1 #include <linux/errno.h>
2 #include <linux/kernel.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
18 #include <asm/system.h>
20 #include <asm/syscalls.h>
22 #include <asm/uaccess.h>
24 #include <asm/debugreg.h>
26 struct kmem_cache *task_xstate_cachep;
27 EXPORT_SYMBOL_GPL(task_xstate_cachep);
29 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
34 if (fpu_allocated(&src->thread.fpu)) {
35 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
36 ret = fpu_alloc(&dst->thread.fpu);
39 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
44 void free_thread_xstate(struct task_struct *tsk)
46 fpu_free(&tsk->thread.fpu);
49 void free_thread_info(struct thread_info *ti)
51 free_thread_xstate(ti->task);
52 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
55 void arch_task_cache_init(void)
58 kmem_cache_create("task_xstate", xstate_size,
59 __alignof__(union thread_xstate),
60 SLAB_PANIC | SLAB_NOTRACK, NULL);
64 * Free current thread data structures etc..
66 void exit_thread(void)
68 struct task_struct *me = current;
69 struct thread_struct *t = &me->thread;
70 unsigned long *bp = t->io_bitmap_ptr;
73 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
75 t->io_bitmap_ptr = NULL;
76 clear_thread_flag(TIF_IO_BITMAP);
78 * Careful, clear this in the TSS too:
80 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
87 void show_regs(struct pt_regs *regs)
90 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs));
93 void show_regs_common(void)
95 const char *vendor, *product, *board;
97 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
100 product = dmi_get_system_info(DMI_PRODUCT_NAME);
104 /* Board Name is optional */
105 board = dmi_get_system_info(DMI_BOARD_NAME);
107 printk(KERN_CONT "\n");
108 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109 current->pid, current->comm, print_tainted(),
110 init_utsname()->release,
111 (int)strcspn(init_utsname()->version, " "),
112 init_utsname()->version);
113 printk(KERN_CONT " ");
114 printk(KERN_CONT "%s %s", vendor, product);
116 printk(KERN_CONT "/");
117 printk(KERN_CONT "%s", board);
119 printk(KERN_CONT "\n");
122 void flush_thread(void)
124 struct task_struct *tsk = current;
126 flush_ptrace_hw_breakpoint(tsk);
127 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
129 * Forget coprocessor state..
131 tsk->fpu_counter = 0;
136 static void hard_disable_TSC(void)
138 write_cr4(read_cr4() | X86_CR4_TSD);
141 void disable_TSC(void)
144 if (!test_and_set_thread_flag(TIF_NOTSC))
146 * Must flip the CPU state synchronously with
147 * TIF_NOTSC in the current running context.
153 static void hard_enable_TSC(void)
155 write_cr4(read_cr4() & ~X86_CR4_TSD);
158 static void enable_TSC(void)
161 if (test_and_clear_thread_flag(TIF_NOTSC))
163 * Must flip the CPU state synchronously with
164 * TIF_NOTSC in the current running context.
170 int get_tsc_mode(unsigned long adr)
174 if (test_thread_flag(TIF_NOTSC))
175 val = PR_TSC_SIGSEGV;
179 return put_user(val, (unsigned int __user *)adr);
182 int set_tsc_mode(unsigned int val)
184 if (val == PR_TSC_SIGSEGV)
186 else if (val == PR_TSC_ENABLE)
194 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
195 struct tss_struct *tss)
197 struct thread_struct *prev, *next;
199 prev = &prev_p->thread;
200 next = &next_p->thread;
202 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
203 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
204 unsigned long debugctl = get_debugctlmsr();
206 debugctl &= ~DEBUGCTLMSR_BTF;
207 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
208 debugctl |= DEBUGCTLMSR_BTF;
210 update_debugctlmsr(debugctl);
213 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
214 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
215 /* prev and next are different */
216 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
222 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
224 * Copy the relevant range of the IO bitmap.
225 * Normally this is 128 bytes or less:
227 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
228 max(prev->io_bitmap_max, next->io_bitmap_max));
229 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
231 * Clear any possible leftover bits:
233 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
235 propagate_user_return_notify(prev_p, next_p);
238 int sys_fork(struct pt_regs *regs)
240 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
244 * This is trivial, and on the face of it looks like it
245 * could equally well be done in user mode.
247 * Not so, for quite unobvious reasons - register pressure.
248 * In user mode vfork() cannot have a stack frame, and if
249 * done by calling the "clone()" system call directly, you
250 * do not have enough call-clobbered registers to hold all
251 * the information you need.
253 int sys_vfork(struct pt_regs *regs)
255 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
260 sys_clone(unsigned long clone_flags, unsigned long newsp,
261 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
265 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
269 * This gets run with %si containing the
270 * function to call, and %di containing
273 extern void kernel_thread_helper(void);
276 * Create a kernel thread
278 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
282 memset(®s, 0, sizeof(regs));
284 regs.si = (unsigned long) fn;
285 regs.di = (unsigned long) arg;
290 regs.fs = __KERNEL_PERCPU;
291 regs.gs = __KERNEL_STACK_CANARY;
293 regs.ss = __KERNEL_DS;
297 regs.ip = (unsigned long) kernel_thread_helper;
298 regs.cs = __KERNEL_CS | get_kernel_rpl();
299 regs.flags = X86_EFLAGS_IF | 0x2;
301 /* Ok, create the new process.. */
302 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);
304 EXPORT_SYMBOL(kernel_thread);
307 * sys_execve() executes a new program.
309 long sys_execve(const char __user *name,
310 const char __user *const __user *argv,
311 const char __user *const __user *envp, struct pt_regs *regs)
316 filename = getname(name);
317 error = PTR_ERR(filename);
318 if (IS_ERR(filename))
320 error = do_execve(filename, argv, envp, regs);
324 /* Make sure we don't return using sysenter.. */
325 set_thread_flag(TIF_IRET);
334 * Idle related variables and functions
336 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
337 EXPORT_SYMBOL(boot_option_idle_override);
340 * Powermanagement idle function, if any..
342 void (*pm_idle)(void);
343 EXPORT_SYMBOL(pm_idle);
347 * This halt magic was a workaround for ancient floppy DMA
348 * wreckage. It should be safe to remove.
350 static int hlt_counter;
351 void disable_hlt(void)
355 EXPORT_SYMBOL(disable_hlt);
357 void enable_hlt(void)
361 EXPORT_SYMBOL(enable_hlt);
363 static inline int hlt_use_halt(void)
365 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
368 static inline int hlt_use_halt(void)
375 * We use this if we don't have any better
378 void default_idle(void)
380 if (hlt_use_halt()) {
381 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
382 trace_cpu_idle(1, smp_processor_id());
383 current_thread_info()->status &= ~TS_POLLING;
385 * TS_POLLING-cleared state must be visible before we
391 safe_halt(); /* enables interrupts racelessly */
394 current_thread_info()->status |= TS_POLLING;
395 trace_power_end(smp_processor_id());
396 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
399 /* loop is done by the caller */
403 #ifdef CONFIG_APM_MODULE
404 EXPORT_SYMBOL(default_idle);
407 void stop_this_cpu(void *dummy)
413 set_cpu_online(smp_processor_id(), false);
414 disable_local_APIC();
417 if (hlt_works(smp_processor_id()))
422 static void do_nothing(void *unused)
427 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
428 * pm_idle and update to new pm_idle value. Required while changing pm_idle
429 * handler on SMP systems.
431 * Caller must have changed pm_idle to the new value before the call. Old
432 * pm_idle value will not be used by any CPU after the return of this function.
434 void cpu_idle_wait(void)
437 /* kick all the CPUs so that they exit out of pm_idle */
438 smp_call_function(do_nothing, NULL, 1);
440 EXPORT_SYMBOL_GPL(cpu_idle_wait);
443 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
444 * which can obviate IPI to trigger checking of need_resched.
445 * We execute MONITOR against need_resched and enter optimized wait state
446 * through MWAIT. Whenever someone changes need_resched, we would be woken
447 * up from MWAIT (without an IPI).
449 * New with Core Duo processors, MWAIT can take some hints based on CPU
452 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
454 if (!need_resched()) {
455 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
456 clflush((void *)¤t_thread_info()->flags);
458 __monitor((void *)¤t_thread_info()->flags, 0, 0);
465 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
466 static void mwait_idle(void)
468 if (!need_resched()) {
469 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
470 trace_cpu_idle(1, smp_processor_id());
471 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
472 clflush((void *)¤t_thread_info()->flags);
474 __monitor((void *)¤t_thread_info()->flags, 0, 0);
480 trace_power_end(smp_processor_id());
481 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
487 * On SMP it's slightly faster (but much more power-consuming!)
488 * to poll the ->work.need_resched flag instead of waiting for the
489 * cross-CPU IPI to arrive. Use this option with caution.
491 static void poll_idle(void)
493 trace_power_start(POWER_CSTATE, 0, smp_processor_id());
494 trace_cpu_idle(0, smp_processor_id());
496 while (!need_resched())
498 trace_power_end(smp_processor_id());
499 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
503 * mwait selection logic:
505 * It depends on the CPU. For AMD CPUs that support MWAIT this is
506 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
507 * then depend on a clock divisor and current Pstate of the core. If
508 * all cores of a processor are in halt state (C1) the processor can
509 * enter the C1E (C1 enhanced) state. If mwait is used this will never
512 * idle=mwait overrides this decision and forces the usage of mwait.
515 #define MWAIT_INFO 0x05
516 #define MWAIT_ECX_EXTENDED_INFO 0x01
517 #define MWAIT_EDX_C1 0xf0
519 int mwait_usable(const struct cpuinfo_x86 *c)
521 u32 eax, ebx, ecx, edx;
523 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
526 if (c->cpuid_level < MWAIT_INFO)
529 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
530 /* Check, whether EDX has extended info about MWAIT */
531 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
535 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
538 return (edx & MWAIT_EDX_C1);
542 EXPORT_SYMBOL(c1e_detected);
544 static cpumask_var_t c1e_mask;
546 void c1e_remove_cpu(int cpu)
548 if (c1e_mask != NULL)
549 cpumask_clear_cpu(cpu, c1e_mask);
553 * C1E aware idle routine. We check for C1E active in the interrupt
554 * pending message MSR. If we detect C1E, then we handle it the same
555 * way as C3 power states (local apic timer and TSC stop)
557 static void c1e_idle(void)
565 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
567 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
569 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
570 mark_tsc_unstable("TSC halt in AMD C1E");
571 printk(KERN_INFO "System has AMD C1E enabled\n");
576 int cpu = smp_processor_id();
578 if (!cpumask_test_cpu(cpu, c1e_mask)) {
579 cpumask_set_cpu(cpu, c1e_mask);
581 * Force broadcast so ACPI can not interfere.
583 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
585 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
588 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
593 * The switch back from broadcast mode needs to be
594 * called with interrupts disabled.
597 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
603 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
606 if (pm_idle == poll_idle && smp_num_siblings > 1) {
607 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
608 " performance may degrade.\n");
614 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
616 * One CPU supports mwait => All CPUs supports mwait
618 printk(KERN_INFO "using mwait in idle threads.\n");
619 pm_idle = mwait_idle;
620 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
621 /* E400: APIC timer interrupt does not wake up CPU from C1e */
622 printk(KERN_INFO "using C1E aware idle routine\n");
625 pm_idle = default_idle;
628 void __init init_c1e_mask(void)
630 /* If we're using c1e_idle, we need to allocate c1e_mask. */
631 if (pm_idle == c1e_idle)
632 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
635 static int __init idle_setup(char *str)
640 if (!strcmp(str, "poll")) {
641 printk("using polling idle threads.\n");
643 boot_option_idle_override = IDLE_POLL;
644 } else if (!strcmp(str, "mwait")) {
645 boot_option_idle_override = IDLE_FORCE_MWAIT;
646 } else if (!strcmp(str, "halt")) {
648 * When the boot option of idle=halt is added, halt is
649 * forced to be used for CPU idle. In such case CPU C2/C3
650 * won't be used again.
651 * To continue to load the CPU idle driver, don't touch
652 * the boot_option_idle_override.
654 pm_idle = default_idle;
655 boot_option_idle_override = IDLE_HALT;
656 } else if (!strcmp(str, "nomwait")) {
658 * If the boot option of "idle=nomwait" is added,
659 * it means that mwait will be disabled for CPU C2/C3
660 * states. In such case it won't touch the variable
661 * of boot_option_idle_override.
663 boot_option_idle_override = IDLE_NOMWAIT;
669 early_param("idle", idle_setup);
671 unsigned long arch_align_stack(unsigned long sp)
673 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
674 sp -= get_random_int() % 8192;
678 unsigned long arch_randomize_brk(struct mm_struct *mm)
680 unsigned long range_end = mm->brk + 0x02000000;
681 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;