x86: use set_memory.h header
[platform/kernel/linux-rpi.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29 #include <asm/setup.h>
30 #include <asm/set_memory.h>
31
32 #ifdef CONFIG_KEXEC_FILE
33 static struct kexec_file_ops *kexec_file_loaders[] = {
34                 &kexec_bzImage64_ops,
35 };
36 #endif
37
38 static void free_transition_pgtable(struct kimage *image)
39 {
40         free_page((unsigned long)image->arch.p4d);
41         free_page((unsigned long)image->arch.pud);
42         free_page((unsigned long)image->arch.pmd);
43         free_page((unsigned long)image->arch.pte);
44 }
45
46 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
47 {
48         p4d_t *p4d;
49         pud_t *pud;
50         pmd_t *pmd;
51         pte_t *pte;
52         unsigned long vaddr, paddr;
53         int result = -ENOMEM;
54
55         vaddr = (unsigned long)relocate_kernel;
56         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
57         pgd += pgd_index(vaddr);
58         if (!pgd_present(*pgd)) {
59                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
60                 if (!p4d)
61                         goto err;
62                 image->arch.p4d = p4d;
63                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
64         }
65         p4d = p4d_offset(pgd, vaddr);
66         if (!p4d_present(*p4d)) {
67                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
68                 if (!pud)
69                         goto err;
70                 image->arch.pud = pud;
71                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
72         }
73         pud = pud_offset(p4d, vaddr);
74         if (!pud_present(*pud)) {
75                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
76                 if (!pmd)
77                         goto err;
78                 image->arch.pmd = pmd;
79                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
80         }
81         pmd = pmd_offset(pud, vaddr);
82         if (!pmd_present(*pmd)) {
83                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
84                 if (!pte)
85                         goto err;
86                 image->arch.pte = pte;
87                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
88         }
89         pte = pte_offset_kernel(pmd, vaddr);
90         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
91         return 0;
92 err:
93         free_transition_pgtable(image);
94         return result;
95 }
96
97 static void *alloc_pgt_page(void *data)
98 {
99         struct kimage *image = (struct kimage *)data;
100         struct page *page;
101         void *p = NULL;
102
103         page = kimage_alloc_control_pages(image, 0);
104         if (page) {
105                 p = page_address(page);
106                 clear_page(p);
107         }
108
109         return p;
110 }
111
112 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
113 {
114         struct x86_mapping_info info = {
115                 .alloc_pgt_page = alloc_pgt_page,
116                 .context        = image,
117                 .pmd_flag       = __PAGE_KERNEL_LARGE_EXEC,
118         };
119         unsigned long mstart, mend;
120         pgd_t *level4p;
121         int result;
122         int i;
123
124         level4p = (pgd_t *)__va(start_pgtable);
125         clear_page(level4p);
126         for (i = 0; i < nr_pfn_mapped; i++) {
127                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
128                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
129
130                 result = kernel_ident_mapping_init(&info,
131                                                  level4p, mstart, mend);
132                 if (result)
133                         return result;
134         }
135
136         /*
137          * segments's mem ranges could be outside 0 ~ max_pfn,
138          * for example when jump back to original kernel from kexeced kernel.
139          * or first kernel is booted with user mem map, and second kernel
140          * could be loaded out of that range.
141          */
142         for (i = 0; i < image->nr_segments; i++) {
143                 mstart = image->segment[i].mem;
144                 mend   = mstart + image->segment[i].memsz;
145
146                 result = kernel_ident_mapping_init(&info,
147                                                  level4p, mstart, mend);
148
149                 if (result)
150                         return result;
151         }
152
153         return init_transition_pgtable(image, level4p);
154 }
155
156 static void set_idt(void *newidt, u16 limit)
157 {
158         struct desc_ptr curidt;
159
160         /* x86-64 supports unaliged loads & stores */
161         curidt.size    = limit;
162         curidt.address = (unsigned long)newidt;
163
164         __asm__ __volatile__ (
165                 "lidtq %0\n"
166                 : : "m" (curidt)
167                 );
168 };
169
170
171 static void set_gdt(void *newgdt, u16 limit)
172 {
173         struct desc_ptr curgdt;
174
175         /* x86-64 supports unaligned loads & stores */
176         curgdt.size    = limit;
177         curgdt.address = (unsigned long)newgdt;
178
179         __asm__ __volatile__ (
180                 "lgdtq %0\n"
181                 : : "m" (curgdt)
182                 );
183 };
184
185 static void load_segments(void)
186 {
187         __asm__ __volatile__ (
188                 "\tmovl %0,%%ds\n"
189                 "\tmovl %0,%%es\n"
190                 "\tmovl %0,%%ss\n"
191                 "\tmovl %0,%%fs\n"
192                 "\tmovl %0,%%gs\n"
193                 : : "a" (__KERNEL_DS) : "memory"
194                 );
195 }
196
197 #ifdef CONFIG_KEXEC_FILE
198 /* Update purgatory as needed after various image segments have been prepared */
199 static int arch_update_purgatory(struct kimage *image)
200 {
201         int ret = 0;
202
203         if (!image->file_mode)
204                 return 0;
205
206         /* Setup copying of backup region */
207         if (image->type == KEXEC_TYPE_CRASH) {
208                 ret = kexec_purgatory_get_set_symbol(image,
209                                 "purgatory_backup_dest",
210                                 &image->arch.backup_load_addr,
211                                 sizeof(image->arch.backup_load_addr), 0);
212                 if (ret)
213                         return ret;
214
215                 ret = kexec_purgatory_get_set_symbol(image,
216                                 "purgatory_backup_src",
217                                 &image->arch.backup_src_start,
218                                 sizeof(image->arch.backup_src_start), 0);
219                 if (ret)
220                         return ret;
221
222                 ret = kexec_purgatory_get_set_symbol(image,
223                                 "purgatory_backup_sz",
224                                 &image->arch.backup_src_sz,
225                                 sizeof(image->arch.backup_src_sz), 0);
226                 if (ret)
227                         return ret;
228         }
229
230         return ret;
231 }
232 #else /* !CONFIG_KEXEC_FILE */
233 static inline int arch_update_purgatory(struct kimage *image)
234 {
235         return 0;
236 }
237 #endif /* CONFIG_KEXEC_FILE */
238
239 int machine_kexec_prepare(struct kimage *image)
240 {
241         unsigned long start_pgtable;
242         int result;
243
244         /* Calculate the offsets */
245         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
246
247         /* Setup the identity mapped 64bit page table */
248         result = init_pgtable(image, start_pgtable);
249         if (result)
250                 return result;
251
252         /* update purgatory as needed */
253         result = arch_update_purgatory(image);
254         if (result)
255                 return result;
256
257         return 0;
258 }
259
260 void machine_kexec_cleanup(struct kimage *image)
261 {
262         free_transition_pgtable(image);
263 }
264
265 /*
266  * Do not allocate memory (or fail in any way) in machine_kexec().
267  * We are past the point of no return, committed to rebooting now.
268  */
269 void machine_kexec(struct kimage *image)
270 {
271         unsigned long page_list[PAGES_NR];
272         void *control_page;
273         int save_ftrace_enabled;
274
275 #ifdef CONFIG_KEXEC_JUMP
276         if (image->preserve_context)
277                 save_processor_state();
278 #endif
279
280         save_ftrace_enabled = __ftrace_enabled_save();
281
282         /* Interrupts aren't acceptable while we reboot */
283         local_irq_disable();
284         hw_breakpoint_disable();
285
286         if (image->preserve_context) {
287 #ifdef CONFIG_X86_IO_APIC
288                 /*
289                  * We need to put APICs in legacy mode so that we can
290                  * get timer interrupts in second kernel. kexec/kdump
291                  * paths already have calls to disable_IO_APIC() in
292                  * one form or other. kexec jump path also need
293                  * one.
294                  */
295                 disable_IO_APIC();
296 #endif
297         }
298
299         control_page = page_address(image->control_code_page) + PAGE_SIZE;
300         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
301
302         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
303         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
304         page_list[PA_TABLE_PAGE] =
305           (unsigned long)__pa(page_address(image->control_code_page));
306
307         if (image->type == KEXEC_TYPE_DEFAULT)
308                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
309                                                 << PAGE_SHIFT);
310
311         /*
312          * The segment registers are funny things, they have both a
313          * visible and an invisible part.  Whenever the visible part is
314          * set to a specific selector, the invisible part is loaded
315          * with from a table in memory.  At no other time is the
316          * descriptor table in memory accessed.
317          *
318          * I take advantage of this here by force loading the
319          * segments, before I zap the gdt with an invalid value.
320          */
321         load_segments();
322         /*
323          * The gdt & idt are now invalid.
324          * If you want to load them you must set up your own idt & gdt.
325          */
326         set_gdt(phys_to_virt(0), 0);
327         set_idt(phys_to_virt(0), 0);
328
329         /* now call it */
330         image->start = relocate_kernel((unsigned long)image->head,
331                                        (unsigned long)page_list,
332                                        image->start,
333                                        image->preserve_context);
334
335 #ifdef CONFIG_KEXEC_JUMP
336         if (image->preserve_context)
337                 restore_processor_state();
338 #endif
339
340         __ftrace_enabled_restore(save_ftrace_enabled);
341 }
342
343 void arch_crash_save_vmcoreinfo(void)
344 {
345         VMCOREINFO_NUMBER(phys_base);
346         VMCOREINFO_SYMBOL(init_level4_pgt);
347
348 #ifdef CONFIG_NUMA
349         VMCOREINFO_SYMBOL(node_data);
350         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
351 #endif
352         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
353                               kaslr_offset());
354         VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
355 }
356
357 /* arch-dependent functionality related to kexec file-based syscall */
358
359 #ifdef CONFIG_KEXEC_FILE
360 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
361                                   unsigned long buf_len)
362 {
363         int i, ret = -ENOEXEC;
364         struct kexec_file_ops *fops;
365
366         for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
367                 fops = kexec_file_loaders[i];
368                 if (!fops || !fops->probe)
369                         continue;
370
371                 ret = fops->probe(buf, buf_len);
372                 if (!ret) {
373                         image->fops = fops;
374                         return ret;
375                 }
376         }
377
378         return ret;
379 }
380
381 void *arch_kexec_kernel_image_load(struct kimage *image)
382 {
383         vfree(image->arch.elf_headers);
384         image->arch.elf_headers = NULL;
385
386         if (!image->fops || !image->fops->load)
387                 return ERR_PTR(-ENOEXEC);
388
389         return image->fops->load(image, image->kernel_buf,
390                                  image->kernel_buf_len, image->initrd_buf,
391                                  image->initrd_buf_len, image->cmdline_buf,
392                                  image->cmdline_buf_len);
393 }
394
395 int arch_kimage_file_post_load_cleanup(struct kimage *image)
396 {
397         if (!image->fops || !image->fops->cleanup)
398                 return 0;
399
400         return image->fops->cleanup(image->image_loader_data);
401 }
402
403 #ifdef CONFIG_KEXEC_VERIFY_SIG
404 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
405                                  unsigned long kernel_len)
406 {
407         if (!image->fops || !image->fops->verify_sig) {
408                 pr_debug("kernel loader does not support signature verification.");
409                 return -EKEYREJECTED;
410         }
411
412         return image->fops->verify_sig(kernel, kernel_len);
413 }
414 #endif
415
416 /*
417  * Apply purgatory relocations.
418  *
419  * ehdr: Pointer to elf headers
420  * sechdrs: Pointer to section headers.
421  * relsec: section index of SHT_RELA section.
422  *
423  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
424  */
425 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
426                                      Elf64_Shdr *sechdrs, unsigned int relsec)
427 {
428         unsigned int i;
429         Elf64_Rela *rel;
430         Elf64_Sym *sym;
431         void *location;
432         Elf64_Shdr *section, *symtabsec;
433         unsigned long address, sec_base, value;
434         const char *strtab, *name, *shstrtab;
435
436         /*
437          * ->sh_offset has been modified to keep the pointer to section
438          * contents in memory
439          */
440         rel = (void *)sechdrs[relsec].sh_offset;
441
442         /* Section to which relocations apply */
443         section = &sechdrs[sechdrs[relsec].sh_info];
444
445         pr_debug("Applying relocate section %u to %u\n", relsec,
446                  sechdrs[relsec].sh_info);
447
448         /* Associated symbol table */
449         symtabsec = &sechdrs[sechdrs[relsec].sh_link];
450
451         /* String table */
452         if (symtabsec->sh_link >= ehdr->e_shnum) {
453                 /* Invalid strtab section number */
454                 pr_err("Invalid string table section index %d\n",
455                        symtabsec->sh_link);
456                 return -ENOEXEC;
457         }
458
459         strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
460
461         /* section header string table */
462         shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
463
464         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
465
466                 /*
467                  * rel[i].r_offset contains byte offset from beginning
468                  * of section to the storage unit affected.
469                  *
470                  * This is location to update (->sh_offset). This is temporary
471                  * buffer where section is currently loaded. This will finally
472                  * be loaded to a different address later, pointed to by
473                  * ->sh_addr. kexec takes care of moving it
474                  *  (kexec_load_segment()).
475                  */
476                 location = (void *)(section->sh_offset + rel[i].r_offset);
477
478                 /* Final address of the location */
479                 address = section->sh_addr + rel[i].r_offset;
480
481                 /*
482                  * rel[i].r_info contains information about symbol table index
483                  * w.r.t which relocation must be made and type of relocation
484                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
485                  * these respectively.
486                  */
487                 sym = (Elf64_Sym *)symtabsec->sh_offset +
488                                 ELF64_R_SYM(rel[i].r_info);
489
490                 if (sym->st_name)
491                         name = strtab + sym->st_name;
492                 else
493                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
494
495                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
496                          name, sym->st_info, sym->st_shndx, sym->st_value,
497                          sym->st_size);
498
499                 if (sym->st_shndx == SHN_UNDEF) {
500                         pr_err("Undefined symbol: %s\n", name);
501                         return -ENOEXEC;
502                 }
503
504                 if (sym->st_shndx == SHN_COMMON) {
505                         pr_err("symbol '%s' in common section\n", name);
506                         return -ENOEXEC;
507                 }
508
509                 if (sym->st_shndx == SHN_ABS)
510                         sec_base = 0;
511                 else if (sym->st_shndx >= ehdr->e_shnum) {
512                         pr_err("Invalid section %d for symbol %s\n",
513                                sym->st_shndx, name);
514                         return -ENOEXEC;
515                 } else
516                         sec_base = sechdrs[sym->st_shndx].sh_addr;
517
518                 value = sym->st_value;
519                 value += sec_base;
520                 value += rel[i].r_addend;
521
522                 switch (ELF64_R_TYPE(rel[i].r_info)) {
523                 case R_X86_64_NONE:
524                         break;
525                 case R_X86_64_64:
526                         *(u64 *)location = value;
527                         break;
528                 case R_X86_64_32:
529                         *(u32 *)location = value;
530                         if (value != *(u32 *)location)
531                                 goto overflow;
532                         break;
533                 case R_X86_64_32S:
534                         *(s32 *)location = value;
535                         if ((s64)value != *(s32 *)location)
536                                 goto overflow;
537                         break;
538                 case R_X86_64_PC32:
539                         value -= (u64)address;
540                         *(u32 *)location = value;
541                         break;
542                 default:
543                         pr_err("Unknown rela relocation: %llu\n",
544                                ELF64_R_TYPE(rel[i].r_info));
545                         return -ENOEXEC;
546                 }
547         }
548         return 0;
549
550 overflow:
551         pr_err("Overflow in relocation type %d value 0x%lx\n",
552                (int)ELF64_R_TYPE(rel[i].r_info), value);
553         return -ENOEXEC;
554 }
555 #endif /* CONFIG_KEXEC_FILE */
556
557 static int
558 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
559 {
560         struct page *page;
561         unsigned int nr_pages;
562
563         /*
564          * For physical range: [start, end]. We must skip the unassigned
565          * crashk resource with zero-valued "end" member.
566          */
567         if (!end || start > end)
568                 return 0;
569
570         page = pfn_to_page(start >> PAGE_SHIFT);
571         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
572         if (protect)
573                 return set_pages_ro(page, nr_pages);
574         else
575                 return set_pages_rw(page, nr_pages);
576 }
577
578 static void kexec_mark_crashkres(bool protect)
579 {
580         unsigned long control;
581
582         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
583
584         /* Don't touch the control code page used in crash_kexec().*/
585         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
586         /* Control code page is located in the 2nd page. */
587         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
588         control += KEXEC_CONTROL_PAGE_SIZE;
589         kexec_mark_range(control, crashk_res.end, protect);
590 }
591
592 void arch_kexec_protect_crashkres(void)
593 {
594         kexec_mark_crashkres(true);
595 }
596
597 void arch_kexec_unprotect_crashkres(void)
598 {
599         kexec_mark_crashkres(false);
600 }