Merge tag 'soc-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[platform/kernel/linux-starfive.git] / arch / x86 / kernel / kvm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * KVM paravirt_ops implementation
4  *
5  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  * Copyright IBM Corporation, 2007
7  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
8  */
9
10 #define pr_fmt(fmt) "kvm-guest: " fmt
11
12 #include <linux/context_tracking.h>
13 #include <linux/init.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/kvm_para.h>
17 #include <linux/cpu.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/hardirq.h>
21 #include <linux/notifier.h>
22 #include <linux/reboot.h>
23 #include <linux/hash.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/kprobes.h>
27 #include <linux/nmi.h>
28 #include <linux/swait.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/cc_platform.h>
31 #include <asm/timer.h>
32 #include <asm/cpu.h>
33 #include <asm/traps.h>
34 #include <asm/desc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/apic.h>
37 #include <asm/apicdef.h>
38 #include <asm/hypervisor.h>
39 #include <asm/tlb.h>
40 #include <asm/cpuidle_haltpoll.h>
41 #include <asm/ptrace.h>
42 #include <asm/reboot.h>
43 #include <asm/svm.h>
44
45 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
46
47 static int kvmapf = 1;
48
49 static int __init parse_no_kvmapf(char *arg)
50 {
51         kvmapf = 0;
52         return 0;
53 }
54
55 early_param("no-kvmapf", parse_no_kvmapf);
56
57 static int steal_acc = 1;
58 static int __init parse_no_stealacc(char *arg)
59 {
60         steal_acc = 0;
61         return 0;
62 }
63
64 early_param("no-steal-acc", parse_no_stealacc);
65
66 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
67 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
68 static int has_steal_clock = 0;
69
70 /*
71  * No need for any "IO delay" on KVM
72  */
73 static void kvm_io_delay(void)
74 {
75 }
76
77 #define KVM_TASK_SLEEP_HASHBITS 8
78 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
79
80 struct kvm_task_sleep_node {
81         struct hlist_node link;
82         struct swait_queue_head wq;
83         u32 token;
84         int cpu;
85 };
86
87 static struct kvm_task_sleep_head {
88         raw_spinlock_t lock;
89         struct hlist_head list;
90 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
91
92 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
93                                                   u32 token)
94 {
95         struct hlist_node *p;
96
97         hlist_for_each(p, &b->list) {
98                 struct kvm_task_sleep_node *n =
99                         hlist_entry(p, typeof(*n), link);
100                 if (n->token == token)
101                         return n;
102         }
103
104         return NULL;
105 }
106
107 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
108 {
109         u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
110         struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
111         struct kvm_task_sleep_node *e;
112
113         raw_spin_lock(&b->lock);
114         e = _find_apf_task(b, token);
115         if (e) {
116                 /* dummy entry exist -> wake up was delivered ahead of PF */
117                 hlist_del(&e->link);
118                 raw_spin_unlock(&b->lock);
119                 kfree(e);
120                 return false;
121         }
122
123         n->token = token;
124         n->cpu = smp_processor_id();
125         init_swait_queue_head(&n->wq);
126         hlist_add_head(&n->link, &b->list);
127         raw_spin_unlock(&b->lock);
128         return true;
129 }
130
131 /*
132  * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
133  * @token:      Token to identify the sleep node entry
134  *
135  * Invoked from the async pagefault handling code or from the VM exit page
136  * fault handler. In both cases RCU is watching.
137  */
138 void kvm_async_pf_task_wait_schedule(u32 token)
139 {
140         struct kvm_task_sleep_node n;
141         DECLARE_SWAITQUEUE(wait);
142
143         lockdep_assert_irqs_disabled();
144
145         if (!kvm_async_pf_queue_task(token, &n))
146                 return;
147
148         for (;;) {
149                 prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
150                 if (hlist_unhashed(&n.link))
151                         break;
152
153                 local_irq_enable();
154                 schedule();
155                 local_irq_disable();
156         }
157         finish_swait(&n.wq, &wait);
158 }
159 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
160
161 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
162 {
163         hlist_del_init(&n->link);
164         if (swq_has_sleeper(&n->wq))
165                 swake_up_one(&n->wq);
166 }
167
168 static void apf_task_wake_all(void)
169 {
170         int i;
171
172         for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
173                 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
174                 struct kvm_task_sleep_node *n;
175                 struct hlist_node *p, *next;
176
177                 raw_spin_lock(&b->lock);
178                 hlist_for_each_safe(p, next, &b->list) {
179                         n = hlist_entry(p, typeof(*n), link);
180                         if (n->cpu == smp_processor_id())
181                                 apf_task_wake_one(n);
182                 }
183                 raw_spin_unlock(&b->lock);
184         }
185 }
186
187 void kvm_async_pf_task_wake(u32 token)
188 {
189         u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
190         struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
191         struct kvm_task_sleep_node *n;
192
193         if (token == ~0) {
194                 apf_task_wake_all();
195                 return;
196         }
197
198 again:
199         raw_spin_lock(&b->lock);
200         n = _find_apf_task(b, token);
201         if (!n) {
202                 /*
203                  * async PF was not yet handled.
204                  * Add dummy entry for the token.
205                  */
206                 n = kzalloc(sizeof(*n), GFP_ATOMIC);
207                 if (!n) {
208                         /*
209                          * Allocation failed! Busy wait while other cpu
210                          * handles async PF.
211                          */
212                         raw_spin_unlock(&b->lock);
213                         cpu_relax();
214                         goto again;
215                 }
216                 n->token = token;
217                 n->cpu = smp_processor_id();
218                 init_swait_queue_head(&n->wq);
219                 hlist_add_head(&n->link, &b->list);
220         } else {
221                 apf_task_wake_one(n);
222         }
223         raw_spin_unlock(&b->lock);
224         return;
225 }
226 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
227
228 noinstr u32 kvm_read_and_reset_apf_flags(void)
229 {
230         u32 flags = 0;
231
232         if (__this_cpu_read(apf_reason.enabled)) {
233                 flags = __this_cpu_read(apf_reason.flags);
234                 __this_cpu_write(apf_reason.flags, 0);
235         }
236
237         return flags;
238 }
239 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
240
241 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
242 {
243         u32 flags = kvm_read_and_reset_apf_flags();
244         irqentry_state_t state;
245
246         if (!flags)
247                 return false;
248
249         state = irqentry_enter(regs);
250         instrumentation_begin();
251
252         /*
253          * If the host managed to inject an async #PF into an interrupt
254          * disabled region, then die hard as this is not going to end well
255          * and the host side is seriously broken.
256          */
257         if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
258                 panic("Host injected async #PF in interrupt disabled region\n");
259
260         if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
261                 if (unlikely(!(user_mode(regs))))
262                         panic("Host injected async #PF in kernel mode\n");
263                 /* Page is swapped out by the host. */
264                 kvm_async_pf_task_wait_schedule(token);
265         } else {
266                 WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
267         }
268
269         instrumentation_end();
270         irqentry_exit(regs, state);
271         return true;
272 }
273
274 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
275 {
276         struct pt_regs *old_regs = set_irq_regs(regs);
277         u32 token;
278
279         ack_APIC_irq();
280
281         inc_irq_stat(irq_hv_callback_count);
282
283         if (__this_cpu_read(apf_reason.enabled)) {
284                 token = __this_cpu_read(apf_reason.token);
285                 kvm_async_pf_task_wake(token);
286                 __this_cpu_write(apf_reason.token, 0);
287                 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
288         }
289
290         set_irq_regs(old_regs);
291 }
292
293 static void __init paravirt_ops_setup(void)
294 {
295         pv_info.name = "KVM";
296
297         if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
298                 pv_ops.cpu.io_delay = kvm_io_delay;
299
300 #ifdef CONFIG_X86_IO_APIC
301         no_timer_check = 1;
302 #endif
303 }
304
305 static void kvm_register_steal_time(void)
306 {
307         int cpu = smp_processor_id();
308         struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
309
310         if (!has_steal_clock)
311                 return;
312
313         wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
314         pr_info("stealtime: cpu %d, msr %llx\n", cpu,
315                 (unsigned long long) slow_virt_to_phys(st));
316 }
317
318 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
319
320 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
321 {
322         /**
323          * This relies on __test_and_clear_bit to modify the memory
324          * in a way that is atomic with respect to the local CPU.
325          * The hypervisor only accesses this memory from the local CPU so
326          * there's no need for lock or memory barriers.
327          * An optimization barrier is implied in apic write.
328          */
329         if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
330                 return;
331         apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
332 }
333
334 static void kvm_guest_cpu_init(void)
335 {
336         if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
337                 u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
338
339                 WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
340
341                 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
342                 pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
343
344                 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
345                         pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
346
347                 wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
348
349                 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
350                 __this_cpu_write(apf_reason.enabled, 1);
351                 pr_info("setup async PF for cpu %d\n", smp_processor_id());
352         }
353
354         if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
355                 unsigned long pa;
356
357                 /* Size alignment is implied but just to make it explicit. */
358                 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
359                 __this_cpu_write(kvm_apic_eoi, 0);
360                 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
361                         | KVM_MSR_ENABLED;
362                 wrmsrl(MSR_KVM_PV_EOI_EN, pa);
363         }
364
365         if (has_steal_clock)
366                 kvm_register_steal_time();
367 }
368
369 static void kvm_pv_disable_apf(void)
370 {
371         if (!__this_cpu_read(apf_reason.enabled))
372                 return;
373
374         wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
375         __this_cpu_write(apf_reason.enabled, 0);
376
377         pr_info("disable async PF for cpu %d\n", smp_processor_id());
378 }
379
380 static void kvm_disable_steal_time(void)
381 {
382         if (!has_steal_clock)
383                 return;
384
385         wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
386 }
387
388 static u64 kvm_steal_clock(int cpu)
389 {
390         u64 steal;
391         struct kvm_steal_time *src;
392         int version;
393
394         src = &per_cpu(steal_time, cpu);
395         do {
396                 version = src->version;
397                 virt_rmb();
398                 steal = src->steal;
399                 virt_rmb();
400         } while ((version & 1) || (version != src->version));
401
402         return steal;
403 }
404
405 static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
406 {
407         early_set_memory_decrypted((unsigned long) ptr, size);
408 }
409
410 /*
411  * Iterate through all possible CPUs and map the memory region pointed
412  * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
413  *
414  * Note: we iterate through all possible CPUs to ensure that CPUs
415  * hotplugged will have their per-cpu variable already mapped as
416  * decrypted.
417  */
418 static void __init sev_map_percpu_data(void)
419 {
420         int cpu;
421
422         if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
423                 return;
424
425         for_each_possible_cpu(cpu) {
426                 __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
427                 __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
428                 __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
429         }
430 }
431
432 static void kvm_guest_cpu_offline(bool shutdown)
433 {
434         kvm_disable_steal_time();
435         if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
436                 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
437         kvm_pv_disable_apf();
438         if (!shutdown)
439                 apf_task_wake_all();
440         kvmclock_disable();
441 }
442
443 static int kvm_cpu_online(unsigned int cpu)
444 {
445         unsigned long flags;
446
447         local_irq_save(flags);
448         kvm_guest_cpu_init();
449         local_irq_restore(flags);
450         return 0;
451 }
452
453 #ifdef CONFIG_SMP
454
455 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
456
457 static bool pv_tlb_flush_supported(void)
458 {
459         return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
460                 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
461                 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
462 }
463
464 static bool pv_ipi_supported(void)
465 {
466         return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI);
467 }
468
469 static bool pv_sched_yield_supported(void)
470 {
471         return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
472                 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
473             kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
474 }
475
476 #define KVM_IPI_CLUSTER_SIZE    (2 * BITS_PER_LONG)
477
478 static void __send_ipi_mask(const struct cpumask *mask, int vector)
479 {
480         unsigned long flags;
481         int cpu, apic_id, icr;
482         int min = 0, max = 0;
483 #ifdef CONFIG_X86_64
484         __uint128_t ipi_bitmap = 0;
485 #else
486         u64 ipi_bitmap = 0;
487 #endif
488         long ret;
489
490         if (cpumask_empty(mask))
491                 return;
492
493         local_irq_save(flags);
494
495         switch (vector) {
496         default:
497                 icr = APIC_DM_FIXED | vector;
498                 break;
499         case NMI_VECTOR:
500                 icr = APIC_DM_NMI;
501                 break;
502         }
503
504         for_each_cpu(cpu, mask) {
505                 apic_id = per_cpu(x86_cpu_to_apicid, cpu);
506                 if (!ipi_bitmap) {
507                         min = max = apic_id;
508                 } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
509                         ipi_bitmap <<= min - apic_id;
510                         min = apic_id;
511                 } else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) {
512                         max = apic_id < max ? max : apic_id;
513                 } else {
514                         ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
515                                 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
516                         WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
517                                   ret);
518                         min = max = apic_id;
519                         ipi_bitmap = 0;
520                 }
521                 __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
522         }
523
524         if (ipi_bitmap) {
525                 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
526                         (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
527                 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
528                           ret);
529         }
530
531         local_irq_restore(flags);
532 }
533
534 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
535 {
536         __send_ipi_mask(mask, vector);
537 }
538
539 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
540 {
541         unsigned int this_cpu = smp_processor_id();
542         struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
543         const struct cpumask *local_mask;
544
545         cpumask_copy(new_mask, mask);
546         cpumask_clear_cpu(this_cpu, new_mask);
547         local_mask = new_mask;
548         __send_ipi_mask(local_mask, vector);
549 }
550
551 /*
552  * Set the IPI entry points
553  */
554 static void kvm_setup_pv_ipi(void)
555 {
556         apic->send_IPI_mask = kvm_send_ipi_mask;
557         apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
558         pr_info("setup PV IPIs\n");
559 }
560
561 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
562 {
563         int cpu;
564
565         native_send_call_func_ipi(mask);
566
567         /* Make sure other vCPUs get a chance to run if they need to. */
568         for_each_cpu(cpu, mask) {
569                 if (vcpu_is_preempted(cpu)) {
570                         kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
571                         break;
572                 }
573         }
574 }
575
576 static void kvm_flush_tlb_multi(const struct cpumask *cpumask,
577                         const struct flush_tlb_info *info)
578 {
579         u8 state;
580         int cpu;
581         struct kvm_steal_time *src;
582         struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
583
584         cpumask_copy(flushmask, cpumask);
585         /*
586          * We have to call flush only on online vCPUs. And
587          * queue flush_on_enter for pre-empted vCPUs
588          */
589         for_each_cpu(cpu, flushmask) {
590                 /*
591                  * The local vCPU is never preempted, so we do not explicitly
592                  * skip check for local vCPU - it will never be cleared from
593                  * flushmask.
594                  */
595                 src = &per_cpu(steal_time, cpu);
596                 state = READ_ONCE(src->preempted);
597                 if ((state & KVM_VCPU_PREEMPTED)) {
598                         if (try_cmpxchg(&src->preempted, &state,
599                                         state | KVM_VCPU_FLUSH_TLB))
600                                 __cpumask_clear_cpu(cpu, flushmask);
601                 }
602         }
603
604         native_flush_tlb_multi(flushmask, info);
605 }
606
607 static __init int kvm_alloc_cpumask(void)
608 {
609         int cpu;
610
611         if (!kvm_para_available() || nopv)
612                 return 0;
613
614         if (pv_tlb_flush_supported() || pv_ipi_supported())
615                 for_each_possible_cpu(cpu) {
616                         zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
617                                 GFP_KERNEL, cpu_to_node(cpu));
618                 }
619
620         return 0;
621 }
622 arch_initcall(kvm_alloc_cpumask);
623
624 static void __init kvm_smp_prepare_boot_cpu(void)
625 {
626         /*
627          * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
628          * shares the guest physical address with the hypervisor.
629          */
630         sev_map_percpu_data();
631
632         kvm_guest_cpu_init();
633         native_smp_prepare_boot_cpu();
634         kvm_spinlock_init();
635 }
636
637 static int kvm_cpu_down_prepare(unsigned int cpu)
638 {
639         unsigned long flags;
640
641         local_irq_save(flags);
642         kvm_guest_cpu_offline(false);
643         local_irq_restore(flags);
644         return 0;
645 }
646
647 #endif
648
649 static int kvm_suspend(void)
650 {
651         kvm_guest_cpu_offline(false);
652
653         return 0;
654 }
655
656 static void kvm_resume(void)
657 {
658         kvm_cpu_online(raw_smp_processor_id());
659 }
660
661 static struct syscore_ops kvm_syscore_ops = {
662         .suspend        = kvm_suspend,
663         .resume         = kvm_resume,
664 };
665
666 static void kvm_pv_guest_cpu_reboot(void *unused)
667 {
668         kvm_guest_cpu_offline(true);
669 }
670
671 static int kvm_pv_reboot_notify(struct notifier_block *nb,
672                                 unsigned long code, void *unused)
673 {
674         if (code == SYS_RESTART)
675                 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
676         return NOTIFY_DONE;
677 }
678
679 static struct notifier_block kvm_pv_reboot_nb = {
680         .notifier_call = kvm_pv_reboot_notify,
681 };
682
683 /*
684  * After a PV feature is registered, the host will keep writing to the
685  * registered memory location. If the guest happens to shutdown, this memory
686  * won't be valid. In cases like kexec, in which you install a new kernel, this
687  * means a random memory location will be kept being written.
688  */
689 #ifdef CONFIG_KEXEC_CORE
690 static void kvm_crash_shutdown(struct pt_regs *regs)
691 {
692         kvm_guest_cpu_offline(true);
693         native_machine_crash_shutdown(regs);
694 }
695 #endif
696
697 static void __init kvm_guest_init(void)
698 {
699         int i;
700
701         paravirt_ops_setup();
702         register_reboot_notifier(&kvm_pv_reboot_nb);
703         for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
704                 raw_spin_lock_init(&async_pf_sleepers[i].lock);
705
706         if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
707                 has_steal_clock = 1;
708                 static_call_update(pv_steal_clock, kvm_steal_clock);
709         }
710
711         if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
712                 apic_set_eoi_write(kvm_guest_apic_eoi_write);
713
714         if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
715                 static_branch_enable(&kvm_async_pf_enabled);
716                 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
717         }
718
719 #ifdef CONFIG_SMP
720         if (pv_tlb_flush_supported()) {
721                 pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi;
722                 pv_ops.mmu.tlb_remove_table = tlb_remove_table;
723                 pr_info("KVM setup pv remote TLB flush\n");
724         }
725
726         smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
727         if (pv_sched_yield_supported()) {
728                 smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
729                 pr_info("setup PV sched yield\n");
730         }
731         if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
732                                       kvm_cpu_online, kvm_cpu_down_prepare) < 0)
733                 pr_err("failed to install cpu hotplug callbacks\n");
734 #else
735         sev_map_percpu_data();
736         kvm_guest_cpu_init();
737 #endif
738
739 #ifdef CONFIG_KEXEC_CORE
740         machine_ops.crash_shutdown = kvm_crash_shutdown;
741 #endif
742
743         register_syscore_ops(&kvm_syscore_ops);
744
745         /*
746          * Hard lockup detection is enabled by default. Disable it, as guests
747          * can get false positives too easily, for example if the host is
748          * overcommitted.
749          */
750         hardlockup_detector_disable();
751 }
752
753 static noinline uint32_t __kvm_cpuid_base(void)
754 {
755         if (boot_cpu_data.cpuid_level < 0)
756                 return 0;       /* So we don't blow up on old processors */
757
758         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
759                 return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
760
761         return 0;
762 }
763
764 static inline uint32_t kvm_cpuid_base(void)
765 {
766         static int kvm_cpuid_base = -1;
767
768         if (kvm_cpuid_base == -1)
769                 kvm_cpuid_base = __kvm_cpuid_base();
770
771         return kvm_cpuid_base;
772 }
773
774 bool kvm_para_available(void)
775 {
776         return kvm_cpuid_base() != 0;
777 }
778 EXPORT_SYMBOL_GPL(kvm_para_available);
779
780 unsigned int kvm_arch_para_features(void)
781 {
782         return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
783 }
784
785 unsigned int kvm_arch_para_hints(void)
786 {
787         return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
788 }
789 EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
790
791 static uint32_t __init kvm_detect(void)
792 {
793         return kvm_cpuid_base();
794 }
795
796 static void __init kvm_apic_init(void)
797 {
798 #ifdef CONFIG_SMP
799         if (pv_ipi_supported())
800                 kvm_setup_pv_ipi();
801 #endif
802 }
803
804 static bool __init kvm_msi_ext_dest_id(void)
805 {
806         return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID);
807 }
808
809 static void __init kvm_init_platform(void)
810 {
811         kvmclock_init();
812         x86_platform.apic_post_init = kvm_apic_init;
813 }
814
815 #if defined(CONFIG_AMD_MEM_ENCRYPT)
816 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
817 {
818         /* RAX and CPL are already in the GHCB */
819         ghcb_set_rbx(ghcb, regs->bx);
820         ghcb_set_rcx(ghcb, regs->cx);
821         ghcb_set_rdx(ghcb, regs->dx);
822         ghcb_set_rsi(ghcb, regs->si);
823 }
824
825 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
826 {
827         /* No checking of the return state needed */
828         return true;
829 }
830 #endif
831
832 const __initconst struct hypervisor_x86 x86_hyper_kvm = {
833         .name                           = "KVM",
834         .detect                         = kvm_detect,
835         .type                           = X86_HYPER_KVM,
836         .init.guest_late_init           = kvm_guest_init,
837         .init.x2apic_available          = kvm_para_available,
838         .init.msi_ext_dest_id           = kvm_msi_ext_dest_id,
839         .init.init_platform             = kvm_init_platform,
840 #if defined(CONFIG_AMD_MEM_ENCRYPT)
841         .runtime.sev_es_hcall_prepare   = kvm_sev_es_hcall_prepare,
842         .runtime.sev_es_hcall_finish    = kvm_sev_es_hcall_finish,
843 #endif
844 };
845
846 static __init int activate_jump_labels(void)
847 {
848         if (has_steal_clock) {
849                 static_key_slow_inc(&paravirt_steal_enabled);
850                 if (steal_acc)
851                         static_key_slow_inc(&paravirt_steal_rq_enabled);
852         }
853
854         return 0;
855 }
856 arch_initcall(activate_jump_labels);
857
858 #ifdef CONFIG_PARAVIRT_SPINLOCKS
859
860 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
861 static void kvm_kick_cpu(int cpu)
862 {
863         int apicid;
864         unsigned long flags = 0;
865
866         apicid = per_cpu(x86_cpu_to_apicid, cpu);
867         kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
868 }
869
870 #include <asm/qspinlock.h>
871
872 static void kvm_wait(u8 *ptr, u8 val)
873 {
874         if (in_nmi())
875                 return;
876
877         /*
878          * halt until it's our turn and kicked. Note that we do safe halt
879          * for irq enabled case to avoid hang when lock info is overwritten
880          * in irq spinlock slowpath and no spurious interrupt occur to save us.
881          */
882         if (irqs_disabled()) {
883                 if (READ_ONCE(*ptr) == val)
884                         halt();
885         } else {
886                 local_irq_disable();
887
888                 /* safe_halt() will enable IRQ */
889                 if (READ_ONCE(*ptr) == val)
890                         safe_halt();
891                 else
892                         local_irq_enable();
893         }
894 }
895
896 #ifdef CONFIG_X86_32
897 __visible bool __kvm_vcpu_is_preempted(long cpu)
898 {
899         struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
900
901         return !!(src->preempted & KVM_VCPU_PREEMPTED);
902 }
903 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
904
905 #else
906
907 #include <asm/asm-offsets.h>
908
909 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
910
911 /*
912  * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
913  * restoring to/from the stack.
914  */
915 asm(
916 ".pushsection .text;"
917 ".global __raw_callee_save___kvm_vcpu_is_preempted;"
918 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
919 "__raw_callee_save___kvm_vcpu_is_preempted:"
920 "movq   __per_cpu_offset(,%rdi,8), %rax;"
921 "cmpb   $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
922 "setne  %al;"
923 "ret;"
924 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
925 ".popsection");
926
927 #endif
928
929 /*
930  * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
931  */
932 void __init kvm_spinlock_init(void)
933 {
934         /*
935          * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
936          * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
937          * preferred over native qspinlock when vCPU is preempted.
938          */
939         if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
940                 pr_info("PV spinlocks disabled, no host support\n");
941                 return;
942         }
943
944         /*
945          * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
946          * are available.
947          */
948         if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
949                 pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
950                 goto out;
951         }
952
953         if (num_possible_cpus() == 1) {
954                 pr_info("PV spinlocks disabled, single CPU\n");
955                 goto out;
956         }
957
958         if (nopvspin) {
959                 pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
960                 goto out;
961         }
962
963         pr_info("PV spinlocks enabled\n");
964
965         __pv_init_lock_hash();
966         pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
967         pv_ops.lock.queued_spin_unlock =
968                 PV_CALLEE_SAVE(__pv_queued_spin_unlock);
969         pv_ops.lock.wait = kvm_wait;
970         pv_ops.lock.kick = kvm_kick_cpu;
971
972         if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
973                 pv_ops.lock.vcpu_is_preempted =
974                         PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
975         }
976         /*
977          * When PV spinlock is enabled which is preferred over
978          * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
979          * Just disable it anyway.
980          */
981 out:
982         static_branch_disable(&virt_spin_lock_key);
983 }
984
985 #endif  /* CONFIG_PARAVIRT_SPINLOCKS */
986
987 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
988
989 static void kvm_disable_host_haltpoll(void *i)
990 {
991         wrmsrl(MSR_KVM_POLL_CONTROL, 0);
992 }
993
994 static void kvm_enable_host_haltpoll(void *i)
995 {
996         wrmsrl(MSR_KVM_POLL_CONTROL, 1);
997 }
998
999 void arch_haltpoll_enable(unsigned int cpu)
1000 {
1001         if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
1002                 pr_err_once("host does not support poll control\n");
1003                 pr_err_once("host upgrade recommended\n");
1004                 return;
1005         }
1006
1007         /* Enable guest halt poll disables host halt poll */
1008         smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
1009 }
1010 EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
1011
1012 void arch_haltpoll_disable(unsigned int cpu)
1013 {
1014         if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
1015                 return;
1016
1017         /* Disable guest halt poll enables host halt poll */
1018         smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
1019 }
1020 EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
1021 #endif