drm/nouveau: fence: fix undefined fence state after emit
[platform/kernel/linux-rpi.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/microcode_intel.h>
63 #include <asm/intel-family.h>
64 #include <asm/cpu_device_id.h>
65 #include <asm/uv/uv.h>
66 #include <asm/set_memory.h>
67 #include <asm/traps.h>
68 #include <asm/sev.h>
69
70 #include "cpu.h"
71
72 u32 elf_hwcap2 __read_mostly;
73
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
77
78 /* Last level cache ID of each logical CPU */
79 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
80
81 u16 get_llc_id(unsigned int cpu)
82 {
83         return per_cpu(cpu_llc_id, cpu);
84 }
85 EXPORT_SYMBOL_GPL(get_llc_id);
86
87 /* L2 cache ID of each logical CPU */
88 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
89
90 static struct ppin_info {
91         int     feature;
92         int     msr_ppin_ctl;
93         int     msr_ppin;
94 } ppin_info[] = {
95         [X86_VENDOR_INTEL] = {
96                 .feature = X86_FEATURE_INTEL_PPIN,
97                 .msr_ppin_ctl = MSR_PPIN_CTL,
98                 .msr_ppin = MSR_PPIN
99         },
100         [X86_VENDOR_AMD] = {
101                 .feature = X86_FEATURE_AMD_PPIN,
102                 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
103                 .msr_ppin = MSR_AMD_PPIN
104         },
105 };
106
107 static const struct x86_cpu_id ppin_cpuids[] = {
108         X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
109         X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
110
111         /* Legacy models without CPUID enumeration */
112         X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
113         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
114         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
115         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
116         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
117         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
118         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
119         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
120         X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
121         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
122         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
123
124         {}
125 };
126
127 static void ppin_init(struct cpuinfo_x86 *c)
128 {
129         const struct x86_cpu_id *id;
130         unsigned long long val;
131         struct ppin_info *info;
132
133         id = x86_match_cpu(ppin_cpuids);
134         if (!id)
135                 return;
136
137         /*
138          * Testing the presence of the MSR is not enough. Need to check
139          * that the PPIN_CTL allows reading of the PPIN.
140          */
141         info = (struct ppin_info *)id->driver_data;
142
143         if (rdmsrl_safe(info->msr_ppin_ctl, &val))
144                 goto clear_ppin;
145
146         if ((val & 3UL) == 1UL) {
147                 /* PPIN locked in disabled mode */
148                 goto clear_ppin;
149         }
150
151         /* If PPIN is disabled, try to enable */
152         if (!(val & 2UL)) {
153                 wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
154                 rdmsrl_safe(info->msr_ppin_ctl, &val);
155         }
156
157         /* Is the enable bit set? */
158         if (val & 2UL) {
159                 c->ppin = __rdmsr(info->msr_ppin);
160                 set_cpu_cap(c, info->feature);
161                 return;
162         }
163
164 clear_ppin:
165         clear_cpu_cap(c, info->feature);
166 }
167
168 static void default_init(struct cpuinfo_x86 *c)
169 {
170 #ifdef CONFIG_X86_64
171         cpu_detect_cache_sizes(c);
172 #else
173         /* Not much we can do here... */
174         /* Check if at least it has cpuid */
175         if (c->cpuid_level == -1) {
176                 /* No cpuid. It must be an ancient CPU */
177                 if (c->x86 == 4)
178                         strcpy(c->x86_model_id, "486");
179                 else if (c->x86 == 3)
180                         strcpy(c->x86_model_id, "386");
181         }
182 #endif
183 }
184
185 static const struct cpu_dev default_cpu = {
186         .c_init         = default_init,
187         .c_vendor       = "Unknown",
188         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
189 };
190
191 static const struct cpu_dev *this_cpu = &default_cpu;
192
193 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
194 #ifdef CONFIG_X86_64
195         /*
196          * We need valid kernel segments for data and code in long mode too
197          * IRET will check the segment types  kkeil 2000/10/28
198          * Also sysret mandates a special GDT layout
199          *
200          * TLS descriptors are currently at a different place compared to i386.
201          * Hopefully nobody expects them at a fixed place (Wine?)
202          */
203         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
204         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
205         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
206         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
207         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
208         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
209 #else
210         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
211         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
212         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
213         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
214         /*
215          * Segments used for calling PnP BIOS have byte granularity.
216          * They code segments and data segments have fixed 64k limits,
217          * the transfer segment sizes are set at run time.
218          */
219         /* 32-bit code */
220         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
221         /* 16-bit code */
222         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
223         /* 16-bit data */
224         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
225         /* 16-bit data */
226         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
227         /* 16-bit data */
228         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
229         /*
230          * The APM segments have byte granularity and their bases
231          * are set at run time.  All have 64k limits.
232          */
233         /* 32-bit code */
234         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
235         /* 16-bit code */
236         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
237         /* data */
238         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
239
240         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
241         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
242 #endif
243 } };
244 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
245
246 #ifdef CONFIG_X86_64
247 static int __init x86_nopcid_setup(char *s)
248 {
249         /* nopcid doesn't accept parameters */
250         if (s)
251                 return -EINVAL;
252
253         /* do not emit a message if the feature is not present */
254         if (!boot_cpu_has(X86_FEATURE_PCID))
255                 return 0;
256
257         setup_clear_cpu_cap(X86_FEATURE_PCID);
258         pr_info("nopcid: PCID feature disabled\n");
259         return 0;
260 }
261 early_param("nopcid", x86_nopcid_setup);
262 #endif
263
264 static int __init x86_noinvpcid_setup(char *s)
265 {
266         /* noinvpcid doesn't accept parameters */
267         if (s)
268                 return -EINVAL;
269
270         /* do not emit a message if the feature is not present */
271         if (!boot_cpu_has(X86_FEATURE_INVPCID))
272                 return 0;
273
274         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
275         pr_info("noinvpcid: INVPCID feature disabled\n");
276         return 0;
277 }
278 early_param("noinvpcid", x86_noinvpcid_setup);
279
280 #ifdef CONFIG_X86_32
281 static int cachesize_override = -1;
282 static int disable_x86_serial_nr = 1;
283
284 static int __init cachesize_setup(char *str)
285 {
286         get_option(&str, &cachesize_override);
287         return 1;
288 }
289 __setup("cachesize=", cachesize_setup);
290
291 /* Standard macro to see if a specific flag is changeable */
292 static inline int flag_is_changeable_p(u32 flag)
293 {
294         u32 f1, f2;
295
296         /*
297          * Cyrix and IDT cpus allow disabling of CPUID
298          * so the code below may return different results
299          * when it is executed before and after enabling
300          * the CPUID. Add "volatile" to not allow gcc to
301          * optimize the subsequent calls to this function.
302          */
303         asm volatile ("pushfl           \n\t"
304                       "pushfl           \n\t"
305                       "popl %0          \n\t"
306                       "movl %0, %1      \n\t"
307                       "xorl %2, %0      \n\t"
308                       "pushl %0         \n\t"
309                       "popfl            \n\t"
310                       "pushfl           \n\t"
311                       "popl %0          \n\t"
312                       "popfl            \n\t"
313
314                       : "=&r" (f1), "=&r" (f2)
315                       : "ir" (flag));
316
317         return ((f1^f2) & flag) != 0;
318 }
319
320 /* Probe for the CPUID instruction */
321 int have_cpuid_p(void)
322 {
323         return flag_is_changeable_p(X86_EFLAGS_ID);
324 }
325
326 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
327 {
328         unsigned long lo, hi;
329
330         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
331                 return;
332
333         /* Disable processor serial number: */
334
335         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
336         lo |= 0x200000;
337         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
338
339         pr_notice("CPU serial number disabled.\n");
340         clear_cpu_cap(c, X86_FEATURE_PN);
341
342         /* Disabling the serial number may affect the cpuid level */
343         c->cpuid_level = cpuid_eax(0);
344 }
345
346 static int __init x86_serial_nr_setup(char *s)
347 {
348         disable_x86_serial_nr = 0;
349         return 1;
350 }
351 __setup("serialnumber", x86_serial_nr_setup);
352 #else
353 static inline int flag_is_changeable_p(u32 flag)
354 {
355         return 1;
356 }
357 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
358 {
359 }
360 #endif
361
362 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
363 {
364         if (cpu_has(c, X86_FEATURE_SMEP))
365                 cr4_set_bits(X86_CR4_SMEP);
366 }
367
368 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
369 {
370         unsigned long eflags = native_save_fl();
371
372         /* This should have been cleared long ago */
373         BUG_ON(eflags & X86_EFLAGS_AC);
374
375         if (cpu_has(c, X86_FEATURE_SMAP))
376                 cr4_set_bits(X86_CR4_SMAP);
377 }
378
379 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
380 {
381         /* Check the boot processor, plus build option for UMIP. */
382         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
383                 goto out;
384
385         /* Check the current processor's cpuid bits. */
386         if (!cpu_has(c, X86_FEATURE_UMIP))
387                 goto out;
388
389         cr4_set_bits(X86_CR4_UMIP);
390
391         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
392
393         return;
394
395 out:
396         /*
397          * Make sure UMIP is disabled in case it was enabled in a
398          * previous boot (e.g., via kexec).
399          */
400         cr4_clear_bits(X86_CR4_UMIP);
401 }
402
403 /* These bits should not change their value after CPU init is finished. */
404 static const unsigned long cr4_pinned_mask =
405         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
406         X86_CR4_FSGSBASE | X86_CR4_CET;
407 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
408 static unsigned long cr4_pinned_bits __ro_after_init;
409
410 void native_write_cr0(unsigned long val)
411 {
412         unsigned long bits_missing = 0;
413
414 set_register:
415         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
416
417         if (static_branch_likely(&cr_pinning)) {
418                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
419                         bits_missing = X86_CR0_WP;
420                         val |= bits_missing;
421                         goto set_register;
422                 }
423                 /* Warn after we've set the missing bits. */
424                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
425         }
426 }
427 EXPORT_SYMBOL(native_write_cr0);
428
429 void __no_profile native_write_cr4(unsigned long val)
430 {
431         unsigned long bits_changed = 0;
432
433 set_register:
434         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
435
436         if (static_branch_likely(&cr_pinning)) {
437                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
438                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
439                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
440                         goto set_register;
441                 }
442                 /* Warn after we've corrected the changed bits. */
443                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
444                           bits_changed);
445         }
446 }
447 #if IS_MODULE(CONFIG_LKDTM)
448 EXPORT_SYMBOL_GPL(native_write_cr4);
449 #endif
450
451 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
452 {
453         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
454
455         lockdep_assert_irqs_disabled();
456
457         newval = (cr4 & ~clear) | set;
458         if (newval != cr4) {
459                 this_cpu_write(cpu_tlbstate.cr4, newval);
460                 __write_cr4(newval);
461         }
462 }
463 EXPORT_SYMBOL(cr4_update_irqsoff);
464
465 /* Read the CR4 shadow. */
466 unsigned long cr4_read_shadow(void)
467 {
468         return this_cpu_read(cpu_tlbstate.cr4);
469 }
470 EXPORT_SYMBOL_GPL(cr4_read_shadow);
471
472 void cr4_init(void)
473 {
474         unsigned long cr4 = __read_cr4();
475
476         if (boot_cpu_has(X86_FEATURE_PCID))
477                 cr4 |= X86_CR4_PCIDE;
478         if (static_branch_likely(&cr_pinning))
479                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
480
481         __write_cr4(cr4);
482
483         /* Initialize cr4 shadow for this CPU. */
484         this_cpu_write(cpu_tlbstate.cr4, cr4);
485 }
486
487 /*
488  * Once CPU feature detection is finished (and boot params have been
489  * parsed), record any of the sensitive CR bits that are set, and
490  * enable CR pinning.
491  */
492 static void __init setup_cr_pinning(void)
493 {
494         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
495         static_key_enable(&cr_pinning.key);
496 }
497
498 static __init int x86_nofsgsbase_setup(char *arg)
499 {
500         /* Require an exact match without trailing characters. */
501         if (strlen(arg))
502                 return 0;
503
504         /* Do not emit a message if the feature is not present. */
505         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
506                 return 1;
507
508         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
509         pr_info("FSGSBASE disabled via kernel command line\n");
510         return 1;
511 }
512 __setup("nofsgsbase", x86_nofsgsbase_setup);
513
514 /*
515  * Protection Keys are not available in 32-bit mode.
516  */
517 static bool pku_disabled;
518
519 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
520 {
521         if (c == &boot_cpu_data) {
522                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
523                         return;
524                 /*
525                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
526                  * bit to be set.  Enforce it.
527                  */
528                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
529
530         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
531                 return;
532         }
533
534         cr4_set_bits(X86_CR4_PKE);
535         /* Load the default PKRU value */
536         pkru_write_default();
537 }
538
539 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
540 static __init int setup_disable_pku(char *arg)
541 {
542         /*
543          * Do not clear the X86_FEATURE_PKU bit.  All of the
544          * runtime checks are against OSPKE so clearing the
545          * bit does nothing.
546          *
547          * This way, we will see "pku" in cpuinfo, but not
548          * "ospke", which is exactly what we want.  It shows
549          * that the CPU has PKU, but the OS has not enabled it.
550          * This happens to be exactly how a system would look
551          * if we disabled the config option.
552          */
553         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
554         pku_disabled = true;
555         return 1;
556 }
557 __setup("nopku", setup_disable_pku);
558 #endif
559
560 #ifdef CONFIG_X86_KERNEL_IBT
561
562 __noendbr u64 ibt_save(bool disable)
563 {
564         u64 msr = 0;
565
566         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
567                 rdmsrl(MSR_IA32_S_CET, msr);
568                 if (disable)
569                         wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
570         }
571
572         return msr;
573 }
574
575 __noendbr void ibt_restore(u64 save)
576 {
577         u64 msr;
578
579         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
580                 rdmsrl(MSR_IA32_S_CET, msr);
581                 msr &= ~CET_ENDBR_EN;
582                 msr |= (save & CET_ENDBR_EN);
583                 wrmsrl(MSR_IA32_S_CET, msr);
584         }
585 }
586
587 #endif
588
589 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
590 {
591         u64 msr = CET_ENDBR_EN;
592
593         if (!HAS_KERNEL_IBT ||
594             !cpu_feature_enabled(X86_FEATURE_IBT))
595                 return;
596
597         wrmsrl(MSR_IA32_S_CET, msr);
598         cr4_set_bits(X86_CR4_CET);
599
600         if (!ibt_selftest()) {
601                 pr_err("IBT selftest: Failed!\n");
602                 wrmsrl(MSR_IA32_S_CET, 0);
603                 setup_clear_cpu_cap(X86_FEATURE_IBT);
604                 return;
605         }
606 }
607
608 __noendbr void cet_disable(void)
609 {
610         if (cpu_feature_enabled(X86_FEATURE_IBT))
611                 wrmsrl(MSR_IA32_S_CET, 0);
612 }
613
614 /*
615  * Some CPU features depend on higher CPUID levels, which may not always
616  * be available due to CPUID level capping or broken virtualization
617  * software.  Add those features to this table to auto-disable them.
618  */
619 struct cpuid_dependent_feature {
620         u32 feature;
621         u32 level;
622 };
623
624 static const struct cpuid_dependent_feature
625 cpuid_dependent_features[] = {
626         { X86_FEATURE_MWAIT,            0x00000005 },
627         { X86_FEATURE_DCA,              0x00000009 },
628         { X86_FEATURE_XSAVE,            0x0000000d },
629         { 0, 0 }
630 };
631
632 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
633 {
634         const struct cpuid_dependent_feature *df;
635
636         for (df = cpuid_dependent_features; df->feature; df++) {
637
638                 if (!cpu_has(c, df->feature))
639                         continue;
640                 /*
641                  * Note: cpuid_level is set to -1 if unavailable, but
642                  * extended_extended_level is set to 0 if unavailable
643                  * and the legitimate extended levels are all negative
644                  * when signed; hence the weird messing around with
645                  * signs here...
646                  */
647                 if (!((s32)df->level < 0 ?
648                      (u32)df->level > (u32)c->extended_cpuid_level :
649                      (s32)df->level > (s32)c->cpuid_level))
650                         continue;
651
652                 clear_cpu_cap(c, df->feature);
653                 if (!warn)
654                         continue;
655
656                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
657                         x86_cap_flag(df->feature), df->level);
658         }
659 }
660
661 /*
662  * Naming convention should be: <Name> [(<Codename>)]
663  * This table only is used unless init_<vendor>() below doesn't set it;
664  * in particular, if CPUID levels 0x80000002..4 are supported, this
665  * isn't used
666  */
667
668 /* Look up CPU names by table lookup. */
669 static const char *table_lookup_model(struct cpuinfo_x86 *c)
670 {
671 #ifdef CONFIG_X86_32
672         const struct legacy_cpu_model_info *info;
673
674         if (c->x86_model >= 16)
675                 return NULL;    /* Range check */
676
677         if (!this_cpu)
678                 return NULL;
679
680         info = this_cpu->legacy_models;
681
682         while (info->family) {
683                 if (info->family == c->x86)
684                         return info->model_names[c->x86_model];
685                 info++;
686         }
687 #endif
688         return NULL;            /* Not found */
689 }
690
691 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
692 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
693 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
694
695 #ifdef CONFIG_X86_32
696 /* The 32-bit entry code needs to find cpu_entry_area. */
697 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
698 #endif
699
700 /* Load the original GDT from the per-cpu structure */
701 void load_direct_gdt(int cpu)
702 {
703         struct desc_ptr gdt_descr;
704
705         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
706         gdt_descr.size = GDT_SIZE - 1;
707         load_gdt(&gdt_descr);
708 }
709 EXPORT_SYMBOL_GPL(load_direct_gdt);
710
711 /* Load a fixmap remapping of the per-cpu GDT */
712 void load_fixmap_gdt(int cpu)
713 {
714         struct desc_ptr gdt_descr;
715
716         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
717         gdt_descr.size = GDT_SIZE - 1;
718         load_gdt(&gdt_descr);
719 }
720 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
721
722 /**
723  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
724  * @cpu:        The CPU number for which this is invoked
725  *
726  * Invoked during early boot to switch from early GDT and early per CPU to
727  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
728  * switch is implicit by loading the direct GDT. On 64bit this requires
729  * to update GSBASE.
730  */
731 void __init switch_gdt_and_percpu_base(int cpu)
732 {
733         load_direct_gdt(cpu);
734
735 #ifdef CONFIG_X86_64
736         /*
737          * No need to load %gs. It is already correct.
738          *
739          * Writing %gs on 64bit would zero GSBASE which would make any per
740          * CPU operation up to the point of the wrmsrl() fault.
741          *
742          * Set GSBASE to the new offset. Until the wrmsrl() happens the
743          * early mapping is still valid. That means the GSBASE update will
744          * lose any prior per CPU data which was not copied over in
745          * setup_per_cpu_areas().
746          *
747          * This works even with stackprotector enabled because the
748          * per CPU stack canary is 0 in both per CPU areas.
749          */
750         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
751 #else
752         /*
753          * %fs is already set to __KERNEL_PERCPU, but after switching GDT
754          * it is required to load FS again so that the 'hidden' part is
755          * updated from the new GDT. Up to this point the early per CPU
756          * translation is active. Any content of the early per CPU data
757          * which was not copied over in setup_per_cpu_areas() is lost.
758          */
759         loadsegment(fs, __KERNEL_PERCPU);
760 #endif
761 }
762
763 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
764
765 static void get_model_name(struct cpuinfo_x86 *c)
766 {
767         unsigned int *v;
768         char *p, *q, *s;
769
770         if (c->extended_cpuid_level < 0x80000004)
771                 return;
772
773         v = (unsigned int *)c->x86_model_id;
774         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
775         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
776         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
777         c->x86_model_id[48] = 0;
778
779         /* Trim whitespace */
780         p = q = s = &c->x86_model_id[0];
781
782         while (*p == ' ')
783                 p++;
784
785         while (*p) {
786                 /* Note the last non-whitespace index */
787                 if (!isspace(*p))
788                         s = q;
789
790                 *q++ = *p++;
791         }
792
793         *(s + 1) = '\0';
794 }
795
796 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
797 {
798         unsigned int eax, ebx, ecx, edx;
799
800         c->x86_max_cores = 1;
801         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
802                 return;
803
804         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
805         if (eax & 0x1f)
806                 c->x86_max_cores = (eax >> 26) + 1;
807 }
808
809 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
810 {
811         unsigned int n, dummy, ebx, ecx, edx, l2size;
812
813         n = c->extended_cpuid_level;
814
815         if (n >= 0x80000005) {
816                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
817                 c->x86_cache_size = (ecx>>24) + (edx>>24);
818 #ifdef CONFIG_X86_64
819                 /* On K8 L1 TLB is inclusive, so don't count it */
820                 c->x86_tlbsize = 0;
821 #endif
822         }
823
824         if (n < 0x80000006)     /* Some chips just has a large L1. */
825                 return;
826
827         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
828         l2size = ecx >> 16;
829
830 #ifdef CONFIG_X86_64
831         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
832 #else
833         /* do processor-specific cache resizing */
834         if (this_cpu->legacy_cache_size)
835                 l2size = this_cpu->legacy_cache_size(c, l2size);
836
837         /* Allow user to override all this if necessary. */
838         if (cachesize_override != -1)
839                 l2size = cachesize_override;
840
841         if (l2size == 0)
842                 return;         /* Again, no L2 cache is possible */
843 #endif
844
845         c->x86_cache_size = l2size;
846 }
847
848 u16 __read_mostly tlb_lli_4k[NR_INFO];
849 u16 __read_mostly tlb_lli_2m[NR_INFO];
850 u16 __read_mostly tlb_lli_4m[NR_INFO];
851 u16 __read_mostly tlb_lld_4k[NR_INFO];
852 u16 __read_mostly tlb_lld_2m[NR_INFO];
853 u16 __read_mostly tlb_lld_4m[NR_INFO];
854 u16 __read_mostly tlb_lld_1g[NR_INFO];
855
856 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
857 {
858         if (this_cpu->c_detect_tlb)
859                 this_cpu->c_detect_tlb(c);
860
861         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
862                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
863                 tlb_lli_4m[ENTRIES]);
864
865         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
866                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
867                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
868 }
869
870 int detect_ht_early(struct cpuinfo_x86 *c)
871 {
872 #ifdef CONFIG_SMP
873         u32 eax, ebx, ecx, edx;
874
875         if (!cpu_has(c, X86_FEATURE_HT))
876                 return -1;
877
878         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
879                 return -1;
880
881         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
882                 return -1;
883
884         cpuid(1, &eax, &ebx, &ecx, &edx);
885
886         smp_num_siblings = (ebx & 0xff0000) >> 16;
887         if (smp_num_siblings == 1)
888                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
889 #endif
890         return 0;
891 }
892
893 void detect_ht(struct cpuinfo_x86 *c)
894 {
895 #ifdef CONFIG_SMP
896         int index_msb, core_bits;
897
898         if (detect_ht_early(c) < 0)
899                 return;
900
901         index_msb = get_count_order(smp_num_siblings);
902         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
903
904         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
905
906         index_msb = get_count_order(smp_num_siblings);
907
908         core_bits = get_count_order(c->x86_max_cores);
909
910         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
911                                        ((1 << core_bits) - 1);
912 #endif
913 }
914
915 static void get_cpu_vendor(struct cpuinfo_x86 *c)
916 {
917         char *v = c->x86_vendor_id;
918         int i;
919
920         for (i = 0; i < X86_VENDOR_NUM; i++) {
921                 if (!cpu_devs[i])
922                         break;
923
924                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
925                     (cpu_devs[i]->c_ident[1] &&
926                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
927
928                         this_cpu = cpu_devs[i];
929                         c->x86_vendor = this_cpu->c_x86_vendor;
930                         return;
931                 }
932         }
933
934         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
935                     "CPU: Your system may be unstable.\n", v);
936
937         c->x86_vendor = X86_VENDOR_UNKNOWN;
938         this_cpu = &default_cpu;
939 }
940
941 void cpu_detect(struct cpuinfo_x86 *c)
942 {
943         /* Get vendor name */
944         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
945               (unsigned int *)&c->x86_vendor_id[0],
946               (unsigned int *)&c->x86_vendor_id[8],
947               (unsigned int *)&c->x86_vendor_id[4]);
948
949         c->x86 = 4;
950         /* Intel-defined flags: level 0x00000001 */
951         if (c->cpuid_level >= 0x00000001) {
952                 u32 junk, tfms, cap0, misc;
953
954                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
955                 c->x86          = x86_family(tfms);
956                 c->x86_model    = x86_model(tfms);
957                 c->x86_stepping = x86_stepping(tfms);
958
959                 if (cap0 & (1<<19)) {
960                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
961                         c->x86_cache_alignment = c->x86_clflush_size;
962                 }
963         }
964 }
965
966 static void apply_forced_caps(struct cpuinfo_x86 *c)
967 {
968         int i;
969
970         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
971                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
972                 c->x86_capability[i] |= cpu_caps_set[i];
973         }
974 }
975
976 static void init_speculation_control(struct cpuinfo_x86 *c)
977 {
978         /*
979          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
980          * and they also have a different bit for STIBP support. Also,
981          * a hypervisor might have set the individual AMD bits even on
982          * Intel CPUs, for finer-grained selection of what's available.
983          */
984         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
985                 set_cpu_cap(c, X86_FEATURE_IBRS);
986                 set_cpu_cap(c, X86_FEATURE_IBPB);
987                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
988         }
989
990         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
991                 set_cpu_cap(c, X86_FEATURE_STIBP);
992
993         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
994             cpu_has(c, X86_FEATURE_VIRT_SSBD))
995                 set_cpu_cap(c, X86_FEATURE_SSBD);
996
997         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
998                 set_cpu_cap(c, X86_FEATURE_IBRS);
999                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1000         }
1001
1002         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1003                 set_cpu_cap(c, X86_FEATURE_IBPB);
1004
1005         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1006                 set_cpu_cap(c, X86_FEATURE_STIBP);
1007                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1008         }
1009
1010         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1011                 set_cpu_cap(c, X86_FEATURE_SSBD);
1012                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1013                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1014         }
1015 }
1016
1017 void get_cpu_cap(struct cpuinfo_x86 *c)
1018 {
1019         u32 eax, ebx, ecx, edx;
1020
1021         /* Intel-defined flags: level 0x00000001 */
1022         if (c->cpuid_level >= 0x00000001) {
1023                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1024
1025                 c->x86_capability[CPUID_1_ECX] = ecx;
1026                 c->x86_capability[CPUID_1_EDX] = edx;
1027         }
1028
1029         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1030         if (c->cpuid_level >= 0x00000006)
1031                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1032
1033         /* Additional Intel-defined flags: level 0x00000007 */
1034         if (c->cpuid_level >= 0x00000007) {
1035                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1036                 c->x86_capability[CPUID_7_0_EBX] = ebx;
1037                 c->x86_capability[CPUID_7_ECX] = ecx;
1038                 c->x86_capability[CPUID_7_EDX] = edx;
1039
1040                 /* Check valid sub-leaf index before accessing it */
1041                 if (eax >= 1) {
1042                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1043                         c->x86_capability[CPUID_7_1_EAX] = eax;
1044                 }
1045         }
1046
1047         /* Extended state features: level 0x0000000d */
1048         if (c->cpuid_level >= 0x0000000d) {
1049                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1050
1051                 c->x86_capability[CPUID_D_1_EAX] = eax;
1052         }
1053
1054         /* AMD-defined flags: level 0x80000001 */
1055         eax = cpuid_eax(0x80000000);
1056         c->extended_cpuid_level = eax;
1057
1058         if ((eax & 0xffff0000) == 0x80000000) {
1059                 if (eax >= 0x80000001) {
1060                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1061
1062                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1063                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
1064                 }
1065         }
1066
1067         if (c->extended_cpuid_level >= 0x80000007) {
1068                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1069
1070                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1071                 c->x86_power = edx;
1072         }
1073
1074         if (c->extended_cpuid_level >= 0x80000008) {
1075                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1076                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1077         }
1078
1079         if (c->extended_cpuid_level >= 0x8000000a)
1080                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1081
1082         if (c->extended_cpuid_level >= 0x8000001f)
1083                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1084
1085         if (c->extended_cpuid_level >= 0x80000021)
1086                 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1087
1088         init_scattered_cpuid_features(c);
1089         init_speculation_control(c);
1090
1091         /*
1092          * Clear/Set all flags overridden by options, after probe.
1093          * This needs to happen each time we re-probe, which may happen
1094          * several times during CPU initialization.
1095          */
1096         apply_forced_caps(c);
1097 }
1098
1099 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1100 {
1101         u32 eax, ebx, ecx, edx;
1102
1103         if (c->extended_cpuid_level >= 0x80000008) {
1104                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1105
1106                 c->x86_virt_bits = (eax >> 8) & 0xff;
1107                 c->x86_phys_bits = eax & 0xff;
1108         }
1109 #ifdef CONFIG_X86_32
1110         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1111                 c->x86_phys_bits = 36;
1112 #endif
1113         c->x86_cache_bits = c->x86_phys_bits;
1114 }
1115
1116 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1117 {
1118 #ifdef CONFIG_X86_32
1119         int i;
1120
1121         /*
1122          * First of all, decide if this is a 486 or higher
1123          * It's a 486 if we can modify the AC flag
1124          */
1125         if (flag_is_changeable_p(X86_EFLAGS_AC))
1126                 c->x86 = 4;
1127         else
1128                 c->x86 = 3;
1129
1130         for (i = 0; i < X86_VENDOR_NUM; i++)
1131                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1132                         c->x86_vendor_id[0] = 0;
1133                         cpu_devs[i]->c_identify(c);
1134                         if (c->x86_vendor_id[0]) {
1135                                 get_cpu_vendor(c);
1136                                 break;
1137                         }
1138                 }
1139 #endif
1140 }
1141
1142 #define NO_SPECULATION          BIT(0)
1143 #define NO_MELTDOWN             BIT(1)
1144 #define NO_SSB                  BIT(2)
1145 #define NO_L1TF                 BIT(3)
1146 #define NO_MDS                  BIT(4)
1147 #define MSBDS_ONLY              BIT(5)
1148 #define NO_SWAPGS               BIT(6)
1149 #define NO_ITLB_MULTIHIT        BIT(7)
1150 #define NO_SPECTRE_V2           BIT(8)
1151 #define NO_MMIO                 BIT(9)
1152 #define NO_EIBRS_PBRSB          BIT(10)
1153
1154 #define VULNWL(vendor, family, model, whitelist)        \
1155         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1156
1157 #define VULNWL_INTEL(model, whitelist)          \
1158         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1159
1160 #define VULNWL_AMD(family, whitelist)           \
1161         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1162
1163 #define VULNWL_HYGON(family, whitelist)         \
1164         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1165
1166 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1167         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1168         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1169         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1170         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1171         VULNWL(VORTEX,  5, X86_MODEL_ANY,       NO_SPECULATION),
1172         VULNWL(VORTEX,  6, X86_MODEL_ANY,       NO_SPECULATION),
1173
1174         /* Intel Family 6 */
1175         VULNWL_INTEL(TIGERLAKE,                 NO_MMIO),
1176         VULNWL_INTEL(TIGERLAKE_L,               NO_MMIO),
1177         VULNWL_INTEL(ALDERLAKE,                 NO_MMIO),
1178         VULNWL_INTEL(ALDERLAKE_L,               NO_MMIO),
1179
1180         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1181         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1182         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1183         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1184         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1185
1186         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1187         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1188         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1189         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1190         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1191         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1192
1193         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1194
1195         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1196         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1197
1198         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1199         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1200         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1201
1202         /*
1203          * Technically, swapgs isn't serializing on AMD (despite it previously
1204          * being documented as such in the APM).  But according to AMD, %gs is
1205          * updated non-speculatively, and the issuing of %gs-relative memory
1206          * operands will be blocked until the %gs update completes, which is
1207          * good enough for our purposes.
1208          */
1209
1210         VULNWL_INTEL(ATOM_TREMONT,              NO_EIBRS_PBRSB),
1211         VULNWL_INTEL(ATOM_TREMONT_L,            NO_EIBRS_PBRSB),
1212         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1213
1214         /* AMD Family 0xf - 0x12 */
1215         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1216         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1217         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1218         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1219
1220         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1221         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1222         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1223
1224         /* Zhaoxin Family 7 */
1225         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1226         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1227         {}
1228 };
1229
1230 #define VULNBL(vendor, family, model, blacklist)        \
1231         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1232
1233 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1234         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1235                                             INTEL_FAM6_##model, steppings, \
1236                                             X86_FEATURE_ANY, issues)
1237
1238 #define VULNBL_AMD(family, blacklist)           \
1239         VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1240
1241 #define VULNBL_HYGON(family, blacklist)         \
1242         VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1243
1244 #define SRBDS           BIT(0)
1245 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1246 #define MMIO            BIT(1)
1247 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1248 #define MMIO_SBDS       BIT(2)
1249 /* CPU is affected by RETbleed, speculating where you would not expect it */
1250 #define RETBLEED        BIT(3)
1251 /* CPU is affected by SMT (cross-thread) return predictions */
1252 #define SMT_RSB         BIT(4)
1253
1254 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1255         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1256         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1257         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1258         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1259         VULNBL_INTEL_STEPPINGS(HASWELL_X,       X86_STEPPING_ANY,               MMIO),
1260         VULNBL_INTEL_STEPPINGS(BROADWELL_D,     X86_STEPPING_ANY,               MMIO),
1261         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1262         VULNBL_INTEL_STEPPINGS(BROADWELL_X,     X86_STEPPING_ANY,               MMIO),
1263         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1264         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1265         VULNBL_INTEL_STEPPINGS(SKYLAKE_X,       X86_STEPPING_ANY,               MMIO | RETBLEED),
1266         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1267         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1268         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1269         VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,    X86_STEPPING_ANY,               RETBLEED),
1270         VULNBL_INTEL_STEPPINGS(ICELAKE_L,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1271         VULNBL_INTEL_STEPPINGS(ICELAKE_D,       X86_STEPPING_ANY,               MMIO),
1272         VULNBL_INTEL_STEPPINGS(ICELAKE_X,       X86_STEPPING_ANY,               MMIO),
1273         VULNBL_INTEL_STEPPINGS(COMETLAKE,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1274         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPINGS(0x0, 0x0),        MMIO | RETBLEED),
1275         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1276         VULNBL_INTEL_STEPPINGS(LAKEFIELD,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1277         VULNBL_INTEL_STEPPINGS(ROCKETLAKE,      X86_STEPPING_ANY,               MMIO | RETBLEED),
1278         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,    X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1279         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,  X86_STEPPING_ANY,               MMIO),
1280         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,  X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1281
1282         VULNBL_AMD(0x15, RETBLEED),
1283         VULNBL_AMD(0x16, RETBLEED),
1284         VULNBL_AMD(0x17, RETBLEED | SMT_RSB),
1285         VULNBL_HYGON(0x18, RETBLEED | SMT_RSB),
1286         {}
1287 };
1288
1289 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1290 {
1291         const struct x86_cpu_id *m = x86_match_cpu(table);
1292
1293         return m && !!(m->driver_data & which);
1294 }
1295
1296 u64 x86_read_arch_cap_msr(void)
1297 {
1298         u64 ia32_cap = 0;
1299
1300         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1301                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1302
1303         return ia32_cap;
1304 }
1305
1306 static bool arch_cap_mmio_immune(u64 ia32_cap)
1307 {
1308         return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1309                 ia32_cap & ARCH_CAP_PSDP_NO &&
1310                 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1311 }
1312
1313 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1314 {
1315         u64 ia32_cap = x86_read_arch_cap_msr();
1316
1317         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1318         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1319             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1320                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1321
1322         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1323                 return;
1324
1325         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1326
1327         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1328                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1329
1330         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1331             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1332            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1333                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1334
1335         /*
1336          * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1337          * flag and protect from vendor-specific bugs via the whitelist.
1338          */
1339         if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1340                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1341                 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1342                     !(ia32_cap & ARCH_CAP_PBRSB_NO))
1343                         setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1344         }
1345
1346         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1347             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1348                 setup_force_cpu_bug(X86_BUG_MDS);
1349                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1350                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1351         }
1352
1353         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1354                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1355
1356         /*
1357          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1358          *      - TSX is supported or
1359          *      - TSX_CTRL is present
1360          *
1361          * TSX_CTRL check is needed for cases when TSX could be disabled before
1362          * the kernel boot e.g. kexec.
1363          * TSX_CTRL check alone is not sufficient for cases when the microcode
1364          * update is not present or running as guest that don't get TSX_CTRL.
1365          */
1366         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1367             (cpu_has(c, X86_FEATURE_RTM) ||
1368              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1369                 setup_force_cpu_bug(X86_BUG_TAA);
1370
1371         /*
1372          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1373          * in the vulnerability blacklist.
1374          *
1375          * Some of the implications and mitigation of Shared Buffers Data
1376          * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1377          * SRBDS.
1378          */
1379         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1380              cpu_has(c, X86_FEATURE_RDSEED)) &&
1381             cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1382                     setup_force_cpu_bug(X86_BUG_SRBDS);
1383
1384         /*
1385          * Processor MMIO Stale Data bug enumeration
1386          *
1387          * Affected CPU list is generally enough to enumerate the vulnerability,
1388          * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1389          * not want the guest to enumerate the bug.
1390          *
1391          * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1392          * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1393          */
1394         if (!arch_cap_mmio_immune(ia32_cap)) {
1395                 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1396                         setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1397                 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1398                         setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1399         }
1400
1401         if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1402                 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1403                         setup_force_cpu_bug(X86_BUG_RETBLEED);
1404         }
1405
1406         if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1407                 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1408
1409         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1410                 return;
1411
1412         /* Rogue Data Cache Load? No! */
1413         if (ia32_cap & ARCH_CAP_RDCL_NO)
1414                 return;
1415
1416         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1417
1418         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1419                 return;
1420
1421         setup_force_cpu_bug(X86_BUG_L1TF);
1422 }
1423
1424 /*
1425  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1426  * unfortunately, that's not true in practice because of early VIA
1427  * chips and (more importantly) broken virtualizers that are not easy
1428  * to detect. In the latter case it doesn't even *fail* reliably, so
1429  * probing for it doesn't even work. Disable it completely on 32-bit
1430  * unless we can find a reliable way to detect all the broken cases.
1431  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1432  */
1433 static void detect_nopl(void)
1434 {
1435 #ifdef CONFIG_X86_32
1436         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1437 #else
1438         setup_force_cpu_cap(X86_FEATURE_NOPL);
1439 #endif
1440 }
1441
1442 /*
1443  * We parse cpu parameters early because fpu__init_system() is executed
1444  * before parse_early_param().
1445  */
1446 static void __init cpu_parse_early_param(void)
1447 {
1448         char arg[128];
1449         char *argptr = arg, *opt;
1450         int arglen, taint = 0;
1451
1452 #ifdef CONFIG_X86_32
1453         if (cmdline_find_option_bool(boot_command_line, "no387"))
1454 #ifdef CONFIG_MATH_EMULATION
1455                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1456 #else
1457                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1458 #endif
1459
1460         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1461                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1462 #endif
1463
1464         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1465                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1466
1467         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1468                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1469
1470         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1471                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1472
1473         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1474         if (arglen <= 0)
1475                 return;
1476
1477         pr_info("Clearing CPUID bits:");
1478
1479         while (argptr) {
1480                 bool found __maybe_unused = false;
1481                 unsigned int bit;
1482
1483                 opt = strsep(&argptr, ",");
1484
1485                 /*
1486                  * Handle naked numbers first for feature flags which don't
1487                  * have names.
1488                  */
1489                 if (!kstrtouint(opt, 10, &bit)) {
1490                         if (bit < NCAPINTS * 32) {
1491
1492                                 /* empty-string, i.e., ""-defined feature flags */
1493                                 if (!x86_cap_flags[bit])
1494                                         pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1495                                 else
1496                                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1497
1498                                 setup_clear_cpu_cap(bit);
1499                                 taint++;
1500                         }
1501                         /*
1502                          * The assumption is that there are no feature names with only
1503                          * numbers in the name thus go to the next argument.
1504                          */
1505                         continue;
1506                 }
1507
1508                 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1509                         if (!x86_cap_flag(bit))
1510                                 continue;
1511
1512                         if (strcmp(x86_cap_flag(bit), opt))
1513                                 continue;
1514
1515                         pr_cont(" %s", opt);
1516                         setup_clear_cpu_cap(bit);
1517                         taint++;
1518                         found = true;
1519                         break;
1520                 }
1521
1522                 if (!found)
1523                         pr_cont(" (unknown: %s)", opt);
1524         }
1525         pr_cont("\n");
1526
1527         if (taint)
1528                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1529 }
1530
1531 /*
1532  * Do minimum CPU detection early.
1533  * Fields really needed: vendor, cpuid_level, family, model, mask,
1534  * cache alignment.
1535  * The others are not touched to avoid unwanted side effects.
1536  *
1537  * WARNING: this function is only called on the boot CPU.  Don't add code
1538  * here that is supposed to run on all CPUs.
1539  */
1540 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1541 {
1542 #ifdef CONFIG_X86_64
1543         c->x86_clflush_size = 64;
1544         c->x86_phys_bits = 36;
1545         c->x86_virt_bits = 48;
1546 #else
1547         c->x86_clflush_size = 32;
1548         c->x86_phys_bits = 32;
1549         c->x86_virt_bits = 32;
1550 #endif
1551         c->x86_cache_alignment = c->x86_clflush_size;
1552
1553         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1554         c->extended_cpuid_level = 0;
1555
1556         if (!have_cpuid_p())
1557                 identify_cpu_without_cpuid(c);
1558
1559         /* cyrix could have cpuid enabled via c_identify()*/
1560         if (have_cpuid_p()) {
1561                 cpu_detect(c);
1562                 get_cpu_vendor(c);
1563                 get_cpu_cap(c);
1564                 get_cpu_address_sizes(c);
1565                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1566                 cpu_parse_early_param();
1567
1568                 if (this_cpu->c_early_init)
1569                         this_cpu->c_early_init(c);
1570
1571                 c->cpu_index = 0;
1572                 filter_cpuid_features(c, false);
1573
1574                 if (this_cpu->c_bsp_init)
1575                         this_cpu->c_bsp_init(c);
1576         } else {
1577                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1578         }
1579
1580         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1581
1582         cpu_set_bug_bits(c);
1583
1584         sld_setup(c);
1585
1586 #ifdef CONFIG_X86_32
1587         /*
1588          * Regardless of whether PCID is enumerated, the SDM says
1589          * that it can't be enabled in 32-bit mode.
1590          */
1591         setup_clear_cpu_cap(X86_FEATURE_PCID);
1592 #endif
1593
1594         /*
1595          * Later in the boot process pgtable_l5_enabled() relies on
1596          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1597          * enabled by this point we need to clear the feature bit to avoid
1598          * false-positives at the later stage.
1599          *
1600          * pgtable_l5_enabled() can be false here for several reasons:
1601          *  - 5-level paging is disabled compile-time;
1602          *  - it's 32-bit kernel;
1603          *  - machine doesn't support 5-level paging;
1604          *  - user specified 'no5lvl' in kernel command line.
1605          */
1606         if (!pgtable_l5_enabled())
1607                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1608
1609         detect_nopl();
1610 }
1611
1612 void __init early_cpu_init(void)
1613 {
1614         const struct cpu_dev *const *cdev;
1615         int count = 0;
1616
1617 #ifdef CONFIG_PROCESSOR_SELECT
1618         pr_info("KERNEL supported cpus:\n");
1619 #endif
1620
1621         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1622                 const struct cpu_dev *cpudev = *cdev;
1623
1624                 if (count >= X86_VENDOR_NUM)
1625                         break;
1626                 cpu_devs[count] = cpudev;
1627                 count++;
1628
1629 #ifdef CONFIG_PROCESSOR_SELECT
1630                 {
1631                         unsigned int j;
1632
1633                         for (j = 0; j < 2; j++) {
1634                                 if (!cpudev->c_ident[j])
1635                                         continue;
1636                                 pr_info("  %s %s\n", cpudev->c_vendor,
1637                                         cpudev->c_ident[j]);
1638                         }
1639                 }
1640 #endif
1641         }
1642         early_identify_cpu(&boot_cpu_data);
1643 }
1644
1645 static bool detect_null_seg_behavior(void)
1646 {
1647         /*
1648          * Empirically, writing zero to a segment selector on AMD does
1649          * not clear the base, whereas writing zero to a segment
1650          * selector on Intel does clear the base.  Intel's behavior
1651          * allows slightly faster context switches in the common case
1652          * where GS is unused by the prev and next threads.
1653          *
1654          * Since neither vendor documents this anywhere that I can see,
1655          * detect it directly instead of hard-coding the choice by
1656          * vendor.
1657          *
1658          * I've designated AMD's behavior as the "bug" because it's
1659          * counterintuitive and less friendly.
1660          */
1661
1662         unsigned long old_base, tmp;
1663         rdmsrl(MSR_FS_BASE, old_base);
1664         wrmsrl(MSR_FS_BASE, 1);
1665         loadsegment(fs, 0);
1666         rdmsrl(MSR_FS_BASE, tmp);
1667         wrmsrl(MSR_FS_BASE, old_base);
1668         return tmp == 0;
1669 }
1670
1671 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1672 {
1673         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1674         if (!IS_ENABLED(CONFIG_X86_64))
1675                 return;
1676
1677         if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1678                 return;
1679
1680         /*
1681          * CPUID bit above wasn't set. If this kernel is still running
1682          * as a HV guest, then the HV has decided not to advertize
1683          * that CPUID bit for whatever reason.  For example, one
1684          * member of the migration pool might be vulnerable.  Which
1685          * means, the bug is present: set the BUG flag and return.
1686          */
1687         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1688                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1689                 return;
1690         }
1691
1692         /*
1693          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1694          * 0x18 is the respective family for Hygon.
1695          */
1696         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1697             detect_null_seg_behavior())
1698                 return;
1699
1700         /* All the remaining ones are affected */
1701         set_cpu_bug(c, X86_BUG_NULL_SEG);
1702 }
1703
1704 static void generic_identify(struct cpuinfo_x86 *c)
1705 {
1706         c->extended_cpuid_level = 0;
1707
1708         if (!have_cpuid_p())
1709                 identify_cpu_without_cpuid(c);
1710
1711         /* cyrix could have cpuid enabled via c_identify()*/
1712         if (!have_cpuid_p())
1713                 return;
1714
1715         cpu_detect(c);
1716
1717         get_cpu_vendor(c);
1718
1719         get_cpu_cap(c);
1720
1721         get_cpu_address_sizes(c);
1722
1723         if (c->cpuid_level >= 0x00000001) {
1724                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1725 #ifdef CONFIG_X86_32
1726 # ifdef CONFIG_SMP
1727                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1728 # else
1729                 c->apicid = c->initial_apicid;
1730 # endif
1731 #endif
1732                 c->phys_proc_id = c->initial_apicid;
1733         }
1734
1735         get_model_name(c); /* Default name */
1736
1737         /*
1738          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1739          * systems that run Linux at CPL > 0 may or may not have the
1740          * issue, but, even if they have the issue, there's absolutely
1741          * nothing we can do about it because we can't use the real IRET
1742          * instruction.
1743          *
1744          * NB: For the time being, only 32-bit kernels support
1745          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1746          * whether to apply espfix using paravirt hooks.  If any
1747          * non-paravirt system ever shows up that does *not* have the
1748          * ESPFIX issue, we can change this.
1749          */
1750 #ifdef CONFIG_X86_32
1751         set_cpu_bug(c, X86_BUG_ESPFIX);
1752 #endif
1753 }
1754
1755 /*
1756  * Validate that ACPI/mptables have the same information about the
1757  * effective APIC id and update the package map.
1758  */
1759 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1760 {
1761 #ifdef CONFIG_SMP
1762         unsigned int apicid, cpu = smp_processor_id();
1763
1764         apicid = apic->cpu_present_to_apicid(cpu);
1765
1766         if (apicid != c->apicid) {
1767                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1768                        cpu, apicid, c->initial_apicid);
1769         }
1770         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1771         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1772 #else
1773         c->logical_proc_id = 0;
1774 #endif
1775 }
1776
1777 /*
1778  * This does the hard work of actually picking apart the CPU stuff...
1779  */
1780 static void identify_cpu(struct cpuinfo_x86 *c)
1781 {
1782         int i;
1783
1784         c->loops_per_jiffy = loops_per_jiffy;
1785         c->x86_cache_size = 0;
1786         c->x86_vendor = X86_VENDOR_UNKNOWN;
1787         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1788         c->x86_vendor_id[0] = '\0'; /* Unset */
1789         c->x86_model_id[0] = '\0';  /* Unset */
1790         c->x86_max_cores = 1;
1791         c->x86_coreid_bits = 0;
1792         c->cu_id = 0xff;
1793 #ifdef CONFIG_X86_64
1794         c->x86_clflush_size = 64;
1795         c->x86_phys_bits = 36;
1796         c->x86_virt_bits = 48;
1797 #else
1798         c->cpuid_level = -1;    /* CPUID not detected */
1799         c->x86_clflush_size = 32;
1800         c->x86_phys_bits = 32;
1801         c->x86_virt_bits = 32;
1802 #endif
1803         c->x86_cache_alignment = c->x86_clflush_size;
1804         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1805 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1806         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1807 #endif
1808
1809         generic_identify(c);
1810
1811         if (this_cpu->c_identify)
1812                 this_cpu->c_identify(c);
1813
1814         /* Clear/Set all flags overridden by options, after probe */
1815         apply_forced_caps(c);
1816
1817 #ifdef CONFIG_X86_64
1818         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1819 #endif
1820
1821         /*
1822          * Vendor-specific initialization.  In this section we
1823          * canonicalize the feature flags, meaning if there are
1824          * features a certain CPU supports which CPUID doesn't
1825          * tell us, CPUID claiming incorrect flags, or other bugs,
1826          * we handle them here.
1827          *
1828          * At the end of this section, c->x86_capability better
1829          * indicate the features this CPU genuinely supports!
1830          */
1831         if (this_cpu->c_init)
1832                 this_cpu->c_init(c);
1833
1834         /* Disable the PN if appropriate */
1835         squash_the_stupid_serial_number(c);
1836
1837         /* Set up SMEP/SMAP/UMIP */
1838         setup_smep(c);
1839         setup_smap(c);
1840         setup_umip(c);
1841
1842         /* Enable FSGSBASE instructions if available. */
1843         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1844                 cr4_set_bits(X86_CR4_FSGSBASE);
1845                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1846         }
1847
1848         /*
1849          * The vendor-specific functions might have changed features.
1850          * Now we do "generic changes."
1851          */
1852
1853         /* Filter out anything that depends on CPUID levels we don't have */
1854         filter_cpuid_features(c, true);
1855
1856         /* If the model name is still unset, do table lookup. */
1857         if (!c->x86_model_id[0]) {
1858                 const char *p;
1859                 p = table_lookup_model(c);
1860                 if (p)
1861                         strcpy(c->x86_model_id, p);
1862                 else
1863                         /* Last resort... */
1864                         sprintf(c->x86_model_id, "%02x/%02x",
1865                                 c->x86, c->x86_model);
1866         }
1867
1868 #ifdef CONFIG_X86_64
1869         detect_ht(c);
1870 #endif
1871
1872         x86_init_rdrand(c);
1873         setup_pku(c);
1874         setup_cet(c);
1875
1876         /*
1877          * Clear/Set all flags overridden by options, need do it
1878          * before following smp all cpus cap AND.
1879          */
1880         apply_forced_caps(c);
1881
1882         /*
1883          * On SMP, boot_cpu_data holds the common feature set between
1884          * all CPUs; so make sure that we indicate which features are
1885          * common between the CPUs.  The first time this routine gets
1886          * executed, c == &boot_cpu_data.
1887          */
1888         if (c != &boot_cpu_data) {
1889                 /* AND the already accumulated flags with these */
1890                 for (i = 0; i < NCAPINTS; i++)
1891                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1892
1893                 /* OR, i.e. replicate the bug flags */
1894                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1895                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1896         }
1897
1898         ppin_init(c);
1899
1900         /* Init Machine Check Exception if available. */
1901         mcheck_cpu_init(c);
1902
1903         select_idle_routine(c);
1904
1905 #ifdef CONFIG_NUMA
1906         numa_add_cpu(smp_processor_id());
1907 #endif
1908 }
1909
1910 /*
1911  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1912  * on 32-bit kernels:
1913  */
1914 #ifdef CONFIG_X86_32
1915 void enable_sep_cpu(void)
1916 {
1917         struct tss_struct *tss;
1918         int cpu;
1919
1920         if (!boot_cpu_has(X86_FEATURE_SEP))
1921                 return;
1922
1923         cpu = get_cpu();
1924         tss = &per_cpu(cpu_tss_rw, cpu);
1925
1926         /*
1927          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1928          * see the big comment in struct x86_hw_tss's definition.
1929          */
1930
1931         tss->x86_tss.ss1 = __KERNEL_CS;
1932         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1933         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1934         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1935
1936         put_cpu();
1937 }
1938 #endif
1939
1940 void __init identify_boot_cpu(void)
1941 {
1942         identify_cpu(&boot_cpu_data);
1943         if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1944                 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1945 #ifdef CONFIG_X86_32
1946         enable_sep_cpu();
1947 #endif
1948         cpu_detect_tlb(&boot_cpu_data);
1949         setup_cr_pinning();
1950
1951         tsx_init();
1952         lkgs_init();
1953 }
1954
1955 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1956 {
1957         BUG_ON(c == &boot_cpu_data);
1958         identify_cpu(c);
1959 #ifdef CONFIG_X86_32
1960         enable_sep_cpu();
1961 #endif
1962         validate_apic_and_package_id(c);
1963         x86_spec_ctrl_setup_ap();
1964         update_srbds_msr();
1965
1966         tsx_ap_init();
1967 }
1968
1969 void print_cpu_info(struct cpuinfo_x86 *c)
1970 {
1971         const char *vendor = NULL;
1972
1973         if (c->x86_vendor < X86_VENDOR_NUM) {
1974                 vendor = this_cpu->c_vendor;
1975         } else {
1976                 if (c->cpuid_level >= 0)
1977                         vendor = c->x86_vendor_id;
1978         }
1979
1980         if (vendor && !strstr(c->x86_model_id, vendor))
1981                 pr_cont("%s ", vendor);
1982
1983         if (c->x86_model_id[0])
1984                 pr_cont("%s", c->x86_model_id);
1985         else
1986                 pr_cont("%d86", c->x86);
1987
1988         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1989
1990         if (c->x86_stepping || c->cpuid_level >= 0)
1991                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1992         else
1993                 pr_cont(")\n");
1994 }
1995
1996 /*
1997  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1998  * function prevents it from becoming an environment variable for init.
1999  */
2000 static __init int setup_clearcpuid(char *arg)
2001 {
2002         return 1;
2003 }
2004 __setup("clearcpuid=", setup_clearcpuid);
2005
2006 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2007         .current_task   = &init_task,
2008         .preempt_count  = INIT_PREEMPT_COUNT,
2009         .top_of_stack   = TOP_OF_INIT_STACK,
2010 };
2011 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2012
2013 #ifdef CONFIG_X86_64
2014 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2015                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2016 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2017
2018 static void wrmsrl_cstar(unsigned long val)
2019 {
2020         /*
2021          * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2022          * is so far ignored by the CPU, but raises a #VE trap in a TDX
2023          * guest. Avoid the pointless write on all Intel CPUs.
2024          */
2025         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2026                 wrmsrl(MSR_CSTAR, val);
2027 }
2028
2029 /* May not be marked __init: used by software suspend */
2030 void syscall_init(void)
2031 {
2032         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2033         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2034
2035 #ifdef CONFIG_IA32_EMULATION
2036         wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2037         /*
2038          * This only works on Intel CPUs.
2039          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2040          * This does not cause SYSENTER to jump to the wrong location, because
2041          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2042          */
2043         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2044         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2045                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2046         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2047 #else
2048         wrmsrl_cstar((unsigned long)ignore_sysret);
2049         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2050         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2051         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2052 #endif
2053
2054         /*
2055          * Flags to clear on syscall; clear as much as possible
2056          * to minimize user space-kernel interference.
2057          */
2058         wrmsrl(MSR_SYSCALL_MASK,
2059                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2060                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2061                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2062                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2063                X86_EFLAGS_AC|X86_EFLAGS_ID);
2064 }
2065
2066 #else   /* CONFIG_X86_64 */
2067
2068 #ifdef CONFIG_STACKPROTECTOR
2069 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2070 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2071 #endif
2072
2073 #endif  /* CONFIG_X86_64 */
2074
2075 /*
2076  * Clear all 6 debug registers:
2077  */
2078 static void clear_all_debug_regs(void)
2079 {
2080         int i;
2081
2082         for (i = 0; i < 8; i++) {
2083                 /* Ignore db4, db5 */
2084                 if ((i == 4) || (i == 5))
2085                         continue;
2086
2087                 set_debugreg(0, i);
2088         }
2089 }
2090
2091 #ifdef CONFIG_KGDB
2092 /*
2093  * Restore debug regs if using kgdbwait and you have a kernel debugger
2094  * connection established.
2095  */
2096 static void dbg_restore_debug_regs(void)
2097 {
2098         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2099                 arch_kgdb_ops.correct_hw_break();
2100 }
2101 #else /* ! CONFIG_KGDB */
2102 #define dbg_restore_debug_regs()
2103 #endif /* ! CONFIG_KGDB */
2104
2105 static inline void setup_getcpu(int cpu)
2106 {
2107         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2108         struct desc_struct d = { };
2109
2110         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2111                 wrmsr(MSR_TSC_AUX, cpudata, 0);
2112
2113         /* Store CPU and node number in limit. */
2114         d.limit0 = cpudata;
2115         d.limit1 = cpudata >> 16;
2116
2117         d.type = 5;             /* RO data, expand down, accessed */
2118         d.dpl = 3;              /* Visible to user code */
2119         d.s = 1;                /* Not a system segment */
2120         d.p = 1;                /* Present */
2121         d.d = 1;                /* 32-bit */
2122
2123         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2124 }
2125
2126 #ifdef CONFIG_X86_64
2127 static inline void ucode_cpu_init(int cpu) { }
2128
2129 static inline void tss_setup_ist(struct tss_struct *tss)
2130 {
2131         /* Set up the per-CPU TSS IST stacks */
2132         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2133         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2134         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2135         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2136         /* Only mapped when SEV-ES is active */
2137         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2138 }
2139
2140 #else /* CONFIG_X86_64 */
2141
2142 static inline void ucode_cpu_init(int cpu)
2143 {
2144         show_ucode_info_early();
2145 }
2146
2147 static inline void tss_setup_ist(struct tss_struct *tss) { }
2148
2149 #endif /* !CONFIG_X86_64 */
2150
2151 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2152 {
2153         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2154
2155 #ifdef CONFIG_X86_IOPL_IOPERM
2156         tss->io_bitmap.prev_max = 0;
2157         tss->io_bitmap.prev_sequence = 0;
2158         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2159         /*
2160          * Invalidate the extra array entry past the end of the all
2161          * permission bitmap as required by the hardware.
2162          */
2163         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2164 #endif
2165 }
2166
2167 /*
2168  * Setup everything needed to handle exceptions from the IDT, including the IST
2169  * exceptions which use paranoid_entry().
2170  */
2171 void cpu_init_exception_handling(void)
2172 {
2173         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2174         int cpu = raw_smp_processor_id();
2175
2176         /* paranoid_entry() gets the CPU number from the GDT */
2177         setup_getcpu(cpu);
2178
2179         /* IST vectors need TSS to be set up. */
2180         tss_setup_ist(tss);
2181         tss_setup_io_bitmap(tss);
2182         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2183
2184         load_TR_desc();
2185
2186         /* GHCB needs to be setup to handle #VC. */
2187         setup_ghcb();
2188
2189         /* Finally load the IDT */
2190         load_current_idt();
2191 }
2192
2193 /*
2194  * cpu_init() initializes state that is per-CPU. Some data is already
2195  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2196  * reload it nevertheless, this function acts as a 'CPU state barrier',
2197  * nothing should get across.
2198  */
2199 void cpu_init(void)
2200 {
2201         struct task_struct *cur = current;
2202         int cpu = raw_smp_processor_id();
2203
2204         ucode_cpu_init(cpu);
2205
2206 #ifdef CONFIG_NUMA
2207         if (this_cpu_read(numa_node) == 0 &&
2208             early_cpu_to_node(cpu) != NUMA_NO_NODE)
2209                 set_numa_node(early_cpu_to_node(cpu));
2210 #endif
2211         pr_debug("Initializing CPU#%d\n", cpu);
2212
2213         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2214             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2215                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2216
2217         if (IS_ENABLED(CONFIG_X86_64)) {
2218                 loadsegment(fs, 0);
2219                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2220                 syscall_init();
2221
2222                 wrmsrl(MSR_FS_BASE, 0);
2223                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2224                 barrier();
2225
2226                 x2apic_setup();
2227         }
2228
2229         mmgrab(&init_mm);
2230         cur->active_mm = &init_mm;
2231         BUG_ON(cur->mm);
2232         initialize_tlbstate_and_flush();
2233         enter_lazy_tlb(&init_mm, cur);
2234
2235         /*
2236          * sp0 points to the entry trampoline stack regardless of what task
2237          * is running.
2238          */
2239         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2240
2241         load_mm_ldt(&init_mm);
2242
2243         clear_all_debug_regs();
2244         dbg_restore_debug_regs();
2245
2246         doublefault_init_cpu_tss();
2247
2248         if (is_uv_system())
2249                 uv_cpu_init();
2250
2251         load_fixmap_gdt(cpu);
2252 }
2253
2254 #ifdef CONFIG_MICROCODE_LATE_LOADING
2255 /**
2256  * store_cpu_caps() - Store a snapshot of CPU capabilities
2257  * @curr_info: Pointer where to store it
2258  *
2259  * Returns: None
2260  */
2261 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2262 {
2263         /* Reload CPUID max function as it might've changed. */
2264         curr_info->cpuid_level = cpuid_eax(0);
2265
2266         /* Copy all capability leafs and pick up the synthetic ones. */
2267         memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2268                sizeof(curr_info->x86_capability));
2269
2270         /* Get the hardware CPUID leafs */
2271         get_cpu_cap(curr_info);
2272 }
2273
2274 /**
2275  * microcode_check() - Check if any CPU capabilities changed after an update.
2276  * @prev_info:  CPU capabilities stored before an update.
2277  *
2278  * The microcode loader calls this upon late microcode load to recheck features,
2279  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2280  * hotplug lock.
2281  *
2282  * Return: None
2283  */
2284 void microcode_check(struct cpuinfo_x86 *prev_info)
2285 {
2286         struct cpuinfo_x86 curr_info;
2287
2288         perf_check_microcode();
2289
2290         store_cpu_caps(&curr_info);
2291
2292         if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2293                     sizeof(prev_info->x86_capability)))
2294                 return;
2295
2296         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2297         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2298 }
2299 #endif
2300
2301 /*
2302  * Invoked from core CPU hotplug code after hotplug operations
2303  */
2304 void arch_smt_update(void)
2305 {
2306         /* Handle the speculative execution misfeatures */
2307         cpu_bugs_smt_update();
2308         /* Check whether IPI broadcasting can be enabled */
2309         apic_smt_update();
2310 }
2311
2312 void __init arch_cpu_finalize_init(void)
2313 {
2314         identify_boot_cpu();
2315
2316         /*
2317          * identify_boot_cpu() initialized SMT support information, let the
2318          * core code know.
2319          */
2320         cpu_smt_check_topology();
2321
2322         if (!IS_ENABLED(CONFIG_SMP)) {
2323                 pr_info("CPU: ");
2324                 print_cpu_info(&boot_cpu_data);
2325         }
2326
2327         cpu_select_mitigations();
2328
2329         arch_smt_update();
2330
2331         if (IS_ENABLED(CONFIG_X86_32)) {
2332                 /*
2333                  * Check whether this is a real i386 which is not longer
2334                  * supported and fixup the utsname.
2335                  */
2336                 if (boot_cpu_data.x86 < 4)
2337                         panic("Kernel requires i486+ for 'invlpg' and other features");
2338
2339                 init_utsname()->machine[1] =
2340                         '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2341         }
2342
2343         /*
2344          * Must be before alternatives because it might set or clear
2345          * feature bits.
2346          */
2347         fpu__init_system();
2348         fpu__init_cpu();
2349
2350         alternative_instructions();
2351
2352         if (IS_ENABLED(CONFIG_X86_64)) {
2353                 /*
2354                  * Make sure the first 2MB area is not mapped by huge pages
2355                  * There are typically fixed size MTRRs in there and overlapping
2356                  * MTRRs into large pages causes slow downs.
2357                  *
2358                  * Right now we don't do that with gbpages because there seems
2359                  * very little benefit for that case.
2360                  */
2361                 if (!direct_gbpages)
2362                         set_memory_4k((unsigned long)__va(0), 1);
2363         } else {
2364                 fpu__init_check_bugs();
2365         }
2366
2367         /*
2368          * This needs to be called before any devices perform DMA
2369          * operations that might use the SWIOTLB bounce buffers. It will
2370          * mark the bounce buffers as decrypted so that their usage will
2371          * not cause "plain-text" data to be decrypted when accessed. It
2372          * must be called after late_time_init() so that Hyper-V x86/x64
2373          * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2374          */
2375         mem_encrypt_init();
2376 }