Merge tag 'sound-5.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[platform/kernel/linux-rpi.git] / arch / x86 / kernel / fpu / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *      Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/api.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/sched.h>
12 #include <asm/fpu/signal.h>
13 #include <asm/fpu/types.h>
14 #include <asm/traps.h>
15 #include <asm/irq_regs.h>
16
17 #include <linux/hardirq.h>
18 #include <linux/pkeys.h>
19 #include <linux/vmalloc.h>
20
21 #include "context.h"
22 #include "internal.h"
23 #include "legacy.h"
24 #include "xstate.h"
25
26 #define CREATE_TRACE_POINTS
27 #include <asm/trace/fpu.h>
28
29 #ifdef CONFIG_X86_64
30 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
31 DEFINE_PER_CPU(u64, xfd_state);
32 #endif
33
34 /* The FPU state configuration data for kernel and user space */
35 struct fpu_state_config fpu_kernel_cfg __ro_after_init;
36 struct fpu_state_config fpu_user_cfg __ro_after_init;
37
38 /*
39  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
40  * depending on the FPU hardware format:
41  */
42 struct fpstate init_fpstate __ro_after_init;
43
44 /*
45  * Track whether the kernel is using the FPU state
46  * currently.
47  *
48  * This flag is used:
49  *
50  *   - by IRQ context code to potentially use the FPU
51  *     if it's unused.
52  *
53  *   - to debug kernel_fpu_begin()/end() correctness
54  */
55 static DEFINE_PER_CPU(bool, in_kernel_fpu);
56
57 /*
58  * Track which context is using the FPU on the CPU:
59  */
60 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
61
62 static bool kernel_fpu_disabled(void)
63 {
64         return this_cpu_read(in_kernel_fpu);
65 }
66
67 static bool interrupted_kernel_fpu_idle(void)
68 {
69         return !kernel_fpu_disabled();
70 }
71
72 /*
73  * Were we in user mode (or vm86 mode) when we were
74  * interrupted?
75  *
76  * Doing kernel_fpu_begin/end() is ok if we are running
77  * in an interrupt context from user mode - we'll just
78  * save the FPU state as required.
79  */
80 static bool interrupted_user_mode(void)
81 {
82         struct pt_regs *regs = get_irq_regs();
83         return regs && user_mode(regs);
84 }
85
86 /*
87  * Can we use the FPU in kernel mode with the
88  * whole "kernel_fpu_begin/end()" sequence?
89  *
90  * It's always ok in process context (ie "not interrupt")
91  * but it is sometimes ok even from an irq.
92  */
93 bool irq_fpu_usable(void)
94 {
95         return !in_interrupt() ||
96                 interrupted_user_mode() ||
97                 interrupted_kernel_fpu_idle();
98 }
99 EXPORT_SYMBOL(irq_fpu_usable);
100
101 /*
102  * Track AVX512 state use because it is known to slow the max clock
103  * speed of the core.
104  */
105 static void update_avx_timestamp(struct fpu *fpu)
106 {
107
108 #define AVX512_TRACKING_MASK    (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
109
110         if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
111                 fpu->avx512_timestamp = jiffies;
112 }
113
114 /*
115  * Save the FPU register state in fpu->fpstate->regs. The register state is
116  * preserved.
117  *
118  * Must be called with fpregs_lock() held.
119  *
120  * The legacy FNSAVE instruction clears all FPU state unconditionally, so
121  * register state has to be reloaded. That might be a pointless exercise
122  * when the FPU is going to be used by another task right after that. But
123  * this only affects 20+ years old 32bit systems and avoids conditionals all
124  * over the place.
125  *
126  * FXSAVE and all XSAVE variants preserve the FPU register state.
127  */
128 void save_fpregs_to_fpstate(struct fpu *fpu)
129 {
130         if (likely(use_xsave())) {
131                 os_xsave(fpu->fpstate);
132                 update_avx_timestamp(fpu);
133                 return;
134         }
135
136         if (likely(use_fxsr())) {
137                 fxsave(&fpu->fpstate->regs.fxsave);
138                 return;
139         }
140
141         /*
142          * Legacy FPU register saving, FNSAVE always clears FPU registers,
143          * so we have to reload them from the memory state.
144          */
145         asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
146         frstor(&fpu->fpstate->regs.fsave);
147 }
148
149 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
150 {
151         /*
152          * AMD K7/K8 and later CPUs up to Zen don't save/restore
153          * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
154          * here by setting it to fixed values.  "m" is a random variable
155          * that should be in L1.
156          */
157         if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
158                 asm volatile(
159                         "fnclex\n\t"
160                         "emms\n\t"
161                         "fildl %P[addr]"        /* set F?P to defined value */
162                         : : [addr] "m" (fpstate));
163         }
164
165         if (use_xsave()) {
166                 /*
167                  * Dynamically enabled features are enabled in XCR0, but
168                  * usage requires also that the corresponding bits in XFD
169                  * are cleared.  If the bits are set then using a related
170                  * instruction will raise #NM. This allows to do the
171                  * allocation of the larger FPU buffer lazy from #NM or if
172                  * the task has no permission to kill it which would happen
173                  * via #UD if the feature is disabled in XCR0.
174                  *
175                  * XFD state is following the same life time rules as
176                  * XSTATE and to restore state correctly XFD has to be
177                  * updated before XRSTORS otherwise the component would
178                  * stay in or go into init state even if the bits are set
179                  * in fpstate::regs::xsave::xfeatures.
180                  */
181                 xfd_update_state(fpstate);
182
183                 /*
184                  * Restoring state always needs to modify all features
185                  * which are in @mask even if the current task cannot use
186                  * extended features.
187                  *
188                  * So fpstate->xfeatures cannot be used here, because then
189                  * a feature for which the task has no permission but was
190                  * used by the previous task would not go into init state.
191                  */
192                 mask = fpu_kernel_cfg.max_features & mask;
193
194                 os_xrstor(fpstate, mask);
195         } else {
196                 if (use_fxsr())
197                         fxrstor(&fpstate->regs.fxsave);
198                 else
199                         frstor(&fpstate->regs.fsave);
200         }
201 }
202
203 void fpu_reset_from_exception_fixup(void)
204 {
205         restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
206 }
207
208 #if IS_ENABLED(CONFIG_KVM)
209 static void __fpstate_reset(struct fpstate *fpstate);
210
211 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
212 {
213         struct fpstate *fpstate;
214         unsigned int size;
215
216         size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64);
217         fpstate = vzalloc(size);
218         if (!fpstate)
219                 return false;
220
221         __fpstate_reset(fpstate);
222         fpstate_init_user(fpstate);
223         fpstate->is_valloc      = true;
224         fpstate->is_guest       = true;
225
226         gfpu->fpstate = fpstate;
227         return true;
228 }
229 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
230
231 void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
232 {
233         struct fpstate *fps = gfpu->fpstate;
234
235         if (!fps)
236                 return;
237
238         if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use))
239                 return;
240
241         gfpu->fpstate = NULL;
242         vfree(fps);
243 }
244 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
245
246 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
247 {
248         struct fpstate *guest_fps = guest_fpu->fpstate;
249         struct fpu *fpu = &current->thread.fpu;
250         struct fpstate *cur_fps = fpu->fpstate;
251
252         fpregs_lock();
253         if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
254                 save_fpregs_to_fpstate(fpu);
255
256         /* Swap fpstate */
257         if (enter_guest) {
258                 fpu->__task_fpstate = cur_fps;
259                 fpu->fpstate = guest_fps;
260                 guest_fps->in_use = true;
261         } else {
262                 guest_fps->in_use = false;
263                 fpu->fpstate = fpu->__task_fpstate;
264                 fpu->__task_fpstate = NULL;
265         }
266
267         cur_fps = fpu->fpstate;
268
269         if (!cur_fps->is_confidential) {
270                 /* Includes XFD update */
271                 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
272         } else {
273                 /*
274                  * XSTATE is restored by firmware from encrypted
275                  * memory. Make sure XFD state is correct while
276                  * running with guest fpstate
277                  */
278                 xfd_update_state(cur_fps);
279         }
280
281         fpregs_mark_activate();
282         fpregs_unlock();
283         return 0;
284 }
285 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
286
287 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
288                                     unsigned int size, u32 pkru)
289 {
290         struct fpstate *kstate = gfpu->fpstate;
291         union fpregs_state *ustate = buf;
292         struct membuf mb = { .p = buf, .left = size };
293
294         if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
295                 __copy_xstate_to_uabi_buf(mb, kstate, pkru, XSTATE_COPY_XSAVE);
296         } else {
297                 memcpy(&ustate->fxsave, &kstate->regs.fxsave,
298                        sizeof(ustate->fxsave));
299                 /* Make it restorable on a XSAVE enabled host */
300                 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
301         }
302 }
303 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
304
305 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
306                                    u64 xcr0, u32 *vpkru)
307 {
308         struct fpstate *kstate = gfpu->fpstate;
309         const union fpregs_state *ustate = buf;
310         struct pkru_state *xpkru;
311         int ret;
312
313         if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
314                 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
315                         return -EINVAL;
316                 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
317                         return -EINVAL;
318                 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
319                 return 0;
320         }
321
322         if (ustate->xsave.header.xfeatures & ~xcr0)
323                 return -EINVAL;
324
325         ret = copy_uabi_from_kernel_to_xstate(kstate, ustate);
326         if (ret)
327                 return ret;
328
329         /* Retrieve PKRU if not in init state */
330         if (kstate->regs.xsave.header.xfeatures & XFEATURE_MASK_PKRU) {
331                 xpkru = get_xsave_addr(&kstate->regs.xsave, XFEATURE_PKRU);
332                 *vpkru = xpkru->pkru;
333         }
334
335         /* Ensure that XCOMP_BV is set up for XSAVES */
336         xstate_init_xcomp_bv(&kstate->regs.xsave, kstate->xfeatures);
337         return 0;
338 }
339 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
340 #endif /* CONFIG_KVM */
341
342 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
343 {
344         preempt_disable();
345
346         WARN_ON_FPU(!irq_fpu_usable());
347         WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
348
349         this_cpu_write(in_kernel_fpu, true);
350
351         if (!(current->flags & PF_KTHREAD) &&
352             !test_thread_flag(TIF_NEED_FPU_LOAD)) {
353                 set_thread_flag(TIF_NEED_FPU_LOAD);
354                 save_fpregs_to_fpstate(&current->thread.fpu);
355         }
356         __cpu_invalidate_fpregs_state();
357
358         /* Put sane initial values into the control registers. */
359         if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
360                 ldmxcsr(MXCSR_DEFAULT);
361
362         if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
363                 asm volatile ("fninit");
364 }
365 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
366
367 void kernel_fpu_end(void)
368 {
369         WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
370
371         this_cpu_write(in_kernel_fpu, false);
372         preempt_enable();
373 }
374 EXPORT_SYMBOL_GPL(kernel_fpu_end);
375
376 /*
377  * Sync the FPU register state to current's memory register state when the
378  * current task owns the FPU. The hardware register state is preserved.
379  */
380 void fpu_sync_fpstate(struct fpu *fpu)
381 {
382         WARN_ON_FPU(fpu != &current->thread.fpu);
383
384         fpregs_lock();
385         trace_x86_fpu_before_save(fpu);
386
387         if (!test_thread_flag(TIF_NEED_FPU_LOAD))
388                 save_fpregs_to_fpstate(fpu);
389
390         trace_x86_fpu_after_save(fpu);
391         fpregs_unlock();
392 }
393
394 static inline unsigned int init_fpstate_copy_size(void)
395 {
396         if (!use_xsave())
397                 return fpu_kernel_cfg.default_size;
398
399         /* XSAVE(S) just needs the legacy and the xstate header part */
400         return sizeof(init_fpstate.regs.xsave);
401 }
402
403 static inline void fpstate_init_fxstate(struct fpstate *fpstate)
404 {
405         fpstate->regs.fxsave.cwd = 0x37f;
406         fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
407 }
408
409 /*
410  * Legacy x87 fpstate state init:
411  */
412 static inline void fpstate_init_fstate(struct fpstate *fpstate)
413 {
414         fpstate->regs.fsave.cwd = 0xffff037fu;
415         fpstate->regs.fsave.swd = 0xffff0000u;
416         fpstate->regs.fsave.twd = 0xffffffffu;
417         fpstate->regs.fsave.fos = 0xffff0000u;
418 }
419
420 /*
421  * Used in two places:
422  * 1) Early boot to setup init_fpstate for non XSAVE systems
423  * 2) fpu_init_fpstate_user() which is invoked from KVM
424  */
425 void fpstate_init_user(struct fpstate *fpstate)
426 {
427         if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
428                 fpstate_init_soft(&fpstate->regs.soft);
429                 return;
430         }
431
432         xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
433
434         if (cpu_feature_enabled(X86_FEATURE_FXSR))
435                 fpstate_init_fxstate(fpstate);
436         else
437                 fpstate_init_fstate(fpstate);
438 }
439
440 static void __fpstate_reset(struct fpstate *fpstate)
441 {
442         /* Initialize sizes and feature masks */
443         fpstate->size           = fpu_kernel_cfg.default_size;
444         fpstate->user_size      = fpu_user_cfg.default_size;
445         fpstate->xfeatures      = fpu_kernel_cfg.default_features;
446         fpstate->user_xfeatures = fpu_user_cfg.default_features;
447         fpstate->xfd            = init_fpstate.xfd;
448 }
449
450 void fpstate_reset(struct fpu *fpu)
451 {
452         /* Set the fpstate pointer to the default fpstate */
453         fpu->fpstate = &fpu->__fpstate;
454         __fpstate_reset(fpu->fpstate);
455
456         /* Initialize the permission related info in fpu */
457         fpu->perm.__state_perm          = fpu_kernel_cfg.default_features;
458         fpu->perm.__state_size          = fpu_kernel_cfg.default_size;
459         fpu->perm.__user_state_size     = fpu_user_cfg.default_size;
460 }
461
462 static inline void fpu_inherit_perms(struct fpu *dst_fpu)
463 {
464         if (fpu_state_size_dynamic()) {
465                 struct fpu *src_fpu = &current->group_leader->thread.fpu;
466
467                 spin_lock_irq(&current->sighand->siglock);
468                 /* Fork also inherits the permissions of the parent */
469                 dst_fpu->perm = src_fpu->perm;
470                 spin_unlock_irq(&current->sighand->siglock);
471         }
472 }
473
474 /* Clone current's FPU state on fork */
475 int fpu_clone(struct task_struct *dst, unsigned long clone_flags)
476 {
477         struct fpu *src_fpu = &current->thread.fpu;
478         struct fpu *dst_fpu = &dst->thread.fpu;
479
480         /* The new task's FPU state cannot be valid in the hardware. */
481         dst_fpu->last_cpu = -1;
482
483         fpstate_reset(dst_fpu);
484
485         if (!cpu_feature_enabled(X86_FEATURE_FPU))
486                 return 0;
487
488         /*
489          * Enforce reload for user space tasks and prevent kernel threads
490          * from trying to save the FPU registers on context switch.
491          */
492         set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
493
494         /*
495          * No FPU state inheritance for kernel threads and IO
496          * worker threads.
497          */
498         if (dst->flags & (PF_KTHREAD | PF_IO_WORKER)) {
499                 /* Clear out the minimal state */
500                 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
501                        init_fpstate_copy_size());
502                 return 0;
503         }
504
505         /*
506          * If a new feature is added, ensure all dynamic features are
507          * caller-saved from here!
508          */
509         BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
510
511         /*
512          * Save the default portion of the current FPU state into the
513          * clone. Assume all dynamic features to be defined as caller-
514          * saved, which enables skipping both the expansion of fpstate
515          * and the copying of any dynamic state.
516          *
517          * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
518          * copying is not valid when current uses non-default states.
519          */
520         fpregs_lock();
521         if (test_thread_flag(TIF_NEED_FPU_LOAD))
522                 fpregs_restore_userregs();
523         save_fpregs_to_fpstate(dst_fpu);
524         if (!(clone_flags & CLONE_THREAD))
525                 fpu_inherit_perms(dst_fpu);
526         fpregs_unlock();
527
528         trace_x86_fpu_copy_src(src_fpu);
529         trace_x86_fpu_copy_dst(dst_fpu);
530
531         return 0;
532 }
533
534 /*
535  * Whitelist the FPU register state embedded into task_struct for hardened
536  * usercopy.
537  */
538 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
539 {
540         *offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
541         *size = fpu_kernel_cfg.default_size;
542 }
543
544 /*
545  * Drops current FPU state: deactivates the fpregs and
546  * the fpstate. NOTE: it still leaves previous contents
547  * in the fpregs in the eager-FPU case.
548  *
549  * This function can be used in cases where we know that
550  * a state-restore is coming: either an explicit one,
551  * or a reschedule.
552  */
553 void fpu__drop(struct fpu *fpu)
554 {
555         preempt_disable();
556
557         if (fpu == &current->thread.fpu) {
558                 /* Ignore delayed exceptions from user space */
559                 asm volatile("1: fwait\n"
560                              "2:\n"
561                              _ASM_EXTABLE(1b, 2b));
562                 fpregs_deactivate(fpu);
563         }
564
565         trace_x86_fpu_dropped(fpu);
566
567         preempt_enable();
568 }
569
570 /*
571  * Clear FPU registers by setting them up from the init fpstate.
572  * Caller must do fpregs_[un]lock() around it.
573  */
574 static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
575 {
576         if (use_xsave())
577                 os_xrstor(&init_fpstate, features_mask);
578         else if (use_fxsr())
579                 fxrstor(&init_fpstate.regs.fxsave);
580         else
581                 frstor(&init_fpstate.regs.fsave);
582
583         pkru_write_default();
584 }
585
586 /*
587  * Reset current->fpu memory state to the init values.
588  */
589 static void fpu_reset_fpregs(void)
590 {
591         struct fpu *fpu = &current->thread.fpu;
592
593         fpregs_lock();
594         fpu__drop(fpu);
595         /*
596          * This does not change the actual hardware registers. It just
597          * resets the memory image and sets TIF_NEED_FPU_LOAD so a
598          * subsequent return to usermode will reload the registers from the
599          * task's memory image.
600          *
601          * Do not use fpstate_init() here. Just copy init_fpstate which has
602          * the correct content already except for PKRU.
603          *
604          * PKRU handling does not rely on the xstate when restoring for
605          * user space as PKRU is eagerly written in switch_to() and
606          * flush_thread().
607          */
608         memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
609         set_thread_flag(TIF_NEED_FPU_LOAD);
610         fpregs_unlock();
611 }
612
613 /*
614  * Reset current's user FPU states to the init states.  current's
615  * supervisor states, if any, are not modified by this function.  The
616  * caller guarantees that the XSTATE header in memory is intact.
617  */
618 void fpu__clear_user_states(struct fpu *fpu)
619 {
620         WARN_ON_FPU(fpu != &current->thread.fpu);
621
622         fpregs_lock();
623         if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
624                 fpu_reset_fpregs();
625                 fpregs_unlock();
626                 return;
627         }
628
629         /*
630          * Ensure that current's supervisor states are loaded into their
631          * corresponding registers.
632          */
633         if (xfeatures_mask_supervisor() &&
634             !fpregs_state_valid(fpu, smp_processor_id()))
635                 os_xrstor_supervisor(fpu->fpstate);
636
637         /* Reset user states in registers. */
638         restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
639
640         /*
641          * Now all FPU registers have their desired values.  Inform the FPU
642          * state machine that current's FPU registers are in the hardware
643          * registers. The memory image does not need to be updated because
644          * any operation relying on it has to save the registers first when
645          * current's FPU is marked active.
646          */
647         fpregs_mark_activate();
648         fpregs_unlock();
649 }
650
651 void fpu_flush_thread(void)
652 {
653         fpstate_reset(&current->thread.fpu);
654         fpu_reset_fpregs();
655 }
656 /*
657  * Load FPU context before returning to userspace.
658  */
659 void switch_fpu_return(void)
660 {
661         if (!static_cpu_has(X86_FEATURE_FPU))
662                 return;
663
664         fpregs_restore_userregs();
665 }
666 EXPORT_SYMBOL_GPL(switch_fpu_return);
667
668 #ifdef CONFIG_X86_DEBUG_FPU
669 /*
670  * If current FPU state according to its tracking (loaded FPU context on this
671  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
672  * loaded on return to userland.
673  */
674 void fpregs_assert_state_consistent(void)
675 {
676         struct fpu *fpu = &current->thread.fpu;
677
678         if (test_thread_flag(TIF_NEED_FPU_LOAD))
679                 return;
680
681         WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
682 }
683 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
684 #endif
685
686 void fpregs_mark_activate(void)
687 {
688         struct fpu *fpu = &current->thread.fpu;
689
690         fpregs_activate(fpu);
691         fpu->last_cpu = smp_processor_id();
692         clear_thread_flag(TIF_NEED_FPU_LOAD);
693 }
694
695 /*
696  * x87 math exception handling:
697  */
698
699 int fpu__exception_code(struct fpu *fpu, int trap_nr)
700 {
701         int err;
702
703         if (trap_nr == X86_TRAP_MF) {
704                 unsigned short cwd, swd;
705                 /*
706                  * (~cwd & swd) will mask out exceptions that are not set to unmasked
707                  * status.  0x3f is the exception bits in these regs, 0x200 is the
708                  * C1 reg you need in case of a stack fault, 0x040 is the stack
709                  * fault bit.  We should only be taking one exception at a time,
710                  * so if this combination doesn't produce any single exception,
711                  * then we have a bad program that isn't synchronizing its FPU usage
712                  * and it will suffer the consequences since we won't be able to
713                  * fully reproduce the context of the exception.
714                  */
715                 if (boot_cpu_has(X86_FEATURE_FXSR)) {
716                         cwd = fpu->fpstate->regs.fxsave.cwd;
717                         swd = fpu->fpstate->regs.fxsave.swd;
718                 } else {
719                         cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
720                         swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
721                 }
722
723                 err = swd & ~cwd;
724         } else {
725                 /*
726                  * The SIMD FPU exceptions are handled a little differently, as there
727                  * is only a single status/control register.  Thus, to determine which
728                  * unmasked exception was caught we must mask the exception mask bits
729                  * at 0x1f80, and then use these to mask the exception bits at 0x3f.
730                  */
731                 unsigned short mxcsr = MXCSR_DEFAULT;
732
733                 if (boot_cpu_has(X86_FEATURE_XMM))
734                         mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
735
736                 err = ~(mxcsr >> 7) & mxcsr;
737         }
738
739         if (err & 0x001) {      /* Invalid op */
740                 /*
741                  * swd & 0x240 == 0x040: Stack Underflow
742                  * swd & 0x240 == 0x240: Stack Overflow
743                  * User must clear the SF bit (0x40) if set
744                  */
745                 return FPE_FLTINV;
746         } else if (err & 0x004) { /* Divide by Zero */
747                 return FPE_FLTDIV;
748         } else if (err & 0x008) { /* Overflow */
749                 return FPE_FLTOVF;
750         } else if (err & 0x012) { /* Denormal, Underflow */
751                 return FPE_FLTUND;
752         } else if (err & 0x020) { /* Precision */
753                 return FPE_FLTRES;
754         }
755
756         /*
757          * If we're using IRQ 13, or supposedly even some trap
758          * X86_TRAP_MF implementations, it's possible
759          * we get a spurious trap, which is not an error.
760          */
761         return 0;
762 }