2ef14772dc047d433e54e97a030026a69f6439df
[platform/kernel/linux-starfive.git] / arch / x86 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *      x86 SMP booting functions
4  *
5  *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *      Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *      Much of the core SMP work is based on previous work by Thomas Radke, to
10  *      whom a great many thanks are extended.
11  *
12  *      Thanks to Intel for making available several different Pentium,
13  *      Pentium Pro and Pentium-II/Xeon MP machines.
14  *      Original development of Linux SMP code supported by Caldera.
15  *
16  *      Fixes
17  *              Felix Koop      :       NR_CPUS used properly
18  *              Jose Renau      :       Handle single CPU case.
19  *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
20  *              Greg Wright     :       Fix for kernel stacks panic.
21  *              Erich Boleyn    :       MP v1.4 and additional changes.
22  *      Matthias Sattler        :       Changes for 2.1 kernel map.
23  *      Michel Lespinasse       :       Changes for 2.1 kernel map.
24  *      Michael Chastain        :       Change trampoline.S to gnu as.
25  *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
26  *              Ingo Molnar     :       Added APIC timers, based on code
27  *                                      from Jose Renau
28  *              Ingo Molnar     :       various cleanups and rewrites
29  *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
30  *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
31  *      Andi Kleen              :       Changed for SMP boot into long mode.
32  *              Martin J. Bligh :       Added support for multi-quad systems
33  *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
34  *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *      Ashok Raj               :       CPU hotplug support
37  *      Glauber Costa           :       i386 and x86_64 integration
38  */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 #include <linux/syscore_ops.h>
60
61 #include <asm/acpi.h>
62 #include <asm/desc.h>
63 #include <asm/nmi.h>
64 #include <asm/irq.h>
65 #include <asm/realmode.h>
66 #include <asm/cpu.h>
67 #include <asm/numa.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/api.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
84 #include <asm/stackprotector.h>
85
86 /* representing HT siblings of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89
90 /* representing HT and core siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93
94 /* representing HT, core, and die siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
97
98 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
99
100 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map);
101
102 /* Per CPU bogomips and other parameters */
103 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
104 EXPORT_PER_CPU_SYMBOL(cpu_info);
105
106 /* Logical package management. We might want to allocate that dynamically */
107 unsigned int __max_logical_packages __read_mostly;
108 EXPORT_SYMBOL(__max_logical_packages);
109 static unsigned int logical_packages __read_mostly;
110 static unsigned int logical_die __read_mostly;
111
112 /* Maximum number of SMT threads on any online core */
113 int __read_mostly __max_smt_threads = 1;
114
115 /* Flag to indicate if a complete sched domain rebuild is required */
116 bool x86_topology_update;
117
118 int arch_update_cpu_topology(void)
119 {
120         int retval = x86_topology_update;
121
122         x86_topology_update = false;
123         return retval;
124 }
125
126 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
127 {
128         unsigned long flags;
129
130         spin_lock_irqsave(&rtc_lock, flags);
131         CMOS_WRITE(0xa, 0xf);
132         spin_unlock_irqrestore(&rtc_lock, flags);
133         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
134                                                         start_eip >> 4;
135         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
136                                                         start_eip & 0xf;
137 }
138
139 static inline void smpboot_restore_warm_reset_vector(void)
140 {
141         unsigned long flags;
142
143         /*
144          * Paranoid:  Set warm reset code and vector here back
145          * to default values.
146          */
147         spin_lock_irqsave(&rtc_lock, flags);
148         CMOS_WRITE(0, 0xf);
149         spin_unlock_irqrestore(&rtc_lock, flags);
150
151         *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
152 }
153
154 /*
155  * Report back to the Boot Processor during boot time or to the caller processor
156  * during CPU online.
157  */
158 static void smp_callin(void)
159 {
160         int cpuid;
161
162         /*
163          * If waken up by an INIT in an 82489DX configuration
164          * cpu_callout_mask guarantees we don't get here before
165          * an INIT_deassert IPI reaches our local APIC, so it is
166          * now safe to touch our local APIC.
167          */
168         cpuid = smp_processor_id();
169
170         /*
171          * the boot CPU has finished the init stage and is spinning
172          * on callin_map until we finish. We are free to set up this
173          * CPU, first the APIC. (this is probably redundant on most
174          * boards)
175          */
176         apic_ap_setup();
177
178         /*
179          * Save our processor parameters. Note: this information
180          * is needed for clock calibration.
181          */
182         smp_store_cpu_info(cpuid);
183
184         /*
185          * The topology information must be up to date before
186          * calibrate_delay() and notify_cpu_starting().
187          */
188         set_cpu_sibling_map(raw_smp_processor_id());
189
190         init_freq_invariance(true, false);
191
192         /*
193          * Get our bogomips.
194          * Update loops_per_jiffy in cpu_data. Previous call to
195          * smp_store_cpu_info() stored a value that is close but not as
196          * accurate as the value just calculated.
197          */
198         calibrate_delay();
199         cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
200         pr_debug("Stack at about %p\n", &cpuid);
201
202         wmb();
203
204         notify_cpu_starting(cpuid);
205
206         /*
207          * Allow the master to continue.
208          */
209         cpumask_set_cpu(cpuid, cpu_callin_mask);
210 }
211
212 static int cpu0_logical_apicid;
213 static int enable_start_cpu0;
214 /*
215  * Activate a secondary processor.
216  */
217 static void notrace start_secondary(void *unused)
218 {
219         /*
220          * Don't put *anything* except direct CPU state initialization
221          * before cpu_init(), SMP booting is too fragile that we want to
222          * limit the things done here to the most necessary things.
223          */
224         cr4_init();
225
226 #ifdef CONFIG_X86_32
227         /* switch away from the initial page table */
228         load_cr3(swapper_pg_dir);
229         __flush_tlb_all();
230 #endif
231         cpu_init_secondary();
232         rcu_cpu_starting(raw_smp_processor_id());
233         x86_cpuinit.early_percpu_clock_init();
234         smp_callin();
235
236         enable_start_cpu0 = 0;
237
238         /* otherwise gcc will move up smp_processor_id before the cpu_init */
239         barrier();
240         /*
241          * Check TSC synchronization with the boot CPU:
242          */
243         check_tsc_sync_target();
244
245         speculative_store_bypass_ht_init();
246
247         /*
248          * Lock vector_lock, set CPU online and bring the vector
249          * allocator online. Online must be set with vector_lock held
250          * to prevent a concurrent irq setup/teardown from seeing a
251          * half valid vector space.
252          */
253         lock_vector_lock();
254         set_cpu_online(smp_processor_id(), true);
255         lapic_online();
256         unlock_vector_lock();
257         cpu_set_state_online(smp_processor_id());
258         x86_platform.nmi_init();
259
260         /* enable local interrupts */
261         local_irq_enable();
262
263         x86_cpuinit.setup_percpu_clockev();
264
265         wmb();
266         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
267 }
268
269 /**
270  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
271  * @cpu:        CPU to check
272  */
273 bool topology_is_primary_thread(unsigned int cpu)
274 {
275         return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
276 }
277
278 /**
279  * topology_smt_supported - Check whether SMT is supported by the CPUs
280  */
281 bool topology_smt_supported(void)
282 {
283         return smp_num_siblings > 1;
284 }
285
286 /**
287  * topology_phys_to_logical_pkg - Map a physical package id to a logical
288  *
289  * Returns logical package id or -1 if not found
290  */
291 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
292 {
293         int cpu;
294
295         for_each_possible_cpu(cpu) {
296                 struct cpuinfo_x86 *c = &cpu_data(cpu);
297
298                 if (c->initialized && c->phys_proc_id == phys_pkg)
299                         return c->logical_proc_id;
300         }
301         return -1;
302 }
303 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
304 /**
305  * topology_phys_to_logical_die - Map a physical die id to logical
306  *
307  * Returns logical die id or -1 if not found
308  */
309 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
310 {
311         int cpu;
312         int proc_id = cpu_data(cur_cpu).phys_proc_id;
313
314         for_each_possible_cpu(cpu) {
315                 struct cpuinfo_x86 *c = &cpu_data(cpu);
316
317                 if (c->initialized && c->cpu_die_id == die_id &&
318                     c->phys_proc_id == proc_id)
319                         return c->logical_die_id;
320         }
321         return -1;
322 }
323 EXPORT_SYMBOL(topology_phys_to_logical_die);
324
325 /**
326  * topology_update_package_map - Update the physical to logical package map
327  * @pkg:        The physical package id as retrieved via CPUID
328  * @cpu:        The cpu for which this is updated
329  */
330 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
331 {
332         int new;
333
334         /* Already available somewhere? */
335         new = topology_phys_to_logical_pkg(pkg);
336         if (new >= 0)
337                 goto found;
338
339         new = logical_packages++;
340         if (new != pkg) {
341                 pr_info("CPU %u Converting physical %u to logical package %u\n",
342                         cpu, pkg, new);
343         }
344 found:
345         cpu_data(cpu).logical_proc_id = new;
346         return 0;
347 }
348 /**
349  * topology_update_die_map - Update the physical to logical die map
350  * @die:        The die id as retrieved via CPUID
351  * @cpu:        The cpu for which this is updated
352  */
353 int topology_update_die_map(unsigned int die, unsigned int cpu)
354 {
355         int new;
356
357         /* Already available somewhere? */
358         new = topology_phys_to_logical_die(die, cpu);
359         if (new >= 0)
360                 goto found;
361
362         new = logical_die++;
363         if (new != die) {
364                 pr_info("CPU %u Converting physical %u to logical die %u\n",
365                         cpu, die, new);
366         }
367 found:
368         cpu_data(cpu).logical_die_id = new;
369         return 0;
370 }
371
372 void __init smp_store_boot_cpu_info(void)
373 {
374         int id = 0; /* CPU 0 */
375         struct cpuinfo_x86 *c = &cpu_data(id);
376
377         *c = boot_cpu_data;
378         c->cpu_index = id;
379         topology_update_package_map(c->phys_proc_id, id);
380         topology_update_die_map(c->cpu_die_id, id);
381         c->initialized = true;
382 }
383
384 /*
385  * The bootstrap kernel entry code has set these up. Save them for
386  * a given CPU
387  */
388 void smp_store_cpu_info(int id)
389 {
390         struct cpuinfo_x86 *c = &cpu_data(id);
391
392         /* Copy boot_cpu_data only on the first bringup */
393         if (!c->initialized)
394                 *c = boot_cpu_data;
395         c->cpu_index = id;
396         /*
397          * During boot time, CPU0 has this setup already. Save the info when
398          * bringing up AP or offlined CPU0.
399          */
400         identify_secondary_cpu(c);
401         c->initialized = true;
402 }
403
404 static bool
405 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
406 {
407         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
408
409         return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
410 }
411
412 static bool
413 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
414 {
415         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
416
417         return !WARN_ONCE(!topology_same_node(c, o),
418                 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
419                 "[node: %d != %d]. Ignoring dependency.\n",
420                 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
421 }
422
423 #define link_mask(mfunc, c1, c2)                                        \
424 do {                                                                    \
425         cpumask_set_cpu((c1), mfunc(c2));                               \
426         cpumask_set_cpu((c2), mfunc(c1));                               \
427 } while (0)
428
429 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
430 {
431         if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
432                 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
433
434                 if (c->phys_proc_id == o->phys_proc_id &&
435                     c->cpu_die_id == o->cpu_die_id &&
436                     per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
437                         if (c->cpu_core_id == o->cpu_core_id)
438                                 return topology_sane(c, o, "smt");
439
440                         if ((c->cu_id != 0xff) &&
441                             (o->cu_id != 0xff) &&
442                             (c->cu_id == o->cu_id))
443                                 return topology_sane(c, o, "smt");
444                 }
445
446         } else if (c->phys_proc_id == o->phys_proc_id &&
447                    c->cpu_die_id == o->cpu_die_id &&
448                    c->cpu_core_id == o->cpu_core_id) {
449                 return topology_sane(c, o, "smt");
450         }
451
452         return false;
453 }
454
455 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
456 {
457         if (c->phys_proc_id == o->phys_proc_id &&
458             c->cpu_die_id == o->cpu_die_id)
459                 return true;
460         return false;
461 }
462
463 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
464 {
465         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
466
467         /* If the arch didn't set up l2c_id, fall back to SMT */
468         if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
469                 return match_smt(c, o);
470
471         /* Do not match if L2 cache id does not match: */
472         if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
473                 return false;
474
475         return topology_sane(c, o, "l2c");
476 }
477
478 /*
479  * Unlike the other levels, we do not enforce keeping a
480  * multicore group inside a NUMA node.  If this happens, we will
481  * discard the MC level of the topology later.
482  */
483 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
484 {
485         if (c->phys_proc_id == o->phys_proc_id)
486                 return true;
487         return false;
488 }
489
490 /*
491  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
492  *
493  * Any Intel CPU that has multiple nodes per package and does not
494  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
495  *
496  * When in SNC mode, these CPUs enumerate an LLC that is shared
497  * by multiple NUMA nodes. The LLC is shared for off-package data
498  * access but private to the NUMA node (half of the package) for
499  * on-package access. CPUID (the source of the information about
500  * the LLC) can only enumerate the cache as shared or unshared,
501  * but not this particular configuration.
502  */
503
504 static const struct x86_cpu_id intel_cod_cpu[] = {
505         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),       /* COD */
506         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),     /* COD */
507         X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),             /* SNC */
508         {}
509 };
510
511 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
512 {
513         const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
514         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
515         bool intel_snc = id && id->driver_data;
516
517         /* Do not match if we do not have a valid APICID for cpu: */
518         if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
519                 return false;
520
521         /* Do not match if LLC id does not match: */
522         if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
523                 return false;
524
525         /*
526          * Allow the SNC topology without warning. Return of false
527          * means 'c' does not share the LLC of 'o'. This will be
528          * reflected to userspace.
529          */
530         if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
531                 return false;
532
533         return topology_sane(c, o, "llc");
534 }
535
536
537 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC)
538 static inline int x86_sched_itmt_flags(void)
539 {
540         return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
541 }
542
543 #ifdef CONFIG_SCHED_MC
544 static int x86_core_flags(void)
545 {
546         return cpu_core_flags() | x86_sched_itmt_flags();
547 }
548 #endif
549 #ifdef CONFIG_SCHED_SMT
550 static int x86_smt_flags(void)
551 {
552         return cpu_smt_flags() | x86_sched_itmt_flags();
553 }
554 #endif
555 #ifdef CONFIG_SCHED_CLUSTER
556 static int x86_cluster_flags(void)
557 {
558         return cpu_cluster_flags() | x86_sched_itmt_flags();
559 }
560 #endif
561 #endif
562
563 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
564 #ifdef CONFIG_SCHED_SMT
565         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
566 #endif
567 #ifdef CONFIG_SCHED_CLUSTER
568         { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
569 #endif
570 #ifdef CONFIG_SCHED_MC
571         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
572 #endif
573         { NULL, },
574 };
575
576 static struct sched_domain_topology_level x86_hybrid_topology[] = {
577 #ifdef CONFIG_SCHED_SMT
578         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
579 #endif
580 #ifdef CONFIG_SCHED_MC
581         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
582 #endif
583         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
584         { NULL, },
585 };
586
587 static struct sched_domain_topology_level x86_topology[] = {
588 #ifdef CONFIG_SCHED_SMT
589         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
590 #endif
591 #ifdef CONFIG_SCHED_CLUSTER
592         { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
593 #endif
594 #ifdef CONFIG_SCHED_MC
595         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
596 #endif
597         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
598         { NULL, },
599 };
600
601 /*
602  * Set if a package/die has multiple NUMA nodes inside.
603  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
604  * Sub-NUMA Clustering have this.
605  */
606 static bool x86_has_numa_in_package;
607
608 void set_cpu_sibling_map(int cpu)
609 {
610         bool has_smt = smp_num_siblings > 1;
611         bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
612         struct cpuinfo_x86 *c = &cpu_data(cpu);
613         struct cpuinfo_x86 *o;
614         int i, threads;
615
616         cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
617
618         if (!has_mp) {
619                 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
620                 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
621                 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
622                 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
623                 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
624                 c->booted_cores = 1;
625                 return;
626         }
627
628         for_each_cpu(i, cpu_sibling_setup_mask) {
629                 o = &cpu_data(i);
630
631                 if (match_pkg(c, o) && !topology_same_node(c, o))
632                         x86_has_numa_in_package = true;
633
634                 if ((i == cpu) || (has_smt && match_smt(c, o)))
635                         link_mask(topology_sibling_cpumask, cpu, i);
636
637                 if ((i == cpu) || (has_mp && match_llc(c, o)))
638                         link_mask(cpu_llc_shared_mask, cpu, i);
639
640                 if ((i == cpu) || (has_mp && match_l2c(c, o)))
641                         link_mask(cpu_l2c_shared_mask, cpu, i);
642
643                 if ((i == cpu) || (has_mp && match_die(c, o)))
644                         link_mask(topology_die_cpumask, cpu, i);
645         }
646
647         threads = cpumask_weight(topology_sibling_cpumask(cpu));
648         if (threads > __max_smt_threads)
649                 __max_smt_threads = threads;
650
651         for_each_cpu(i, topology_sibling_cpumask(cpu))
652                 cpu_data(i).smt_active = threads > 1;
653
654         /*
655          * This needs a separate iteration over the cpus because we rely on all
656          * topology_sibling_cpumask links to be set-up.
657          */
658         for_each_cpu(i, cpu_sibling_setup_mask) {
659                 o = &cpu_data(i);
660
661                 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
662                         link_mask(topology_core_cpumask, cpu, i);
663
664                         /*
665                          *  Does this new cpu bringup a new core?
666                          */
667                         if (threads == 1) {
668                                 /*
669                                  * for each core in package, increment
670                                  * the booted_cores for this new cpu
671                                  */
672                                 if (cpumask_first(
673                                     topology_sibling_cpumask(i)) == i)
674                                         c->booted_cores++;
675                                 /*
676                                  * increment the core count for all
677                                  * the other cpus in this package
678                                  */
679                                 if (i != cpu)
680                                         cpu_data(i).booted_cores++;
681                         } else if (i != cpu && !c->booted_cores)
682                                 c->booted_cores = cpu_data(i).booted_cores;
683                 }
684         }
685 }
686
687 /* maps the cpu to the sched domain representing multi-core */
688 const struct cpumask *cpu_coregroup_mask(int cpu)
689 {
690         return cpu_llc_shared_mask(cpu);
691 }
692
693 const struct cpumask *cpu_clustergroup_mask(int cpu)
694 {
695         return cpu_l2c_shared_mask(cpu);
696 }
697
698 static void impress_friends(void)
699 {
700         int cpu;
701         unsigned long bogosum = 0;
702         /*
703          * Allow the user to impress friends.
704          */
705         pr_debug("Before bogomips\n");
706         for_each_possible_cpu(cpu)
707                 if (cpumask_test_cpu(cpu, cpu_callout_mask))
708                         bogosum += cpu_data(cpu).loops_per_jiffy;
709         pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
710                 num_online_cpus(),
711                 bogosum/(500000/HZ),
712                 (bogosum/(5000/HZ))%100);
713
714         pr_debug("Before bogocount - setting activated=1\n");
715 }
716
717 void __inquire_remote_apic(int apicid)
718 {
719         unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
720         const char * const names[] = { "ID", "VERSION", "SPIV" };
721         int timeout;
722         u32 status;
723
724         pr_info("Inquiring remote APIC 0x%x...\n", apicid);
725
726         for (i = 0; i < ARRAY_SIZE(regs); i++) {
727                 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
728
729                 /*
730                  * Wait for idle.
731                  */
732                 status = safe_apic_wait_icr_idle();
733                 if (status)
734                         pr_cont("a previous APIC delivery may have failed\n");
735
736                 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
737
738                 timeout = 0;
739                 do {
740                         udelay(100);
741                         status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
742                 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
743
744                 switch (status) {
745                 case APIC_ICR_RR_VALID:
746                         status = apic_read(APIC_RRR);
747                         pr_cont("%08x\n", status);
748                         break;
749                 default:
750                         pr_cont("failed\n");
751                 }
752         }
753 }
754
755 /*
756  * The Multiprocessor Specification 1.4 (1997) example code suggests
757  * that there should be a 10ms delay between the BSP asserting INIT
758  * and de-asserting INIT, when starting a remote processor.
759  * But that slows boot and resume on modern processors, which include
760  * many cores and don't require that delay.
761  *
762  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
763  * Modern processor families are quirked to remove the delay entirely.
764  */
765 #define UDELAY_10MS_DEFAULT 10000
766
767 static unsigned int init_udelay = UINT_MAX;
768
769 static int __init cpu_init_udelay(char *str)
770 {
771         get_option(&str, &init_udelay);
772
773         return 0;
774 }
775 early_param("cpu_init_udelay", cpu_init_udelay);
776
777 static void __init smp_quirk_init_udelay(void)
778 {
779         /* if cmdline changed it from default, leave it alone */
780         if (init_udelay != UINT_MAX)
781                 return;
782
783         /* if modern processor, use no delay */
784         if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
785             ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
786             ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
787                 init_udelay = 0;
788                 return;
789         }
790         /* else, use legacy delay */
791         init_udelay = UDELAY_10MS_DEFAULT;
792 }
793
794 /*
795  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
796  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
797  * won't ... remember to clear down the APIC, etc later.
798  */
799 int
800 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
801 {
802         u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
803         unsigned long send_status, accept_status = 0;
804         int maxlvt;
805
806         /* Target chip */
807         /* Boot on the stack */
808         /* Kick the second */
809         apic_icr_write(APIC_DM_NMI | dm, apicid);
810
811         pr_debug("Waiting for send to finish...\n");
812         send_status = safe_apic_wait_icr_idle();
813
814         /*
815          * Give the other CPU some time to accept the IPI.
816          */
817         udelay(200);
818         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
819                 maxlvt = lapic_get_maxlvt();
820                 if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
821                         apic_write(APIC_ESR, 0);
822                 accept_status = (apic_read(APIC_ESR) & 0xEF);
823         }
824         pr_debug("NMI sent\n");
825
826         if (send_status)
827                 pr_err("APIC never delivered???\n");
828         if (accept_status)
829                 pr_err("APIC delivery error (%lx)\n", accept_status);
830
831         return (send_status | accept_status);
832 }
833
834 static int
835 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
836 {
837         unsigned long send_status = 0, accept_status = 0;
838         int maxlvt, num_starts, j;
839
840         maxlvt = lapic_get_maxlvt();
841
842         /*
843          * Be paranoid about clearing APIC errors.
844          */
845         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
846                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
847                         apic_write(APIC_ESR, 0);
848                 apic_read(APIC_ESR);
849         }
850
851         pr_debug("Asserting INIT\n");
852
853         /*
854          * Turn INIT on target chip
855          */
856         /*
857          * Send IPI
858          */
859         apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
860                        phys_apicid);
861
862         pr_debug("Waiting for send to finish...\n");
863         send_status = safe_apic_wait_icr_idle();
864
865         udelay(init_udelay);
866
867         pr_debug("Deasserting INIT\n");
868
869         /* Target chip */
870         /* Send IPI */
871         apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
872
873         pr_debug("Waiting for send to finish...\n");
874         send_status = safe_apic_wait_icr_idle();
875
876         mb();
877
878         /*
879          * Should we send STARTUP IPIs ?
880          *
881          * Determine this based on the APIC version.
882          * If we don't have an integrated APIC, don't send the STARTUP IPIs.
883          */
884         if (APIC_INTEGRATED(boot_cpu_apic_version))
885                 num_starts = 2;
886         else
887                 num_starts = 0;
888
889         /*
890          * Run STARTUP IPI loop.
891          */
892         pr_debug("#startup loops: %d\n", num_starts);
893
894         for (j = 1; j <= num_starts; j++) {
895                 pr_debug("Sending STARTUP #%d\n", j);
896                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
897                         apic_write(APIC_ESR, 0);
898                 apic_read(APIC_ESR);
899                 pr_debug("After apic_write\n");
900
901                 /*
902                  * STARTUP IPI
903                  */
904
905                 /* Target chip */
906                 /* Boot on the stack */
907                 /* Kick the second */
908                 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
909                                phys_apicid);
910
911                 /*
912                  * Give the other CPU some time to accept the IPI.
913                  */
914                 if (init_udelay == 0)
915                         udelay(10);
916                 else
917                         udelay(300);
918
919                 pr_debug("Startup point 1\n");
920
921                 pr_debug("Waiting for send to finish...\n");
922                 send_status = safe_apic_wait_icr_idle();
923
924                 /*
925                  * Give the other CPU some time to accept the IPI.
926                  */
927                 if (init_udelay == 0)
928                         udelay(10);
929                 else
930                         udelay(200);
931
932                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
933                         apic_write(APIC_ESR, 0);
934                 accept_status = (apic_read(APIC_ESR) & 0xEF);
935                 if (send_status || accept_status)
936                         break;
937         }
938         pr_debug("After Startup\n");
939
940         if (send_status)
941                 pr_err("APIC never delivered???\n");
942         if (accept_status)
943                 pr_err("APIC delivery error (%lx)\n", accept_status);
944
945         return (send_status | accept_status);
946 }
947
948 /* reduce the number of lines printed when booting a large cpu count system */
949 static void announce_cpu(int cpu, int apicid)
950 {
951         static int current_node = NUMA_NO_NODE;
952         int node = early_cpu_to_node(cpu);
953         static int width, node_width;
954
955         if (!width)
956                 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
957
958         if (!node_width)
959                 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
960
961         if (cpu == 1)
962                 printk(KERN_INFO "x86: Booting SMP configuration:\n");
963
964         if (system_state < SYSTEM_RUNNING) {
965                 if (node != current_node) {
966                         if (current_node > (-1))
967                                 pr_cont("\n");
968                         current_node = node;
969
970                         printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
971                                node_width - num_digits(node), " ", node);
972                 }
973
974                 /* Add padding for the BSP */
975                 if (cpu == 1)
976                         pr_cont("%*s", width + 1, " ");
977
978                 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
979
980         } else
981                 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
982                         node, cpu, apicid);
983 }
984
985 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
986 {
987         int cpu;
988
989         cpu = smp_processor_id();
990         if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
991                 return NMI_HANDLED;
992
993         return NMI_DONE;
994 }
995
996 /*
997  * Wake up AP by INIT, INIT, STARTUP sequence.
998  *
999  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
1000  * boot-strap code which is not a desired behavior for waking up BSP. To
1001  * void the boot-strap code, wake up CPU0 by NMI instead.
1002  *
1003  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
1004  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
1005  * We'll change this code in the future to wake up hard offlined CPU0 if
1006  * real platform and request are available.
1007  */
1008 static int
1009 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
1010                int *cpu0_nmi_registered)
1011 {
1012         int id;
1013         int boot_error;
1014
1015         preempt_disable();
1016
1017         /*
1018          * Wake up AP by INIT, INIT, STARTUP sequence.
1019          */
1020         if (cpu) {
1021                 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
1022                 goto out;
1023         }
1024
1025         /*
1026          * Wake up BSP by nmi.
1027          *
1028          * Register a NMI handler to help wake up CPU0.
1029          */
1030         boot_error = register_nmi_handler(NMI_LOCAL,
1031                                           wakeup_cpu0_nmi, 0, "wake_cpu0");
1032
1033         if (!boot_error) {
1034                 enable_start_cpu0 = 1;
1035                 *cpu0_nmi_registered = 1;
1036                 id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
1037                 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
1038         }
1039
1040 out:
1041         preempt_enable();
1042
1043         return boot_error;
1044 }
1045
1046 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1047 {
1048         int ret;
1049
1050         /* Just in case we booted with a single CPU. */
1051         alternatives_enable_smp();
1052
1053         per_cpu(current_task, cpu) = idle;
1054         cpu_init_stack_canary(cpu, idle);
1055
1056         /* Initialize the interrupt stack(s) */
1057         ret = irq_init_percpu_irqstack(cpu);
1058         if (ret)
1059                 return ret;
1060
1061 #ifdef CONFIG_X86_32
1062         /* Stack for startup_32 can be just as for start_secondary onwards */
1063         per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1064 #else
1065         initial_gs = per_cpu_offset(cpu);
1066 #endif
1067         return 0;
1068 }
1069
1070 /*
1071  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1072  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1073  * Returns zero if CPU booted OK, else error code from
1074  * ->wakeup_secondary_cpu.
1075  */
1076 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1077                        int *cpu0_nmi_registered)
1078 {
1079         /* start_ip had better be page-aligned! */
1080         unsigned long start_ip = real_mode_header->trampoline_start;
1081
1082         unsigned long boot_error = 0;
1083         unsigned long timeout;
1084
1085         idle->thread.sp = (unsigned long)task_pt_regs(idle);
1086         early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1087         initial_code = (unsigned long)start_secondary;
1088         initial_stack  = idle->thread.sp;
1089
1090         /* Enable the espfix hack for this CPU */
1091         init_espfix_ap(cpu);
1092
1093         /* So we see what's up */
1094         announce_cpu(cpu, apicid);
1095
1096         /*
1097          * This grunge runs the startup process for
1098          * the targeted processor.
1099          */
1100
1101         if (x86_platform.legacy.warm_reset) {
1102
1103                 pr_debug("Setting warm reset code and vector.\n");
1104
1105                 smpboot_setup_warm_reset_vector(start_ip);
1106                 /*
1107                  * Be paranoid about clearing APIC errors.
1108                 */
1109                 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1110                         apic_write(APIC_ESR, 0);
1111                         apic_read(APIC_ESR);
1112                 }
1113         }
1114
1115         /*
1116          * AP might wait on cpu_callout_mask in cpu_init() with
1117          * cpu_initialized_mask set if previous attempt to online
1118          * it timed-out. Clear cpu_initialized_mask so that after
1119          * INIT/SIPI it could start with a clean state.
1120          */
1121         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1122         smp_mb();
1123
1124         /*
1125          * Wake up a CPU in difference cases:
1126          * - Use the method in the APIC driver if it's defined
1127          * Otherwise,
1128          * - Use an INIT boot APIC message for APs or NMI for BSP.
1129          */
1130         if (apic->wakeup_secondary_cpu)
1131                 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1132         else
1133                 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1134                                                      cpu0_nmi_registered);
1135
1136         if (!boot_error) {
1137                 /*
1138                  * Wait 10s total for first sign of life from AP
1139                  */
1140                 boot_error = -1;
1141                 timeout = jiffies + 10*HZ;
1142                 while (time_before(jiffies, timeout)) {
1143                         if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1144                                 /*
1145                                  * Tell AP to proceed with initialization
1146                                  */
1147                                 cpumask_set_cpu(cpu, cpu_callout_mask);
1148                                 boot_error = 0;
1149                                 break;
1150                         }
1151                         schedule();
1152                 }
1153         }
1154
1155         if (!boot_error) {
1156                 /*
1157                  * Wait till AP completes initial initialization
1158                  */
1159                 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1160                         /*
1161                          * Allow other tasks to run while we wait for the
1162                          * AP to come online. This also gives a chance
1163                          * for the MTRR work(triggered by the AP coming online)
1164                          * to be completed in the stop machine context.
1165                          */
1166                         schedule();
1167                 }
1168         }
1169
1170         if (x86_platform.legacy.warm_reset) {
1171                 /*
1172                  * Cleanup possible dangling ends...
1173                  */
1174                 smpboot_restore_warm_reset_vector();
1175         }
1176
1177         return boot_error;
1178 }
1179
1180 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1181 {
1182         int apicid = apic->cpu_present_to_apicid(cpu);
1183         int cpu0_nmi_registered = 0;
1184         unsigned long flags;
1185         int err, ret = 0;
1186
1187         lockdep_assert_irqs_enabled();
1188
1189         pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1190
1191         if (apicid == BAD_APICID ||
1192             !physid_isset(apicid, phys_cpu_present_map) ||
1193             !apic->apic_id_valid(apicid)) {
1194                 pr_err("%s: bad cpu %d\n", __func__, cpu);
1195                 return -EINVAL;
1196         }
1197
1198         /*
1199          * Already booted CPU?
1200          */
1201         if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1202                 pr_debug("do_boot_cpu %d Already started\n", cpu);
1203                 return -ENOSYS;
1204         }
1205
1206         /*
1207          * Save current MTRR state in case it was changed since early boot
1208          * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1209          */
1210         mtrr_save_state();
1211
1212         /* x86 CPUs take themselves offline, so delayed offline is OK. */
1213         err = cpu_check_up_prepare(cpu);
1214         if (err && err != -EBUSY)
1215                 return err;
1216
1217         /* the FPU context is blank, nobody can own it */
1218         per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1219
1220         err = common_cpu_up(cpu, tidle);
1221         if (err)
1222                 return err;
1223
1224         err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1225         if (err) {
1226                 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1227                 ret = -EIO;
1228                 goto unreg_nmi;
1229         }
1230
1231         /*
1232          * Check TSC synchronization with the AP (keep irqs disabled
1233          * while doing so):
1234          */
1235         local_irq_save(flags);
1236         check_tsc_sync_source(cpu);
1237         local_irq_restore(flags);
1238
1239         while (!cpu_online(cpu)) {
1240                 cpu_relax();
1241                 touch_nmi_watchdog();
1242         }
1243
1244 unreg_nmi:
1245         /*
1246          * Clean up the nmi handler. Do this after the callin and callout sync
1247          * to avoid impact of possible long unregister time.
1248          */
1249         if (cpu0_nmi_registered)
1250                 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1251
1252         return ret;
1253 }
1254
1255 /**
1256  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1257  */
1258 void arch_disable_smp_support(void)
1259 {
1260         disable_ioapic_support();
1261 }
1262
1263 /*
1264  * Fall back to non SMP mode after errors.
1265  *
1266  * RED-PEN audit/test this more. I bet there is more state messed up here.
1267  */
1268 static __init void disable_smp(void)
1269 {
1270         pr_info("SMP disabled\n");
1271
1272         disable_ioapic_support();
1273
1274         init_cpu_present(cpumask_of(0));
1275         init_cpu_possible(cpumask_of(0));
1276
1277         if (smp_found_config)
1278                 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1279         else
1280                 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1281         cpumask_set_cpu(0, topology_sibling_cpumask(0));
1282         cpumask_set_cpu(0, topology_core_cpumask(0));
1283         cpumask_set_cpu(0, topology_die_cpumask(0));
1284 }
1285
1286 /*
1287  * Various sanity checks.
1288  */
1289 static void __init smp_sanity_check(void)
1290 {
1291         preempt_disable();
1292
1293 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1294         if (def_to_bigsmp && nr_cpu_ids > 8) {
1295                 unsigned int cpu;
1296                 unsigned nr;
1297
1298                 pr_warn("More than 8 CPUs detected - skipping them\n"
1299                         "Use CONFIG_X86_BIGSMP\n");
1300
1301                 nr = 0;
1302                 for_each_present_cpu(cpu) {
1303                         if (nr >= 8)
1304                                 set_cpu_present(cpu, false);
1305                         nr++;
1306                 }
1307
1308                 nr = 0;
1309                 for_each_possible_cpu(cpu) {
1310                         if (nr >= 8)
1311                                 set_cpu_possible(cpu, false);
1312                         nr++;
1313                 }
1314
1315                 nr_cpu_ids = 8;
1316         }
1317 #endif
1318
1319         if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1320                 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1321                         hard_smp_processor_id());
1322
1323                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1324         }
1325
1326         /*
1327          * Should not be necessary because the MP table should list the boot
1328          * CPU too, but we do it for the sake of robustness anyway.
1329          */
1330         if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1331                 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1332                           boot_cpu_physical_apicid);
1333                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1334         }
1335         preempt_enable();
1336 }
1337
1338 static void __init smp_cpu_index_default(void)
1339 {
1340         int i;
1341         struct cpuinfo_x86 *c;
1342
1343         for_each_possible_cpu(i) {
1344                 c = &cpu_data(i);
1345                 /* mark all to hotplug */
1346                 c->cpu_index = nr_cpu_ids;
1347         }
1348 }
1349
1350 static void __init smp_get_logical_apicid(void)
1351 {
1352         if (x2apic_mode)
1353                 cpu0_logical_apicid = apic_read(APIC_LDR);
1354         else
1355                 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1356 }
1357
1358 void __init smp_prepare_cpus_common(void)
1359 {
1360         unsigned int i;
1361
1362         smp_cpu_index_default();
1363
1364         /*
1365          * Setup boot CPU information
1366          */
1367         smp_store_boot_cpu_info(); /* Final full version of the data */
1368         cpumask_copy(cpu_callin_mask, cpumask_of(0));
1369         mb();
1370
1371         for_each_possible_cpu(i) {
1372                 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1373                 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1374                 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1375                 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1376                 zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1377         }
1378
1379         /*
1380          * Set 'default' x86 topology, this matches default_topology() in that
1381          * it has NUMA nodes as a topology level. See also
1382          * native_smp_cpus_done().
1383          *
1384          * Must be done before set_cpus_sibling_map() is ran.
1385          */
1386         set_sched_topology(x86_topology);
1387
1388         set_cpu_sibling_map(0);
1389 }
1390
1391 /*
1392  * Prepare for SMP bootup.
1393  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1394  *            for common interface support.
1395  */
1396 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1397 {
1398         smp_prepare_cpus_common();
1399
1400         init_freq_invariance(false, false);
1401         smp_sanity_check();
1402
1403         switch (apic_intr_mode) {
1404         case APIC_PIC:
1405         case APIC_VIRTUAL_WIRE_NO_CONFIG:
1406                 disable_smp();
1407                 return;
1408         case APIC_SYMMETRIC_IO_NO_ROUTING:
1409                 disable_smp();
1410                 /* Setup local timer */
1411                 x86_init.timers.setup_percpu_clockev();
1412                 return;
1413         case APIC_VIRTUAL_WIRE:
1414         case APIC_SYMMETRIC_IO:
1415                 break;
1416         }
1417
1418         /* Setup local timer */
1419         x86_init.timers.setup_percpu_clockev();
1420
1421         smp_get_logical_apicid();
1422
1423         pr_info("CPU0: ");
1424         print_cpu_info(&cpu_data(0));
1425
1426         uv_system_init();
1427
1428         set_mtrr_aps_delayed_init();
1429
1430         smp_quirk_init_udelay();
1431
1432         speculative_store_bypass_ht_init();
1433 }
1434
1435 void arch_thaw_secondary_cpus_begin(void)
1436 {
1437         set_mtrr_aps_delayed_init();
1438 }
1439
1440 void arch_thaw_secondary_cpus_end(void)
1441 {
1442         mtrr_aps_init();
1443 }
1444
1445 /*
1446  * Early setup to make printk work.
1447  */
1448 void __init native_smp_prepare_boot_cpu(void)
1449 {
1450         int me = smp_processor_id();
1451         switch_to_new_gdt(me);
1452         /* already set me in cpu_online_mask in boot_cpu_init() */
1453         cpumask_set_cpu(me, cpu_callout_mask);
1454         cpu_set_state_online(me);
1455         native_pv_lock_init();
1456 }
1457
1458 void __init calculate_max_logical_packages(void)
1459 {
1460         int ncpus;
1461
1462         /*
1463          * Today neither Intel nor AMD support heterogeneous systems so
1464          * extrapolate the boot cpu's data to all packages.
1465          */
1466         ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1467         __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1468         pr_info("Max logical packages: %u\n", __max_logical_packages);
1469 }
1470
1471 void __init native_smp_cpus_done(unsigned int max_cpus)
1472 {
1473         pr_debug("Boot done\n");
1474
1475         calculate_max_logical_packages();
1476
1477         /* XXX for now assume numa-in-package and hybrid don't overlap */
1478         if (x86_has_numa_in_package)
1479                 set_sched_topology(x86_numa_in_package_topology);
1480         if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1481                 set_sched_topology(x86_hybrid_topology);
1482
1483         nmi_selftest();
1484         impress_friends();
1485         mtrr_aps_init();
1486 }
1487
1488 static int __initdata setup_possible_cpus = -1;
1489 static int __init _setup_possible_cpus(char *str)
1490 {
1491         get_option(&str, &setup_possible_cpus);
1492         return 0;
1493 }
1494 early_param("possible_cpus", _setup_possible_cpus);
1495
1496
1497 /*
1498  * cpu_possible_mask should be static, it cannot change as cpu's
1499  * are onlined, or offlined. The reason is per-cpu data-structures
1500  * are allocated by some modules at init time, and don't expect to
1501  * do this dynamically on cpu arrival/departure.
1502  * cpu_present_mask on the other hand can change dynamically.
1503  * In case when cpu_hotplug is not compiled, then we resort to current
1504  * behaviour, which is cpu_possible == cpu_present.
1505  * - Ashok Raj
1506  *
1507  * Three ways to find out the number of additional hotplug CPUs:
1508  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1509  * - The user can overwrite it with possible_cpus=NUM
1510  * - Otherwise don't reserve additional CPUs.
1511  * We do this because additional CPUs waste a lot of memory.
1512  * -AK
1513  */
1514 __init void prefill_possible_map(void)
1515 {
1516         int i, possible;
1517
1518         /* No boot processor was found in mptable or ACPI MADT */
1519         if (!num_processors) {
1520                 if (boot_cpu_has(X86_FEATURE_APIC)) {
1521                         int apicid = boot_cpu_physical_apicid;
1522                         int cpu = hard_smp_processor_id();
1523
1524                         pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1525
1526                         /* Make sure boot cpu is enumerated */
1527                         if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1528                             apic->apic_id_valid(apicid))
1529                                 generic_processor_info(apicid, boot_cpu_apic_version);
1530                 }
1531
1532                 if (!num_processors)
1533                         num_processors = 1;
1534         }
1535
1536         i = setup_max_cpus ?: 1;
1537         if (setup_possible_cpus == -1) {
1538                 possible = num_processors;
1539 #ifdef CONFIG_HOTPLUG_CPU
1540                 if (setup_max_cpus)
1541                         possible += disabled_cpus;
1542 #else
1543                 if (possible > i)
1544                         possible = i;
1545 #endif
1546         } else
1547                 possible = setup_possible_cpus;
1548
1549         total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1550
1551         /* nr_cpu_ids could be reduced via nr_cpus= */
1552         if (possible > nr_cpu_ids) {
1553                 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1554                         possible, nr_cpu_ids);
1555                 possible = nr_cpu_ids;
1556         }
1557
1558 #ifdef CONFIG_HOTPLUG_CPU
1559         if (!setup_max_cpus)
1560 #endif
1561         if (possible > i) {
1562                 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1563                         possible, setup_max_cpus);
1564                 possible = i;
1565         }
1566
1567         nr_cpu_ids = possible;
1568
1569         pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1570                 possible, max_t(int, possible - num_processors, 0));
1571
1572         reset_cpu_possible_mask();
1573
1574         for (i = 0; i < possible; i++)
1575                 set_cpu_possible(i, true);
1576 }
1577
1578 #ifdef CONFIG_HOTPLUG_CPU
1579
1580 /* Recompute SMT state for all CPUs on offline */
1581 static void recompute_smt_state(void)
1582 {
1583         int max_threads, cpu;
1584
1585         max_threads = 0;
1586         for_each_online_cpu (cpu) {
1587                 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1588
1589                 if (threads > max_threads)
1590                         max_threads = threads;
1591         }
1592         __max_smt_threads = max_threads;
1593 }
1594
1595 static void remove_siblinginfo(int cpu)
1596 {
1597         int sibling;
1598         struct cpuinfo_x86 *c = &cpu_data(cpu);
1599
1600         for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1601                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1602                 /*/
1603                  * last thread sibling in this cpu core going down
1604                  */
1605                 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1606                         cpu_data(sibling).booted_cores--;
1607         }
1608
1609         for_each_cpu(sibling, topology_die_cpumask(cpu))
1610                 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1611
1612         for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1613                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1614                 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1615                         cpu_data(sibling).smt_active = false;
1616         }
1617
1618         for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1619                 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1620         for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1621                 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1622         cpumask_clear(cpu_llc_shared_mask(cpu));
1623         cpumask_clear(cpu_l2c_shared_mask(cpu));
1624         cpumask_clear(topology_sibling_cpumask(cpu));
1625         cpumask_clear(topology_core_cpumask(cpu));
1626         cpumask_clear(topology_die_cpumask(cpu));
1627         c->cpu_core_id = 0;
1628         c->booted_cores = 0;
1629         cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1630         recompute_smt_state();
1631 }
1632
1633 static void remove_cpu_from_maps(int cpu)
1634 {
1635         set_cpu_online(cpu, false);
1636         cpumask_clear_cpu(cpu, cpu_callout_mask);
1637         cpumask_clear_cpu(cpu, cpu_callin_mask);
1638         /* was set by cpu_init() */
1639         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1640         numa_remove_cpu(cpu);
1641 }
1642
1643 void cpu_disable_common(void)
1644 {
1645         int cpu = smp_processor_id();
1646
1647         remove_siblinginfo(cpu);
1648
1649         /* It's now safe to remove this processor from the online map */
1650         lock_vector_lock();
1651         remove_cpu_from_maps(cpu);
1652         unlock_vector_lock();
1653         fixup_irqs();
1654         lapic_offline();
1655 }
1656
1657 int native_cpu_disable(void)
1658 {
1659         int ret;
1660
1661         ret = lapic_can_unplug_cpu();
1662         if (ret)
1663                 return ret;
1664
1665         cpu_disable_common();
1666
1667         /*
1668          * Disable the local APIC. Otherwise IPI broadcasts will reach
1669          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1670          * messages.
1671          *
1672          * Disabling the APIC must happen after cpu_disable_common()
1673          * which invokes fixup_irqs().
1674          *
1675          * Disabling the APIC preserves already set bits in IRR, but
1676          * an interrupt arriving after disabling the local APIC does not
1677          * set the corresponding IRR bit.
1678          *
1679          * fixup_irqs() scans IRR for set bits so it can raise a not
1680          * yet handled interrupt on the new destination CPU via an IPI
1681          * but obviously it can't do so for IRR bits which are not set.
1682          * IOW, interrupts arriving after disabling the local APIC will
1683          * be lost.
1684          */
1685         apic_soft_disable();
1686
1687         return 0;
1688 }
1689
1690 int common_cpu_die(unsigned int cpu)
1691 {
1692         int ret = 0;
1693
1694         /* We don't do anything here: idle task is faking death itself. */
1695
1696         /* They ack this in play_dead() by setting CPU_DEAD */
1697         if (cpu_wait_death(cpu, 5)) {
1698                 if (system_state == SYSTEM_RUNNING)
1699                         pr_info("CPU %u is now offline\n", cpu);
1700         } else {
1701                 pr_err("CPU %u didn't die...\n", cpu);
1702                 ret = -1;
1703         }
1704
1705         return ret;
1706 }
1707
1708 void native_cpu_die(unsigned int cpu)
1709 {
1710         common_cpu_die(cpu);
1711 }
1712
1713 void play_dead_common(void)
1714 {
1715         idle_task_exit();
1716
1717         /* Ack it */
1718         (void)cpu_report_death();
1719
1720         /*
1721          * With physical CPU hotplug, we should halt the cpu
1722          */
1723         local_irq_disable();
1724 }
1725
1726 /**
1727  * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1728  *
1729  * If NMI wants to wake up CPU0, start CPU0.
1730  */
1731 void cond_wakeup_cpu0(void)
1732 {
1733         if (smp_processor_id() == 0 && enable_start_cpu0)
1734                 start_cpu0();
1735 }
1736 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1737
1738 /*
1739  * We need to flush the caches before going to sleep, lest we have
1740  * dirty data in our caches when we come back up.
1741  */
1742 static inline void mwait_play_dead(void)
1743 {
1744         unsigned int eax, ebx, ecx, edx;
1745         unsigned int highest_cstate = 0;
1746         unsigned int highest_subcstate = 0;
1747         void *mwait_ptr;
1748         int i;
1749
1750         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1751             boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1752                 return;
1753         if (!this_cpu_has(X86_FEATURE_MWAIT))
1754                 return;
1755         if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1756                 return;
1757         if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1758                 return;
1759
1760         eax = CPUID_MWAIT_LEAF;
1761         ecx = 0;
1762         native_cpuid(&eax, &ebx, &ecx, &edx);
1763
1764         /*
1765          * eax will be 0 if EDX enumeration is not valid.
1766          * Initialized below to cstate, sub_cstate value when EDX is valid.
1767          */
1768         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1769                 eax = 0;
1770         } else {
1771                 edx >>= MWAIT_SUBSTATE_SIZE;
1772                 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1773                         if (edx & MWAIT_SUBSTATE_MASK) {
1774                                 highest_cstate = i;
1775                                 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1776                         }
1777                 }
1778                 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1779                         (highest_subcstate - 1);
1780         }
1781
1782         /*
1783          * This should be a memory location in a cache line which is
1784          * unlikely to be touched by other processors.  The actual
1785          * content is immaterial as it is not actually modified in any way.
1786          */
1787         mwait_ptr = &current_thread_info()->flags;
1788
1789         wbinvd();
1790
1791         while (1) {
1792                 /*
1793                  * The CLFLUSH is a workaround for erratum AAI65 for
1794                  * the Xeon 7400 series.  It's not clear it is actually
1795                  * needed, but it should be harmless in either case.
1796                  * The WBINVD is insufficient due to the spurious-wakeup
1797                  * case where we return around the loop.
1798                  */
1799                 mb();
1800                 clflush(mwait_ptr);
1801                 mb();
1802                 __monitor(mwait_ptr, 0, 0);
1803                 mb();
1804                 __mwait(eax, 0);
1805
1806                 cond_wakeup_cpu0();
1807         }
1808 }
1809
1810 void hlt_play_dead(void)
1811 {
1812         if (__this_cpu_read(cpu_info.x86) >= 4)
1813                 wbinvd();
1814
1815         while (1) {
1816                 native_halt();
1817
1818                 cond_wakeup_cpu0();
1819         }
1820 }
1821
1822 void native_play_dead(void)
1823 {
1824         play_dead_common();
1825         tboot_shutdown(TB_SHUTDOWN_WFS);
1826
1827         mwait_play_dead();      /* Only returns on failure */
1828         if (cpuidle_play_dead())
1829                 hlt_play_dead();
1830 }
1831
1832 #else /* ... !CONFIG_HOTPLUG_CPU */
1833 int native_cpu_disable(void)
1834 {
1835         return -ENOSYS;
1836 }
1837
1838 void native_cpu_die(unsigned int cpu)
1839 {
1840         /* We said "no" in __cpu_disable */
1841         BUG();
1842 }
1843
1844 void native_play_dead(void)
1845 {
1846         BUG();
1847 }
1848
1849 #endif
1850
1851 #ifdef CONFIG_X86_64
1852 /*
1853  * APERF/MPERF frequency ratio computation.
1854  *
1855  * The scheduler wants to do frequency invariant accounting and needs a <1
1856  * ratio to account for the 'current' frequency, corresponding to
1857  * freq_curr / freq_max.
1858  *
1859  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1860  * our P-state setting is little more than a request/hint, we need to observe
1861  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1862  * interval after discarding idle time. This is given by:
1863  *
1864  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1865  *
1866  * where freq_base is the max non-turbo P-state.
1867  *
1868  * The freq_max term has to be set to a somewhat arbitrary value, because we
1869  * can't know which turbo states will be available at a given point in time:
1870  * it all depends on the thermal headroom of the entire package. We set it to
1871  * the turbo level with 4 cores active.
1872  *
1873  * Benchmarks show that's a good compromise between the 1C turbo ratio
1874  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1875  * which would ignore the entire turbo range (a conspicuous part, making
1876  * freq_curr/freq_max always maxed out).
1877  *
1878  * An exception to the heuristic above is the Atom uarch, where we choose the
1879  * highest turbo level for freq_max since Atom's are generally oriented towards
1880  * power efficiency.
1881  *
1882  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1883  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1884  */
1885
1886 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1887
1888 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1889 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1890 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1891 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1892
1893 void arch_set_max_freq_ratio(bool turbo_disabled)
1894 {
1895         arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1896                                         arch_turbo_freq_ratio;
1897 }
1898 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1899
1900 static bool turbo_disabled(void)
1901 {
1902         u64 misc_en;
1903         int err;
1904
1905         err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1906         if (err)
1907                 return false;
1908
1909         return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1910 }
1911
1912 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1913 {
1914         int err;
1915
1916         err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1917         if (err)
1918                 return false;
1919
1920         err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1921         if (err)
1922                 return false;
1923
1924         *base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1925         *turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1926
1927         return true;
1928 }
1929
1930 #define X86_MATCH(model)                                        \
1931         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,            \
1932                 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1933
1934 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1935         X86_MATCH(XEON_PHI_KNL),
1936         X86_MATCH(XEON_PHI_KNM),
1937         {}
1938 };
1939
1940 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1941         X86_MATCH(SKYLAKE_X),
1942         {}
1943 };
1944
1945 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1946         X86_MATCH(ATOM_GOLDMONT),
1947         X86_MATCH(ATOM_GOLDMONT_D),
1948         X86_MATCH(ATOM_GOLDMONT_PLUS),
1949         {}
1950 };
1951
1952 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1953                                 int num_delta_fratio)
1954 {
1955         int fratio, delta_fratio, found;
1956         int err, i;
1957         u64 msr;
1958
1959         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1960         if (err)
1961                 return false;
1962
1963         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1964
1965         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1966         if (err)
1967                 return false;
1968
1969         fratio = (msr >> 8) & 0xFF;
1970         i = 16;
1971         found = 0;
1972         do {
1973                 if (found >= num_delta_fratio) {
1974                         *turbo_freq = fratio;
1975                         return true;
1976                 }
1977
1978                 delta_fratio = (msr >> (i + 5)) & 0x7;
1979
1980                 if (delta_fratio) {
1981                         found += 1;
1982                         fratio -= delta_fratio;
1983                 }
1984
1985                 i += 8;
1986         } while (i < 64);
1987
1988         return true;
1989 }
1990
1991 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1992 {
1993         u64 ratios, counts;
1994         u32 group_size;
1995         int err, i;
1996
1997         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1998         if (err)
1999                 return false;
2000
2001         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
2002
2003         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
2004         if (err)
2005                 return false;
2006
2007         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
2008         if (err)
2009                 return false;
2010
2011         for (i = 0; i < 64; i += 8) {
2012                 group_size = (counts >> i) & 0xFF;
2013                 if (group_size >= size) {
2014                         *turbo_freq = (ratios >> i) & 0xFF;
2015                         return true;
2016                 }
2017         }
2018
2019         return false;
2020 }
2021
2022 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
2023 {
2024         u64 msr;
2025         int err;
2026
2027         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
2028         if (err)
2029                 return false;
2030
2031         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
2032         if (err)
2033                 return false;
2034
2035         *base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
2036         *turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
2037
2038         /* The CPU may have less than 4 cores */
2039         if (!*turbo_freq)
2040                 *turbo_freq = msr & 0xFF;         /* 1C turbo    */
2041
2042         return true;
2043 }
2044
2045 static bool intel_set_max_freq_ratio(void)
2046 {
2047         u64 base_freq, turbo_freq;
2048         u64 turbo_ratio;
2049
2050         if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
2051                 goto out;
2052
2053         if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
2054             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2055                 goto out;
2056
2057         if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
2058             knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2059                 goto out;
2060
2061         if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2062             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2063                 goto out;
2064
2065         if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2066                 goto out;
2067
2068         return false;
2069
2070 out:
2071         /*
2072          * Some hypervisors advertise X86_FEATURE_APERFMPERF
2073          * but then fill all MSR's with zeroes.
2074          * Some CPUs have turbo boost but don't declare any turbo ratio
2075          * in MSR_TURBO_RATIO_LIMIT.
2076          */
2077         if (!base_freq || !turbo_freq) {
2078                 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2079                 return false;
2080         }
2081
2082         turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2083         if (!turbo_ratio) {
2084                 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2085                 return false;
2086         }
2087
2088         arch_turbo_freq_ratio = turbo_ratio;
2089         arch_set_max_freq_ratio(turbo_disabled());
2090
2091         return true;
2092 }
2093
2094 static void init_counter_refs(void)
2095 {
2096         u64 aperf, mperf;
2097
2098         rdmsrl(MSR_IA32_APERF, aperf);
2099         rdmsrl(MSR_IA32_MPERF, mperf);
2100
2101         this_cpu_write(arch_prev_aperf, aperf);
2102         this_cpu_write(arch_prev_mperf, mperf);
2103 }
2104
2105 #ifdef CONFIG_PM_SLEEP
2106 static struct syscore_ops freq_invariance_syscore_ops = {
2107         .resume = init_counter_refs,
2108 };
2109
2110 static void register_freq_invariance_syscore_ops(void)
2111 {
2112         /* Bail out if registered already. */
2113         if (freq_invariance_syscore_ops.node.prev)
2114                 return;
2115
2116         register_syscore_ops(&freq_invariance_syscore_ops);
2117 }
2118 #else
2119 static inline void register_freq_invariance_syscore_ops(void) {}
2120 #endif
2121
2122 void init_freq_invariance(bool secondary, bool cppc_ready)
2123 {
2124         bool ret = false;
2125
2126         if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2127                 return;
2128
2129         if (secondary) {
2130                 if (static_branch_likely(&arch_scale_freq_key)) {
2131                         init_counter_refs();
2132                 }
2133                 return;
2134         }
2135
2136         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2137                 ret = intel_set_max_freq_ratio();
2138         else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2139                 if (!cppc_ready) {
2140                         return;
2141                 }
2142                 ret = amd_set_max_freq_ratio(&arch_turbo_freq_ratio);
2143         }
2144
2145         if (ret) {
2146                 init_counter_refs();
2147                 static_branch_enable(&arch_scale_freq_key);
2148                 register_freq_invariance_syscore_ops();
2149                 pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2150         } else {
2151                 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2152         }
2153 }
2154
2155 static void disable_freq_invariance_workfn(struct work_struct *work)
2156 {
2157         static_branch_disable(&arch_scale_freq_key);
2158 }
2159
2160 static DECLARE_WORK(disable_freq_invariance_work,
2161                     disable_freq_invariance_workfn);
2162
2163 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2164
2165 void arch_scale_freq_tick(void)
2166 {
2167         u64 freq_scale;
2168         u64 aperf, mperf;
2169         u64 acnt, mcnt;
2170
2171         if (!arch_scale_freq_invariant())
2172                 return;
2173
2174         rdmsrl(MSR_IA32_APERF, aperf);
2175         rdmsrl(MSR_IA32_MPERF, mperf);
2176
2177         acnt = aperf - this_cpu_read(arch_prev_aperf);
2178         mcnt = mperf - this_cpu_read(arch_prev_mperf);
2179
2180         this_cpu_write(arch_prev_aperf, aperf);
2181         this_cpu_write(arch_prev_mperf, mperf);
2182
2183         if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2184                 goto error;
2185
2186         if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2187                 goto error;
2188
2189         freq_scale = div64_u64(acnt, mcnt);
2190         if (!freq_scale)
2191                 goto error;
2192
2193         if (freq_scale > SCHED_CAPACITY_SCALE)
2194                 freq_scale = SCHED_CAPACITY_SCALE;
2195
2196         this_cpu_write(arch_freq_scale, freq_scale);
2197         return;
2198
2199 error:
2200         pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2201         schedule_work(&disable_freq_invariance_work);
2202 }
2203 #endif /* CONFIG_X86_64 */