Merge tag 'dt2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / include / asm / spinlock.h
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
3
4 #include <linux/atomic.h>
5 #include <asm/page.h>
6 #include <asm/processor.h>
7 #include <linux/compiler.h>
8 #include <asm/paravirt.h>
9 /*
10  * Your basic SMP spinlocks, allowing only a single CPU anywhere
11  *
12  * Simple spin lock operations.  There are two variants, one clears IRQ's
13  * on the local processor, one does not.
14  *
15  * These are fair FIFO ticket locks, which are currently limited to 256
16  * CPUs.
17  *
18  * (the type definitions are in asm/spinlock_types.h)
19  */
20
21 #ifdef CONFIG_X86_32
22 # define LOCK_PTR_REG "a"
23 #else
24 # define LOCK_PTR_REG "D"
25 #endif
26
27 #if defined(CONFIG_X86_32) && \
28         (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
29 /*
30  * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
31  * (PPro errata 66, 92)
32  */
33 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
34 #else
35 # define UNLOCK_LOCK_PREFIX
36 #endif
37
38 /*
39  * Ticket locks are conceptually two parts, one indicating the current head of
40  * the queue, and the other indicating the current tail. The lock is acquired
41  * by atomically noting the tail and incrementing it by one (thus adding
42  * ourself to the queue and noting our position), then waiting until the head
43  * becomes equal to the the initial value of the tail.
44  *
45  * We use an xadd covering *both* parts of the lock, to increment the tail and
46  * also load the position of the head, which takes care of memory ordering
47  * issues and should be optimal for the uncontended case. Note the tail must be
48  * in the high part, because a wide xadd increment of the low part would carry
49  * up and contaminate the high part.
50  */
51 static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
52 {
53         register struct __raw_tickets inc = { .tail = 1 };
54
55         inc = xadd(&lock->tickets, inc);
56
57         for (;;) {
58                 if (inc.head == inc.tail)
59                         break;
60                 cpu_relax();
61                 inc.head = ACCESS_ONCE(lock->tickets.head);
62         }
63         barrier();              /* make sure nothing creeps before the lock is taken */
64 }
65
66 static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
67 {
68         arch_spinlock_t old, new;
69
70         old.tickets = ACCESS_ONCE(lock->tickets);
71         if (old.tickets.head != old.tickets.tail)
72                 return 0;
73
74         new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
75
76         /* cmpxchg is a full barrier, so nothing can move before it */
77         return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
78 }
79
80 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
81 {
82         __add(&lock->tickets.head, 1, UNLOCK_LOCK_PREFIX);
83 }
84
85 static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
86 {
87         struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
88
89         return tmp.tail != tmp.head;
90 }
91
92 static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
93 {
94         struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
95
96         return (__ticket_t)(tmp.tail - tmp.head) > 1;
97 }
98
99 #ifndef CONFIG_PARAVIRT_SPINLOCKS
100
101 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
102 {
103         return __ticket_spin_is_locked(lock);
104 }
105
106 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
107 {
108         return __ticket_spin_is_contended(lock);
109 }
110 #define arch_spin_is_contended  arch_spin_is_contended
111
112 static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
113 {
114         __ticket_spin_lock(lock);
115 }
116
117 static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
118 {
119         return __ticket_spin_trylock(lock);
120 }
121
122 static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
123 {
124         __ticket_spin_unlock(lock);
125 }
126
127 static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
128                                                   unsigned long flags)
129 {
130         arch_spin_lock(lock);
131 }
132
133 #endif  /* CONFIG_PARAVIRT_SPINLOCKS */
134
135 static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
136 {
137         while (arch_spin_is_locked(lock))
138                 cpu_relax();
139 }
140
141 /*
142  * Read-write spinlocks, allowing multiple readers
143  * but only one writer.
144  *
145  * NOTE! it is quite common to have readers in interrupts
146  * but no interrupt writers. For those circumstances we
147  * can "mix" irq-safe locks - any writer needs to get a
148  * irq-safe write-lock, but readers can get non-irqsafe
149  * read-locks.
150  *
151  * On x86, we implement read-write locks as a 32-bit counter
152  * with the high bit (sign) being the "contended" bit.
153  */
154
155 /**
156  * read_can_lock - would read_trylock() succeed?
157  * @lock: the rwlock in question.
158  */
159 static inline int arch_read_can_lock(arch_rwlock_t *lock)
160 {
161         return lock->lock > 0;
162 }
163
164 /**
165  * write_can_lock - would write_trylock() succeed?
166  * @lock: the rwlock in question.
167  */
168 static inline int arch_write_can_lock(arch_rwlock_t *lock)
169 {
170         return lock->write == WRITE_LOCK_CMP;
171 }
172
173 static inline void arch_read_lock(arch_rwlock_t *rw)
174 {
175         asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
176                      "jns 1f\n"
177                      "call __read_lock_failed\n\t"
178                      "1:\n"
179                      ::LOCK_PTR_REG (rw) : "memory");
180 }
181
182 static inline void arch_write_lock(arch_rwlock_t *rw)
183 {
184         asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
185                      "jz 1f\n"
186                      "call __write_lock_failed\n\t"
187                      "1:\n"
188                      ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
189                      : "memory");
190 }
191
192 static inline int arch_read_trylock(arch_rwlock_t *lock)
193 {
194         READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
195
196         if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
197                 return 1;
198         READ_LOCK_ATOMIC(inc)(count);
199         return 0;
200 }
201
202 static inline int arch_write_trylock(arch_rwlock_t *lock)
203 {
204         atomic_t *count = (atomic_t *)&lock->write;
205
206         if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
207                 return 1;
208         atomic_add(WRITE_LOCK_CMP, count);
209         return 0;
210 }
211
212 static inline void arch_read_unlock(arch_rwlock_t *rw)
213 {
214         asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
215                      :"+m" (rw->lock) : : "memory");
216 }
217
218 static inline void arch_write_unlock(arch_rwlock_t *rw)
219 {
220         asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
221                      : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
222 }
223
224 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
225 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
226
227 #undef READ_LOCK_SIZE
228 #undef READ_LOCK_ATOMIC
229 #undef WRITE_LOCK_ADD
230 #undef WRITE_LOCK_SUB
231 #undef WRITE_LOCK_CMP
232
233 #define arch_spin_relax(lock)   cpu_relax()
234 #define arch_read_relax(lock)   cpu_relax()
235 #define arch_write_relax(lock)  cpu_relax()
236
237 /* The {read|write|spin}_lock() on x86 are full memory barriers. */
238 static inline void smp_mb__after_lock(void) { }
239 #define ARCH_HAS_SMP_MB_AFTER_LOCK
240
241 #endif /* _ASM_X86_SPINLOCK_H */