2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
38 #include <linux/smp.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/text-patching.h>
47 #include <asm/ftrace.h>
48 #include <asm/traps.h>
50 #include <asm/fpu/internal.h>
52 #include <asm/cpu_entry_area.h>
54 #include <asm/fixmap.h>
55 #include <asm/mach_traps.h>
56 #include <asm/alternative.h>
57 #include <asm/fpu/xstate.h>
61 #include <asm/insn-eval.h>
64 #include <asm/x86_init.h>
65 #include <asm/pgalloc.h>
66 #include <asm/proto.h>
68 #include <asm/processor-flags.h>
69 #include <asm/setup.h>
70 #include <asm/proto.h>
73 DECLARE_BITMAP(system_vectors, NR_VECTORS);
75 static inline void cond_local_irq_enable(struct pt_regs *regs)
77 if (regs->flags & X86_EFLAGS_IF)
81 static inline void cond_local_irq_disable(struct pt_regs *regs)
83 if (regs->flags & X86_EFLAGS_IF)
87 int is_valid_bugaddr(unsigned long addr)
91 if (addr < TASK_SIZE_MAX)
94 if (get_kernel_nofault(ud, (unsigned short *)addr))
97 return ud == INSN_UD0 || ud == INSN_UD2;
100 static nokprobe_inline int
101 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
102 struct pt_regs *regs, long error_code)
104 if (v8086_mode(regs)) {
106 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
107 * On nmi (interrupt 2), do_trap should not be called.
109 if (trapnr < X86_TRAP_UD) {
110 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
114 } else if (!user_mode(regs)) {
115 if (fixup_exception(regs, trapnr, error_code, 0))
118 tsk->thread.error_code = error_code;
119 tsk->thread.trap_nr = trapnr;
120 die(str, regs, error_code);
124 * We want error_code and trap_nr set for userspace faults and
125 * kernelspace faults which result in die(), but not
126 * kernelspace faults which are fixed up. die() gives the
127 * process no chance to handle the signal and notice the
128 * kernel fault information, so that won't result in polluting
129 * the information about previously queued, but not yet
130 * delivered, faults. See also exc_general_protection below.
132 tsk->thread.error_code = error_code;
133 tsk->thread.trap_nr = trapnr;
138 static void show_signal(struct task_struct *tsk, int signr,
139 const char *type, const char *desc,
140 struct pt_regs *regs, long error_code)
142 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
143 printk_ratelimit()) {
144 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
145 tsk->comm, task_pid_nr(tsk), type, desc,
146 regs->ip, regs->sp, error_code);
147 print_vma_addr(KERN_CONT " in ", regs->ip);
153 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
154 long error_code, int sicode, void __user *addr)
156 struct task_struct *tsk = current;
158 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
161 show_signal(tsk, signr, "trap ", str, regs, error_code);
166 force_sig_fault(signr, sicode, addr);
168 NOKPROBE_SYMBOL(do_trap);
170 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
171 unsigned long trapnr, int signr, int sicode, void __user *addr)
173 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
175 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
177 cond_local_irq_enable(regs);
178 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
179 cond_local_irq_disable(regs);
184 * Posix requires to provide the address of the faulting instruction for
185 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
187 * This address is usually regs->ip, but when an uprobe moved the code out
188 * of line then regs->ip points to the XOL code which would confuse
189 * anything which analyzes the fault address vs. the unmodified binary. If
190 * a trap happened in XOL code then uprobe maps regs->ip back to the
191 * original instruction address.
193 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
195 return (void __user *)uprobe_get_trap_addr(regs);
198 DEFINE_IDTENTRY(exc_divide_error)
200 do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
201 FPE_INTDIV, error_get_trap_addr(regs));
204 DEFINE_IDTENTRY(exc_overflow)
206 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
209 #ifdef CONFIG_X86_F00F_BUG
210 void handle_invalid_op(struct pt_regs *regs)
212 static inline void handle_invalid_op(struct pt_regs *regs)
215 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
216 ILL_ILLOPN, error_get_trap_addr(regs));
219 DEFINE_IDTENTRY_RAW(exc_invalid_op)
224 * Handle BUG/WARN like NMIs instead of like normal idtentries:
225 * if we bugged/warned in a bad RCU context, for example, the last
226 * thing we want is to BUG/WARN again in the idtentry code, ad
229 if (!user_mode(regs) && is_valid_bugaddr(regs->ip)) {
230 enum bug_trap_type type;
233 instrumentation_begin();
234 trace_hardirqs_off_finish();
235 type = report_bug(regs->ip, regs);
236 if (regs->flags & X86_EFLAGS_IF)
237 trace_hardirqs_on_prepare();
238 instrumentation_end();
241 if (type == BUG_TRAP_TYPE_WARN) {
248 * Else, if this was a BUG and report_bug returns or if this
249 * was just a normal #UD, we want to continue onward and
254 rcu_exit = idtentry_enter_cond_rcu(regs);
255 instrumentation_begin();
256 handle_invalid_op(regs);
257 instrumentation_end();
258 idtentry_exit_cond_rcu(regs, rcu_exit);
261 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
263 do_error_trap(regs, 0, "coprocessor segment overrun",
264 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
267 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
269 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
273 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
275 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
279 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
281 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
285 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
287 char *str = "alignment check";
289 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
292 if (!user_mode(regs))
293 die("Split lock detected\n", regs, error_code);
297 if (handle_user_split_lock(regs, error_code))
300 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
301 error_code, BUS_ADRALN, NULL);
304 #ifdef CONFIG_VMAP_STACK
305 __visible void __noreturn handle_stack_overflow(const char *message,
306 struct pt_regs *regs,
307 unsigned long fault_address)
309 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
310 (void *)fault_address, current->stack,
311 (char *)current->stack + THREAD_SIZE - 1);
312 die(message, regs, 0);
314 /* Be absolutely certain we don't return. */
315 panic("%s", message);
320 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
322 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
323 * SDM's warnings about double faults being unrecoverable, returning works as
324 * expected. Presumably what the SDM actually means is that the CPU may get
325 * the register state wrong on entry, so returning could be a bad idea.
327 * Various CPU engineers have promised that double faults due to an IRET fault
328 * while the stack is read-only are, in fact, recoverable.
330 * On x86_32, this is entered through a task gate, and regs are synthesized
331 * from the TSS. Returning is, in principle, okay, but changes to regs will
332 * be lost. If, for some reason, we need to return to a context with modified
333 * regs, the shim code could be adjusted to synchronize the registers.
335 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
336 * to be read before doing anything else.
338 DEFINE_IDTENTRY_DF(exc_double_fault)
340 static const char str[] = "double fault";
341 struct task_struct *tsk = current;
343 #ifdef CONFIG_VMAP_STACK
344 unsigned long address = read_cr2();
347 #ifdef CONFIG_X86_ESPFIX64
348 extern unsigned char native_irq_return_iret[];
351 * If IRET takes a non-IST fault on the espfix64 stack, then we
352 * end up promoting it to a doublefault. In that case, take
353 * advantage of the fact that we're not using the normal (TSS.sp0)
354 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
355 * and then modify our own IRET frame so that, when we return,
356 * we land directly at the #GP(0) vector with the stack already
357 * set up according to its expectations.
359 * The net result is that our #GP handler will think that we
360 * entered from usermode with the bad user context.
362 * No need for nmi_enter() here because we don't use RCU.
364 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
365 regs->cs == __KERNEL_CS &&
366 regs->ip == (unsigned long)native_irq_return_iret)
368 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
369 unsigned long *p = (unsigned long *)regs->sp;
372 * regs->sp points to the failing IRET frame on the
373 * ESPFIX64 stack. Copy it to the entry stack. This fills
374 * in gpregs->ss through gpregs->ip.
379 gpregs->flags = p[2];
382 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
385 * Adjust our frame so that we return straight to the #GP
386 * vector with the expected RSP value. This is safe because
387 * we won't enable interupts or schedule before we invoke
388 * general_protection, so nothing will clobber the stack
389 * frame we just set up.
391 * We will enter general_protection with kernel GSBASE,
392 * which is what the stub expects, given that the faulting
393 * RIP will be the IRET instruction.
395 regs->ip = (unsigned long)asm_exc_general_protection;
396 regs->sp = (unsigned long)&gpregs->orig_ax;
403 instrumentation_begin();
404 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
406 tsk->thread.error_code = error_code;
407 tsk->thread.trap_nr = X86_TRAP_DF;
409 #ifdef CONFIG_VMAP_STACK
411 * If we overflow the stack into a guard page, the CPU will fail
412 * to deliver #PF and will send #DF instead. Similarly, if we
413 * take any non-IST exception while too close to the bottom of
414 * the stack, the processor will get a page fault while
415 * delivering the exception and will generate a double fault.
417 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
418 * Page-Fault Exception (#PF):
420 * Processors update CR2 whenever a page fault is detected. If a
421 * second page fault occurs while an earlier page fault is being
422 * delivered, the faulting linear address of the second fault will
423 * overwrite the contents of CR2 (replacing the previous
424 * address). These updates to CR2 occur even if the page fault
425 * results in a double fault or occurs during the delivery of a
428 * The logic below has a small possibility of incorrectly diagnosing
429 * some errors as stack overflows. For example, if the IDT or GDT
430 * gets corrupted such that #GP delivery fails due to a bad descriptor
431 * causing #GP and we hit this condition while CR2 coincidentally
432 * points to the stack guard page, we'll think we overflowed the
433 * stack. Given that we're going to panic one way or another
434 * if this happens, this isn't necessarily worth fixing.
436 * If necessary, we could improve the test by only diagnosing
437 * a stack overflow if the saved RSP points within 47 bytes of
438 * the bottom of the stack: if RSP == tsk_stack + 48 and we
439 * take an exception, the stack is already aligned and there
440 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
441 * possible error code, so a stack overflow would *not* double
442 * fault. With any less space left, exception delivery could
443 * fail, and, as a practical matter, we've overflowed the
444 * stack even if the actual trigger for the double fault was
447 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
448 handle_stack_overflow("kernel stack overflow (double-fault)",
453 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
454 die("double fault", regs, error_code);
455 panic("Machine halted.");
456 instrumentation_end();
459 DEFINE_IDTENTRY(exc_bounds)
461 if (notify_die(DIE_TRAP, "bounds", regs, 0,
462 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
464 cond_local_irq_enable(regs);
466 if (!user_mode(regs))
467 die("bounds", regs, 0);
469 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
471 cond_local_irq_disable(regs);
474 enum kernel_gp_hint {
481 * When an uncaught #GP occurs, try to determine the memory address accessed by
482 * the instruction and return that address to the caller. Also, try to figure
483 * out whether any part of the access to that address was non-canonical.
485 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
488 u8 insn_buf[MAX_INSN_SIZE];
491 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
495 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
496 insn_get_modrm(&insn);
499 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
506 * - the operand is not in the kernel half
507 * - the last byte of the operand is not in the user canonical half
509 if (*addr < ~__VIRTUAL_MASK &&
510 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
511 return GP_NON_CANONICAL;
517 #define GPFSTR "general protection fault"
519 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
521 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
522 enum kernel_gp_hint hint = GP_NO_HINT;
523 struct task_struct *tsk;
524 unsigned long gp_addr;
527 cond_local_irq_enable(regs);
529 if (static_cpu_has(X86_FEATURE_UMIP)) {
530 if (user_mode(regs) && fixup_umip_exception(regs))
534 if (v8086_mode(regs)) {
536 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
543 if (user_mode(regs)) {
544 tsk->thread.error_code = error_code;
545 tsk->thread.trap_nr = X86_TRAP_GP;
547 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
552 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
555 tsk->thread.error_code = error_code;
556 tsk->thread.trap_nr = X86_TRAP_GP;
559 * To be potentially processing a kprobe fault and to trust the result
560 * from kprobe_running(), we have to be non-preemptible.
562 if (!preemptible() &&
564 kprobe_fault_handler(regs, X86_TRAP_GP))
567 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
568 if (ret == NOTIFY_STOP)
572 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
574 hint = get_kernel_gp_address(regs, &gp_addr);
576 if (hint != GP_NO_HINT)
577 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
578 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
579 : "maybe for address",
583 * KASAN is interested only in the non-canonical case, clear it
586 if (hint != GP_NON_CANONICAL)
589 die_addr(desc, regs, error_code, gp_addr);
592 cond_local_irq_disable(regs);
595 static bool do_int3(struct pt_regs *regs)
599 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
600 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
601 SIGTRAP) == NOTIFY_STOP)
603 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
605 #ifdef CONFIG_KPROBES
606 if (kprobe_int3_handler(regs))
609 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
611 return res == NOTIFY_STOP;
614 static void do_int3_user(struct pt_regs *regs)
619 cond_local_irq_enable(regs);
620 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
621 cond_local_irq_disable(regs);
624 DEFINE_IDTENTRY_RAW(exc_int3)
627 * poke_int3_handler() is completely self contained code; it does (and
628 * must) *NOT* call out to anything, lest it hits upon yet another
631 if (poke_int3_handler(regs))
635 * idtentry_enter_user() uses static_branch_{,un}likely() and therefore
636 * can trigger INT3, hence poke_int3_handler() must be done
637 * before. If the entry came from kernel mode, then use nmi_enter()
638 * because the INT3 could have been hit in any context including
641 if (user_mode(regs)) {
642 idtentry_enter_user(regs);
643 instrumentation_begin();
645 instrumentation_end();
646 idtentry_exit_user(regs);
649 instrumentation_begin();
650 trace_hardirqs_off_finish();
652 die("int3", regs, 0);
653 if (regs->flags & X86_EFLAGS_IF)
654 trace_hardirqs_on_prepare();
655 instrumentation_end();
662 * Help handler running on a per-cpu (IST or entry trampoline) stack
663 * to switch to the normal thread stack if the interrupted code was in
664 * user mode. The actual stack switch is done in entry_64.S
666 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
668 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
674 struct bad_iret_stack {
675 void *error_entry_ret;
679 asmlinkage __visible noinstr
680 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
683 * This is called from entry_64.S early in handling a fault
684 * caused by a bad iret to user mode. To handle the fault
685 * correctly, we want to move our stack frame to where it would
686 * be had we entered directly on the entry stack (rather than
687 * just below the IRET frame) and we want to pretend that the
688 * exception came from the IRET target.
690 struct bad_iret_stack tmp, *new_stack =
691 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
693 /* Copy the IRET target to the temporary storage. */
694 memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
696 /* Copy the remainder of the stack from the current stack. */
697 memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
699 /* Update the entry stack */
700 memcpy(new_stack, &tmp, sizeof(tmp));
702 BUG_ON(!user_mode(&new_stack->regs));
707 static bool is_sysenter_singlestep(struct pt_regs *regs)
710 * We don't try for precision here. If we're anywhere in the region of
711 * code that can be single-stepped in the SYSENTER entry path, then
712 * assume that this is a useless single-step trap due to SYSENTER
713 * being invoked with TF set. (We don't know in advance exactly
714 * which instructions will be hit because BTF could plausibly
718 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
719 (unsigned long)__end_SYSENTER_singlestep_region -
720 (unsigned long)__begin_SYSENTER_singlestep_region;
721 #elif defined(CONFIG_IA32_EMULATION)
722 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
723 (unsigned long)__end_entry_SYSENTER_compat -
724 (unsigned long)entry_SYSENTER_compat;
730 static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7)
733 * Disable breakpoints during exception handling; recursive exceptions
734 * are exceedingly 'fun'.
736 * Since this function is NOKPROBE, and that also applies to
737 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
738 * HW_BREAKPOINT_W on our stack)
740 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
741 * includes the entry stack is excluded for everything.
743 *dr7 = local_db_save();
746 * The Intel SDM says:
748 * Certain debug exceptions may clear bits 0-3. The remaining
749 * contents of the DR6 register are never cleared by the
750 * processor. To avoid confusion in identifying debug
751 * exceptions, debug handlers should clear the register before
752 * returning to the interrupted task.
754 * Keep it simple: clear DR6 immediately.
756 get_debugreg(*dr6, 6);
758 /* Filter out all the reserved bits which are preset to 1 */
759 *dr6 &= ~DR6_RESERVED;
762 static __always_inline void debug_exit(unsigned long dr7)
764 local_db_restore(dr7);
768 * Our handling of the processor debug registers is non-trivial.
769 * We do not clear them on entry and exit from the kernel. Therefore
770 * it is possible to get a watchpoint trap here from inside the kernel.
771 * However, the code in ./ptrace.c has ensured that the user can
772 * only set watchpoints on userspace addresses. Therefore the in-kernel
773 * watchpoint trap can only occur in code which is reading/writing
774 * from user space. Such code must not hold kernel locks (since it
775 * can equally take a page fault), therefore it is safe to call
776 * force_sig_info even though that claims and releases locks.
778 * Code in ./signal.c ensures that the debug control register
779 * is restored before we deliver any signal, and therefore that
780 * user code runs with the correct debug control register even though
783 * Being careful here means that we don't have to be as careful in a
784 * lot of more complicated places (task switching can be a bit lazy
785 * about restoring all the debug state, and ptrace doesn't have to
786 * find every occurrence of the TF bit that could be saved away even
789 * May run on IST stack.
791 static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user)
793 struct task_struct *tsk = current;
798 * The SDM says "The processor clears the BTF flag when it
799 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
800 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
802 clear_thread_flag(TIF_BLOCKSTEP);
805 * If DR6 is zero, no point in trying to handle it. The kernel is
812 * If dr6 has no reason to give us about the origin of this trap,
813 * then it's very likely the result of an icebp/int01 trap.
814 * User wants a sigtrap for that.
816 user_icebp = user && !dr6;
818 /* Store the virtualized DR6 value */
819 tsk->thread.debugreg6 = dr6;
821 #ifdef CONFIG_KPROBES
822 if (kprobe_debug_handler(regs)) {
827 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
828 SIGTRAP) == NOTIFY_STOP) {
832 /* It's safe to allow irq's after DR6 has been saved */
833 cond_local_irq_enable(regs);
835 if (v8086_mode(regs)) {
836 handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
841 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
843 * Historical junk that used to handle SYSENTER single-stepping.
844 * This should be unreachable now. If we survive for a while
845 * without anyone hitting this warning, we'll turn this into
848 tsk->thread.debugreg6 &= ~DR_STEP;
849 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
850 regs->flags &= ~X86_EFLAGS_TF;
853 si_code = get_si_code(tsk->thread.debugreg6);
854 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
855 send_sigtrap(regs, 0, si_code);
858 cond_local_irq_disable(regs);
861 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
865 instrumentation_begin();
866 trace_hardirqs_off_finish();
869 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
870 * watchpoint at the same time then that will still be handled.
872 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
875 handle_debug(regs, dr6, false);
877 if (regs->flags & X86_EFLAGS_IF)
878 trace_hardirqs_on_prepare();
879 instrumentation_end();
883 static __always_inline void exc_debug_user(struct pt_regs *regs,
886 idtentry_enter_user(regs);
887 instrumentation_begin();
889 handle_debug(regs, dr6, true);
890 instrumentation_end();
891 idtentry_exit_user(regs);
895 /* IST stack entry */
896 DEFINE_IDTENTRY_DEBUG(exc_debug)
898 unsigned long dr6, dr7;
900 debug_enter(&dr6, &dr7);
901 exc_debug_kernel(regs, dr6);
905 /* User entry, runs on regular task stack */
906 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
908 unsigned long dr6, dr7;
910 debug_enter(&dr6, &dr7);
911 exc_debug_user(regs, dr6);
915 /* 32 bit does not have separate entry points. */
916 DEFINE_IDTENTRY_DEBUG(exc_debug)
918 unsigned long dr6, dr7;
920 debug_enter(&dr6, &dr7);
923 exc_debug_user(regs, dr6);
925 exc_debug_kernel(regs, dr6);
932 * Note that we play around with the 'TS' bit in an attempt to get
933 * the correct behaviour even in the presence of the asynchronous
936 static void math_error(struct pt_regs *regs, int trapnr)
938 struct task_struct *task = current;
939 struct fpu *fpu = &task->thread.fpu;
941 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
944 cond_local_irq_enable(regs);
946 if (!user_mode(regs)) {
947 if (fixup_exception(regs, trapnr, 0, 0))
950 task->thread.error_code = 0;
951 task->thread.trap_nr = trapnr;
953 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
954 SIGFPE) != NOTIFY_STOP)
960 * Save the info for the exception handler and clear the error.
964 task->thread.trap_nr = trapnr;
965 task->thread.error_code = 0;
967 si_code = fpu__exception_code(fpu, trapnr);
968 /* Retry when we get spurious exceptions: */
972 force_sig_fault(SIGFPE, si_code,
973 (void __user *)uprobe_get_trap_addr(regs));
975 cond_local_irq_disable(regs);
978 DEFINE_IDTENTRY(exc_coprocessor_error)
980 math_error(regs, X86_TRAP_MF);
983 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
985 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
986 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
987 if (!static_cpu_has(X86_FEATURE_XMM)) {
988 __exc_general_protection(regs, 0);
992 math_error(regs, X86_TRAP_XF);
995 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
998 * This addresses a Pentium Pro Erratum:
1000 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1001 * Virtual Wire mode implemented through the local APIC, an
1002 * interrupt vector of 0Fh (Intel reserved encoding) may be
1003 * generated by the local APIC (Int 15). This vector may be
1004 * generated upon receipt of a spurious interrupt (an interrupt
1005 * which is removed before the system receives the INTA sequence)
1006 * instead of the programmed 8259 spurious interrupt vector.
1008 * IMPLICATION: The spurious interrupt vector programmed in the
1009 * 8259 is normally handled by an operating system's spurious
1010 * interrupt handler. However, a vector of 0Fh is unknown to some
1011 * operating systems, which would crash if this erratum occurred.
1013 * In theory this could be limited to 32bit, but the handler is not
1014 * hurting and who knows which other CPUs suffer from this.
1018 DEFINE_IDTENTRY(exc_device_not_available)
1020 unsigned long cr0 = read_cr0();
1022 #ifdef CONFIG_MATH_EMULATION
1023 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1024 struct math_emu_info info = { };
1026 cond_local_irq_enable(regs);
1029 math_emulate(&info);
1031 cond_local_irq_disable(regs);
1036 /* This should not happen. */
1037 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1038 /* Try to fix it up and carry on. */
1039 write_cr0(cr0 & ~X86_CR0_TS);
1042 * Something terrible happened, and we're better off trying
1043 * to kill the task than getting stuck in a never-ending
1044 * loop of #NM faults.
1046 die("unexpected #NM exception", regs, 0);
1050 #ifdef CONFIG_X86_32
1051 DEFINE_IDTENTRY_SW(iret_error)
1054 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1055 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1056 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1057 ILL_BADSTK, (void __user *)NULL);
1059 local_irq_disable();
1063 void __init trap_init(void)
1065 /* Init cpu_entry_area before IST entries are set up */
1066 setup_cpu_entry_areas();
1071 * Should be a barrier for any external CPU state:
1075 idt_setup_ist_traps();