perf, x86: Calculate perfctr msr addresses in helper functions
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val)                                        \
37 do {                                                            \
38         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39                         (unsigned long)(val));                  \
40         native_write_msr((msr), (u32)((u64)(val)),              \
41                         (u32)((u64)(val) >> 32));               \
42 } while (0)
43 #endif
44
45 /*
46  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47  */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51         unsigned long offset, addr = (unsigned long)from;
52         unsigned long size, len = 0;
53         struct page *page;
54         void *map;
55         int ret;
56
57         do {
58                 ret = __get_user_pages_fast(addr, 1, 0, &page);
59                 if (!ret)
60                         break;
61
62                 offset = addr & (PAGE_SIZE - 1);
63                 size = min(PAGE_SIZE - offset, n - len);
64
65                 map = kmap_atomic(page);
66                 memcpy(to, map+offset, size);
67                 kunmap_atomic(map);
68                 put_page(page);
69
70                 len  += size;
71                 to   += size;
72                 addr += size;
73
74         } while (len < n);
75
76         return len;
77 }
78
79 struct event_constraint {
80         union {
81                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
82                 u64             idxmsk64;
83         };
84         u64     code;
85         u64     cmask;
86         int     weight;
87 };
88
89 struct amd_nb {
90         int nb_id;  /* NorthBridge id */
91         int refcnt; /* reference count */
92         struct perf_event *owners[X86_PMC_IDX_MAX];
93         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
94 };
95
96 #define MAX_LBR_ENTRIES         16
97
98 struct cpu_hw_events {
99         /*
100          * Generic x86 PMC bits
101          */
102         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
103         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
104         unsigned long           running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105         int                     enabled;
106
107         int                     n_events;
108         int                     n_added;
109         int                     n_txn;
110         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
111         u64                     tags[X86_PMC_IDX_MAX];
112         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
113
114         unsigned int            group_flag;
115
116         /*
117          * Intel DebugStore bits
118          */
119         struct debug_store      *ds;
120         u64                     pebs_enabled;
121
122         /*
123          * Intel LBR bits
124          */
125         int                             lbr_users;
126         void                            *lbr_context;
127         struct perf_branch_stack        lbr_stack;
128         struct perf_branch_entry        lbr_entries[MAX_LBR_ENTRIES];
129
130         /*
131          * AMD specific bits
132          */
133         struct amd_nb           *amd_nb;
134 };
135
136 #define __EVENT_CONSTRAINT(c, n, m, w) {\
137         { .idxmsk64 = (n) },            \
138         .code = (c),                    \
139         .cmask = (m),                   \
140         .weight = (w),                  \
141 }
142
143 #define EVENT_CONSTRAINT(c, n, m)       \
144         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
145
146 /*
147  * Constraint on the Event code.
148  */
149 #define INTEL_EVENT_CONSTRAINT(c, n)    \
150         EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
151
152 /*
153  * Constraint on the Event code + UMask + fixed-mask
154  *
155  * filter mask to validate fixed counter events.
156  * the following filters disqualify for fixed counters:
157  *  - inv
158  *  - edge
159  *  - cnt-mask
160  *  The other filters are supported by fixed counters.
161  *  The any-thread option is supported starting with v3.
162  */
163 #define FIXED_EVENT_CONSTRAINT(c, n)    \
164         EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
165
166 /*
167  * Constraint on the Event code + UMask
168  */
169 #define PEBS_EVENT_CONSTRAINT(c, n)     \
170         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
171
172 #define EVENT_CONSTRAINT_END            \
173         EVENT_CONSTRAINT(0, 0, 0)
174
175 #define for_each_event_constraint(e, c) \
176         for ((e) = (c); (e)->weight; (e)++)
177
178 union perf_capabilities {
179         struct {
180                 u64     lbr_format    : 6;
181                 u64     pebs_trap     : 1;
182                 u64     pebs_arch_reg : 1;
183                 u64     pebs_format   : 4;
184                 u64     smm_freeze    : 1;
185         };
186         u64     capabilities;
187 };
188
189 /*
190  * struct x86_pmu - generic x86 pmu
191  */
192 struct x86_pmu {
193         /*
194          * Generic x86 PMC bits
195          */
196         const char      *name;
197         int             version;
198         int             (*handle_irq)(struct pt_regs *);
199         void            (*disable_all)(void);
200         void            (*enable_all)(int added);
201         void            (*enable)(struct perf_event *);
202         void            (*disable)(struct perf_event *);
203         int             (*hw_config)(struct perf_event *event);
204         int             (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
205         unsigned        eventsel;
206         unsigned        perfctr;
207         u64             (*event_map)(int);
208         int             max_events;
209         int             num_counters;
210         int             num_counters_fixed;
211         int             cntval_bits;
212         u64             cntval_mask;
213         int             apic;
214         u64             max_period;
215         struct event_constraint *
216                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
217                                                  struct perf_event *event);
218
219         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
220                                                  struct perf_event *event);
221         struct event_constraint *event_constraints;
222         void            (*quirks)(void);
223         int             perfctr_second_write;
224
225         int             (*cpu_prepare)(int cpu);
226         void            (*cpu_starting)(int cpu);
227         void            (*cpu_dying)(int cpu);
228         void            (*cpu_dead)(int cpu);
229
230         /*
231          * Intel Arch Perfmon v2+
232          */
233         u64                     intel_ctrl;
234         union perf_capabilities intel_cap;
235
236         /*
237          * Intel DebugStore bits
238          */
239         int             bts, pebs;
240         int             bts_active, pebs_active;
241         int             pebs_record_size;
242         void            (*drain_pebs)(struct pt_regs *regs);
243         struct event_constraint *pebs_constraints;
244
245         /*
246          * Intel LBR
247          */
248         unsigned long   lbr_tos, lbr_from, lbr_to; /* MSR base regs       */
249         int             lbr_nr;                    /* hardware stack size */
250 };
251
252 static struct x86_pmu x86_pmu __read_mostly;
253
254 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
255         .enabled = 1,
256 };
257
258 static int x86_perf_event_set_period(struct perf_event *event);
259
260 /*
261  * Generalized hw caching related hw_event table, filled
262  * in on a per model basis. A value of 0 means
263  * 'not supported', -1 means 'hw_event makes no sense on
264  * this CPU', any other value means the raw hw_event
265  * ID.
266  */
267
268 #define C(x) PERF_COUNT_HW_CACHE_##x
269
270 static u64 __read_mostly hw_cache_event_ids
271                                 [PERF_COUNT_HW_CACHE_MAX]
272                                 [PERF_COUNT_HW_CACHE_OP_MAX]
273                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
274
275 /*
276  * Propagate event elapsed time into the generic event.
277  * Can only be executed on the CPU where the event is active.
278  * Returns the delta events processed.
279  */
280 static u64
281 x86_perf_event_update(struct perf_event *event)
282 {
283         struct hw_perf_event *hwc = &event->hw;
284         int shift = 64 - x86_pmu.cntval_bits;
285         u64 prev_raw_count, new_raw_count;
286         int idx = hwc->idx;
287         s64 delta;
288
289         if (idx == X86_PMC_IDX_FIXED_BTS)
290                 return 0;
291
292         /*
293          * Careful: an NMI might modify the previous event value.
294          *
295          * Our tactic to handle this is to first atomically read and
296          * exchange a new raw count - then add that new-prev delta
297          * count to the generic event atomically:
298          */
299 again:
300         prev_raw_count = local64_read(&hwc->prev_count);
301         rdmsrl(hwc->event_base + idx, new_raw_count);
302
303         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
304                                         new_raw_count) != prev_raw_count)
305                 goto again;
306
307         /*
308          * Now we have the new raw value and have updated the prev
309          * timestamp already. We can now calculate the elapsed delta
310          * (event-)time and add that to the generic event.
311          *
312          * Careful, not all hw sign-extends above the physical width
313          * of the count.
314          */
315         delta = (new_raw_count << shift) - (prev_raw_count << shift);
316         delta >>= shift;
317
318         local64_add(delta, &event->count);
319         local64_sub(delta, &hwc->period_left);
320
321         return new_raw_count;
322 }
323
324 static inline unsigned int x86_pmu_config_addr(int index)
325 {
326         return x86_pmu.eventsel + index;
327 }
328
329 static inline unsigned int x86_pmu_event_addr(int index)
330 {
331         return x86_pmu.perfctr + index;
332 }
333
334 static atomic_t active_events;
335 static DEFINE_MUTEX(pmc_reserve_mutex);
336
337 #ifdef CONFIG_X86_LOCAL_APIC
338
339 static bool reserve_pmc_hardware(void)
340 {
341         int i;
342
343         for (i = 0; i < x86_pmu.num_counters; i++) {
344                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
345                         goto perfctr_fail;
346         }
347
348         for (i = 0; i < x86_pmu.num_counters; i++) {
349                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
350                         goto eventsel_fail;
351         }
352
353         return true;
354
355 eventsel_fail:
356         for (i--; i >= 0; i--)
357                 release_evntsel_nmi(x86_pmu_config_addr(i));
358
359         i = x86_pmu.num_counters;
360
361 perfctr_fail:
362         for (i--; i >= 0; i--)
363                 release_perfctr_nmi(x86_pmu_event_addr(i));
364
365         return false;
366 }
367
368 static void release_pmc_hardware(void)
369 {
370         int i;
371
372         for (i = 0; i < x86_pmu.num_counters; i++) {
373                 release_perfctr_nmi(x86_pmu_event_addr(i));
374                 release_evntsel_nmi(x86_pmu_config_addr(i));
375         }
376 }
377
378 #else
379
380 static bool reserve_pmc_hardware(void) { return true; }
381 static void release_pmc_hardware(void) {}
382
383 #endif
384
385 static bool check_hw_exists(void)
386 {
387         u64 val, val_new = 0;
388         int i, reg, ret = 0;
389
390         /*
391          * Check to see if the BIOS enabled any of the counters, if so
392          * complain and bail.
393          */
394         for (i = 0; i < x86_pmu.num_counters; i++) {
395                 reg = x86_pmu_config_addr(i);
396                 ret = rdmsrl_safe(reg, &val);
397                 if (ret)
398                         goto msr_fail;
399                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
400                         goto bios_fail;
401         }
402
403         if (x86_pmu.num_counters_fixed) {
404                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
405                 ret = rdmsrl_safe(reg, &val);
406                 if (ret)
407                         goto msr_fail;
408                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
409                         if (val & (0x03 << i*4))
410                                 goto bios_fail;
411                 }
412         }
413
414         /*
415          * Now write a value and read it back to see if it matches,
416          * this is needed to detect certain hardware emulators (qemu/kvm)
417          * that don't trap on the MSR access and always return 0s.
418          */
419         val = 0xabcdUL;
420         ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
421         ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
422         if (ret || val != val_new)
423                 goto msr_fail;
424
425         return true;
426
427 bios_fail:
428         printk(KERN_CONT "Broken BIOS detected, using software events only.\n");
429         printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
430         return false;
431
432 msr_fail:
433         printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
434         return false;
435 }
436
437 static void reserve_ds_buffers(void);
438 static void release_ds_buffers(void);
439
440 static void hw_perf_event_destroy(struct perf_event *event)
441 {
442         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
443                 release_pmc_hardware();
444                 release_ds_buffers();
445                 mutex_unlock(&pmc_reserve_mutex);
446         }
447 }
448
449 static inline int x86_pmu_initialized(void)
450 {
451         return x86_pmu.handle_irq != NULL;
452 }
453
454 static inline int
455 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
456 {
457         unsigned int cache_type, cache_op, cache_result;
458         u64 config, val;
459
460         config = attr->config;
461
462         cache_type = (config >>  0) & 0xff;
463         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
464                 return -EINVAL;
465
466         cache_op = (config >>  8) & 0xff;
467         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
468                 return -EINVAL;
469
470         cache_result = (config >> 16) & 0xff;
471         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
472                 return -EINVAL;
473
474         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
475
476         if (val == 0)
477                 return -ENOENT;
478
479         if (val == -1)
480                 return -EINVAL;
481
482         hwc->config |= val;
483
484         return 0;
485 }
486
487 static int x86_setup_perfctr(struct perf_event *event)
488 {
489         struct perf_event_attr *attr = &event->attr;
490         struct hw_perf_event *hwc = &event->hw;
491         u64 config;
492
493         if (!is_sampling_event(event)) {
494                 hwc->sample_period = x86_pmu.max_period;
495                 hwc->last_period = hwc->sample_period;
496                 local64_set(&hwc->period_left, hwc->sample_period);
497         } else {
498                 /*
499                  * If we have a PMU initialized but no APIC
500                  * interrupts, we cannot sample hardware
501                  * events (user-space has to fall back and
502                  * sample via a hrtimer based software event):
503                  */
504                 if (!x86_pmu.apic)
505                         return -EOPNOTSUPP;
506         }
507
508         if (attr->type == PERF_TYPE_RAW)
509                 return 0;
510
511         if (attr->type == PERF_TYPE_HW_CACHE)
512                 return set_ext_hw_attr(hwc, attr);
513
514         if (attr->config >= x86_pmu.max_events)
515                 return -EINVAL;
516
517         /*
518          * The generic map:
519          */
520         config = x86_pmu.event_map(attr->config);
521
522         if (config == 0)
523                 return -ENOENT;
524
525         if (config == -1LL)
526                 return -EINVAL;
527
528         /*
529          * Branch tracing:
530          */
531         if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
532             (hwc->sample_period == 1)) {
533                 /* BTS is not supported by this architecture. */
534                 if (!x86_pmu.bts_active)
535                         return -EOPNOTSUPP;
536
537                 /* BTS is currently only allowed for user-mode. */
538                 if (!attr->exclude_kernel)
539                         return -EOPNOTSUPP;
540         }
541
542         hwc->config |= config;
543
544         return 0;
545 }
546
547 static int x86_pmu_hw_config(struct perf_event *event)
548 {
549         if (event->attr.precise_ip) {
550                 int precise = 0;
551
552                 /* Support for constant skid */
553                 if (x86_pmu.pebs_active) {
554                         precise++;
555
556                         /* Support for IP fixup */
557                         if (x86_pmu.lbr_nr)
558                                 precise++;
559                 }
560
561                 if (event->attr.precise_ip > precise)
562                         return -EOPNOTSUPP;
563         }
564
565         /*
566          * Generate PMC IRQs:
567          * (keep 'enabled' bit clear for now)
568          */
569         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
570
571         /*
572          * Count user and OS events unless requested not to
573          */
574         if (!event->attr.exclude_user)
575                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
576         if (!event->attr.exclude_kernel)
577                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
578
579         if (event->attr.type == PERF_TYPE_RAW)
580                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
581
582         return x86_setup_perfctr(event);
583 }
584
585 /*
586  * Setup the hardware configuration for a given attr_type
587  */
588 static int __x86_pmu_event_init(struct perf_event *event)
589 {
590         int err;
591
592         if (!x86_pmu_initialized())
593                 return -ENODEV;
594
595         err = 0;
596         if (!atomic_inc_not_zero(&active_events)) {
597                 mutex_lock(&pmc_reserve_mutex);
598                 if (atomic_read(&active_events) == 0) {
599                         if (!reserve_pmc_hardware())
600                                 err = -EBUSY;
601                         else
602                                 reserve_ds_buffers();
603                 }
604                 if (!err)
605                         atomic_inc(&active_events);
606                 mutex_unlock(&pmc_reserve_mutex);
607         }
608         if (err)
609                 return err;
610
611         event->destroy = hw_perf_event_destroy;
612
613         event->hw.idx = -1;
614         event->hw.last_cpu = -1;
615         event->hw.last_tag = ~0ULL;
616
617         return x86_pmu.hw_config(event);
618 }
619
620 static void x86_pmu_disable_all(void)
621 {
622         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
623         int idx;
624
625         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
626                 u64 val;
627
628                 if (!test_bit(idx, cpuc->active_mask))
629                         continue;
630                 rdmsrl(x86_pmu_config_addr(idx), val);
631                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
632                         continue;
633                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
634                 wrmsrl(x86_pmu_config_addr(idx), val);
635         }
636 }
637
638 static void x86_pmu_disable(struct pmu *pmu)
639 {
640         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
641
642         if (!x86_pmu_initialized())
643                 return;
644
645         if (!cpuc->enabled)
646                 return;
647
648         cpuc->n_added = 0;
649         cpuc->enabled = 0;
650         barrier();
651
652         x86_pmu.disable_all();
653 }
654
655 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
656                                           u64 enable_mask)
657 {
658         wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
659 }
660
661 static void x86_pmu_enable_all(int added)
662 {
663         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
664         int idx;
665
666         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
667                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
668
669                 if (!test_bit(idx, cpuc->active_mask))
670                         continue;
671
672                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
673         }
674 }
675
676 static struct pmu pmu;
677
678 static inline int is_x86_event(struct perf_event *event)
679 {
680         return event->pmu == &pmu;
681 }
682
683 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
684 {
685         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
686         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
687         int i, j, w, wmax, num = 0;
688         struct hw_perf_event *hwc;
689
690         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
691
692         for (i = 0; i < n; i++) {
693                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
694                 constraints[i] = c;
695         }
696
697         /*
698          * fastpath, try to reuse previous register
699          */
700         for (i = 0; i < n; i++) {
701                 hwc = &cpuc->event_list[i]->hw;
702                 c = constraints[i];
703
704                 /* never assigned */
705                 if (hwc->idx == -1)
706                         break;
707
708                 /* constraint still honored */
709                 if (!test_bit(hwc->idx, c->idxmsk))
710                         break;
711
712                 /* not already used */
713                 if (test_bit(hwc->idx, used_mask))
714                         break;
715
716                 __set_bit(hwc->idx, used_mask);
717                 if (assign)
718                         assign[i] = hwc->idx;
719         }
720         if (i == n)
721                 goto done;
722
723         /*
724          * begin slow path
725          */
726
727         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
728
729         /*
730          * weight = number of possible counters
731          *
732          * 1    = most constrained, only works on one counter
733          * wmax = least constrained, works on any counter
734          *
735          * assign events to counters starting with most
736          * constrained events.
737          */
738         wmax = x86_pmu.num_counters;
739
740         /*
741          * when fixed event counters are present,
742          * wmax is incremented by 1 to account
743          * for one more choice
744          */
745         if (x86_pmu.num_counters_fixed)
746                 wmax++;
747
748         for (w = 1, num = n; num && w <= wmax; w++) {
749                 /* for each event */
750                 for (i = 0; num && i < n; i++) {
751                         c = constraints[i];
752                         hwc = &cpuc->event_list[i]->hw;
753
754                         if (c->weight != w)
755                                 continue;
756
757                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
758                                 if (!test_bit(j, used_mask))
759                                         break;
760                         }
761
762                         if (j == X86_PMC_IDX_MAX)
763                                 break;
764
765                         __set_bit(j, used_mask);
766
767                         if (assign)
768                                 assign[i] = j;
769                         num--;
770                 }
771         }
772 done:
773         /*
774          * scheduling failed or is just a simulation,
775          * free resources if necessary
776          */
777         if (!assign || num) {
778                 for (i = 0; i < n; i++) {
779                         if (x86_pmu.put_event_constraints)
780                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
781                 }
782         }
783         return num ? -ENOSPC : 0;
784 }
785
786 /*
787  * dogrp: true if must collect siblings events (group)
788  * returns total number of events and error code
789  */
790 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
791 {
792         struct perf_event *event;
793         int n, max_count;
794
795         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
796
797         /* current number of events already accepted */
798         n = cpuc->n_events;
799
800         if (is_x86_event(leader)) {
801                 if (n >= max_count)
802                         return -ENOSPC;
803                 cpuc->event_list[n] = leader;
804                 n++;
805         }
806         if (!dogrp)
807                 return n;
808
809         list_for_each_entry(event, &leader->sibling_list, group_entry) {
810                 if (!is_x86_event(event) ||
811                     event->state <= PERF_EVENT_STATE_OFF)
812                         continue;
813
814                 if (n >= max_count)
815                         return -ENOSPC;
816
817                 cpuc->event_list[n] = event;
818                 n++;
819         }
820         return n;
821 }
822
823 static inline void x86_assign_hw_event(struct perf_event *event,
824                                 struct cpu_hw_events *cpuc, int i)
825 {
826         struct hw_perf_event *hwc = &event->hw;
827
828         hwc->idx = cpuc->assign[i];
829         hwc->last_cpu = smp_processor_id();
830         hwc->last_tag = ++cpuc->tags[i];
831
832         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
833                 hwc->config_base = 0;
834                 hwc->event_base = 0;
835         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
836                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
837                 /*
838                  * We set it so that event_base + idx in wrmsr/rdmsr maps to
839                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
840                  */
841                 hwc->event_base =
842                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
843         } else {
844                 hwc->config_base = x86_pmu.eventsel;
845                 hwc->event_base  = x86_pmu.perfctr;
846         }
847 }
848
849 static inline int match_prev_assignment(struct hw_perf_event *hwc,
850                                         struct cpu_hw_events *cpuc,
851                                         int i)
852 {
853         return hwc->idx == cpuc->assign[i] &&
854                 hwc->last_cpu == smp_processor_id() &&
855                 hwc->last_tag == cpuc->tags[i];
856 }
857
858 static void x86_pmu_start(struct perf_event *event, int flags);
859 static void x86_pmu_stop(struct perf_event *event, int flags);
860
861 static void x86_pmu_enable(struct pmu *pmu)
862 {
863         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
864         struct perf_event *event;
865         struct hw_perf_event *hwc;
866         int i, added = cpuc->n_added;
867
868         if (!x86_pmu_initialized())
869                 return;
870
871         if (cpuc->enabled)
872                 return;
873
874         if (cpuc->n_added) {
875                 int n_running = cpuc->n_events - cpuc->n_added;
876                 /*
877                  * apply assignment obtained either from
878                  * hw_perf_group_sched_in() or x86_pmu_enable()
879                  *
880                  * step1: save events moving to new counters
881                  * step2: reprogram moved events into new counters
882                  */
883                 for (i = 0; i < n_running; i++) {
884                         event = cpuc->event_list[i];
885                         hwc = &event->hw;
886
887                         /*
888                          * we can avoid reprogramming counter if:
889                          * - assigned same counter as last time
890                          * - running on same CPU as last time
891                          * - no other event has used the counter since
892                          */
893                         if (hwc->idx == -1 ||
894                             match_prev_assignment(hwc, cpuc, i))
895                                 continue;
896
897                         /*
898                          * Ensure we don't accidentally enable a stopped
899                          * counter simply because we rescheduled.
900                          */
901                         if (hwc->state & PERF_HES_STOPPED)
902                                 hwc->state |= PERF_HES_ARCH;
903
904                         x86_pmu_stop(event, PERF_EF_UPDATE);
905                 }
906
907                 for (i = 0; i < cpuc->n_events; i++) {
908                         event = cpuc->event_list[i];
909                         hwc = &event->hw;
910
911                         if (!match_prev_assignment(hwc, cpuc, i))
912                                 x86_assign_hw_event(event, cpuc, i);
913                         else if (i < n_running)
914                                 continue;
915
916                         if (hwc->state & PERF_HES_ARCH)
917                                 continue;
918
919                         x86_pmu_start(event, PERF_EF_RELOAD);
920                 }
921                 cpuc->n_added = 0;
922                 perf_events_lapic_init();
923         }
924
925         cpuc->enabled = 1;
926         barrier();
927
928         x86_pmu.enable_all(added);
929 }
930
931 static inline void x86_pmu_disable_event(struct perf_event *event)
932 {
933         struct hw_perf_event *hwc = &event->hw;
934
935         wrmsrl(hwc->config_base + hwc->idx, hwc->config);
936 }
937
938 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
939
940 /*
941  * Set the next IRQ period, based on the hwc->period_left value.
942  * To be called with the event disabled in hw:
943  */
944 static int
945 x86_perf_event_set_period(struct perf_event *event)
946 {
947         struct hw_perf_event *hwc = &event->hw;
948         s64 left = local64_read(&hwc->period_left);
949         s64 period = hwc->sample_period;
950         int ret = 0, idx = hwc->idx;
951
952         if (idx == X86_PMC_IDX_FIXED_BTS)
953                 return 0;
954
955         /*
956          * If we are way outside a reasonable range then just skip forward:
957          */
958         if (unlikely(left <= -period)) {
959                 left = period;
960                 local64_set(&hwc->period_left, left);
961                 hwc->last_period = period;
962                 ret = 1;
963         }
964
965         if (unlikely(left <= 0)) {
966                 left += period;
967                 local64_set(&hwc->period_left, left);
968                 hwc->last_period = period;
969                 ret = 1;
970         }
971         /*
972          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
973          */
974         if (unlikely(left < 2))
975                 left = 2;
976
977         if (left > x86_pmu.max_period)
978                 left = x86_pmu.max_period;
979
980         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
981
982         /*
983          * The hw event starts counting from this event offset,
984          * mark it to be able to extra future deltas:
985          */
986         local64_set(&hwc->prev_count, (u64)-left);
987
988         wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
989
990         /*
991          * Due to erratum on certan cpu we need
992          * a second write to be sure the register
993          * is updated properly
994          */
995         if (x86_pmu.perfctr_second_write) {
996                 wrmsrl(hwc->event_base + idx,
997                         (u64)(-left) & x86_pmu.cntval_mask);
998         }
999
1000         perf_event_update_userpage(event);
1001
1002         return ret;
1003 }
1004
1005 static void x86_pmu_enable_event(struct perf_event *event)
1006 {
1007         if (__this_cpu_read(cpu_hw_events.enabled))
1008                 __x86_pmu_enable_event(&event->hw,
1009                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1010 }
1011
1012 /*
1013  * Add a single event to the PMU.
1014  *
1015  * The event is added to the group of enabled events
1016  * but only if it can be scehduled with existing events.
1017  */
1018 static int x86_pmu_add(struct perf_event *event, int flags)
1019 {
1020         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1021         struct hw_perf_event *hwc;
1022         int assign[X86_PMC_IDX_MAX];
1023         int n, n0, ret;
1024
1025         hwc = &event->hw;
1026
1027         perf_pmu_disable(event->pmu);
1028         n0 = cpuc->n_events;
1029         ret = n = collect_events(cpuc, event, false);
1030         if (ret < 0)
1031                 goto out;
1032
1033         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1034         if (!(flags & PERF_EF_START))
1035                 hwc->state |= PERF_HES_ARCH;
1036
1037         /*
1038          * If group events scheduling transaction was started,
1039          * skip the schedulability test here, it will be peformed
1040          * at commit time (->commit_txn) as a whole
1041          */
1042         if (cpuc->group_flag & PERF_EVENT_TXN)
1043                 goto done_collect;
1044
1045         ret = x86_pmu.schedule_events(cpuc, n, assign);
1046         if (ret)
1047                 goto out;
1048         /*
1049          * copy new assignment, now we know it is possible
1050          * will be used by hw_perf_enable()
1051          */
1052         memcpy(cpuc->assign, assign, n*sizeof(int));
1053
1054 done_collect:
1055         cpuc->n_events = n;
1056         cpuc->n_added += n - n0;
1057         cpuc->n_txn += n - n0;
1058
1059         ret = 0;
1060 out:
1061         perf_pmu_enable(event->pmu);
1062         return ret;
1063 }
1064
1065 static void x86_pmu_start(struct perf_event *event, int flags)
1066 {
1067         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1068         int idx = event->hw.idx;
1069
1070         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1071                 return;
1072
1073         if (WARN_ON_ONCE(idx == -1))
1074                 return;
1075
1076         if (flags & PERF_EF_RELOAD) {
1077                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1078                 x86_perf_event_set_period(event);
1079         }
1080
1081         event->hw.state = 0;
1082
1083         cpuc->events[idx] = event;
1084         __set_bit(idx, cpuc->active_mask);
1085         __set_bit(idx, cpuc->running);
1086         x86_pmu.enable(event);
1087         perf_event_update_userpage(event);
1088 }
1089
1090 void perf_event_print_debug(void)
1091 {
1092         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1093         u64 pebs;
1094         struct cpu_hw_events *cpuc;
1095         unsigned long flags;
1096         int cpu, idx;
1097
1098         if (!x86_pmu.num_counters)
1099                 return;
1100
1101         local_irq_save(flags);
1102
1103         cpu = smp_processor_id();
1104         cpuc = &per_cpu(cpu_hw_events, cpu);
1105
1106         if (x86_pmu.version >= 2) {
1107                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1108                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1109                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1110                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1111                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1112
1113                 pr_info("\n");
1114                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1115                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1116                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1117                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1118                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1119         }
1120         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1121
1122         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1123                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1124                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1125
1126                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1127
1128                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1129                         cpu, idx, pmc_ctrl);
1130                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1131                         cpu, idx, pmc_count);
1132                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1133                         cpu, idx, prev_left);
1134         }
1135         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1136                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1137
1138                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1139                         cpu, idx, pmc_count);
1140         }
1141         local_irq_restore(flags);
1142 }
1143
1144 static void x86_pmu_stop(struct perf_event *event, int flags)
1145 {
1146         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1147         struct hw_perf_event *hwc = &event->hw;
1148
1149         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1150                 x86_pmu.disable(event);
1151                 cpuc->events[hwc->idx] = NULL;
1152                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1153                 hwc->state |= PERF_HES_STOPPED;
1154         }
1155
1156         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1157                 /*
1158                  * Drain the remaining delta count out of a event
1159                  * that we are disabling:
1160                  */
1161                 x86_perf_event_update(event);
1162                 hwc->state |= PERF_HES_UPTODATE;
1163         }
1164 }
1165
1166 static void x86_pmu_del(struct perf_event *event, int flags)
1167 {
1168         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1169         int i;
1170
1171         /*
1172          * If we're called during a txn, we don't need to do anything.
1173          * The events never got scheduled and ->cancel_txn will truncate
1174          * the event_list.
1175          */
1176         if (cpuc->group_flag & PERF_EVENT_TXN)
1177                 return;
1178
1179         x86_pmu_stop(event, PERF_EF_UPDATE);
1180
1181         for (i = 0; i < cpuc->n_events; i++) {
1182                 if (event == cpuc->event_list[i]) {
1183
1184                         if (x86_pmu.put_event_constraints)
1185                                 x86_pmu.put_event_constraints(cpuc, event);
1186
1187                         while (++i < cpuc->n_events)
1188                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1189
1190                         --cpuc->n_events;
1191                         break;
1192                 }
1193         }
1194         perf_event_update_userpage(event);
1195 }
1196
1197 static int x86_pmu_handle_irq(struct pt_regs *regs)
1198 {
1199         struct perf_sample_data data;
1200         struct cpu_hw_events *cpuc;
1201         struct perf_event *event;
1202         int idx, handled = 0;
1203         u64 val;
1204
1205         perf_sample_data_init(&data, 0);
1206
1207         cpuc = &__get_cpu_var(cpu_hw_events);
1208
1209         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1210                 if (!test_bit(idx, cpuc->active_mask)) {
1211                         /*
1212                          * Though we deactivated the counter some cpus
1213                          * might still deliver spurious interrupts still
1214                          * in flight. Catch them:
1215                          */
1216                         if (__test_and_clear_bit(idx, cpuc->running))
1217                                 handled++;
1218                         continue;
1219                 }
1220
1221                 event = cpuc->events[idx];
1222
1223                 val = x86_perf_event_update(event);
1224                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1225                         continue;
1226
1227                 /*
1228                  * event overflow
1229                  */
1230                 handled++;
1231                 data.period     = event->hw.last_period;
1232
1233                 if (!x86_perf_event_set_period(event))
1234                         continue;
1235
1236                 if (perf_event_overflow(event, 1, &data, regs))
1237                         x86_pmu_stop(event, 0);
1238         }
1239
1240         if (handled)
1241                 inc_irq_stat(apic_perf_irqs);
1242
1243         return handled;
1244 }
1245
1246 void perf_events_lapic_init(void)
1247 {
1248         if (!x86_pmu.apic || !x86_pmu_initialized())
1249                 return;
1250
1251         /*
1252          * Always use NMI for PMU
1253          */
1254         apic_write(APIC_LVTPC, APIC_DM_NMI);
1255 }
1256
1257 struct pmu_nmi_state {
1258         unsigned int    marked;
1259         int             handled;
1260 };
1261
1262 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1263
1264 static int __kprobes
1265 perf_event_nmi_handler(struct notifier_block *self,
1266                          unsigned long cmd, void *__args)
1267 {
1268         struct die_args *args = __args;
1269         unsigned int this_nmi;
1270         int handled;
1271
1272         if (!atomic_read(&active_events))
1273                 return NOTIFY_DONE;
1274
1275         switch (cmd) {
1276         case DIE_NMI:
1277                 break;
1278         case DIE_NMIUNKNOWN:
1279                 this_nmi = percpu_read(irq_stat.__nmi_count);
1280                 if (this_nmi != __this_cpu_read(pmu_nmi.marked))
1281                         /* let the kernel handle the unknown nmi */
1282                         return NOTIFY_DONE;
1283                 /*
1284                  * This one is a PMU back-to-back nmi. Two events
1285                  * trigger 'simultaneously' raising two back-to-back
1286                  * NMIs. If the first NMI handles both, the latter
1287                  * will be empty and daze the CPU. So, we drop it to
1288                  * avoid false-positive 'unknown nmi' messages.
1289                  */
1290                 return NOTIFY_STOP;
1291         default:
1292                 return NOTIFY_DONE;
1293         }
1294
1295         apic_write(APIC_LVTPC, APIC_DM_NMI);
1296
1297         handled = x86_pmu.handle_irq(args->regs);
1298         if (!handled)
1299                 return NOTIFY_DONE;
1300
1301         this_nmi = percpu_read(irq_stat.__nmi_count);
1302         if ((handled > 1) ||
1303                 /* the next nmi could be a back-to-back nmi */
1304             ((__this_cpu_read(pmu_nmi.marked) == this_nmi) &&
1305              (__this_cpu_read(pmu_nmi.handled) > 1))) {
1306                 /*
1307                  * We could have two subsequent back-to-back nmis: The
1308                  * first handles more than one counter, the 2nd
1309                  * handles only one counter and the 3rd handles no
1310                  * counter.
1311                  *
1312                  * This is the 2nd nmi because the previous was
1313                  * handling more than one counter. We will mark the
1314                  * next (3rd) and then drop it if unhandled.
1315                  */
1316                 __this_cpu_write(pmu_nmi.marked, this_nmi + 1);
1317                 __this_cpu_write(pmu_nmi.handled, handled);
1318         }
1319
1320         return NOTIFY_STOP;
1321 }
1322
1323 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1324         .notifier_call          = perf_event_nmi_handler,
1325         .next                   = NULL,
1326         .priority               = NMI_LOCAL_LOW_PRIOR,
1327 };
1328
1329 static struct event_constraint unconstrained;
1330 static struct event_constraint emptyconstraint;
1331
1332 static struct event_constraint *
1333 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1334 {
1335         struct event_constraint *c;
1336
1337         if (x86_pmu.event_constraints) {
1338                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1339                         if ((event->hw.config & c->cmask) == c->code)
1340                                 return c;
1341                 }
1342         }
1343
1344         return &unconstrained;
1345 }
1346
1347 #include "perf_event_amd.c"
1348 #include "perf_event_p6.c"
1349 #include "perf_event_p4.c"
1350 #include "perf_event_intel_lbr.c"
1351 #include "perf_event_intel_ds.c"
1352 #include "perf_event_intel.c"
1353
1354 static int __cpuinit
1355 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1356 {
1357         unsigned int cpu = (long)hcpu;
1358         int ret = NOTIFY_OK;
1359
1360         switch (action & ~CPU_TASKS_FROZEN) {
1361         case CPU_UP_PREPARE:
1362                 if (x86_pmu.cpu_prepare)
1363                         ret = x86_pmu.cpu_prepare(cpu);
1364                 break;
1365
1366         case CPU_STARTING:
1367                 if (x86_pmu.cpu_starting)
1368                         x86_pmu.cpu_starting(cpu);
1369                 break;
1370
1371         case CPU_DYING:
1372                 if (x86_pmu.cpu_dying)
1373                         x86_pmu.cpu_dying(cpu);
1374                 break;
1375
1376         case CPU_UP_CANCELED:
1377         case CPU_DEAD:
1378                 if (x86_pmu.cpu_dead)
1379                         x86_pmu.cpu_dead(cpu);
1380                 break;
1381
1382         default:
1383                 break;
1384         }
1385
1386         return ret;
1387 }
1388
1389 static void __init pmu_check_apic(void)
1390 {
1391         if (cpu_has_apic)
1392                 return;
1393
1394         x86_pmu.apic = 0;
1395         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1396         pr_info("no hardware sampling interrupt available.\n");
1397 }
1398
1399 static int __init init_hw_perf_events(void)
1400 {
1401         struct event_constraint *c;
1402         int err;
1403
1404         pr_info("Performance Events: ");
1405
1406         switch (boot_cpu_data.x86_vendor) {
1407         case X86_VENDOR_INTEL:
1408                 err = intel_pmu_init();
1409                 break;
1410         case X86_VENDOR_AMD:
1411                 err = amd_pmu_init();
1412                 break;
1413         default:
1414                 return 0;
1415         }
1416         if (err != 0) {
1417                 pr_cont("no PMU driver, software events only.\n");
1418                 return 0;
1419         }
1420
1421         pmu_check_apic();
1422
1423         /* sanity check that the hardware exists or is emulated */
1424         if (!check_hw_exists())
1425                 return 0;
1426
1427         pr_cont("%s PMU driver.\n", x86_pmu.name);
1428
1429         if (x86_pmu.quirks)
1430                 x86_pmu.quirks();
1431
1432         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1433                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1434                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1435                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1436         }
1437         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1438
1439         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1440                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1441                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1442                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1443         }
1444
1445         x86_pmu.intel_ctrl |=
1446                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1447
1448         perf_events_lapic_init();
1449         register_die_notifier(&perf_event_nmi_notifier);
1450
1451         unconstrained = (struct event_constraint)
1452                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1453                                    0, x86_pmu.num_counters);
1454
1455         if (x86_pmu.event_constraints) {
1456                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1457                         if (c->cmask != X86_RAW_EVENT_MASK)
1458                                 continue;
1459
1460                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1461                         c->weight += x86_pmu.num_counters;
1462                 }
1463         }
1464
1465         pr_info("... version:                %d\n",     x86_pmu.version);
1466         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1467         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1468         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1469         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1470         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1471         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1472
1473         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1474         perf_cpu_notifier(x86_pmu_notifier);
1475
1476         return 0;
1477 }
1478 early_initcall(init_hw_perf_events);
1479
1480 static inline void x86_pmu_read(struct perf_event *event)
1481 {
1482         x86_perf_event_update(event);
1483 }
1484
1485 /*
1486  * Start group events scheduling transaction
1487  * Set the flag to make pmu::enable() not perform the
1488  * schedulability test, it will be performed at commit time
1489  */
1490 static void x86_pmu_start_txn(struct pmu *pmu)
1491 {
1492         perf_pmu_disable(pmu);
1493         __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1494         __this_cpu_write(cpu_hw_events.n_txn, 0);
1495 }
1496
1497 /*
1498  * Stop group events scheduling transaction
1499  * Clear the flag and pmu::enable() will perform the
1500  * schedulability test.
1501  */
1502 static void x86_pmu_cancel_txn(struct pmu *pmu)
1503 {
1504         __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1505         /*
1506          * Truncate the collected events.
1507          */
1508         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1509         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1510         perf_pmu_enable(pmu);
1511 }
1512
1513 /*
1514  * Commit group events scheduling transaction
1515  * Perform the group schedulability test as a whole
1516  * Return 0 if success
1517  */
1518 static int x86_pmu_commit_txn(struct pmu *pmu)
1519 {
1520         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1521         int assign[X86_PMC_IDX_MAX];
1522         int n, ret;
1523
1524         n = cpuc->n_events;
1525
1526         if (!x86_pmu_initialized())
1527                 return -EAGAIN;
1528
1529         ret = x86_pmu.schedule_events(cpuc, n, assign);
1530         if (ret)
1531                 return ret;
1532
1533         /*
1534          * copy new assignment, now we know it is possible
1535          * will be used by hw_perf_enable()
1536          */
1537         memcpy(cpuc->assign, assign, n*sizeof(int));
1538
1539         cpuc->group_flag &= ~PERF_EVENT_TXN;
1540         perf_pmu_enable(pmu);
1541         return 0;
1542 }
1543
1544 /*
1545  * validate that we can schedule this event
1546  */
1547 static int validate_event(struct perf_event *event)
1548 {
1549         struct cpu_hw_events *fake_cpuc;
1550         struct event_constraint *c;
1551         int ret = 0;
1552
1553         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1554         if (!fake_cpuc)
1555                 return -ENOMEM;
1556
1557         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1558
1559         if (!c || !c->weight)
1560                 ret = -ENOSPC;
1561
1562         if (x86_pmu.put_event_constraints)
1563                 x86_pmu.put_event_constraints(fake_cpuc, event);
1564
1565         kfree(fake_cpuc);
1566
1567         return ret;
1568 }
1569
1570 /*
1571  * validate a single event group
1572  *
1573  * validation include:
1574  *      - check events are compatible which each other
1575  *      - events do not compete for the same counter
1576  *      - number of events <= number of counters
1577  *
1578  * validation ensures the group can be loaded onto the
1579  * PMU if it was the only group available.
1580  */
1581 static int validate_group(struct perf_event *event)
1582 {
1583         struct perf_event *leader = event->group_leader;
1584         struct cpu_hw_events *fake_cpuc;
1585         int ret, n;
1586
1587         ret = -ENOMEM;
1588         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1589         if (!fake_cpuc)
1590                 goto out;
1591
1592         /*
1593          * the event is not yet connected with its
1594          * siblings therefore we must first collect
1595          * existing siblings, then add the new event
1596          * before we can simulate the scheduling
1597          */
1598         ret = -ENOSPC;
1599         n = collect_events(fake_cpuc, leader, true);
1600         if (n < 0)
1601                 goto out_free;
1602
1603         fake_cpuc->n_events = n;
1604         n = collect_events(fake_cpuc, event, false);
1605         if (n < 0)
1606                 goto out_free;
1607
1608         fake_cpuc->n_events = n;
1609
1610         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1611
1612 out_free:
1613         kfree(fake_cpuc);
1614 out:
1615         return ret;
1616 }
1617
1618 static int x86_pmu_event_init(struct perf_event *event)
1619 {
1620         struct pmu *tmp;
1621         int err;
1622
1623         switch (event->attr.type) {
1624         case PERF_TYPE_RAW:
1625         case PERF_TYPE_HARDWARE:
1626         case PERF_TYPE_HW_CACHE:
1627                 break;
1628
1629         default:
1630                 return -ENOENT;
1631         }
1632
1633         err = __x86_pmu_event_init(event);
1634         if (!err) {
1635                 /*
1636                  * we temporarily connect event to its pmu
1637                  * such that validate_group() can classify
1638                  * it as an x86 event using is_x86_event()
1639                  */
1640                 tmp = event->pmu;
1641                 event->pmu = &pmu;
1642
1643                 if (event->group_leader != event)
1644                         err = validate_group(event);
1645                 else
1646                         err = validate_event(event);
1647
1648                 event->pmu = tmp;
1649         }
1650         if (err) {
1651                 if (event->destroy)
1652                         event->destroy(event);
1653         }
1654
1655         return err;
1656 }
1657
1658 static struct pmu pmu = {
1659         .pmu_enable     = x86_pmu_enable,
1660         .pmu_disable    = x86_pmu_disable,
1661
1662         .event_init     = x86_pmu_event_init,
1663
1664         .add            = x86_pmu_add,
1665         .del            = x86_pmu_del,
1666         .start          = x86_pmu_start,
1667         .stop           = x86_pmu_stop,
1668         .read           = x86_pmu_read,
1669
1670         .start_txn      = x86_pmu_start_txn,
1671         .cancel_txn     = x86_pmu_cancel_txn,
1672         .commit_txn     = x86_pmu_commit_txn,
1673 };
1674
1675 /*
1676  * callchain support
1677  */
1678
1679 static void
1680 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1681 {
1682         /* Ignore warnings */
1683 }
1684
1685 static void backtrace_warning(void *data, char *msg)
1686 {
1687         /* Ignore warnings */
1688 }
1689
1690 static int backtrace_stack(void *data, char *name)
1691 {
1692         return 0;
1693 }
1694
1695 static void backtrace_address(void *data, unsigned long addr, int reliable)
1696 {
1697         struct perf_callchain_entry *entry = data;
1698
1699         perf_callchain_store(entry, addr);
1700 }
1701
1702 static const struct stacktrace_ops backtrace_ops = {
1703         .warning                = backtrace_warning,
1704         .warning_symbol         = backtrace_warning_symbol,
1705         .stack                  = backtrace_stack,
1706         .address                = backtrace_address,
1707         .walk_stack             = print_context_stack_bp,
1708 };
1709
1710 void
1711 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1712 {
1713         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1714                 /* TODO: We don't support guest os callchain now */
1715                 return;
1716         }
1717
1718         perf_callchain_store(entry, regs->ip);
1719
1720         dump_trace(NULL, regs, NULL, &backtrace_ops, entry);
1721 }
1722
1723 #ifdef CONFIG_COMPAT
1724 static inline int
1725 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1726 {
1727         /* 32-bit process in 64-bit kernel. */
1728         struct stack_frame_ia32 frame;
1729         const void __user *fp;
1730
1731         if (!test_thread_flag(TIF_IA32))
1732                 return 0;
1733
1734         fp = compat_ptr(regs->bp);
1735         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1736                 unsigned long bytes;
1737                 frame.next_frame     = 0;
1738                 frame.return_address = 0;
1739
1740                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1741                 if (bytes != sizeof(frame))
1742                         break;
1743
1744                 if (fp < compat_ptr(regs->sp))
1745                         break;
1746
1747                 perf_callchain_store(entry, frame.return_address);
1748                 fp = compat_ptr(frame.next_frame);
1749         }
1750         return 1;
1751 }
1752 #else
1753 static inline int
1754 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1755 {
1756     return 0;
1757 }
1758 #endif
1759
1760 void
1761 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1762 {
1763         struct stack_frame frame;
1764         const void __user *fp;
1765
1766         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1767                 /* TODO: We don't support guest os callchain now */
1768                 return;
1769         }
1770
1771         fp = (void __user *)regs->bp;
1772
1773         perf_callchain_store(entry, regs->ip);
1774
1775         if (perf_callchain_user32(regs, entry))
1776                 return;
1777
1778         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1779                 unsigned long bytes;
1780                 frame.next_frame             = NULL;
1781                 frame.return_address = 0;
1782
1783                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1784                 if (bytes != sizeof(frame))
1785                         break;
1786
1787                 if ((unsigned long)fp < regs->sp)
1788                         break;
1789
1790                 perf_callchain_store(entry, frame.return_address);
1791                 fp = frame.next_frame;
1792         }
1793 }
1794
1795 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1796 {
1797         unsigned long ip;
1798
1799         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1800                 ip = perf_guest_cbs->get_guest_ip();
1801         else
1802                 ip = instruction_pointer(regs);
1803
1804         return ip;
1805 }
1806
1807 unsigned long perf_misc_flags(struct pt_regs *regs)
1808 {
1809         int misc = 0;
1810
1811         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1812                 if (perf_guest_cbs->is_user_mode())
1813                         misc |= PERF_RECORD_MISC_GUEST_USER;
1814                 else
1815                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1816         } else {
1817                 if (user_mode(regs))
1818                         misc |= PERF_RECORD_MISC_USER;
1819                 else
1820                         misc |= PERF_RECORD_MISC_KERNEL;
1821         }
1822
1823         if (regs->flags & PERF_EFLAGS_EXACT)
1824                 misc |= PERF_RECORD_MISC_EXACT_IP;
1825
1826         return misc;
1827 }