Merge airlied/drm-next into drm-misc-next
[platform/kernel/linux-rpi.git] / arch / x86 / kernel / irq.c
1 /*
2  * Common interrupt code for 32 and 64 bit
3  */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/mce.h>
18 #include <asm/hw_irq.h>
19 #include <asm/desc.h>
20
21 #define CREATE_TRACE_POINTS
22 #include <asm/trace/irq_vectors.h>
23
24 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
25 EXPORT_PER_CPU_SYMBOL(irq_stat);
26
27 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
28 EXPORT_PER_CPU_SYMBOL(irq_regs);
29
30 atomic_t irq_err_count;
31
32 /*
33  * 'what should we do if we get a hw irq event on an illegal vector'.
34  * each architecture has to answer this themselves.
35  */
36 void ack_bad_irq(unsigned int irq)
37 {
38         if (printk_ratelimit())
39                 pr_err("unexpected IRQ trap at vector %02x\n", irq);
40
41         /*
42          * Currently unexpected vectors happen only on SMP and APIC.
43          * We _must_ ack these because every local APIC has only N
44          * irq slots per priority level, and a 'hanging, unacked' IRQ
45          * holds up an irq slot - in excessive cases (when multiple
46          * unexpected vectors occur) that might lock up the APIC
47          * completely.
48          * But only ack when the APIC is enabled -AK
49          */
50         ack_APIC_irq();
51 }
52
53 #define irq_stats(x)            (&per_cpu(irq_stat, x))
54 /*
55  * /proc/interrupts printing for arch specific interrupts
56  */
57 int arch_show_interrupts(struct seq_file *p, int prec)
58 {
59         int j;
60
61         seq_printf(p, "%*s: ", prec, "NMI");
62         for_each_online_cpu(j)
63                 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
64         seq_puts(p, "  Non-maskable interrupts\n");
65 #ifdef CONFIG_X86_LOCAL_APIC
66         seq_printf(p, "%*s: ", prec, "LOC");
67         for_each_online_cpu(j)
68                 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
69         seq_puts(p, "  Local timer interrupts\n");
70
71         seq_printf(p, "%*s: ", prec, "SPU");
72         for_each_online_cpu(j)
73                 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
74         seq_puts(p, "  Spurious interrupts\n");
75         seq_printf(p, "%*s: ", prec, "PMI");
76         for_each_online_cpu(j)
77                 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
78         seq_puts(p, "  Performance monitoring interrupts\n");
79         seq_printf(p, "%*s: ", prec, "IWI");
80         for_each_online_cpu(j)
81                 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
82         seq_puts(p, "  IRQ work interrupts\n");
83         seq_printf(p, "%*s: ", prec, "RTR");
84         for_each_online_cpu(j)
85                 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
86         seq_puts(p, "  APIC ICR read retries\n");
87         if (x86_platform_ipi_callback) {
88                 seq_printf(p, "%*s: ", prec, "PLT");
89                 for_each_online_cpu(j)
90                         seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
91                 seq_puts(p, "  Platform interrupts\n");
92         }
93 #endif
94 #ifdef CONFIG_SMP
95         seq_printf(p, "%*s: ", prec, "RES");
96         for_each_online_cpu(j)
97                 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
98         seq_puts(p, "  Rescheduling interrupts\n");
99         seq_printf(p, "%*s: ", prec, "CAL");
100         for_each_online_cpu(j)
101                 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
102         seq_puts(p, "  Function call interrupts\n");
103         seq_printf(p, "%*s: ", prec, "TLB");
104         for_each_online_cpu(j)
105                 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
106         seq_puts(p, "  TLB shootdowns\n");
107 #endif
108 #ifdef CONFIG_X86_THERMAL_VECTOR
109         seq_printf(p, "%*s: ", prec, "TRM");
110         for_each_online_cpu(j)
111                 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
112         seq_puts(p, "  Thermal event interrupts\n");
113 #endif
114 #ifdef CONFIG_X86_MCE_THRESHOLD
115         seq_printf(p, "%*s: ", prec, "THR");
116         for_each_online_cpu(j)
117                 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
118         seq_puts(p, "  Threshold APIC interrupts\n");
119 #endif
120 #ifdef CONFIG_X86_MCE_AMD
121         seq_printf(p, "%*s: ", prec, "DFR");
122         for_each_online_cpu(j)
123                 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
124         seq_puts(p, "  Deferred Error APIC interrupts\n");
125 #endif
126 #ifdef CONFIG_X86_MCE
127         seq_printf(p, "%*s: ", prec, "MCE");
128         for_each_online_cpu(j)
129                 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
130         seq_puts(p, "  Machine check exceptions\n");
131         seq_printf(p, "%*s: ", prec, "MCP");
132         for_each_online_cpu(j)
133                 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
134         seq_puts(p, "  Machine check polls\n");
135 #endif
136 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
137         if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
138                 seq_printf(p, "%*s: ", prec, "HYP");
139                 for_each_online_cpu(j)
140                         seq_printf(p, "%10u ",
141                                    irq_stats(j)->irq_hv_callback_count);
142                 seq_puts(p, "  Hypervisor callback interrupts\n");
143         }
144 #endif
145         seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
146 #if defined(CONFIG_X86_IO_APIC)
147         seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
148 #endif
149 #ifdef CONFIG_HAVE_KVM
150         seq_printf(p, "%*s: ", prec, "PIN");
151         for_each_online_cpu(j)
152                 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
153         seq_puts(p, "  Posted-interrupt notification event\n");
154
155         seq_printf(p, "%*s: ", prec, "NPI");
156         for_each_online_cpu(j)
157                 seq_printf(p, "%10u ",
158                            irq_stats(j)->kvm_posted_intr_nested_ipis);
159         seq_puts(p, "  Nested posted-interrupt event\n");
160
161         seq_printf(p, "%*s: ", prec, "PIW");
162         for_each_online_cpu(j)
163                 seq_printf(p, "%10u ",
164                            irq_stats(j)->kvm_posted_intr_wakeup_ipis);
165         seq_puts(p, "  Posted-interrupt wakeup event\n");
166 #endif
167         return 0;
168 }
169
170 /*
171  * /proc/stat helpers
172  */
173 u64 arch_irq_stat_cpu(unsigned int cpu)
174 {
175         u64 sum = irq_stats(cpu)->__nmi_count;
176
177 #ifdef CONFIG_X86_LOCAL_APIC
178         sum += irq_stats(cpu)->apic_timer_irqs;
179         sum += irq_stats(cpu)->irq_spurious_count;
180         sum += irq_stats(cpu)->apic_perf_irqs;
181         sum += irq_stats(cpu)->apic_irq_work_irqs;
182         sum += irq_stats(cpu)->icr_read_retry_count;
183         if (x86_platform_ipi_callback)
184                 sum += irq_stats(cpu)->x86_platform_ipis;
185 #endif
186 #ifdef CONFIG_SMP
187         sum += irq_stats(cpu)->irq_resched_count;
188         sum += irq_stats(cpu)->irq_call_count;
189 #endif
190 #ifdef CONFIG_X86_THERMAL_VECTOR
191         sum += irq_stats(cpu)->irq_thermal_count;
192 #endif
193 #ifdef CONFIG_X86_MCE_THRESHOLD
194         sum += irq_stats(cpu)->irq_threshold_count;
195 #endif
196 #ifdef CONFIG_X86_MCE
197         sum += per_cpu(mce_exception_count, cpu);
198         sum += per_cpu(mce_poll_count, cpu);
199 #endif
200         return sum;
201 }
202
203 u64 arch_irq_stat(void)
204 {
205         u64 sum = atomic_read(&irq_err_count);
206         return sum;
207 }
208
209
210 /*
211  * do_IRQ handles all normal device IRQ's (the special
212  * SMP cross-CPU interrupts have their own specific
213  * handlers).
214  */
215 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
216 {
217         struct pt_regs *old_regs = set_irq_regs(regs);
218         struct irq_desc * desc;
219         /* high bit used in ret_from_ code  */
220         unsigned vector = ~regs->orig_ax;
221
222         /*
223          * NB: Unlike exception entries, IRQ entries do not reliably
224          * handle context tracking in the low-level entry code.  This is
225          * because syscall entries execute briefly with IRQs on before
226          * updating context tracking state, so we can take an IRQ from
227          * kernel mode with CONTEXT_USER.  The low-level entry code only
228          * updates the context if we came from user mode, so we won't
229          * switch to CONTEXT_KERNEL.  We'll fix that once the syscall
230          * code is cleaned up enough that we can cleanly defer enabling
231          * IRQs.
232          */
233
234         entering_irq();
235
236         /* entering_irq() tells RCU that we're not quiescent.  Check it. */
237         RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
238
239         desc = __this_cpu_read(vector_irq[vector]);
240
241         if (!handle_irq(desc, regs)) {
242                 ack_APIC_irq();
243
244                 if (desc != VECTOR_RETRIGGERED) {
245                         pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
246                                              __func__, smp_processor_id(),
247                                              vector);
248                 } else {
249                         __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
250                 }
251         }
252
253         exiting_irq();
254
255         set_irq_regs(old_regs);
256         return 1;
257 }
258
259 #ifdef CONFIG_X86_LOCAL_APIC
260 /* Function pointer for generic interrupt vector handling */
261 void (*x86_platform_ipi_callback)(void) = NULL;
262 /*
263  * Handler for X86_PLATFORM_IPI_VECTOR.
264  */
265 __visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs)
266 {
267         struct pt_regs *old_regs = set_irq_regs(regs);
268
269         entering_ack_irq();
270         trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
271         inc_irq_stat(x86_platform_ipis);
272         if (x86_platform_ipi_callback)
273                 x86_platform_ipi_callback();
274         trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
275         exiting_irq();
276         set_irq_regs(old_regs);
277 }
278 #endif
279
280 #ifdef CONFIG_HAVE_KVM
281 static void dummy_handler(void) {}
282 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
283
284 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
285 {
286         if (handler)
287                 kvm_posted_intr_wakeup_handler = handler;
288         else
289                 kvm_posted_intr_wakeup_handler = dummy_handler;
290 }
291 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
292
293 /*
294  * Handler for POSTED_INTERRUPT_VECTOR.
295  */
296 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
297 {
298         struct pt_regs *old_regs = set_irq_regs(regs);
299
300         entering_ack_irq();
301         inc_irq_stat(kvm_posted_intr_ipis);
302         exiting_irq();
303         set_irq_regs(old_regs);
304 }
305
306 /*
307  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
308  */
309 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
310 {
311         struct pt_regs *old_regs = set_irq_regs(regs);
312
313         entering_ack_irq();
314         inc_irq_stat(kvm_posted_intr_wakeup_ipis);
315         kvm_posted_intr_wakeup_handler();
316         exiting_irq();
317         set_irq_regs(old_regs);
318 }
319
320 /*
321  * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
322  */
323 __visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs)
324 {
325         struct pt_regs *old_regs = set_irq_regs(regs);
326
327         entering_ack_irq();
328         inc_irq_stat(kvm_posted_intr_nested_ipis);
329         exiting_irq();
330         set_irq_regs(old_regs);
331 }
332 #endif
333
334
335 #ifdef CONFIG_HOTPLUG_CPU
336
337 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
338  * below, which is protected by stop_machine().  Putting them on the stack
339  * results in a stack frame overflow.  Dynamically allocating could result in a
340  * failure so declare these two cpumasks as global.
341  */
342 static struct cpumask affinity_new, online_new;
343
344 /*
345  * This cpu is going to be removed and its vectors migrated to the remaining
346  * online cpus.  Check to see if there are enough vectors in the remaining cpus.
347  * This function is protected by stop_machine().
348  */
349 int check_irq_vectors_for_cpu_disable(void)
350 {
351         unsigned int this_cpu, vector, this_count, count;
352         struct irq_desc *desc;
353         struct irq_data *data;
354         int cpu;
355
356         this_cpu = smp_processor_id();
357         cpumask_copy(&online_new, cpu_online_mask);
358         cpumask_clear_cpu(this_cpu, &online_new);
359
360         this_count = 0;
361         for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
362                 desc = __this_cpu_read(vector_irq[vector]);
363                 if (IS_ERR_OR_NULL(desc))
364                         continue;
365                 /*
366                  * Protect against concurrent action removal, affinity
367                  * changes etc.
368                  */
369                 raw_spin_lock(&desc->lock);
370                 data = irq_desc_get_irq_data(desc);
371                 cpumask_copy(&affinity_new,
372                              irq_data_get_affinity_mask(data));
373                 cpumask_clear_cpu(this_cpu, &affinity_new);
374
375                 /* Do not count inactive or per-cpu irqs. */
376                 if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
377                         raw_spin_unlock(&desc->lock);
378                         continue;
379                 }
380
381                 raw_spin_unlock(&desc->lock);
382                 /*
383                  * A single irq may be mapped to multiple cpu's
384                  * vector_irq[] (for example IOAPIC cluster mode).  In
385                  * this case we have two possibilities:
386                  *
387                  * 1) the resulting affinity mask is empty; that is
388                  * this the down'd cpu is the last cpu in the irq's
389                  * affinity mask, or
390                  *
391                  * 2) the resulting affinity mask is no longer a
392                  * subset of the online cpus but the affinity mask is
393                  * not zero; that is the down'd cpu is the last online
394                  * cpu in a user set affinity mask.
395                  */
396                 if (cpumask_empty(&affinity_new) ||
397                     !cpumask_subset(&affinity_new, &online_new))
398                         this_count++;
399         }
400         /* No need to check any further. */
401         if (!this_count)
402                 return 0;
403
404         count = 0;
405         for_each_online_cpu(cpu) {
406                 if (cpu == this_cpu)
407                         continue;
408                 /*
409                  * We scan from FIRST_EXTERNAL_VECTOR to first system
410                  * vector. If the vector is marked in the used vectors
411                  * bitmap or an irq is assigned to it, we don't count
412                  * it as available.
413                  *
414                  * As this is an inaccurate snapshot anyway, we can do
415                  * this w/o holding vector_lock.
416                  */
417                 for (vector = FIRST_EXTERNAL_VECTOR;
418                      vector < FIRST_SYSTEM_VECTOR; vector++) {
419                         if (!test_bit(vector, used_vectors) &&
420                             IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) {
421                                 if (++count == this_count)
422                                         return 0;
423                         }
424                 }
425         }
426
427         if (count < this_count) {
428                 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
429                         this_cpu, this_count, count);
430                 return -ERANGE;
431         }
432         return 0;
433 }
434
435 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
436 void fixup_irqs(void)
437 {
438         unsigned int irr, vector;
439         struct irq_desc *desc;
440         struct irq_data *data;
441         struct irq_chip *chip;
442
443         irq_migrate_all_off_this_cpu();
444
445         /*
446          * We can remove mdelay() and then send spuriuous interrupts to
447          * new cpu targets for all the irqs that were handled previously by
448          * this cpu. While it works, I have seen spurious interrupt messages
449          * (nothing wrong but still...).
450          *
451          * So for now, retain mdelay(1) and check the IRR and then send those
452          * interrupts to new targets as this cpu is already offlined...
453          */
454         mdelay(1);
455
456         /*
457          * We can walk the vector array of this cpu without holding
458          * vector_lock because the cpu is already marked !online, so
459          * nothing else will touch it.
460          */
461         for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
462                 if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
463                         continue;
464
465                 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
466                 if (irr  & (1 << (vector % 32))) {
467                         desc = __this_cpu_read(vector_irq[vector]);
468
469                         raw_spin_lock(&desc->lock);
470                         data = irq_desc_get_irq_data(desc);
471                         chip = irq_data_get_irq_chip(data);
472                         if (chip->irq_retrigger) {
473                                 chip->irq_retrigger(data);
474                                 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
475                         }
476                         raw_spin_unlock(&desc->lock);
477                 }
478                 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
479                         __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
480         }
481 }
482 #endif