2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
30 #include <asm/stacktrace.h>
32 #include <asm/compat.h>
36 #define wrmsrl(msr, val) \
38 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39 (unsigned long)(val)); \
40 native_write_msr((msr), (u32)((u64)(val)), \
41 (u32)((u64)(val) >> 32)); \
46 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
51 unsigned long offset, addr = (unsigned long)from;
52 unsigned long size, len = 0;
58 ret = __get_user_pages_fast(addr, 1, 0, &page);
62 offset = addr & (PAGE_SIZE - 1);
63 size = min(PAGE_SIZE - offset, n - len);
65 map = kmap_atomic(page);
66 memcpy(to, map+offset, size);
79 struct event_constraint {
81 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
90 int nb_id; /* NorthBridge id */
91 int refcnt; /* reference count */
92 struct perf_event *owners[X86_PMC_IDX_MAX];
93 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
96 #define MAX_LBR_ENTRIES 16
98 struct cpu_hw_events {
100 * Generic x86 PMC bits
102 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
103 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
104 unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
110 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
111 u64 tags[X86_PMC_IDX_MAX];
112 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
114 unsigned int group_flag;
117 * Intel DebugStore bits
119 struct debug_store *ds;
127 struct perf_branch_stack lbr_stack;
128 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
133 struct amd_nb *amd_nb;
136 #define __EVENT_CONSTRAINT(c, n, m, w) {\
137 { .idxmsk64 = (n) }, \
143 #define EVENT_CONSTRAINT(c, n, m) \
144 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
147 * Constraint on the Event code.
149 #define INTEL_EVENT_CONSTRAINT(c, n) \
150 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
153 * Constraint on the Event code + UMask + fixed-mask
155 * filter mask to validate fixed counter events.
156 * the following filters disqualify for fixed counters:
160 * The other filters are supported by fixed counters.
161 * The any-thread option is supported starting with v3.
163 #define FIXED_EVENT_CONSTRAINT(c, n) \
164 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
167 * Constraint on the Event code + UMask
169 #define PEBS_EVENT_CONSTRAINT(c, n) \
170 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
172 #define EVENT_CONSTRAINT_END \
173 EVENT_CONSTRAINT(0, 0, 0)
175 #define for_each_event_constraint(e, c) \
176 for ((e) = (c); (e)->weight; (e)++)
178 union perf_capabilities {
182 u64 pebs_arch_reg : 1;
190 * struct x86_pmu - generic x86 pmu
194 * Generic x86 PMC bits
198 int (*handle_irq)(struct pt_regs *);
199 void (*disable_all)(void);
200 void (*enable_all)(int added);
201 void (*enable)(struct perf_event *);
202 void (*disable)(struct perf_event *);
203 int (*hw_config)(struct perf_event *event);
204 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
207 u64 (*event_map)(int);
210 int num_counters_fixed;
215 struct event_constraint *
216 (*get_event_constraints)(struct cpu_hw_events *cpuc,
217 struct perf_event *event);
219 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
220 struct perf_event *event);
221 struct event_constraint *event_constraints;
222 void (*quirks)(void);
223 int perfctr_second_write;
225 int (*cpu_prepare)(int cpu);
226 void (*cpu_starting)(int cpu);
227 void (*cpu_dying)(int cpu);
228 void (*cpu_dead)(int cpu);
231 * Intel Arch Perfmon v2+
234 union perf_capabilities intel_cap;
237 * Intel DebugStore bits
240 int bts_active, pebs_active;
241 int pebs_record_size;
242 void (*drain_pebs)(struct pt_regs *regs);
243 struct event_constraint *pebs_constraints;
248 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
249 int lbr_nr; /* hardware stack size */
252 static struct x86_pmu x86_pmu __read_mostly;
254 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
258 static int x86_perf_event_set_period(struct perf_event *event);
261 * Generalized hw caching related hw_event table, filled
262 * in on a per model basis. A value of 0 means
263 * 'not supported', -1 means 'hw_event makes no sense on
264 * this CPU', any other value means the raw hw_event
268 #define C(x) PERF_COUNT_HW_CACHE_##x
270 static u64 __read_mostly hw_cache_event_ids
271 [PERF_COUNT_HW_CACHE_MAX]
272 [PERF_COUNT_HW_CACHE_OP_MAX]
273 [PERF_COUNT_HW_CACHE_RESULT_MAX];
276 * Propagate event elapsed time into the generic event.
277 * Can only be executed on the CPU where the event is active.
278 * Returns the delta events processed.
281 x86_perf_event_update(struct perf_event *event)
283 struct hw_perf_event *hwc = &event->hw;
284 int shift = 64 - x86_pmu.cntval_bits;
285 u64 prev_raw_count, new_raw_count;
289 if (idx == X86_PMC_IDX_FIXED_BTS)
293 * Careful: an NMI might modify the previous event value.
295 * Our tactic to handle this is to first atomically read and
296 * exchange a new raw count - then add that new-prev delta
297 * count to the generic event atomically:
300 prev_raw_count = local64_read(&hwc->prev_count);
301 rdmsrl(hwc->event_base + idx, new_raw_count);
303 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
304 new_raw_count) != prev_raw_count)
308 * Now we have the new raw value and have updated the prev
309 * timestamp already. We can now calculate the elapsed delta
310 * (event-)time and add that to the generic event.
312 * Careful, not all hw sign-extends above the physical width
315 delta = (new_raw_count << shift) - (prev_raw_count << shift);
318 local64_add(delta, &event->count);
319 local64_sub(delta, &hwc->period_left);
321 return new_raw_count;
324 static atomic_t active_events;
325 static DEFINE_MUTEX(pmc_reserve_mutex);
327 #ifdef CONFIG_X86_LOCAL_APIC
329 static bool reserve_pmc_hardware(void)
333 for (i = 0; i < x86_pmu.num_counters; i++) {
334 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
338 for (i = 0; i < x86_pmu.num_counters; i++) {
339 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
346 for (i--; i >= 0; i--)
347 release_evntsel_nmi(x86_pmu.eventsel + i);
349 i = x86_pmu.num_counters;
352 for (i--; i >= 0; i--)
353 release_perfctr_nmi(x86_pmu.perfctr + i);
358 static void release_pmc_hardware(void)
362 for (i = 0; i < x86_pmu.num_counters; i++) {
363 release_perfctr_nmi(x86_pmu.perfctr + i);
364 release_evntsel_nmi(x86_pmu.eventsel + i);
370 static bool reserve_pmc_hardware(void) { return true; }
371 static void release_pmc_hardware(void) {}
375 static bool check_hw_exists(void)
377 u64 val, val_new = 0;
381 * Check to see if the BIOS enabled any of the counters, if so
384 for (i = 0; i < x86_pmu.num_counters; i++) {
385 reg = x86_pmu.eventsel + i;
386 ret = rdmsrl_safe(reg, &val);
389 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
393 if (x86_pmu.num_counters_fixed) {
394 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
395 ret = rdmsrl_safe(reg, &val);
398 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
399 if (val & (0x03 << i*4))
405 * Now write a value and read it back to see if it matches,
406 * this is needed to detect certain hardware emulators (qemu/kvm)
407 * that don't trap on the MSR access and always return 0s.
410 ret = checking_wrmsrl(x86_pmu.perfctr, val);
411 ret |= rdmsrl_safe(x86_pmu.perfctr, &val_new);
412 if (ret || val != val_new)
418 printk(KERN_CONT "Broken BIOS detected, using software events only.\n");
419 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
423 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
427 static void reserve_ds_buffers(void);
428 static void release_ds_buffers(void);
430 static void hw_perf_event_destroy(struct perf_event *event)
432 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
433 release_pmc_hardware();
434 release_ds_buffers();
435 mutex_unlock(&pmc_reserve_mutex);
439 static inline int x86_pmu_initialized(void)
441 return x86_pmu.handle_irq != NULL;
445 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
447 unsigned int cache_type, cache_op, cache_result;
450 config = attr->config;
452 cache_type = (config >> 0) & 0xff;
453 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
456 cache_op = (config >> 8) & 0xff;
457 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
460 cache_result = (config >> 16) & 0xff;
461 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
464 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
477 static int x86_setup_perfctr(struct perf_event *event)
479 struct perf_event_attr *attr = &event->attr;
480 struct hw_perf_event *hwc = &event->hw;
483 if (!is_sampling_event(event)) {
484 hwc->sample_period = x86_pmu.max_period;
485 hwc->last_period = hwc->sample_period;
486 local64_set(&hwc->period_left, hwc->sample_period);
489 * If we have a PMU initialized but no APIC
490 * interrupts, we cannot sample hardware
491 * events (user-space has to fall back and
492 * sample via a hrtimer based software event):
498 if (attr->type == PERF_TYPE_RAW)
501 if (attr->type == PERF_TYPE_HW_CACHE)
502 return set_ext_hw_attr(hwc, attr);
504 if (attr->config >= x86_pmu.max_events)
510 config = x86_pmu.event_map(attr->config);
521 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
522 (hwc->sample_period == 1)) {
523 /* BTS is not supported by this architecture. */
524 if (!x86_pmu.bts_active)
527 /* BTS is currently only allowed for user-mode. */
528 if (!attr->exclude_kernel)
532 hwc->config |= config;
537 static int x86_pmu_hw_config(struct perf_event *event)
539 if (event->attr.precise_ip) {
542 /* Support for constant skid */
543 if (x86_pmu.pebs_active) {
546 /* Support for IP fixup */
551 if (event->attr.precise_ip > precise)
557 * (keep 'enabled' bit clear for now)
559 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
562 * Count user and OS events unless requested not to
564 if (!event->attr.exclude_user)
565 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
566 if (!event->attr.exclude_kernel)
567 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
569 if (event->attr.type == PERF_TYPE_RAW)
570 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
572 return x86_setup_perfctr(event);
576 * Setup the hardware configuration for a given attr_type
578 static int __x86_pmu_event_init(struct perf_event *event)
582 if (!x86_pmu_initialized())
586 if (!atomic_inc_not_zero(&active_events)) {
587 mutex_lock(&pmc_reserve_mutex);
588 if (atomic_read(&active_events) == 0) {
589 if (!reserve_pmc_hardware())
592 reserve_ds_buffers();
595 atomic_inc(&active_events);
596 mutex_unlock(&pmc_reserve_mutex);
601 event->destroy = hw_perf_event_destroy;
604 event->hw.last_cpu = -1;
605 event->hw.last_tag = ~0ULL;
607 return x86_pmu.hw_config(event);
610 static void x86_pmu_disable_all(void)
612 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
615 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
618 if (!test_bit(idx, cpuc->active_mask))
620 rdmsrl(x86_pmu.eventsel + idx, val);
621 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
623 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
624 wrmsrl(x86_pmu.eventsel + idx, val);
628 static void x86_pmu_disable(struct pmu *pmu)
630 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
632 if (!x86_pmu_initialized())
642 x86_pmu.disable_all();
645 static void x86_pmu_enable_all(int added)
647 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
650 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
651 struct perf_event *event = cpuc->events[idx];
654 if (!test_bit(idx, cpuc->active_mask))
657 val = event->hw.config;
658 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
659 wrmsrl(x86_pmu.eventsel + idx, val);
663 static struct pmu pmu;
665 static inline int is_x86_event(struct perf_event *event)
667 return event->pmu == &pmu;
670 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
672 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
673 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
674 int i, j, w, wmax, num = 0;
675 struct hw_perf_event *hwc;
677 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
679 for (i = 0; i < n; i++) {
680 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
685 * fastpath, try to reuse previous register
687 for (i = 0; i < n; i++) {
688 hwc = &cpuc->event_list[i]->hw;
695 /* constraint still honored */
696 if (!test_bit(hwc->idx, c->idxmsk))
699 /* not already used */
700 if (test_bit(hwc->idx, used_mask))
703 __set_bit(hwc->idx, used_mask);
705 assign[i] = hwc->idx;
714 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
717 * weight = number of possible counters
719 * 1 = most constrained, only works on one counter
720 * wmax = least constrained, works on any counter
722 * assign events to counters starting with most
723 * constrained events.
725 wmax = x86_pmu.num_counters;
728 * when fixed event counters are present,
729 * wmax is incremented by 1 to account
730 * for one more choice
732 if (x86_pmu.num_counters_fixed)
735 for (w = 1, num = n; num && w <= wmax; w++) {
737 for (i = 0; num && i < n; i++) {
739 hwc = &cpuc->event_list[i]->hw;
744 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
745 if (!test_bit(j, used_mask))
749 if (j == X86_PMC_IDX_MAX)
752 __set_bit(j, used_mask);
761 * scheduling failed or is just a simulation,
762 * free resources if necessary
764 if (!assign || num) {
765 for (i = 0; i < n; i++) {
766 if (x86_pmu.put_event_constraints)
767 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
770 return num ? -ENOSPC : 0;
774 * dogrp: true if must collect siblings events (group)
775 * returns total number of events and error code
777 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
779 struct perf_event *event;
782 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
784 /* current number of events already accepted */
787 if (is_x86_event(leader)) {
790 cpuc->event_list[n] = leader;
796 list_for_each_entry(event, &leader->sibling_list, group_entry) {
797 if (!is_x86_event(event) ||
798 event->state <= PERF_EVENT_STATE_OFF)
804 cpuc->event_list[n] = event;
810 static inline void x86_assign_hw_event(struct perf_event *event,
811 struct cpu_hw_events *cpuc, int i)
813 struct hw_perf_event *hwc = &event->hw;
815 hwc->idx = cpuc->assign[i];
816 hwc->last_cpu = smp_processor_id();
817 hwc->last_tag = ++cpuc->tags[i];
819 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
820 hwc->config_base = 0;
822 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
823 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
825 * We set it so that event_base + idx in wrmsr/rdmsr maps to
826 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
829 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
831 hwc->config_base = x86_pmu.eventsel;
832 hwc->event_base = x86_pmu.perfctr;
836 static inline int match_prev_assignment(struct hw_perf_event *hwc,
837 struct cpu_hw_events *cpuc,
840 return hwc->idx == cpuc->assign[i] &&
841 hwc->last_cpu == smp_processor_id() &&
842 hwc->last_tag == cpuc->tags[i];
845 static void x86_pmu_start(struct perf_event *event, int flags);
846 static void x86_pmu_stop(struct perf_event *event, int flags);
848 static void x86_pmu_enable(struct pmu *pmu)
850 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
851 struct perf_event *event;
852 struct hw_perf_event *hwc;
853 int i, added = cpuc->n_added;
855 if (!x86_pmu_initialized())
862 int n_running = cpuc->n_events - cpuc->n_added;
864 * apply assignment obtained either from
865 * hw_perf_group_sched_in() or x86_pmu_enable()
867 * step1: save events moving to new counters
868 * step2: reprogram moved events into new counters
870 for (i = 0; i < n_running; i++) {
871 event = cpuc->event_list[i];
875 * we can avoid reprogramming counter if:
876 * - assigned same counter as last time
877 * - running on same CPU as last time
878 * - no other event has used the counter since
880 if (hwc->idx == -1 ||
881 match_prev_assignment(hwc, cpuc, i))
885 * Ensure we don't accidentally enable a stopped
886 * counter simply because we rescheduled.
888 if (hwc->state & PERF_HES_STOPPED)
889 hwc->state |= PERF_HES_ARCH;
891 x86_pmu_stop(event, PERF_EF_UPDATE);
894 for (i = 0; i < cpuc->n_events; i++) {
895 event = cpuc->event_list[i];
898 if (!match_prev_assignment(hwc, cpuc, i))
899 x86_assign_hw_event(event, cpuc, i);
900 else if (i < n_running)
903 if (hwc->state & PERF_HES_ARCH)
906 x86_pmu_start(event, PERF_EF_RELOAD);
909 perf_events_lapic_init();
915 x86_pmu.enable_all(added);
918 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
921 wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
924 static inline void x86_pmu_disable_event(struct perf_event *event)
926 struct hw_perf_event *hwc = &event->hw;
928 wrmsrl(hwc->config_base + hwc->idx, hwc->config);
931 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
934 * Set the next IRQ period, based on the hwc->period_left value.
935 * To be called with the event disabled in hw:
938 x86_perf_event_set_period(struct perf_event *event)
940 struct hw_perf_event *hwc = &event->hw;
941 s64 left = local64_read(&hwc->period_left);
942 s64 period = hwc->sample_period;
943 int ret = 0, idx = hwc->idx;
945 if (idx == X86_PMC_IDX_FIXED_BTS)
949 * If we are way outside a reasonable range then just skip forward:
951 if (unlikely(left <= -period)) {
953 local64_set(&hwc->period_left, left);
954 hwc->last_period = period;
958 if (unlikely(left <= 0)) {
960 local64_set(&hwc->period_left, left);
961 hwc->last_period = period;
965 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
967 if (unlikely(left < 2))
970 if (left > x86_pmu.max_period)
971 left = x86_pmu.max_period;
973 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
976 * The hw event starts counting from this event offset,
977 * mark it to be able to extra future deltas:
979 local64_set(&hwc->prev_count, (u64)-left);
981 wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
984 * Due to erratum on certan cpu we need
985 * a second write to be sure the register
986 * is updated properly
988 if (x86_pmu.perfctr_second_write) {
989 wrmsrl(hwc->event_base + idx,
990 (u64)(-left) & x86_pmu.cntval_mask);
993 perf_event_update_userpage(event);
998 static void x86_pmu_enable_event(struct perf_event *event)
1000 if (__this_cpu_read(cpu_hw_events.enabled))
1001 __x86_pmu_enable_event(&event->hw,
1002 ARCH_PERFMON_EVENTSEL_ENABLE);
1006 * Add a single event to the PMU.
1008 * The event is added to the group of enabled events
1009 * but only if it can be scehduled with existing events.
1011 static int x86_pmu_add(struct perf_event *event, int flags)
1013 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1014 struct hw_perf_event *hwc;
1015 int assign[X86_PMC_IDX_MAX];
1020 perf_pmu_disable(event->pmu);
1021 n0 = cpuc->n_events;
1022 ret = n = collect_events(cpuc, event, false);
1026 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1027 if (!(flags & PERF_EF_START))
1028 hwc->state |= PERF_HES_ARCH;
1031 * If group events scheduling transaction was started,
1032 * skip the schedulability test here, it will be peformed
1033 * at commit time (->commit_txn) as a whole
1035 if (cpuc->group_flag & PERF_EVENT_TXN)
1038 ret = x86_pmu.schedule_events(cpuc, n, assign);
1042 * copy new assignment, now we know it is possible
1043 * will be used by hw_perf_enable()
1045 memcpy(cpuc->assign, assign, n*sizeof(int));
1049 cpuc->n_added += n - n0;
1050 cpuc->n_txn += n - n0;
1054 perf_pmu_enable(event->pmu);
1058 static void x86_pmu_start(struct perf_event *event, int flags)
1060 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1061 int idx = event->hw.idx;
1063 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1066 if (WARN_ON_ONCE(idx == -1))
1069 if (flags & PERF_EF_RELOAD) {
1070 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1071 x86_perf_event_set_period(event);
1074 event->hw.state = 0;
1076 cpuc->events[idx] = event;
1077 __set_bit(idx, cpuc->active_mask);
1078 __set_bit(idx, cpuc->running);
1079 x86_pmu.enable(event);
1080 perf_event_update_userpage(event);
1083 void perf_event_print_debug(void)
1085 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1087 struct cpu_hw_events *cpuc;
1088 unsigned long flags;
1091 if (!x86_pmu.num_counters)
1094 local_irq_save(flags);
1096 cpu = smp_processor_id();
1097 cpuc = &per_cpu(cpu_hw_events, cpu);
1099 if (x86_pmu.version >= 2) {
1100 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1101 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1102 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1103 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1104 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1107 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1108 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1109 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1110 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1111 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1113 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1115 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1116 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1117 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1119 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1121 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1122 cpu, idx, pmc_ctrl);
1123 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1124 cpu, idx, pmc_count);
1125 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1126 cpu, idx, prev_left);
1128 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1129 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1131 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1132 cpu, idx, pmc_count);
1134 local_irq_restore(flags);
1137 static void x86_pmu_stop(struct perf_event *event, int flags)
1139 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1140 struct hw_perf_event *hwc = &event->hw;
1142 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1143 x86_pmu.disable(event);
1144 cpuc->events[hwc->idx] = NULL;
1145 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1146 hwc->state |= PERF_HES_STOPPED;
1149 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1151 * Drain the remaining delta count out of a event
1152 * that we are disabling:
1154 x86_perf_event_update(event);
1155 hwc->state |= PERF_HES_UPTODATE;
1159 static void x86_pmu_del(struct perf_event *event, int flags)
1161 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1165 * If we're called during a txn, we don't need to do anything.
1166 * The events never got scheduled and ->cancel_txn will truncate
1169 if (cpuc->group_flag & PERF_EVENT_TXN)
1172 x86_pmu_stop(event, PERF_EF_UPDATE);
1174 for (i = 0; i < cpuc->n_events; i++) {
1175 if (event == cpuc->event_list[i]) {
1177 if (x86_pmu.put_event_constraints)
1178 x86_pmu.put_event_constraints(cpuc, event);
1180 while (++i < cpuc->n_events)
1181 cpuc->event_list[i-1] = cpuc->event_list[i];
1187 perf_event_update_userpage(event);
1190 static int x86_pmu_handle_irq(struct pt_regs *regs)
1192 struct perf_sample_data data;
1193 struct cpu_hw_events *cpuc;
1194 struct perf_event *event;
1195 int idx, handled = 0;
1198 perf_sample_data_init(&data, 0);
1200 cpuc = &__get_cpu_var(cpu_hw_events);
1202 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1203 if (!test_bit(idx, cpuc->active_mask)) {
1205 * Though we deactivated the counter some cpus
1206 * might still deliver spurious interrupts still
1207 * in flight. Catch them:
1209 if (__test_and_clear_bit(idx, cpuc->running))
1214 event = cpuc->events[idx];
1216 val = x86_perf_event_update(event);
1217 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1224 data.period = event->hw.last_period;
1226 if (!x86_perf_event_set_period(event))
1229 if (perf_event_overflow(event, 1, &data, regs))
1230 x86_pmu_stop(event, 0);
1234 inc_irq_stat(apic_perf_irqs);
1239 void perf_events_lapic_init(void)
1241 if (!x86_pmu.apic || !x86_pmu_initialized())
1245 * Always use NMI for PMU
1247 apic_write(APIC_LVTPC, APIC_DM_NMI);
1250 struct pmu_nmi_state {
1251 unsigned int marked;
1255 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1257 static int __kprobes
1258 perf_event_nmi_handler(struct notifier_block *self,
1259 unsigned long cmd, void *__args)
1261 struct die_args *args = __args;
1262 unsigned int this_nmi;
1265 if (!atomic_read(&active_events))
1271 case DIE_NMIUNKNOWN:
1272 this_nmi = percpu_read(irq_stat.__nmi_count);
1273 if (this_nmi != __this_cpu_read(pmu_nmi.marked))
1274 /* let the kernel handle the unknown nmi */
1277 * This one is a PMU back-to-back nmi. Two events
1278 * trigger 'simultaneously' raising two back-to-back
1279 * NMIs. If the first NMI handles both, the latter
1280 * will be empty and daze the CPU. So, we drop it to
1281 * avoid false-positive 'unknown nmi' messages.
1288 apic_write(APIC_LVTPC, APIC_DM_NMI);
1290 handled = x86_pmu.handle_irq(args->regs);
1294 this_nmi = percpu_read(irq_stat.__nmi_count);
1295 if ((handled > 1) ||
1296 /* the next nmi could be a back-to-back nmi */
1297 ((__this_cpu_read(pmu_nmi.marked) == this_nmi) &&
1298 (__this_cpu_read(pmu_nmi.handled) > 1))) {
1300 * We could have two subsequent back-to-back nmis: The
1301 * first handles more than one counter, the 2nd
1302 * handles only one counter and the 3rd handles no
1305 * This is the 2nd nmi because the previous was
1306 * handling more than one counter. We will mark the
1307 * next (3rd) and then drop it if unhandled.
1309 __this_cpu_write(pmu_nmi.marked, this_nmi + 1);
1310 __this_cpu_write(pmu_nmi.handled, handled);
1316 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1317 .notifier_call = perf_event_nmi_handler,
1319 .priority = NMI_LOCAL_LOW_PRIOR,
1322 static struct event_constraint unconstrained;
1323 static struct event_constraint emptyconstraint;
1325 static struct event_constraint *
1326 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1328 struct event_constraint *c;
1330 if (x86_pmu.event_constraints) {
1331 for_each_event_constraint(c, x86_pmu.event_constraints) {
1332 if ((event->hw.config & c->cmask) == c->code)
1337 return &unconstrained;
1340 #include "perf_event_amd.c"
1341 #include "perf_event_p6.c"
1342 #include "perf_event_p4.c"
1343 #include "perf_event_intel_lbr.c"
1344 #include "perf_event_intel_ds.c"
1345 #include "perf_event_intel.c"
1347 static int __cpuinit
1348 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1350 unsigned int cpu = (long)hcpu;
1351 int ret = NOTIFY_OK;
1353 switch (action & ~CPU_TASKS_FROZEN) {
1354 case CPU_UP_PREPARE:
1355 if (x86_pmu.cpu_prepare)
1356 ret = x86_pmu.cpu_prepare(cpu);
1360 if (x86_pmu.cpu_starting)
1361 x86_pmu.cpu_starting(cpu);
1365 if (x86_pmu.cpu_dying)
1366 x86_pmu.cpu_dying(cpu);
1369 case CPU_UP_CANCELED:
1371 if (x86_pmu.cpu_dead)
1372 x86_pmu.cpu_dead(cpu);
1382 static void __init pmu_check_apic(void)
1388 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1389 pr_info("no hardware sampling interrupt available.\n");
1392 static int __init init_hw_perf_events(void)
1394 struct event_constraint *c;
1397 pr_info("Performance Events: ");
1399 switch (boot_cpu_data.x86_vendor) {
1400 case X86_VENDOR_INTEL:
1401 err = intel_pmu_init();
1403 case X86_VENDOR_AMD:
1404 err = amd_pmu_init();
1410 pr_cont("no PMU driver, software events only.\n");
1416 /* sanity check that the hardware exists or is emulated */
1417 if (!check_hw_exists())
1420 pr_cont("%s PMU driver.\n", x86_pmu.name);
1425 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1426 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1427 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1428 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1430 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1432 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1433 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1434 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1435 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1438 x86_pmu.intel_ctrl |=
1439 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1441 perf_events_lapic_init();
1442 register_die_notifier(&perf_event_nmi_notifier);
1444 unconstrained = (struct event_constraint)
1445 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1446 0, x86_pmu.num_counters);
1448 if (x86_pmu.event_constraints) {
1449 for_each_event_constraint(c, x86_pmu.event_constraints) {
1450 if (c->cmask != X86_RAW_EVENT_MASK)
1453 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1454 c->weight += x86_pmu.num_counters;
1458 pr_info("... version: %d\n", x86_pmu.version);
1459 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1460 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1461 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1462 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1463 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1464 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1466 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1467 perf_cpu_notifier(x86_pmu_notifier);
1471 early_initcall(init_hw_perf_events);
1473 static inline void x86_pmu_read(struct perf_event *event)
1475 x86_perf_event_update(event);
1479 * Start group events scheduling transaction
1480 * Set the flag to make pmu::enable() not perform the
1481 * schedulability test, it will be performed at commit time
1483 static void x86_pmu_start_txn(struct pmu *pmu)
1485 perf_pmu_disable(pmu);
1486 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1487 __this_cpu_write(cpu_hw_events.n_txn, 0);
1491 * Stop group events scheduling transaction
1492 * Clear the flag and pmu::enable() will perform the
1493 * schedulability test.
1495 static void x86_pmu_cancel_txn(struct pmu *pmu)
1497 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1499 * Truncate the collected events.
1501 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1502 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1503 perf_pmu_enable(pmu);
1507 * Commit group events scheduling transaction
1508 * Perform the group schedulability test as a whole
1509 * Return 0 if success
1511 static int x86_pmu_commit_txn(struct pmu *pmu)
1513 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1514 int assign[X86_PMC_IDX_MAX];
1519 if (!x86_pmu_initialized())
1522 ret = x86_pmu.schedule_events(cpuc, n, assign);
1527 * copy new assignment, now we know it is possible
1528 * will be used by hw_perf_enable()
1530 memcpy(cpuc->assign, assign, n*sizeof(int));
1532 cpuc->group_flag &= ~PERF_EVENT_TXN;
1533 perf_pmu_enable(pmu);
1538 * validate that we can schedule this event
1540 static int validate_event(struct perf_event *event)
1542 struct cpu_hw_events *fake_cpuc;
1543 struct event_constraint *c;
1546 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1550 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1552 if (!c || !c->weight)
1555 if (x86_pmu.put_event_constraints)
1556 x86_pmu.put_event_constraints(fake_cpuc, event);
1564 * validate a single event group
1566 * validation include:
1567 * - check events are compatible which each other
1568 * - events do not compete for the same counter
1569 * - number of events <= number of counters
1571 * validation ensures the group can be loaded onto the
1572 * PMU if it was the only group available.
1574 static int validate_group(struct perf_event *event)
1576 struct perf_event *leader = event->group_leader;
1577 struct cpu_hw_events *fake_cpuc;
1581 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1586 * the event is not yet connected with its
1587 * siblings therefore we must first collect
1588 * existing siblings, then add the new event
1589 * before we can simulate the scheduling
1592 n = collect_events(fake_cpuc, leader, true);
1596 fake_cpuc->n_events = n;
1597 n = collect_events(fake_cpuc, event, false);
1601 fake_cpuc->n_events = n;
1603 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1611 static int x86_pmu_event_init(struct perf_event *event)
1616 switch (event->attr.type) {
1618 case PERF_TYPE_HARDWARE:
1619 case PERF_TYPE_HW_CACHE:
1626 err = __x86_pmu_event_init(event);
1629 * we temporarily connect event to its pmu
1630 * such that validate_group() can classify
1631 * it as an x86 event using is_x86_event()
1636 if (event->group_leader != event)
1637 err = validate_group(event);
1639 err = validate_event(event);
1645 event->destroy(event);
1651 static struct pmu pmu = {
1652 .pmu_enable = x86_pmu_enable,
1653 .pmu_disable = x86_pmu_disable,
1655 .event_init = x86_pmu_event_init,
1659 .start = x86_pmu_start,
1660 .stop = x86_pmu_stop,
1661 .read = x86_pmu_read,
1663 .start_txn = x86_pmu_start_txn,
1664 .cancel_txn = x86_pmu_cancel_txn,
1665 .commit_txn = x86_pmu_commit_txn,
1673 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1675 /* Ignore warnings */
1678 static void backtrace_warning(void *data, char *msg)
1680 /* Ignore warnings */
1683 static int backtrace_stack(void *data, char *name)
1688 static void backtrace_address(void *data, unsigned long addr, int reliable)
1690 struct perf_callchain_entry *entry = data;
1692 perf_callchain_store(entry, addr);
1695 static const struct stacktrace_ops backtrace_ops = {
1696 .warning = backtrace_warning,
1697 .warning_symbol = backtrace_warning_symbol,
1698 .stack = backtrace_stack,
1699 .address = backtrace_address,
1700 .walk_stack = print_context_stack_bp,
1704 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1706 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1707 /* TODO: We don't support guest os callchain now */
1711 perf_callchain_store(entry, regs->ip);
1713 dump_trace(NULL, regs, NULL, &backtrace_ops, entry);
1716 #ifdef CONFIG_COMPAT
1718 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1720 /* 32-bit process in 64-bit kernel. */
1721 struct stack_frame_ia32 frame;
1722 const void __user *fp;
1724 if (!test_thread_flag(TIF_IA32))
1727 fp = compat_ptr(regs->bp);
1728 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1729 unsigned long bytes;
1730 frame.next_frame = 0;
1731 frame.return_address = 0;
1733 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1734 if (bytes != sizeof(frame))
1737 if (fp < compat_ptr(regs->sp))
1740 perf_callchain_store(entry, frame.return_address);
1741 fp = compat_ptr(frame.next_frame);
1747 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1754 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1756 struct stack_frame frame;
1757 const void __user *fp;
1759 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1760 /* TODO: We don't support guest os callchain now */
1764 fp = (void __user *)regs->bp;
1766 perf_callchain_store(entry, regs->ip);
1768 if (perf_callchain_user32(regs, entry))
1771 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1772 unsigned long bytes;
1773 frame.next_frame = NULL;
1774 frame.return_address = 0;
1776 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1777 if (bytes != sizeof(frame))
1780 if ((unsigned long)fp < regs->sp)
1783 perf_callchain_store(entry, frame.return_address);
1784 fp = frame.next_frame;
1788 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1792 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1793 ip = perf_guest_cbs->get_guest_ip();
1795 ip = instruction_pointer(regs);
1800 unsigned long perf_misc_flags(struct pt_regs *regs)
1804 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1805 if (perf_guest_cbs->is_user_mode())
1806 misc |= PERF_RECORD_MISC_GUEST_USER;
1808 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1810 if (user_mode(regs))
1811 misc |= PERF_RECORD_MISC_USER;
1813 misc |= PERF_RECORD_MISC_KERNEL;
1816 if (regs->flags & PERF_EFLAGS_EXACT)
1817 misc |= PERF_RECORD_MISC_EXACT_IP;