Merge tag 'cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35
36 #include "perf_event.h"
37
38 struct x86_pmu x86_pmu __read_mostly;
39
40 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
41         .enabled = 1,
42 };
43
44 u64 __read_mostly hw_cache_event_ids
45                                 [PERF_COUNT_HW_CACHE_MAX]
46                                 [PERF_COUNT_HW_CACHE_OP_MAX]
47                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
48 u64 __read_mostly hw_cache_extra_regs
49                                 [PERF_COUNT_HW_CACHE_MAX]
50                                 [PERF_COUNT_HW_CACHE_OP_MAX]
51                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
52
53 /*
54  * Propagate event elapsed time into the generic event.
55  * Can only be executed on the CPU where the event is active.
56  * Returns the delta events processed.
57  */
58 u64 x86_perf_event_update(struct perf_event *event)
59 {
60         struct hw_perf_event *hwc = &event->hw;
61         int shift = 64 - x86_pmu.cntval_bits;
62         u64 prev_raw_count, new_raw_count;
63         int idx = hwc->idx;
64         s64 delta;
65
66         if (idx == INTEL_PMC_IDX_FIXED_BTS)
67                 return 0;
68
69         /*
70          * Careful: an NMI might modify the previous event value.
71          *
72          * Our tactic to handle this is to first atomically read and
73          * exchange a new raw count - then add that new-prev delta
74          * count to the generic event atomically:
75          */
76 again:
77         prev_raw_count = local64_read(&hwc->prev_count);
78         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
79
80         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
81                                         new_raw_count) != prev_raw_count)
82                 goto again;
83
84         /*
85          * Now we have the new raw value and have updated the prev
86          * timestamp already. We can now calculate the elapsed delta
87          * (event-)time and add that to the generic event.
88          *
89          * Careful, not all hw sign-extends above the physical width
90          * of the count.
91          */
92         delta = (new_raw_count << shift) - (prev_raw_count << shift);
93         delta >>= shift;
94
95         local64_add(delta, &event->count);
96         local64_sub(delta, &hwc->period_left);
97
98         return new_raw_count;
99 }
100
101 /*
102  * Find and validate any extra registers to set up.
103  */
104 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
105 {
106         struct hw_perf_event_extra *reg;
107         struct extra_reg *er;
108
109         reg = &event->hw.extra_reg;
110
111         if (!x86_pmu.extra_regs)
112                 return 0;
113
114         for (er = x86_pmu.extra_regs; er->msr; er++) {
115                 if (er->event != (config & er->config_mask))
116                         continue;
117                 if (event->attr.config1 & ~er->valid_mask)
118                         return -EINVAL;
119
120                 reg->idx = er->idx;
121                 reg->config = event->attr.config1;
122                 reg->reg = er->msr;
123                 break;
124         }
125         return 0;
126 }
127
128 static atomic_t active_events;
129 static DEFINE_MUTEX(pmc_reserve_mutex);
130
131 #ifdef CONFIG_X86_LOCAL_APIC
132
133 static bool reserve_pmc_hardware(void)
134 {
135         int i;
136
137         for (i = 0; i < x86_pmu.num_counters; i++) {
138                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
139                         goto perfctr_fail;
140         }
141
142         for (i = 0; i < x86_pmu.num_counters; i++) {
143                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
144                         goto eventsel_fail;
145         }
146
147         return true;
148
149 eventsel_fail:
150         for (i--; i >= 0; i--)
151                 release_evntsel_nmi(x86_pmu_config_addr(i));
152
153         i = x86_pmu.num_counters;
154
155 perfctr_fail:
156         for (i--; i >= 0; i--)
157                 release_perfctr_nmi(x86_pmu_event_addr(i));
158
159         return false;
160 }
161
162 static void release_pmc_hardware(void)
163 {
164         int i;
165
166         for (i = 0; i < x86_pmu.num_counters; i++) {
167                 release_perfctr_nmi(x86_pmu_event_addr(i));
168                 release_evntsel_nmi(x86_pmu_config_addr(i));
169         }
170 }
171
172 #else
173
174 static bool reserve_pmc_hardware(void) { return true; }
175 static void release_pmc_hardware(void) {}
176
177 #endif
178
179 static bool check_hw_exists(void)
180 {
181         u64 val, val_new = ~0;
182         int i, reg, ret = 0;
183
184         /*
185          * Check to see if the BIOS enabled any of the counters, if so
186          * complain and bail.
187          */
188         for (i = 0; i < x86_pmu.num_counters; i++) {
189                 reg = x86_pmu_config_addr(i);
190                 ret = rdmsrl_safe(reg, &val);
191                 if (ret)
192                         goto msr_fail;
193                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
194                         goto bios_fail;
195         }
196
197         if (x86_pmu.num_counters_fixed) {
198                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
199                 ret = rdmsrl_safe(reg, &val);
200                 if (ret)
201                         goto msr_fail;
202                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
203                         if (val & (0x03 << i*4))
204                                 goto bios_fail;
205                 }
206         }
207
208         /*
209          * Now write a value and read it back to see if it matches,
210          * this is needed to detect certain hardware emulators (qemu/kvm)
211          * that don't trap on the MSR access and always return 0s.
212          */
213         val = 0xabcdUL;
214         reg = x86_pmu_event_addr(0);
215         ret = wrmsrl_safe(reg, val);
216         ret |= rdmsrl_safe(reg, &val_new);
217         if (ret || val != val_new)
218                 goto msr_fail;
219
220         return true;
221
222 bios_fail:
223         /*
224          * We still allow the PMU driver to operate:
225          */
226         printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
227         printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
228
229         return true;
230
231 msr_fail:
232         printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
233         printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
234
235         return false;
236 }
237
238 static void hw_perf_event_destroy(struct perf_event *event)
239 {
240         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
241                 release_pmc_hardware();
242                 release_ds_buffers();
243                 mutex_unlock(&pmc_reserve_mutex);
244         }
245 }
246
247 static inline int x86_pmu_initialized(void)
248 {
249         return x86_pmu.handle_irq != NULL;
250 }
251
252 static inline int
253 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
254 {
255         struct perf_event_attr *attr = &event->attr;
256         unsigned int cache_type, cache_op, cache_result;
257         u64 config, val;
258
259         config = attr->config;
260
261         cache_type = (config >>  0) & 0xff;
262         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
263                 return -EINVAL;
264
265         cache_op = (config >>  8) & 0xff;
266         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
267                 return -EINVAL;
268
269         cache_result = (config >> 16) & 0xff;
270         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
271                 return -EINVAL;
272
273         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
274
275         if (val == 0)
276                 return -ENOENT;
277
278         if (val == -1)
279                 return -EINVAL;
280
281         hwc->config |= val;
282         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
283         return x86_pmu_extra_regs(val, event);
284 }
285
286 int x86_setup_perfctr(struct perf_event *event)
287 {
288         struct perf_event_attr *attr = &event->attr;
289         struct hw_perf_event *hwc = &event->hw;
290         u64 config;
291
292         if (!is_sampling_event(event)) {
293                 hwc->sample_period = x86_pmu.max_period;
294                 hwc->last_period = hwc->sample_period;
295                 local64_set(&hwc->period_left, hwc->sample_period);
296         } else {
297                 /*
298                  * If we have a PMU initialized but no APIC
299                  * interrupts, we cannot sample hardware
300                  * events (user-space has to fall back and
301                  * sample via a hrtimer based software event):
302                  */
303                 if (!x86_pmu.apic)
304                         return -EOPNOTSUPP;
305         }
306
307         if (attr->type == PERF_TYPE_RAW)
308                 return x86_pmu_extra_regs(event->attr.config, event);
309
310         if (attr->type == PERF_TYPE_HW_CACHE)
311                 return set_ext_hw_attr(hwc, event);
312
313         if (attr->config >= x86_pmu.max_events)
314                 return -EINVAL;
315
316         /*
317          * The generic map:
318          */
319         config = x86_pmu.event_map(attr->config);
320
321         if (config == 0)
322                 return -ENOENT;
323
324         if (config == -1LL)
325                 return -EINVAL;
326
327         /*
328          * Branch tracing:
329          */
330         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
331             !attr->freq && hwc->sample_period == 1) {
332                 /* BTS is not supported by this architecture. */
333                 if (!x86_pmu.bts_active)
334                         return -EOPNOTSUPP;
335
336                 /* BTS is currently only allowed for user-mode. */
337                 if (!attr->exclude_kernel)
338                         return -EOPNOTSUPP;
339         }
340
341         hwc->config |= config;
342
343         return 0;
344 }
345
346 /*
347  * check that branch_sample_type is compatible with
348  * settings needed for precise_ip > 1 which implies
349  * using the LBR to capture ALL taken branches at the
350  * priv levels of the measurement
351  */
352 static inline int precise_br_compat(struct perf_event *event)
353 {
354         u64 m = event->attr.branch_sample_type;
355         u64 b = 0;
356
357         /* must capture all branches */
358         if (!(m & PERF_SAMPLE_BRANCH_ANY))
359                 return 0;
360
361         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
362
363         if (!event->attr.exclude_user)
364                 b |= PERF_SAMPLE_BRANCH_USER;
365
366         if (!event->attr.exclude_kernel)
367                 b |= PERF_SAMPLE_BRANCH_KERNEL;
368
369         /*
370          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
371          */
372
373         return m == b;
374 }
375
376 int x86_pmu_hw_config(struct perf_event *event)
377 {
378         if (event->attr.precise_ip) {
379                 int precise = 0;
380
381                 /* Support for constant skid */
382                 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
383                         precise++;
384
385                         /* Support for IP fixup */
386                         if (x86_pmu.lbr_nr)
387                                 precise++;
388                 }
389
390                 if (event->attr.precise_ip > precise)
391                         return -EOPNOTSUPP;
392                 /*
393                  * check that PEBS LBR correction does not conflict with
394                  * whatever the user is asking with attr->branch_sample_type
395                  */
396                 if (event->attr.precise_ip > 1) {
397                         u64 *br_type = &event->attr.branch_sample_type;
398
399                         if (has_branch_stack(event)) {
400                                 if (!precise_br_compat(event))
401                                         return -EOPNOTSUPP;
402
403                                 /* branch_sample_type is compatible */
404
405                         } else {
406                                 /*
407                                  * user did not specify  branch_sample_type
408                                  *
409                                  * For PEBS fixups, we capture all
410                                  * the branches at the priv level of the
411                                  * event.
412                                  */
413                                 *br_type = PERF_SAMPLE_BRANCH_ANY;
414
415                                 if (!event->attr.exclude_user)
416                                         *br_type |= PERF_SAMPLE_BRANCH_USER;
417
418                                 if (!event->attr.exclude_kernel)
419                                         *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
420                         }
421                 }
422         }
423
424         /*
425          * Generate PMC IRQs:
426          * (keep 'enabled' bit clear for now)
427          */
428         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
429
430         /*
431          * Count user and OS events unless requested not to
432          */
433         if (!event->attr.exclude_user)
434                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
435         if (!event->attr.exclude_kernel)
436                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
437
438         if (event->attr.type == PERF_TYPE_RAW)
439                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
440
441         return x86_setup_perfctr(event);
442 }
443
444 /*
445  * Setup the hardware configuration for a given attr_type
446  */
447 static int __x86_pmu_event_init(struct perf_event *event)
448 {
449         int err;
450
451         if (!x86_pmu_initialized())
452                 return -ENODEV;
453
454         err = 0;
455         if (!atomic_inc_not_zero(&active_events)) {
456                 mutex_lock(&pmc_reserve_mutex);
457                 if (atomic_read(&active_events) == 0) {
458                         if (!reserve_pmc_hardware())
459                                 err = -EBUSY;
460                         else
461                                 reserve_ds_buffers();
462                 }
463                 if (!err)
464                         atomic_inc(&active_events);
465                 mutex_unlock(&pmc_reserve_mutex);
466         }
467         if (err)
468                 return err;
469
470         event->destroy = hw_perf_event_destroy;
471
472         event->hw.idx = -1;
473         event->hw.last_cpu = -1;
474         event->hw.last_tag = ~0ULL;
475
476         /* mark unused */
477         event->hw.extra_reg.idx = EXTRA_REG_NONE;
478         event->hw.branch_reg.idx = EXTRA_REG_NONE;
479
480         return x86_pmu.hw_config(event);
481 }
482
483 void x86_pmu_disable_all(void)
484 {
485         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
486         int idx;
487
488         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
489                 u64 val;
490
491                 if (!test_bit(idx, cpuc->active_mask))
492                         continue;
493                 rdmsrl(x86_pmu_config_addr(idx), val);
494                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
495                         continue;
496                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
497                 wrmsrl(x86_pmu_config_addr(idx), val);
498         }
499 }
500
501 static void x86_pmu_disable(struct pmu *pmu)
502 {
503         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
504
505         if (!x86_pmu_initialized())
506                 return;
507
508         if (!cpuc->enabled)
509                 return;
510
511         cpuc->n_added = 0;
512         cpuc->enabled = 0;
513         barrier();
514
515         x86_pmu.disable_all();
516 }
517
518 void x86_pmu_enable_all(int added)
519 {
520         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
521         int idx;
522
523         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
524                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
525
526                 if (!test_bit(idx, cpuc->active_mask))
527                         continue;
528
529                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
530         }
531 }
532
533 static struct pmu pmu;
534
535 static inline int is_x86_event(struct perf_event *event)
536 {
537         return event->pmu == &pmu;
538 }
539
540 /*
541  * Event scheduler state:
542  *
543  * Assign events iterating over all events and counters, beginning
544  * with events with least weights first. Keep the current iterator
545  * state in struct sched_state.
546  */
547 struct sched_state {
548         int     weight;
549         int     event;          /* event index */
550         int     counter;        /* counter index */
551         int     unassigned;     /* number of events to be assigned left */
552         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
553 };
554
555 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
556 #define SCHED_STATES_MAX        2
557
558 struct perf_sched {
559         int                     max_weight;
560         int                     max_events;
561         struct event_constraint **constraints;
562         struct sched_state      state;
563         int                     saved_states;
564         struct sched_state      saved[SCHED_STATES_MAX];
565 };
566
567 /*
568  * Initialize interator that runs through all events and counters.
569  */
570 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
571                             int num, int wmin, int wmax)
572 {
573         int idx;
574
575         memset(sched, 0, sizeof(*sched));
576         sched->max_events       = num;
577         sched->max_weight       = wmax;
578         sched->constraints      = c;
579
580         for (idx = 0; idx < num; idx++) {
581                 if (c[idx]->weight == wmin)
582                         break;
583         }
584
585         sched->state.event      = idx;          /* start with min weight */
586         sched->state.weight     = wmin;
587         sched->state.unassigned = num;
588 }
589
590 static void perf_sched_save_state(struct perf_sched *sched)
591 {
592         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
593                 return;
594
595         sched->saved[sched->saved_states] = sched->state;
596         sched->saved_states++;
597 }
598
599 static bool perf_sched_restore_state(struct perf_sched *sched)
600 {
601         if (!sched->saved_states)
602                 return false;
603
604         sched->saved_states--;
605         sched->state = sched->saved[sched->saved_states];
606
607         /* continue with next counter: */
608         clear_bit(sched->state.counter++, sched->state.used);
609
610         return true;
611 }
612
613 /*
614  * Select a counter for the current event to schedule. Return true on
615  * success.
616  */
617 static bool __perf_sched_find_counter(struct perf_sched *sched)
618 {
619         struct event_constraint *c;
620         int idx;
621
622         if (!sched->state.unassigned)
623                 return false;
624
625         if (sched->state.event >= sched->max_events)
626                 return false;
627
628         c = sched->constraints[sched->state.event];
629
630         /* Prefer fixed purpose counters */
631         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
632                 idx = INTEL_PMC_IDX_FIXED;
633                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
634                         if (!__test_and_set_bit(idx, sched->state.used))
635                                 goto done;
636                 }
637         }
638         /* Grab the first unused counter starting with idx */
639         idx = sched->state.counter;
640         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
641                 if (!__test_and_set_bit(idx, sched->state.used))
642                         goto done;
643         }
644
645         return false;
646
647 done:
648         sched->state.counter = idx;
649
650         if (c->overlap)
651                 perf_sched_save_state(sched);
652
653         return true;
654 }
655
656 static bool perf_sched_find_counter(struct perf_sched *sched)
657 {
658         while (!__perf_sched_find_counter(sched)) {
659                 if (!perf_sched_restore_state(sched))
660                         return false;
661         }
662
663         return true;
664 }
665
666 /*
667  * Go through all unassigned events and find the next one to schedule.
668  * Take events with the least weight first. Return true on success.
669  */
670 static bool perf_sched_next_event(struct perf_sched *sched)
671 {
672         struct event_constraint *c;
673
674         if (!sched->state.unassigned || !--sched->state.unassigned)
675                 return false;
676
677         do {
678                 /* next event */
679                 sched->state.event++;
680                 if (sched->state.event >= sched->max_events) {
681                         /* next weight */
682                         sched->state.event = 0;
683                         sched->state.weight++;
684                         if (sched->state.weight > sched->max_weight)
685                                 return false;
686                 }
687                 c = sched->constraints[sched->state.event];
688         } while (c->weight != sched->state.weight);
689
690         sched->state.counter = 0;       /* start with first counter */
691
692         return true;
693 }
694
695 /*
696  * Assign a counter for each event.
697  */
698 int perf_assign_events(struct event_constraint **constraints, int n,
699                         int wmin, int wmax, int *assign)
700 {
701         struct perf_sched sched;
702
703         perf_sched_init(&sched, constraints, n, wmin, wmax);
704
705         do {
706                 if (!perf_sched_find_counter(&sched))
707                         break;  /* failed */
708                 if (assign)
709                         assign[sched.state.event] = sched.state.counter;
710         } while (perf_sched_next_event(&sched));
711
712         return sched.state.unassigned;
713 }
714
715 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
716 {
717         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
718         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
719         int i, wmin, wmax, num = 0;
720         struct hw_perf_event *hwc;
721
722         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
723
724         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
725                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
726                 constraints[i] = c;
727                 wmin = min(wmin, c->weight);
728                 wmax = max(wmax, c->weight);
729         }
730
731         /*
732          * fastpath, try to reuse previous register
733          */
734         for (i = 0; i < n; i++) {
735                 hwc = &cpuc->event_list[i]->hw;
736                 c = constraints[i];
737
738                 /* never assigned */
739                 if (hwc->idx == -1)
740                         break;
741
742                 /* constraint still honored */
743                 if (!test_bit(hwc->idx, c->idxmsk))
744                         break;
745
746                 /* not already used */
747                 if (test_bit(hwc->idx, used_mask))
748                         break;
749
750                 __set_bit(hwc->idx, used_mask);
751                 if (assign)
752                         assign[i] = hwc->idx;
753         }
754
755         /* slow path */
756         if (i != n)
757                 num = perf_assign_events(constraints, n, wmin, wmax, assign);
758
759         /*
760          * scheduling failed or is just a simulation,
761          * free resources if necessary
762          */
763         if (!assign || num) {
764                 for (i = 0; i < n; i++) {
765                         if (x86_pmu.put_event_constraints)
766                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
767                 }
768         }
769         return num ? -EINVAL : 0;
770 }
771
772 /*
773  * dogrp: true if must collect siblings events (group)
774  * returns total number of events and error code
775  */
776 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
777 {
778         struct perf_event *event;
779         int n, max_count;
780
781         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
782
783         /* current number of events already accepted */
784         n = cpuc->n_events;
785
786         if (is_x86_event(leader)) {
787                 if (n >= max_count)
788                         return -EINVAL;
789                 cpuc->event_list[n] = leader;
790                 n++;
791         }
792         if (!dogrp)
793                 return n;
794
795         list_for_each_entry(event, &leader->sibling_list, group_entry) {
796                 if (!is_x86_event(event) ||
797                     event->state <= PERF_EVENT_STATE_OFF)
798                         continue;
799
800                 if (n >= max_count)
801                         return -EINVAL;
802
803                 cpuc->event_list[n] = event;
804                 n++;
805         }
806         return n;
807 }
808
809 static inline void x86_assign_hw_event(struct perf_event *event,
810                                 struct cpu_hw_events *cpuc, int i)
811 {
812         struct hw_perf_event *hwc = &event->hw;
813
814         hwc->idx = cpuc->assign[i];
815         hwc->last_cpu = smp_processor_id();
816         hwc->last_tag = ++cpuc->tags[i];
817
818         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
819                 hwc->config_base = 0;
820                 hwc->event_base = 0;
821         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
822                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
823                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
824                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
825         } else {
826                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
827                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
828                 hwc->event_base_rdpmc = hwc->idx;
829         }
830 }
831
832 static inline int match_prev_assignment(struct hw_perf_event *hwc,
833                                         struct cpu_hw_events *cpuc,
834                                         int i)
835 {
836         return hwc->idx == cpuc->assign[i] &&
837                 hwc->last_cpu == smp_processor_id() &&
838                 hwc->last_tag == cpuc->tags[i];
839 }
840
841 static void x86_pmu_start(struct perf_event *event, int flags);
842
843 static void x86_pmu_enable(struct pmu *pmu)
844 {
845         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
846         struct perf_event *event;
847         struct hw_perf_event *hwc;
848         int i, added = cpuc->n_added;
849
850         if (!x86_pmu_initialized())
851                 return;
852
853         if (cpuc->enabled)
854                 return;
855
856         if (cpuc->n_added) {
857                 int n_running = cpuc->n_events - cpuc->n_added;
858                 /*
859                  * apply assignment obtained either from
860                  * hw_perf_group_sched_in() or x86_pmu_enable()
861                  *
862                  * step1: save events moving to new counters
863                  * step2: reprogram moved events into new counters
864                  */
865                 for (i = 0; i < n_running; i++) {
866                         event = cpuc->event_list[i];
867                         hwc = &event->hw;
868
869                         /*
870                          * we can avoid reprogramming counter if:
871                          * - assigned same counter as last time
872                          * - running on same CPU as last time
873                          * - no other event has used the counter since
874                          */
875                         if (hwc->idx == -1 ||
876                             match_prev_assignment(hwc, cpuc, i))
877                                 continue;
878
879                         /*
880                          * Ensure we don't accidentally enable a stopped
881                          * counter simply because we rescheduled.
882                          */
883                         if (hwc->state & PERF_HES_STOPPED)
884                                 hwc->state |= PERF_HES_ARCH;
885
886                         x86_pmu_stop(event, PERF_EF_UPDATE);
887                 }
888
889                 for (i = 0; i < cpuc->n_events; i++) {
890                         event = cpuc->event_list[i];
891                         hwc = &event->hw;
892
893                         if (!match_prev_assignment(hwc, cpuc, i))
894                                 x86_assign_hw_event(event, cpuc, i);
895                         else if (i < n_running)
896                                 continue;
897
898                         if (hwc->state & PERF_HES_ARCH)
899                                 continue;
900
901                         x86_pmu_start(event, PERF_EF_RELOAD);
902                 }
903                 cpuc->n_added = 0;
904                 perf_events_lapic_init();
905         }
906
907         cpuc->enabled = 1;
908         barrier();
909
910         x86_pmu.enable_all(added);
911 }
912
913 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
914
915 /*
916  * Set the next IRQ period, based on the hwc->period_left value.
917  * To be called with the event disabled in hw:
918  */
919 int x86_perf_event_set_period(struct perf_event *event)
920 {
921         struct hw_perf_event *hwc = &event->hw;
922         s64 left = local64_read(&hwc->period_left);
923         s64 period = hwc->sample_period;
924         int ret = 0, idx = hwc->idx;
925
926         if (idx == INTEL_PMC_IDX_FIXED_BTS)
927                 return 0;
928
929         /*
930          * If we are way outside a reasonable range then just skip forward:
931          */
932         if (unlikely(left <= -period)) {
933                 left = period;
934                 local64_set(&hwc->period_left, left);
935                 hwc->last_period = period;
936                 ret = 1;
937         }
938
939         if (unlikely(left <= 0)) {
940                 left += period;
941                 local64_set(&hwc->period_left, left);
942                 hwc->last_period = period;
943                 ret = 1;
944         }
945         /*
946          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
947          */
948         if (unlikely(left < 2))
949                 left = 2;
950
951         if (left > x86_pmu.max_period)
952                 left = x86_pmu.max_period;
953
954         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
955
956         /*
957          * The hw event starts counting from this event offset,
958          * mark it to be able to extra future deltas:
959          */
960         local64_set(&hwc->prev_count, (u64)-left);
961
962         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
963
964         /*
965          * Due to erratum on certan cpu we need
966          * a second write to be sure the register
967          * is updated properly
968          */
969         if (x86_pmu.perfctr_second_write) {
970                 wrmsrl(hwc->event_base,
971                         (u64)(-left) & x86_pmu.cntval_mask);
972         }
973
974         perf_event_update_userpage(event);
975
976         return ret;
977 }
978
979 void x86_pmu_enable_event(struct perf_event *event)
980 {
981         if (__this_cpu_read(cpu_hw_events.enabled))
982                 __x86_pmu_enable_event(&event->hw,
983                                        ARCH_PERFMON_EVENTSEL_ENABLE);
984 }
985
986 /*
987  * Add a single event to the PMU.
988  *
989  * The event is added to the group of enabled events
990  * but only if it can be scehduled with existing events.
991  */
992 static int x86_pmu_add(struct perf_event *event, int flags)
993 {
994         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
995         struct hw_perf_event *hwc;
996         int assign[X86_PMC_IDX_MAX];
997         int n, n0, ret;
998
999         hwc = &event->hw;
1000
1001         perf_pmu_disable(event->pmu);
1002         n0 = cpuc->n_events;
1003         ret = n = collect_events(cpuc, event, false);
1004         if (ret < 0)
1005                 goto out;
1006
1007         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1008         if (!(flags & PERF_EF_START))
1009                 hwc->state |= PERF_HES_ARCH;
1010
1011         /*
1012          * If group events scheduling transaction was started,
1013          * skip the schedulability test here, it will be performed
1014          * at commit time (->commit_txn) as a whole
1015          */
1016         if (cpuc->group_flag & PERF_EVENT_TXN)
1017                 goto done_collect;
1018
1019         ret = x86_pmu.schedule_events(cpuc, n, assign);
1020         if (ret)
1021                 goto out;
1022         /*
1023          * copy new assignment, now we know it is possible
1024          * will be used by hw_perf_enable()
1025          */
1026         memcpy(cpuc->assign, assign, n*sizeof(int));
1027
1028 done_collect:
1029         cpuc->n_events = n;
1030         cpuc->n_added += n - n0;
1031         cpuc->n_txn += n - n0;
1032
1033         ret = 0;
1034 out:
1035         perf_pmu_enable(event->pmu);
1036         return ret;
1037 }
1038
1039 static void x86_pmu_start(struct perf_event *event, int flags)
1040 {
1041         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1042         int idx = event->hw.idx;
1043
1044         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1045                 return;
1046
1047         if (WARN_ON_ONCE(idx == -1))
1048                 return;
1049
1050         if (flags & PERF_EF_RELOAD) {
1051                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1052                 x86_perf_event_set_period(event);
1053         }
1054
1055         event->hw.state = 0;
1056
1057         cpuc->events[idx] = event;
1058         __set_bit(idx, cpuc->active_mask);
1059         __set_bit(idx, cpuc->running);
1060         x86_pmu.enable(event);
1061         perf_event_update_userpage(event);
1062 }
1063
1064 void perf_event_print_debug(void)
1065 {
1066         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1067         u64 pebs;
1068         struct cpu_hw_events *cpuc;
1069         unsigned long flags;
1070         int cpu, idx;
1071
1072         if (!x86_pmu.num_counters)
1073                 return;
1074
1075         local_irq_save(flags);
1076
1077         cpu = smp_processor_id();
1078         cpuc = &per_cpu(cpu_hw_events, cpu);
1079
1080         if (x86_pmu.version >= 2) {
1081                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1082                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1083                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1084                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1085                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1086
1087                 pr_info("\n");
1088                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1089                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1090                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1091                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1092                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1093         }
1094         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1095
1096         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1097                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1098                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1099
1100                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1101
1102                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1103                         cpu, idx, pmc_ctrl);
1104                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1105                         cpu, idx, pmc_count);
1106                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1107                         cpu, idx, prev_left);
1108         }
1109         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1110                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1111
1112                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1113                         cpu, idx, pmc_count);
1114         }
1115         local_irq_restore(flags);
1116 }
1117
1118 void x86_pmu_stop(struct perf_event *event, int flags)
1119 {
1120         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1121         struct hw_perf_event *hwc = &event->hw;
1122
1123         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1124                 x86_pmu.disable(event);
1125                 cpuc->events[hwc->idx] = NULL;
1126                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1127                 hwc->state |= PERF_HES_STOPPED;
1128         }
1129
1130         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1131                 /*
1132                  * Drain the remaining delta count out of a event
1133                  * that we are disabling:
1134                  */
1135                 x86_perf_event_update(event);
1136                 hwc->state |= PERF_HES_UPTODATE;
1137         }
1138 }
1139
1140 static void x86_pmu_del(struct perf_event *event, int flags)
1141 {
1142         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1143         int i;
1144
1145         /*
1146          * If we're called during a txn, we don't need to do anything.
1147          * The events never got scheduled and ->cancel_txn will truncate
1148          * the event_list.
1149          */
1150         if (cpuc->group_flag & PERF_EVENT_TXN)
1151                 return;
1152
1153         x86_pmu_stop(event, PERF_EF_UPDATE);
1154
1155         for (i = 0; i < cpuc->n_events; i++) {
1156                 if (event == cpuc->event_list[i]) {
1157
1158                         if (x86_pmu.put_event_constraints)
1159                                 x86_pmu.put_event_constraints(cpuc, event);
1160
1161                         while (++i < cpuc->n_events)
1162                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1163
1164                         --cpuc->n_events;
1165                         break;
1166                 }
1167         }
1168         perf_event_update_userpage(event);
1169 }
1170
1171 int x86_pmu_handle_irq(struct pt_regs *regs)
1172 {
1173         struct perf_sample_data data;
1174         struct cpu_hw_events *cpuc;
1175         struct perf_event *event;
1176         int idx, handled = 0;
1177         u64 val;
1178
1179         cpuc = &__get_cpu_var(cpu_hw_events);
1180
1181         /*
1182          * Some chipsets need to unmask the LVTPC in a particular spot
1183          * inside the nmi handler.  As a result, the unmasking was pushed
1184          * into all the nmi handlers.
1185          *
1186          * This generic handler doesn't seem to have any issues where the
1187          * unmasking occurs so it was left at the top.
1188          */
1189         apic_write(APIC_LVTPC, APIC_DM_NMI);
1190
1191         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1192                 if (!test_bit(idx, cpuc->active_mask)) {
1193                         /*
1194                          * Though we deactivated the counter some cpus
1195                          * might still deliver spurious interrupts still
1196                          * in flight. Catch them:
1197                          */
1198                         if (__test_and_clear_bit(idx, cpuc->running))
1199                                 handled++;
1200                         continue;
1201                 }
1202
1203                 event = cpuc->events[idx];
1204
1205                 val = x86_perf_event_update(event);
1206                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1207                         continue;
1208
1209                 /*
1210                  * event overflow
1211                  */
1212                 handled++;
1213                 perf_sample_data_init(&data, 0, event->hw.last_period);
1214
1215                 if (!x86_perf_event_set_period(event))
1216                         continue;
1217
1218                 if (perf_event_overflow(event, &data, regs))
1219                         x86_pmu_stop(event, 0);
1220         }
1221
1222         if (handled)
1223                 inc_irq_stat(apic_perf_irqs);
1224
1225         return handled;
1226 }
1227
1228 void perf_events_lapic_init(void)
1229 {
1230         if (!x86_pmu.apic || !x86_pmu_initialized())
1231                 return;
1232
1233         /*
1234          * Always use NMI for PMU
1235          */
1236         apic_write(APIC_LVTPC, APIC_DM_NMI);
1237 }
1238
1239 static int __kprobes
1240 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1241 {
1242         if (!atomic_read(&active_events))
1243                 return NMI_DONE;
1244
1245         return x86_pmu.handle_irq(regs);
1246 }
1247
1248 struct event_constraint emptyconstraint;
1249 struct event_constraint unconstrained;
1250
1251 static int __cpuinit
1252 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1253 {
1254         unsigned int cpu = (long)hcpu;
1255         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1256         int ret = NOTIFY_OK;
1257
1258         switch (action & ~CPU_TASKS_FROZEN) {
1259         case CPU_UP_PREPARE:
1260                 cpuc->kfree_on_online = NULL;
1261                 if (x86_pmu.cpu_prepare)
1262                         ret = x86_pmu.cpu_prepare(cpu);
1263                 break;
1264
1265         case CPU_STARTING:
1266                 if (x86_pmu.attr_rdpmc)
1267                         set_in_cr4(X86_CR4_PCE);
1268                 if (x86_pmu.cpu_starting)
1269                         x86_pmu.cpu_starting(cpu);
1270                 break;
1271
1272         case CPU_ONLINE:
1273                 kfree(cpuc->kfree_on_online);
1274                 break;
1275
1276         case CPU_DYING:
1277                 if (x86_pmu.cpu_dying)
1278                         x86_pmu.cpu_dying(cpu);
1279                 break;
1280
1281         case CPU_UP_CANCELED:
1282         case CPU_DEAD:
1283                 if (x86_pmu.cpu_dead)
1284                         x86_pmu.cpu_dead(cpu);
1285                 break;
1286
1287         default:
1288                 break;
1289         }
1290
1291         return ret;
1292 }
1293
1294 static void __init pmu_check_apic(void)
1295 {
1296         if (cpu_has_apic)
1297                 return;
1298
1299         x86_pmu.apic = 0;
1300         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1301         pr_info("no hardware sampling interrupt available.\n");
1302 }
1303
1304 static struct attribute_group x86_pmu_format_group = {
1305         .name = "format",
1306         .attrs = NULL,
1307 };
1308
1309 static int __init init_hw_perf_events(void)
1310 {
1311         struct x86_pmu_quirk *quirk;
1312         int err;
1313
1314         pr_info("Performance Events: ");
1315
1316         switch (boot_cpu_data.x86_vendor) {
1317         case X86_VENDOR_INTEL:
1318                 err = intel_pmu_init();
1319                 break;
1320         case X86_VENDOR_AMD:
1321                 err = amd_pmu_init();
1322                 break;
1323         default:
1324                 return 0;
1325         }
1326         if (err != 0) {
1327                 pr_cont("no PMU driver, software events only.\n");
1328                 return 0;
1329         }
1330
1331         pmu_check_apic();
1332
1333         /* sanity check that the hardware exists or is emulated */
1334         if (!check_hw_exists())
1335                 return 0;
1336
1337         pr_cont("%s PMU driver.\n", x86_pmu.name);
1338
1339         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1340                 quirk->func();
1341
1342         if (!x86_pmu.intel_ctrl)
1343                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1344
1345         perf_events_lapic_init();
1346         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1347
1348         unconstrained = (struct event_constraint)
1349                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1350                                    0, x86_pmu.num_counters, 0);
1351
1352         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1353         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1354
1355         pr_info("... version:                %d\n",     x86_pmu.version);
1356         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1357         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1358         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1359         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1360         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1361         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1362
1363         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1364         perf_cpu_notifier(x86_pmu_notifier);
1365
1366         return 0;
1367 }
1368 early_initcall(init_hw_perf_events);
1369
1370 static inline void x86_pmu_read(struct perf_event *event)
1371 {
1372         x86_perf_event_update(event);
1373 }
1374
1375 /*
1376  * Start group events scheduling transaction
1377  * Set the flag to make pmu::enable() not perform the
1378  * schedulability test, it will be performed at commit time
1379  */
1380 static void x86_pmu_start_txn(struct pmu *pmu)
1381 {
1382         perf_pmu_disable(pmu);
1383         __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1384         __this_cpu_write(cpu_hw_events.n_txn, 0);
1385 }
1386
1387 /*
1388  * Stop group events scheduling transaction
1389  * Clear the flag and pmu::enable() will perform the
1390  * schedulability test.
1391  */
1392 static void x86_pmu_cancel_txn(struct pmu *pmu)
1393 {
1394         __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1395         /*
1396          * Truncate the collected events.
1397          */
1398         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1399         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1400         perf_pmu_enable(pmu);
1401 }
1402
1403 /*
1404  * Commit group events scheduling transaction
1405  * Perform the group schedulability test as a whole
1406  * Return 0 if success
1407  */
1408 static int x86_pmu_commit_txn(struct pmu *pmu)
1409 {
1410         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1411         int assign[X86_PMC_IDX_MAX];
1412         int n, ret;
1413
1414         n = cpuc->n_events;
1415
1416         if (!x86_pmu_initialized())
1417                 return -EAGAIN;
1418
1419         ret = x86_pmu.schedule_events(cpuc, n, assign);
1420         if (ret)
1421                 return ret;
1422
1423         /*
1424          * copy new assignment, now we know it is possible
1425          * will be used by hw_perf_enable()
1426          */
1427         memcpy(cpuc->assign, assign, n*sizeof(int));
1428
1429         cpuc->group_flag &= ~PERF_EVENT_TXN;
1430         perf_pmu_enable(pmu);
1431         return 0;
1432 }
1433 /*
1434  * a fake_cpuc is used to validate event groups. Due to
1435  * the extra reg logic, we need to also allocate a fake
1436  * per_core and per_cpu structure. Otherwise, group events
1437  * using extra reg may conflict without the kernel being
1438  * able to catch this when the last event gets added to
1439  * the group.
1440  */
1441 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1442 {
1443         kfree(cpuc->shared_regs);
1444         kfree(cpuc);
1445 }
1446
1447 static struct cpu_hw_events *allocate_fake_cpuc(void)
1448 {
1449         struct cpu_hw_events *cpuc;
1450         int cpu = raw_smp_processor_id();
1451
1452         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1453         if (!cpuc)
1454                 return ERR_PTR(-ENOMEM);
1455
1456         /* only needed, if we have extra_regs */
1457         if (x86_pmu.extra_regs) {
1458                 cpuc->shared_regs = allocate_shared_regs(cpu);
1459                 if (!cpuc->shared_regs)
1460                         goto error;
1461         }
1462         cpuc->is_fake = 1;
1463         return cpuc;
1464 error:
1465         free_fake_cpuc(cpuc);
1466         return ERR_PTR(-ENOMEM);
1467 }
1468
1469 /*
1470  * validate that we can schedule this event
1471  */
1472 static int validate_event(struct perf_event *event)
1473 {
1474         struct cpu_hw_events *fake_cpuc;
1475         struct event_constraint *c;
1476         int ret = 0;
1477
1478         fake_cpuc = allocate_fake_cpuc();
1479         if (IS_ERR(fake_cpuc))
1480                 return PTR_ERR(fake_cpuc);
1481
1482         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1483
1484         if (!c || !c->weight)
1485                 ret = -EINVAL;
1486
1487         if (x86_pmu.put_event_constraints)
1488                 x86_pmu.put_event_constraints(fake_cpuc, event);
1489
1490         free_fake_cpuc(fake_cpuc);
1491
1492         return ret;
1493 }
1494
1495 /*
1496  * validate a single event group
1497  *
1498  * validation include:
1499  *      - check events are compatible which each other
1500  *      - events do not compete for the same counter
1501  *      - number of events <= number of counters
1502  *
1503  * validation ensures the group can be loaded onto the
1504  * PMU if it was the only group available.
1505  */
1506 static int validate_group(struct perf_event *event)
1507 {
1508         struct perf_event *leader = event->group_leader;
1509         struct cpu_hw_events *fake_cpuc;
1510         int ret = -EINVAL, n;
1511
1512         fake_cpuc = allocate_fake_cpuc();
1513         if (IS_ERR(fake_cpuc))
1514                 return PTR_ERR(fake_cpuc);
1515         /*
1516          * the event is not yet connected with its
1517          * siblings therefore we must first collect
1518          * existing siblings, then add the new event
1519          * before we can simulate the scheduling
1520          */
1521         n = collect_events(fake_cpuc, leader, true);
1522         if (n < 0)
1523                 goto out;
1524
1525         fake_cpuc->n_events = n;
1526         n = collect_events(fake_cpuc, event, false);
1527         if (n < 0)
1528                 goto out;
1529
1530         fake_cpuc->n_events = n;
1531
1532         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1533
1534 out:
1535         free_fake_cpuc(fake_cpuc);
1536         return ret;
1537 }
1538
1539 static int x86_pmu_event_init(struct perf_event *event)
1540 {
1541         struct pmu *tmp;
1542         int err;
1543
1544         switch (event->attr.type) {
1545         case PERF_TYPE_RAW:
1546         case PERF_TYPE_HARDWARE:
1547         case PERF_TYPE_HW_CACHE:
1548                 break;
1549
1550         default:
1551                 return -ENOENT;
1552         }
1553
1554         err = __x86_pmu_event_init(event);
1555         if (!err) {
1556                 /*
1557                  * we temporarily connect event to its pmu
1558                  * such that validate_group() can classify
1559                  * it as an x86 event using is_x86_event()
1560                  */
1561                 tmp = event->pmu;
1562                 event->pmu = &pmu;
1563
1564                 if (event->group_leader != event)
1565                         err = validate_group(event);
1566                 else
1567                         err = validate_event(event);
1568
1569                 event->pmu = tmp;
1570         }
1571         if (err) {
1572                 if (event->destroy)
1573                         event->destroy(event);
1574         }
1575
1576         return err;
1577 }
1578
1579 static int x86_pmu_event_idx(struct perf_event *event)
1580 {
1581         int idx = event->hw.idx;
1582
1583         if (!x86_pmu.attr_rdpmc)
1584                 return 0;
1585
1586         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1587                 idx -= INTEL_PMC_IDX_FIXED;
1588                 idx |= 1 << 30;
1589         }
1590
1591         return idx + 1;
1592 }
1593
1594 static ssize_t get_attr_rdpmc(struct device *cdev,
1595                               struct device_attribute *attr,
1596                               char *buf)
1597 {
1598         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1599 }
1600
1601 static void change_rdpmc(void *info)
1602 {
1603         bool enable = !!(unsigned long)info;
1604
1605         if (enable)
1606                 set_in_cr4(X86_CR4_PCE);
1607         else
1608                 clear_in_cr4(X86_CR4_PCE);
1609 }
1610
1611 static ssize_t set_attr_rdpmc(struct device *cdev,
1612                               struct device_attribute *attr,
1613                               const char *buf, size_t count)
1614 {
1615         unsigned long val;
1616         ssize_t ret;
1617
1618         ret = kstrtoul(buf, 0, &val);
1619         if (ret)
1620                 return ret;
1621
1622         if (!!val != !!x86_pmu.attr_rdpmc) {
1623                 x86_pmu.attr_rdpmc = !!val;
1624                 smp_call_function(change_rdpmc, (void *)val, 1);
1625         }
1626
1627         return count;
1628 }
1629
1630 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1631
1632 static struct attribute *x86_pmu_attrs[] = {
1633         &dev_attr_rdpmc.attr,
1634         NULL,
1635 };
1636
1637 static struct attribute_group x86_pmu_attr_group = {
1638         .attrs = x86_pmu_attrs,
1639 };
1640
1641 static const struct attribute_group *x86_pmu_attr_groups[] = {
1642         &x86_pmu_attr_group,
1643         &x86_pmu_format_group,
1644         NULL,
1645 };
1646
1647 static void x86_pmu_flush_branch_stack(void)
1648 {
1649         if (x86_pmu.flush_branch_stack)
1650                 x86_pmu.flush_branch_stack();
1651 }
1652
1653 void perf_check_microcode(void)
1654 {
1655         if (x86_pmu.check_microcode)
1656                 x86_pmu.check_microcode();
1657 }
1658 EXPORT_SYMBOL_GPL(perf_check_microcode);
1659
1660 static struct pmu pmu = {
1661         .pmu_enable             = x86_pmu_enable,
1662         .pmu_disable            = x86_pmu_disable,
1663
1664         .attr_groups            = x86_pmu_attr_groups,
1665
1666         .event_init             = x86_pmu_event_init,
1667
1668         .add                    = x86_pmu_add,
1669         .del                    = x86_pmu_del,
1670         .start                  = x86_pmu_start,
1671         .stop                   = x86_pmu_stop,
1672         .read                   = x86_pmu_read,
1673
1674         .start_txn              = x86_pmu_start_txn,
1675         .cancel_txn             = x86_pmu_cancel_txn,
1676         .commit_txn             = x86_pmu_commit_txn,
1677
1678         .event_idx              = x86_pmu_event_idx,
1679         .flush_branch_stack     = x86_pmu_flush_branch_stack,
1680 };
1681
1682 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1683 {
1684         userpg->cap_usr_time = 0;
1685         userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1686         userpg->pmc_width = x86_pmu.cntval_bits;
1687
1688         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1689                 return;
1690
1691         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1692                 return;
1693
1694         userpg->cap_usr_time = 1;
1695         userpg->time_mult = this_cpu_read(cyc2ns);
1696         userpg->time_shift = CYC2NS_SCALE_FACTOR;
1697         userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1698 }
1699
1700 /*
1701  * callchain support
1702  */
1703
1704 static int backtrace_stack(void *data, char *name)
1705 {
1706         return 0;
1707 }
1708
1709 static void backtrace_address(void *data, unsigned long addr, int reliable)
1710 {
1711         struct perf_callchain_entry *entry = data;
1712
1713         perf_callchain_store(entry, addr);
1714 }
1715
1716 static const struct stacktrace_ops backtrace_ops = {
1717         .stack                  = backtrace_stack,
1718         .address                = backtrace_address,
1719         .walk_stack             = print_context_stack_bp,
1720 };
1721
1722 void
1723 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1724 {
1725         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1726                 /* TODO: We don't support guest os callchain now */
1727                 return;
1728         }
1729
1730         perf_callchain_store(entry, regs->ip);
1731
1732         dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1733 }
1734
1735 static inline int
1736 valid_user_frame(const void __user *fp, unsigned long size)
1737 {
1738         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1739 }
1740
1741 #ifdef CONFIG_COMPAT
1742
1743 #include <asm/compat.h>
1744
1745 static inline int
1746 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1747 {
1748         /* 32-bit process in 64-bit kernel. */
1749         struct stack_frame_ia32 frame;
1750         const void __user *fp;
1751
1752         if (!test_thread_flag(TIF_IA32))
1753                 return 0;
1754
1755         fp = compat_ptr(regs->bp);
1756         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1757                 unsigned long bytes;
1758                 frame.next_frame     = 0;
1759                 frame.return_address = 0;
1760
1761                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1762                 if (bytes != sizeof(frame))
1763                         break;
1764
1765                 if (!valid_user_frame(fp, sizeof(frame)))
1766                         break;
1767
1768                 perf_callchain_store(entry, frame.return_address);
1769                 fp = compat_ptr(frame.next_frame);
1770         }
1771         return 1;
1772 }
1773 #else
1774 static inline int
1775 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1776 {
1777     return 0;
1778 }
1779 #endif
1780
1781 void
1782 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1783 {
1784         struct stack_frame frame;
1785         const void __user *fp;
1786
1787         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1788                 /* TODO: We don't support guest os callchain now */
1789                 return;
1790         }
1791
1792         fp = (void __user *)regs->bp;
1793
1794         perf_callchain_store(entry, regs->ip);
1795
1796         if (!current->mm)
1797                 return;
1798
1799         if (perf_callchain_user32(regs, entry))
1800                 return;
1801
1802         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1803                 unsigned long bytes;
1804                 frame.next_frame             = NULL;
1805                 frame.return_address = 0;
1806
1807                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1808                 if (bytes != sizeof(frame))
1809                         break;
1810
1811                 if (!valid_user_frame(fp, sizeof(frame)))
1812                         break;
1813
1814                 perf_callchain_store(entry, frame.return_address);
1815                 fp = frame.next_frame;
1816         }
1817 }
1818
1819 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1820 {
1821         unsigned long ip;
1822
1823         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1824                 ip = perf_guest_cbs->get_guest_ip();
1825         else
1826                 ip = instruction_pointer(regs);
1827
1828         return ip;
1829 }
1830
1831 unsigned long perf_misc_flags(struct pt_regs *regs)
1832 {
1833         int misc = 0;
1834
1835         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1836                 if (perf_guest_cbs->is_user_mode())
1837                         misc |= PERF_RECORD_MISC_GUEST_USER;
1838                 else
1839                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1840         } else {
1841                 if (!kernel_ip(regs->ip))
1842                         misc |= PERF_RECORD_MISC_USER;
1843                 else
1844                         misc |= PERF_RECORD_MISC_KERNEL;
1845         }
1846
1847         if (regs->flags & PERF_EFLAGS_EXACT)
1848                 misc |= PERF_RECORD_MISC_EXACT_IP;
1849
1850         return misc;
1851 }
1852
1853 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
1854 {
1855         cap->version            = x86_pmu.version;
1856         cap->num_counters_gp    = x86_pmu.num_counters;
1857         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
1858         cap->bit_width_gp       = x86_pmu.cntval_bits;
1859         cap->bit_width_fixed    = x86_pmu.cntval_bits;
1860         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
1861         cap->events_mask_len    = x86_pmu.events_mask_len;
1862 }
1863 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);