock_mode = VCLOCK_TSC },
1083 .resume = tsc_resume,
1084 .mark_unstable = tsc_cs_mark_unstable,
1085 .tick_stable = tsc_cs_tick_stable,
1086 .list = LIST_HEAD_INIT(clocksource_tsc.list),
1089 void mark_tsc_unstable(char *reason)
1095 if (using_native_sched_clock())
1096 clear_sched_clock_stable();
1097 disable_sched_clock_irqtime();
1098 pr_info("Marking TSC unstable due to %s\n", reason);
1100 clocksource_mark_unstable(&clocksource_tsc_early);
1101 clocksource_mark_unstable(&clocksource_tsc);
1104 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1106 static void __init check_system_tsc_reliable(void)
1108 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1109 if (is_geode_lx()) {
1110 /* RTSC counts during suspend */
1111 #define RTSC_SUSP 0x100
1112 unsigned long res_low, res_high;
1114 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1115 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1116 if (res_low & RTSC_SUSP)
1117 tsc_clocksource_reliable = 1;
1120 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1121 tsc_clocksource_reliable = 1;
1125 * Make an educated guess if the TSC is trustworthy and synchronized
1128 int unsynchronized_tsc(void)
1130 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1134 if (apic_is_clustered_box())
1138 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1141 if (tsc_clocksource_reliable)
1144 * Intel systems are normally all synchronized.
1145 * Exceptions must mark TSC as unstable:
1147 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1148 /* assume multi socket systems are not synchronized: */
1149 if (num_possible_cpus() > 1)
1157 * Convert ART to TSC given numerator/denominator found in detect_art()
1159 struct system_counterval_t convert_art_to_tsc(u64 art)
1163 rem = do_div(art, art_to_tsc_denominator);
1165 res = art * art_to_tsc_numerator;
1166 tmp = rem * art_to_tsc_numerator;
1168 do_div(tmp, art_to_tsc_denominator);
1169 res += tmp + art_to_tsc_offset;
1171 return (struct system_counterval_t) {.cs = art_related_clocksource,
1174 EXPORT_SYMBOL(convert_art_to_tsc);
1177 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1178 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1180 * PTM requires all timestamps to be in units of nanoseconds. When user
1181 * software requests a cross-timestamp, this function converts system timestamp
1184 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1185 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1186 * that this flag is set before conversion to TSC is attempted.
1189 * struct system_counterval_t - system counter value with the pointer to the
1190 * corresponding clocksource
1191 * @cycles: System counter value
1192 * @cs: Clocksource corresponding to system counter value. Used
1193 * by timekeeping code to verify comparibility of two cycle
1197 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1201 rem = do_div(art_ns, USEC_PER_SEC);
1203 res = art_ns * tsc_khz;
1204 tmp = rem * tsc_khz;
1206 do_div(tmp, USEC_PER_SEC);
1209 return (struct system_counterval_t) { .cs = art_related_clocksource,
1212 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1215 static void tsc_refine_calibration_work(struct work_struct *work);
1216 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1218 * tsc_refine_calibration_work - Further refine tsc freq calibration
1221 * This functions uses delayed work over a period of a
1222 * second to further refine the TSC freq value. Since this is
1223 * timer based, instead of loop based, we don't block the boot
1224 * process while this longer calibration is done.
1226 * If there are any calibration anomalies (too many SMIs, etc),
1227 * or the refined calibration is off by 1% of the fast early
1228 * calibration, we throw out the new calibration and use the
1229 * early calibration.
1231 static void tsc_refine_calibration_work(struct work_struct *work)
1233 static u64 tsc_start = -1, ref_start;
1235 u64 tsc_stop, ref_stop, delta;
1239 /* Don't bother refining TSC on unstable systems */
1244 * Since the work is started early in boot, we may be
1245 * delayed the first time we expire. So set the workqueue
1246 * again once we know timers are working.
1248 if (tsc_start == -1) {
1250 * Only set hpet once, to avoid mixing hardware
1251 * if the hpet becomes enabled later.
1253 hpet = is_hpet_enabled();
1254 schedule_delayed_work(&tsc_irqwork, HZ);
1255 tsc_start = tsc_read_refs(&ref_start, hpet);
1259 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1261 /* hpet or pmtimer available ? */
1262 if (ref_start == ref_stop)
1265 /* Check, whether the sampling was disturbed by an SMI */
1266 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1269 delta = tsc_stop - tsc_start;
1272 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1274 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1276 /* Make sure we're within 1% */
1277 if (abs(tsc_khz - freq) > tsc_khz/100)
1281 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1282 (unsigned long)tsc_khz / 1000,
1283 (unsigned long)tsc_khz % 1000);
1285 /* Inform the TSC deadline clockevent devices about the recalibration */
1286 lapic_update_tsc_freq();
1288 /* Update the sched_clock() rate to match the clocksource one */
1289 for_each_possible_cpu(cpu)
1290 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1296 if (boot_cpu_has(X86_FEATURE_ART))
1297 art_related_clocksource = &clocksource_tsc;
1298 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1300 clocksource_unregister(&clocksource_tsc_early);
1304 static int __init init_tsc_clocksource(void)
1306 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1312 if (tsc_clocksource_reliable)
1313 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1315 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1316 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1319 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1320 * the refined calibration and directly register it as a clocksource.
1322 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1323 if (boot_cpu_has(X86_FEATURE_ART))
1324 art_related_clocksource = &clocksource_tsc;
1325 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1327 clocksource_unregister(&clocksource_tsc_early);
1331 schedule_delayed_work(&tsc_irqwork, 0);
1335 * We use device_initcall here, to ensure we run after the hpet
1336 * is fully initialized, which may occur at fs_initcall time.
1338 device_initcall(init_tsc_clocksource);
1340 static bool __init determine_cpu_tsc_frequencies(void)
1342 /* Make sure that cpu and tsc are not already calibrated */
1343 WARN_ON(cpu_khz || tsc_khz);
1345 cpu_khz = x86_platform.calibrate_cpu();
1346 tsc_khz = x86_platform.calibrate_tsc();
1349 * Trust non-zero tsc_khz as authorative,
1350 * and use it to sanity check cpu_khz,
1351 * which will be off if system timer is off.
1355 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1361 pr_info("Detected %lu.%03lu MHz processor\n",
1362 (unsigned long)cpu_khz / KHZ,
1363 (unsigned long)cpu_khz % KHZ);
1365 if (cpu_khz != tsc_khz) {
1366 pr_info("Detected %lu.%03lu MHz TSC",
1367 (unsigned long)tsc_khz / KHZ,
1368 (unsigned long)tsc_khz % KHZ);
1373 static unsigned long __init get_loops_per_jiffy(void)
1375 unsigned long lpj = tsc_khz * KHZ;
1381 void __init tsc_early_init(void)
1383 if (!boot_cpu_has(X86_FEATURE_TSC))
1385 if (!determine_cpu_tsc_frequencies())
1387 loops_per_jiffy = get_loops_per_jiffy();
1390 void __init tsc_init(void)
1392 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1393 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1398 /* We failed to determine frequencies earlier, try again */
1399 if (!determine_cpu_tsc_frequencies()) {
1400 mark_tsc_unstable("could not calculate TSC khz");
1401 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1406 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1407 tsc_store_and_check_tsc_adjust(true);
1410 * Secondary CPUs do not run through tsc_init(), so set up
1411 * all the scale factors for all CPUs, assuming the same
1412 * speed as the bootup CPU. (cpufreq notifiers will fix this
1413 * up if their speed diverges)
1416 for_each_possible_cpu(cpu) {
1418 set_cyc2ns_scale(tsc_khz, cpu, cyc);
1421 static_branch_enable(&__use_tsc);
1423 if (!no_sched_irq_time)
1424 enable_sched_clock_irqtime();
1426 lpj_fine = get_loops_per_jiffy();
1429 check_system_tsc_reliable();
1431 if (unsynchronized_tsc()) {
1432 mark_tsc_unstable("TSCs unsynchronized");
1436 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1442 * If we have a constant TSC and are using the TSC for the delay loop,
1443 * we can skip clock calibration if another cpu in the same socket has already
1444 * been calibrated. This assumes that CONSTANT_TSC applies to all
1445 * cpus in the socket - this should be a safe assumption.
1447 unsigned long calibrate_delay_is_known(void)
1449 int sibling, cpu = smp_processor_id();
1450 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1451 const struct cpumask *mask = topology_core_cpumask(cpu);
1453 if (!constant_tsc || !mask)
1456 sibling = cpumask_any_but(mask, cpu);
1457 if (sibling < nr_cpu_ids)
1458 return cpu_data(sibling).loops_per_jiffy;