0bab497c94369428ceb247f8de26582b7716ce84
[platform/kernel/linux-rpi.git] / arch / x86 / kernel / fpu / xstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * xsave/xrstor support.
4  *
5  * Author: Suresh Siddha <suresh.b.siddha@intel.com>
6  */
7 #include <linux/bitops.h>
8 #include <linux/compat.h>
9 #include <linux/cpu.h>
10 #include <linux/mman.h>
11 #include <linux/nospec.h>
12 #include <linux/pkeys.h>
13 #include <linux/seq_file.h>
14 #include <linux/proc_fs.h>
15 #include <linux/vmalloc.h>
16
17 #include <asm/fpu/api.h>
18 #include <asm/fpu/regset.h>
19 #include <asm/fpu/signal.h>
20 #include <asm/fpu/xcr.h>
21
22 #include <asm/tlbflush.h>
23 #include <asm/prctl.h>
24 #include <asm/elf.h>
25
26 #include "context.h"
27 #include "internal.h"
28 #include "legacy.h"
29 #include "xstate.h"
30
31 #define for_each_extended_xfeature(bit, mask)                           \
32         (bit) = FIRST_EXTENDED_XFEATURE;                                \
33         for_each_set_bit_from(bit, (unsigned long *)&(mask), 8 * sizeof(mask))
34
35 /*
36  * Although we spell it out in here, the Processor Trace
37  * xfeature is completely unused.  We use other mechanisms
38  * to save/restore PT state in Linux.
39  */
40 static const char *xfeature_names[] =
41 {
42         "x87 floating point registers"  ,
43         "SSE registers"                 ,
44         "AVX registers"                 ,
45         "MPX bounds registers"          ,
46         "MPX CSR"                       ,
47         "AVX-512 opmask"                ,
48         "AVX-512 Hi256"                 ,
49         "AVX-512 ZMM_Hi256"             ,
50         "Processor Trace (unused)"      ,
51         "Protection Keys User registers",
52         "PASID state",
53         "unknown xstate feature"        ,
54         "unknown xstate feature"        ,
55         "unknown xstate feature"        ,
56         "unknown xstate feature"        ,
57         "unknown xstate feature"        ,
58         "unknown xstate feature"        ,
59         "AMX Tile config"               ,
60         "AMX Tile data"                 ,
61         "unknown xstate feature"        ,
62 };
63
64 static unsigned short xsave_cpuid_features[] __initdata = {
65         [XFEATURE_FP]                           = X86_FEATURE_FPU,
66         [XFEATURE_SSE]                          = X86_FEATURE_XMM,
67         [XFEATURE_YMM]                          = X86_FEATURE_AVX,
68         [XFEATURE_BNDREGS]                      = X86_FEATURE_MPX,
69         [XFEATURE_BNDCSR]                       = X86_FEATURE_MPX,
70         [XFEATURE_OPMASK]                       = X86_FEATURE_AVX512F,
71         [XFEATURE_ZMM_Hi256]                    = X86_FEATURE_AVX512F,
72         [XFEATURE_Hi16_ZMM]                     = X86_FEATURE_AVX512F,
73         [XFEATURE_PT_UNIMPLEMENTED_SO_FAR]      = X86_FEATURE_INTEL_PT,
74         [XFEATURE_PKRU]                         = X86_FEATURE_PKU,
75         [XFEATURE_PASID]                        = X86_FEATURE_ENQCMD,
76         [XFEATURE_XTILE_CFG]                    = X86_FEATURE_AMX_TILE,
77         [XFEATURE_XTILE_DATA]                   = X86_FEATURE_AMX_TILE,
78 };
79
80 static unsigned int xstate_offsets[XFEATURE_MAX] __ro_after_init =
81         { [ 0 ... XFEATURE_MAX - 1] = -1};
82 static unsigned int xstate_sizes[XFEATURE_MAX] __ro_after_init =
83         { [ 0 ... XFEATURE_MAX - 1] = -1};
84 static unsigned int xstate_flags[XFEATURE_MAX] __ro_after_init;
85
86 #define XSTATE_FLAG_SUPERVISOR  BIT(0)
87 #define XSTATE_FLAG_ALIGNED64   BIT(1)
88
89 /*
90  * Return whether the system supports a given xfeature.
91  *
92  * Also return the name of the (most advanced) feature that the caller requested:
93  */
94 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
95 {
96         u64 xfeatures_missing = xfeatures_needed & ~fpu_kernel_cfg.max_features;
97
98         if (unlikely(feature_name)) {
99                 long xfeature_idx, max_idx;
100                 u64 xfeatures_print;
101                 /*
102                  * So we use FLS here to be able to print the most advanced
103                  * feature that was requested but is missing. So if a driver
104                  * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
105                  * missing AVX feature - this is the most informative message
106                  * to users:
107                  */
108                 if (xfeatures_missing)
109                         xfeatures_print = xfeatures_missing;
110                 else
111                         xfeatures_print = xfeatures_needed;
112
113                 xfeature_idx = fls64(xfeatures_print)-1;
114                 max_idx = ARRAY_SIZE(xfeature_names)-1;
115                 xfeature_idx = min(xfeature_idx, max_idx);
116
117                 *feature_name = xfeature_names[xfeature_idx];
118         }
119
120         if (xfeatures_missing)
121                 return 0;
122
123         return 1;
124 }
125 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
126
127 static bool xfeature_is_aligned64(int xfeature_nr)
128 {
129         return xstate_flags[xfeature_nr] & XSTATE_FLAG_ALIGNED64;
130 }
131
132 static bool xfeature_is_supervisor(int xfeature_nr)
133 {
134         return xstate_flags[xfeature_nr] & XSTATE_FLAG_SUPERVISOR;
135 }
136
137 static unsigned int xfeature_get_offset(u64 xcomp_bv, int xfeature)
138 {
139         unsigned int offs, i;
140
141         /*
142          * Non-compacted format and legacy features use the cached fixed
143          * offsets.
144          */
145         if (!cpu_feature_enabled(X86_FEATURE_XCOMPACTED) ||
146             xfeature <= XFEATURE_SSE)
147                 return xstate_offsets[xfeature];
148
149         /*
150          * Compacted format offsets depend on the actual content of the
151          * compacted xsave area which is determined by the xcomp_bv header
152          * field.
153          */
154         offs = FXSAVE_SIZE + XSAVE_HDR_SIZE;
155         for_each_extended_xfeature(i, xcomp_bv) {
156                 if (xfeature_is_aligned64(i))
157                         offs = ALIGN(offs, 64);
158                 if (i == xfeature)
159                         break;
160                 offs += xstate_sizes[i];
161         }
162         return offs;
163 }
164
165 /*
166  * Enable the extended processor state save/restore feature.
167  * Called once per CPU onlining.
168  */
169 void fpu__init_cpu_xstate(void)
170 {
171         if (!boot_cpu_has(X86_FEATURE_XSAVE) || !fpu_kernel_cfg.max_features)
172                 return;
173
174         cr4_set_bits(X86_CR4_OSXSAVE);
175
176         /*
177          * Must happen after CR4 setup and before xsetbv() to allow KVM
178          * lazy passthrough.  Write independent of the dynamic state static
179          * key as that does not work on the boot CPU. This also ensures
180          * that any stale state is wiped out from XFD.
181          */
182         if (cpu_feature_enabled(X86_FEATURE_XFD))
183                 wrmsrl(MSR_IA32_XFD, init_fpstate.xfd);
184
185         /*
186          * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features
187          * managed by XSAVE{C, OPT, S} and XRSTOR{S}.  Only XSAVE user
188          * states can be set here.
189          */
190         xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features);
191
192         /*
193          * MSR_IA32_XSS sets supervisor states managed by XSAVES.
194          */
195         if (boot_cpu_has(X86_FEATURE_XSAVES)) {
196                 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() |
197                                      xfeatures_mask_independent());
198         }
199 }
200
201 static bool xfeature_enabled(enum xfeature xfeature)
202 {
203         return fpu_kernel_cfg.max_features & BIT_ULL(xfeature);
204 }
205
206 /*
207  * Record the offsets and sizes of various xstates contained
208  * in the XSAVE state memory layout.
209  */
210 static void __init setup_xstate_cache(void)
211 {
212         u32 eax, ebx, ecx, edx, i;
213         /* start at the beginning of the "extended state" */
214         unsigned int last_good_offset = offsetof(struct xregs_state,
215                                                  extended_state_area);
216         /*
217          * The FP xstates and SSE xstates are legacy states. They are always
218          * in the fixed offsets in the xsave area in either compacted form
219          * or standard form.
220          */
221         xstate_offsets[XFEATURE_FP]     = 0;
222         xstate_sizes[XFEATURE_FP]       = offsetof(struct fxregs_state,
223                                                    xmm_space);
224
225         xstate_offsets[XFEATURE_SSE]    = xstate_sizes[XFEATURE_FP];
226         xstate_sizes[XFEATURE_SSE]      = sizeof_field(struct fxregs_state,
227                                                        xmm_space);
228
229         for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
230                 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
231
232                 xstate_sizes[i] = eax;
233                 xstate_flags[i] = ecx;
234
235                 /*
236                  * If an xfeature is supervisor state, the offset in EBX is
237                  * invalid, leave it to -1.
238                  */
239                 if (xfeature_is_supervisor(i))
240                         continue;
241
242                 xstate_offsets[i] = ebx;
243
244                 /*
245                  * In our xstate size checks, we assume that the highest-numbered
246                  * xstate feature has the highest offset in the buffer.  Ensure
247                  * it does.
248                  */
249                 WARN_ONCE(last_good_offset > xstate_offsets[i],
250                           "x86/fpu: misordered xstate at %d\n", last_good_offset);
251
252                 last_good_offset = xstate_offsets[i];
253         }
254 }
255
256 static void __init print_xstate_feature(u64 xstate_mask)
257 {
258         const char *feature_name;
259
260         if (cpu_has_xfeatures(xstate_mask, &feature_name))
261                 pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
262 }
263
264 /*
265  * Print out all the supported xstate features:
266  */
267 static void __init print_xstate_features(void)
268 {
269         print_xstate_feature(XFEATURE_MASK_FP);
270         print_xstate_feature(XFEATURE_MASK_SSE);
271         print_xstate_feature(XFEATURE_MASK_YMM);
272         print_xstate_feature(XFEATURE_MASK_BNDREGS);
273         print_xstate_feature(XFEATURE_MASK_BNDCSR);
274         print_xstate_feature(XFEATURE_MASK_OPMASK);
275         print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
276         print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
277         print_xstate_feature(XFEATURE_MASK_PKRU);
278         print_xstate_feature(XFEATURE_MASK_PASID);
279         print_xstate_feature(XFEATURE_MASK_XTILE_CFG);
280         print_xstate_feature(XFEATURE_MASK_XTILE_DATA);
281 }
282
283 /*
284  * This check is important because it is easy to get XSTATE_*
285  * confused with XSTATE_BIT_*.
286  */
287 #define CHECK_XFEATURE(nr) do {         \
288         WARN_ON(nr < FIRST_EXTENDED_XFEATURE);  \
289         WARN_ON(nr >= XFEATURE_MAX);    \
290 } while (0)
291
292 /*
293  * Print out xstate component offsets and sizes
294  */
295 static void __init print_xstate_offset_size(void)
296 {
297         int i;
298
299         for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
300                 pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
301                         i, xfeature_get_offset(fpu_kernel_cfg.max_features, i),
302                         i, xstate_sizes[i]);
303         }
304 }
305
306 /*
307  * This function is called only during boot time when x86 caps are not set
308  * up and alternative can not be used yet.
309  */
310 static __init void os_xrstor_booting(struct xregs_state *xstate)
311 {
312         u64 mask = fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSTATE;
313         u32 lmask = mask;
314         u32 hmask = mask >> 32;
315         int err;
316
317         if (cpu_feature_enabled(X86_FEATURE_XSAVES))
318                 XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
319         else
320                 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
321
322         /*
323          * We should never fault when copying from a kernel buffer, and the FPU
324          * state we set at boot time should be valid.
325          */
326         WARN_ON_FPU(err);
327 }
328
329 /*
330  * All supported features have either init state all zeros or are
331  * handled in setup_init_fpu() individually. This is an explicit
332  * feature list and does not use XFEATURE_MASK*SUPPORTED to catch
333  * newly added supported features at build time and make people
334  * actually look at the init state for the new feature.
335  */
336 #define XFEATURES_INIT_FPSTATE_HANDLED          \
337         (XFEATURE_MASK_FP |                     \
338          XFEATURE_MASK_SSE |                    \
339          XFEATURE_MASK_YMM |                    \
340          XFEATURE_MASK_OPMASK |                 \
341          XFEATURE_MASK_ZMM_Hi256 |              \
342          XFEATURE_MASK_Hi16_ZMM  |              \
343          XFEATURE_MASK_PKRU |                   \
344          XFEATURE_MASK_BNDREGS |                \
345          XFEATURE_MASK_BNDCSR |                 \
346          XFEATURE_MASK_PASID |                  \
347          XFEATURE_MASK_XTILE)
348
349 /*
350  * setup the xstate image representing the init state
351  */
352 static void __init setup_init_fpu_buf(void)
353 {
354         BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED |
355                       XFEATURE_MASK_SUPERVISOR_SUPPORTED) !=
356                      XFEATURES_INIT_FPSTATE_HANDLED);
357
358         if (!boot_cpu_has(X86_FEATURE_XSAVE))
359                 return;
360
361         print_xstate_features();
362
363         xstate_init_xcomp_bv(&init_fpstate.regs.xsave, init_fpstate.xfeatures);
364
365         /*
366          * Init all the features state with header.xfeatures being 0x0
367          */
368         os_xrstor_booting(&init_fpstate.regs.xsave);
369
370         /*
371          * All components are now in init state. Read the state back so
372          * that init_fpstate contains all non-zero init state. This only
373          * works with XSAVE, but not with XSAVEOPT and XSAVEC/S because
374          * those use the init optimization which skips writing data for
375          * components in init state.
376          *
377          * XSAVE could be used, but that would require to reshuffle the
378          * data when XSAVEC/S is available because XSAVEC/S uses xstate
379          * compaction. But doing so is a pointless exercise because most
380          * components have an all zeros init state except for the legacy
381          * ones (FP and SSE). Those can be saved with FXSAVE into the
382          * legacy area. Adding new features requires to ensure that init
383          * state is all zeroes or if not to add the necessary handling
384          * here.
385          */
386         fxsave(&init_fpstate.regs.fxsave);
387 }
388
389 int xfeature_size(int xfeature_nr)
390 {
391         u32 eax, ebx, ecx, edx;
392
393         CHECK_XFEATURE(xfeature_nr);
394         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
395         return eax;
396 }
397
398 /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */
399 static int validate_user_xstate_header(const struct xstate_header *hdr,
400                                        struct fpstate *fpstate)
401 {
402         /* No unknown or supervisor features may be set */
403         if (hdr->xfeatures & ~fpstate->user_xfeatures)
404                 return -EINVAL;
405
406         /* Userspace must use the uncompacted format */
407         if (hdr->xcomp_bv)
408                 return -EINVAL;
409
410         /*
411          * If 'reserved' is shrunken to add a new field, make sure to validate
412          * that new field here!
413          */
414         BUILD_BUG_ON(sizeof(hdr->reserved) != 48);
415
416         /* No reserved bits may be set */
417         if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved)))
418                 return -EINVAL;
419
420         return 0;
421 }
422
423 static void __init __xstate_dump_leaves(void)
424 {
425         int i;
426         u32 eax, ebx, ecx, edx;
427         static int should_dump = 1;
428
429         if (!should_dump)
430                 return;
431         should_dump = 0;
432         /*
433          * Dump out a few leaves past the ones that we support
434          * just in case there are some goodies up there
435          */
436         for (i = 0; i < XFEATURE_MAX + 10; i++) {
437                 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
438                 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
439                         XSTATE_CPUID, i, eax, ebx, ecx, edx);
440         }
441 }
442
443 #define XSTATE_WARN_ON(x, fmt, ...) do {                                        \
444         if (WARN_ONCE(x, "XSAVE consistency problem: " fmt, ##__VA_ARGS__)) {   \
445                 __xstate_dump_leaves();                                         \
446         }                                                                       \
447 } while (0)
448
449 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do {                      \
450         if ((nr == nr_macro) &&                                         \
451             WARN_ONCE(sz != sizeof(__struct),                           \
452                 "%s: struct is %zu bytes, cpu state %d bytes\n",        \
453                 __stringify(nr_macro), sizeof(__struct), sz)) {         \
454                 __xstate_dump_leaves();                                 \
455         }                                                               \
456 } while (0)
457
458 /**
459  * check_xtile_data_against_struct - Check tile data state size.
460  *
461  * Calculate the state size by multiplying the single tile size which is
462  * recorded in a C struct, and the number of tiles that the CPU informs.
463  * Compare the provided size with the calculation.
464  *
465  * @size:       The tile data state size
466  *
467  * Returns:     0 on success, -EINVAL on mismatch.
468  */
469 static int __init check_xtile_data_against_struct(int size)
470 {
471         u32 max_palid, palid, state_size;
472         u32 eax, ebx, ecx, edx;
473         u16 max_tile;
474
475         /*
476          * Check the maximum palette id:
477          *   eax: the highest numbered palette subleaf.
478          */
479         cpuid_count(TILE_CPUID, 0, &max_palid, &ebx, &ecx, &edx);
480
481         /*
482          * Cross-check each tile size and find the maximum number of
483          * supported tiles.
484          */
485         for (palid = 1, max_tile = 0; palid <= max_palid; palid++) {
486                 u16 tile_size, max;
487
488                 /*
489                  * Check the tile size info:
490                  *   eax[31:16]:  bytes per title
491                  *   ebx[31:16]:  the max names (or max number of tiles)
492                  */
493                 cpuid_count(TILE_CPUID, palid, &eax, &ebx, &edx, &edx);
494                 tile_size = eax >> 16;
495                 max = ebx >> 16;
496
497                 if (tile_size != sizeof(struct xtile_data)) {
498                         pr_err("%s: struct is %zu bytes, cpu xtile %d bytes\n",
499                                __stringify(XFEATURE_XTILE_DATA),
500                                sizeof(struct xtile_data), tile_size);
501                         __xstate_dump_leaves();
502                         return -EINVAL;
503                 }
504
505                 if (max > max_tile)
506                         max_tile = max;
507         }
508
509         state_size = sizeof(struct xtile_data) * max_tile;
510         if (size != state_size) {
511                 pr_err("%s: calculated size is %u bytes, cpu state %d bytes\n",
512                        __stringify(XFEATURE_XTILE_DATA), state_size, size);
513                 __xstate_dump_leaves();
514                 return -EINVAL;
515         }
516         return 0;
517 }
518
519 /*
520  * We have a C struct for each 'xstate'.  We need to ensure
521  * that our software representation matches what the CPU
522  * tells us about the state's size.
523  */
524 static bool __init check_xstate_against_struct(int nr)
525 {
526         /*
527          * Ask the CPU for the size of the state.
528          */
529         int sz = xfeature_size(nr);
530         /*
531          * Match each CPU state with the corresponding software
532          * structure.
533          */
534         XCHECK_SZ(sz, nr, XFEATURE_YMM,       struct ymmh_struct);
535         XCHECK_SZ(sz, nr, XFEATURE_BNDREGS,   struct mpx_bndreg_state);
536         XCHECK_SZ(sz, nr, XFEATURE_BNDCSR,    struct mpx_bndcsr_state);
537         XCHECK_SZ(sz, nr, XFEATURE_OPMASK,    struct avx_512_opmask_state);
538         XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
539         XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM,  struct avx_512_hi16_state);
540         XCHECK_SZ(sz, nr, XFEATURE_PKRU,      struct pkru_state);
541         XCHECK_SZ(sz, nr, XFEATURE_PASID,     struct ia32_pasid_state);
542         XCHECK_SZ(sz, nr, XFEATURE_XTILE_CFG, struct xtile_cfg);
543
544         /* The tile data size varies between implementations. */
545         if (nr == XFEATURE_XTILE_DATA)
546                 check_xtile_data_against_struct(sz);
547
548         /*
549          * Make *SURE* to add any feature numbers in below if
550          * there are "holes" in the xsave state component
551          * numbers.
552          */
553         if ((nr < XFEATURE_YMM) ||
554             (nr >= XFEATURE_MAX) ||
555             (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR) ||
556             ((nr >= XFEATURE_RSRVD_COMP_11) && (nr <= XFEATURE_RSRVD_COMP_16))) {
557                 XSTATE_WARN_ON(1, "No structure for xstate: %d\n", nr);
558                 return false;
559         }
560         return true;
561 }
562
563 static unsigned int xstate_calculate_size(u64 xfeatures, bool compacted)
564 {
565         unsigned int topmost = fls64(xfeatures) -  1;
566         unsigned int offset = xstate_offsets[topmost];
567
568         if (topmost <= XFEATURE_SSE)
569                 return sizeof(struct xregs_state);
570
571         if (compacted)
572                 offset = xfeature_get_offset(xfeatures, topmost);
573         return offset + xstate_sizes[topmost];
574 }
575
576 /*
577  * This essentially double-checks what the cpu told us about
578  * how large the XSAVE buffer needs to be.  We are recalculating
579  * it to be safe.
580  *
581  * Independent XSAVE features allocate their own buffers and are not
582  * covered by these checks. Only the size of the buffer for task->fpu
583  * is checked here.
584  */
585 static bool __init paranoid_xstate_size_valid(unsigned int kernel_size)
586 {
587         bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
588         bool xsaves = cpu_feature_enabled(X86_FEATURE_XSAVES);
589         unsigned int size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
590         int i;
591
592         for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
593                 if (!check_xstate_against_struct(i))
594                         return false;
595                 /*
596                  * Supervisor state components can be managed only by
597                  * XSAVES.
598                  */
599                 if (!xsaves && xfeature_is_supervisor(i)) {
600                         XSTATE_WARN_ON(1, "Got supervisor feature %d, but XSAVES not advertised\n", i);
601                         return false;
602                 }
603         }
604         size = xstate_calculate_size(fpu_kernel_cfg.max_features, compacted);
605         XSTATE_WARN_ON(size != kernel_size,
606                        "size %u != kernel_size %u\n", size, kernel_size);
607         return size == kernel_size;
608 }
609
610 /*
611  * Get total size of enabled xstates in XCR0 | IA32_XSS.
612  *
613  * Note the SDM's wording here.  "sub-function 0" only enumerates
614  * the size of the *user* states.  If we use it to size a buffer
615  * that we use 'XSAVES' on, we could potentially overflow the
616  * buffer because 'XSAVES' saves system states too.
617  *
618  * This also takes compaction into account. So this works for
619  * XSAVEC as well.
620  */
621 static unsigned int __init get_compacted_size(void)
622 {
623         unsigned int eax, ebx, ecx, edx;
624         /*
625          * - CPUID function 0DH, sub-function 1:
626          *    EBX enumerates the size (in bytes) required by
627          *    the XSAVES instruction for an XSAVE area
628          *    containing all the state components
629          *    corresponding to bits currently set in
630          *    XCR0 | IA32_XSS.
631          *
632          * When XSAVES is not available but XSAVEC is (virt), then there
633          * are no supervisor states, but XSAVEC still uses compacted
634          * format.
635          */
636         cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
637         return ebx;
638 }
639
640 /*
641  * Get the total size of the enabled xstates without the independent supervisor
642  * features.
643  */
644 static unsigned int __init get_xsave_compacted_size(void)
645 {
646         u64 mask = xfeatures_mask_independent();
647         unsigned int size;
648
649         if (!mask)
650                 return get_compacted_size();
651
652         /* Disable independent features. */
653         wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor());
654
655         /*
656          * Ask the hardware what size is required of the buffer.
657          * This is the size required for the task->fpu buffer.
658          */
659         size = get_compacted_size();
660
661         /* Re-enable independent features so XSAVES will work on them again. */
662         wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask);
663
664         return size;
665 }
666
667 static unsigned int __init get_xsave_size_user(void)
668 {
669         unsigned int eax, ebx, ecx, edx;
670         /*
671          * - CPUID function 0DH, sub-function 0:
672          *    EBX enumerates the size (in bytes) required by
673          *    the XSAVE instruction for an XSAVE area
674          *    containing all the *user* state components
675          *    corresponding to bits currently set in XCR0.
676          */
677         cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
678         return ebx;
679 }
680
681 static int __init init_xstate_size(void)
682 {
683         /* Recompute the context size for enabled features: */
684         unsigned int user_size, kernel_size, kernel_default_size;
685         bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
686
687         /* Uncompacted user space size */
688         user_size = get_xsave_size_user();
689
690         /*
691          * XSAVES kernel size includes supervisor states and uses compacted
692          * format. XSAVEC uses compacted format, but does not save
693          * supervisor states.
694          *
695          * XSAVE[OPT] do not support supervisor states so kernel and user
696          * size is identical.
697          */
698         if (compacted)
699                 kernel_size = get_xsave_compacted_size();
700         else
701                 kernel_size = user_size;
702
703         kernel_default_size =
704                 xstate_calculate_size(fpu_kernel_cfg.default_features, compacted);
705
706         if (!paranoid_xstate_size_valid(kernel_size))
707                 return -EINVAL;
708
709         fpu_kernel_cfg.max_size = kernel_size;
710         fpu_user_cfg.max_size = user_size;
711
712         fpu_kernel_cfg.default_size = kernel_default_size;
713         fpu_user_cfg.default_size =
714                 xstate_calculate_size(fpu_user_cfg.default_features, false);
715
716         return 0;
717 }
718
719 /*
720  * We enabled the XSAVE hardware, but something went wrong and
721  * we can not use it.  Disable it.
722  */
723 static void __init fpu__init_disable_system_xstate(unsigned int legacy_size)
724 {
725         fpu_kernel_cfg.max_features = 0;
726         cr4_clear_bits(X86_CR4_OSXSAVE);
727         setup_clear_cpu_cap(X86_FEATURE_XSAVE);
728
729         /* Restore the legacy size.*/
730         fpu_kernel_cfg.max_size = legacy_size;
731         fpu_kernel_cfg.default_size = legacy_size;
732         fpu_user_cfg.max_size = legacy_size;
733         fpu_user_cfg.default_size = legacy_size;
734
735         /*
736          * Prevent enabling the static branch which enables writes to the
737          * XFD MSR.
738          */
739         init_fpstate.xfd = 0;
740
741         fpstate_reset(&current->thread.fpu);
742 }
743
744 /*
745  * Enable and initialize the xsave feature.
746  * Called once per system bootup.
747  */
748 void __init fpu__init_system_xstate(unsigned int legacy_size)
749 {
750         unsigned int eax, ebx, ecx, edx;
751         u64 xfeatures;
752         int err;
753         int i;
754
755         if (!boot_cpu_has(X86_FEATURE_FPU)) {
756                 pr_info("x86/fpu: No FPU detected\n");
757                 return;
758         }
759
760         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
761                 pr_info("x86/fpu: x87 FPU will use %s\n",
762                         boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE");
763                 return;
764         }
765
766         if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
767                 WARN_ON_FPU(1);
768                 return;
769         }
770
771         /*
772          * Find user xstates supported by the processor.
773          */
774         cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
775         fpu_kernel_cfg.max_features = eax + ((u64)edx << 32);
776
777         /*
778          * Find supervisor xstates supported by the processor.
779          */
780         cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
781         fpu_kernel_cfg.max_features |= ecx + ((u64)edx << 32);
782
783         if ((fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
784                 /*
785                  * This indicates that something really unexpected happened
786                  * with the enumeration.  Disable XSAVE and try to continue
787                  * booting without it.  This is too early to BUG().
788                  */
789                 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n",
790                        fpu_kernel_cfg.max_features);
791                 goto out_disable;
792         }
793
794         /*
795          * Clear XSAVE features that are disabled in the normal CPUID.
796          */
797         for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) {
798                 unsigned short cid = xsave_cpuid_features[i];
799
800                 /* Careful: X86_FEATURE_FPU is 0! */
801                 if ((i != XFEATURE_FP && !cid) || !boot_cpu_has(cid))
802                         fpu_kernel_cfg.max_features &= ~BIT_ULL(i);
803         }
804
805         if (!cpu_feature_enabled(X86_FEATURE_XFD))
806                 fpu_kernel_cfg.max_features &= ~XFEATURE_MASK_USER_DYNAMIC;
807
808         if (!cpu_feature_enabled(X86_FEATURE_XSAVES))
809                 fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
810         else
811                 fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED |
812                                         XFEATURE_MASK_SUPERVISOR_SUPPORTED;
813
814         fpu_user_cfg.max_features = fpu_kernel_cfg.max_features;
815         fpu_user_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
816
817         /* Clean out dynamic features from default */
818         fpu_kernel_cfg.default_features = fpu_kernel_cfg.max_features;
819         fpu_kernel_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
820
821         fpu_user_cfg.default_features = fpu_user_cfg.max_features;
822         fpu_user_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
823
824         /* Store it for paranoia check at the end */
825         xfeatures = fpu_kernel_cfg.max_features;
826
827         /*
828          * Initialize the default XFD state in initfp_state and enable the
829          * dynamic sizing mechanism if dynamic states are available.  The
830          * static key cannot be enabled here because this runs before
831          * jump_label_init(). This is delayed to an initcall.
832          */
833         init_fpstate.xfd = fpu_user_cfg.max_features & XFEATURE_MASK_USER_DYNAMIC;
834
835         /* Set up compaction feature bit */
836         if (cpu_feature_enabled(X86_FEATURE_XSAVEC) ||
837             cpu_feature_enabled(X86_FEATURE_XSAVES))
838                 setup_force_cpu_cap(X86_FEATURE_XCOMPACTED);
839
840         /* Enable xstate instructions to be able to continue with initialization: */
841         fpu__init_cpu_xstate();
842
843         /* Cache size, offset and flags for initialization */
844         setup_xstate_cache();
845
846         err = init_xstate_size();
847         if (err)
848                 goto out_disable;
849
850         /* Reset the state for the current task */
851         fpstate_reset(&current->thread.fpu);
852
853         /*
854          * Update info used for ptrace frames; use standard-format size and no
855          * supervisor xstates:
856          */
857         update_regset_xstate_info(fpu_user_cfg.max_size,
858                                   fpu_user_cfg.max_features);
859
860         /*
861          * init_fpstate excludes dynamic states as they are large but init
862          * state is zero.
863          */
864         init_fpstate.size               = fpu_kernel_cfg.default_size;
865         init_fpstate.xfeatures          = fpu_kernel_cfg.default_features;
866
867         if (init_fpstate.size > sizeof(init_fpstate.regs)) {
868                 pr_warn("x86/fpu: init_fpstate buffer too small (%zu < %d), disabling XSAVE\n",
869                         sizeof(init_fpstate.regs), init_fpstate.size);
870                 goto out_disable;
871         }
872
873         setup_init_fpu_buf();
874
875         /*
876          * Paranoia check whether something in the setup modified the
877          * xfeatures mask.
878          */
879         if (xfeatures != fpu_kernel_cfg.max_features) {
880                 pr_err("x86/fpu: xfeatures modified from 0x%016llx to 0x%016llx during init, disabling XSAVE\n",
881                        xfeatures, fpu_kernel_cfg.max_features);
882                 goto out_disable;
883         }
884
885         print_xstate_offset_size();
886         pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
887                 fpu_kernel_cfg.max_features,
888                 fpu_kernel_cfg.max_size,
889                 boot_cpu_has(X86_FEATURE_XCOMPACTED) ? "compacted" : "standard");
890         return;
891
892 out_disable:
893         /* something went wrong, try to boot without any XSAVE support */
894         fpu__init_disable_system_xstate(legacy_size);
895 }
896
897 /*
898  * Restore minimal FPU state after suspend:
899  */
900 void fpu__resume_cpu(void)
901 {
902         /*
903          * Restore XCR0 on xsave capable CPUs:
904          */
905         if (cpu_feature_enabled(X86_FEATURE_XSAVE))
906                 xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features);
907
908         /*
909          * Restore IA32_XSS. The same CPUID bit enumerates support
910          * of XSAVES and MSR_IA32_XSS.
911          */
912         if (cpu_feature_enabled(X86_FEATURE_XSAVES)) {
913                 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor()  |
914                                      xfeatures_mask_independent());
915         }
916
917         if (fpu_state_size_dynamic())
918                 wrmsrl(MSR_IA32_XFD, current->thread.fpu.fpstate->xfd);
919 }
920
921 /*
922  * Given an xstate feature nr, calculate where in the xsave
923  * buffer the state is.  Callers should ensure that the buffer
924  * is valid.
925  */
926 static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
927 {
928         u64 xcomp_bv = xsave->header.xcomp_bv;
929
930         if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
931                 return NULL;
932
933         if (cpu_feature_enabled(X86_FEATURE_XCOMPACTED)) {
934                 if (WARN_ON_ONCE(!(xcomp_bv & BIT_ULL(xfeature_nr))))
935                         return NULL;
936         }
937
938         return (void *)xsave + xfeature_get_offset(xcomp_bv, xfeature_nr);
939 }
940
941 /*
942  * Given the xsave area and a state inside, this function returns the
943  * address of the state.
944  *
945  * This is the API that is called to get xstate address in either
946  * standard format or compacted format of xsave area.
947  *
948  * Note that if there is no data for the field in the xsave buffer
949  * this will return NULL.
950  *
951  * Inputs:
952  *      xstate: the thread's storage area for all FPU data
953  *      xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
954  *      XFEATURE_SSE, etc...)
955  * Output:
956  *      address of the state in the xsave area, or NULL if the
957  *      field is not present in the xsave buffer.
958  */
959 void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
960 {
961         /*
962          * Do we even *have* xsave state?
963          */
964         if (!boot_cpu_has(X86_FEATURE_XSAVE))
965                 return NULL;
966
967         /*
968          * We should not ever be requesting features that we
969          * have not enabled.
970          */
971         if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
972                 return NULL;
973
974         /*
975          * This assumes the last 'xsave*' instruction to
976          * have requested that 'xfeature_nr' be saved.
977          * If it did not, we might be seeing and old value
978          * of the field in the buffer.
979          *
980          * This can happen because the last 'xsave' did not
981          * request that this feature be saved (unlikely)
982          * or because the "init optimization" caused it
983          * to not be saved.
984          */
985         if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr)))
986                 return NULL;
987
988         return __raw_xsave_addr(xsave, xfeature_nr);
989 }
990
991 #ifdef CONFIG_ARCH_HAS_PKEYS
992
993 /*
994  * This will go out and modify PKRU register to set the access
995  * rights for @pkey to @init_val.
996  */
997 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
998                               unsigned long init_val)
999 {
1000         u32 old_pkru, new_pkru_bits = 0;
1001         int pkey_shift;
1002
1003         /*
1004          * This check implies XSAVE support.  OSPKE only gets
1005          * set if we enable XSAVE and we enable PKU in XCR0.
1006          */
1007         if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
1008                 return -EINVAL;
1009
1010         /*
1011          * This code should only be called with valid 'pkey'
1012          * values originating from in-kernel users.  Complain
1013          * if a bad value is observed.
1014          */
1015         if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
1016                 return -EINVAL;
1017
1018         /* Set the bits we need in PKRU:  */
1019         if (init_val & PKEY_DISABLE_ACCESS)
1020                 new_pkru_bits |= PKRU_AD_BIT;
1021         if (init_val & PKEY_DISABLE_WRITE)
1022                 new_pkru_bits |= PKRU_WD_BIT;
1023
1024         /* Shift the bits in to the correct place in PKRU for pkey: */
1025         pkey_shift = pkey * PKRU_BITS_PER_PKEY;
1026         new_pkru_bits <<= pkey_shift;
1027
1028         /* Get old PKRU and mask off any old bits in place: */
1029         old_pkru = read_pkru();
1030         old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
1031
1032         /* Write old part along with new part: */
1033         write_pkru(old_pkru | new_pkru_bits);
1034
1035         return 0;
1036 }
1037 #endif /* ! CONFIG_ARCH_HAS_PKEYS */
1038
1039 static void copy_feature(bool from_xstate, struct membuf *to, void *xstate,
1040                          void *init_xstate, unsigned int size)
1041 {
1042         membuf_write(to, from_xstate ? xstate : init_xstate, size);
1043 }
1044
1045 /**
1046  * __copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
1047  * @to:         membuf descriptor
1048  * @fpstate:    The fpstate buffer from which to copy
1049  * @pkru_val:   The PKRU value to store in the PKRU component
1050  * @copy_mode:  The requested copy mode
1051  *
1052  * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
1053  * format, i.e. from the kernel internal hardware dependent storage format
1054  * to the requested @mode. UABI XSTATE is always uncompacted!
1055  *
1056  * It supports partial copy but @to.pos always starts from zero.
1057  */
1058 void __copy_xstate_to_uabi_buf(struct membuf to, struct fpstate *fpstate,
1059                                u32 pkru_val, enum xstate_copy_mode copy_mode)
1060 {
1061         const unsigned int off_mxcsr = offsetof(struct fxregs_state, mxcsr);
1062         struct xregs_state *xinit = &init_fpstate.regs.xsave;
1063         struct xregs_state *xsave = &fpstate->regs.xsave;
1064         struct xstate_header header;
1065         unsigned int zerofrom;
1066         u64 mask;
1067         int i;
1068
1069         memset(&header, 0, sizeof(header));
1070         header.xfeatures = xsave->header.xfeatures;
1071
1072         /* Mask out the feature bits depending on copy mode */
1073         switch (copy_mode) {
1074         case XSTATE_COPY_FP:
1075                 header.xfeatures &= XFEATURE_MASK_FP;
1076                 break;
1077
1078         case XSTATE_COPY_FX:
1079                 header.xfeatures &= XFEATURE_MASK_FP | XFEATURE_MASK_SSE;
1080                 break;
1081
1082         case XSTATE_COPY_XSAVE:
1083                 header.xfeatures &= fpstate->user_xfeatures;
1084                 break;
1085         }
1086
1087         /* Copy FP state up to MXCSR */
1088         copy_feature(header.xfeatures & XFEATURE_MASK_FP, &to, &xsave->i387,
1089                      &xinit->i387, off_mxcsr);
1090
1091         /* Copy MXCSR when SSE or YMM are set in the feature mask */
1092         copy_feature(header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM),
1093                      &to, &xsave->i387.mxcsr, &xinit->i387.mxcsr,
1094                      MXCSR_AND_FLAGS_SIZE);
1095
1096         /* Copy the remaining FP state */
1097         copy_feature(header.xfeatures & XFEATURE_MASK_FP,
1098                      &to, &xsave->i387.st_space, &xinit->i387.st_space,
1099                      sizeof(xsave->i387.st_space));
1100
1101         /* Copy the SSE state - shared with YMM, but independently managed */
1102         copy_feature(header.xfeatures & XFEATURE_MASK_SSE,
1103                      &to, &xsave->i387.xmm_space, &xinit->i387.xmm_space,
1104                      sizeof(xsave->i387.xmm_space));
1105
1106         if (copy_mode != XSTATE_COPY_XSAVE)
1107                 goto out;
1108
1109         /* Zero the padding area */
1110         membuf_zero(&to, sizeof(xsave->i387.padding));
1111
1112         /* Copy xsave->i387.sw_reserved */
1113         membuf_write(&to, xstate_fx_sw_bytes, sizeof(xsave->i387.sw_reserved));
1114
1115         /* Copy the user space relevant state of @xsave->header */
1116         membuf_write(&to, &header, sizeof(header));
1117
1118         zerofrom = offsetof(struct xregs_state, extended_state_area);
1119
1120         /*
1121          * This 'mask' indicates which states to copy from fpstate.
1122          * Those extended states that are not present in fpstate are
1123          * either disabled or initialized:
1124          *
1125          * In non-compacted format, disabled features still occupy
1126          * state space but there is no state to copy from in the
1127          * compacted init_fpstate. The gap tracking will zero these
1128          * states.
1129          *
1130          * The extended features have an all zeroes init state. Thus,
1131          * remove them from 'mask' to zero those features in the user
1132          * buffer instead of retrieving them from init_fpstate.
1133          */
1134         mask = header.xfeatures;
1135
1136         for_each_extended_xfeature(i, mask) {
1137                 /*
1138                  * If there was a feature or alignment gap, zero the space
1139                  * in the destination buffer.
1140                  */
1141                 if (zerofrom < xstate_offsets[i])
1142                         membuf_zero(&to, xstate_offsets[i] - zerofrom);
1143
1144                 if (i == XFEATURE_PKRU) {
1145                         struct pkru_state pkru = {0};
1146                         /*
1147                          * PKRU is not necessarily up to date in the
1148                          * XSAVE buffer. Use the provided value.
1149                          */
1150                         pkru.pkru = pkru_val;
1151                         membuf_write(&to, &pkru, sizeof(pkru));
1152                 } else {
1153                         membuf_write(&to,
1154                                      __raw_xsave_addr(xsave, i),
1155                                      xstate_sizes[i]);
1156                 }
1157                 /*
1158                  * Keep track of the last copied state in the non-compacted
1159                  * target buffer for gap zeroing.
1160                  */
1161                 zerofrom = xstate_offsets[i] + xstate_sizes[i];
1162         }
1163
1164 out:
1165         if (to.left)
1166                 membuf_zero(&to, to.left);
1167 }
1168
1169 /**
1170  * copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
1171  * @to:         membuf descriptor
1172  * @tsk:        The task from which to copy the saved xstate
1173  * @copy_mode:  The requested copy mode
1174  *
1175  * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
1176  * format, i.e. from the kernel internal hardware dependent storage format
1177  * to the requested @mode. UABI XSTATE is always uncompacted!
1178  *
1179  * It supports partial copy but @to.pos always starts from zero.
1180  */
1181 void copy_xstate_to_uabi_buf(struct membuf to, struct task_struct *tsk,
1182                              enum xstate_copy_mode copy_mode)
1183 {
1184         __copy_xstate_to_uabi_buf(to, tsk->thread.fpu.fpstate,
1185                                   tsk->thread.pkru, copy_mode);
1186 }
1187
1188 static int copy_from_buffer(void *dst, unsigned int offset, unsigned int size,
1189                             const void *kbuf, const void __user *ubuf)
1190 {
1191         if (kbuf) {
1192                 memcpy(dst, kbuf + offset, size);
1193         } else {
1194                 if (copy_from_user(dst, ubuf + offset, size))
1195                         return -EFAULT;
1196         }
1197         return 0;
1198 }
1199
1200
1201 /**
1202  * copy_uabi_to_xstate - Copy a UABI format buffer to the kernel xstate
1203  * @fpstate:    The fpstate buffer to copy to
1204  * @kbuf:       The UABI format buffer, if it comes from the kernel
1205  * @ubuf:       The UABI format buffer, if it comes from userspace
1206  * @pkru:       The location to write the PKRU value to
1207  *
1208  * Converts from the UABI format into the kernel internal hardware
1209  * dependent format.
1210  *
1211  * This function ultimately has three different callers with distinct PKRU
1212  * behavior.
1213  * 1.   When called from sigreturn the PKRU register will be restored from
1214  *      @fpstate via an XRSTOR. Correctly copying the UABI format buffer to
1215  *      @fpstate is sufficient to cover this case, but the caller will also
1216  *      pass a pointer to the thread_struct's pkru field in @pkru and updating
1217  *      it is harmless.
1218  * 2.   When called from ptrace the PKRU register will be restored from the
1219  *      thread_struct's pkru field. A pointer to that is passed in @pkru.
1220  *      The kernel will restore it manually, so the XRSTOR behavior that resets
1221  *      the PKRU register to the hardware init value (0) if the corresponding
1222  *      xfeatures bit is not set is emulated here.
1223  * 3.   When called from KVM the PKRU register will be restored from the vcpu's
1224  *      pkru field. A pointer to that is passed in @pkru. KVM hasn't used
1225  *      XRSTOR and hasn't had the PKRU resetting behavior described above. To
1226  *      preserve that KVM behavior, it passes NULL for @pkru if the xfeatures
1227  *      bit is not set.
1228  */
1229 static int copy_uabi_to_xstate(struct fpstate *fpstate, const void *kbuf,
1230                                const void __user *ubuf, u32 *pkru)
1231 {
1232         struct xregs_state *xsave = &fpstate->regs.xsave;
1233         unsigned int offset, size;
1234         struct xstate_header hdr;
1235         u64 mask;
1236         int i;
1237
1238         offset = offsetof(struct xregs_state, header);
1239         if (copy_from_buffer(&hdr, offset, sizeof(hdr), kbuf, ubuf))
1240                 return -EFAULT;
1241
1242         if (validate_user_xstate_header(&hdr, fpstate))
1243                 return -EINVAL;
1244
1245         /* Validate MXCSR when any of the related features is in use */
1246         mask = XFEATURE_MASK_FP | XFEATURE_MASK_SSE | XFEATURE_MASK_YMM;
1247         if (hdr.xfeatures & mask) {
1248                 u32 mxcsr[2];
1249
1250                 offset = offsetof(struct fxregs_state, mxcsr);
1251                 if (copy_from_buffer(mxcsr, offset, sizeof(mxcsr), kbuf, ubuf))
1252                         return -EFAULT;
1253
1254                 /* Reserved bits in MXCSR must be zero. */
1255                 if (mxcsr[0] & ~mxcsr_feature_mask)
1256                         return -EINVAL;
1257
1258                 /* SSE and YMM require MXCSR even when FP is not in use. */
1259                 if (!(hdr.xfeatures & XFEATURE_MASK_FP)) {
1260                         xsave->i387.mxcsr = mxcsr[0];
1261                         xsave->i387.mxcsr_mask = mxcsr[1];
1262                 }
1263         }
1264
1265         for (i = 0; i < XFEATURE_MAX; i++) {
1266                 mask = BIT_ULL(i);
1267
1268                 if (hdr.xfeatures & mask) {
1269                         void *dst = __raw_xsave_addr(xsave, i);
1270
1271                         offset = xstate_offsets[i];
1272                         size = xstate_sizes[i];
1273
1274                         if (copy_from_buffer(dst, offset, size, kbuf, ubuf))
1275                                 return -EFAULT;
1276                 }
1277         }
1278
1279         if (hdr.xfeatures & XFEATURE_MASK_PKRU) {
1280                 struct pkru_state *xpkru;
1281
1282                 xpkru = __raw_xsave_addr(xsave, XFEATURE_PKRU);
1283                 *pkru = xpkru->pkru;
1284         } else {
1285                 /*
1286                  * KVM may pass NULL here to indicate that it does not need
1287                  * PKRU updated.
1288                  */
1289                 if (pkru)
1290                         *pkru = 0;
1291         }
1292
1293         /*
1294          * The state that came in from userspace was user-state only.
1295          * Mask all the user states out of 'xfeatures':
1296          */
1297         xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
1298
1299         /*
1300          * Add back in the features that came in from userspace:
1301          */
1302         xsave->header.xfeatures |= hdr.xfeatures;
1303
1304         return 0;
1305 }
1306
1307 /*
1308  * Convert from a ptrace standard-format kernel buffer to kernel XSAVE[S]
1309  * format and copy to the target thread. Used by ptrace and KVM.
1310  */
1311 int copy_uabi_from_kernel_to_xstate(struct fpstate *fpstate, const void *kbuf, u32 *pkru)
1312 {
1313         return copy_uabi_to_xstate(fpstate, kbuf, NULL, pkru);
1314 }
1315
1316 /*
1317  * Convert from a sigreturn standard-format user-space buffer to kernel
1318  * XSAVE[S] format and copy to the target thread. This is called from the
1319  * sigreturn() and rt_sigreturn() system calls.
1320  */
1321 int copy_sigframe_from_user_to_xstate(struct task_struct *tsk,
1322                                       const void __user *ubuf)
1323 {
1324         return copy_uabi_to_xstate(tsk->thread.fpu.fpstate, NULL, ubuf, &tsk->thread.pkru);
1325 }
1326
1327 static bool validate_independent_components(u64 mask)
1328 {
1329         u64 xchk;
1330
1331         if (WARN_ON_FPU(!cpu_feature_enabled(X86_FEATURE_XSAVES)))
1332                 return false;
1333
1334         xchk = ~xfeatures_mask_independent();
1335
1336         if (WARN_ON_ONCE(!mask || mask & xchk))
1337                 return false;
1338
1339         return true;
1340 }
1341
1342 /**
1343  * xsaves - Save selected components to a kernel xstate buffer
1344  * @xstate:     Pointer to the buffer
1345  * @mask:       Feature mask to select the components to save
1346  *
1347  * The @xstate buffer must be 64 byte aligned and correctly initialized as
1348  * XSAVES does not write the full xstate header. Before first use the
1349  * buffer should be zeroed otherwise a consecutive XRSTORS from that buffer
1350  * can #GP.
1351  *
1352  * The feature mask must be a subset of the independent features.
1353  */
1354 void xsaves(struct xregs_state *xstate, u64 mask)
1355 {
1356         int err;
1357
1358         if (!validate_independent_components(mask))
1359                 return;
1360
1361         XSTATE_OP(XSAVES, xstate, (u32)mask, (u32)(mask >> 32), err);
1362         WARN_ON_ONCE(err);
1363 }
1364
1365 /**
1366  * xrstors - Restore selected components from a kernel xstate buffer
1367  * @xstate:     Pointer to the buffer
1368  * @mask:       Feature mask to select the components to restore
1369  *
1370  * The @xstate buffer must be 64 byte aligned and correctly initialized
1371  * otherwise XRSTORS from that buffer can #GP.
1372  *
1373  * Proper usage is to restore the state which was saved with
1374  * xsaves() into @xstate.
1375  *
1376  * The feature mask must be a subset of the independent features.
1377  */
1378 void xrstors(struct xregs_state *xstate, u64 mask)
1379 {
1380         int err;
1381
1382         if (!validate_independent_components(mask))
1383                 return;
1384
1385         XSTATE_OP(XRSTORS, xstate, (u32)mask, (u32)(mask >> 32), err);
1386         WARN_ON_ONCE(err);
1387 }
1388
1389 #if IS_ENABLED(CONFIG_KVM)
1390 void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature)
1391 {
1392         void *addr = get_xsave_addr(&fps->regs.xsave, xfeature);
1393
1394         if (addr)
1395                 memset(addr, 0, xstate_sizes[xfeature]);
1396 }
1397 EXPORT_SYMBOL_GPL(fpstate_clear_xstate_component);
1398 #endif
1399
1400 #ifdef CONFIG_X86_64
1401
1402 #ifdef CONFIG_X86_DEBUG_FPU
1403 /*
1404  * Ensure that a subsequent XSAVE* or XRSTOR* instruction with RFBM=@mask
1405  * can safely operate on the @fpstate buffer.
1406  */
1407 static bool xstate_op_valid(struct fpstate *fpstate, u64 mask, bool rstor)
1408 {
1409         u64 xfd = __this_cpu_read(xfd_state);
1410
1411         if (fpstate->xfd == xfd)
1412                 return true;
1413
1414          /*
1415           * The XFD MSR does not match fpstate->xfd. That's invalid when
1416           * the passed in fpstate is current's fpstate.
1417           */
1418         if (fpstate->xfd == current->thread.fpu.fpstate->xfd)
1419                 return false;
1420
1421         /*
1422          * XRSTOR(S) from init_fpstate are always correct as it will just
1423          * bring all components into init state and not read from the
1424          * buffer. XSAVE(S) raises #PF after init.
1425          */
1426         if (fpstate == &init_fpstate)
1427                 return rstor;
1428
1429         /*
1430          * XSAVE(S): clone(), fpu_swap_kvm_fpu()
1431          * XRSTORS(S): fpu_swap_kvm_fpu()
1432          */
1433
1434         /*
1435          * No XSAVE/XRSTOR instructions (except XSAVE itself) touch
1436          * the buffer area for XFD-disabled state components.
1437          */
1438         mask &= ~xfd;
1439
1440         /*
1441          * Remove features which are valid in fpstate. They
1442          * have space allocated in fpstate.
1443          */
1444         mask &= ~fpstate->xfeatures;
1445
1446         /*
1447          * Any remaining state components in 'mask' might be written
1448          * by XSAVE/XRSTOR. Fail validation it found.
1449          */
1450         return !mask;
1451 }
1452
1453 void xfd_validate_state(struct fpstate *fpstate, u64 mask, bool rstor)
1454 {
1455         WARN_ON_ONCE(!xstate_op_valid(fpstate, mask, rstor));
1456 }
1457 #endif /* CONFIG_X86_DEBUG_FPU */
1458
1459 static int __init xfd_update_static_branch(void)
1460 {
1461         /*
1462          * If init_fpstate.xfd has bits set then dynamic features are
1463          * available and the dynamic sizing must be enabled.
1464          */
1465         if (init_fpstate.xfd)
1466                 static_branch_enable(&__fpu_state_size_dynamic);
1467         return 0;
1468 }
1469 arch_initcall(xfd_update_static_branch)
1470
1471 void fpstate_free(struct fpu *fpu)
1472 {
1473         if (fpu->fpstate && fpu->fpstate != &fpu->__fpstate)
1474                 vfree(fpu->fpstate);
1475 }
1476
1477 /**
1478  * fpstate_realloc - Reallocate struct fpstate for the requested new features
1479  *
1480  * @xfeatures:  A bitmap of xstate features which extend the enabled features
1481  *              of that task
1482  * @ksize:      The required size for the kernel buffer
1483  * @usize:      The required size for user space buffers
1484  * @guest_fpu:  Pointer to a guest FPU container. NULL for host allocations
1485  *
1486  * Note vs. vmalloc(): If the task with a vzalloc()-allocated buffer
1487  * terminates quickly, vfree()-induced IPIs may be a concern, but tasks
1488  * with large states are likely to live longer.
1489  *
1490  * Returns: 0 on success, -ENOMEM on allocation error.
1491  */
1492 static int fpstate_realloc(u64 xfeatures, unsigned int ksize,
1493                            unsigned int usize, struct fpu_guest *guest_fpu)
1494 {
1495         struct fpu *fpu = &current->thread.fpu;
1496         struct fpstate *curfps, *newfps = NULL;
1497         unsigned int fpsize;
1498         bool in_use;
1499
1500         fpsize = ksize + ALIGN(offsetof(struct fpstate, regs), 64);
1501
1502         newfps = vzalloc(fpsize);
1503         if (!newfps)
1504                 return -ENOMEM;
1505         newfps->size = ksize;
1506         newfps->user_size = usize;
1507         newfps->is_valloc = true;
1508
1509         /*
1510          * When a guest FPU is supplied, use @guest_fpu->fpstate
1511          * as reference independent whether it is in use or not.
1512          */
1513         curfps = guest_fpu ? guest_fpu->fpstate : fpu->fpstate;
1514
1515         /* Determine whether @curfps is the active fpstate */
1516         in_use = fpu->fpstate == curfps;
1517
1518         if (guest_fpu) {
1519                 newfps->is_guest = true;
1520                 newfps->is_confidential = curfps->is_confidential;
1521                 newfps->in_use = curfps->in_use;
1522                 guest_fpu->xfeatures |= xfeatures;
1523                 guest_fpu->uabi_size = usize;
1524         }
1525
1526         fpregs_lock();
1527         /*
1528          * If @curfps is in use, ensure that the current state is in the
1529          * registers before swapping fpstate as that might invalidate it
1530          * due to layout changes.
1531          */
1532         if (in_use && test_thread_flag(TIF_NEED_FPU_LOAD))
1533                 fpregs_restore_userregs();
1534
1535         newfps->xfeatures = curfps->xfeatures | xfeatures;
1536
1537         if (!guest_fpu)
1538                 newfps->user_xfeatures = curfps->user_xfeatures | xfeatures;
1539
1540         newfps->xfd = curfps->xfd & ~xfeatures;
1541
1542         /* Do the final updates within the locked region */
1543         xstate_init_xcomp_bv(&newfps->regs.xsave, newfps->xfeatures);
1544
1545         if (guest_fpu) {
1546                 guest_fpu->fpstate = newfps;
1547                 /* If curfps is active, update the FPU fpstate pointer */
1548                 if (in_use)
1549                         fpu->fpstate = newfps;
1550         } else {
1551                 fpu->fpstate = newfps;
1552         }
1553
1554         if (in_use)
1555                 xfd_update_state(fpu->fpstate);
1556         fpregs_unlock();
1557
1558         /* Only free valloc'ed state */
1559         if (curfps && curfps->is_valloc)
1560                 vfree(curfps);
1561
1562         return 0;
1563 }
1564
1565 static int validate_sigaltstack(unsigned int usize)
1566 {
1567         struct task_struct *thread, *leader = current->group_leader;
1568         unsigned long framesize = get_sigframe_size();
1569
1570         lockdep_assert_held(&current->sighand->siglock);
1571
1572         /* get_sigframe_size() is based on fpu_user_cfg.max_size */
1573         framesize -= fpu_user_cfg.max_size;
1574         framesize += usize;
1575         for_each_thread(leader, thread) {
1576                 if (thread->sas_ss_size && thread->sas_ss_size < framesize)
1577                         return -ENOSPC;
1578         }
1579         return 0;
1580 }
1581
1582 static int __xstate_request_perm(u64 permitted, u64 requested, bool guest)
1583 {
1584         /*
1585          * This deliberately does not exclude !XSAVES as we still might
1586          * decide to optionally context switch XCR0 or talk the silicon
1587          * vendors into extending XFD for the pre AMX states, especially
1588          * AVX512.
1589          */
1590         bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
1591         struct fpu *fpu = &current->group_leader->thread.fpu;
1592         struct fpu_state_perm *perm;
1593         unsigned int ksize, usize;
1594         u64 mask;
1595         int ret = 0;
1596
1597         /* Check whether fully enabled */
1598         if ((permitted & requested) == requested)
1599                 return 0;
1600
1601         /* Calculate the resulting kernel state size */
1602         mask = permitted | requested;
1603         /* Take supervisor states into account on the host */
1604         if (!guest)
1605                 mask |= xfeatures_mask_supervisor();
1606         ksize = xstate_calculate_size(mask, compacted);
1607
1608         /* Calculate the resulting user state size */
1609         mask &= XFEATURE_MASK_USER_SUPPORTED;
1610         usize = xstate_calculate_size(mask, false);
1611
1612         if (!guest) {
1613                 ret = validate_sigaltstack(usize);
1614                 if (ret)
1615                         return ret;
1616         }
1617
1618         perm = guest ? &fpu->guest_perm : &fpu->perm;
1619         /* Pairs with the READ_ONCE() in xstate_get_group_perm() */
1620         WRITE_ONCE(perm->__state_perm, mask);
1621         /* Protected by sighand lock */
1622         perm->__state_size = ksize;
1623         perm->__user_state_size = usize;
1624         return ret;
1625 }
1626
1627 /*
1628  * Permissions array to map facilities with more than one component
1629  */
1630 static const u64 xstate_prctl_req[XFEATURE_MAX] = {
1631         [XFEATURE_XTILE_DATA] = XFEATURE_MASK_XTILE_DATA,
1632 };
1633
1634 static int xstate_request_perm(unsigned long idx, bool guest)
1635 {
1636         u64 permitted, requested;
1637         int ret;
1638
1639         if (idx >= XFEATURE_MAX)
1640                 return -EINVAL;
1641
1642         /*
1643          * Look up the facility mask which can require more than
1644          * one xstate component.
1645          */
1646         idx = array_index_nospec(idx, ARRAY_SIZE(xstate_prctl_req));
1647         requested = xstate_prctl_req[idx];
1648         if (!requested)
1649                 return -EOPNOTSUPP;
1650
1651         if ((fpu_user_cfg.max_features & requested) != requested)
1652                 return -EOPNOTSUPP;
1653
1654         /* Lockless quick check */
1655         permitted = xstate_get_group_perm(guest);
1656         if ((permitted & requested) == requested)
1657                 return 0;
1658
1659         /* Protect against concurrent modifications */
1660         spin_lock_irq(&current->sighand->siglock);
1661         permitted = xstate_get_group_perm(guest);
1662
1663         /* First vCPU allocation locks the permissions. */
1664         if (guest && (permitted & FPU_GUEST_PERM_LOCKED))
1665                 ret = -EBUSY;
1666         else
1667                 ret = __xstate_request_perm(permitted, requested, guest);
1668         spin_unlock_irq(&current->sighand->siglock);
1669         return ret;
1670 }
1671
1672 int __xfd_enable_feature(u64 xfd_err, struct fpu_guest *guest_fpu)
1673 {
1674         u64 xfd_event = xfd_err & XFEATURE_MASK_USER_DYNAMIC;
1675         struct fpu_state_perm *perm;
1676         unsigned int ksize, usize;
1677         struct fpu *fpu;
1678
1679         if (!xfd_event) {
1680                 if (!guest_fpu)
1681                         pr_err_once("XFD: Invalid xfd error: %016llx\n", xfd_err);
1682                 return 0;
1683         }
1684
1685         /* Protect against concurrent modifications */
1686         spin_lock_irq(&current->sighand->siglock);
1687
1688         /* If not permitted let it die */
1689         if ((xstate_get_group_perm(!!guest_fpu) & xfd_event) != xfd_event) {
1690                 spin_unlock_irq(&current->sighand->siglock);
1691                 return -EPERM;
1692         }
1693
1694         fpu = &current->group_leader->thread.fpu;
1695         perm = guest_fpu ? &fpu->guest_perm : &fpu->perm;
1696         ksize = perm->__state_size;
1697         usize = perm->__user_state_size;
1698
1699         /*
1700          * The feature is permitted. State size is sufficient.  Dropping
1701          * the lock is safe here even if more features are added from
1702          * another task, the retrieved buffer sizes are valid for the
1703          * currently requested feature(s).
1704          */
1705         spin_unlock_irq(&current->sighand->siglock);
1706
1707         /*
1708          * Try to allocate a new fpstate. If that fails there is no way
1709          * out.
1710          */
1711         if (fpstate_realloc(xfd_event, ksize, usize, guest_fpu))
1712                 return -EFAULT;
1713         return 0;
1714 }
1715
1716 int xfd_enable_feature(u64 xfd_err)
1717 {
1718         return __xfd_enable_feature(xfd_err, NULL);
1719 }
1720
1721 #else /* CONFIG_X86_64 */
1722 static inline int xstate_request_perm(unsigned long idx, bool guest)
1723 {
1724         return -EPERM;
1725 }
1726 #endif  /* !CONFIG_X86_64 */
1727
1728 u64 xstate_get_guest_group_perm(void)
1729 {
1730         return xstate_get_group_perm(true);
1731 }
1732 EXPORT_SYMBOL_GPL(xstate_get_guest_group_perm);
1733
1734 /**
1735  * fpu_xstate_prctl - xstate permission operations
1736  * @tsk:        Redundant pointer to current
1737  * @option:     A subfunction of arch_prctl()
1738  * @arg2:       option argument
1739  * Return:      0 if successful; otherwise, an error code
1740  *
1741  * Option arguments:
1742  *
1743  * ARCH_GET_XCOMP_SUPP: Pointer to user space u64 to store the info
1744  * ARCH_GET_XCOMP_PERM: Pointer to user space u64 to store the info
1745  * ARCH_REQ_XCOMP_PERM: Facility number requested
1746  *
1747  * For facilities which require more than one XSTATE component, the request
1748  * must be the highest state component number related to that facility,
1749  * e.g. for AMX which requires XFEATURE_XTILE_CFG(17) and
1750  * XFEATURE_XTILE_DATA(18) this would be XFEATURE_XTILE_DATA(18).
1751  */
1752 long fpu_xstate_prctl(int option, unsigned long arg2)
1753 {
1754         u64 __user *uptr = (u64 __user *)arg2;
1755         u64 permitted, supported;
1756         unsigned long idx = arg2;
1757         bool guest = false;
1758
1759         switch (option) {
1760         case ARCH_GET_XCOMP_SUPP:
1761                 supported = fpu_user_cfg.max_features | fpu_user_cfg.legacy_features;
1762                 return put_user(supported, uptr);
1763
1764         case ARCH_GET_XCOMP_PERM:
1765                 /*
1766                  * Lockless snapshot as it can also change right after the
1767                  * dropping the lock.
1768                  */
1769                 permitted = xstate_get_host_group_perm();
1770                 permitted &= XFEATURE_MASK_USER_SUPPORTED;
1771                 return put_user(permitted, uptr);
1772
1773         case ARCH_GET_XCOMP_GUEST_PERM:
1774                 permitted = xstate_get_guest_group_perm();
1775                 permitted &= XFEATURE_MASK_USER_SUPPORTED;
1776                 return put_user(permitted, uptr);
1777
1778         case ARCH_REQ_XCOMP_GUEST_PERM:
1779                 guest = true;
1780                 fallthrough;
1781
1782         case ARCH_REQ_XCOMP_PERM:
1783                 if (!IS_ENABLED(CONFIG_X86_64))
1784                         return -EOPNOTSUPP;
1785
1786                 return xstate_request_perm(idx, guest);
1787
1788         default:
1789                 return -EINVAL;
1790         }
1791 }
1792
1793 #ifdef CONFIG_PROC_PID_ARCH_STATUS
1794 /*
1795  * Report the amount of time elapsed in millisecond since last AVX512
1796  * use in the task.
1797  */
1798 static void avx512_status(struct seq_file *m, struct task_struct *task)
1799 {
1800         unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp);
1801         long delta;
1802
1803         if (!timestamp) {
1804                 /*
1805                  * Report -1 if no AVX512 usage
1806                  */
1807                 delta = -1;
1808         } else {
1809                 delta = (long)(jiffies - timestamp);
1810                 /*
1811                  * Cap to LONG_MAX if time difference > LONG_MAX
1812                  */
1813                 if (delta < 0)
1814                         delta = LONG_MAX;
1815                 delta = jiffies_to_msecs(delta);
1816         }
1817
1818         seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta);
1819         seq_putc(m, '\n');
1820 }
1821
1822 /*
1823  * Report architecture specific information
1824  */
1825 int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns,
1826                         struct pid *pid, struct task_struct *task)
1827 {
1828         /*
1829          * Report AVX512 state if the processor and build option supported.
1830          */
1831         if (cpu_feature_enabled(X86_FEATURE_AVX512F))
1832                 avx512_status(m, task);
1833
1834         return 0;
1835 }
1836 #endif /* CONFIG_PROC_PID_ARCH_STATUS */