powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes
[platform/kernel/linux-starfive.git] / arch / x86 / kernel / fpu / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *      Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/api.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/sched.h>
12 #include <asm/fpu/signal.h>
13 #include <asm/fpu/types.h>
14 #include <asm/traps.h>
15 #include <asm/irq_regs.h>
16
17 #include <uapi/asm/kvm.h>
18
19 #include <linux/hardirq.h>
20 #include <linux/pkeys.h>
21 #include <linux/vmalloc.h>
22
23 #include "context.h"
24 #include "internal.h"
25 #include "legacy.h"
26 #include "xstate.h"
27
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/fpu.h>
30
31 #ifdef CONFIG_X86_64
32 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
33 DEFINE_PER_CPU(u64, xfd_state);
34 #endif
35
36 /* The FPU state configuration data for kernel and user space */
37 struct fpu_state_config fpu_kernel_cfg __ro_after_init;
38 struct fpu_state_config fpu_user_cfg __ro_after_init;
39
40 /*
41  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
42  * depending on the FPU hardware format:
43  */
44 struct fpstate init_fpstate __ro_after_init;
45
46 /* Track in-kernel FPU usage */
47 static DEFINE_PER_CPU(bool, in_kernel_fpu);
48
49 /*
50  * Track which context is using the FPU on the CPU:
51  */
52 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
53
54 /*
55  * Can we use the FPU in kernel mode with the
56  * whole "kernel_fpu_begin/end()" sequence?
57  */
58 bool irq_fpu_usable(void)
59 {
60         if (WARN_ON_ONCE(in_nmi()))
61                 return false;
62
63         /* In kernel FPU usage already active? */
64         if (this_cpu_read(in_kernel_fpu))
65                 return false;
66
67         /*
68          * When not in NMI or hard interrupt context, FPU can be used in:
69          *
70          * - Task context except from within fpregs_lock()'ed critical
71          *   regions.
72          *
73          * - Soft interrupt processing context which cannot happen
74          *   while in a fpregs_lock()'ed critical region.
75          */
76         if (!in_hardirq())
77                 return true;
78
79         /*
80          * In hard interrupt context it's safe when soft interrupts
81          * are enabled, which means the interrupt did not hit in
82          * a fpregs_lock()'ed critical region.
83          */
84         return !softirq_count();
85 }
86 EXPORT_SYMBOL(irq_fpu_usable);
87
88 /*
89  * Track AVX512 state use because it is known to slow the max clock
90  * speed of the core.
91  */
92 static void update_avx_timestamp(struct fpu *fpu)
93 {
94
95 #define AVX512_TRACKING_MASK    (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
96
97         if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
98                 fpu->avx512_timestamp = jiffies;
99 }
100
101 /*
102  * Save the FPU register state in fpu->fpstate->regs. The register state is
103  * preserved.
104  *
105  * Must be called with fpregs_lock() held.
106  *
107  * The legacy FNSAVE instruction clears all FPU state unconditionally, so
108  * register state has to be reloaded. That might be a pointless exercise
109  * when the FPU is going to be used by another task right after that. But
110  * this only affects 20+ years old 32bit systems and avoids conditionals all
111  * over the place.
112  *
113  * FXSAVE and all XSAVE variants preserve the FPU register state.
114  */
115 void save_fpregs_to_fpstate(struct fpu *fpu)
116 {
117         if (likely(use_xsave())) {
118                 os_xsave(fpu->fpstate);
119                 update_avx_timestamp(fpu);
120                 return;
121         }
122
123         if (likely(use_fxsr())) {
124                 fxsave(&fpu->fpstate->regs.fxsave);
125                 return;
126         }
127
128         /*
129          * Legacy FPU register saving, FNSAVE always clears FPU registers,
130          * so we have to reload them from the memory state.
131          */
132         asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
133         frstor(&fpu->fpstate->regs.fsave);
134 }
135
136 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
137 {
138         /*
139          * AMD K7/K8 and later CPUs up to Zen don't save/restore
140          * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
141          * here by setting it to fixed values.  "m" is a random variable
142          * that should be in L1.
143          */
144         if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
145                 asm volatile(
146                         "fnclex\n\t"
147                         "emms\n\t"
148                         "fildl %P[addr]"        /* set F?P to defined value */
149                         : : [addr] "m" (fpstate));
150         }
151
152         if (use_xsave()) {
153                 /*
154                  * Dynamically enabled features are enabled in XCR0, but
155                  * usage requires also that the corresponding bits in XFD
156                  * are cleared.  If the bits are set then using a related
157                  * instruction will raise #NM. This allows to do the
158                  * allocation of the larger FPU buffer lazy from #NM or if
159                  * the task has no permission to kill it which would happen
160                  * via #UD if the feature is disabled in XCR0.
161                  *
162                  * XFD state is following the same life time rules as
163                  * XSTATE and to restore state correctly XFD has to be
164                  * updated before XRSTORS otherwise the component would
165                  * stay in or go into init state even if the bits are set
166                  * in fpstate::regs::xsave::xfeatures.
167                  */
168                 xfd_update_state(fpstate);
169
170                 /*
171                  * Restoring state always needs to modify all features
172                  * which are in @mask even if the current task cannot use
173                  * extended features.
174                  *
175                  * So fpstate->xfeatures cannot be used here, because then
176                  * a feature for which the task has no permission but was
177                  * used by the previous task would not go into init state.
178                  */
179                 mask = fpu_kernel_cfg.max_features & mask;
180
181                 os_xrstor(fpstate, mask);
182         } else {
183                 if (use_fxsr())
184                         fxrstor(&fpstate->regs.fxsave);
185                 else
186                         frstor(&fpstate->regs.fsave);
187         }
188 }
189
190 void fpu_reset_from_exception_fixup(void)
191 {
192         restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
193 }
194
195 #if IS_ENABLED(CONFIG_KVM)
196 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd);
197
198 static void fpu_init_guest_permissions(struct fpu_guest *gfpu)
199 {
200         struct fpu_state_perm *fpuperm;
201         u64 perm;
202
203         if (!IS_ENABLED(CONFIG_X86_64))
204                 return;
205
206         spin_lock_irq(&current->sighand->siglock);
207         fpuperm = &current->group_leader->thread.fpu.guest_perm;
208         perm = fpuperm->__state_perm;
209
210         /* First fpstate allocation locks down permissions. */
211         WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
212
213         spin_unlock_irq(&current->sighand->siglock);
214
215         gfpu->perm = perm & ~FPU_GUEST_PERM_LOCKED;
216 }
217
218 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
219 {
220         struct fpstate *fpstate;
221         unsigned int size;
222
223         size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64);
224         fpstate = vzalloc(size);
225         if (!fpstate)
226                 return false;
227
228         /* Leave xfd to 0 (the reset value defined by spec) */
229         __fpstate_reset(fpstate, 0);
230         fpstate_init_user(fpstate);
231         fpstate->is_valloc      = true;
232         fpstate->is_guest       = true;
233
234         gfpu->fpstate           = fpstate;
235         gfpu->xfeatures         = fpu_user_cfg.default_features;
236         gfpu->perm              = fpu_user_cfg.default_features;
237
238         /*
239          * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state
240          * to userspace, even when XSAVE is unsupported, so that restoring FPU
241          * state on a different CPU that does support XSAVE can cleanly load
242          * the incoming state using its natural XSAVE.  In other words, KVM's
243          * uABI size may be larger than this host's default size.  Conversely,
244          * the default size should never be larger than KVM's base uABI size;
245          * all features that can expand the uABI size must be opt-in.
246          */
247         gfpu->uabi_size         = sizeof(struct kvm_xsave);
248         if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size))
249                 gfpu->uabi_size = fpu_user_cfg.default_size;
250
251         fpu_init_guest_permissions(gfpu);
252
253         return true;
254 }
255 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
256
257 void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
258 {
259         struct fpstate *fps = gfpu->fpstate;
260
261         if (!fps)
262                 return;
263
264         if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use))
265                 return;
266
267         gfpu->fpstate = NULL;
268         vfree(fps);
269 }
270 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
271
272 /*
273   * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
274   * @guest_fpu:         Pointer to the guest FPU container
275   * @xfeatures:         Features requested by guest CPUID
276   *
277   * Enable all dynamic xfeatures according to guest perm and requested CPUID.
278   *
279   * Return: 0 on success, error code otherwise
280   */
281 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
282 {
283         lockdep_assert_preemption_enabled();
284
285         /* Nothing to do if all requested features are already enabled. */
286         xfeatures &= ~guest_fpu->xfeatures;
287         if (!xfeatures)
288                 return 0;
289
290         return __xfd_enable_feature(xfeatures, guest_fpu);
291 }
292 EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features);
293
294 #ifdef CONFIG_X86_64
295 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
296 {
297         fpregs_lock();
298         guest_fpu->fpstate->xfd = xfd;
299         if (guest_fpu->fpstate->in_use)
300                 xfd_update_state(guest_fpu->fpstate);
301         fpregs_unlock();
302 }
303 EXPORT_SYMBOL_GPL(fpu_update_guest_xfd);
304
305 /**
306  * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
307  *
308  * Must be invoked from KVM after a VMEXIT before enabling interrupts when
309  * XFD write emulation is disabled. This is required because the guest can
310  * freely modify XFD and the state at VMEXIT is not guaranteed to be the
311  * same as the state on VMENTER. So software state has to be udpated before
312  * any operation which depends on it can take place.
313  *
314  * Note: It can be invoked unconditionally even when write emulation is
315  * enabled for the price of a then pointless MSR read.
316  */
317 void fpu_sync_guest_vmexit_xfd_state(void)
318 {
319         struct fpstate *fps = current->thread.fpu.fpstate;
320
321         lockdep_assert_irqs_disabled();
322         if (fpu_state_size_dynamic()) {
323                 rdmsrl(MSR_IA32_XFD, fps->xfd);
324                 __this_cpu_write(xfd_state, fps->xfd);
325         }
326 }
327 EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state);
328 #endif /* CONFIG_X86_64 */
329
330 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
331 {
332         struct fpstate *guest_fps = guest_fpu->fpstate;
333         struct fpu *fpu = &current->thread.fpu;
334         struct fpstate *cur_fps = fpu->fpstate;
335
336         fpregs_lock();
337         if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
338                 save_fpregs_to_fpstate(fpu);
339
340         /* Swap fpstate */
341         if (enter_guest) {
342                 fpu->__task_fpstate = cur_fps;
343                 fpu->fpstate = guest_fps;
344                 guest_fps->in_use = true;
345         } else {
346                 guest_fps->in_use = false;
347                 fpu->fpstate = fpu->__task_fpstate;
348                 fpu->__task_fpstate = NULL;
349         }
350
351         cur_fps = fpu->fpstate;
352
353         if (!cur_fps->is_confidential) {
354                 /* Includes XFD update */
355                 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
356         } else {
357                 /*
358                  * XSTATE is restored by firmware from encrypted
359                  * memory. Make sure XFD state is correct while
360                  * running with guest fpstate
361                  */
362                 xfd_update_state(cur_fps);
363         }
364
365         fpregs_mark_activate();
366         fpregs_unlock();
367         return 0;
368 }
369 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
370
371 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
372                                     unsigned int size, u32 pkru)
373 {
374         struct fpstate *kstate = gfpu->fpstate;
375         union fpregs_state *ustate = buf;
376         struct membuf mb = { .p = buf, .left = size };
377
378         if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
379                 __copy_xstate_to_uabi_buf(mb, kstate, pkru, XSTATE_COPY_XSAVE);
380         } else {
381                 memcpy(&ustate->fxsave, &kstate->regs.fxsave,
382                        sizeof(ustate->fxsave));
383                 /* Make it restorable on a XSAVE enabled host */
384                 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
385         }
386 }
387 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
388
389 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
390                                    u64 xcr0, u32 *vpkru)
391 {
392         struct fpstate *kstate = gfpu->fpstate;
393         const union fpregs_state *ustate = buf;
394
395         if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
396                 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
397                         return -EINVAL;
398                 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
399                         return -EINVAL;
400                 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
401                 return 0;
402         }
403
404         if (ustate->xsave.header.xfeatures & ~xcr0)
405                 return -EINVAL;
406
407         /*
408          * Nullify @vpkru to preserve its current value if PKRU's bit isn't set
409          * in the header.  KVM's odd ABI is to leave PKRU untouched in this
410          * case (all other components are eventually re-initialized).
411          */
412         if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU))
413                 vpkru = NULL;
414
415         return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru);
416 }
417 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
418 #endif /* CONFIG_KVM */
419
420 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
421 {
422         preempt_disable();
423
424         WARN_ON_FPU(!irq_fpu_usable());
425         WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
426
427         this_cpu_write(in_kernel_fpu, true);
428
429         if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
430             !test_thread_flag(TIF_NEED_FPU_LOAD)) {
431                 set_thread_flag(TIF_NEED_FPU_LOAD);
432                 save_fpregs_to_fpstate(&current->thread.fpu);
433         }
434         __cpu_invalidate_fpregs_state();
435
436         /* Put sane initial values into the control registers. */
437         if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
438                 ldmxcsr(MXCSR_DEFAULT);
439
440         if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
441                 asm volatile ("fninit");
442 }
443 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
444
445 void kernel_fpu_end(void)
446 {
447         WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
448
449         this_cpu_write(in_kernel_fpu, false);
450         preempt_enable();
451 }
452 EXPORT_SYMBOL_GPL(kernel_fpu_end);
453
454 /*
455  * Sync the FPU register state to current's memory register state when the
456  * current task owns the FPU. The hardware register state is preserved.
457  */
458 void fpu_sync_fpstate(struct fpu *fpu)
459 {
460         WARN_ON_FPU(fpu != &current->thread.fpu);
461
462         fpregs_lock();
463         trace_x86_fpu_before_save(fpu);
464
465         if (!test_thread_flag(TIF_NEED_FPU_LOAD))
466                 save_fpregs_to_fpstate(fpu);
467
468         trace_x86_fpu_after_save(fpu);
469         fpregs_unlock();
470 }
471
472 static inline unsigned int init_fpstate_copy_size(void)
473 {
474         if (!use_xsave())
475                 return fpu_kernel_cfg.default_size;
476
477         /* XSAVE(S) just needs the legacy and the xstate header part */
478         return sizeof(init_fpstate.regs.xsave);
479 }
480
481 static inline void fpstate_init_fxstate(struct fpstate *fpstate)
482 {
483         fpstate->regs.fxsave.cwd = 0x37f;
484         fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
485 }
486
487 /*
488  * Legacy x87 fpstate state init:
489  */
490 static inline void fpstate_init_fstate(struct fpstate *fpstate)
491 {
492         fpstate->regs.fsave.cwd = 0xffff037fu;
493         fpstate->regs.fsave.swd = 0xffff0000u;
494         fpstate->regs.fsave.twd = 0xffffffffu;
495         fpstate->regs.fsave.fos = 0xffff0000u;
496 }
497
498 /*
499  * Used in two places:
500  * 1) Early boot to setup init_fpstate for non XSAVE systems
501  * 2) fpu_init_fpstate_user() which is invoked from KVM
502  */
503 void fpstate_init_user(struct fpstate *fpstate)
504 {
505         if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
506                 fpstate_init_soft(&fpstate->regs.soft);
507                 return;
508         }
509
510         xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
511
512         if (cpu_feature_enabled(X86_FEATURE_FXSR))
513                 fpstate_init_fxstate(fpstate);
514         else
515                 fpstate_init_fstate(fpstate);
516 }
517
518 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd)
519 {
520         /* Initialize sizes and feature masks */
521         fpstate->size           = fpu_kernel_cfg.default_size;
522         fpstate->user_size      = fpu_user_cfg.default_size;
523         fpstate->xfeatures      = fpu_kernel_cfg.default_features;
524         fpstate->user_xfeatures = fpu_user_cfg.default_features;
525         fpstate->xfd            = xfd;
526 }
527
528 void fpstate_reset(struct fpu *fpu)
529 {
530         /* Set the fpstate pointer to the default fpstate */
531         fpu->fpstate = &fpu->__fpstate;
532         __fpstate_reset(fpu->fpstate, init_fpstate.xfd);
533
534         /* Initialize the permission related info in fpu */
535         fpu->perm.__state_perm          = fpu_kernel_cfg.default_features;
536         fpu->perm.__state_size          = fpu_kernel_cfg.default_size;
537         fpu->perm.__user_state_size     = fpu_user_cfg.default_size;
538         /* Same defaults for guests */
539         fpu->guest_perm = fpu->perm;
540 }
541
542 static inline void fpu_inherit_perms(struct fpu *dst_fpu)
543 {
544         if (fpu_state_size_dynamic()) {
545                 struct fpu *src_fpu = &current->group_leader->thread.fpu;
546
547                 spin_lock_irq(&current->sighand->siglock);
548                 /* Fork also inherits the permissions of the parent */
549                 dst_fpu->perm = src_fpu->perm;
550                 dst_fpu->guest_perm = src_fpu->guest_perm;
551                 spin_unlock_irq(&current->sighand->siglock);
552         }
553 }
554
555 /* A passed ssp of zero will not cause any update */
556 static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp)
557 {
558 #ifdef CONFIG_X86_USER_SHADOW_STACK
559         struct cet_user_state *xstate;
560
561         /* If ssp update is not needed. */
562         if (!ssp)
563                 return 0;
564
565         xstate = get_xsave_addr(&dst->thread.fpu.fpstate->regs.xsave,
566                                 XFEATURE_CET_USER);
567
568         /*
569          * If there is a non-zero ssp, then 'dst' must be configured with a shadow
570          * stack and the fpu state should be up to date since it was just copied
571          * from the parent in fpu_clone(). So there must be a valid non-init CET
572          * state location in the buffer.
573          */
574         if (WARN_ON_ONCE(!xstate))
575                 return 1;
576
577         xstate->user_ssp = (u64)ssp;
578 #endif
579         return 0;
580 }
581
582 /* Clone current's FPU state on fork */
583 int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal,
584               unsigned long ssp)
585 {
586         struct fpu *src_fpu = &current->thread.fpu;
587         struct fpu *dst_fpu = &dst->thread.fpu;
588
589         /* The new task's FPU state cannot be valid in the hardware. */
590         dst_fpu->last_cpu = -1;
591
592         fpstate_reset(dst_fpu);
593
594         if (!cpu_feature_enabled(X86_FEATURE_FPU))
595                 return 0;
596
597         /*
598          * Enforce reload for user space tasks and prevent kernel threads
599          * from trying to save the FPU registers on context switch.
600          */
601         set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
602
603         /*
604          * No FPU state inheritance for kernel threads and IO
605          * worker threads.
606          */
607         if (minimal) {
608                 /* Clear out the minimal state */
609                 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
610                        init_fpstate_copy_size());
611                 return 0;
612         }
613
614         /*
615          * If a new feature is added, ensure all dynamic features are
616          * caller-saved from here!
617          */
618         BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
619
620         /*
621          * Save the default portion of the current FPU state into the
622          * clone. Assume all dynamic features to be defined as caller-
623          * saved, which enables skipping both the expansion of fpstate
624          * and the copying of any dynamic state.
625          *
626          * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
627          * copying is not valid when current uses non-default states.
628          */
629         fpregs_lock();
630         if (test_thread_flag(TIF_NEED_FPU_LOAD))
631                 fpregs_restore_userregs();
632         save_fpregs_to_fpstate(dst_fpu);
633         fpregs_unlock();
634         if (!(clone_flags & CLONE_THREAD))
635                 fpu_inherit_perms(dst_fpu);
636
637         /*
638          * Children never inherit PASID state.
639          * Force it to have its init value:
640          */
641         if (use_xsave())
642                 dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
643
644         /*
645          * Update shadow stack pointer, in case it changed during clone.
646          */
647         if (update_fpu_shstk(dst, ssp))
648                 return 1;
649
650         trace_x86_fpu_copy_src(src_fpu);
651         trace_x86_fpu_copy_dst(dst_fpu);
652
653         return 0;
654 }
655
656 /*
657  * Whitelist the FPU register state embedded into task_struct for hardened
658  * usercopy.
659  */
660 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
661 {
662         *offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
663         *size = fpu_kernel_cfg.default_size;
664 }
665
666 /*
667  * Drops current FPU state: deactivates the fpregs and
668  * the fpstate. NOTE: it still leaves previous contents
669  * in the fpregs in the eager-FPU case.
670  *
671  * This function can be used in cases where we know that
672  * a state-restore is coming: either an explicit one,
673  * or a reschedule.
674  */
675 void fpu__drop(struct fpu *fpu)
676 {
677         preempt_disable();
678
679         if (fpu == &current->thread.fpu) {
680                 /* Ignore delayed exceptions from user space */
681                 asm volatile("1: fwait\n"
682                              "2:\n"
683                              _ASM_EXTABLE(1b, 2b));
684                 fpregs_deactivate(fpu);
685         }
686
687         trace_x86_fpu_dropped(fpu);
688
689         preempt_enable();
690 }
691
692 /*
693  * Clear FPU registers by setting them up from the init fpstate.
694  * Caller must do fpregs_[un]lock() around it.
695  */
696 static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
697 {
698         if (use_xsave())
699                 os_xrstor(&init_fpstate, features_mask);
700         else if (use_fxsr())
701                 fxrstor(&init_fpstate.regs.fxsave);
702         else
703                 frstor(&init_fpstate.regs.fsave);
704
705         pkru_write_default();
706 }
707
708 /*
709  * Reset current->fpu memory state to the init values.
710  */
711 static void fpu_reset_fpregs(void)
712 {
713         struct fpu *fpu = &current->thread.fpu;
714
715         fpregs_lock();
716         __fpu_invalidate_fpregs_state(fpu);
717         /*
718          * This does not change the actual hardware registers. It just
719          * resets the memory image and sets TIF_NEED_FPU_LOAD so a
720          * subsequent return to usermode will reload the registers from the
721          * task's memory image.
722          *
723          * Do not use fpstate_init() here. Just copy init_fpstate which has
724          * the correct content already except for PKRU.
725          *
726          * PKRU handling does not rely on the xstate when restoring for
727          * user space as PKRU is eagerly written in switch_to() and
728          * flush_thread().
729          */
730         memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
731         set_thread_flag(TIF_NEED_FPU_LOAD);
732         fpregs_unlock();
733 }
734
735 /*
736  * Reset current's user FPU states to the init states.  current's
737  * supervisor states, if any, are not modified by this function.  The
738  * caller guarantees that the XSTATE header in memory is intact.
739  */
740 void fpu__clear_user_states(struct fpu *fpu)
741 {
742         WARN_ON_FPU(fpu != &current->thread.fpu);
743
744         fpregs_lock();
745         if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
746                 fpu_reset_fpregs();
747                 fpregs_unlock();
748                 return;
749         }
750
751         /*
752          * Ensure that current's supervisor states are loaded into their
753          * corresponding registers.
754          */
755         if (xfeatures_mask_supervisor() &&
756             !fpregs_state_valid(fpu, smp_processor_id()))
757                 os_xrstor_supervisor(fpu->fpstate);
758
759         /* Reset user states in registers. */
760         restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
761
762         /*
763          * Now all FPU registers have their desired values.  Inform the FPU
764          * state machine that current's FPU registers are in the hardware
765          * registers. The memory image does not need to be updated because
766          * any operation relying on it has to save the registers first when
767          * current's FPU is marked active.
768          */
769         fpregs_mark_activate();
770         fpregs_unlock();
771 }
772
773 void fpu_flush_thread(void)
774 {
775         fpstate_reset(&current->thread.fpu);
776         fpu_reset_fpregs();
777 }
778 /*
779  * Load FPU context before returning to userspace.
780  */
781 void switch_fpu_return(void)
782 {
783         if (!static_cpu_has(X86_FEATURE_FPU))
784                 return;
785
786         fpregs_restore_userregs();
787 }
788 EXPORT_SYMBOL_GPL(switch_fpu_return);
789
790 void fpregs_lock_and_load(void)
791 {
792         /*
793          * fpregs_lock() only disables preemption (mostly). So modifying state
794          * in an interrupt could screw up some in progress fpregs operation.
795          * Warn about it.
796          */
797         WARN_ON_ONCE(!irq_fpu_usable());
798         WARN_ON_ONCE(current->flags & PF_KTHREAD);
799
800         fpregs_lock();
801
802         fpregs_assert_state_consistent();
803
804         if (test_thread_flag(TIF_NEED_FPU_LOAD))
805                 fpregs_restore_userregs();
806 }
807
808 #ifdef CONFIG_X86_DEBUG_FPU
809 /*
810  * If current FPU state according to its tracking (loaded FPU context on this
811  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
812  * loaded on return to userland.
813  */
814 void fpregs_assert_state_consistent(void)
815 {
816         struct fpu *fpu = &current->thread.fpu;
817
818         if (test_thread_flag(TIF_NEED_FPU_LOAD))
819                 return;
820
821         WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
822 }
823 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
824 #endif
825
826 void fpregs_mark_activate(void)
827 {
828         struct fpu *fpu = &current->thread.fpu;
829
830         fpregs_activate(fpu);
831         fpu->last_cpu = smp_processor_id();
832         clear_thread_flag(TIF_NEED_FPU_LOAD);
833 }
834
835 /*
836  * x87 math exception handling:
837  */
838
839 int fpu__exception_code(struct fpu *fpu, int trap_nr)
840 {
841         int err;
842
843         if (trap_nr == X86_TRAP_MF) {
844                 unsigned short cwd, swd;
845                 /*
846                  * (~cwd & swd) will mask out exceptions that are not set to unmasked
847                  * status.  0x3f is the exception bits in these regs, 0x200 is the
848                  * C1 reg you need in case of a stack fault, 0x040 is the stack
849                  * fault bit.  We should only be taking one exception at a time,
850                  * so if this combination doesn't produce any single exception,
851                  * then we have a bad program that isn't synchronizing its FPU usage
852                  * and it will suffer the consequences since we won't be able to
853                  * fully reproduce the context of the exception.
854                  */
855                 if (boot_cpu_has(X86_FEATURE_FXSR)) {
856                         cwd = fpu->fpstate->regs.fxsave.cwd;
857                         swd = fpu->fpstate->regs.fxsave.swd;
858                 } else {
859                         cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
860                         swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
861                 }
862
863                 err = swd & ~cwd;
864         } else {
865                 /*
866                  * The SIMD FPU exceptions are handled a little differently, as there
867                  * is only a single status/control register.  Thus, to determine which
868                  * unmasked exception was caught we must mask the exception mask bits
869                  * at 0x1f80, and then use these to mask the exception bits at 0x3f.
870                  */
871                 unsigned short mxcsr = MXCSR_DEFAULT;
872
873                 if (boot_cpu_has(X86_FEATURE_XMM))
874                         mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
875
876                 err = ~(mxcsr >> 7) & mxcsr;
877         }
878
879         if (err & 0x001) {      /* Invalid op */
880                 /*
881                  * swd & 0x240 == 0x040: Stack Underflow
882                  * swd & 0x240 == 0x240: Stack Overflow
883                  * User must clear the SF bit (0x40) if set
884                  */
885                 return FPE_FLTINV;
886         } else if (err & 0x004) { /* Divide by Zero */
887                 return FPE_FLTDIV;
888         } else if (err & 0x008) { /* Overflow */
889                 return FPE_FLTOVF;
890         } else if (err & 0x012) { /* Denormal, Underflow */
891                 return FPE_FLTUND;
892         } else if (err & 0x020) { /* Precision */
893                 return FPE_FLTRES;
894         }
895
896         /*
897          * If we're using IRQ 13, or supposedly even some trap
898          * X86_TRAP_MF implementations, it's possible
899          * we get a spurious trap, which is not an error.
900          */
901         return 0;
902 }
903
904 /*
905  * Initialize register state that may prevent from entering low-power idle.
906  * This function will be invoked from the cpuidle driver only when needed.
907  */
908 noinstr void fpu_idle_fpregs(void)
909 {
910         /* Note: AMX_TILE being enabled implies XGETBV1 support */
911         if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) &&
912             (xfeatures_in_use() & XFEATURE_MASK_XTILE)) {
913                 tile_release();
914                 __this_cpu_write(fpu_fpregs_owner_ctx, NULL);
915         }
916 }