Merge branch 'for-chris' of git://git.jan-o-sch.net/btrfs-unstable into for-linus
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / include / asm / spinlock.h
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
3
4 #include <linux/atomic.h>
5 #include <asm/page.h>
6 #include <asm/processor.h>
7 #include <linux/compiler.h>
8 #include <asm/paravirt.h>
9 /*
10  * Your basic SMP spinlocks, allowing only a single CPU anywhere
11  *
12  * Simple spin lock operations.  There are two variants, one clears IRQ's
13  * on the local processor, one does not.
14  *
15  * These are fair FIFO ticket locks, which are currently limited to 256
16  * CPUs.
17  *
18  * (the type definitions are in asm/spinlock_types.h)
19  */
20
21 #ifdef CONFIG_X86_32
22 # define LOCK_PTR_REG "a"
23 # define REG_PTR_MODE "k"
24 #else
25 # define LOCK_PTR_REG "D"
26 # define REG_PTR_MODE "q"
27 #endif
28
29 #if defined(CONFIG_X86_32) && \
30         (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
31 /*
32  * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
33  * (PPro errata 66, 92)
34  */
35 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
36 #else
37 # define UNLOCK_LOCK_PREFIX
38 #endif
39
40 /*
41  * Ticket locks are conceptually two parts, one indicating the current head of
42  * the queue, and the other indicating the current tail. The lock is acquired
43  * by atomically noting the tail and incrementing it by one (thus adding
44  * ourself to the queue and noting our position), then waiting until the head
45  * becomes equal to the the initial value of the tail.
46  *
47  * We use an xadd covering *both* parts of the lock, to increment the tail and
48  * also load the position of the head, which takes care of memory ordering
49  * issues and should be optimal for the uncontended case. Note the tail must be
50  * in the high part, because a wide xadd increment of the low part would carry
51  * up and contaminate the high part.
52  */
53 static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
54 {
55         register struct __raw_tickets inc = { .tail = 1 };
56
57         inc = xadd(&lock->tickets, inc);
58
59         for (;;) {
60                 if (inc.head == inc.tail)
61                         break;
62                 cpu_relax();
63                 inc.head = ACCESS_ONCE(lock->tickets.head);
64         }
65         barrier();              /* make sure nothing creeps before the lock is taken */
66 }
67
68 static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
69 {
70         arch_spinlock_t old, new;
71
72         old.tickets = ACCESS_ONCE(lock->tickets);
73         if (old.tickets.head != old.tickets.tail)
74                 return 0;
75
76         new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
77
78         /* cmpxchg is a full barrier, so nothing can move before it */
79         return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
80 }
81
82 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
83 {
84         __add(&lock->tickets.head, 1, UNLOCK_LOCK_PREFIX);
85 }
86
87 static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
88 {
89         struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
90
91         return tmp.tail != tmp.head;
92 }
93
94 static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
95 {
96         struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
97
98         return (__ticket_t)(tmp.tail - tmp.head) > 1;
99 }
100
101 #ifndef CONFIG_PARAVIRT_SPINLOCKS
102
103 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
104 {
105         return __ticket_spin_is_locked(lock);
106 }
107
108 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
109 {
110         return __ticket_spin_is_contended(lock);
111 }
112 #define arch_spin_is_contended  arch_spin_is_contended
113
114 static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
115 {
116         __ticket_spin_lock(lock);
117 }
118
119 static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
120 {
121         return __ticket_spin_trylock(lock);
122 }
123
124 static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
125 {
126         __ticket_spin_unlock(lock);
127 }
128
129 static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
130                                                   unsigned long flags)
131 {
132         arch_spin_lock(lock);
133 }
134
135 #endif  /* CONFIG_PARAVIRT_SPINLOCKS */
136
137 static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
138 {
139         while (arch_spin_is_locked(lock))
140                 cpu_relax();
141 }
142
143 /*
144  * Read-write spinlocks, allowing multiple readers
145  * but only one writer.
146  *
147  * NOTE! it is quite common to have readers in interrupts
148  * but no interrupt writers. For those circumstances we
149  * can "mix" irq-safe locks - any writer needs to get a
150  * irq-safe write-lock, but readers can get non-irqsafe
151  * read-locks.
152  *
153  * On x86, we implement read-write locks as a 32-bit counter
154  * with the high bit (sign) being the "contended" bit.
155  */
156
157 /**
158  * read_can_lock - would read_trylock() succeed?
159  * @lock: the rwlock in question.
160  */
161 static inline int arch_read_can_lock(arch_rwlock_t *lock)
162 {
163         return lock->lock > 0;
164 }
165
166 /**
167  * write_can_lock - would write_trylock() succeed?
168  * @lock: the rwlock in question.
169  */
170 static inline int arch_write_can_lock(arch_rwlock_t *lock)
171 {
172         return lock->write == WRITE_LOCK_CMP;
173 }
174
175 static inline void arch_read_lock(arch_rwlock_t *rw)
176 {
177         asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
178                      "jns 1f\n"
179                      "call __read_lock_failed\n\t"
180                      "1:\n"
181                      ::LOCK_PTR_REG (rw) : "memory");
182 }
183
184 static inline void arch_write_lock(arch_rwlock_t *rw)
185 {
186         asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
187                      "jz 1f\n"
188                      "call __write_lock_failed\n\t"
189                      "1:\n"
190                      ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
191                      : "memory");
192 }
193
194 static inline int arch_read_trylock(arch_rwlock_t *lock)
195 {
196         READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
197
198         if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
199                 return 1;
200         READ_LOCK_ATOMIC(inc)(count);
201         return 0;
202 }
203
204 static inline int arch_write_trylock(arch_rwlock_t *lock)
205 {
206         atomic_t *count = (atomic_t *)&lock->write;
207
208         if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
209                 return 1;
210         atomic_add(WRITE_LOCK_CMP, count);
211         return 0;
212 }
213
214 static inline void arch_read_unlock(arch_rwlock_t *rw)
215 {
216         asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
217                      :"+m" (rw->lock) : : "memory");
218 }
219
220 static inline void arch_write_unlock(arch_rwlock_t *rw)
221 {
222         asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
223                      : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
224 }
225
226 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
227 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
228
229 #undef READ_LOCK_SIZE
230 #undef READ_LOCK_ATOMIC
231 #undef WRITE_LOCK_ADD
232 #undef WRITE_LOCK_SUB
233 #undef WRITE_LOCK_CMP
234
235 #define arch_spin_relax(lock)   cpu_relax()
236 #define arch_read_relax(lock)   cpu_relax()
237 #define arch_write_relax(lock)  cpu_relax()
238
239 /* The {read|write|spin}_lock() on x86 are full memory barriers. */
240 static inline void smp_mb__after_lock(void) { }
241 #define ARCH_HAS_SMP_MB_AFTER_LOCK
242
243 #endif /* _ASM_X86_SPINLOCK_H */